PostgreSQL 16.12 Documentation
Table of Contents
	Preface
		 What Is PostgreSQL™?
	A Brief History of PostgreSQL™
		The Berkeley POSTGRES™ Project
	Postgres95™
	PostgreSQL™

	Conventions
	Further Information
	Bug Reporting Guidelines
		Identifying Bugs
	What to Report
	Where to Report Bugs

	I. Tutorial
		1. Getting Started
		Installation
	Architectural Fundamentals
	Creating a Database
	Accessing a Database

	2. The SQL Language
		Introduction
	Concepts
	Creating a New Table
	Populating a Table With Rows
	Querying a Table
	Joins Between Tables
	Aggregate Functions
	Updates
	Deletions

	3. Advanced Features
		Introduction
	Views
	Foreign Keys
	Transactions
	Window Functions
	Inheritance
	Conclusion

	II. The SQL Language
		4. SQL Syntax
		Lexical Structure
		Identifiers and Key Words
	Constants
	Operators
	Special Characters
	Comments
	Operator Precedence

	Value Expressions
		Column References
	Positional Parameters
	Subscripts
	Field Selection
	Operator Invocations
	Function Calls
	Aggregate Expressions
	Window Function Calls
	Type Casts
	Collation Expressions
	Scalar Subqueries
	Array Constructors
	Row Constructors
	Expression Evaluation Rules

	Calling Functions
		Using Positional Notation
	Using Named Notation
	Using Mixed Notation

	5. Data Definition
		Table Basics
	Default Values
	Generated Columns
	Constraints
		Check Constraints
	Not-Null Constraints
	Unique Constraints
	Primary Keys
	Foreign Keys
	Exclusion Constraints

	System Columns
	Modifying Tables
		Adding a Column
	Removing a Column
	Adding a Constraint
	Removing a Constraint
	Changing a Column's Default Value
	Changing a Column's Data Type
	Renaming a Column
	Renaming a Table

	Privileges
	Row Security Policies
	Schemas
		Creating a Schema
	The Public Schema
	The Schema Search Path
	Schemas and Privileges
	The System Catalog Schema
	Usage Patterns
	Portability

	Inheritance
		Caveats

	Table Partitioning
		Overview
	Declarative Partitioning
	Partitioning Using Inheritance
	Partition Pruning
	Partitioning and Constraint Exclusion
	Best Practices for Declarative Partitioning

	Foreign Data
	Other Database Objects
	Dependency Tracking

	6. Data Manipulation
		Inserting Data
	Updating Data
	Deleting Data
	Returning Data from Modified Rows

	7. Queries
		Overview
	Table Expressions
		The FROM Clause
	The WHERE Clause
	The GROUP BY and HAVING Clauses
	GROUPING SETS, CUBE, and ROLLUP
	Window Function Processing

	Select Lists
		Select-List Items
	Column Labels
	DISTINCT

	Combining Queries (UNION, INTERSECT, EXCEPT)
	Sorting Rows (ORDER BY)
	LIMIT and OFFSET
	VALUES Lists
	WITH Queries (Common Table Expressions)
		SELECT in WITH
	Recursive Queries
	Common Table Expression Materialization
	Data-Modifying Statements in WITH

	8. Data Types
		Numeric Types
		Integer Types
	Arbitrary Precision Numbers
	Floating-Point Types
	Serial Types

	Monetary Types
	Character Types
	Binary Data Types
		bytea Hex Format
	bytea Escape Format

	Date/Time Types
		Date/Time Input
	Date/Time Output
	Time Zones
	Interval Input
	Interval Output

	Boolean Type
	Enumerated Types
		Declaration of Enumerated Types
	Ordering
	Type Safety
	Implementation Details

	Geometric Types
		Points
	Lines
	Line Segments
	Boxes
	Paths
	Polygons
	Circles

	Network Address Types
		inet
	cidr
	inet vs. cidr
	macaddr
	macaddr8

	Bit String Types
	Text Search Types
		tsvector
	tsquery

	UUID Type
	XML Type
		Creating XML Values
	Encoding Handling
	Accessing XML Values

	JSON Types
		JSON Input and Output Syntax
	Designing JSON Documents
	jsonb Containment and Existence
	jsonb Indexing
	jsonb Subscripting
	Transforms
	jsonpath Type

	Arrays
		Declaration of Array Types
	Array Value Input
	Accessing Arrays
	Modifying Arrays
	Searching in Arrays
	Array Input and Output Syntax

	Composite Types
		Declaration of Composite Types
	Constructing Composite Values
	Accessing Composite Types
	Modifying Composite Types
	Using Composite Types in Queries
	Composite Type Input and Output Syntax

	Range Types
		Built-in Range and Multirange Types
	Examples
	Inclusive and Exclusive Bounds
	Infinite (Unbounded) Ranges
	Range Input/Output
	Constructing Ranges and Multiranges
	Discrete Range Types
	Defining New Range Types
	Indexing
	Constraints on Ranges

	Domain Types
	Object Identifier Types
	pg_lsn Type
	Pseudo-Types

	9. Functions and Operators
		Logical Operators
	Comparison Functions and Operators
	Mathematical Functions and Operators
	String Functions and Operators
		format

	Binary String Functions and Operators
	Bit String Functions and Operators
	Pattern Matching
		LIKE
	SIMILAR TO Regular Expressions
	POSIX Regular Expressions

	Data Type Formatting Functions
	Date/Time Functions and Operators
		EXTRACT, date_part
	date_trunc
	date_bin
	AT TIME ZONE
	Current Date/Time
	Delaying Execution

	Enum Support Functions
	Geometric Functions and Operators
	Network Address Functions and Operators
	Text Search Functions and Operators
	UUID Functions
	XML Functions
		Producing XML Content
	XML Predicates
	Processing XML
	Mapping Tables to XML

	JSON Functions and Operators
		Processing and Creating JSON Data
	The SQL/JSON Path Language

	Sequence Manipulation Functions
	Conditional Expressions
		CASE
	COALESCE
	NULLIF
	GREATEST and LEAST

	Array Functions and Operators
	Range/Multirange Functions and Operators
	Aggregate Functions
	Window Functions
	Subquery Expressions
		EXISTS
	IN
	NOT IN
	ANY/SOME
	ALL
	Single-Row Comparison

	Row and Array Comparisons
		IN
	NOT IN
	ANY/SOME (array)
	ALL (array)
	Row Constructor Comparison
	Composite Type Comparison

	Set Returning Functions
	System Information Functions and Operators
		Session Information Functions
	Access Privilege Inquiry Functions
	Schema Visibility Inquiry Functions
	System Catalog Information Functions
	Object Information and Addressing Functions
	Comment Information Functions
	Data Validity Checking Functions
	Transaction ID and Snapshot Information Functions
	Committed Transaction Information Functions
	Control Data Functions

	System Administration Functions
		Configuration Settings Functions
	Server Signaling Functions
	Backup Control Functions
	Recovery Control Functions
	Snapshot Synchronization Functions
	Replication Management Functions
	Database Object Management Functions
	Index Maintenance Functions
	Generic File Access Functions
	Advisory Lock Functions

	Trigger Functions
	Event Trigger Functions
		Capturing Changes at Command End
	Processing Objects Dropped by a DDL Command
	Handling a Table Rewrite Event

	Statistics Information Functions
		Inspecting MCV Lists

	10. Type Conversion
		Overview
	Operators
	Functions
	Value Storage
	UNION, CASE, and Related Constructs
	SELECT Output Columns

	11. Indexes
		Introduction
	Index Types
		B-Tree
	Hash
	GiST
	SP-GiST
	GIN
	BRIN

	Multicolumn Indexes
	Indexes and ORDER BY
	Combining Multiple Indexes
	Unique Indexes
	Indexes on Expressions
	Partial Indexes
	Index-Only Scans and Covering Indexes
	Operator Classes and Operator Families
	Indexes and Collations
	Examining Index Usage

	12. Full Text Search
		Introduction
		What Is a Document?
	Basic Text Matching
	Configurations

	Tables and Indexes
		Searching a Table
	Creating Indexes

	Controlling Text Search
		Parsing Documents
	Parsing Queries
	Ranking Search Results
	Highlighting Results

	Additional Features
		Manipulating Documents
	Manipulating Queries
	Triggers for Automatic Updates
	Gathering Document Statistics

	Parsers
	Dictionaries
		Stop Words
	Simple Dictionary
	Synonym Dictionary
	Thesaurus Dictionary
	Ispell Dictionary
	Snowball Dictionary

	Configuration Example
	Testing and Debugging Text Search
		Configuration Testing
	Parser Testing
	Dictionary Testing

	Preferred Index Types for Text Search
	psql Support
	Limitations

	13. Concurrency Control
		Introduction
	Transaction Isolation
		Read Committed Isolation Level
	Repeatable Read Isolation Level
	Serializable Isolation Level

	Explicit Locking
		Table-Level Locks
	Row-Level Locks
	Page-Level Locks
	Deadlocks
	Advisory Locks

	Data Consistency Checks at the Application Level
		Enforcing Consistency with Serializable Transactions
	Enforcing Consistency with Explicit Blocking Locks

	Serialization Failure Handling
	Caveats
	Locking and Indexes

	14. Performance Tips
		Using EXPLAIN
		EXPLAIN Basics
	EXPLAIN ANALYZE
	Caveats

	Statistics Used by the Planner
		Single-Column Statistics
	Extended Statistics

	Controlling the Planner with Explicit JOIN Clauses
	Populating a Database
		Disable Autocommit
	Use COPY
	Remove Indexes
	Remove Foreign Key Constraints
	Increase maintenance_work_mem
	Increase max_wal_size
	Disable WAL Archival and Streaming Replication
	Run ANALYZE Afterwards
	Some Notes about pg_dump

	Non-Durable Settings

	15. Parallel Query
		How Parallel Query Works
	When Can Parallel Query Be Used?
	Parallel Plans
		Parallel Scans
	Parallel Joins
	Parallel Aggregation
	Parallel Append
	Parallel Plan Tips

	Parallel Safety
		Parallel Labeling for Functions and Aggregates

	III. Server Administration
		16. Installation from Binaries
	17. Installation from Source Code
		Requirements
	Getting the Source
	Building and Installation with Autoconf and Make
		Short Version
	Installation Procedure
	configure Options
	configure Environment Variables

	Building and Installation with Meson
		Short Version
	Installation Procedure
	meson setup Options

	Post-Installation Setup
		Shared Libraries
	Environment Variables

	Supported Platforms
	Platform-Specific Notes
		AIX
	Cygwin
	macOS
	MinGW/Native Windows
	Solaris

	18. Installation from Source Code on Windows™
		Building with Visual C++™ or the
 Microsoft Windows SDK™
		Requirements
	Special Considerations for 64-Bit Windows
	Building
	Cleaning and Installing
	Running the Regression Tests

	19. Server Setup and Operation
		The PostgreSQL™ User Account
	Creating a Database Cluster
		Use of Secondary File Systems
	File Systems

	Starting the Database Server
		Server Start-up Failures
	Client Connection Problems

	Managing Kernel Resources
		Shared Memory and Semaphores
	systemd RemoveIPC
	Resource Limits
	Linux Memory Overcommit
	Linux Huge Pages

	Shutting Down the Server
	Upgrading a PostgreSQL™ Cluster
		Upgrading Data via pg_dumpall
	Upgrading Data via pg_upgrade
	Upgrading Data via Replication

	Preventing Server Spoofing
	Encryption Options
	Secure TCP/IP Connections with SSL
		Basic Setup
	OpenSSL Configuration
	Using Client Certificates
	SSL Server File Usage
	Creating Certificates

	Secure TCP/IP Connections with GSSAPI Encryption
		Basic Setup

	Secure TCP/IP Connections with SSH Tunnels
	Registering Event Log on Windows

	20. Server Configuration
		Setting Parameters
		Parameter Names and Values
	Parameter Interaction via the Configuration File
	Parameter Interaction via SQL
	Parameter Interaction via the Shell
	Managing Configuration File Contents

	File Locations
	Connections and Authentication
		Connection Settings
	TCP Settings
	Authentication
	SSL

	Resource Consumption
		Memory
	Disk
	Kernel Resource Usage
	Cost-based Vacuum Delay
	Background Writer
	Asynchronous Behavior

	Write Ahead Log
		Settings
	Checkpoints
	Archiving
	Recovery
	Archive Recovery
	Recovery Target

	Replication
		Sending Servers
	Primary Server
	Standby Servers
	Subscribers

	Query Planning
		Planner Method Configuration
	Planner Cost Constants
	Genetic Query Optimizer
	Other Planner Options

	Error Reporting and Logging
		Where to Log
	When to Log
	What to Log
	Using CSV-Format Log Output
	Using JSON-Format Log Output
	Process Title

	Run-time Statistics
		Cumulative Query and Index Statistics
	Statistics Monitoring

	Automatic Vacuuming
	Client Connection Defaults
		Statement Behavior
	Locale and Formatting
	Shared Library Preloading
	Other Defaults

	Lock Management
	Version and Platform Compatibility
		Previous PostgreSQL Versions
	Platform and Client Compatibility

	Error Handling
	Preset Options
	Customized Options
	Developer Options
	Short Options

	21. Client Authentication
		The pg_hba.conf File
	User Name Maps
	Authentication Methods
	Trust Authentication
	Password Authentication
	GSSAPI Authentication
	SSPI Authentication
	Ident Authentication
	Peer Authentication
	LDAP Authentication
	RADIUS Authentication
	Certificate Authentication
	PAM Authentication
	BSD Authentication
	Authentication Problems

	22. Database Roles
		Database Roles
	Role Attributes
	Role Membership
	Dropping Roles
	Predefined Roles
	Function Security

	23. Managing Databases
		Overview
	Creating a Database
	Template Databases
	Database Configuration
	Destroying a Database
	Tablespaces

	24. Localization
		Locale Support
		Overview
	Behavior
	Selecting Locales
	Locale Providers
	ICU Locales
	Problems

	Collation Support
		Concepts
	Managing Collations
	ICU Custom Collations

	Character Set Support
		Supported Character Sets
	Setting the Character Set
	Automatic Character Set Conversion Between Server and Client
	Available Character Set Conversions
	Further Reading

	25. Routine Database Maintenance Tasks
		Routine Vacuuming
		Vacuuming Basics
	Recovering Disk Space
	Updating Planner Statistics
	Updating the Visibility Map
	Preventing Transaction ID Wraparound Failures
	The Autovacuum Daemon

	Routine Reindexing
	Log File Maintenance

	26. Backup and Restore
		SQL Dump
		Restoring the Dump
	Using pg_dumpall
	Handling Large Databases

	File System Level Backup
	Continuous Archiving and Point-in-Time Recovery (PITR)
		Setting Up WAL Archiving
	Making a Base Backup
	Making a Base Backup Using the Low Level API
	Recovering Using a Continuous Archive Backup
	Timelines
	Tips and Examples
	Caveats

	27. High Availability, Load Balancing, and Replication
		Comparison of Different Solutions
	Log-Shipping Standby Servers
		Planning
	Standby Server Operation
	Preparing the Primary for Standby Servers
	Setting Up a Standby Server
	Streaming Replication
	Replication Slots
	Cascading Replication
	Synchronous Replication
	Continuous Archiving in Standby

	Failover
	Hot Standby
		User's Overview
	Handling Query Conflicts
	Administrator's Overview
	Hot Standby Parameter Reference
	Caveats

	28. Monitoring Database Activity
		Standard Unix Tools
	The Cumulative Statistics System
		Statistics Collection Configuration
	Viewing Statistics
	pg_stat_activity
	pg_stat_replication
	pg_stat_replication_slots
	pg_stat_wal_receiver
	pg_stat_recovery_prefetch
	pg_stat_subscription
	pg_stat_subscription_stats
	pg_stat_ssl
	pg_stat_gssapi
	pg_stat_archiver
	pg_stat_io
	pg_stat_bgwriter
	pg_stat_wal
	pg_stat_database
	pg_stat_database_conflicts
	pg_stat_all_tables
	pg_stat_all_indexes
	pg_statio_all_tables
	pg_statio_all_indexes
	pg_statio_all_sequences
	pg_stat_user_functions
	pg_stat_slru
	Statistics Functions

	Viewing Locks
	Progress Reporting
		ANALYZE Progress Reporting
	CLUSTER Progress Reporting
	COPY Progress Reporting
	CREATE INDEX Progress Reporting
	VACUUM Progress Reporting
	Base Backup Progress Reporting

	Dynamic Tracing
		Compiling for Dynamic Tracing
	Built-in Probes
	Using Probes
	Defining New Probes

	29. Monitoring Disk Usage
		Determining Disk Usage
	Disk Full Failure

	30. Reliability and the Write-Ahead Log
		Reliability
	Data Checksums
		Off-line Enabling of Checksums

	Write-Ahead Logging (WAL)
	Asynchronous Commit
	WAL Configuration
	WAL Internals

	31. Logical Replication
		Publication
	Subscription
		Replication Slot Management
	Examples: Set Up Logical Replication
	Examples: Deferred Replication Slot Creation

	Row Filters
		Row Filter Rules
	Expression Restrictions
	UPDATE Transformations
	Partitioned Tables
	Initial Data Synchronization
	Combining Multiple Row Filters
	Examples

	Column Lists
		Examples

	Conflicts
	Restrictions
	Architecture
		Initial Snapshot

	Monitoring
	Security
	Configuration Settings
		Publishers
	Subscribers

	Quick Setup

	32. Just-in-Time Compilation (JIT)
		What Is JIT compilation?
		JIT Accelerated Operations
	Inlining
	Optimization

	When to JIT?
	Configuration
	Extensibility
		Inlining Support for Extensions
	Pluggable JIT Providers

	33. Regression Tests
		Running the Tests
		Running the Tests Against a Temporary Installation
	Running the Tests Against an Existing Installation
	Additional Test Suites
	Locale and Encoding
	Custom Server Settings
	Extra Tests

	Test Evaluation
		Error Message Differences
	Locale Differences
	Date and Time Differences
	Floating-Point Differences
	Row Ordering Differences
	Insufficient Stack Depth
	The “random” Test
	Configuration Parameters

	Variant Comparison Files
	TAP Tests
		Environment Variables

	Test Coverage Examination
		Coverage with Autoconf and Make
	Coverage with Meson

	IV. Client Interfaces
		34. libpq — C Library
		Database Connection Control Functions
		Connection Strings
	Parameter Key Words

	Connection Status Functions
	Command Execution Functions
		Main Functions
	Retrieving Query Result Information
	Retrieving Other Result Information
	Escaping Strings for Inclusion in SQL Commands

	Asynchronous Command Processing
	Pipeline Mode
		Using Pipeline Mode
	Functions Associated with Pipeline Mode
	When to Use Pipeline Mode

	Retrieving Query Results Row-by-Row
	Canceling Queries in Progress
	The Fast-Path Interface
	Asynchronous Notification
	Functions Associated with the COPY Command
		Functions for Sending COPY Data
	Functions for Receiving COPY Data
	Obsolete Functions for COPY

	Control Functions
	Miscellaneous Functions
	Notice Processing
	Event System
		Event Types
	Event Callback Procedure
	Event Support Functions
	Event Example

	Environment Variables
	The Password File
	The Connection Service File
	LDAP Lookup of Connection Parameters
	SSL Support
		Client Verification of Server Certificates
	Client Certificates
	Protection Provided in Different Modes
	SSL Client File Usage
	SSL Library Initialization

	Behavior in Threaded Programs
	Building libpq Programs
	Example Programs

	35. Large Objects
		Introduction
	Implementation Features
	Client Interfaces
		Creating a Large Object
	Importing a Large Object
	Exporting a Large Object
	Opening an Existing Large Object
	Writing Data to a Large Object
	Reading Data from a Large Object
	Seeking in a Large Object
	Obtaining the Seek Position of a Large Object
	Truncating a Large Object
	Closing a Large Object Descriptor
	Removing a Large Object

	Server-Side Functions
	Example Program

	36. ECPG — Embedded SQL in C
		The Concept
	Managing Database Connections
		Connecting to the Database Server
	Choosing a Connection
	Closing a Connection

	Running SQL Commands
		Executing SQL Statements
	Using Cursors
	Managing Transactions
	Prepared Statements

	Using Host Variables
		Overview
	Declare Sections
	Retrieving Query Results
	Type Mapping
	Handling Nonprimitive SQL Data Types
	Indicators

	Dynamic SQL
		Executing Statements without a Result Set
	Executing a Statement with Input Parameters
	Executing a Statement with a Result Set

	pgtypes Library
		Character Strings
	The numeric Type
	The date Type
	The timestamp Type
	The interval Type
	The decimal Type
	errno Values of pgtypeslib
	Special Constants of pgtypeslib

	Using Descriptor Areas
		Named SQL Descriptor Areas
	SQLDA Descriptor Areas

	Error Handling
		Setting Callbacks
	sqlca
	SQLSTATE vs. SQLCODE

	Preprocessor Directives
		Including Files
	The define and undef Directives
	ifdef, ifndef, elif, else, and endif Directives

	Processing Embedded SQL Programs
	Library Functions
	Large Objects
	C++ Applications
		Scope for Host Variables
	C++ Application Development with External C Module

	Embedded SQL Commands
	Informix™ Compatibility Mode
		Additional Types
	Additional/Missing Embedded SQL Statements
	Informix-compatible SQLDA Descriptor Areas
	Additional Functions
	Additional Constants

	Oracle™ Compatibility Mode
	Internals

	37. The Information Schema
		The Schema
	Data Types
	information_schema_catalog_name
	administrable_role_​authorizations
	applicable_roles
	attributes
	character_sets
	check_constraint_routine_usage
	check_constraints
	collations
	collation_character_set_​applicability
	column_column_usage
	column_domain_usage
	column_options
	column_privileges
	column_udt_usage
	columns
	constraint_column_usage
	constraint_table_usage
	data_type_privileges
	domain_constraints
	domain_udt_usage
	domains
	element_types
	enabled_roles
	foreign_data_wrapper_options
	foreign_data_wrappers
	foreign_server_options
	foreign_servers
	foreign_table_options
	foreign_tables
	key_column_usage
	parameters
	referential_constraints
	role_column_grants
	role_routine_grants
	role_table_grants
	role_udt_grants
	role_usage_grants
	routine_column_usage
	routine_privileges
	routine_routine_usage
	routine_sequence_usage
	routine_table_usage
	routines
	schemata
	sequences
	sql_features
	sql_implementation_info
	sql_parts
	sql_sizing
	table_constraints
	table_privileges
	tables
	transforms
	triggered_update_columns
	triggers
	udt_privileges
	usage_privileges
	user_defined_types
	user_mapping_options
	user_mappings
	view_column_usage
	view_routine_usage
	view_table_usage
	views

	V. Server Programming
		38. Extending SQL
		How Extensibility Works
	The PostgreSQL™ Type System
		Base Types
	Container Types
	Domains
	Pseudo-Types
	Polymorphic Types

	User-Defined Functions
	User-Defined Procedures
	Query Language (SQL) Functions
		Arguments for SQL Functions
	SQL Functions on Base Types
	SQL Functions on Composite Types
	SQL Functions with Output Parameters
	SQL Procedures with Output Parameters
	SQL Functions with Variable Numbers of Arguments
	SQL Functions with Default Values for Arguments
	SQL Functions as Table Sources
	SQL Functions Returning Sets
	SQL Functions Returning TABLE
	Polymorphic SQL Functions
	SQL Functions with Collations

	Function Overloading
	Function Volatility Categories
	Procedural Language Functions
	Internal Functions
	C-Language Functions
		Dynamic Loading
	Base Types in C-Language Functions
	Version 1 Calling Conventions
	Writing Code
	Compiling and Linking Dynamically-Loaded Functions
	Composite-Type Arguments
	Returning Rows (Composite Types)
	Returning Sets
	Polymorphic Arguments and Return Types
	Shared Memory and LWLocks
	Using C++ for Extensibility

	Function Optimization Information
	User-Defined Aggregates
		Moving-Aggregate Mode
	Polymorphic and Variadic Aggregates
	Ordered-Set Aggregates
	Partial Aggregation
	Support Functions for Aggregates

	User-Defined Types
		TOAST Considerations

	User-Defined Operators
	Operator Optimization Information
		COMMUTATOR
	NEGATOR
	RESTRICT
	JOIN
	HASHES
	MERGES

	Interfacing Extensions to Indexes
		Index Methods and Operator Classes
	Index Method Strategies
	Index Method Support Routines
	An Example
	Operator Classes and Operator Families
	System Dependencies on Operator Classes
	Ordering Operators
	Special Features of Operator Classes

	Packaging Related Objects into an Extension
		Extension Files
	Extension Relocatability
	Extension Configuration Tables
	Extension Updates
	Installing Extensions Using Update Scripts
	Security Considerations for Extensions
	Extension Example

	Extension Building Infrastructure

	39. Triggers
		Overview of Trigger Behavior
	Visibility of Data Changes
	Writing Trigger Functions in C
	A Complete Trigger Example

	40. Event Triggers
		Overview of Event Trigger Behavior
	Event Trigger Firing Matrix
	Writing Event Trigger Functions in C
	A Complete Event Trigger Example
	A Table Rewrite Event Trigger Example

	41. The Rule System
		The Query Tree
	Views and the Rule System
		How SELECT Rules Work
	View Rules in Non-SELECT Statements
	The Power of Views in PostgreSQL™
	Updating a View

	Materialized Views
	Rules on INSERT, UPDATE, and DELETE
		How Update Rules Work
	Cooperation with Views

	Rules and Privileges
	Rules and Command Status
	Rules Versus Triggers

	42. Procedural Languages
		Installing Procedural Languages

	43. PL/pgSQL — SQL Procedural Language
		Overview
		Advantages of Using PL/pgSQL
	Supported Argument and Result Data Types

	Structure of PL/pgSQL
	Declarations
		Declaring Function Parameters
	ALIAS
	Copying Types
	Row Types
	Record Types
	Collation of PL/pgSQL Variables

	Expressions
	Basic Statements
		Assignment
	Executing SQL Commands
	Executing a Command with a Single-Row Result
	Executing Dynamic Commands
	Obtaining the Result Status
	Doing Nothing At All

	Control Structures
		Returning from a Function
	Returning from a Procedure
	Calling a Procedure
	Conditionals
	Simple Loops
	Looping through Query Results
	Looping through Arrays
	Trapping Errors
	Obtaining Execution Location Information

	Cursors
		Declaring Cursor Variables
	Opening Cursors
	Using Cursors
	Looping through a Cursor's Result

	Transaction Management
	Errors and Messages
		Reporting Errors and Messages
	Checking Assertions

	Trigger Functions
		Triggers on Data Changes
	Triggers on Events

	PL/pgSQL under the Hood
		Variable Substitution
	Plan Caching

	Tips for Developing in PL/pgSQL
		Handling of Quotation Marks
	Additional Compile-Time and Run-Time Checks

	Porting from Oracle™ PL/SQL
		Porting Examples
	Other Things to Watch For
	Appendix

	44. PL/Tcl — Tcl Procedural Language
		Overview
	PL/Tcl Functions and Arguments
	Data Values in PL/Tcl
	Global Data in PL/Tcl
	Database Access from PL/Tcl
	Trigger Functions in PL/Tcl
	Event Trigger Functions in PL/Tcl
	Error Handling in PL/Tcl
	Explicit Subtransactions in PL/Tcl
	Transaction Management
	PL/Tcl Configuration
	Tcl Procedure Names

	45. PL/Perl — Perl Procedural Language
		PL/Perl Functions and Arguments
	Data Values in PL/Perl
	Built-in Functions
		Database Access from PL/Perl
	Utility Functions in PL/Perl

	Global Values in PL/Perl
	Trusted and Untrusted PL/Perl
	PL/Perl Triggers
	PL/Perl Event Triggers
	PL/Perl Under the Hood
		Configuration
	Limitations and Missing Features

	46. PL/Python — Python Procedural Language
		PL/Python Functions
	Data Values
		Data Type Mapping
	Null, None
	Arrays, Lists
	Composite Types
	Set-Returning Functions

	Sharing Data
	Anonymous Code Blocks
	Trigger Functions
	Database Access
		Database Access Functions
	Trapping Errors

	Explicit Subtransactions
		Subtransaction Context Managers

	Transaction Management
	Utility Functions
	Python 2 vs. Python 3
	Environment Variables

	47. Server Programming Interface
		Interface Functions
	Interface Support Functions
	Memory Management
	Transaction Management
	Visibility of Data Changes
	Examples

	48. Background Worker Processes
	49. Logical Decoding
		Logical Decoding Examples
	Logical Decoding Concepts
		Logical Decoding
	Replication Slots
	Output Plugins
	Exported Snapshots

	Streaming Replication Protocol Interface
	Logical Decoding SQL Interface
	System Catalogs Related to Logical Decoding
	Logical Decoding Output Plugins
		Initialization Function
	Capabilities
	Output Modes
	Output Plugin Callbacks
	Functions for Producing Output

	Logical Decoding Output Writers
	Synchronous Replication Support for Logical Decoding
		Overview
	Caveats

	Streaming of Large Transactions for Logical Decoding
	Two-phase Commit Support for Logical Decoding

	50. Replication Progress Tracking
	51. Archive Modules
		Initialization Functions
	Archive Module Callbacks
		Startup Callback
	Check Callback
	Archive Callback
	Shutdown Callback

	VI. Reference
		I. SQL Commands
		ABORT — abort the current transaction
	ALTER AGGREGATE — change the definition of an aggregate function
	ALTER COLLATION — change the definition of a collation
	ALTER CONVERSION — change the definition of a conversion
	ALTER DATABASE — change a database
	ALTER DEFAULT PRIVILEGES — define default access privileges
	ALTER DOMAIN —
 change the definition of a domain

	ALTER EVENT TRIGGER — change the definition of an event trigger
	ALTER EXTENSION —
 change the definition of an extension

	ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper
	ALTER FOREIGN TABLE — change the definition of a foreign table
	ALTER FUNCTION — change the definition of a function
	ALTER GROUP — change role name or membership
	ALTER INDEX — change the definition of an index
	ALTER LANGUAGE — change the definition of a procedural language
	ALTER LARGE OBJECT — change the definition of a large object
	ALTER MATERIALIZED VIEW — change the definition of a materialized view
	ALTER OPERATOR — change the definition of an operator
	ALTER OPERATOR CLASS — change the definition of an operator class
	ALTER OPERATOR FAMILY — change the definition of an operator family
	ALTER POLICY — change the definition of a row-level security policy
	ALTER PROCEDURE — change the definition of a procedure
	ALTER PUBLICATION — change the definition of a publication
	ALTER ROLE — change a database role
	ALTER ROUTINE — change the definition of a routine
	ALTER RULE — change the definition of a rule
	ALTER SCHEMA — change the definition of a schema
	ALTER SEQUENCE —
 change the definition of a sequence generator

	ALTER SERVER — change the definition of a foreign server
	ALTER STATISTICS —
 change the definition of an extended statistics object

	ALTER SUBSCRIPTION — change the definition of a subscription
	ALTER SYSTEM — change a server configuration parameter
	ALTER TABLE — change the definition of a table
	ALTER TABLESPACE — change the definition of a tablespace
	ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration
	ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary
	ALTER TEXT SEARCH PARSER — change the definition of a text search parser
	ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template
	ALTER TRIGGER — change the definition of a trigger
	ALTER TYPE —
 change the definition of a type

	ALTER USER — change a database role
	ALTER USER MAPPING — change the definition of a user mapping
	ALTER VIEW — change the definition of a view
	ANALYZE — collect statistics about a database
	BEGIN — start a transaction block
	CALL — invoke a procedure
	CHECKPOINT — force a write-ahead log checkpoint
	CLOSE — close a cursor
	CLUSTER — cluster a table according to an index
	COMMENT — define or change the comment of an object
	COMMIT — commit the current transaction
	COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit
	COPY — copy data between a file and a table
	CREATE ACCESS METHOD — define a new access method
	CREATE AGGREGATE — define a new aggregate function
	CREATE CAST — define a new cast
	CREATE COLLATION — define a new collation
	CREATE CONVERSION — define a new encoding conversion
	CREATE DATABASE — create a new database
	CREATE DOMAIN — define a new domain
	CREATE EVENT TRIGGER — define a new event trigger
	CREATE EXTENSION — install an extension
	CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper
	CREATE FOREIGN TABLE — define a new foreign table
	CREATE FUNCTION — define a new function
	CREATE GROUP — define a new database role
	CREATE INDEX — define a new index
	CREATE LANGUAGE — define a new procedural language
	CREATE MATERIALIZED VIEW — define a new materialized view
	CREATE OPERATOR — define a new operator
	CREATE OPERATOR CLASS — define a new operator class
	CREATE OPERATOR FAMILY — define a new operator family
	CREATE POLICY — define a new row-level security policy for a table
	CREATE PROCEDURE — define a new procedure
	CREATE PUBLICATION — define a new publication
	CREATE ROLE — define a new database role
	CREATE RULE — define a new rewrite rule
	CREATE SCHEMA — define a new schema
	CREATE SEQUENCE — define a new sequence generator
	CREATE SERVER — define a new foreign server
	CREATE STATISTICS — define extended statistics
	CREATE SUBSCRIPTION — define a new subscription
	CREATE TABLE — define a new table
	CREATE TABLE AS — define a new table from the results of a query
	CREATE TABLESPACE — define a new tablespace
	CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration
	CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary
	CREATE TEXT SEARCH PARSER — define a new text search parser
	CREATE TEXT SEARCH TEMPLATE — define a new text search template
	CREATE TRANSFORM — define a new transform
	CREATE TRIGGER — define a new trigger
	CREATE TYPE — define a new data type
	CREATE USER — define a new database role
	CREATE USER MAPPING — define a new mapping of a user to a foreign server
	CREATE VIEW — define a new view
	DEALLOCATE — deallocate a prepared statement
	DECLARE — define a cursor
	DELETE — delete rows of a table
	DISCARD — discard session state
	DO — execute an anonymous code block
	DROP ACCESS METHOD — remove an access method
	DROP AGGREGATE — remove an aggregate function
	DROP CAST — remove a cast
	DROP COLLATION — remove a collation
	DROP CONVERSION — remove a conversion
	DROP DATABASE — remove a database
	DROP DOMAIN — remove a domain
	DROP EVENT TRIGGER — remove an event trigger
	DROP EXTENSION — remove an extension
	DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper
	DROP FOREIGN TABLE — remove a foreign table
	DROP FUNCTION — remove a function
	DROP GROUP — remove a database role
	DROP INDEX — remove an index
	DROP LANGUAGE — remove a procedural language
	DROP MATERIALIZED VIEW — remove a materialized view
	DROP OPERATOR — remove an operator
	DROP OPERATOR CLASS — remove an operator class
	DROP OPERATOR FAMILY — remove an operator family
	DROP OWNED — remove database objects owned by a database role
	DROP POLICY — remove a row-level security policy from a table
	DROP PROCEDURE — remove a procedure
	DROP PUBLICATION — remove a publication
	DROP ROLE — remove a database role
	DROP ROUTINE — remove a routine
	DROP RULE — remove a rewrite rule
	DROP SCHEMA — remove a schema
	DROP SEQUENCE — remove a sequence
	DROP SERVER — remove a foreign server descriptor
	DROP STATISTICS — remove extended statistics
	DROP SUBSCRIPTION — remove a subscription
	DROP TABLE — remove a table
	DROP TABLESPACE — remove a tablespace
	DROP TEXT SEARCH CONFIGURATION — remove a text search configuration
	DROP TEXT SEARCH DICTIONARY — remove a text search dictionary
	DROP TEXT SEARCH PARSER — remove a text search parser
	DROP TEXT SEARCH TEMPLATE — remove a text search template
	DROP TRANSFORM — remove a transform
	DROP TRIGGER — remove a trigger
	DROP TYPE — remove a data type
	DROP USER — remove a database role
	DROP USER MAPPING — remove a user mapping for a foreign server
	DROP VIEW — remove a view
	END — commit the current transaction
	EXECUTE — execute a prepared statement
	EXPLAIN — show the execution plan of a statement
	FETCH — retrieve rows from a query using a cursor
	GRANT — define access privileges
	IMPORT FOREIGN SCHEMA — import table definitions from a foreign server
	INSERT — create new rows in a table
	LISTEN — listen for a notification
	LOAD — load a shared library file
	LOCK — lock a table
	MERGE — conditionally insert, update, or delete rows of a table
	MOVE — position a cursor
	NOTIFY — generate a notification
	PREPARE — prepare a statement for execution
	PREPARE TRANSACTION — prepare the current transaction for two-phase commit
	REASSIGN OWNED — change the ownership of database objects owned by a database role
	REFRESH MATERIALIZED VIEW — replace the contents of a materialized view
	REINDEX — rebuild indexes
	RELEASE SAVEPOINT — release a previously defined savepoint
	RESET — restore the value of a run-time parameter to the default value
	REVOKE — remove access privileges
	ROLLBACK — abort the current transaction
	ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit
	ROLLBACK TO SAVEPOINT — roll back to a savepoint
	SAVEPOINT — define a new savepoint within the current transaction
	SECURITY LABEL — define or change a security label applied to an object
	SELECT — retrieve rows from a table or view
	SELECT INTO — define a new table from the results of a query
	SET — change a run-time parameter
	SET CONSTRAINTS — set constraint check timing for the current transaction
	SET ROLE — set the current user identifier of the current session
	SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of the current session
	SET TRANSACTION — set the characteristics of the current transaction
	SHOW — show the value of a run-time parameter
	START TRANSACTION — start a transaction block
	TRUNCATE — empty a table or set of tables
	UNLISTEN — stop listening for a notification
	UPDATE — update rows of a table
	VACUUM — garbage-collect and optionally analyze a database
	VALUES — compute a set of rows

	II. PostgreSQL Client Applications
		clusterdb — cluster a PostgreSQL™ database
	createdb — create a new PostgreSQL™ database
	createuser — define a new PostgreSQL™ user account
	dropdb — remove a PostgreSQL™ database
	dropuser — remove a PostgreSQL™ user account
	ecpg — embedded SQL C preprocessor
	pg_amcheck — checks for corruption in one or more
 PostgreSQL™ databases
	pg_basebackup — take a base backup of a PostgreSQL™ cluster
	pgbench — run a benchmark test on PostgreSQL™
	pg_config — retrieve information about the installed version of PostgreSQL™
	pg_dump —
 extract a PostgreSQL™ database into a script file or other archive file

	pg_dumpall — extract a PostgreSQL™ database cluster into a script file
	pg_isready — check the connection status of a PostgreSQL™ server
	pg_receivewal — stream write-ahead logs from a PostgreSQL™ server
	pg_recvlogical — control PostgreSQL™ logical decoding streams
	pg_restore —
 restore a PostgreSQL™ database from an
 archive file created by pg_dump

	pg_verifybackup — verify the integrity of a base backup of a
 PostgreSQL™ cluster
	psql —
 PostgreSQL™ interactive terminal

	reindexdb — reindex a PostgreSQL™ database
	vacuumdb — garbage-collect and analyze a PostgreSQL™ database

	III. PostgreSQL Server Applications
		initdb — create a new PostgreSQL™ database cluster
	pg_archivecleanup — clean up PostgreSQL™ WAL archive files
	pg_checksums — enable, disable or check data checksums in a PostgreSQL™ database cluster
	pg_controldata — display control information of a PostgreSQL™ database cluster
	pg_ctl — initialize, start, stop, or control a PostgreSQL™ server
	pg_resetwal — reset the write-ahead log and other control information of a PostgreSQL™ database cluster
	pg_rewind — synchronize a PostgreSQL™ data directory with another data directory that was forked from it
	pg_test_fsync — determine fastest wal_sync_method for PostgreSQL™
	pg_test_timing — measure timing overhead
	pg_upgrade — upgrade a PostgreSQL™ server instance
	pg_waldump — display a human-readable rendering of the write-ahead log of a PostgreSQL™ database cluster
	postgres — PostgreSQL™ database server

	VII. Internals
		52. Overview of PostgreSQL Internals
		The Path of a Query
	How Connections Are Established
	The Parser Stage
		Parser
	Transformation Process

	The PostgreSQL™ Rule System
	Planner/Optimizer
		Generating Possible Plans

	Executor

	53. System Catalogs
		Overview
	pg_aggregate
	pg_am
	pg_amop
	pg_amproc
	pg_attrdef
	pg_attribute
	pg_authid
	pg_auth_members
	pg_cast
	pg_class
	pg_collation
	pg_constraint
	pg_conversion
	pg_database
	pg_db_role_setting
	pg_default_acl
	pg_depend
	pg_description
	pg_enum
	pg_event_trigger
	pg_extension
	pg_foreign_data_wrapper
	pg_foreign_server
	pg_foreign_table
	pg_index
	pg_inherits
	pg_init_privs
	pg_language
	pg_largeobject
	pg_largeobject_metadata
	pg_namespace
	pg_opclass
	pg_operator
	pg_opfamily
	pg_parameter_acl
	pg_partitioned_table
	pg_policy
	pg_proc
	pg_publication
	pg_publication_namespace
	pg_publication_rel
	pg_range
	pg_replication_origin
	pg_rewrite
	pg_seclabel
	pg_sequence
	pg_shdepend
	pg_shdescription
	pg_shseclabel
	pg_statistic
	pg_statistic_ext
	pg_statistic_ext_data
	pg_subscription
	pg_subscription_rel
	pg_tablespace
	pg_transform
	pg_trigger
	pg_ts_config
	pg_ts_config_map
	pg_ts_dict
	pg_ts_parser
	pg_ts_template
	pg_type
	pg_user_mapping

	54. System Views
		Overview
	pg_available_extensions
	pg_available_extension_versions
	pg_backend_memory_contexts
	pg_config
	pg_cursors
	pg_file_settings
	pg_group
	pg_hba_file_rules
	pg_ident_file_mappings
	pg_indexes
	pg_locks
	pg_matviews
	pg_policies
	pg_prepared_statements
	pg_prepared_xacts
	pg_publication_tables
	pg_replication_origin_status
	pg_replication_slots
	pg_roles
	pg_rules
	pg_seclabels
	pg_sequences
	pg_settings
	pg_shadow
	pg_shmem_allocations
	pg_stats
	pg_stats_ext
	pg_stats_ext_exprs
	pg_tables
	pg_timezone_abbrevs
	pg_timezone_names
	pg_user
	pg_user_mappings
	pg_views

	55. Frontend/Backend Protocol
		Overview
		Messaging Overview
	Extended Query Overview
	Formats and Format Codes

	Message Flow
		Start-up
	Simple Query
	Extended Query
	Pipelining
	Function Call
	COPY Operations
	Asynchronous Operations
	Canceling Requests in Progress
	Termination
	SSL Session Encryption
	GSSAPI Session Encryption

	SASL Authentication
		SCRAM-SHA-256 Authentication

	Streaming Replication Protocol
	Logical Streaming Replication Protocol
		Logical Streaming Replication Parameters
	Logical Replication Protocol Messages
	Logical Replication Protocol Message Flow

	Message Data Types
	Message Formats
	Error and Notice Message Fields
	Logical Replication Message Formats
	Summary of Changes since Protocol 2.0

	56. PostgreSQL Coding Conventions
		Formatting
	Reporting Errors Within the Server
	Error Message Style Guide
	Miscellaneous Coding Conventions

	57. Native Language Support
		For the Translator
		Requirements
	Concepts
	Creating and Maintaining Message Catalogs
	Editing the PO Files

	For the Programmer
		Mechanics
	Message-Writing Guidelines

	58. Writing a Procedural Language Handler
	59. Writing a Foreign Data Wrapper
		Foreign Data Wrapper Functions
	Foreign Data Wrapper Callback Routines
		FDW Routines for Scanning Foreign Tables
	FDW Routines for Scanning Foreign Joins
	FDW Routines for Planning Post-Scan/Join Processing
	FDW Routines for Updating Foreign Tables
	FDW Routines for TRUNCATE
	FDW Routines for Row Locking
	FDW Routines for EXPLAIN
	FDW Routines for ANALYZE
	FDW Routines for IMPORT FOREIGN SCHEMA
	FDW Routines for Parallel Execution
	FDW Routines for Asynchronous Execution
	FDW Routines for Reparameterization of Paths

	Foreign Data Wrapper Helper Functions
	Foreign Data Wrapper Query Planning
	Row Locking in Foreign Data Wrappers

	60. Writing a Table Sampling Method
		Sampling Method Support Functions

	61. Writing a Custom Scan Provider
		Creating Custom Scan Paths
		Custom Scan Path Callbacks

	Creating Custom Scan Plans
		Custom Scan Plan Callbacks

	Executing Custom Scans
		Custom Scan Execution Callbacks

	62. Genetic Query Optimizer
		Query Handling as a Complex Optimization Problem
	Genetic Algorithms
	Genetic Query Optimization (GEQO) in PostgreSQL
		Generating Possible Plans with GEQO
	Future Implementation Tasks for
 PostgreSQL™ GEQO

	Further Reading

	63. Table Access Method Interface Definition
	64. Index Access Method Interface Definition
		Basic API Structure for Indexes
	Index Access Method Functions
	Index Scanning
	Index Locking Considerations
	Index Uniqueness Checks
	Index Cost Estimation Functions

	65. Generic WAL Records
	66. Custom WAL Resource Managers
	67. B-Tree Indexes
		Introduction
	Behavior of B-Tree Operator Classes
	B-Tree Support Functions
	Implementation
		B-Tree Structure
	Bottom-up Index Deletion
	Deduplication

	68. GiST Indexes
		Introduction
	Built-in Operator Classes
	Extensibility
	Implementation
		GiST Index Build Methods

	Examples

	69. SP-GiST Indexes
		Introduction
	Built-in Operator Classes
	Extensibility
	Implementation
		SP-GiST Limits
	SP-GiST Without Node Labels
	“All-the-Same” Inner Tuples

	Examples

	70. GIN Indexes
		Introduction
	Built-in Operator Classes
	Extensibility
	Implementation
		GIN Fast Update Technique
	Partial Match Algorithm

	GIN Tips and Tricks
	Limitations
	Examples

	71. BRIN Indexes
		Introduction
		Index Maintenance

	Built-in Operator Classes
		Operator Class Parameters

	Extensibility

	72. Hash Indexes
		Overview
	Implementation

	73. Database Physical Storage
		Database File Layout
	TOAST
		Out-of-Line, On-Disk TOAST Storage
	Out-of-Line, In-Memory TOAST Storage

	Free Space Map
	Visibility Map
	The Initialization Fork
	Database Page Layout
		Table Row Layout

	Heap-Only Tuples (HOT)

	74. Transaction Processing
		Transactions and Identifiers
	Transactions and Locking
	Subtransactions
	Two-Phase Transactions

	75. System Catalog Declarations and Initial Contents
		System Catalog Declaration Rules
	System Catalog Initial Data
		Data File Format
	OID Assignment
	OID Reference Lookup
	Automatic Creation of Array Types
	Recipes for Editing Data Files

	BKI File Format
	BKI Commands
	Structure of the Bootstrap BKI File
	BKI Example

	76. How the Planner Uses Statistics
		Row Estimation Examples
	Multivariate Statistics Examples
		Functional Dependencies
	Multivariate N-Distinct Counts
	MCV Lists

	Planner Statistics and Security

	77. Backup Manifest Format
		Backup Manifest Top-level Object
	Backup Manifest File Object
	Backup Manifest WAL Range Object

	VIII. Appendixes
		A. PostgreSQL™ Error Codes
	B. Date/Time Support
		Date/Time Input Interpretation
	Handling of Invalid or Ambiguous Timestamps
	Date/Time Key Words
	Date/Time Configuration Files
	POSIX Time Zone Specifications
	History of Units
	Julian Dates

	C. SQL Key Words
	D. SQL Conformance
		Supported Features
	Unsupported Features
	XML Limits and Conformance to SQL/XML
		Queries Are Restricted to XPath 1.0
	Incidental Limits of the Implementation

	E. Release Notes
		Release 16.12
		Migration to Version 16.12
	Changes

	Release 16.11
		Migration to Version 16.11
	Changes

	Release 16.10
		Migration to Version 16.10
	Changes

	Release 16.9
		Migration to Version 16.9
	Changes

	Release 16.8
		Migration to Version 16.8
	Changes

	Release 16.7
		Migration to Version 16.7
	Changes

	Release 16.6
		Migration to Version 16.6
	Changes

	Release 16.5
		Migration to Version 16.5
	Changes

	Release 16.4
		Migration to Version 16.4
	Changes

	Release 16.3
		Migration to Version 16.3
	Changes

	Release 16.2
		Migration to Version 16.2
	Changes

	Release 16.1
		Migration to Version 16.1
	Changes

	Release 16
		Overview
	Migration to Version 16
	Changes
	Acknowledgments

	Prior Releases

	F. Additional Supplied Modules and Extensions
		adminpack — pgAdmin support toolpack
	amcheck — tools to verify table and index consistency
		Functions
	Optional heapallindexed Verification
	Using amcheck Effectively
	Repairing Corruption

	auth_delay — pause on authentication failure
		Configuration Parameters
	Author

	auto_explain — log execution plans of slow queries
		Configuration Parameters
	Example
	Author

	basebackup_to_shell — example "shell" pg_basebackup module
		Configuration Parameters
	Author

	basic_archive — an example WAL archive module
		Configuration Parameters
	Notes
	Author

	bloom — bloom filter index access method
		Parameters
	Examples
	Operator Class Interface
	Limitations
	Authors

	btree_gin — GIN operator classes with B-tree behavior
		Example Usage
	Authors

	btree_gist — GiST operator classes with B-tree behavior
		Example Usage
	Authors

	citext — a case-insensitive character string type
		Rationale
	How to Use It
	String Comparison Behavior
	Limitations
	Author

	cube — a multi-dimensional cube data type
		Syntax
	Precision
	Usage
	Defaults
	Notes
	Credits

	dblink — connect to other PostgreSQL databases
	dict_int —
 example full-text search dictionary for integers
		Configuration
	Usage

	dict_xsyn — example synonym full-text search dictionary
		Configuration
	Usage

	earthdistance — calculate great-circle distances
		Cube-Based Earth Distances
	Point-Based Earth Distances

	file_fdw — access data files in the server's file system
	fuzzystrmatch — determine string similarities and distance
		Soundex
	Daitch-Mokotoff Soundex
	Levenshtein
	Metaphone
	Double Metaphone

	hstore — hstore key/value datatype
		hstore External Representation
	hstore Operators and Functions
	Indexes
	Examples
	Statistics
	Compatibility
	Transforms
	Authors

	intagg — integer aggregator and enumerator
		Functions
	Sample Uses

	intarray — manipulate arrays of integers
		intarray Functions and Operators
	Index Support
	Example
	Benchmark
	Authors

	isn — data types for international standard numbers (ISBN, EAN, UPC, etc.)
		Data Types
	Casts
	Functions and Operators
	Examples
	Bibliography
	Author

	lo — manage large objects
		Rationale
	How to Use It
	Limitations
	Author

	ltree — hierarchical tree-like data type
		Definitions
	Operators and Functions
	Indexes
	Example
	Transforms
	Authors

	old_snapshot — inspect old_snapshot_threshold state
		Functions

	pageinspect — low-level inspection of database pages
		General Functions
	Heap Functions
	B-Tree Functions
	BRIN Functions
	GIN Functions
	GiST Functions
	Hash Functions

	passwordcheck — verify password strength
	pg_buffercache — inspect PostgreSQL™
 buffer cache state
		The pg_buffercache View
	The pg_buffercache_summary() Function
	The pg_buffercache_usage_counts() Function
	Sample Output
	Authors

	pgcrypto — cryptographic functions
		General Hashing Functions
	Password Hashing Functions
	PGP Encryption Functions
	Raw Encryption Functions
	Random-Data Functions
	Notes
	Author

	pg_freespacemap — examine the free space map
		Functions
	Sample Output
	Author

	pg_prewarm — preload relation data into buffer caches
		Functions
	Configuration Parameters
	Author

	pgrowlocks — show a table's row locking information
		Overview
	Sample Output
	Author

	pg_stat_statements — track statistics of SQL planning and execution
		The pg_stat_statements View
	The pg_stat_statements_info View
	Functions
	Configuration Parameters
	Sample Output
	Authors

	pgstattuple — obtain tuple-level statistics
		Functions
	Authors

	pg_surgery — perform low-level surgery on relation data
		Functions
	Authors

	pg_trgm —
 support for similarity of text using trigram matching
		Trigram (or Trigraph) Concepts
	Functions and Operators
	GUC Parameters
	Index Support
	Text Search Integration
	References
	Authors

	pg_visibility — visibility map information and utilities
		Functions
	Author

	pg_walinspect — low-level WAL inspection
		General Functions
	Author

	postgres_fdw —
 access data stored in external PostgreSQL™
 servers
		FDW Options of postgres_fdw
	Functions
	Connection Management
	Transaction Management
	Remote Query Optimization
	Remote Query Execution Environment
	Cross-Version Compatibility
	Configuration Parameters
	Examples
	Author

	seg — a datatype for line segments or floating point intervals
		Rationale
	Syntax
	Precision
	Usage
	Notes
	Credits

	sepgsql —
 SELinux-, label-based mandatory access control (MAC) security module
		Overview
	Installation
	Regression Tests
	GUC Parameters
	Features
	Sepgsql Functions
	Limitations
	External Resources
	Author

	spi — Server Programming Interface features/examples
		refint — Functions for Implementing Referential Integrity
	autoinc — Functions for Autoincrementing Fields
	insert_username — Functions for Tracking Who Changed a Table
	moddatetime — Functions for Tracking Last Modification Time

	sslinfo — obtain client SSL information
		Functions Provided
	Author

	tablefunc — functions that return tables (crosstab and others)
		Functions Provided
	Author

	tcn — a trigger function to notify listeners of changes to table content
	test_decoding — SQL-based test/example module for WAL logical decoding
	tsm_system_rows —
 the SYSTEM_ROWS sampling method for TABLESAMPLE
		Examples

	tsm_system_time —
 the SYSTEM_TIME sampling method for TABLESAMPLE
		Examples

	unaccent — a text search dictionary which removes diacritics
		Configuration
	Usage
	Functions

	uuid-ossp — a UUID generator
		uuid-ossp Functions
	Building uuid-ossp
	Author

	xml2 — XPath querying and XSLT functionality
		Deprecation Notice
	Description of Functions
	xpath_table
	XSLT Functions
	Author

	G. Additional Supplied Programs
		Client Applications
	Server Applications

	H. External Projects
		Client Interfaces
	Administration Tools
	Procedural Languages
	Extensions

	I. The Source Code Repository
		Getting the Source via Git™

	J. Documentation
		DocBook
	Tool Sets
		Installation on Fedora, RHEL, and Derivatives
	Installation on FreeBSD
	Debian Packages
	macOS
	Detection by configure

	Building the Documentation with Make
		HTML
	Manpages
	PDF
	Plain Text Files
	Syntax Check

	Building the Documentation with Meson
	Documentation Authoring
		Emacs

	Style Guide
		Reference Pages

	K. PostgreSQL™ Limits
	L. Acronyms
	M. Glossary
	N. Color Support
		When Color is Used
	Configuring the Colors

	O. Obsolete or Renamed Features
		recovery.conf file merged into postgresql.conf
	Default Roles Renamed to Predefined Roles
	pg_xlogdump renamed to pg_waldump
	pg_resetxlog renamed to pg_resetwal
	pg_receivexlog renamed to pg_receivewal

	Bibliography
	Index

PostgreSQL 16.12 Documentation

The PostgreSQL Global Development Group

Copyright © 1996–2026 The PostgreSQL Global Development Group

Legal Notice

 PostgreSQL™ Database Management System
 (also known as Postgres, formerly known as Postgres95)

 Portions Copyright © 1996-2026, PostgreSQL Global Development Group

 Portions Copyright © 1994, The Regents of the University of California

 Permission to use, copy, modify, and distribute this software and
 its documentation for any purpose, without fee, and without a
 written agreement is hereby granted, provided that the above
 copyright notice and this paragraph and the following two paragraphs
 appear in all copies.

 IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
 PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
 DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS
 SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF
 CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
 UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Preface

 This book is the official documentation of
 PostgreSQL™. It has been written by the
 PostgreSQL™ developers and other
 volunteers in parallel to the development of the
 PostgreSQL™ software. It describes all
 the functionality that the current version of
 PostgreSQL™ officially supports.

 To make the large amount of information about
 PostgreSQL™ manageable, this book has been
 organized in several parts. Each part is targeted at a different
 class of users, or at users in different stages of their
 PostgreSQL™ experience:

	
 Part I, “Tutorial” is an informal introduction for new users.

	
 Part II, “The SQL Language” documents the SQL query
 language environment, including data types and functions, as well
 as user-level performance tuning. Every
 PostgreSQL™ user should read this.

	
 Part III, “Server Administration” describes the installation and
 administration of the server. Everyone who runs a
 PostgreSQL™ server, be it for private
 use or for others, should read this part.

	
 Part IV, “Client Interfaces” describes the programming
 interfaces for PostgreSQL™ client
 programs.

	
 Part V, “Server Programming” contains information for
 advanced users about the extensibility capabilities of the
 server. Topics include user-defined data types and
 functions.

	
 Part VI, “Reference” contains reference information about
 SQL commands, client and server programs. This part supports
 the other parts with structured information sorted by command or
 program.

	
 Part VII, “Internals” contains assorted information that might be of
 use to PostgreSQL™ developers.

 What Is PostgreSQL™?

 PostgreSQL™ is an object-relational
 database management system (ORDBMS) based on

 POSTGRES, Version 4.2™,
 developed at the University of California at Berkeley Computer Science
 Department. POSTGRES pioneered many concepts that only became
 available in some commercial database systems much later.

 PostgreSQL™ is an open-source descendant
 of this original Berkeley code. It supports a large part of the SQL
 standard and offers many modern features:

	complex queries
	foreign keys
	triggers
	updatable views
	transactional integrity
	multiversion concurrency control

 Also, PostgreSQL™ can be extended by the
 user in many ways, for example by adding new

	data types
	functions
	operators
	aggregate functions
	index methods
	procedural languages

 And because of the liberal license,
 PostgreSQL™ can be used, modified, and
 distributed by anyone free of charge for any purpose, be it
 private, commercial, or academic.

A Brief History of PostgreSQL™

 The object-relational database management system now known as
 PostgreSQL™ is derived from the
 POSTGRES™ package written at the
 University of California at Berkeley. With decades of
 development behind it, PostgreSQL™ is now
 the most advanced open-source database available anywhere.

The Berkeley POSTGRES™ Project

 The POSTGRES™ project, led by Professor
 Michael Stonebraker, was sponsored by the Defense Advanced Research
 Projects Agency (DARPA), the Army Research
 Office (ARO), the National Science Foundation
 (NSF), and ESL, Inc. The implementation of
 POSTGRES™ began in 1986. The initial
 concepts for the system were presented in [ston86],
 and the definition of the initial data model appeared in [rowe87]. The design of the rule system at that time was
 described in [ston87a]. The rationale and
 architecture of the storage manager were detailed in [ston87b].

 POSTGRES™ has undergone several major
 releases since then. The first “demoware” system
 became operational in 1987 and was shown at the 1988
 ACM-SIGMOD Conference. Version 1, described in
 [ston90a], was released to a few external users in
 June 1989. In response to a critique of the first rule system
 ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990 with
 the new rule system. Version 3 appeared in 1991 and added support
 for multiple storage managers, an improved query executor, and a
 rewritten rule system. For the most part, subsequent releases
 until Postgres95™ (see below) focused on
 portability and reliability.

 POSTGRES™ has been used to implement many
 different research and production applications. These include: a
 financial data analysis system, a jet engine performance monitoring
 package, an asteroid tracking database, a medical information
 database, and several geographic information systems.
 POSTGRES™ has also been used as an
 educational tool at several universities. Finally, Illustra
 Information Technologies (later merged into
 Informix™,
 which is now owned by IBM) picked up the code and
 commercialized it. In late 1992,
 POSTGRES™ became the primary data manager
 for the Sequoia 2000 scientific computing project described in
 [ston92].

 The size of the external user community nearly doubled during 1993.
 It became increasingly obvious that maintenance of the prototype
 code and support was taking up large amounts of time that should
 have been devoted to database research. In an effort to reduce
 this support burden, the Berkeley
 POSTGRES™ project officially ended with
 Version 4.2.

Postgres95™

 In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter
 to POSTGRES™. Under a new name,
 Postgres95™ was subsequently released to
 the web to find its own way in the world as an open-source
 descendant of the original POSTGRES™
 Berkeley code.

 Postgres95™ code was completely ANSI C
 and trimmed in size by 25%. Many internal changes improved
 performance and
 maintainability. Postgres95™ release
 1.0.x ran about 30–50% faster on the Wisconsin Benchmark compared
 to POSTGRES™, Version 4.2. Apart from
 bug fixes, the following were the major enhancements:

	
 The query language PostQUEL was replaced with
 SQL (implemented in the server). (Interface
 library libpq was named after PostQUEL.)
 Subqueries
 were not supported until PostgreSQL™
 (see below), but they could be imitated in
 Postgres95™ with user-defined
 SQL functions. Aggregate functions were
 re-implemented. Support for the GROUP BY
 query clause was also added.

	
 A new program
 (psql) was provided for interactive
 SQL queries, which used GNU
 Readline. This largely superseded
 the old monitor program.

	
 A new front-end library, libpgtcl,
 supported Tcl-based clients. A sample shell,
 pgtclsh, provided new Tcl commands to
 interface Tcl programs with the
 Postgres95™ server.

	
 The large-object interface was overhauled. The inversion large
 objects were the only mechanism for storing large objects. (The
 inversion file system was removed.)

	
 The instance-level rule system was removed. Rules were still
 available as rewrite rules.

	
 A short tutorial introducing regular SQL
 features as well as those of
 Postgres95™ was distributed with the
 source code.

	
 GNU make (instead of BSD
 make) was used for the build. Also,
 Postgres95™ could be compiled with an
 unpatched GCC™ (data alignment of
 doubles was fixed).

PostgreSQL™

 By 1996, it became clear that the name “Postgres95”
 would not stand the test of time. We chose a new name,
 PostgreSQL™, to reflect the relationship
 between the original POSTGRES™ and the
 more recent versions with SQL capability. At
 the same time, we set the version numbering to start at 6.0,
 putting the numbers back into the sequence originally begun by the
 Berkeley POSTGRES™ project.

 Postgres™ is still considered an official
 project name, both because of tradition and because people find it
 easier to pronounce Postgres™ than
 PostgreSQL™.

 The emphasis during development of
 Postgres95™ was on identifying and
 understanding existing problems in the server code. With
 PostgreSQL™, the emphasis has shifted to
 augmenting features and capabilities, although work continues in
 all areas.

 Details about what has happened in PostgreSQL™ since
 then can be found in Appendix E, Release Notes.

Conventions

 The following conventions are used in the synopsis of a command:
 brackets ([and]) indicate
 optional parts. Braces
 ({ and }) and vertical lines
 (|) indicate that you must choose one
 alternative. Dots (...) mean that the preceding element
 can be repeated. All other symbols, including parentheses, should be
 taken literally.

 Where it enhances the clarity, SQL commands are preceded by the
 prompt =>, and shell commands are preceded by the
 prompt $. Normally, prompts are not shown, though.

 An administrator is generally a person who is
 in charge of installing and running the server. A user
 could be anyone who is using, or wants to use, any part of the
 PostgreSQL™ system. These terms should not
 be interpreted too narrowly; this book does not have fixed
 presumptions about system administration procedures.

Further Information

 Besides the documentation, that is, this book, there are other
 resources about PostgreSQL™:

	Wiki
	
 The PostgreSQL™ wiki contains the project's FAQ
 (Frequently Asked Questions) list, TODO list, and
 detailed information about many more topics.

	Web Site
	
 The PostgreSQL™
 web site
 carries details on the latest release and other
 information to make your work or play with
 PostgreSQL™ more productive.

	Mailing Lists
	
 The mailing lists are a good place to have your questions
 answered, to share experiences with other users, and to contact
 the developers. Consult the PostgreSQL™ web site
 for details.

	Yourself!
	
 PostgreSQL™ is an open-source project.
 As such, it depends on the user community for ongoing support.
 As you begin to use PostgreSQL™, you
 will rely on others for help, either through the documentation
 or through the mailing lists. Consider contributing your
 knowledge back. Read the mailing lists and answer questions. If
 you learn something which is not in the documentation, write it
 up and contribute it. If you add features to the code,
 contribute them.

Bug Reporting Guidelines

 When you find a bug in PostgreSQL™ we want to
 hear about it. Your bug reports play an important part in making
 PostgreSQL™ more reliable because even the utmost
 care cannot guarantee that every part of
 PostgreSQL™
 will work on every platform under every circumstance.

 The following suggestions are intended to assist you in forming bug reports
 that can be handled in an effective fashion. No one is required to follow
 them but doing so tends to be to everyone's advantage.

 We cannot promise to fix every bug right away. If the bug is obvious, critical,
 or affects a lot of users, chances are good that someone will look into it. It
 could also happen that we tell you to update to a newer version to see if the
 bug happens there. Or we might decide that the bug
 cannot be fixed before some major rewrite we might be planning is done. Or
 perhaps it is simply too hard and there are more important things on the agenda.
 If you need help immediately, consider obtaining a commercial support contract.

Identifying Bugs

 Before you report a bug, please read and re-read the
 documentation to verify that you can really do whatever it is you are
 trying. If it is not clear from the documentation whether you can do
 something or not, please report that too; it is a bug in the documentation.
 If it turns out that a program does something different from what the
 documentation says, that is a bug. That might include, but is not limited to,
 the following circumstances:

	
 A program terminates with a fatal signal or an operating system
 error message that would point to a problem in the program. (A
 counterexample might be a “disk full” message,
 since you have to fix that yourself.)

	
 A program produces the wrong output for any given input.

	
 A program refuses to accept valid input (as defined in the documentation).

	
 A program accepts invalid input without a notice or error message.
 But keep in mind that your idea of invalid input might be our idea of
 an extension or compatibility with traditional practice.

	
 PostgreSQL™ fails to compile, build, or
 install according to the instructions on supported platforms.

 Here “program” refers to any executable, not only the backend process.

 Being slow or resource-hogging is not necessarily a bug. Read the
 documentation or ask on one of the mailing lists for help in tuning your
 applications. Failing to comply to the SQL standard is
 not necessarily a bug either, unless compliance for the
 specific feature is explicitly claimed.

 Before you continue, check on the TODO list and in the FAQ to see if your bug is
 already known. If you cannot decode the information on the TODO list, report your
 problem. The least we can do is make the TODO list clearer.

What to Report

 The most important thing to remember about bug reporting is to state all
 the facts and only facts. Do not speculate what you think went wrong, what
 “it seemed to do”, or which part of the program has a fault.
 If you are not familiar with the implementation you would probably guess
 wrong and not help us a bit. And even if you are, educated explanations are
 a great supplement to but no substitute for facts. If we are going to fix
 the bug we still have to see it happen for ourselves first.
 Reporting the bare facts
 is relatively straightforward (you can probably copy and paste them from the
 screen) but all too often important details are left out because someone
 thought it does not matter or the report would be understood
 anyway.

 The following items should be contained in every bug report:

	
 The exact sequence of steps from program
 start-up necessary to reproduce the problem. This
 should be self-contained; it is not enough to send in a bare
 SELECT statement without the preceding
 CREATE TABLE and INSERT
 statements, if the output should depend on the data in the
 tables. We do not have the time to reverse-engineer your
 database schema, and if we are supposed to make up our own data
 we would probably miss the problem.

 The best format for a test case for SQL-related problems is a
 file that can be run through the psql
 frontend that shows the problem. (Be sure to not have anything
 in your ~/.psqlrc start-up file.) An easy
 way to create this file is to use pg_dump
 to dump out the table declarations and data needed to set the
 scene, then add the problem query. You are encouraged to
 minimize the size of your example, but this is not absolutely
 necessary. If the bug is reproducible, we will find it either
 way.

 If your application uses some other client interface, such as PHP, then
 please try to isolate the offending queries. We will probably not set up a
 web server to reproduce your problem. In any case remember to provide
 the exact input files; do not guess that the problem happens for
 “large files” or “midsize databases”, etc. since this
 information is too inexact to be of use.

	
 The output you got. Please do not say that it “didn't work” or
 “crashed”. If there is an error message,
 show it, even if you do not understand it. If the program terminates with
 an operating system error, say which. If nothing at all happens, say so.
 Even if the result of your test case is a program crash or otherwise obvious
 it might not happen on our platform. The easiest thing is to copy the output
 from the terminal, if possible.

Note

 If you are reporting an error message, please obtain the most verbose
 form of the message. In psql, say \set
 VERBOSITY verbose beforehand. If you are extracting the message
 from the server log, set the run-time parameter
 log_error_verbosity to verbose so that all
 details are logged.

Note

 In case of fatal errors, the error message reported by the client might
 not contain all the information available. Please also look at the
 log output of the database server. If you do not keep your server's log
 output, this would be a good time to start doing so.

	
 The output you expected is very important to state. If you just write
 “This command gives me that output.” or “This is not
 what I expected.”, we might run it ourselves, scan the output, and
 think it looks OK and is exactly what we expected. We should not have to
 spend the time to decode the exact semantics behind your commands.
 Especially refrain from merely saying that “This is not what SQL says/Oracle
 does.” Digging out the correct behavior from SQL
 is not a fun undertaking, nor do we all know how all the other relational
 databases out there behave. (If your problem is a program crash, you can
 obviously omit this item.)

	
 Any command line options and other start-up options, including
 any relevant environment variables or configuration files that
 you changed from the default. Again, please provide exact
 information. If you are using a prepackaged distribution that
 starts the database server at boot time, you should try to find
 out how that is done.

	
 Anything you did at all differently from the installation
 instructions.

	
 The PostgreSQL™ version. You can run the command
 SELECT version(); to
 find out the version of the server you are connected to. Most executable
 programs also support a --version option; at least
 postgres --version and psql --version
 should work.
 If the function or the options do not exist then your version is
 more than old enough to warrant an upgrade.
 If you run a prepackaged version, such as RPMs, say so, including any
 subversion the package might have. If you are talking about a Git
 snapshot, mention that, including the commit hash.

 If your version is older than 16.12 we will almost certainly
 tell you to upgrade. There are many bug fixes and improvements
 in each new release, so it is quite possible that a bug you have
 encountered in an older release of PostgreSQL™
 has already been fixed. We can only provide limited support for
 sites using older releases of PostgreSQL™; if you
 require more than we can provide, consider acquiring a
 commercial support contract.

	
 Platform information. This includes the kernel name and version,
 C library, processor, memory information, and so on. In most
 cases it is sufficient to report the vendor and version, but do
 not assume everyone knows what exactly “Debian”
 contains or that everyone runs on x86_64. If you have
 installation problems then information about the toolchain on
 your machine (compiler, make, and so
 on) is also necessary.

 Do not be afraid if your bug report becomes rather lengthy. That is a fact of life.
 It is better to report everything the first time than us having to squeeze the
 facts out of you. On the other hand, if your input files are huge, it is
 fair to ask first whether somebody is interested in looking into it. Here is
 an article
 that outlines some more tips on reporting bugs.

 Do not spend all your time to figure out which changes in the input make
 the problem go away. This will probably not help solving it. If it turns
 out that the bug cannot be fixed right away, you will still have time to
 find and share your work-around. Also, once again, do not waste your time
 guessing why the bug exists. We will find that out soon enough.

 When writing a bug report, please avoid confusing terminology.
 The software package in total is called “PostgreSQL”,
 sometimes “Postgres” for short. If you
 are specifically talking about the backend process, mention that, do not
 just say “PostgreSQL crashes”. A crash of a single
 backend process is quite different from crash of the parent
 “postgres” process; please don't say “the server
 crashed” when you mean a single backend process went down, nor vice versa.
 Also, client programs such as the interactive frontend “psql”
 are completely separate from the backend. Please try to be specific
 about whether the problem is on the client or server side.

Where to Report Bugs

 In general, send bug reports to the bug report mailing list at
 <pgsql-bugs@lists.postgresql.org>.
 You are requested to use a descriptive subject for your email
 message, perhaps parts of the error message.

 Another method is to fill in the bug report web-form available
 at the project's
 web site.
 Entering a bug report this way causes it to be mailed to the
 <pgsql-bugs@lists.postgresql.org> mailing list.

 If your bug report has security implications and you'd prefer that it
 not become immediately visible in public archives, don't send it to
 pgsql-bugs. Security issues can be
 reported privately to <security@postgresql.org>.

 Do not send bug reports to any of the user mailing lists, such as
 <pgsql-sql@lists.postgresql.org> or
 <pgsql-general@lists.postgresql.org>.
 These mailing lists are for answering
 user questions, and their subscribers normally do not wish to receive
 bug reports. More importantly, they are unlikely to fix them.

 Also, please do not send reports to
 the developers' mailing list <pgsql-hackers@lists.postgresql.org>.
 This list is for discussing the
 development of PostgreSQL™, and it would be nice
 if we could keep the bug reports separate. We might choose to take up a
 discussion about your bug report on pgsql-hackers,
 if the problem needs more review.

 If you have a problem with the documentation, the best place to report it
 is the documentation mailing list <pgsql-docs@lists.postgresql.org>.
 Please be specific about what part of the documentation you are unhappy
 with.

 If your bug is a portability problem on a non-supported platform,
 send mail to <pgsql-hackers@lists.postgresql.org>,
 so we (and you) can work on
 porting PostgreSQL™ to your platform.

Note

 Due to the unfortunate amount of spam going around, all of the above
 lists will be moderated unless you are subscribed. That means there
 will be some delay before the email is delivered. If you wish to subscribe
 to the lists, please visit
 https://lists.postgresql.org/ for instructions.

Part I. Tutorial

 Welcome to the PostgreSQL™ Tutorial. The
 following few chapters are intended to give a simple introduction
 to PostgreSQL™, relational database
 concepts, and the SQL language to those who are new to any one of
 these aspects. We only assume some general knowledge about how to
 use computers. No particular Unix or programming experience is
 required. This part is mainly intended to give you some hands-on
 experience with important aspects of the
 PostgreSQL™ system. It makes no attempt
 to be a complete or thorough treatment of the topics it covers.

 After you have worked through this tutorial you might want to move
 on to reading Part II, “The SQL Language” to gain a more formal knowledge
 of the SQL language, or Part IV, “Client Interfaces” for
 information about developing applications for
 PostgreSQL™. Those who set up and
 manage their own server should also read Part III, “Server Administration”.

Chapter 1. Getting Started

Installation

 Before you can use PostgreSQL™ you need
 to install it, of course. It is possible that
 PostgreSQL™ is already installed at your
 site, either because it was included in your operating system
 distribution or because the system administrator already installed
 it. If that is the case, you should obtain information from the
 operating system documentation or your system administrator about
 how to access PostgreSQL™.

 If you are not sure whether PostgreSQL™
 is already available or whether you can use it for your
 experimentation then you can install it yourself. Doing so is not
 hard and it can be a good exercise.
 PostgreSQL™ can be installed by any
 unprivileged user; no superuser (root)
 access is required.

 If you are installing PostgreSQL™
 yourself, then refer to Chapter 17, Installation from Source Code
 for instructions on installation, and return to
 this guide when the installation is complete. Be sure to follow
 closely the section about setting up the appropriate environment
 variables.

 If your site administrator has not set things up in the default
 way, you might have some more work to do. For example, if the
 database server machine is a remote machine, you will need to set
 the PGHOST environment variable to the name of the
 database server machine. The environment variable
 PGPORT might also have to be set. The bottom line is
 this: if you try to start an application program and it complains
 that it cannot connect to the database, you should consult your
 site administrator or, if that is you, the documentation to make
 sure that your environment is properly set up. If you did not
 understand the preceding paragraph then read the next section.

Architectural Fundamentals

 Before we proceed, you should understand the basic
 PostgreSQL™ system architecture.
 Understanding how the parts of
 PostgreSQL™ interact will make this
 chapter somewhat clearer.

 In database jargon, PostgreSQL™ uses a
 client/server model. A PostgreSQL™
 session consists of the following cooperating processes
 (programs):

	
 A server process, which manages the database files, accepts
 connections to the database from client applications, and
 performs database actions on behalf of the clients. The
 database server program is called
 postgres.

	
 The user's client (frontend) application that wants to perform
 database operations. Client applications can be very diverse
 in nature: a client could be a text-oriented tool, a graphical
 application, a web server that accesses the database to
 display web pages, or a specialized database maintenance tool.
 Some client applications are supplied with the
 PostgreSQL™ distribution; most are
 developed by users.

 As is typical of client/server applications, the client and the
 server can be on different hosts. In that case they communicate
 over a TCP/IP network connection. You should keep this in mind,
 because the files that can be accessed on a client machine might
 not be accessible (or might only be accessible using a different
 file name) on the database server machine.

 The PostgreSQL™ server can handle
 multiple concurrent connections from clients. To achieve this it
 starts (“forks”) a new process for each connection.
 From that point on, the client and the new server process
 communicate without intervention by the original
 postgres process. Thus, the
 supervisor server process is always running, waiting for
 client connections, whereas client and associated server processes
 come and go. (All of this is of course invisible to the user. We
 only mention it here for completeness.)

Creating a Database

 The first test to see whether you can access the database server
 is to try to create a database. A running
 PostgreSQL™ server can manage many
 databases. Typically, a separate database is used for each
 project or for each user.

 Possibly, your site administrator has already created a database
 for your use. In that case you can omit this step and skip ahead
 to the next section.

 To create a new database, in this example named
 mydb, you use the following command:

$ createdb mydb

 If this produces no response then this step was successful and you can skip over the
 remainder of this section.

 If you see a message similar to:

createdb: command not found

 then PostgreSQL™ was not installed properly. Either it was not
 installed at all or your shell's search path was not set to include it.
 Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

 The path at your site might be different. Contact your site
 administrator or check the installation instructions to
 correct the situation.

 Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such file or directory
 Is the server running locally and accepting connections on that socket?

 This means that the server was not started, or it is not listening
 where createdb expects to contact it. Again, check the
 installation instructions or consult the administrator.

 Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL: role "joe" does not exist

 where your own login name is mentioned. This will happen if the
 administrator has not created a PostgreSQL™ user account
 for you. (PostgreSQL™ user accounts are distinct from
 operating system user accounts.) If you are the administrator, see
 Chapter 22, Database Roles for help creating accounts. You will need to
 become the operating system user under which PostgreSQL™
 was installed (usually postgres) to create the first user
 account. It could also be that you were assigned a
 PostgreSQL™ user name that is different from your
 operating system user name; in that case you need to use the -U
 switch or set the PGUSER environment variable to specify your
 PostgreSQL™ user name.

 If you have a user account but it does not have the privileges required to
 create a database, you will see the following:

createdb: error: database creation failed: ERROR: permission denied to create database

 Not every user has authorization to create new databases. If
 PostgreSQL™ refuses to create databases
 for you then the site administrator needs to grant you permission
 to create databases. Consult your site administrator if this
 occurs. If you installed PostgreSQL™
 yourself then you should log in for the purposes of this tutorial
 under the user account that you started the server as.

 [1]

 You can also create databases with other names.
 PostgreSQL™ allows you to create any
 number of databases at a given site. Database names must have an
 alphabetic first character and are limited to 63 bytes in
 length. A convenient choice is to create a database with the same
 name as your current user name. Many tools assume that database
 name as the default, so it can save you some typing. To create
 that database, simply type:

$ createdb

 If you do not want to use your database anymore you can remove it.
 For example, if you are the owner (creator) of the database
 mydb, you can destroy it using the following
 command:

$ dropdb mydb

 (For this command, the database name does not default to the user
 account name. You always need to specify it.) This action
 physically removes all files associated with the database and
 cannot be undone, so this should only be done with a great deal of
 forethought.

 More about createdb and dropdb can
 be found in createdb(1) and dropdb(1)
 respectively.

[1]
 As an explanation for why this works:
 PostgreSQL™ user names are separate
 from operating system user accounts. When you connect to a
 database, you can choose what
 PostgreSQL™ user name to connect as;
 if you don't, it will default to the same name as your current
 operating system account. As it happens, there will always be a
 PostgreSQL™ user account that has the
 same name as the operating system user that started the server,
 and it also happens that that user always has permission to
 create databases. Instead of logging in as that user you can
 also specify the -U option everywhere to select
 a PostgreSQL™ user name to connect as.

Accessing a Database

 Once you have created a database, you can access it by:

	
 Running the PostgreSQL™ interactive
 terminal program, called psql, which allows you
 to interactively enter, edit, and execute
 SQL commands.

	
 Using an existing graphical frontend tool like
 pgAdmin or an office suite with
 ODBC or JDBC support to create and manipulate a
 database. These possibilities are not covered in this
 tutorial.

	
 Writing a custom application, using one of the several
 available language bindings. These possibilities are discussed
 further in Part IV, “Client Interfaces”.

 You probably want to start up psql to try
 the examples in this tutorial. It can be activated for the
 mydb database by typing the command:

$ psql mydb

 If you do not supply the database name then it will default to your
 user account name. You already discovered this scheme in the
 previous section using createdb.

 In psql, you will be greeted with the following
 message:

psql (16.12)
Type "help" for help.

mydb=>

 The last line could also be:

mydb=#

 That would mean you are a database superuser, which is most likely
 the case if you installed the PostgreSQL™ instance
 yourself. Being a superuser means that you are not subject to
 access controls. For the purposes of this tutorial that is not
 important.

 If you encounter problems starting psql
 then go back to the previous section. The diagnostics of
 createdb and psql are
 similar, and if the former worked the latter should work as well.

 The last line printed out by psql is the
 prompt, and it indicates that psql is listening
 to you and that you can type SQL queries into a
 work space maintained by psql. Try out these
 commands:

mydb=> SELECT version();
 version
---​-----------------------
 PostgreSQL 16.12 on x86_64-pc-linux-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-bit
(1 row)

mydb=> SELECT current_date;
 date

 2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
 ?column?

 4
(1 row)

 The psql program has a number of internal
 commands that are not SQL commands. They begin with the backslash
 character, “\”.
 For example,
 you can get help on the syntax of various
 PostgreSQL™ SQL
 commands by typing:

mydb=> \h

 To get out of psql, type:

mydb=> \q

 and psql will quit and return you to your
 command shell. (For more internal commands, type
 \? at the psql prompt.) The
 full capabilities of psql are documented in
 psql(1). In this tutorial we will not use these
 features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

Introduction

 This chapter provides an overview of how to use
 SQL to perform simple operations. This
 tutorial is only intended to give you an introduction and is in no
 way a complete tutorial on SQL. Numerous books
 have been written on SQL, including [melt93] and [date97].
 You should be aware that some PostgreSQL™
 language features are extensions to the standard.

 In the examples that follow, we assume that you have created a
 database named mydb, as described in the previous
 chapter, and have been able to start psql.

 Examples in this manual can also be found in the
 PostgreSQL™ source distribution
 in the directory src/tutorial/. (Binary
 distributions of PostgreSQL™ might not
 provide those files.) To use those
 files, first change to that directory and run make:

$ cd .../src/tutorial
$ make

 This creates the scripts and compiles the C files containing user-defined
 functions and types. Then, to start the tutorial, do the following:

$ psql -s mydb

...

mydb=> \i basics.sql

 The \i command reads in commands from the
 specified file. psql's -s option puts you in
 single step mode which pauses before sending each statement to the
 server. The commands used in this section are in the file
 basics.sql.

Concepts

 PostgreSQL™ is a relational
 database management system (RDBMS).
 That means it is a system for managing data stored in
 relations. Relation is essentially a
 mathematical term for table. The notion of
 storing data in tables is so commonplace today that it might
 seem inherently obvious, but there are a number of other ways of
 organizing databases. Files and directories on Unix-like
 operating systems form an example of a hierarchical database. A
 more modern development is the object-oriented database.

 Each table is a named collection of rows.
 Each row of a given table has the same set of named
 columns,
 and each column is of a specific data type. Whereas columns have
 a fixed order in each row, it is important to remember that SQL
 does not guarantee the order of the rows within the table in any
 way (although they can be explicitly sorted for display).

 Tables are grouped into databases, and a collection of databases
 managed by a single PostgreSQL™ server
 instance constitutes a database cluster.

Creating a New Table

 You can create a new table by specifying the table
 name, along with all column names and their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

 You can enter this into psql with the line
 breaks. psql will recognize that the command
 is not terminated until the semicolon.

 White space (i.e., spaces, tabs, and newlines) can be used freely
 in SQL commands. That means you can type the command aligned
 differently than above, or even all on one line. Two dashes
 (“--”) introduce comments.
 Whatever follows them is ignored up to the end of the line. SQL
 is case-insensitive about key words and identifiers, except
 when identifiers are double-quoted to preserve the case (not done
 above).

 varchar(80) specifies a data type that can store
 arbitrary character strings up to 80 characters in length.
 int is the normal integer type. real is
 a type for storing single precision floating-point numbers.
 date should be self-explanatory. (Yes, the column of
 type date is also named date.
 This might be convenient or confusing — you choose.)

 PostgreSQL™ supports the standard
 SQL types int,
 smallint, real, double
 precision, char(N),
 varchar(N), date,
 time, timestamp, and
 interval, as well as other types of general utility
 and a rich set of geometric types.
 PostgreSQL™ can be customized with an
 arbitrary number of user-defined data types. Consequently, type
 names are not key words in the syntax, except where required to
 support special cases in the SQL standard.

 The second example will store cities and their associated
 geographical location:

CREATE TABLE cities (
 name varchar(80),
 location point
);

 The point type is an example of a
 PostgreSQL™-specific data type.

 Finally, it should be mentioned that if you don't need a table any
 longer or want to recreate it differently you can remove it using
 the following command:

DROP TABLE tablename;

Populating a Table With Rows

 The INSERT statement is used to populate a table with
 rows:

INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27');

 Note that all data types use rather obvious input formats.
 Constants that are not simple numeric values usually must be
 surrounded by single quotes ('), as in the example.
 The
 date type is actually quite flexible in what it
 accepts, but for this tutorial we will stick to the unambiguous
 format shown here.

 The point type requires a coordinate pair as input,
 as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');

 The syntax used so far requires you to remember the order of the
 columns. An alternative syntax allows you to list the columns
 explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
 VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29');

 You can list the columns in a different order if you wish or
 even omit some columns, e.g., if the precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
 VALUES ('1994-11-29', 'Hayward', 54, 37);

 Many developers consider explicitly listing the columns better
 style than relying on the order implicitly.

 Please enter all the commands shown above so you have some data to
 work with in the following sections.

 You could also have used COPY to load large
 amounts of data from flat-text files. This is usually faster
 because the COPY command is optimized for this
 application while allowing less flexibility than
 INSERT. An example would be:

COPY weather FROM '/home/user/weather.txt';

 where the file name for the source file must be available on the
 machine running the backend process, not the client, since the backend process
 reads the file directly. The data inserted above into the weather table
 could also be inserted from a file containing (values are separated by a
 tab character):

San Francisco 46 50 0.25 1994-11-27
San Francisco 43 57 0.0 1994-11-29
Hayward 37 54 \N 1994-11-29

 You can read more about the COPY command in
 COPY(7).

Querying a Table

 To retrieve data from a table, the table is
 queried. An SQL
 SELECT statement is used to do this. The
 statement is divided into a select list (the part that lists the
 columns to be returned), a table list (the part that lists the
 tables from which to retrieve the data), and an optional
 qualification (the part that specifies any restrictions). For
 example, to retrieve all the rows of table
 weather, type:

SELECT * FROM weather;

 Here * is a shorthand for “all columns”.
 [2]
 So the same result would be had with:

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

 The output should be:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 43 | 57 | 0 | 1994-11-29
 Hayward | 37 | 54 | | 1994-11-29
(3 rows)

 You can write expressions, not just simple column references, in the
 select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

 This should give:

 city | temp_avg | date
---------------+----------+------------
 San Francisco | 48 | 1994-11-27
 San Francisco | 50 | 1994-11-29
 Hayward | 45 | 1994-11-29
(3 rows)

 Notice how the AS clause is used to relabel the
 output column. (The AS clause is optional.)

 A query can be “qualified” by adding a WHERE
 clause that specifies which rows are wanted. The WHERE
 clause contains a Boolean (truth value) expression, and only rows for
 which the Boolean expression is true are returned. The usual
 Boolean operators (AND,
 OR, and NOT) are allowed in
 the qualification. For example, the following
 retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
 WHERE city = 'San Francisco' AND prcp > 0.0;

 Result:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

 You can request that the results of a query
 be returned in sorted order:

SELECT * FROM weather
 ORDER BY city;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 Hayward | 37 | 54 | | 1994-11-29
 San Francisco | 43 | 57 | 0 | 1994-11-29
 San Francisco | 46 | 50 | 0.25 | 1994-11-27

 In this example, the sort order isn't fully specified, and so you
 might get the San Francisco rows in either order. But you'd always
 get the results shown above if you do:

SELECT * FROM weather
 ORDER BY city, temp_lo;

 You can request that duplicate rows be removed from the result of
 a query:

SELECT DISTINCT city
 FROM weather;

 city

 Hayward
 San Francisco
(2 rows)

 Here again, the result row ordering might vary.
 You can ensure consistent results by using DISTINCT and
 ORDER BY together:
 [3]

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

[2]
 While SELECT * is useful for off-the-cuff
 queries, it is widely considered bad style in production code,
 since adding a column to the table would change the results.

[3]
 In some database systems, including older versions of
 PostgreSQL™, the implementation of
 DISTINCT automatically orders the rows and
 so ORDER BY is unnecessary. But this is not
 required by the SQL standard, and current
 PostgreSQL™ does not guarantee that
 DISTINCT causes the rows to be ordered.

Joins Between Tables

 Thus far, our queries have only accessed one table at a time.
 Queries can access multiple tables at once, or access the same
 table in such a way that multiple rows of the table are being
 processed at the same time. Queries that access multiple tables
 (or multiple instances of the same table) at one time are called
 join queries. They combine rows from one table
 with rows from a second table, with an expression specifying which rows
 are to be paired. For example, to return all the weather records together
 with the location of the associated city, the database needs to compare
 the city
 column of each row of the weather table with the
 name column of all rows in the cities
 table, and select the pairs of rows where these values match.[4]
 This would be accomplished by the following query:

SELECT * FROM weather JOIN cities ON city = name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

 Observe two things about the result set:

	
 There is no result row for the city of Hayward. This is
 because there is no matching entry in the
 cities table for Hayward, so the join
 ignores the unmatched rows in the weather table. We will see
 shortly how this can be fixed.

	
 There are two columns containing the city name. This is
 correct because the lists of columns from the
 weather and
 cities tables are concatenated. In
 practice this is undesirable, though, so you will probably want
 to list the output columns explicitly rather than using
 *:

SELECT city, temp_lo, temp_hi, prcp, date, location
 FROM weather JOIN cities ON city = name;

 Since the columns all had different names, the parser
 automatically found which table they belong to. If there
 were duplicate column names in the two tables you'd need to
 qualify the column names to show which one you
 meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
 weather.prcp, weather.date, cities.location
 FROM weather JOIN cities ON weather.city = cities.name;

 It is widely considered good style to qualify all column names
 in a join query, so that the query won't fail if a duplicate
 column name is later added to one of the tables.

 Join queries of the kind seen thus far can also be written in this
 form:

SELECT *
 FROM weather, cities
 WHERE city = name;

 This syntax pre-dates the JOIN/ON
 syntax, which was introduced in SQL-92. The tables are simply listed in
 the FROM clause, and the comparison expression is added
 to the WHERE clause. The results from this older
 implicit syntax and the newer explicit
 JOIN/ON syntax are identical. But
 for a reader of the query, the explicit syntax makes its meaning easier to
 understand: The join condition is introduced by its own key word whereas
 previously the condition was mixed into the WHERE
 clause together with other conditions.

 Now we will figure out how we can get the Hayward records back in.
 What we want the query to do is to scan the
 weather table and for each row to find the
 matching cities row(s). If no matching row is
 found we want some “empty values” to be substituted
 for the cities table's columns. This kind
 of query is called an outer join. (The
 joins we have seen so far are inner joins.)
 The command looks like this:

SELECT *
 FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 Hayward | 37 | 54 | | 1994-11-29 | |
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

 This query is called a left outer
 join because the table mentioned on the left of the
 join operator will have each of its rows in the output at least
 once, whereas the table on the right will only have those rows
 output that match some row of the left table. When outputting a
 left-table row for which there is no right-table match, empty (null)
 values are substituted for the right-table columns.

Exercise:
 There are also right outer joins and full outer joins. Try to
 find out what those do.

 We can also join a table against itself. This is called a
 self join. As an example, suppose we wish
 to find all the weather records that are in the temperature range
 of other weather records. So we need to compare the
 temp_lo and temp_hi columns of
 each weather row to the
 temp_lo and
 temp_hi columns of all other
 weather rows. We can do this with the
 following query:

SELECT w1.city, w1.temp_lo AS low, w1.temp_hi AS high,
 w2.city, w2.temp_lo AS low, w2.temp_hi AS high
 FROM weather w1 JOIN weather w2
 ON w1.temp_lo < w2.temp_lo AND w1.temp_hi > w2.temp_hi;

 city | low | high | city | low | high
---------------+-----+------+---------------+-----+------
 San Francisco | 43 | 57 | San Francisco | 46 | 50
 Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

 Here we have relabeled the weather table as w1 and
 w2 to be able to distinguish the left and right side
 of the join. You can also use these kinds of aliases in other
 queries to save some typing, e.g.:

SELECT *
 FROM weather w JOIN cities c ON w.city = c.name;

 You will encounter this style of abbreviating quite frequently.

[4]
 This is only a conceptual model. The join is usually performed
 in a more efficient manner than actually comparing each possible
 pair of rows, but this is invisible to the user.

Aggregate Functions

 Like most other relational database products,
 PostgreSQL™ supports
 aggregate functions.
 An aggregate function computes a single result from multiple input rows.
 For example, there are aggregates to compute the
 count, sum,
 avg (average), max (maximum) and
 min (minimum) over a set of rows.

 As an example, we can find the highest low-temperature reading anywhere
 with:

SELECT max(temp_lo) FROM weather;

 max

 46
(1 row)

 If we wanted to know what city (or cities) that reading occurred in,
 we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

 but this will not work since the aggregate
 max cannot be used in the
 WHERE clause. (This restriction exists because
 the WHERE clause determines which rows will be
 included in the aggregate calculation; so obviously it has to be evaluated
 before aggregate functions are computed.)
 However, as is often the case
 the query can be restated to accomplish the desired result, here
 by using a subquery:

SELECT city FROM weather
 WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

 city

 San Francisco
(1 row)

 This is OK because the subquery is an independent computation
 that computes its own aggregate separately from what is happening
 in the outer query.

 Aggregates are also very useful in combination with GROUP
 BY clauses. For example, we can get the number of readings
 and the maximum low temperature observed in each city with:

SELECT city, count(*), max(temp_lo)
 FROM weather
 GROUP BY city;

 city | count | max
---------------+-------+-----
 Hayward | 1 | 37
 San Francisco | 2 | 46
(2 rows)

 which gives us one output row per city. Each aggregate result is
 computed over the table rows matching that city.
 We can filter these grouped
 rows using HAVING:

SELECT city, count(*), max(temp_lo)
 FROM weather
 GROUP BY city
 HAVING max(temp_lo) < 40;

 city | count | max
---------+-------+-----
 Hayward | 1 | 37
(1 row)

 which gives us the same results for only the cities that have all
 temp_lo values below 40. Finally, if we only care about
 cities whose
 names begin with “S”, we might do:

SELECT city, count(*), max(temp_lo)
 FROM weather
 WHERE city LIKE 'S%' -- [image: 1]
 GROUP BY city;

 city | count | max
---------------+-------+-----
 San Francisco | 2 | 46
(1 row)

	[image: 1]
	
 The LIKE operator does pattern matching and
 is explained in the section called “Pattern Matching”.

 It is important to understand the interaction between aggregates and
 SQL's WHERE and HAVING clauses.
 The fundamental difference between WHERE and
 HAVING is this: WHERE selects
 input rows before groups and aggregates are computed (thus, it controls
 which rows go into the aggregate computation), whereas
 HAVING selects group rows after groups and
 aggregates are computed. Thus, the
 WHERE clause must not contain aggregate functions;
 it makes no sense to try to use an aggregate to determine which rows
 will be inputs to the aggregates. On the other hand, the
 HAVING clause always contains aggregate functions.
 (Strictly speaking, you are allowed to write a HAVING
 clause that doesn't use aggregates, but it's seldom useful. The same
 condition could be used more efficiently at the WHERE
 stage.)

 In the previous example, we can apply the city name restriction in
 WHERE, since it needs no aggregate. This is
 more efficient than adding the restriction to HAVING,
 because we avoid doing the grouping and aggregate calculations
 for all rows that fail the WHERE check.

 Another way to select the rows that go into an aggregate
 computation is to use FILTER, which is a
 per-aggregate option:

SELECT city, count(*) FILTER (WHERE temp_lo < 45), max(temp_lo)
 FROM weather
 GROUP BY city;

 city | count | max
---------------+-------+-----
 Hayward | 1 | 37
 San Francisco | 1 | 46
(2 rows)

 FILTER is much like WHERE,
 except that it removes rows only from the input of the particular
 aggregate function that it is attached to.
 Here, the count aggregate counts only
 rows with temp_lo below 45; but the
 max aggregate is still applied to all rows,
 so it still finds the reading of 46.

Updates

 You can update existing rows using the
 UPDATE command.
 Suppose you discover the temperature readings are
 all off by 2 degrees after November 28. You can correct the
 data as follows:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > '1994-11-28';

 Look at the new state of the data:

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
 Hayward | 35 | 52 | | 1994-11-29
(3 rows)

Deletions

 Rows can be removed from a table using the DELETE
 command.
 Suppose you are no longer interested in the weather of Hayward.
 Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';

 All weather records belonging to Hayward are removed.

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

 One should be wary of statements of the form

DELETE FROM tablename;

 Without a qualification, DELETE will
 remove all rows from the given table, leaving it
 empty. The system will not request confirmation before
 doing this!

Chapter 3. Advanced Features

Introduction

 In the previous chapter we have covered the basics of using
 SQL to store and access your data in
 PostgreSQL™. We will now discuss some
 more advanced features of SQL that simplify
 management and prevent loss or corruption of your data. Finally,
 we will look at some PostgreSQL™
 extensions.

 This chapter will on occasion refer to examples found in Chapter 2, The SQL Language to change or improve them, so it will be
 useful to have read that chapter. Some examples from
 this chapter can also be found in
 advanced.sql in the tutorial directory. This
 file also contains some sample data to load, which is not
 repeated here. (Refer to the section called “Introduction” for
 how to use the file.)

Views

 Refer back to the queries in the section called “Joins Between Tables”.
 Suppose the combined listing of weather records and city location
 is of particular interest to your application, but you do not want
 to type the query each time you need it. You can create a
 view over the query, which gives a name to
 the query that you can refer to like an ordinary table:

CREATE VIEW myview AS
 SELECT name, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

SELECT * FROM myview;

 Making liberal use of views is a key aspect of good SQL database
 design. Views allow you to encapsulate the details of the
 structure of your tables, which might change as your application
 evolves, behind consistent interfaces.

 Views can be used in almost any place a real table can be used.
 Building views upon other views is not uncommon.

Foreign Keys

 Recall the weather and
 cities tables from Chapter 2, The SQL Language. Consider the following problem: You
 want to make sure that no one can insert rows in the
 weather table that do not have a matching
 entry in the cities table. This is called
 maintaining the referential integrity of
 your data. In simplistic database systems this would be
 implemented (if at all) by first looking at the
 cities table to check if a matching record
 exists, and then inserting or rejecting the new
 weather records. This approach has a
 number of problems and is very inconvenient, so
 PostgreSQL™ can do this for you.

 The new declaration of the tables would look like this:

CREATE TABLE cities (
 name varchar(80) primary key,
 location point
);

CREATE TABLE weather (
 city varchar(80) references cities(name),
 temp_lo int,
 temp_hi int,
 prcp real,
 date date
);

 Now try inserting an invalid record:

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

 The behavior of foreign keys can be finely tuned to your
 application. We will not go beyond this simple example in this
 tutorial, but just refer you to Chapter 5, Data Definition
 for more information. Making correct use of
 foreign keys will definitely improve the quality of your database
 applications, so you are strongly encouraged to learn about them.

Transactions

 Transactions are a fundamental concept of all database
 systems. The essential point of a transaction is that it bundles
 multiple steps into a single, all-or-nothing operation. The intermediate
 states between the steps are not visible to other concurrent transactions,
 and if some failure occurs that prevents the transaction from completing,
 then none of the steps affect the database at all.

 For example, consider a bank database that contains balances for various
 customer accounts, as well as total deposit balances for branches.
 Suppose that we want to record a payment of $100.00 from Alice's account
 to Bob's account. Simplifying outrageously, the SQL commands for this
 might look like:

UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

 The details of these commands are not important here; the important
 point is that there are several separate updates involved to accomplish
 this rather simple operation. Our bank's officers will want to be
 assured that either all these updates happen, or none of them happen.
 It would certainly not do for a system failure to result in Bob
 receiving $100.00 that was not debited from Alice. Nor would Alice long
 remain a happy customer if she was debited without Bob being credited.
 We need a guarantee that if something goes wrong partway through the
 operation, none of the steps executed so far will take effect. Grouping
 the updates into a transaction gives us this guarantee.
 A transaction is said to be atomic: from the point of
 view of other transactions, it either happens completely or not at all.

 We also want a
 guarantee that once a transaction is completed and acknowledged by
 the database system, it has indeed been permanently recorded
 and won't be lost even if a crash ensues shortly thereafter.
 For example, if we are recording a cash withdrawal by Bob,
 we do not want any chance that the debit to his account will
 disappear in a crash just after he walks out the bank door.
 A transactional database guarantees that all the updates made by
 a transaction are logged in permanent storage (i.e., on disk) before
 the transaction is reported complete.

 Another important property of transactional databases is closely
 related to the notion of atomic updates: when multiple transactions
 are running concurrently, each one should not be able to see the
 incomplete changes made by others. For example, if one transaction
 is busy totalling all the branch balances, it would not do for it
 to include the debit from Alice's branch but not the credit to
 Bob's branch, nor vice versa. So transactions must be all-or-nothing
 not only in terms of their permanent effect on the database, but
 also in terms of their visibility as they happen. The updates made
 so far by an open transaction are invisible to other transactions
 until the transaction completes, whereupon all the updates become
 visible simultaneously.

 In PostgreSQL™, a transaction is set up by surrounding
 the SQL commands of the transaction with
 BEGIN and COMMIT commands. So our banking
 transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
-- etc etc
COMMIT;

 If, partway through the transaction, we decide we do not want to
 commit (perhaps we just noticed that Alice's balance went negative),
 we can issue the command ROLLBACK instead of
 COMMIT, and all our updates so far will be canceled.

 PostgreSQL™ actually treats every SQL statement as being
 executed within a transaction. If you do not issue a BEGIN
 command,
 then each individual statement has an implicit BEGIN and
 (if successful) COMMIT wrapped around it. A group of
 statements surrounded by BEGIN and COMMIT
 is sometimes called a transaction block.

Note

 Some client libraries issue BEGIN and COMMIT
 commands automatically, so that you might get the effect of transaction
 blocks without asking. Check the documentation for the interface
 you are using.

 It's possible to control the statements in a transaction in a more
 granular fashion through the use of savepoints. Savepoints
 allow you to selectively discard parts of the transaction, while
 committing the rest. After defining a savepoint with
 SAVEPOINT, you can if needed roll back to the savepoint
 with ROLLBACK TO. All the transaction's database changes
 between defining the savepoint and rolling back to it are discarded, but
 changes earlier than the savepoint are kept.

 After rolling back to a savepoint, it continues to be defined, so you can
 roll back to it several times. Conversely, if you are sure you won't need
 to roll back to a particular savepoint again, it can be released, so the
 system can free some resources. Keep in mind that either releasing or
 rolling back to a savepoint
 will automatically release all savepoints that were defined after it.

 All this is happening within the transaction block, so none of it
 is visible to other database sessions. When and if you commit the
 transaction block, the committed actions become visible as a unit
 to other sessions, while the rolled-back actions never become visible
 at all.

 Remembering the bank database, suppose we debit $100.00 from Alice's
 account, and credit Bob's account, only to find later that we should
 have credited Wally's account. We could do it using savepoints like
 this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Wally';
COMMIT;

 This example is, of course, oversimplified, but there's a lot of control
 possible in a transaction block through the use of savepoints.
 Moreover, ROLLBACK TO is the only way to regain control of a
 transaction block that was put in aborted state by the
 system due to an error, short of rolling it back completely and starting
 again.

Window Functions

 A window function performs a calculation across a set of
 table rows that are somehow related to the current row. This is comparable
 to the type of calculation that can be done with an aggregate function.
 However, window functions do not cause rows to become grouped into a single
 output row like non-window aggregate calls would. Instead, the
 rows retain their separate identities. Behind the scenes, the window
 function is able to access more than just the current row of the query
 result.

 Here is an example that shows how to compare each employee's salary
 with the average salary in his or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

 The first three output columns come directly from the table
 empsalary, and there is one output row for each row in the
 table. The fourth column represents an average taken across all the table
 rows that have the same depname value as the current row.
 (This actually is the same function as the non-window avg
 aggregate, but the OVER clause causes it to be
 treated as a window function and computed across the window frame.)

 A window function call always contains an OVER clause
 directly following the window function's name and argument(s). This is what
 syntactically distinguishes it from a normal function or non-window
 aggregate. The OVER clause determines exactly how the
 rows of the query are split up for processing by the window function.
 The PARTITION BY clause within OVER
 divides the rows into groups, or partitions, that share the same
 values of the PARTITION BY expression(s). For each row,
 the window function is computed across the rows that fall into the
 same partition as the current row.

 You can also control the order in which rows are processed by
 window functions using ORDER BY within OVER.
 (The window ORDER BY does not even have to match the
 order in which the rows are output.) Here is an example:

SELECT depname, empno, salary,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

 depname | empno | salary | rank
-----------+-------+--------+------
 develop | 8 | 6000 | 1
 develop | 10 | 5200 | 2
 develop | 11 | 5200 | 2
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1
 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 2
(10 rows)

 As shown here, the rank function produces a numerical rank
 for each distinct ORDER BY value in the current row's
 partition, using the order defined by the ORDER BY clause.
 rank needs no explicit parameter, because its behavior
 is entirely determined by the OVER clause.

 The rows considered by a window function are those of the “virtual
 table” produced by the query's FROM clause as filtered by its
 WHERE, GROUP BY, and HAVING clauses
 if any. For example, a row removed because it does not meet the
 WHERE condition is not seen by any window function.
 A query can contain multiple window functions that slice up the data
 in different ways using different OVER clauses, but
 they all act on the same collection of rows defined by this virtual table.

 We already saw that ORDER BY can be omitted if the ordering
 of rows is not important. It is also possible to omit PARTITION
 BY, in which case there is a single partition containing all rows.

 There is another important concept associated with window functions:
 for each row, there is a set of rows within its partition called its
 window frame. Some window functions act only
 on the rows of the window frame, rather than of the whole partition.
 By default, if ORDER BY is supplied then the frame consists of
 all rows from the start of the partition up through the current row, plus
 any following rows that are equal to the current row according to the
 ORDER BY clause. When ORDER BY is omitted the
 default frame consists of all rows in the partition.
 [5]
 Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

 salary | sum
--------+-------
 5200 | 47100
 5000 | 47100
 3500 | 47100
 4800 | 47100
 3900 | 47100
 4200 | 47100
 4500 | 47100
 4800 | 47100
 6000 | 47100
 5200 | 47100
(10 rows)

 Above, since there is no ORDER BY in the OVER
 clause, the window frame is the same as the partition, which for lack of
 PARTITION BY is the whole table; in other words each sum is
 taken over the whole table and so we get the same result for each output
 row. But if we add an ORDER BY clause, we get very different
 results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

 salary | sum
--------+-------
 3500 | 3500
 3900 | 7400
 4200 | 11600
 4500 | 16100
 4800 | 25700
 4800 | 25700
 5000 | 30700
 5200 | 41100
 5200 | 41100
 6000 | 47100
(10 rows)

 Here the sum is taken from the first (lowest) salary up through the
 current one, including any duplicates of the current one (notice the
 results for the duplicated salaries).

 Window functions are permitted only in the SELECT list
 and the ORDER BY clause of the query. They are forbidden
 elsewhere, such as in GROUP BY, HAVING
 and WHERE clauses. This is because they logically
 execute after the processing of those clauses. Also, window functions
 execute after non-window aggregate functions. This means it is valid to
 include an aggregate function call in the arguments of a window function,
 but not vice versa.

 If there is a need to filter or group rows after the window calculations
 are performed, you can use a sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
 (SELECT depname, empno, salary, enroll_date,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
 FROM empsalary
) AS ss
WHERE pos < 3;

 The above query only shows the rows from the inner query having
 rank less than 3.

 When a query involves multiple window functions, it is possible to write
 out each one with a separate OVER clause, but this is
 duplicative and error-prone if the same windowing behavior is wanted
 for several functions. Instead, each windowing behavior can be named
 in a WINDOW clause and then referenced in OVER.
 For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
 FROM empsalary
 WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

 More details about window functions can be found in
 the section called “Window Function Calls”,
 the section called “Window Functions”,
 the section called “Window Function Processing”, and the
 SELECT(7) reference page.

[5]
 There are options to define the window frame in other ways, but
 this tutorial does not cover them. See
 the section called “Window Function Calls” for details.

Inheritance

 Inheritance is a concept from object-oriented databases. It opens
 up interesting new possibilities of database design.

 Let's create two tables: A table cities
 and a table capitals. Naturally, capitals
 are also cities, so you want some way to show the capitals
 implicitly when you list all cities. If you're really clever you
 might invent some scheme like this:

CREATE TABLE capitals (
 name text,
 population real,
 elevation int, -- (in ft)
 state char(2)
);

CREATE TABLE non_capitals (
 name text,
 population real,
 elevation int -- (in ft)
);

CREATE VIEW cities AS
 SELECT name, population, elevation FROM capitals
 UNION
 SELECT name, population, elevation FROM non_capitals;

 This works OK as far as querying goes, but it gets ugly when you
 need to update several rows, for one thing.

 A better solution is this:

CREATE TABLE cities (
 name text,
 population real,
 elevation int -- (in ft)
);

CREATE TABLE capitals (
 state char(2) UNIQUE NOT NULL
) INHERITS (cities);

 In this case, a row of capitals
 inherits all columns (name,
 population, and elevation) from its
 parent, cities. The
 type of the column name is
 text, a native PostgreSQL™
 type for variable length character strings. The
 capitals table has
 an additional column, state, which shows its
 state abbreviation. In
 PostgreSQL™, a table can inherit from
 zero or more other tables.

 For example, the following query finds the names of all cities,
 including state capitals, that are located at an elevation
 over 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

 which returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845
(3 rows)

 On the other hand, the following query finds
 all the cities that are not state capitals and
 are situated at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
(2 rows)

 Here the ONLY before cities
 indicates that the query should be run over only the
 cities table, and not tables below
 cities in the inheritance hierarchy. Many
 of the commands that we have already discussed —
 SELECT, UPDATE, and
 DELETE — support this ONLY
 notation.

Note

 Although inheritance is frequently useful, it has not been integrated
 with unique constraints or foreign keys, which limits its usefulness.
 See the section called “Inheritance” for more detail.

Conclusion

 PostgreSQL™ has many features not
 touched upon in this tutorial introduction, which has been
 oriented toward newer users of SQL. These
 features are discussed in more detail in the remainder of this
 book.

 If you feel you need more introductory material, please visit the PostgreSQL
 web site
 for links to more resources.

Part II. The SQL Language

 This part describes the use of the SQL language
 in PostgreSQL™. We start with
 describing the general syntax of SQL, then
 explain how to create the structures to hold data, how to populate
 the database, and how to query it. The middle part lists the
 available data types and functions for use in
 SQL commands. The rest treats several
 aspects that are important for tuning a database for optimal
 performance.

 The information in this part is arranged so that a novice user can
 follow it start to end to gain a full understanding of the topics
 without having to refer forward too many times. The chapters are
 intended to be self-contained, so that advanced users can read the
 chapters individually as they choose. The information in this
 part is presented in a narrative fashion in topical units.
 Readers looking for a complete description of a particular command
 should see Part VI, “Reference”.

 Readers of this part should know how to connect to a
 PostgreSQL™ database and issue
 SQL commands. Readers that are unfamiliar with
 these issues are encouraged to read Part I, “Tutorial”
 first. SQL commands are typically entered
 using the PostgreSQL™ interactive terminal
 psql, but other programs that have
 similar functionality can be used as well.

Chapter 4. SQL Syntax

 This chapter describes the syntax of SQL. It forms the foundation
 for understanding the following chapters which will go into detail
 about how SQL commands are applied to define and modify data.

 We also advise users who are already familiar with SQL to read this
 chapter carefully because it contains several rules and concepts that
 are implemented inconsistently among SQL databases or that are
 specific to PostgreSQL™.

Lexical Structure

 SQL input consists of a sequence of
 commands. A command is composed of a
 sequence of tokens, terminated by a
 semicolon (“;”). The end of the input stream also
 terminates a command. Which tokens are valid depends on the syntax
 of the particular command.

 A token can be a key word, an
 identifier, a quoted
 identifier, a literal (or
 constant), or a special character symbol. Tokens are normally
 separated by whitespace (space, tab, newline), but need not be if
 there is no ambiguity (which is generally only the case if a
 special character is adjacent to some other token type).

 For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

 This is a sequence of three commands, one per line (although this
 is not required; more than one command can be on a line, and
 commands can usefully be split across lines).

 Additionally, comments can occur in SQL
 input. They are not tokens, they are effectively equivalent to
 whitespace.

 The SQL syntax is not very consistent regarding what tokens
 identify commands and which are operands or parameters. The first
 few tokens are generally the command name, so in the above example
 we would usually speak of a “SELECT”, an
 “UPDATE”, and an “INSERT” command. But
 for instance the UPDATE command always requires
 a SET token to appear in a certain position, and
 this particular variation of INSERT also
 requires a VALUES in order to be complete. The
 precise syntax rules for each command are described in Part VI, “Reference”.

Identifiers and Key Words

 Tokens such as SELECT, UPDATE, or
 VALUES in the example above are examples of
 key words, that is, words that have a fixed
 meaning in the SQL language. The tokens MY_TABLE
 and A are examples of
 identifiers. They identify names of
 tables, columns, or other database objects, depending on the
 command they are used in. Therefore they are sometimes simply
 called “names”. Key words and identifiers have the
 same lexical structure, meaning that one cannot know whether a
 token is an identifier or a key word without knowing the language.
 A complete list of key words can be found in Appendix C, SQL Key Words.

 SQL identifiers and key words must begin with a letter
 (a-z, but also letters with
 diacritical marks and non-Latin letters) or an underscore
 (_). Subsequent characters in an identifier or
 key word can be letters, underscores, digits
 (0-9), or dollar signs
 ($). Note that dollar signs are not allowed in identifiers
 according to the letter of the SQL standard, so their use might render
 applications less portable.
 The SQL standard will not define a key word that contains
 digits or starts or ends with an underscore, so identifiers of this
 form are safe against possible conflict with future extensions of the
 standard.

 The system uses no more than NAMEDATALEN-1
 bytes of an identifier; longer names can be written in
 commands, but they will be truncated. By default,
 NAMEDATALEN is 64 so the maximum identifier
 length is 63 bytes. If this limit is problematic, it can be raised by
 changing the NAMEDATALEN constant in
 src/include/pg_config_manual.h.

 Key words and unquoted identifiers are case-insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

 can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

 A convention often used is to write key words in upper
 case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

 There is a second kind of identifier: the delimited
 identifier or quoted
 identifier. It is formed by enclosing an arbitrary
 sequence of characters in double-quotes
 ("). A delimited
 identifier is always an identifier, never a key word. So
 "select" could be used to refer to a column or
 table named “select”, whereas an unquoted
 select would be taken as a key word and
 would therefore provoke a parse error when used where a table or
 column name is expected. The example can be written with quoted
 identifiers like this:

UPDATE "my_table" SET "a" = 5;

 Quoted identifiers can contain any character, except the character
 with code zero. (To include a double quote, write two double quotes.)
 This allows constructing table or column names that would
 otherwise not be possible, such as ones containing spaces or
 ampersands. The length limitation still applies.

 Quoting an identifier also makes it case-sensitive, whereas
 unquoted names are always folded to lower case. For example, the
 identifiers FOO, foo, and
 "foo" are considered the same by
 PostgreSQL™, but
 "Foo" and "FOO" are
 different from these three and each other. (The folding of
 unquoted names to lower case in PostgreSQL™ is
 incompatible with the SQL standard, which says that unquoted names
 should be folded to upper case. Thus, foo
 should be equivalent to "FOO" not
 "foo" according to the standard. If you want
 to write portable applications you are advised to always quote a
 particular name or never quote it.)

 A variant of quoted
 identifiers allows including escaped Unicode characters identified
 by their code points. This variant starts
 with U& (upper or lower case U followed by
 ampersand) immediately before the opening double quote, without
 any spaces in between, for example U&"foo".
 (Note that this creates an ambiguity with the
 operator &. Use spaces around the operator to
 avoid this problem.) Inside the quotes, Unicode characters can be
 specified in escaped form by writing a backslash followed by the
 four-digit hexadecimal code point number or alternatively a
 backslash followed by a plus sign followed by a six-digit
 hexadecimal code point number. For example, the
 identifier "data" could be written as

U&"d\0061t\+000061"

 The following less trivial example writes the Russian
 word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

 If a different escape character than backslash is desired, it can
 be specified using
 the UESCAPE
 clause after the string, for example:

U&"d!0061t!+000061" UESCAPE '!'

 The escape character can be any single character other than a
 hexadecimal digit, the plus sign, a single quote, a double quote,
 or a whitespace character. Note that the escape character is
 written in single quotes, not double quotes,
 after UESCAPE.

 To include the escape character in the identifier literally, write
 it twice.

 Either the 4-digit or the 6-digit escape form can be used to
 specify UTF-16 surrogate pairs to compose characters with code
 points larger than U+FFFF, although the availability of the
 6-digit form technically makes this unnecessary. (Surrogate
 pairs are not stored directly, but are combined into a single
 code point.)

 If the server encoding is not UTF-8, the Unicode code point identified
 by one of these escape sequences is converted to the actual server
 encoding; an error is reported if that's not possible.

Constants

 There are three kinds of implicitly-typed
 constants in PostgreSQL™:
 strings, bit strings, and numbers.
 Constants can also be specified with explicit types, which can
 enable more accurate representation and more efficient handling by
 the system. These alternatives are discussed in the following
 subsections.

String Constants

 A string constant in SQL is an arbitrary sequence of characters
 bounded by single quotes ('), for example
 'This is a string'. To include
 a single-quote character within a string constant,
 write two adjacent single quotes, e.g.,
 'Dianne''s horse'.
 Note that this is not the same as a double-quote
 character (").

 Two string constants that are only separated by whitespace
 with at least one newline are concatenated
 and effectively treated as if the string had been written as one
 constant. For example:

SELECT 'foo'
'bar';

 is equivalent to:

SELECT 'foobar';

 but:

SELECT 'foo' 'bar';

 is not valid syntax. (This slightly bizarre behavior is specified
 by SQL; PostgreSQL™ is
 following the standard.)

String Constants with C-Style Escapes

 PostgreSQL™ also accepts “escape”
 string constants, which are an extension to the SQL standard.
 An escape string constant is specified by writing the letter
 E (upper or lower case) just before the opening single
 quote, e.g., E'foo'. (When continuing an escape string
 constant across lines, write E only before the first opening
 quote.)
 Within an escape string, a backslash character (\) begins a
 C-like backslash escape sequence, in which the combination
 of backslash and following character(s) represent a special byte
 value, as shown in Table 4.1, “Backslash Escape Sequences”.

Table 4.1. Backslash Escape Sequences
	Backslash Escape Sequence	Interpretation
	\b	backspace
	\f	form feed
	\n	newline
	\r	carriage return
	\t	tab
	
 \o,
 \oo,
 \ooo
 (o = 0–7)
 	octal byte value
	
 \xh,
 \xhh
 (h = 0–9, A–F)
 	hexadecimal byte value
	
 \uxxxx,
 \Uxxxxxxxx
 (x = 0–9, A–F)
 	16 or 32-bit hexadecimal Unicode character value

 Any other
 character following a backslash is taken literally. Thus, to
 include a backslash character, write two backslashes (\\).
 Also, a single quote can be included in an escape string by writing
 \', in addition to the normal way of ''.

 It is your responsibility that the byte sequences you create,
 especially when using the octal or hexadecimal escapes, compose
 valid characters in the server character set encoding.
 A useful alternative is to use Unicode escapes or the
 alternative Unicode escape syntax, explained
 in the section called “String Constants with Unicode Escapes”; then the server
 will check that the character conversion is possible.

Caution

 If the configuration parameter
 standard_conforming_strings is off,
 then PostgreSQL™ recognizes backslash escapes
 in both regular and escape string constants. However, as of
 PostgreSQL™ 9.1, the default is on, meaning
 that backslash escapes are recognized only in escape string constants.
 This behavior is more standards-compliant, but might break applications
 which rely on the historical behavior, where backslash escapes
 were always recognized. As a workaround, you can set this parameter
 to off, but it is better to migrate away from using backslash
 escapes. If you need to use a backslash escape to represent a special
 character, write the string constant with an E.

 In addition to standard_conforming_strings, the configuration
 parameters escape_string_warning and
 backslash_quote govern treatment of backslashes
 in string constants.

 The character with the code zero cannot be in a string constant.

String Constants with Unicode Escapes

 PostgreSQL™ also supports another type
 of escape syntax for strings that allows specifying arbitrary
 Unicode characters by code point. A Unicode escape string
 constant starts with U& (upper or lower case
 letter U followed by ampersand) immediately before the opening
 quote, without any spaces in between, for
 example U&'foo'. (Note that this creates an
 ambiguity with the operator &. Use spaces
 around the operator to avoid this problem.) Inside the quotes,
 Unicode characters can be specified in escaped form by writing a
 backslash followed by the four-digit hexadecimal code point
 number or alternatively a backslash followed by a plus sign
 followed by a six-digit hexadecimal code point number. For
 example, the string 'data' could be written as

U&'d\0061t\+000061'

 The following less trivial example writes the Russian
 word “slon” (elephant) in Cyrillic letters:

U&'\0441\043B\043E\043D'

 If a different escape character than backslash is desired, it can
 be specified using
 the UESCAPE
 clause after the string, for example:

U&'d!0061t!+000061' UESCAPE '!'

 The escape character can be any single character other than a
 hexadecimal digit, the plus sign, a single quote, a double quote,
 or a whitespace character.

 To include the escape character in the string literally, write
 it twice.

 Either the 4-digit or the 6-digit escape form can be used to
 specify UTF-16 surrogate pairs to compose characters with code
 points larger than U+FFFF, although the availability of the
 6-digit form technically makes this unnecessary. (Surrogate
 pairs are not stored directly, but are combined into a single
 code point.)

 If the server encoding is not UTF-8, the Unicode code point identified
 by one of these escape sequences is converted to the actual server
 encoding; an error is reported if that's not possible.

 Also, the Unicode escape syntax for string constants only works
 when the configuration
 parameter standard_conforming_strings is
 turned on. This is because otherwise this syntax could confuse
 clients that parse the SQL statements to the point that it could
 lead to SQL injections and similar security issues. If the
 parameter is set to off, this syntax will be rejected with an
 error message.

Dollar-Quoted String Constants

 While the standard syntax for specifying string constants is usually
 convenient, it can be difficult to understand when the desired string
 contains many single quotes, since each of those must
 be doubled. To allow more readable queries in such situations,
 PostgreSQL™ provides another way, called
 “dollar quoting”, to write string constants.
 A dollar-quoted string constant
 consists of a dollar sign ($), an optional
 “tag” of zero or more characters, another dollar
 sign, an arbitrary sequence of characters that makes up the
 string content, a dollar sign, the same tag that began this
 dollar quote, and a dollar sign. For example, here are two
 different ways to specify the string “Dianne's horse”
 using dollar quoting:

$$Dianne's horse$$
$SomeTag$Dianne's horse$SomeTag$

 Notice that inside the dollar-quoted string, single quotes can be
 used without needing to be escaped. Indeed, no characters inside
 a dollar-quoted string are ever escaped: the string content is always
 written literally. Backslashes are not special, and neither are
 dollar signs, unless they are part of a sequence matching the opening
 tag.

 It is possible to nest dollar-quoted string constants by choosing
 different tags at each nesting level. This is most commonly used in
 writing function definitions. For example:

$function$
BEGIN
 RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

 Here, the sequence q[\t\r\n\v\\]q represents a
 dollar-quoted literal string [\t\r\n\v\\], which will
 be recognized when the function body is executed by
 PostgreSQL™. But since the sequence does not match
 the outer dollar quoting delimiter $function$, it is
 just some more characters within the constant so far as the outer
 string is concerned.

 The tag, if any, of a dollar-quoted string follows the same rules
 as an unquoted identifier, except that it cannot contain a dollar sign.
 Tags are case sensitive, so tagString contenttag
 is correct, but TAGString contenttag is not.

 A dollar-quoted string that follows a keyword or identifier must
 be separated from it by whitespace; otherwise the dollar quoting
 delimiter would be taken as part of the preceding identifier.

 Dollar quoting is not part of the SQL standard, but it is often a more
 convenient way to write complicated string literals than the
 standard-compliant single quote syntax. It is particularly useful when
 representing string constants inside other constants, as is often needed
 in procedural function definitions. With single-quote syntax, each
 backslash in the above example would have to be written as four
 backslashes, which would be reduced to two backslashes in parsing the
 original string constant, and then to one when the inner string constant
 is re-parsed during function execution.

Bit-String Constants

 Bit-string constants look like regular string constants with a
 B (upper or lower case) immediately before the
 opening quote (no intervening whitespace), e.g.,
 B'1001'. The only characters allowed within
 bit-string constants are 0 and
 1.

 Alternatively, bit-string constants can be specified in hexadecimal
 notation, using a leading X (upper or lower case),
 e.g., X'1FF'. This notation is equivalent to
 a bit-string constant with four binary digits for each hexadecimal digit.

 Both forms of bit-string constant can be continued
 across lines in the same way as regular string constants.
 Dollar quoting cannot be used in a bit-string constant.

Numeric Constants

 Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

 where digits is one or more decimal
 digits (0 through 9). At least one digit must be before or after the
 decimal point, if one is used. At least one digit must follow the
 exponent marker (e), if one is present.
 There cannot be any spaces or other characters embedded in the
 constant, except for underscores, which can be used for visual grouping as
 described below. Note that any leading plus or minus sign is not actually
 considered part of the constant; it is an operator applied to the
 constant.

 These are some examples of valid numeric constants:

42

3.5

4.

.001

5e2

1.925e-3

 Additionally, non-decimal integer constants are accepted in these forms:

0xhexdigits
0ooctdigits
0bbindigits

 where hexdigits is one or more hexadecimal digits
 (0-9, A-F), octdigits is one or more octal
 digits (0-7), and bindigits is one or more binary
 digits (0 or 1). Hexadecimal digits and the radix prefixes can be in
 upper or lower case. Note that only integers can have non-decimal forms,
 not numbers with fractional parts.

 These are some examples of valid non-decimal integer constants:

0b100101

0B10011001

0o273

0O755

0x42f

0XFFFF

 For visual grouping, underscores can be inserted between digits. These
 have no further effect on the value of the constant. For example:

1_500_000_000

0b10001000_00000000

0o_1_755

0xFFFF_FFFF

1.618_034

 Underscores are not allowed at the start or end of a numeric constant or
 a group of digits (that is, immediately before or after the decimal point
 or the exponent marker), and more than one underscore in a row is not
 allowed.

 A numeric constant that contains neither a decimal point nor an
 exponent is initially presumed to be type integer if its
 value fits in type integer (32 bits); otherwise it is
 presumed to be type bigint if its
 value fits in type bigint (64 bits); otherwise it is
 taken to be type numeric. Constants that contain decimal
 points and/or exponents are always initially presumed to be type
 numeric.

 The initially assigned data type of a numeric constant is just a
 starting point for the type resolution algorithms. In most cases
 the constant will be automatically coerced to the most
 appropriate type depending on context. When necessary, you can
 force a numeric value to be interpreted as a specific data type
 by casting it.
 For example, you can force a numeric value to be treated as type
 real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL -- PostgreSQL (historical) style

 These are actually just special cases of the general casting
 notations discussed next.

Constants of Other Types

 A constant of an arbitrary type can be
 entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

 The string constant's text is passed to the input conversion
 routine for the type called type. The
 result is a constant of the indicated type. The explicit type
 cast can be omitted if there is no ambiguity as to the type the
 constant must be (for example, when it is assigned directly to a
 table column), in which case it is automatically coerced.

 The string constant can be written using either regular SQL
 notation or dollar-quoting.

 It is also possible to specify a type coercion using a function-like
 syntax:

typename ('string')

 but not all type names can be used in this way; see the section called “Type Casts” for details.

 The ::, CAST(), and
 function-call syntaxes can also be used to specify run-time type
 conversions of arbitrary expressions, as discussed in the section called “Type Casts”. To avoid syntactic ambiguity, the
 type 'string'
 syntax can only be used to specify the type of a simple literal constant.
 Another restriction on the
 type 'string'
 syntax is that it does not work for array types; use ::
 or CAST() to specify the type of an array constant.

 The CAST() syntax conforms to SQL. The
 type 'string'
 syntax is a generalization of the standard: SQL specifies this syntax only
 for a few data types, but PostgreSQL™ allows it
 for all types. The syntax with
 :: is historical PostgreSQL™
 usage, as is the function-call syntax.

Operators

 An operator name is a sequence of up to NAMEDATALEN-1
 (63 by default) characters from the following list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

 There are a few restrictions on operator names, however:

	
 -- and /* cannot appear
 anywhere in an operator name, since they will be taken as the
 start of a comment.

	
 A multiple-character operator name cannot end in + or -,
 unless the name also contains at least one of these characters:

~ ! @ # % ^ & | ` ?

 For example, @- is an allowed operator name,
 but *- is not. This restriction allows
 PostgreSQL™ to parse SQL-compliant
 queries without requiring spaces between tokens.

 When working with non-SQL-standard operator names, you will usually
 need to separate adjacent operators with spaces to avoid ambiguity.
 For example, if you have defined a prefix operator named @,
 you cannot write X*@Y; you must write
 X* @Y to ensure that
 PostgreSQL™ reads it as two operator names
 not one.

Special Characters

 Some characters that are not alphanumeric have a special meaning
 that is different from being an operator. Details on the usage can
 be found at the location where the respective syntax element is
 described. This section only exists to advise the existence and
 summarize the purposes of these characters.

	
 A dollar sign ($) followed by digits is used
 to represent a positional parameter in the body of a function
 definition or a prepared statement. In other contexts the
 dollar sign can be part of an identifier or a dollar-quoted string
 constant.

	
 Parentheses (()) have their usual meaning to
 group expressions and enforce precedence. In some cases
 parentheses are required as part of the fixed syntax of a
 particular SQL command.

	
 Brackets ([]) are used to select the elements
 of an array. See the section called “Arrays” for more information
 on arrays.

	
 Commas (,) are used in some syntactical
 constructs to separate the elements of a list.

	
 The semicolon (;) terminates an SQL command.
 It cannot appear anywhere within a command, except within a
 string constant or quoted identifier.

	
 The colon (:) is used to select
 “slices” from arrays. (See the section called “Arrays”.) In certain SQL dialects (such as Embedded
 SQL), the colon is used to prefix variable names.

	
 The asterisk (*) is used in some contexts to denote
 all the fields of a table row or composite value. It also
 has a special meaning when used as the argument of an
 aggregate function, namely that the aggregate does not require
 any explicit parameter.

	
 The period (.) is used in numeric
 constants, and to separate schema, table, and column names.

Comments

 A comment is a sequence of characters beginning with
 double dashes and extending to the end of the line, e.g.:

-- This is a standard SQL comment

 Alternatively, C-style block comments can be used:

/* multiline comment
 * with nesting: /* nested block comment */
 */

 where the comment begins with /* and extends to
 the matching occurrence of */. These block
 comments nest, as specified in the SQL standard but unlike C, so that one can
 comment out larger blocks of code that might contain existing block
 comments.

 A comment is removed from the input stream before further syntax
 analysis and is effectively replaced by whitespace.

Operator Precedence

 Table 4.2, “Operator Precedence (highest to lowest)” shows the precedence and
 associativity of the operators in PostgreSQL™.
 Most operators have the same precedence and are left-associative.
 The precedence and associativity of the operators is hard-wired
 into the parser.
 Add parentheses if you want an expression with multiple operators
 to be parsed in some other way than what the precedence rules imply.

Table 4.2. Operator Precedence (highest to lowest)
	Operator/Element	Associativity	Description
	.	left	table/column name separator
	::	left	PostgreSQL™-style typecast
	[]	left	array element selection
	+ -	right	unary plus, unary minus
	COLLATE	left	collation selection
	AT	left	AT TIME ZONE
	^	left	exponentiation
	* / %	left	multiplication, division, modulo
	+ -	left	addition, subtraction
	(any other operator)	left	all other native and user-defined operators
	BETWEEN IN LIKE ILIKE SIMILAR	 	range containment, set membership, string matching
	< > = <= >= <>
	 	comparison operators
	IS ISNULL NOTNULL	 	IS TRUE, IS FALSE, IS
 NULL, IS DISTINCT FROM, etc.
	NOT	right	logical negation
	AND	left	logical conjunction
	OR	left	logical disjunction

 Note that the operator precedence rules also apply to user-defined
 operators that have the same names as the built-in operators
 mentioned above. For example, if you define a
 “+” operator for some custom data type it will have
 the same precedence as the built-in “+” operator, no
 matter what yours does.

 When a schema-qualified operator name is used in the
 OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catalog.+) 4;

 the OPERATOR construct is taken to have the default precedence
 shown in Table 4.2, “Operator Precedence (highest to lowest)” for
 “any other operator”. This is true no matter
 which specific operator appears inside OPERATOR().

Note

 PostgreSQL™ versions before 9.5 used slightly different
 operator precedence rules. In particular, <=
 >= and <> used to be treated as
 generic operators; IS tests used to have higher priority;
 and NOT BETWEEN and related constructs acted inconsistently,
 being taken in some cases as having the precedence of NOT
 rather than BETWEEN. These rules were changed for better
 compliance with the SQL standard and to reduce confusion from
 inconsistent treatment of logically equivalent constructs. In most
 cases, these changes will result in no behavioral change, or perhaps
 in “no such operator” failures which can be resolved by adding
 parentheses. However there are corner cases in which a query might
 change behavior without any parsing error being reported.

Value Expressions

 Value expressions are used in a variety of contexts, such
 as in the target list of the SELECT command, as
 new column values in INSERT or
 UPDATE, or in search conditions in a number of
 commands. The result of a value expression is sometimes called a
 scalar, to distinguish it from the result of
 a table expression (which is a table). Value expressions are
 therefore also called scalar expressions (or
 even simply expressions). The expression
 syntax allows the calculation of values from primitive parts using
 arithmetic, logical, set, and other operations.

 A value expression is one of the following:

	
 A constant or literal value

	
 A column reference

	
 A positional parameter reference, in the body of a function definition
 or prepared statement

	
 A subscripted expression

	
 A field selection expression

	
 An operator invocation

	
 A function call

	
 An aggregate expression

	
 A window function call

	
 A type cast

	
 A collation expression

	
 A scalar subquery

	
 An array constructor

	
 A row constructor

	
 Another value expression in parentheses (used to group
 subexpressions and override
 precedence)

 In addition to this list, there are a number of constructs that can
 be classified as an expression but do not follow any general syntax
 rules. These generally have the semantics of a function or
 operator and are explained in the appropriate location in Chapter 9, Functions and Operators. An example is the IS NULL
 clause.

 We have already discussed constants in the section called “Constants”. The following sections discuss
 the remaining options.

Column References

 A column can be referenced in the form:

correlation.columnname

 correlation is the name of a
 table (possibly qualified with a schema name), or an alias for a table
 defined by means of a FROM clause.
 The correlation name and separating dot can be omitted if the column name
 is unique across all the tables being used in the current query. (See also Chapter 7, Queries.)

Positional Parameters

 A positional parameter reference is used to indicate a value
 that is supplied externally to an SQL statement. Parameters are
 used in SQL function definitions and in prepared queries. Some
 client libraries also support specifying data values separately
 from the SQL command string, in which case parameters are used to
 refer to the out-of-line data values.
 The form of a parameter reference is:

$number

 For example, consider the definition of a function,
 dept, as:

CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$
 LANGUAGE SQL;

 Here the $1 references the value of the first
 function argument whenever the function is invoked.

Subscripts

 If an expression yields a value of an array type, then a specific
 element of the array value can be extracted by writing

expression[subscript]

 or multiple adjacent elements (an “array slice”) can be extracted
 by writing

expression[lower_subscript:upper_subscript]

 (Here, the brackets [] are meant to appear literally.)
 Each subscript is itself an expression,
 which will be rounded to the nearest integer value.

 In general the array expression must be
 parenthesized, but the parentheses can be omitted when the expression
 to be subscripted is just a column reference or positional parameter.
 Also, multiple subscripts can be concatenated when the original array
 is multidimensional.
 For example:

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

 The parentheses in the last example are required.
 See the section called “Arrays” for more about arrays.

Field Selection

 If an expression yields a value of a composite type (row type), then a
 specific field of the row can be extracted by writing

expression.fieldname

 In general the row expression must be
 parenthesized, but the parentheses can be omitted when the expression
 to be selected from is just a table reference or positional parameter.
 For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

 (Thus, a qualified column reference is actually just a special case
 of the field selection syntax.) An important special case is
 extracting a field from a table column that is of a composite type:

(compositecol).somefield
(mytable.compositecol).somefield

 The parentheses are required here to show that
 compositecol is a column name not a table name,
 or that mytable is a table name not a schema name
 in the second case.

 You can ask for all fields of a composite value by
 writing .*:

(compositecol).*

 This notation behaves differently depending on context;
 see the section called “Using Composite Types in Queries” for details.

Operator Invocations

 There are two possible syntaxes for an operator invocation:

	expression operator expression (binary infix operator)
	operator expression (unary prefix operator)

 where the operator token follows the syntax
 rules of the section called “Operators”, or is one of the
 key words AND, OR, and
 NOT, or is a qualified operator name in the form:

OPERATOR(schema.operatorname)

 Which particular operators exist and whether
 they are unary or binary depends on what operators have been
 defined by the system or the user. Chapter 9, Functions and Operators
 describes the built-in operators.

Function Calls

 The syntax for a function call is the name of a function
 (possibly qualified with a schema name), followed by its argument list
 enclosed in parentheses:

function_name ([expression [, expression ...]])

 For example, the following computes the square root of 2:

sqrt(2)

 The list of built-in functions is in Chapter 9, Functions and Operators.
 Other functions can be added by the user.

 When issuing queries in a database where some users mistrust other users,
 observe security precautions from the section called “Functions” when
 writing function calls.

 The arguments can optionally have names attached.
 See the section called “Calling Functions” for details.

Note

 A function that takes a single argument of composite type can
 optionally be called using field-selection syntax, and conversely
 field selection can be written in functional style. That is, the
 notations col(table) and table.col are
 interchangeable. This behavior is not SQL-standard but is provided
 in PostgreSQL™ because it allows use of functions to
 emulate “computed fields”. For more information see
 the section called “Using Composite Types in Queries”.

Aggregate Expressions

 An aggregate expression represents the
 application of an aggregate function across the rows selected by a
 query. An aggregate function reduces multiple inputs to a single
 output value, such as the sum or average of the inputs. The
 syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause]) [FILTER (WHERE filter_clause)]
aggregate_name (ALL expression [, ...] [order_by_clause]) [FILTER (WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order_by_clause]) [FILTER (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by_clause) [FILTER (WHERE filter_clause)]

 where aggregate_name is a previously
 defined aggregate (possibly qualified with a schema name) and
 expression is
 any value expression that does not itself contain an aggregate
 expression or a window function call. The optional
 order_by_clause and
 filter_clause are described below.

 The first form of aggregate expression invokes the aggregate
 once for each input row.
 The second form is the same as the first, since
 ALL is the default.
 The third form invokes the aggregate once for each distinct value
 of the expression (or distinct set of values, for multiple expressions)
 found in the input rows.
 The fourth form invokes the aggregate once for each input row; since no
 particular input value is specified, it is generally only useful
 for the count(*) aggregate function.
 The last form is used with ordered-set aggregate
 functions, which are described below.

 Most aggregate functions ignore null inputs, so that rows in which
 one or more of the expression(s) yield null are discarded. This
 can be assumed to be true, unless otherwise specified, for all
 built-in aggregates.

 For example, count(*) yields the total number
 of input rows; count(f1) yields the number of
 input rows in which f1 is non-null, since
 count ignores nulls; and
 count(distinct f1) yields the number of
 distinct non-null values of f1.

 Ordinarily, the input rows are fed to the aggregate function in an
 unspecified order. In many cases this does not matter; for example,
 min produces the same result no matter what order it
 receives the inputs in. However, some aggregate functions
 (such as array_agg and string_agg) produce
 results that depend on the ordering of the input rows. When using
 such an aggregate, the optional order_by_clause can be
 used to specify the desired ordering. The order_by_clause
 has the same syntax as for a query-level ORDER BY clause, as
 described in the section called “Sorting Rows (ORDER BY)”, except that its expressions
 are always just expressions and cannot be output-column names or numbers.
 For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

 When dealing with multiple-argument aggregate functions, note that the
 ORDER BY clause goes after all the aggregate arguments.
 For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;

 not this:

SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect

 The latter is syntactically valid, but it represents a call of a
 single-argument aggregate function with two ORDER BY keys
 (the second one being rather useless since it's a constant).

 If DISTINCT is specified in addition to an
 order_by_clause, then all the ORDER BY
 expressions must match regular arguments of the aggregate; that is,
 you cannot sort on an expression that is not included in the
 DISTINCT list.

Note

 The ability to specify both DISTINCT and ORDER BY
 in an aggregate function is a PostgreSQL™ extension.

 Placing ORDER BY within the aggregate's regular argument
 list, as described so far, is used when ordering the input rows for
 general-purpose and statistical aggregates, for which ordering is
 optional. There is a
 subclass of aggregate functions called ordered-set
 aggregates for which an order_by_clause
 is required, usually because the aggregate's computation is
 only sensible in terms of a specific ordering of its input rows.
 Typical examples of ordered-set aggregates include rank and percentile
 calculations. For an ordered-set aggregate,
 the order_by_clause is written
 inside WITHIN GROUP (...), as shown in the final syntax
 alternative above. The expressions in
 the order_by_clause are evaluated once per
 input row just like regular aggregate arguments, sorted as per
 the order_by_clause's requirements, and fed
 to the aggregate function as input arguments. (This is unlike the case
 for a non-WITHIN GROUP order_by_clause,
 which is not treated as argument(s) to the aggregate function.) The
 argument expressions preceding WITHIN GROUP, if any, are
 called direct arguments to distinguish them from
 the aggregated arguments listed in
 the order_by_clause. Unlike regular aggregate
 arguments, direct arguments are evaluated only once per aggregate call,
 not once per input row. This means that they can contain variables only
 if those variables are grouped by GROUP BY; this restriction
 is the same as if the direct arguments were not inside an aggregate
 expression at all. Direct arguments are typically used for things like
 percentile fractions, which only make sense as a single value per
 aggregation calculation. The direct argument list can be empty; in this
 case, write just () not (*).
 (PostgreSQL™ will actually accept either spelling, but
 only the first way conforms to the SQL standard.)

 An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont

 50489

 which obtains the 50th percentile, or median, value of
 the income column from table households.
 Here, 0.5 is a direct argument; it would make no sense
 for the percentile fraction to be a value varying across rows.

 If FILTER is specified, then only the input
 rows for which the filter_clause
 evaluates to true are fed to the aggregate function; other rows
 are discarded. For example:

SELECT
 count(*) AS unfiltered,
 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

 The predefined aggregate functions are described in the section called “Aggregate Functions”. Other aggregate functions can be added
 by the user.

 An aggregate expression can only appear in the result list or
 HAVING clause of a SELECT command.
 It is forbidden in other clauses, such as WHERE,
 because those clauses are logically evaluated before the results
 of aggregates are formed.

 When an aggregate expression appears in a subquery (see
 the section called “Scalar Subqueries” and
 the section called “Subquery Expressions”), the aggregate is normally
 evaluated over the rows of the subquery. But an exception occurs
 if the aggregate's arguments (and filter_clause
 if any) contain only outer-level variables:
 the aggregate then belongs to the nearest such outer level, and is
 evaluated over the rows of that query. The aggregate expression
 as a whole is then an outer reference for the subquery it appears in,
 and acts as a constant over any one evaluation of that subquery.
 The restriction about
 appearing only in the result list or HAVING clause
 applies with respect to the query level that the aggregate belongs to.

Window Function Calls

 A window function call represents the application
 of an aggregate-like function over some portion of the rows selected
 by a query. Unlike non-window aggregate calls, this is not tied
 to grouping of the selected rows into a single output row — each
 row remains separate in the query output. However the window function
 has access to all the rows that would be part of the current row's
 group according to the grouping specification (PARTITION BY
 list) of the window function call.
 The syntax of a window function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

 where window_definition
 has the syntax

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

 The optional frame_clause
 can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

 where frame_start
 and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

 and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

 Here, expression represents any value
 expression that does not itself contain window function calls.

 window_name is a reference to a named window
 specification defined in the query's WINDOW clause.
 Alternatively, a full window_definition can
 be given within parentheses, using the same syntax as for defining a
 named window in the WINDOW clause; see the
 SELECT(7) reference page for details. It's worth
 pointing out that OVER wname is not exactly equivalent to
 OVER (wname ...); the latter implies copying and modifying the
 window definition, and will be rejected if the referenced window
 specification includes a frame clause.

 The PARTITION BY clause groups the rows of the query into
 partitions, which are processed separately by the window
 function. PARTITION BY works similarly to a query-level
 GROUP BY clause, except that its expressions are always just
 expressions and cannot be output-column names or numbers.
 Without PARTITION BY, all rows produced by the query are
 treated as a single partition.
 The ORDER BY clause determines the order in which the rows
 of a partition are processed by the window function. It works similarly
 to a query-level ORDER BY clause, but likewise cannot use
 output-column names or numbers. Without ORDER BY, rows are
 processed in an unspecified order.

 The frame_clause specifies
 the set of rows constituting the window frame, which is a
 subset of the current partition, for those window functions that act on
 the frame instead of the whole partition. The set of rows in the frame
 can vary depending on which row is the current row. The frame can be
 specified in RANGE, ROWS
 or GROUPS mode; in each case, it runs from
 the frame_start to
 the frame_end.
 If frame_end is omitted, the end defaults
 to CURRENT ROW.

 A frame_start of UNBOUNDED PRECEDING means
 that the frame starts with the first row of the partition, and similarly
 a frame_end of UNBOUNDED FOLLOWING means
 that the frame ends with the last row of the partition.

 In RANGE or GROUPS mode,
 a frame_start of
 CURRENT ROW means the frame starts with the current
 row's first peer row (a row that the
 window's ORDER BY clause sorts as equivalent to the
 current row), while a frame_end of
 CURRENT ROW means the frame ends with the current
 row's last peer row.
 In ROWS mode, CURRENT ROW simply
 means the current row.

 In the offset PRECEDING
 and offset FOLLOWING frame
 options, the offset must be an expression not
 containing any variables, aggregate functions, or window functions.
 The meaning of the offset depends on the
 frame mode:

	
 In ROWS mode,
 the offset must yield a non-null,
 non-negative integer, and the option means that the frame starts or
 ends the specified number of rows before or after the current row.

	
 In GROUPS mode,
 the offset again must yield a non-null,
 non-negative integer, and the option means that the frame starts or
 ends the specified number of peer groups
 before or after the current row's peer group, where a peer group is a
 set of rows that are equivalent in the ORDER BY
 ordering. (There must be an ORDER BY clause
 in the window definition to use GROUPS mode.)

	
 In RANGE mode, these options require that
 the ORDER BY clause specify exactly one column.
 The offset specifies the maximum
 difference between the value of that column in the current row and
 its value in preceding or following rows of the frame. The data type
 of the offset expression varies depending
 on the data type of the ordering column. For numeric ordering
 columns it is typically of the same type as the ordering column,
 but for datetime ordering columns it is an interval.
 For example, if the ordering column is of type date
 or timestamp, one could write RANGE BETWEEN
 '1 day' PRECEDING AND '10 days' FOLLOWING.
 The offset is still required to be
 non-null and non-negative, though the meaning
 of “non-negative” depends on its data type.

 In any case, the distance to the end of the frame is limited by the
 distance to the end of the partition, so that for rows near the partition
 ends the frame might contain fewer rows than elsewhere.

 Notice that in both ROWS and GROUPS
 mode, 0 PRECEDING and 0 FOLLOWING
 are equivalent to CURRENT ROW. This normally holds
 in RANGE mode as well, for an appropriate
 data-type-specific meaning of “zero”.

 The frame_exclusion option allows rows around
 the current row to be excluded from the frame, even if they would be
 included according to the frame start and frame end options.
 EXCLUDE CURRENT ROW excludes the current row from the
 frame.
 EXCLUDE GROUP excludes the current row and its
 ordering peers from the frame.
 EXCLUDE TIES excludes any peers of the current
 row from the frame, but not the current row itself.
 EXCLUDE NO OTHERS simply specifies explicitly the
 default behavior of not excluding the current row or its peers.

 The default framing option is RANGE UNBOUNDED PRECEDING,
 which is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW. With ORDER BY, this sets the frame to be
 all rows from the partition start up through the current row's last
 ORDER BY peer. Without ORDER BY,
 this means all rows of the partition are included in the window frame,
 since all rows become peers of the current row.

 Restrictions are that
 frame_start cannot be UNBOUNDED FOLLOWING,
 frame_end cannot be UNBOUNDED PRECEDING,
 and the frame_end choice cannot appear earlier in the
 above list of frame_start
 and frame_end options than
 the frame_start choice does — for example
 RANGE BETWEEN CURRENT ROW AND offset
 PRECEDING is not allowed.
 But, for example, ROWS BETWEEN 7 PRECEDING AND 8
 PRECEDING is allowed, even though it would never select any
 rows.

 If FILTER is specified, then only the input
 rows for which the filter_clause
 evaluates to true are fed to the window function; other rows
 are discarded. Only window functions that are aggregates accept
 a FILTER clause.

 The built-in window functions are described in Table 9.64, “General-Purpose Window Functions”. Other window functions can be added by
 the user. Also, any built-in or user-defined general-purpose or
 statistical aggregate can be used as a window function. (Ordered-set
 and hypothetical-set aggregates cannot presently be used as window functions.)

 The syntaxes using * are used for calling parameter-less
 aggregate functions as window functions, for example
 count(*) OVER (PARTITION BY x ORDER BY y).
 The asterisk (*) is customarily not used for
 window-specific functions. Window-specific functions do not
 allow DISTINCT or ORDER BY to be used within the
 function argument list.

 Window function calls are permitted only in the SELECT
 list and the ORDER BY clause of the query.

 More information about window functions can be found in
 the section called “Window Functions”,
 the section called “Window Functions”, and
 the section called “Window Function Processing”.

Type Casts

 A type cast specifies a conversion from one data type to another.
 PostgreSQL™ accepts two equivalent syntaxes
 for type casts:

CAST (expression AS type)
expression::type

 The CAST syntax conforms to SQL; the syntax with
 :: is historical PostgreSQL™
 usage.

 When a cast is applied to a value expression of a known type, it
 represents a run-time type conversion. The cast will succeed only
 if a suitable type conversion operation has been defined. Notice that this
 is subtly different from the use of casts with constants, as shown in
 the section called “Constants of Other Types”. A cast applied to an
 unadorned string literal represents the initial assignment of a type
 to a literal constant value, and so it will succeed for any type
 (if the contents of the string literal are acceptable input syntax for the
 data type).

 An explicit type cast can usually be omitted if there is no ambiguity as
 to the type that a value expression must produce (for example, when it is
 assigned to a table column); the system will automatically apply a
 type cast in such cases. However, automatic casting is only done for
 casts that are marked “OK to apply implicitly”
 in the system catalogs. Other casts must be invoked with
 explicit casting syntax. This restriction is intended to prevent
 surprising conversions from being applied silently.

 It is also possible to specify a type cast using a function-like
 syntax:

typename (expression)

 However, this only works for types whose names are also valid as
 function names. For example, double precision
 cannot be used this way, but the equivalent float8
 can. Also, the names interval, time, and
 timestamp can only be used in this fashion if they are
 double-quoted, because of syntactic conflicts. Therefore, the use of
 the function-like cast syntax leads to inconsistencies and should
 probably be avoided.

Note

 The function-like syntax is in fact just a function call. When
 one of the two standard cast syntaxes is used to do a run-time
 conversion, it will internally invoke a registered function to
 perform the conversion. By convention, these conversion functions
 have the same name as their output type, and thus the “function-like
 syntax” is nothing more than a direct invocation of the underlying
 conversion function. Obviously, this is not something that a portable
 application should rely on. For further details see
 CREATE CAST(7).

Collation Expressions

 The COLLATE clause overrides the collation of
 an expression. It is appended to the expression it applies to:

expr COLLATE collation

 where collation is a possibly
 schema-qualified identifier. The COLLATE
 clause binds tighter than operators; parentheses can be used when
 necessary.

 If no collation is explicitly specified, the database system
 either derives a collation from the columns involved in the
 expression, or it defaults to the default collation of the
 database if no column is involved in the expression.

 The two common uses of the COLLATE clause are
 overriding the sort order in an ORDER BY clause, for
 example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

 and overriding the collation of a function or operator call that
 has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

 Note that in the latter case the COLLATE clause is
 attached to an input argument of the operator we wish to affect.
 It doesn't matter which argument of the operator or function call the
 COLLATE clause is attached to, because the collation that is
 applied by the operator or function is derived by considering all
 arguments, and an explicit COLLATE clause will override the
 collations of all other arguments. (Attaching non-matching
 COLLATE clauses to more than one argument, however, is an
 error. For more details see the section called “Collation Support”.)
 Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

 But this is an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

 because it attempts to apply a collation to the result of the
 > operator, which is of the non-collatable data type
 boolean.

Scalar Subqueries

 A scalar subquery is an ordinary
 SELECT query in parentheses that returns exactly one
 row with one column. (See Chapter 7, Queries for information about writing queries.)
 The SELECT query is executed
 and the single returned value is used in the surrounding value expression.
 It is an error to use a query that
 returns more than one row or more than one column as a scalar subquery.
 (But if, during a particular execution, the subquery returns no rows,
 there is no error; the scalar result is taken to be null.)
 The subquery can refer to variables from the surrounding query,
 which will act as constants during any one evaluation of the subquery.
 See also the section called “Subquery Expressions” for other expressions involving subqueries.

 For example, the following finds the largest city population in each
 state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
 FROM states;

Array Constructors

 An array constructor is an expression that builds an
 array value using values for its member elements. A simple array
 constructor
 consists of the key word ARRAY, a left square bracket
 [, a list of expressions (separated by commas) for the
 array element values, and finally a right square bracket].
 For example:

SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}
(1 row)

 By default,
 the array element type is the common type of the member expressions,
 determined using the same rules as for UNION or
 CASE constructs (see the section called “UNION, CASE, and Related Constructs”).
 You can override this by explicitly casting the array constructor to the
 desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
 array

 {1,2,23}
(1 row)

 This has the same effect as casting each expression to the array
 element type individually.
 For more on casting, see the section called “Type Casts”.

 Multidimensional array values can be built by nesting array
 constructors.
 In the inner constructors, the key word ARRAY can
 be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

 Since multidimensional arrays must be rectangular, inner constructors
 at the same level must produce sub-arrays of identical dimensions.
 Any cast applied to the outer ARRAY constructor propagates
 automatically to all the inner constructors.

 Multidimensional array constructor elements can be anything yielding
 an array of the proper kind, not only a sub-ARRAY construct.
 For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

 You can construct an empty array, but since it's impossible to have an
 array with no type, you must explicitly cast your empty array to the
 desired type. For example:

SELECT ARRAY[]::integer[];
 array

 {}
(1 row)

 It is also possible to construct an array from the results of a
 subquery. In this form, the array constructor is written with the
 key word ARRAY followed by a parenthesized (not
 bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 array
--
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
 array

 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

 The subquery must return a single column.
 If the subquery's output column is of a non-array type, the resulting
 one-dimensional array will have an element for each row in the
 subquery result, with an element type matching that of the
 subquery's output column.
 If the subquery's output column is of an array type, the result will be
 an array of the same type but one higher dimension; in this case all
 the subquery rows must yield arrays of identical dimensionality, else
 the result would not be rectangular.

 The subscripts of an array value built with ARRAY
 always begin with one. For more information about arrays, see
 the section called “Arrays”.

Row Constructors

 A row constructor is an expression that builds a row value (also
 called a composite value) using values
 for its member fields. A row constructor consists of the key word
 ROW, a left parenthesis, zero or more
 expressions (separated by commas) for the row field values, and finally
 a right parenthesis. For example:

SELECT ROW(1,2.5,'this is a test');

 The key word ROW is optional when there is more than one
 expression in the list.

 A row constructor can include the syntax
 rowvalue.*,
 which will be expanded to a list of the elements of the row value,
 just as occurs when the .* syntax is used at the top level
 of a SELECT list (see the section called “Using Composite Types in Queries”).
 For example, if table t has
 columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note

 Before PostgreSQL™ 8.2, the
 .* syntax was not expanded in row constructors, so
 that writing ROW(t.*, 42) created a two-field row whose first
 field was another row value. The new behavior is usually more useful.
 If you need the old behavior of nested row values, write the inner
 row value without .*, for instance
 ROW(t, 42).

 By default, the value created by a ROW expression is of
 an anonymous record type. If necessary, it can be cast to a named
 composite type — either the row type of a table, or a composite type
 created with CREATE TYPE AS. An explicit cast might be needed
 to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1

 11
(1 row)

 Row constructors can be used to build composite values to be stored
 in a composite-type table column, or to be passed to a function that
 accepts a composite parameter. Also,
 it is possible to compare two row values or test a row with
 IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

 For more detail see the section called “Row and Array Comparisons”.
 Row constructors can also be used in connection with subqueries,
 as discussed in the section called “Subquery Expressions”.

Expression Evaluation Rules

 The order of evaluation of subexpressions is not defined. In
 particular, the inputs of an operator or function are not necessarily
 evaluated left-to-right or in any other fixed order.

 Furthermore, if the result of an expression can be determined by
 evaluating only some parts of it, then other subexpressions
 might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

 then somefunc() would (probably) not be called
 at all. The same would be the case if one wrote:

SELECT somefunc() OR true;

 Note that this is not the same as the left-to-right
 “short-circuiting” of Boolean operators that is found
 in some programming languages.

 As a consequence, it is unwise to use functions with side effects
 as part of complex expressions. It is particularly dangerous to
 rely on side effects or evaluation order in WHERE and HAVING clauses,
 since those clauses are extensively reprocessed as part of
 developing an execution plan. Boolean
 expressions (AND/OR/NOT combinations) in those clauses can be reorganized
 in any manner allowed by the laws of Boolean algebra.

 When it is essential to force evaluation order, a CASE
 construct (see the section called “Conditional Expressions”) can be
 used. For example, this is an untrustworthy way of trying to
 avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

 But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

 A CASE construct used in this fashion will defeat optimization
 attempts, so it should only be done when necessary. (In this particular
 example, it would be better to sidestep the problem by writing
 y > 1.5*x instead.)

 CASE is not a cure-all for such issues, however.
 One limitation of the technique illustrated above is that it does not
 prevent early evaluation of constant subexpressions.
 As described in the section called “Function Volatility Categories”, functions and
 operators marked IMMUTABLE can be evaluated when
 the query is planned rather than when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

 is likely to result in a division-by-zero failure due to the planner
 trying to simplify the constant subexpression,
 even if every row in the table has x > 0 so that the
 ELSE arm would never be entered at run time.

 While that particular example might seem silly, related cases that don't
 obviously involve constants can occur in queries executed within
 functions, since the values of function arguments and local variables
 can be inserted into queries as constants for planning purposes.
 Within PL/pgSQL functions, for example, using an
 IF-THEN-ELSE statement to protect
 a risky computation is much safer than just nesting it in a
 CASE expression.

 Another limitation of the same kind is that a CASE cannot
 prevent evaluation of an aggregate expression contained within it,
 because aggregate expressions are computed before other
 expressions in a SELECT list or HAVING clause
 are considered. For example, the following query can cause a
 division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

 The min() and avg() aggregates are computed
 concurrently over all the input rows, so if any row
 has employees equal to zero, the division-by-zero error
 will occur before there is any opportunity to test the result of
 min(). Instead, use a WHERE
 or FILTER clause to prevent problematic input rows from
 reaching an aggregate function in the first place.

Calling Functions

 PostgreSQL™ allows functions that have named
 parameters to be called using either positional or
 named notation. Named notation is especially
 useful for functions that have a large number of parameters, since it
 makes the associations between parameters and actual arguments more
 explicit and reliable.
 In positional notation, a function call is written with
 its argument values in the same order as they are defined in the function
 declaration. In named notation, the arguments are matched to the
 function parameters by name and can be written in any order.
 For each notation, also consider the effect of function argument types,
 documented in the section called “Functions”.

 In either notation, parameters that have default values given in the
 function declaration need not be written in the call at all. But this
 is particularly useful in named notation, since any combination of
 parameters can be omitted; while in positional notation parameters can
 only be omitted from right to left.

 PostgreSQL™ also supports
 mixed notation, which combines positional and
 named notation. In this case, positional parameters are written first
 and named parameters appear after them.

 The following examples will illustrate the usage of all three
 notations, using the following function definition:

CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS
$$
 SELECT CASE
 WHEN $3 THEN UPPER($1 || ' ' || $2)
 ELSE LOWER($1 || ' ' || $2)
 END;
$$
LANGUAGE SQL IMMUTABLE STRICT;

 Function concat_lower_or_upper has two mandatory
 parameters, a and b. Additionally
 there is one optional parameter uppercase which defaults
 to false. The a and
 b inputs will be concatenated, and forced to either
 upper or lower case depending on the uppercase
 parameter. The remaining details of this function
 definition are not important here (see Chapter 38, Extending SQL for
 more information).

Using Positional Notation

 Positional notation is the traditional mechanism for passing arguments
 to functions in PostgreSQL™. An example is:

SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

 All arguments are specified in order. The result is upper case since
 uppercase is specified as true.
 Another example is:

SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper

 hello world
(1 row)

 Here, the uppercase parameter is omitted, so it
 receives its default value of false, resulting in
 lower case output. In positional notation, arguments can be omitted
 from right to left so long as they have defaults.

Using Named Notation

 In named notation, each argument's name is specified using
 => to separate it from the argument expression.
 For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper

 hello world
(1 row)

 Again, the argument uppercase was omitted
 so it is set to false implicitly. One advantage of
 using named notation is that the arguments may be specified in any
 order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

 An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

Using Mixed Notation

 The mixed notation combines positional and named notation. However, as
 already mentioned, named arguments cannot precede positional arguments.
 For example:

SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

 In the above query, the arguments a and
 b are specified positionally, while
 uppercase is specified by name. In this example,
 that adds little except documentation. With a more complex function
 having numerous parameters that have default values, named or mixed
 notation can save a great deal of writing and reduce chances for error.

Note

 Named and mixed call notations currently cannot be used when calling an
 aggregate function (but they do work when an aggregate function is used
 as a window function).

Chapter 5. Data Definition

 This chapter covers how one creates the database structures that
 will hold one's data. In a relational database, the raw data is
 stored in tables, so the majority of this chapter is devoted to
 explaining how tables are created and modified and what features are
 available to control what data is stored in the tables.
 Subsequently, we discuss how tables can be organized into
 schemas, and how privileges can be assigned to tables. Finally,
 we will briefly look at other features that affect the data storage,
 such as inheritance, table partitioning, views, functions, and
 triggers.

Table Basics

 A table in a relational database is much like a table on paper: It
 consists of rows and columns. The number and order of the columns
 is fixed, and each column has a name. The number of rows is
 variable — it reflects how much data is stored at a given moment.
 SQL does not make any guarantees about the order of the rows in a
 table. When a table is read, the rows will appear in an unspecified order,
 unless sorting is explicitly requested. This is covered in Chapter 7, Queries. Furthermore, SQL does not assign unique
 identifiers to rows, so it is possible to have several completely
 identical rows in a table. This is a consequence of the
 mathematical model that underlies SQL but is usually not desirable.
 Later in this chapter we will see how to deal with this issue.

 Each column has a data type. The data type constrains the set of
 possible values that can be assigned to a column and assigns
 semantics to the data stored in the column so that it can be used
 for computations. For instance, a column declared to be of a
 numerical type will not accept arbitrary text strings, and the data
 stored in such a column can be used for mathematical computations.
 By contrast, a column declared to be of a character string type
 will accept almost any kind of data but it does not lend itself to
 mathematical calculations, although other operations such as string
 concatenation are available.

 PostgreSQL™ includes a sizable set of
 built-in data types that fit many applications. Users can also
 define their own data types. Most built-in data types have obvious
 names and semantics, so we defer a detailed explanation to Chapter 8, Data Types. Some of the frequently used data types are
 integer for whole numbers, numeric for
 possibly fractional numbers, text for character
 strings, date for dates, time for
 time-of-day values, and timestamp for values
 containing both date and time.

 To create a table, you use the aptly named CREATE TABLE(7) command.
 In this command you specify at least a name for the new table, the
 names of the columns and the data type of each column. For
 example:

CREATE TABLE my_first_table (
 first_column text,
 second_column integer
);

 This creates a table named my_first_table with
 two columns. The first column is named
 first_column and has a data type of
 text; the second column has the name
 second_column and the type integer.
 The table and column names follow the identifier syntax explained
 in the section called “Identifiers and Key Words”. The type names are
 usually also identifiers, but there are some exceptions. Note that the
 column list is comma-separated and surrounded by parentheses.

 Of course, the previous example was heavily contrived. Normally,
 you would give names to your tables and columns that convey what
 kind of data they store. So let's look at a more realistic
 example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

 (The numeric type can store fractional components, as
 would be typical of monetary amounts.)

Tip

 When you create many interrelated tables it is wise to choose a
 consistent naming pattern for the tables and columns. For
 instance, there is a choice of using singular or plural nouns for
 table names, both of which are favored by some theorist or other.

 There is a limit on how many columns a table can contain.
 Depending on the column types, it is between 250 and 1600.
 However, defining a table with anywhere near this many columns is
 highly unusual and often a questionable design.

 If you no longer need a table, you can remove it using the DROP TABLE(7) command.
 For example:

DROP TABLE my_first_table;
DROP TABLE products;

 Attempting to drop a table that does not exist is an error.
 Nevertheless, it is common in SQL script files to unconditionally
 try to drop each table before creating it, ignoring any error
 messages, so that the script works whether or not the table exists.
 (If you like, you can use the DROP TABLE IF EXISTS variant
 to avoid the error messages, but this is not standard SQL.)

 If you need to modify a table that already exists, see the section called “Modifying Tables” later in this chapter.

 With the tools discussed so far you can create fully functional
 tables. The remainder of this chapter is concerned with adding
 features to the table definition to ensure data integrity,
 security, or convenience. If you are eager to fill your tables with
 data now you can skip ahead to Chapter 6, Data Manipulation and read the
 rest of this chapter later.

Default Values

 A column can be assigned a default value. When a new row is
 created and no values are specified for some of the columns, those
 columns will be filled with their respective default values. A
 data manipulation command can also request explicitly that a column
 be set to its default value, without having to know what that value is.
 (Details about data manipulation commands are in Chapter 6, Data Manipulation.)

 If no default value is declared explicitly, the default value is the
 null value. This usually makes sense because a null value can
 be considered to represent unknown data.

 In a table definition, default values are listed after the column
 data type. For example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric DEFAULT 9.99
);

 The default value can be an expression, which will be
 evaluated whenever the default value is inserted
 (not when the table is created). A common example
 is for a timestamp column to have a default of CURRENT_TIMESTAMP,
 so that it gets set to the time of row insertion. Another common
 example is generating a “serial number” for each row.
 In PostgreSQL™ this is typically done by
 something like:

CREATE TABLE products (
 product_no integer DEFAULT nextval('products_product_no_seq'),
 ...
);

 where the nextval() function supplies successive values
 from a sequence object (see the section called “Sequence Manipulation Functions”). This arrangement is sufficiently common
 that there's a special shorthand for it:

CREATE TABLE products (
 product_no SERIAL,
 ...
);

 The SERIAL shorthand is discussed further in the section called “Serial Types”.

Generated Columns

 A generated column is a special column that is always computed from other
 columns. Thus, it is for columns what a view is for tables. There are two
 kinds of generated columns: stored and virtual. A stored generated column
 is computed when it is written (inserted or updated) and occupies storage
 as if it were a normal column. A virtual generated column occupies no
 storage and is computed when it is read. Thus, a virtual generated column
 is similar to a view and a stored generated column is similar to a
 materialized view (except that it is always updated automatically).
 PostgreSQL currently implements only stored generated columns.

 To create a generated column, use the GENERATED ALWAYS
 AS clause in CREATE TABLE, for example:

CREATE TABLE people (
 ...,
 height_cm numeric,
 height_in numeric GENERATED ALWAYS AS (height_cm / 2.54) STORED
);

 The keyword STORED must be specified to choose the
 stored kind of generated column. See CREATE TABLE(7) for
 more details.

 A generated column cannot be written to directly. In
 INSERT or UPDATE commands, a value
 cannot be specified for a generated column, but the keyword
 DEFAULT may be specified.

 Consider the differences between a column with a default and a generated
 column. The column default is evaluated once when the row is first
 inserted if no other value was provided; a generated column is updated
 whenever the row changes and cannot be overridden. A column default may
 not refer to other columns of the table; a generation expression would
 normally do so. A column default can use volatile functions, for example
 random() or functions referring to the current time;
 this is not allowed for generated columns.

 Several restrictions apply to the definition of generated columns and
 tables involving generated columns:

	
 The generation expression can only use immutable functions and cannot
 use subqueries or reference anything other than the current row in any
 way.

	
 A generation expression cannot reference another generated column.

	
 A generation expression cannot reference a system column, except
 tableoid.

	
 A generated column cannot have a column default or an identity definition.

	
 A generated column cannot be part of a partition key.

	
 Foreign tables can have generated columns. See CREATE FOREIGN TABLE(7) for details.

	For inheritance and partitioning:
	
 If a parent column is a generated column, its child column must also
 be a generated column; however, the child column can have a
 different generation expression. The generation expression that is
 actually applied during insert or update of a row is the one
 associated with the table that the row is physically in.
 (This is unlike the behavior for column defaults: for those, the
 default value associated with the table named in the query applies.)

	
 If a parent column is not a generated column, its child column must
 not be generated either.

	
 For inherited tables, if you write a child column definition without
 any GENERATED clause in CREATE TABLE
 ... INHERITS, then its GENERATED clause
 will automatically be copied from the parent. ALTER TABLE
 ... INHERIT will insist that parent and child columns
 already match as to generation status, but it will not require their
 generation expressions to match.

	
 Similarly for partitioned tables, if you write a child column
 definition without any GENERATED clause
 in CREATE TABLE ... PARTITION OF, then
 its GENERATED clause will automatically be copied
 from the parent. ALTER TABLE ... ATTACH PARTITION
 will insist that parent and child columns already match as to
 generation status, but it will not require their generation
 expressions to match.

	
 In case of multiple inheritance, if one parent column is a generated
 column, then all parent columns must be generated columns. If they
 do not all have the same generation expression, then the desired
 expression for the child must be specified explicitly.

 Additional considerations apply to the use of generated columns.

	
 Generated columns maintain access privileges separately from their
 underlying base columns. So, it is possible to arrange it so that a
 particular role can read from a generated column but not from the
 underlying base columns.

	
 Generated columns are, conceptually, updated after
 BEFORE triggers have run. Therefore, changes made to
 base columns in a BEFORE trigger will be reflected in
 generated columns. But conversely, it is not allowed to access
 generated columns in BEFORE triggers.

	
 Generated columns are skipped for logical replication and cannot be
 specified in a CREATE PUBLICATION column list.

Constraints

 Data types are a way to limit the kind of data that can be stored
 in a table. For many applications, however, the constraint they
 provide is too coarse. For example, a column containing a product
 price should probably only accept positive values. But there is no
 standard data type that accepts only positive numbers. Another issue is
 that you might want to constrain column data with respect to other
 columns or rows. For example, in a table containing product
 information, there should be only one row for each product number.

 To that end, SQL allows you to define constraints on columns and
 tables. Constraints give you as much control over the data in your
 tables as you wish. If a user attempts to store data in a column
 that would violate a constraint, an error is raised. This applies
 even if the value came from the default value definition.

Check Constraints

 A check constraint is the most generic constraint type. It allows
 you to specify that the value in a certain column must satisfy a
 Boolean (truth-value) expression. For instance, to require positive
 product prices, you could use:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0)
);

 As you see, the constraint definition comes after the data type,
 just like default value definitions. Default values and
 constraints can be listed in any order. A check constraint
 consists of the key word CHECK followed by an
 expression in parentheses. The check constraint expression should
 involve the column thus constrained, otherwise the constraint
 would not make too much sense.

 You can also give the constraint a separate name. This clarifies
 error messages and allows you to refer to the constraint when you
 need to change it. The syntax is:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CONSTRAINT positive_price CHECK (price > 0)
);

 So, to specify a named constraint, use the key word
 CONSTRAINT followed by an identifier followed
 by the constraint definition. (If you don't specify a constraint
 name in this way, the system chooses a name for you.)

 A check constraint can also refer to several columns. Say you
 store a regular price and a discounted price, and you want to
 ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

 The first two constraints should look familiar. The third one
 uses a new syntax. It is not attached to a particular column,
 instead it appears as a separate item in the comma-separated
 column list. Column definitions and these constraint
 definitions can be listed in mixed order.

 We say that the first two constraints are column constraints, whereas the
 third one is a table constraint because it is written separately
 from any one column definition. Column constraints can also be
 written as table constraints, while the reverse is not necessarily
 possible, since a column constraint is supposed to refer to only the
 column it is attached to. (PostgreSQL™ doesn't
 enforce that rule, but you should follow it if you want your table
 definitions to work with other database systems.) The above example could
 also be written as:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

 or even:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0 AND price > discounted_price)
);

 It's a matter of taste.

 Names can be assigned to table constraints in the same way as
 column constraints:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CONSTRAINT valid_discount CHECK (price > discounted_price)
);

 It should be noted that a check constraint is satisfied if the
 check expression evaluates to true or the null value. Since most
 expressions will evaluate to the null value if any operand is null,
 they will not prevent null values in the constrained columns. To
 ensure that a column does not contain null values, the not-null
 constraint described in the next section can be used.

Note

 PostgreSQL™ does not support
 CHECK constraints that reference table data other than
 the new or updated row being checked. While a CHECK
 constraint that violates this rule may appear to work in simple
 tests, it cannot guarantee that the database will not reach a state
 in which the constraint condition is false (due to subsequent changes
 of the other row(s) involved). This would cause a database dump and
 restore to fail. The restore could fail even when the complete
 database state is consistent with the constraint, due to rows not
 being loaded in an order that will satisfy the constraint. If
 possible, use UNIQUE, EXCLUDE,
 or FOREIGN KEY constraints to express
 cross-row and cross-table restrictions.

 If what you desire is a one-time check against other rows at row
 insertion, rather than a continuously-maintained consistency
 guarantee, a custom trigger can be used
 to implement that. (This approach avoids the dump/restore problem because
 pg_dump does not reinstall triggers until after
 restoring data, so that the check will not be enforced during a
 dump/restore.)

Note

 PostgreSQL™ assumes that
 CHECK constraints' conditions are immutable, that
 is, they will always give the same result for the same input row.
 This assumption is what justifies examining CHECK
 constraints only when rows are inserted or updated, and not at other
 times. (The warning above about not referencing other table data is
 really a special case of this restriction.)

 An example of a common way to break this assumption is to reference a
 user-defined function in a CHECK expression, and
 then change the behavior of that
 function. PostgreSQL™ does not disallow
 that, but it will not notice if there are rows in the table that now
 violate the CHECK constraint. That would cause a
 subsequent database dump and restore to fail.
 The recommended way to handle such a change is to drop the constraint
 (using ALTER TABLE), adjust the function definition,
 and re-add the constraint, thereby rechecking it against all table rows.

Not-Null Constraints

 A not-null constraint simply specifies that a column must not
 assume the null value. A syntax example:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric
);

 A not-null constraint is always written as a column constraint. A
 not-null constraint is functionally equivalent to creating a check
 constraint CHECK (column_name
 IS NOT NULL), but in
 PostgreSQL™ creating an explicit
 not-null constraint is more efficient. The drawback is that you
 cannot give explicit names to not-null constraints created this
 way.

 Of course, a column can have more than one constraint. Just write
 the constraints one after another:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric NOT NULL CHECK (price > 0)
);

 The order doesn't matter. It does not necessarily determine in which
 order the constraints are checked.

 The NOT NULL constraint has an inverse: the
 NULL constraint. This does not mean that the
 column must be null, which would surely be useless. Instead, this
 simply selects the default behavior that the column might be null.
 The NULL constraint is not present in the SQL
 standard and should not be used in portable applications. (It was
 only added to PostgreSQL™ to be
 compatible with some other database systems.) Some users, however,
 like it because it makes it easy to toggle the constraint in a
 script file. For example, you could start with:

CREATE TABLE products (
 product_no integer NULL,
 name text NULL,
 price numeric NULL
);

 and then insert the NOT key word where desired.

Tip

 In most database designs the majority of columns should be marked
 not null.

Unique Constraints

 Unique constraints ensure that the data contained in a column, or a
 group of columns, is unique among all the rows in the
 table. The syntax is:

CREATE TABLE products (
 product_no integer UNIQUE,
 name text,
 price numeric
);

 when written as a column constraint, and:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE (product_no)
);

 when written as a table constraint.

 To define a unique constraint for a group of columns, write it as a
 table constraint with the column names separated by commas:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 UNIQUE (a, c)
);

 This specifies that the combination of values in the indicated columns
 is unique across the whole table, though any one of the columns
 need not be (and ordinarily isn't) unique.

 You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
 product_no integer CONSTRAINT must_be_different UNIQUE,
 name text,
 price numeric
);

 Adding a unique constraint will automatically create a unique B-tree
 index on the column or group of columns listed in the constraint.
 A uniqueness restriction covering only some rows cannot be written as
 a unique constraint, but it is possible to enforce such a restriction by
 creating a unique partial index.

 In general, a unique constraint is violated if there is more than
 one row in the table where the values of all of the
 columns included in the constraint are equal.
 By default, two null values are not considered equal in this
 comparison. That means even in the presence of a
 unique constraint it is possible to store duplicate
 rows that contain a null value in at least one of the constrained
 columns. This behavior can be changed by adding the clause NULLS
 NOT DISTINCT, like

CREATE TABLE products (
 product_no integer UNIQUE NULLS NOT DISTINCT,
 name text,
 price numeric
);

 or

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE NULLS NOT DISTINCT (product_no)
);

 The default behavior can be specified explicitly using NULLS
 DISTINCT. The default null treatment in unique constraints is
 implementation-defined according to the SQL standard, and other
 implementations have a different behavior. So be careful when developing
 applications that are intended to be portable.

Primary Keys

 A primary key constraint indicates that a column, or group of columns,
 can be used as a unique identifier for rows in the table. This
 requires that the values be both unique and not null. So, the following
 two table definitions accept the same data:

CREATE TABLE products (
 product_no integer UNIQUE NOT NULL,
 name text,
 price numeric
);

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

 Primary keys can span more than one column; the syntax
 is similar to unique constraints:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 PRIMARY KEY (a, c)
);

 Adding a primary key will automatically create a unique B-tree index
 on the column or group of columns listed in the primary key, and will
 force the column(s) to be marked NOT NULL.

 A table can have at most one primary key. (There can be any number
 of unique and not-null constraints, which are functionally almost the
 same thing, but only one can be identified as the primary key.)
 Relational database theory
 dictates that every table must have a primary key. This rule is
 not enforced by PostgreSQL™, but it is
 usually best to follow it.

 Primary keys are useful both for
 documentation purposes and for client applications. For example,
 a GUI application that allows modifying row values probably needs
 to know the primary key of a table to be able to identify rows
 uniquely. There are also various ways in which the database system
 makes use of a primary key if one has been declared; for example,
 the primary key defines the default target column(s) for foreign keys
 referencing its table.

Foreign Keys

 A foreign key constraint specifies that the values in a column (or
 a group of columns) must match the values appearing in some row
 of another table.
 We say this maintains the referential
 integrity between two related tables.

 Say you have the product table that we have used several times already:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

 Let's also assume you have a table storing orders of those
 products. We want to ensure that the orders table only contains
 orders of products that actually exist. So we define a foreign
 key constraint in the orders table that references the products
 table:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products (product_no),
 quantity integer
);

 Now it is impossible to create orders with non-NULL
 product_no entries that do not appear in the
 products table.

 We say that in this situation the orders table is the
 referencing table and the products table is
 the referenced table. Similarly, there are
 referencing and referenced columns.

 You can also shorten the above command to:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products,
 quantity integer
);

 because in absence of a column list the primary key of the
 referenced table is used as the referenced column(s).

 You can assign your own name for a foreign key constraint,
 in the usual way.

 A foreign key can also constrain and reference a group of columns.
 As usual, it then needs to be written in table constraint form.
 Here is a contrived syntax example:

CREATE TABLE t1 (
 a integer PRIMARY KEY,
 b integer,
 c integer,
 FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)
);

 Of course, the number and type of the constrained columns need to
 match the number and type of the referenced columns.

 Sometimes it is useful for the “other table” of a
 foreign key constraint to be the same table; this is called
 a self-referential foreign key. For
 example, if you want rows of a table to represent nodes of a tree
 structure, you could write

CREATE TABLE tree (
 node_id integer PRIMARY KEY,
 parent_id integer REFERENCES tree,
 name text,
 ...
);

 A top-level node would have NULL parent_id,
 while non-NULL parent_id entries would be
 constrained to reference valid rows of the table.

 A table can have more than one foreign key constraint. This is
 used to implement many-to-many relationships between tables. Say
 you have tables about products and orders, but now you want to
 allow one order to contain possibly many products (which the
 structure above did not allow). You could use this table structure:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products,
 order_id integer REFERENCES orders,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

 Notice that the primary key overlaps with the foreign keys in
 the last table.

 We know that the foreign keys disallow creation of orders that
 do not relate to any products. But what if a product is removed
 after an order is created that references it? SQL allows you to
 handle that as well. Intuitively, we have a few options:

	Disallow deleting a referenced product

	Delete the orders as well

	Something else?

 To illustrate this, let's implement the following policy on the
 many-to-many relationship example above: when someone wants to
 remove a product that is still referenced by an order (via
 order_items), we disallow it. If someone
 removes an order, the order items are removed as well:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products ON DELETE RESTRICT,
 order_id integer REFERENCES orders ON DELETE CASCADE,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

 Restricting and cascading deletes are the two most common options.
 RESTRICT prevents deletion of a
 referenced row. NO ACTION means that if any
 referencing rows still exist when the constraint is checked, an error
 is raised; this is the default behavior if you do not specify anything.
 (The essential difference between these two choices is that
 NO ACTION allows the check to be deferred until
 later in the transaction, whereas RESTRICT does not.)
 CASCADE specifies that when a referenced row is deleted,
 row(s) referencing it should be automatically deleted as well.
 There are two other options:
 SET NULL and SET DEFAULT.
 These cause the referencing column(s) in the referencing row(s)
 to be set to nulls or their default
 values, respectively, when the referenced row is deleted.
 Note that these do not excuse you from observing any constraints.
 For example, if an action specifies SET DEFAULT
 but the default value would not satisfy the foreign key constraint, the
 operation will fail.

 The appropriate choice of ON DELETE action depends on
 what kinds of objects the related tables represent. When the referencing
 table represents something that is a component of what is represented by
 the referenced table and cannot exist independently, then
 CASCADE could be appropriate. If the two tables
 represent independent objects, then RESTRICT or
 NO ACTION is more appropriate; an application that
 actually wants to delete both objects would then have to be explicit about
 this and run two delete commands. In the above example, order items are
 part of an order, and it is convenient if they are deleted automatically
 if an order is deleted. But products and orders are different things, and
 so making a deletion of a product automatically cause the deletion of some
 order items could be considered problematic. The actions SET
 NULL or SET DEFAULT can be appropriate if a
 foreign-key relationship represents optional information. For example, if
 the products table contained a reference to a product manager, and the
 product manager entry gets deleted, then setting the product's product
 manager to null or a default might be useful.

 The actions SET NULL and SET DEFAULT
 can take a column list to specify which columns to set. Normally, all
 columns of the foreign-key constraint are set; setting only a subset is
 useful in some special cases. Consider the following example:

CREATE TABLE tenants (
 tenant_id integer PRIMARY KEY
);

CREATE TABLE users (
 tenant_id integer REFERENCES tenants ON DELETE CASCADE,
 user_id integer NOT NULL,
 PRIMARY KEY (tenant_id, user_id)
);

CREATE TABLE posts (
 tenant_id integer REFERENCES tenants ON DELETE CASCADE,
 post_id integer NOT NULL,
 author_id integer,
 PRIMARY KEY (tenant_id, post_id),
 FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL (author_id)
);

 Without the specification of the column, the foreign key would also set
 the column tenant_id to null, but that column is still
 required as part of the primary key.

 Analogous to ON DELETE there is also
 ON UPDATE which is invoked when a referenced
 column is changed (updated). The possible actions are the same,
 except that column lists cannot be specified for SET
 NULL and SET DEFAULT.
 In this case, CASCADE means that the updated values of the
 referenced column(s) should be copied into the referencing row(s).

 Normally, a referencing row need not satisfy the foreign key constraint
 if any of its referencing columns are null. If MATCH FULL
 is added to the foreign key declaration, a referencing row escapes
 satisfying the constraint only if all its referencing columns are null
 (so a mix of null and non-null values is guaranteed to fail a
 MATCH FULL constraint). If you don't want referencing rows
 to be able to avoid satisfying the foreign key constraint, declare the
 referencing column(s) as NOT NULL.

 A foreign key must reference columns that either are a primary key or
 form a unique constraint, or are columns from a non-partial unique index.
 This means that the referenced columns always have an index to allow
 efficient lookups on whether a referencing row has a match. Since a
 DELETE of a row from the referenced table or an
 UPDATE of a referenced column will require a scan of
 the referencing table for rows matching the old value, it is often a good
 idea to index the referencing columns too. Because this is not always
 needed, and there are many choices available on how to index, the
 declaration of a foreign key constraint does not automatically create an
 index on the referencing columns.

 More information about updating and deleting data is in Chapter 6, Data Manipulation. Also see the description of foreign key constraint
 syntax in the reference documentation for
 CREATE TABLE(7).

Exclusion Constraints

 Exclusion constraints ensure that if any two rows are compared on
 the specified columns or expressions using the specified operators,
 at least one of these operator comparisons will return false or null.
 The syntax is:

CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

 See also CREATE
 TABLE ... CONSTRAINT ... EXCLUDE for details.

 Adding an exclusion constraint will automatically create an index
 of the type specified in the constraint declaration.

System Columns

 Every table has several system columns that are
 implicitly defined by the system. Therefore, these names cannot be
 used as names of user-defined columns. (Note that these
 restrictions are separate from whether the name is a key word or
 not; quoting a name will not allow you to escape these
 restrictions.) You do not really need to be concerned about these
 columns; just know they exist.

	tableoid
	
 The OID of the table containing this row. This column is
 particularly handy for queries that select from partitioned
 tables (see the section called “Table Partitioning”) or inheritance
 hierarchies (see the section called “Inheritance”), since without it,
 it's difficult to tell which individual table a row came from. The
 tableoid can be joined against the
 oid column of
 pg_class to obtain the table name.

	xmin
	
 The identity (transaction ID) of the inserting transaction for
 this row version. (A row version is an individual state of a
 row; each update of a row creates a new row version for the same
 logical row.)

	cmin
	
 The command identifier (starting at zero) within the inserting
 transaction.

	xmax
	
 The identity (transaction ID) of the deleting transaction, or
 zero for an undeleted row version. It is possible for this column to
 be nonzero in a visible row version. That usually indicates that the
 deleting transaction hasn't committed yet, or that an attempted
 deletion was rolled back.

	cmax
	
 The command identifier within the deleting transaction, or zero.

	ctid
	
 The physical location of the row version within its table. Note that
 although the ctid can be used to
 locate the row version very quickly, a row's
 ctid will change if it is
 updated or moved by VACUUM FULL. Therefore
 ctid is useless as a long-term row
 identifier. A primary key should be used to identify logical rows.

 Transaction identifiers are also 32-bit quantities. In a
 long-lived database it is possible for transaction IDs to wrap
 around. This is not a fatal problem given appropriate maintenance
 procedures; see Chapter 25, Routine Database Maintenance Tasks for details. It is
 unwise, however, to depend on the uniqueness of transaction IDs
 over the long term (more than one billion transactions).

 Command identifiers are also 32-bit quantities. This creates a hard limit
 of 232 (4 billion) SQL commands
 within a single transaction. In practice this limit is not a
 problem — note that the limit is on the number of
 SQL commands, not the number of rows processed.
 Also, only commands that actually modify the database contents will
 consume a command identifier.

Modifying Tables

 When you create a table and you realize that you made a mistake, or
 the requirements of the application change, you can drop the
 table and create it again. But this is not a convenient option if
 the table is already filled with data, or if the table is
 referenced by other database objects (for instance a foreign key
 constraint). Therefore PostgreSQL™
 provides a family of commands to make modifications to existing
 tables. Note that this is conceptually distinct from altering
 the data contained in the table: here we are interested in altering
 the definition, or structure, of the table.

 You can:

	Add columns

	Remove columns

	Add constraints

	Remove constraints

	Change default values

	Change column data types

	Rename columns

	Rename tables

 All these actions are performed using the
 ALTER TABLE(7)
 command, whose reference page contains details beyond those given
 here.

Adding a Column

 To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

 The new column is initially filled with whatever default
 value is given (null if you don't specify a DEFAULT clause).

Tip

 From PostgreSQL™ 11, adding a column with
 a constant default value no longer means that each row of the table
 needs to be updated when the ALTER TABLE statement
 is executed. Instead, the default value will be returned the next time
 the row is accessed, and applied when the table is rewritten, making
 the ALTER TABLE very fast even on large tables.

 However, if the default value is volatile (e.g.,
 clock_timestamp())
 each row will need to be updated with the value calculated at the time
 ALTER TABLE is executed. To avoid a potentially
 lengthy update operation, particularly if you intend to fill the column
 with mostly nondefault values anyway, it may be preferable to add the
 column with no default, insert the correct values using
 UPDATE, and then add any desired default as described
 below.

 You can also define constraints on the column at the same time,
 using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

 In fact all the options that can be applied to a column description
 in CREATE TABLE can be used here. Keep in mind however
 that the default value must satisfy the given constraints, or the
 ADD will fail. Alternatively, you can add
 constraints later (see below) after you've filled in the new column
 correctly.

Removing a Column

 To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

 Whatever data was in the column disappears. Table constraints involving
 the column are dropped, too. However, if the column is referenced by a
 foreign key constraint of another table,
 PostgreSQL™ will not silently drop that
 constraint. You can authorize dropping everything that depends on
 the column by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

 See the section called “Dependency Tracking” for a description of the general
 mechanism behind this.

Adding a Constraint

 To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

 To add a not-null constraint, which cannot be written as a table
 constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

 The constraint will be checked immediately, so the table data must
 satisfy the constraint before it can be added.

Removing a Constraint

 To remove a constraint you need to know its name. If you gave it
 a name then that's easy. Otherwise the system assigned a
 generated name, which you need to find out. The
 psql command \d
 tablename can be helpful
 here; other interfaces might also provide a way to inspect table
 details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

 As with dropping a column, you need to add CASCADE if you
 want to drop a constraint that something else depends on. An example
 is that a foreign key constraint depends on a unique or primary key
 constraint on the referenced column(s).

 This works the same for all constraint types except not-null
 constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

 (Recall that not-null constraints do not have names.)

Changing a Column's Default Value

 To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

 Note that this doesn't affect any existing rows in the table, it
 just changes the default for future INSERT commands.

 To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

 This is effectively the same as setting the default to null.
 As a consequence, it is not an error
 to drop a default where one hadn't been defined, because the
 default is implicitly the null value.

Changing a Column's Data Type

 To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

 This will succeed only if each existing entry in the column can be
 converted to the new type by an implicit cast. If a more complex
 conversion is needed, you can add a USING clause that
 specifies how to compute the new values from the old.

 PostgreSQL™ will attempt to convert the column's
 default value (if any) to the new type, as well as any constraints
 that involve the column. But these conversions might fail, or might
 produce surprising results. It's often best to drop any constraints
 on the column before altering its type, and then add back suitably
 modified constraints afterwards.

Renaming a Column

 To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

Renaming a Table

 To rename a table:

ALTER TABLE products RENAME TO items;

Privileges

 When an object is created, it is assigned an owner. The
 owner is normally the role that executed the creation statement.
 For most kinds of objects, the initial state is that only the owner
 (or a superuser) can do anything with the object. To allow
 other roles to use it, privileges must be
 granted.

 There are different kinds of privileges: SELECT,
 INSERT, UPDATE, DELETE,
 TRUNCATE, REFERENCES, TRIGGER,
 CREATE, CONNECT, TEMPORARY,
 EXECUTE, USAGE, SET
 and ALTER SYSTEM.
 The privileges applicable to a particular
 object vary depending on the object's type (table, function, etc.).
 More detail about the meanings of these privileges appears below.
 The following sections and chapters will also show you how
 these privileges are used.

 The right to modify or destroy an object is inherent in being the
 object's owner, and cannot be granted or revoked in itself.
 (However, like all privileges, that right can be inherited by
 members of the owning role; see the section called “Role Membership”.)

 An object can be assigned to a new owner with an ALTER
 command of the appropriate kind for the object, for example

ALTER TABLE table_name OWNER TO new_owner;

 Superusers can always do this; ordinary roles can only do it if they are
 both the current owner of the object (or inherit the privileges of the
 owning role) and able to SET ROLE to the new owning role.
 All object privileges of the old owner are transferred to the new owner
 along with the ownership.

 To assign privileges, the GRANT(7) command is
 used. For example, if joe is an existing role, and
 accounts is an existing table, the privilege to
 update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

 Writing ALL in place of a specific privilege grants all
 privileges that are relevant for the object type.

 The special “role” name PUBLIC can
 be used to grant a privilege to every role on the system. Also,
 “group” roles can be set up to help manage privileges when
 there are many users of a database — for details see
 Chapter 22, Database Roles.

 To revoke a previously-granted privilege, use the fittingly named
 REVOKE(7) command:

REVOKE ALL ON accounts FROM PUBLIC;

 Ordinarily, only the object's owner (or a superuser) can grant or
 revoke privileges on an object. However, it is possible to grant a
 privilege “with grant option”, which gives the recipient
 the right to grant it in turn to others. If the grant option is
 subsequently revoked then all who received the privilege from that
 recipient (directly or through a chain of grants) will lose the
 privilege. For details see the GRANT(7) and
 REVOKE(7) reference pages.

 An object's owner can choose to revoke their own ordinary privileges,
 for example to make a table read-only for themselves as well as others.
 But owners are always treated as holding all grant options, so they
 can always re-grant their own privileges.

 The available privileges are:

	SELECT
	
 Allows SELECT from
 any column, or specific column(s), of a table, view, materialized
 view, or other table-like object.
 Also allows use of COPY TO.
 This privilege is also needed to reference existing column values in
 UPDATE, DELETE,
 or MERGE.
 For sequences, this privilege also allows use of the
 currval function.
 For large objects, this privilege allows the object to be read.

	INSERT
	
 Allows INSERT of a new row into a table, view,
 etc. Can be granted on specific column(s), in which case
 only those columns may be assigned to in the INSERT
 command (other columns will therefore receive default values).
 Also allows use of COPY FROM.

	UPDATE
	
 Allows UPDATE of any
 column, or specific column(s), of a table, view, etc.
 (In practice, any nontrivial UPDATE command will
 require SELECT privilege as well, since it must
 reference table columns to determine which rows to update, and/or to
 compute new values for columns.)
 SELECT ... FOR UPDATE
 and SELECT ... FOR SHARE
 also require this privilege on at least one column, in addition to the
 SELECT privilege. For sequences, this
 privilege allows use of the nextval and
 setval functions.
 For large objects, this privilege allows writing or truncating the
 object.

	DELETE
	
 Allows DELETE of a row from a table, view, etc.
 (In practice, any nontrivial DELETE command will
 require SELECT privilege as well, since it must
 reference table columns to determine which rows to delete.)

	TRUNCATE
	
 Allows TRUNCATE on a table.

	REFERENCES
	
 Allows creation of a foreign key constraint referencing a
 table, or specific column(s) of a table.

	TRIGGER
	
 Allows creation of a trigger on a table, view, etc.

	CREATE
	
 For databases, allows new schemas and publications to be created within
 the database, and allows trusted extensions to be installed within
 the database.

 For schemas, allows new objects to be created within the schema.
 To rename an existing object, you must own the
 object and have this privilege for the containing
 schema.

 For tablespaces, allows tables, indexes, and temporary files to be
 created within the tablespace, and allows databases to be created that
 have the tablespace as their default tablespace.

 Note that revoking this privilege will not alter the existence or
 location of existing objects.

	CONNECT
	
 Allows the grantee to connect to the database. This
 privilege is checked at connection startup (in addition to checking
 any restrictions imposed by pg_hba.conf).

	TEMPORARY
	
 Allows temporary tables to be created while using the database.

	EXECUTE
	
 Allows calling a function or procedure, including use of
 any operators that are implemented on top of the function. This is the
 only type of privilege that is applicable to functions and procedures.

	USAGE
	
 For procedural languages, allows use of the language for
 the creation of functions in that language. This is the only type
 of privilege that is applicable to procedural languages.

 For schemas, allows access to objects contained in the
 schema (assuming that the objects' own privilege requirements are
 also met). Essentially this allows the grantee to “look up”
 objects within the schema. Without this permission, it is still
 possible to see the object names, e.g., by querying system catalogs.
 Also, after revoking this permission, existing sessions might have
 statements that have previously performed this lookup, so this is not
 a completely secure way to prevent object access.

 For sequences, allows use of the
 currval and nextval functions.

 For types and domains, allows use of the type or domain in the
 creation of tables, functions, and other schema objects. (Note that
 this privilege does not control all “usage” of the
 type, such as values of the type appearing in queries. It only
 prevents objects from being created that depend on the type. The
 main purpose of this privilege is controlling which users can create
 dependencies on a type, which could prevent the owner from changing
 the type later.)

 For foreign-data wrappers, allows creation of new servers using the
 foreign-data wrapper.

 For foreign servers, allows creation of foreign tables using the
 server. Grantees may also create, alter, or drop their own user
 mappings associated with that server.

	SET
	
 Allows a server configuration parameter to be set to a new value
 within the current session. (While this privilege can be granted
 on any parameter, it is meaningless except for parameters that would
 normally require superuser privilege to set.)

	ALTER SYSTEM
	
 Allows a server configuration parameter to be configured to a new
 value using the ALTER SYSTEM(7) command.

 The privileges required by other commands are listed on the
 reference page of the respective command.

 PostgreSQL grants privileges on some types of objects to
 PUBLIC by default when the objects are created.
 No privileges are granted to PUBLIC by default on
 tables,
 table columns,
 sequences,
 foreign data wrappers,
 foreign servers,
 large objects,
 schemas,
 tablespaces,
 or configuration parameters.
 For other types of objects, the default privileges
 granted to PUBLIC are as follows:
 CONNECT and TEMPORARY (create
 temporary tables) privileges for databases;
 EXECUTE privilege for functions and procedures; and
 USAGE privilege for languages and data types
 (including domains).
 The object owner can, of course, REVOKE
 both default and expressly granted privileges. (For maximum
 security, issue the REVOKE in the same transaction that
 creates the object; then there is no window in which another user
 can use the object.)
 Also, these default privilege settings can be overridden using the
 ALTER DEFAULT PRIVILEGES(7) command.

 Table 5.1, “ACL Privilege Abbreviations” shows the one-letter
 abbreviations that are used for these privilege types in
 ACL (Access Control List) values.
 You will see these letters in the output of the psql(1)
 commands listed below, or when looking at ACL columns of system catalogs.

Table 5.1. ACL Privilege Abbreviations
	Privilege	Abbreviation	Applicable Object Types
	SELECT	r (“read”)	
 LARGE OBJECT,
 SEQUENCE,
 TABLE (and table-like objects),
 table column

	INSERT	a (“append”)	TABLE, table column
	UPDATE	w (“write”)	
 LARGE OBJECT,
 SEQUENCE,
 TABLE,
 table column

	DELETE	d	TABLE
	TRUNCATE	D	TABLE
	REFERENCES	x	TABLE, table column
	TRIGGER	t	TABLE
	CREATE	C	
 DATABASE,
 SCHEMA,
 TABLESPACE

	CONNECT	c	DATABASE
	TEMPORARY	T	DATABASE
	EXECUTE	X	FUNCTION, PROCEDURE
	USAGE	U	
 DOMAIN,
 FOREIGN DATA WRAPPER,
 FOREIGN SERVER,
 LANGUAGE,
 SCHEMA,
 SEQUENCE,
 TYPE

	SET	s	PARAMETER
	ALTER SYSTEM	A	PARAMETER

 Table 5.2, “Summary of Access Privileges” summarizes the privileges
 available for each type of SQL object, using the abbreviations shown
 above.
 It also shows the psql command
 that can be used to examine privilege settings for each object type.

Table 5.2. Summary of Access Privileges
	Object Type	All Privileges	Default PUBLIC Privileges	psql Command
	DATABASE	CTc	Tc	\l
	DOMAIN	U	U	\dD+
	FUNCTION or PROCEDURE	X	X	\df+
	FOREIGN DATA WRAPPER	U	none	\dew+
	FOREIGN SERVER	U	none	\des+
	LANGUAGE	U	U	\dL+
	LARGE OBJECT	rw	none	\dl+
	PARAMETER	sA	none	\dconfig+
	SCHEMA	UC	none	\dn+
	SEQUENCE	rwU	none	\dp
	TABLE (and table-like objects)	arwdDxt	none	\dp
	Table column	arwx	none	\dp
	TABLESPACE	C	none	\db+
	TYPE	U	U	\dT+

 The privileges that have been granted for a particular object are
 displayed as a list of aclitem entries, each having the
 format:

grantee=privilege-abbreviation[*].../grantor

 Each aclitem lists all the permissions of one grantee that
 have been granted by a particular grantor. Specific privileges are
 represented by one-letter abbreviations from
 Table 5.1, “ACL Privilege Abbreviations”, with *
 appended if the privilege was granted with grant option. For example,
 calvin=r*w/hobbes specifies that the role
 calvin has the privilege
 SELECT (r) with grant option
 (*) as well as the non-grantable
 privilege UPDATE (w), both granted
 by the role hobbes. If calvin
 also has some privileges on the same object granted by a different
 grantor, those would appear as a separate aclitem entry.
 An empty grantee field in an aclitem stands
 for PUBLIC.

 As an example, suppose that user miriam creates
 table mytable and does:

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;

 Then psql's \dp command
 would show:

=> \dp mytable
 Access privileges
 Schema | Name | Type | Access privileges | Column privileges | Policies
--------+---------+-------+-----------------------+-----------------------+----------
 public | mytable | table | miriam=arwdDxt/miriam+| col1: +|
 | | | =r/miriam +| miriam_rw=rw/miriam |
 | | | admin=arw/miriam | |
(1 row)

 If the “Access privileges” column is empty for a given
 object, it means the object has default privileges (that is, its
 privileges entry in the relevant system catalog is null). Default
 privileges always include all privileges for the owner, and can include
 some privileges for PUBLIC depending on the object
 type, as explained above. The first GRANT
 or REVOKE on an object will instantiate the default
 privileges (producing, for
 example, miriam=arwdDxt/miriam) and then modify them
 per the specified request. Similarly, entries are shown in “Column
 privileges” only for columns with nondefault privileges.
 (Note: for this purpose, “default privileges” always means
 the built-in default privileges for the object's type. An object whose
 privileges have been affected by an ALTER DEFAULT
 PRIVILEGES command will always be shown with an explicit
 privilege entry that includes the effects of
 the ALTER.)

 Notice that the owner's implicit grant options are not marked in the
 access privileges display. A * will appear only when
 grant options have been explicitly granted to someone.

Row Security Policies

 In addition to the SQL-standard privilege
 system available through GRANT(7),
 tables can have row security policies that restrict,
 on a per-user basis, which rows can be returned by normal queries
 or inserted, updated, or deleted by data modification commands.
 This feature is also known as Row-Level Security.
 By default, tables do not have any policies, so that if a user has
 access privileges to a table according to the SQL privilege system,
 all rows within it are equally available for querying or updating.

 When row security is enabled on a table (with
 ALTER TABLE ... ENABLE ROW LEVEL
 SECURITY), all normal access to the table for selecting rows or
 modifying rows must be allowed by a row security policy. (However, the
 table's owner is typically not subject to row security policies.) If no
 policy exists for the table, a default-deny policy is used, meaning that
 no rows are visible or can be modified. Operations that apply to the
 whole table, such as TRUNCATE and REFERENCES,
 are not subject to row security.

 Row security policies can be specific to commands, or to roles, or to
 both. A policy can be specified to apply to ALL
 commands, or to SELECT, INSERT, UPDATE,
 or DELETE. Multiple roles can be assigned to a given
 policy, and normal role membership and inheritance rules apply.

 To specify which rows are visible or modifiable according to a policy,
 an expression is required that returns a Boolean result. This
 expression will be evaluated for each row prior to any conditions or
 functions coming from the user's query. (The only exceptions to this
 rule are leakproof functions, which are guaranteed to
 not leak information; the optimizer may choose to apply such functions
 ahead of the row-security check.) Rows for which the expression does
 not return true will not be processed. Separate expressions
 may be specified to provide independent control over the rows which are
 visible and the rows which are allowed to be modified. Policy
 expressions are run as part of the query and with the privileges of the
 user running the query, although security-definer functions can be used
 to access data not available to the calling user.

 Superusers and roles with the BYPASSRLS attribute always
 bypass the row security system when accessing a table. Table owners
 normally bypass row security as well, though a table owner can choose to
 be subject to row security with ALTER
 TABLE ... FORCE ROW LEVEL SECURITY.

 Enabling and disabling row security, as well as adding policies to a
 table, is always the privilege of the table owner only.

 Policies are created using the CREATE POLICY(7)
 command, altered using the ALTER POLICY(7) command,
 and dropped using the DROP POLICY(7) command. To
 enable and disable row security for a given table, use the
 ALTER TABLE(7) command.

 Each policy has a name and multiple policies can be defined for a
 table. As policies are table-specific, each policy for a table must
 have a unique name. Different tables may have policies with the
 same name.

 When multiple policies apply to a given query, they are combined using
 either OR (for permissive policies, which are the
 default) or using AND (for restrictive policies).
 This is similar to the rule that a given role has the privileges
 of all roles that they are a member of. Permissive vs. restrictive
 policies are discussed further below.

 As a simple example, here is how to create a policy on
 the account relation to allow only members of
 the managers role to access rows, and only rows of their
 accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
 USING (manager = current_user);

 The policy above implicitly provides a WITH CHECK
 clause identical to its USING clause, so that the
 constraint applies both to rows selected by a command (so a manager
 cannot SELECT, UPDATE,
 or DELETE existing rows belonging to a different
 manager) and to rows modified by a command (so rows belonging to a
 different manager cannot be created via INSERT
 or UPDATE).

 If no role is specified, or the special user name
 PUBLIC is used, then the policy applies to all
 users on the system. To allow all users to access only their own row in
 a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
 USING (user_name = current_user);

 This works similarly to the previous example.

 To use a different policy for rows that are being added to the table
 compared to those rows that are visible, multiple policies can be
 combined. This pair of policies would allow all users to view all rows
 in the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
 FOR SELECT
 USING (true);
CREATE POLICY user_mod_policy ON users
 USING (user_name = current_user);

 In a SELECT command, these two policies are combined
 using OR, with the net effect being that all rows
 can be selected. In other command types, only the second policy applies,
 so that the effects are the same as before.

 Row security can also be disabled with the ALTER TABLE
 command. Disabling row security does not remove any policies that are
 defined on the table; they are simply ignored. Then all rows in the
 table are visible and modifiable, subject to the standard SQL privileges
 system.

 Below is a larger example of how this feature can be used in production
 environments. The table passwd emulates a Unix password
 file:

-- Simple passwd-file based example
CREATE TABLE passwd (
 user_name text UNIQUE NOT NULL,
 pwhash text,
 uid int PRIMARY KEY,
 gid int NOT NULL,
 real_name text NOT NULL,
 home_phone text,
 extra_info text,
 home_dir text NOT NULL,
 shell text NOT NULL
);

CREATE ROLE admin; -- Administrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Populate the table
INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');

-- Be sure to enable row-level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
-- Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
-- Normal users can update their own records, but
-- limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
);

-- Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
-- Users only get select access on public columns
GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
 ON passwd TO public;
-- Allow users to update certain columns
GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;

 As with any security settings, it's important to test and ensure that
 the system is behaving as expected. Using the example above, this
 demonstrates that the permission system is working properly.

-- admin can view all rows and fields
postgres=> set role admin;
SET
postgres=> table passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir | shell
-----------+--------+-----+-----+-----------+--------------+------------+-------------+-----------
 admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root | /bin/dash
 bob | xxx | 1 | 1 | Bob | 123-456-7890 | | /home/bob | /bin/zsh
 alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
postgres=> table passwd;
ERROR: permission denied for table passwd
postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name | home_phone | extra_info | home_dir | shell
-----------+-----------+--------------+------------+-------------+-----------
 admin | Admin | 111-222-3333 | | /root | /bin/dash
 bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
 alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)

postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for table passwd
-- Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE 0
postgres=> update passwd set shell = '/bin/xx';
ERROR: new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;
ERROR: permission denied for table passwd
postgres=> insert into passwd (user_name) values ('xxx');
ERROR: permission denied for table passwd
-- Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';
UPDATE 1

 All of the policies constructed thus far have been permissive policies,
 meaning that when multiple policies are applied they are combined using
 the “OR” Boolean operator. While permissive policies can be constructed
 to only allow access to rows in the intended cases, it can be simpler to
 combine permissive policies with restrictive policies (which the records
 must pass and which are combined using the “AND” Boolean operator).
 Building on the example above, we add a restrictive policy to require
 the administrator to be connected over a local Unix socket to access the
 records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
 USING (pg_catalog.inet_client_addr() IS NULL);

 We can then see that an administrator connecting over a network will not
 see any records, due to the restrictive policy:

=> SELECT current_user;
 current_user

 admin
(1 row)

=> select inet_client_addr();
 inet_client_addr

 127.0.0.1
(1 row)

=> TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir | shell
-----------+--------+-----+-----+-----------+------------+------------+----------+-------
(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

 Referential integrity checks, such as unique or primary key constraints
 and foreign key references, always bypass row security to ensure that
 data integrity is maintained. Care must be taken when developing
 schemas and row level policies to avoid “covert channel” leaks of
 information through such referential integrity checks.

 In some contexts it is important to be sure that row security is
 not being applied. For example, when taking a backup, it could be
 disastrous if row security silently caused some rows to be omitted
 from the backup. In such a situation, you can set the
 row_security configuration parameter
 to off. This does not in itself bypass row security;
 what it does is throw an error if any query's results would get filtered
 by a policy. The reason for the error can then be investigated and
 fixed.

 In the examples above, the policy expressions consider only the current
 values in the row to be accessed or updated. This is the simplest and
 best-performing case; when possible, it's best to design row security
 applications to work this way. If it is necessary to consult other rows
 or other tables to make a policy decision, that can be accomplished using
 sub-SELECTs, or functions that contain SELECTs,
 in the policy expressions. Be aware however that such accesses can
 create race conditions that could allow information leakage if care is
 not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
 group_name text NOT NULL);

INSERT INTO groups VALUES
 (1, 'low'),
 (2, 'medium'),
 (5, 'high');

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
 ('alice', 5),
 ('bob', 2),
 ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
 ('barely secret', 1),
 ('slightly secret', 2),
 ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-- a row should be visible to/updatable by users whose security group_id is
-- greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

 Now suppose that alice wishes to change the “slightly
 secret” information, but decides that mallory should not
 be trusted with the new content of that row, so she does:

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

 That looks safe; there is no window wherein mallory should be
 able to see the “secret from mallory” string. However, there is
 a race condition here. If mallory is concurrently doing,
 say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

 and her transaction is in READ COMMITTED mode, it is possible
 for her to see “secret from mallory”. That happens if her
 transaction reaches the information row just
 after alice's does. It blocks waiting
 for alice's transaction to commit, then fetches the updated
 row contents thanks to the FOR UPDATE clause. However, it
 does not fetch an updated row for the
 implicit SELECT from users, because that
 sub-SELECT did not have FOR UPDATE; instead
 the users row is read with the snapshot taken at the start
 of the query. Therefore, the policy expression tests the old value
 of mallory's privilege level and allows her to see the
 updated row.

 There are several ways around this problem. One simple answer is to use
 SELECT ... FOR SHARE in sub-SELECTs in row
 security policies. However, that requires granting UPDATE
 privilege on the referenced table (here users) to the
 affected users, which might be undesirable. (But another row security
 policy could be applied to prevent them from actually exercising that
 privilege; or the sub-SELECT could be embedded into a security
 definer function.) Also, heavy concurrent use of row share locks on the
 referenced table could pose a performance problem, especially if updates
 of it are frequent. Another solution, practical if updates of the
 referenced table are infrequent, is to take an
 ACCESS EXCLUSIVE lock on the
 referenced table when updating it, so that no concurrent transactions
 could be examining old row values. Or one could just wait for all
 concurrent transactions to end after committing an update of the
 referenced table and before making changes that rely on the new security
 situation.

 For additional details see CREATE POLICY(7)
 and ALTER TABLE(7).

Schemas

 A PostgreSQL™ database cluster contains
 one or more named databases. Roles and a few other object types are
 shared across the entire cluster. A client connection to the server
 can only access data in a single database, the one specified in the
 connection request.

Note

 Users of a cluster do not necessarily have the privilege to access every
 database in the cluster. Sharing of role names means that there
 cannot be different roles named, say, joe in two databases
 in the same cluster; but the system can be configured to allow
 joe access to only some of the databases.

 A database contains one or more named schemas, which
 in turn contain tables. Schemas also contain other kinds of named
 objects, including data types, functions, and operators. The same
 object name can be used in different schemas without conflict; for
 example, both schema1 and myschema can
 contain tables named mytable. Unlike databases,
 schemas are not rigidly separated: a user can access objects in any
 of the schemas in the database they are connected to, if they have
 privileges to do so.

 There are several reasons why one might want to use schemas:

	
 To allow many users to use one database without interfering with
 each other.

	
 To organize database objects into logical groups to make them
 more manageable.

	
 Third-party applications can be put into separate schemas so
 they do not collide with the names of other objects.

 Schemas are analogous to directories at the operating system level,
 except that schemas cannot be nested.

Creating a Schema

 To create a schema, use the CREATE SCHEMA(7)
 command. Give the schema a name
 of your choice. For example:

CREATE SCHEMA myschema;

 To create or access objects in a schema, write a
 qualified name consisting of the schema name and
 table name separated by a dot:

schema.table

 This works anywhere a table name is expected, including the table
 modification commands and the data access commands discussed in
 the following chapters.
 (For brevity we will speak of tables only, but the same ideas apply
 to other kinds of named objects, such as types and functions.)

 Actually, the even more general syntax

database.schema.table

 can be used too, but at present this is just for pro forma
 compliance with the SQL standard. If you write a database name,
 it must be the same as the database you are connected to.

 So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
 ...
);

 To drop a schema if it's empty (all objects in it have been
 dropped), use:

DROP SCHEMA myschema;

 To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

 See the section called “Dependency Tracking” for a description of the general
 mechanism behind this.

 Often you will want to create a schema owned by someone else
 (since this is one of the ways to restrict the activities of your
 users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

 You can even omit the schema name, in which case the schema name
 will be the same as the user name. See the section called “Usage Patterns” for how this can be useful.

 Schema names beginning with pg_ are reserved for
 system purposes and cannot be created by users.

The Public Schema

 In the previous sections we created tables without specifying any
 schema names. By default such tables (and other objects) are
 automatically put into a schema named “public”. Every new
 database contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);

 and:

CREATE TABLE public.products (...);

The Schema Search Path

 Qualified names are tedious to write, and it's often best not to
 wire a particular schema name into applications anyway. Therefore
 tables are often referred to by unqualified names,
 which consist of just the table name. The system determines which table
 is meant by following a search path, which is a list
 of schemas to look in. The first matching table in the search path
 is taken to be the one wanted. If there is no match in the search
 path, an error is reported, even if matching table names exist
 in other schemas in the database.

 The ability to create like-named objects in different schemas complicates
 writing a query that references precisely the same objects every time. It
 also opens up the potential for users to change the behavior of other
 users' queries, maliciously or accidentally. Due to the prevalence of
 unqualified names in queries and their use
 in PostgreSQL™ internals, adding a schema
 to search_path effectively trusts all users having
 CREATE privilege on that schema. When you run an
 ordinary query, a malicious user able to create objects in a schema of
 your search path can take control and execute arbitrary SQL functions as
 though you executed them.

 The first schema named in the search path is called the current schema.
 Aside from being the first schema searched, it is also the schema in
 which new tables will be created if the CREATE TABLE
 command does not specify a schema name.

 To show the current search path, use the following command:

SHOW search_path;

 In the default setup this returns:

 search_path

 "$user", public

 The first element specifies that a schema with the same name as
 the current user is to be searched. If no such schema exists,
 the entry is ignored. The second element refers to the
 public schema that we have seen already.

 The first schema in the search path that exists is the default
 location for creating new objects. That is the reason that by
 default objects are created in the public schema. When objects
 are referenced in any other context without schema qualification
 (table modification, data modification, or query commands) the
 search path is traversed until a matching object is found.
 Therefore, in the default configuration, any unqualified access
 again can only refer to the public schema.

 To put our new schema in the path, we use:

SET search_path TO myschema,public;

 (We omit the $user here because we have no
 immediate need for it.) And then we can access the table without
 schema qualification:

DROP TABLE mytable;

 Also, since myschema is the first element in
 the path, new objects would by default be created in it.

 We could also have written:

SET search_path TO myschema;

 Then we no longer have access to the public schema without
 explicit qualification. There is nothing special about the public
 schema except that it exists by default. It can be dropped, too.

 See also the section called “System Information Functions and Operators” for other ways to manipulate
 the schema search path.

 The search path works in the same way for data type names, function names,
 and operator names as it does for table names. Data type and function
 names can be qualified in exactly the same way as table names. If you
 need to write a qualified operator name in an expression, there is a
 special provision: you must write

OPERATOR(schema.operator)

 This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catalog.+) 4;

 In practice one usually relies on the search path for operators,
 so as not to have to write anything so ugly as that.

Schemas and Privileges

 By default, users cannot access any objects in schemas they do not
 own. To allow that, the owner of the schema must grant the
 USAGE privilege on the schema. By default, everyone
 has that privilege on the schema public. To allow
 users to make use of the objects in a schema, additional privileges might
 need to be granted, as appropriate for the object.

 A user can also be allowed to create objects in someone else's schema. To
 allow that, the CREATE privilege on the schema needs to
 be granted. In databases upgraded from
 PostgreSQL™ 14 or earlier, everyone has that
 privilege on the schema public.
 Some usage patterns call for
 revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

 (The first “public” is the schema, the second
 “public” means “every user”. In the
 first sense it is an identifier, in the second sense it is a
 key word, hence the different capitalization; recall the
 guidelines from the section called “Identifiers and Key Words”.)

The System Catalog Schema

 In addition to public and user-created schemas, each
 database contains a pg_catalog schema, which contains
 the system tables and all the built-in data types, functions, and
 operators. pg_catalog is always effectively part of
 the search path. If it is not named explicitly in the path then
 it is implicitly searched before searching the path's
 schemas. This ensures that built-in names will always be
 findable. However, you can explicitly place
 pg_catalog at the end of your search path if you
 prefer to have user-defined names override built-in names.

 Since system table names begin with pg_, it is best to
 avoid such names to ensure that you won't suffer a conflict if some
 future version defines a system table named the same as your
 table. (With the default search path, an unqualified reference to
 your table name would then be resolved as the system table instead.)
 System tables will continue to follow the convention of having
 names beginning with pg_, so that they will not
 conflict with unqualified user-table names so long as users avoid
 the pg_ prefix.

Usage Patterns

 Schemas can be used to organize your data in many ways.
 A secure schema usage pattern prevents untrusted
 users from changing the behavior of other users' queries. When a database
 does not use a secure schema usage pattern, users wishing to securely
 query that database would take protective action at the beginning of each
 session. Specifically, they would begin each session by
 setting search_path to the empty string or otherwise
 removing schemas that are writable by non-superusers
 from search_path. There are a few usage patterns
 easily supported by the default configuration:

	
 Constrain ordinary users to user-private schemas.
 To implement this pattern, first ensure that no schemas have
 public CREATE privileges. Then, for every user
 needing to create non-temporary objects, create a schema with the
 same name as that user, for example
 CREATE SCHEMA alice AUTHORIZATION alice.
 (Recall that the default search path starts
 with $user, which resolves to the user
 name. Therefore, if each user has a separate schema, they access
 their own schemas by default.) This pattern is a secure schema
 usage pattern unless an untrusted user is the database owner or
 has been granted ADMIN OPTION on a relevant role,
 in which case no secure schema usage pattern exists.

 In PostgreSQL™ 15 and later, the default
 configuration supports this usage pattern. In prior versions, or
 when using a database that has been upgraded from a prior version,
 you will need to remove the public CREATE
 privilege from the public schema (issue
 REVOKE CREATE ON SCHEMA public FROM PUBLIC).
 Then consider auditing the public schema for
 objects named like objects in schema pg_catalog.

	
 Remove the public schema from the default search path, by modifying
 postgresql.conf
 or by issuing ALTER ROLE ALL SET search_path =
 "$user". Then, grant privileges to create in the public
 schema. Only qualified names will choose public schema objects. While
 qualified table references are fine, calls to functions in the public
 schema will be unsafe or
 unreliable. If you create functions or extensions in the public
 schema, use the first pattern instead. Otherwise, like the first
 pattern, this is secure unless an untrusted user is the database owner
 or has been granted ADMIN OPTION on a relevant role.

	
 Keep the default search path, and grant privileges to create in the
 public schema. All users access the public schema implicitly. This
 simulates the situation where schemas are not available at all, giving
 a smooth transition from the non-schema-aware world. However, this is
 never a secure pattern. It is acceptable only when the database has a
 single user or a few mutually-trusting users. In databases upgraded
 from PostgreSQL™ 14 or earlier, this is the
 default.

 For any pattern, to install shared applications (tables to be used by
 everyone, additional functions provided by third parties, etc.), put them
 into separate schemas. Remember to grant appropriate privileges to allow
 the other users to access them. Users can then refer to these additional
 objects by qualifying the names with a schema name, or they can put the
 additional schemas into their search path, as they choose.

Portability

 In the SQL standard, the notion of objects in the same schema
 being owned by different users does not exist. Moreover, some
 implementations do not allow you to create schemas that have a
 different name than their owner. In fact, the concepts of schema
 and user are nearly equivalent in a database system that
 implements only the basic schema support specified in the
 standard. Therefore, many users consider qualified names to
 really consist of
 user_name.table_name.
 This is how PostgreSQL™ will effectively
 behave if you create a per-user schema for every user.

 Also, there is no concept of a public schema in the
 SQL standard. For maximum conformance to the standard, you should
 not use the public schema.

 Of course, some SQL database systems might not implement schemas
 at all, or provide namespace support by allowing (possibly
 limited) cross-database access. If you need to work with those
 systems, then maximum portability would be achieved by not using
 schemas at all.

Inheritance

 PostgreSQL™ implements table inheritance,
 which can be a useful tool for database designers. (SQL:1999 and
 later define a type inheritance feature, which differs in many
 respects from the features described here.)

 Let's start with an example: suppose we are trying to build a data
 model for cities. Each state has many cities, but only one
 capital. We want to be able to quickly retrieve the capital city
 for any particular state. This can be done by creating two tables,
 one for state capitals and one for cities that are not
 capitals. However, what happens when we want to ask for data about
 a city, regardless of whether it is a capital or not? The
 inheritance feature can help to resolve this problem. We define the
 capitals table so that it inherits from
 cities:

CREATE TABLE cities (
 name text,
 population float,
 elevation int -- in feet
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

 In this case, the capitals table inherits
 all the columns of its parent table, cities. State
 capitals also have an extra column, state, that shows
 their state.

 In PostgreSQL™, a table can inherit from
 zero or more other tables, and a query can reference either all
 rows of a table or all rows of a table plus all of its descendant tables.
 The latter behavior is the default.
 For example, the following query finds the names of all cities,
 including state capitals, that are located at an elevation over
 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

 Given the sample data from the PostgreSQL™
 tutorial (see the section called “Introduction”), this returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845

 On the other hand, the following query finds all the cities that
 are not state capitals and are situated at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953

 Here the ONLY keyword indicates that the query
 should apply only to cities, and not any tables
 below cities in the inheritance hierarchy. Many
 of the commands that we have already discussed —
 SELECT, UPDATE and
 DELETE — support the
 ONLY keyword.

 You can also write the table name with a trailing *
 to explicitly specify that descendant tables are included:

SELECT name, elevation
 FROM cities*
 WHERE elevation > 500;

 Writing * is not necessary, since this behavior is always
 the default. However, this syntax is still supported for
 compatibility with older releases where the default could be changed.

 In some cases you might wish to know which table a particular row
 originated from. There is a system column called
 tableoid in each table which can tell you the
 originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

 which returns:

 tableoid | name | elevation
----------+-----------+-----------
 139793 | Las Vegas | 2174
 139793 | Mariposa | 1953
 139798 | Madison | 845

 (If you try to reproduce this example, you will probably get
 different numeric OIDs.) By doing a join with
 pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

 which returns:

 relname | name | elevation
----------+-----------+-----------
 cities | Las Vegas | 2174
 cities | Mariposa | 1953
 capitals | Madison | 845

 Another way to get the same effect is to use the regclass
 alias type, which will print the table OID symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

 Inheritance does not automatically propagate data from
 INSERT or COPY commands to
 other tables in the inheritance hierarchy. In our example, the
 following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

 We might hope that the data would somehow be routed to the
 capitals table, but this does not happen:
 INSERT always inserts into exactly the table
 specified. In some cases it is possible to redirect the insertion
 using a rule (see Chapter 41, The Rule System). However that does not
 help for the above case because the cities table
 does not contain the column state, and so the
 command will be rejected before the rule can be applied.

 All check constraints and not-null constraints on a parent table are
 automatically inherited by its children, unless explicitly specified
 otherwise with NO INHERIT clauses. Other types of constraints
 (unique, primary key, and foreign key constraints) are not inherited.

 A table can inherit from more than one parent table, in which case it has
 the union of the columns defined by the parent tables. Any columns
 declared in the child table's definition are added to these. If the
 same column name appears in multiple parent tables, or in both a parent
 table and the child's definition, then these columns are “merged”
 so that there is only one such column in the child table. To be merged,
 columns must have the same data types, else an error is raised.
 Inheritable check constraints and not-null constraints are merged in a
 similar fashion. Thus, for example, a merged column will be marked
 not-null if any one of the column definitions it came from is marked
 not-null. Check constraints are merged if they have the same name,
 and the merge will fail if their conditions are different.

 Table inheritance is typically established when the child table is
 created, using the INHERITS clause of the
 CREATE TABLE
 statement.
 Alternatively, a table which is already defined in a compatible way can
 have a new parent relationship added, using the INHERIT
 variant of ALTER TABLE.
 To do this the new child table must already include columns with
 the same names and types as the columns of the parent. It must also include
 check constraints with the same names and check expressions as those of the
 parent. Similarly an inheritance link can be removed from a child using the
 NO INHERIT variant of ALTER TABLE.
 Dynamically adding and removing inheritance links like this can be useful
 when the inheritance relationship is being used for table
 partitioning (see the section called “Table Partitioning”).

 One convenient way to create a compatible table that will later be made
 a new child is to use the LIKE clause in CREATE
 TABLE. This creates a new table with the same columns as
 the source table. If there are any CHECK
 constraints defined on the source table, the INCLUDING
 CONSTRAINTS option to LIKE should be
 specified, as the new child must have constraints matching the parent
 to be considered compatible.

 A parent table cannot be dropped while any of its children remain. Neither
 can columns or check constraints of child tables be dropped or altered
 if they are inherited
 from any parent tables. If you wish to remove a table and all of its
 descendants, one easy way is to drop the parent table with the
 CASCADE option (see the section called “Dependency Tracking”).

 ALTER TABLE will
 propagate any changes in column data definitions and check
 constraints down the inheritance hierarchy. Again, dropping
 columns that are depended on by other tables is only possible when using
 the CASCADE option. ALTER
 TABLE follows the same rules for duplicate column merging
 and rejection that apply during CREATE TABLE.

 Inherited queries perform access permission checks on the parent table
 only. Thus, for example, granting UPDATE permission on
 the cities table implies permission to update rows in
 the capitals table as well, when they are
 accessed through cities. This preserves the appearance
 that the data is (also) in the parent table. But
 the capitals table could not be updated directly
 without an additional grant. In a similar way, the parent table's row
 security policies (see the section called “Row Security Policies”) are applied to
 rows coming from child tables during an inherited query. A child table's
 policies, if any, are applied only when it is the table explicitly named
 in the query; and in that case, any policies attached to its parent(s) are
 ignored.

 Foreign tables (see the section called “Foreign Data”) can also
 be part of inheritance hierarchies, either as parent or child
 tables, just as regular tables can be. If a foreign table is part
 of an inheritance hierarchy then any operations not supported by
 the foreign table are not supported on the whole hierarchy either.

Caveats

 Note that not all SQL commands are able to work on
 inheritance hierarchies. Commands that are used for data querying,
 data modification, or schema modification
 (e.g., SELECT, UPDATE, DELETE,
 most variants of ALTER TABLE, but
 not INSERT or ALTER TABLE ...
 RENAME) typically default to including child tables and
 support the ONLY notation to exclude them.
 Commands that do database maintenance and tuning
 (e.g., REINDEX, VACUUM)
 typically only work on individual, physical tables and do not
 support recursing over inheritance hierarchies. The respective
 behavior of each individual command is documented in its reference
 page (SQL Commands).

 A serious limitation of the inheritance feature is that indexes (including
 unique constraints) and foreign key constraints only apply to single
 tables, not to their inheritance children. This is true on both the
 referencing and referenced sides of a foreign key constraint. Thus,
 in the terms of the above example:

	
 If we declared cities.name to be
 UNIQUE or a PRIMARY KEY, this would not stop the
 capitals table from having rows with names duplicating
 rows in cities. And those duplicate rows would by
 default show up in queries from cities. In fact, by
 default capitals would have no unique constraint at all,
 and so could contain multiple rows with the same name.
 You could add a unique constraint to capitals, but this
 would not prevent duplication compared to cities.

	
 Similarly, if we were to specify that
 cities.name REFERENCES some
 other table, this constraint would not automatically propagate to
 capitals. In this case you could work around it by
 manually adding the same REFERENCES constraint to
 capitals.

	
 Specifying that another table's column REFERENCES
 cities(name) would allow the other table to contain city names, but
 not capital names. There is no good workaround for this case.

 Some functionality not implemented for inheritance hierarchies is
 implemented for declarative partitioning.
 Considerable care is needed in deciding whether partitioning with legacy
 inheritance is useful for your application.

Table Partitioning

 PostgreSQL™ supports basic table
 partitioning. This section describes why and how to implement
 partitioning as part of your database design.

Overview

 Partitioning refers to splitting what is logically one large table into
 smaller physical pieces. Partitioning can provide several benefits:

	
 Query performance can be improved dramatically in certain situations,
 particularly when most of the heavily accessed rows of the table are in a
 single partition or a small number of partitions. Partitioning
 effectively substitutes for the upper tree levels of indexes,
 making it more likely that the heavily-used parts of the indexes
 fit in memory.

	
 When queries or updates access a large percentage of a single
 partition, performance can be improved by using a
 sequential scan of that partition instead of using an
 index, which would require random-access reads scattered across the
 whole table.

	
 Bulk loads and deletes can be accomplished by adding or removing
 partitions, if the usage pattern is accounted for in the
 partitioning design. Dropping an individual partition
 using DROP TABLE, or doing ALTER TABLE
 DETACH PARTITION, is far faster than a bulk
 operation. These commands also entirely avoid the
 VACUUM overhead caused by a bulk DELETE.

	
 Seldom-used data can be migrated to cheaper and slower storage media.

 These benefits will normally be worthwhile only when a table would
 otherwise be very large. The exact point at which a table will
 benefit from partitioning depends on the application, although a
 rule of thumb is that the size of the table should exceed the physical
 memory of the database server.

 PostgreSQL™ offers built-in support for the
 following forms of partitioning:

	Range Partitioning
	
 The table is partitioned into “ranges” defined
 by a key column or set of columns, with no overlap between
 the ranges of values assigned to different partitions. For
 example, one might partition by date ranges, or by ranges of
 identifiers for particular business objects.
 Each range's bounds are understood as being inclusive at the
 lower end and exclusive at the upper end. For example, if one
 partition's range is from 1
 to 10, and the next one's range is
 from 10 to 20, then
 value 10 belongs to the second partition not
 the first.

	List Partitioning
	
 The table is partitioned by explicitly listing which key value(s)
 appear in each partition.

	Hash Partitioning
	
 The table is partitioned by specifying a modulus and a remainder for
 each partition. Each partition will hold the rows for which the hash
 value of the partition key divided by the specified modulus will
 produce the specified remainder.

 If your application needs to use other forms of partitioning not listed
 above, alternative methods such as inheritance and
 UNION ALL views can be used instead. Such methods
 offer flexibility but do not have some of the performance benefits
 of built-in declarative partitioning.

Declarative Partitioning

 PostgreSQL™ allows you to declare
 that a table is divided into partitions. The table that is divided
 is referred to as a partitioned table. The
 declaration includes the partitioning method
 as described above, plus a list of columns or expressions to be used
 as the partition key.

 The partitioned table itself is a “virtual” table having
 no storage of its own. Instead, the storage belongs
 to partitions, which are otherwise-ordinary
 tables associated with the partitioned table.
 Each partition stores a subset of the data as defined by its
 partition bounds.
 All rows inserted into a partitioned table will be routed to the
 appropriate one of the partitions based on the values of the partition
 key column(s).
 Updating the partition key of a row will cause it to be moved into a
 different partition if it no longer satisfies the partition bounds
 of its original partition.

 Partitions may themselves be defined as partitioned tables, resulting
 in sub-partitioning. Although all partitions
 must have the same columns as their partitioned parent, partitions may
 have their
 own indexes, constraints and default values, distinct from those of other
 partitions. See CREATE TABLE(7) for more details on
 creating partitioned tables and partitions.

 It is not possible to turn a regular table into a partitioned table or
 vice versa. However, it is possible to add an existing regular or
 partitioned table as a partition of a partitioned table, or remove a
 partition from a partitioned table turning it into a standalone table;
 this can simplify and speed up many maintenance processes.
 See ALTER TABLE(7) to learn more about the
 ATTACH PARTITION and DETACH PARTITION
 sub-commands.

 Partitions can also be foreign
 tables, although considerable care is needed because it is then
 the user's responsibility that the contents of the foreign table
 satisfy the partitioning rule. There are some other restrictions as
 well. See CREATE FOREIGN TABLE(7) for more
 information.

Example

 Suppose we are constructing a database for a large ice cream company.
 The company measures peak temperatures every day as well as ice cream
 sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

 We know that most queries will access just the last week's, month's or
 quarter's data, since the main use of this table will be to prepare
 online reports for management. To reduce the amount of old data that
 needs to be stored, we decide to keep only the most recent 3 years
 worth of data. At the beginning of each month we will remove the oldest
 month's data. In this situation we can use partitioning to help us meet
 all of our different requirements for the measurements table.

 To use declarative partitioning in this case, use the following steps:

	
 Create the measurement table as a partitioned
 table by specifying the PARTITION BY clause, which
 includes the partitioning method (RANGE in this
 case) and the list of column(s) to use as the partition key.

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

	
 Create partitions. Each partition's definition must specify bounds
 that correspond to the partitioning method and partition key of the
 parent. Note that specifying bounds such that the new partition's
 values would overlap with those in one or more existing partitions will
 cause an error.

 Partitions thus created are in every way normal
 PostgreSQL™
 tables (or, possibly, foreign tables). It is possible to specify a
 tablespace and storage parameters for each partition separately.

 For our example, each partition should hold one month's worth of
 data, to match the requirement of deleting one month's data at a
 time. So the commands might look like:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
 FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
 FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
 TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
 FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
 WITH (parallel_workers = 4)
 TABLESPACE fasttablespace;

 (Recall that adjacent partitions can share a bound value, since
 range upper bounds are treated as exclusive bounds.)

 If you wish to implement sub-partitioning, again specify the
 PARTITION BY clause in the commands used to create
 individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
 PARTITION BY RANGE (peaktemp);

 After creating partitions of measurement_y2006m02,
 any data inserted into measurement that is mapped to
 measurement_y2006m02 (or data that is
 directly inserted into measurement_y2006m02,
 which is allowed provided its partition constraint is satisfied)
 will be further redirected to one of its
 partitions based on the peaktemp column. The partition
 key specified may overlap with the parent's partition key, although
 care should be taken when specifying the bounds of a sub-partition
 such that the set of data it accepts constitutes a subset of what
 the partition's own bounds allow; the system does not try to check
 whether that's really the case.

 Inserting data into the parent table that does not map
 to one of the existing partitions will cause an error; an appropriate
 partition must be added manually.

 It is not necessary to manually create table constraints describing
 the partition boundary conditions for partitions. Such constraints
 will be created automatically.

	
 Create an index on the key column(s), as well as any other indexes you
 might want, on the partitioned table. (The key index is not strictly
 necessary, but in most scenarios it is helpful.)
 This automatically creates a matching index on each partition, and
 any partitions you create or attach later will also have such an
 index.
 An index or unique constraint declared on a partitioned table
 is “virtual” in the same way that the partitioned table
 is: the actual data is in child indexes on the individual partition
 tables.

CREATE INDEX ON measurement (logdate);

	
 Ensure that the enable_partition_pruning
 configuration parameter is not disabled in postgresql.conf.
 If it is, queries will not be optimized as desired.

 In the above example we would be creating a new partition each month, so
 it might be wise to write a script that generates the required DDL
 automatically.

Partition Maintenance

 Normally the set of partitions established when initially defining the
 table is not intended to remain static. It is common to want to
 remove partitions holding old data and periodically add new partitions for
 new data. One of the most important advantages of partitioning is
 precisely that it allows this otherwise painful task to be executed
 nearly instantaneously by manipulating the partition structure, rather
 than physically moving large amounts of data around.

 The simplest option for removing old data is to drop the partition that
 is no longer necessary:

DROP TABLE measurement_y2006m02;

 This can very quickly delete millions of records because it doesn't have
 to individually delete every record. Note however that the above command
 requires taking an ACCESS EXCLUSIVE lock on the parent
 table.

 Another option that is often preferable is to remove the partition from
 the partitioned table but retain access to it as a table in its own
 right. This has two forms:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;

 These allow further operations to be performed on the data before
 it is dropped. For example, this is often a useful time to back up
 the data using COPY, pg_dump, or
 similar tools. It might also be a useful time to aggregate data
 into smaller formats, perform other data manipulations, or run
 reports. The first form of the command requires an
 ACCESS EXCLUSIVE lock on the parent table.
 Adding the CONCURRENTLY qualifier as in the second
 form allows the detach operation to require only
 SHARE UPDATE EXCLUSIVE lock on the parent table, but see
 ALTER TABLE ... DETACH PARTITION
 for details on the restrictions.

 Similarly we can add a new partition to handle new data. We can create an
 empty partition in the partitioned table just as the original partitions
 were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
 TABLESPACE fasttablespace;

 As an alternative, it is sometimes more convenient to create the
 new table outside the partition structure, and attach it as a
 partition later. This allows new data to be loaded, checked, and
 transformed prior to it appearing in the partitioned table.
 Moreover, the ATTACH PARTITION operation requires
 only SHARE UPDATE EXCLUSIVE lock on the
 partitioned table, as opposed to the ACCESS
 EXCLUSIVE lock that is required by CREATE TABLE
 ... PARTITION OF, so it is more friendly to concurrent
 operations on the partitioned table.
 The CREATE TABLE ... LIKE option is helpful
 to avoid tediously repeating the parent table's definition:

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
 TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01');

 Before running the ATTACH PARTITION command, it is
 recommended to create a CHECK constraint on the table to
 be attached that matches the expected partition constraint, as
 illustrated above. That way, the system will be able to skip the scan
 which is otherwise needed to validate the implicit
 partition constraint. Without the CHECK constraint,
 the table will be scanned to validate the partition constraint while
 holding an ACCESS EXCLUSIVE lock on that partition.
 It is recommended to drop the now-redundant CHECK
 constraint after the ATTACH PARTITION is complete. If
 the table being attached is itself a partitioned table, then each of its
 sub-partitions will be recursively locked and scanned until either a
 suitable CHECK constraint is encountered or the leaf
 partitions are reached.

 Similarly, if the partitioned table has a DEFAULT
 partition, it is recommended to create a CHECK
 constraint which excludes the to-be-attached partition's constraint. If
 this is not done then the DEFAULT partition will be
 scanned to verify that it contains no records which should be located in
 the partition being attached. This operation will be performed whilst
 holding an ACCESS EXCLUSIVE lock on the
 DEFAULT partition. If the DEFAULT partition
 is itself a partitioned table, then each of its partitions will be
 recursively checked in the same way as the table being attached, as
 mentioned above.

 As explained above, it is possible to create indexes on partitioned tables
 so that they are applied automatically to the entire hierarchy.
 This is very
 convenient, as not only will the existing partitions become indexed, but
 also any partitions that are created in the future will. One limitation is
 that it's not possible to use the CONCURRENTLY
 qualifier when creating such a partitioned index. To avoid long lock
 times, it is possible to use CREATE INDEX ON ONLY
 the partitioned table; such an index is marked invalid, and the partitions
 do not get the index applied automatically. The indexes on partitions can
 be created individually using CONCURRENTLY, and then
 attached to the index on the parent using
 ALTER INDEX .. ATTACH PARTITION. Once indexes for all
 partitions are attached to the parent index, the parent index is marked
 valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX CONCURRENTLY measurement_usls_200602_idx
 ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
 ATTACH PARTITION measurement_usls_200602_idx;
...

 This technique can be used with UNIQUE and
 PRIMARY KEY constraints too; the indexes are created
 implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
 ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;
...

Limitations

 The following limitations apply to partitioned tables:

	
 To create a unique or primary key constraint on a partitioned table,
 the partition keys must not include any expressions or function calls
 and the constraint's columns must include all of the partition key
 columns. This limitation exists because the individual indexes making
 up the constraint can only directly enforce uniqueness within their own
 partitions; therefore, the partition structure itself must guarantee
 that there are not duplicates in different partitions.

	
 There is no way to create an exclusion constraint spanning the
 whole partitioned table. It is only possible to put such a
 constraint on each leaf partition individually. Again, this
 limitation stems from not being able to enforce cross-partition
 restrictions.

	
 BEFORE ROW triggers on INSERT
 cannot change which partition is the final destination for a new row.

	
 Mixing temporary and permanent relations in the same partition tree is
 not allowed. Hence, if the partitioned table is permanent, so must be
 its partitions and likewise if the partitioned table is temporary. When
 using temporary relations, all members of the partition tree have to be
 from the same session.

 Individual partitions are linked to their partitioned table using
 inheritance behind-the-scenes. However, it is not possible to use
 all of the generic features of inheritance with declaratively
 partitioned tables or their partitions, as discussed below. Notably,
 a partition cannot have any parents other than the partitioned table
 it is a partition of, nor can a table inherit from both a partitioned
 table and a regular table. That means partitioned tables and their
 partitions never share an inheritance hierarchy with regular tables.

 Since a partition hierarchy consisting of the partitioned table and its
 partitions is still an inheritance hierarchy,
 tableoid and all the normal rules of
 inheritance apply as described in the section called “Inheritance”, with
 a few exceptions:

	
 Partitions cannot have columns that are not present in the parent. It
 is not possible to specify columns when creating partitions with
 CREATE TABLE, nor is it possible to add columns to
 partitions after-the-fact using ALTER TABLE.
 Tables may be added as a partition with ALTER TABLE
 ... ATTACH PARTITION only if their columns exactly match
 the parent.

	
 Both CHECK and NOT NULL
 constraints of a partitioned table are always inherited by all its
 partitions. CHECK constraints that are marked
 NO INHERIT are not allowed to be created on
 partitioned tables.
 You cannot drop a NOT NULL constraint on a
 partition's column if the same constraint is present in the parent
 table.

	
 Using ONLY to add or drop a constraint on only
 the partitioned table is supported as long as there are no
 partitions. Once partitions exist, using ONLY
 will result in an error for any constraints other than
 UNIQUE and PRIMARY KEY.
 Instead, constraints on the partitions
 themselves can be added and (if they are not present in the parent
 table) dropped.

	
 As a partitioned table does not have any data itself, attempts to use
 TRUNCATE ONLY on a partitioned
 table will always return an error.

Partitioning Using Inheritance

 While the built-in declarative partitioning is suitable for most
 common use cases, there are some circumstances where a more flexible
 approach may be useful. Partitioning can be implemented using table
 inheritance, which allows for several features not supported
 by declarative partitioning, such as:

	
 For declarative partitioning, partitions must have exactly the same set
 of columns as the partitioned table, whereas with table inheritance,
 child tables may have extra columns not present in the parent.

	
 Table inheritance allows for multiple inheritance.

	
 Declarative partitioning only supports range, list and hash
 partitioning, whereas table inheritance allows data to be divided in a
 manner of the user's choosing. (Note, however, that if constraint
 exclusion is unable to prune child tables effectively, query performance
 might be poor.)

Example

 This example builds a partitioning structure equivalent to the
 declarative partitioning example above. Use
 the following steps:

	
 Create the “root” table, from which all of the
 “child” tables will inherit. This table will contain no data. Do not
 define any check constraints on this table, unless you intend them
 to be applied equally to all child tables. There is no point in
 defining any indexes or unique constraints on it, either. For our
 example, the root table is the measurement
 table as originally defined:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

	
 Create several “child” tables that each inherit from
 the root table. Normally, these tables will not add any columns
 to the set inherited from the root. Just as with declarative
 partitioning, these tables are in every way normal
 PostgreSQL™ tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

	
 Add non-overlapping table constraints to the child tables to
 define the allowed key values in each.

 Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

 Ensure that the constraints guarantee that there is no overlap
 between the key values permitted in different child tables. A common
 mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

 This is wrong since it is not clear which child table the key
 value 200 belongs in.
 Instead, ranges should be defined in this style:

CREATE TABLE measurement_y2006m02 (
 CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
 CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01')
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
 CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
 CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
 CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
) INHERITS (measurement);

	
 For each child table, create an index on the key column(s),
 as well as any other indexes you might want.

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);

	
 We want our application to be able to say INSERT INTO
 measurement ... and have the data be redirected into the
 appropriate child table. We can arrange that by attaching
 a suitable trigger function to the root table.
 If data will be added only to the latest child, we can
 use a very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

 After creating the function, we create a trigger which
 calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
 BEFORE INSERT ON measurement
 FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

 We must redefine the trigger function each month so that it always
 inserts into the current child table. The trigger definition does
 not need to be updated, however.

 We might want to insert data and have the server automatically
 locate the child table into which the row should be added. We
 could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2006-02-01' AND
 NEW.logdate < DATE '2006-03-01') THEN
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2006-03-01' AND
 NEW.logdate < DATE '2006-04-01') THEN
 INSERT INTO measurement_y2006m03 VALUES (NEW.*);
 ...
 ELSIF (NEW.logdate >= DATE '2008-01-01' AND
 NEW.logdate < DATE '2008-02-01') THEN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger() function!';
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

 The trigger definition is the same as before.
 Note that each IF test must exactly match the
 CHECK constraint for its child table.

 While this function is more complex than the single-month case,
 it doesn't need to be updated as often, since branches can be
 added in advance of being needed.

Note

 In practice, it might be best to check the newest child first,
 if most inserts go into that child. For simplicity, we have
 shown the trigger's tests in the same order as in other parts
 of this example.

 A different approach to redirecting inserts into the appropriate
 child table is to set up rules, instead of a trigger, on the
 root table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
DO INSTEAD
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
DO INSTEAD
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);

 A rule has significantly more overhead than a trigger, but the
 overhead is paid once per query rather than once per row, so this
 method might be advantageous for bulk-insert situations. In most
 cases, however, the trigger method will offer better performance.

 Be aware that COPY ignores rules. If you want to
 use COPY to insert data, you'll need to copy into the
 correct child table rather than directly into the root. COPY
 does fire triggers, so you can use it normally if you use the trigger
 approach.

 Another disadvantage of the rule approach is that there is no simple
 way to force an error if the set of rules doesn't cover the insertion
 date; the data will silently go into the root table instead.

	
 Ensure that the constraint_exclusion
 configuration parameter is not disabled in
 postgresql.conf; otherwise
 child tables may be accessed unnecessarily.

 As we can see, a complex table hierarchy could require a
 substantial amount of DDL. In the above example we would be creating
 a new child table each month, so it might be wise to write a script that
 generates the required DDL automatically.

Maintenance for Inheritance Partitioning

 To remove old data quickly, simply drop the child table that is no longer
 necessary:

DROP TABLE measurement_y2006m02;

 To remove the child table from the inheritance hierarchy table but retain access to
 it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

 To add a new child table to handle new data, create an empty child table
 just as the original children were created above:

CREATE TABLE measurement_y2008m02 (
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01')
) INHERITS (measurement);

 Alternatively, one may want to create and populate the new child table
 before adding it to the table hierarchy. This could allow data to be
 loaded, checked, and transformed before being made visible to queries on
 the parent table.

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');
\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

Caveats

 The following caveats apply to partitioning implemented using
 inheritance:

	
 There is no automatic way to verify that all of the
 CHECK constraints are mutually
 exclusive. It is safer to create code that generates
 child tables and creates and/or modifies associated objects than
 to write each by hand.

	
 Indexes and foreign key constraints apply to single tables and not
 to their inheritance children, hence they have some
 caveats to be aware of.

	
 The schemes shown here assume that the values of a row's key column(s)
 never change, or at least do not change enough to require it to move to another partition.
 An UPDATE that attempts
 to do that will fail because of the CHECK constraints.
 If you need to handle such cases, you can put suitable update triggers
 on the child tables, but it makes management of the structure
 much more complicated.

	
 If you are using manual VACUUM or
 ANALYZE commands, don't forget that
 you need to run them on each child table individually. A command like:

ANALYZE measurement;

 will only process the root table.

	
 INSERT statements with ON CONFLICT
 clauses are unlikely to work as expected, as the ON CONFLICT
 action is only taken in case of unique violations on the specified
 target relation, not its child relations.

	
 Triggers or rules will be needed to route rows to the desired
 child table, unless the application is explicitly aware of the
 partitioning scheme. Triggers may be complicated to write, and will
 be much slower than the tuple routing performed internally by
 declarative partitioning.

Partition Pruning

 Partition pruning is a query optimization technique
 that improves performance for declaratively partitioned tables.
 As an example:

SET enable_partition_pruning = on; -- the default
SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';

 Without partition pruning, the above query would scan each of the
 partitions of the measurement table. With
 partition pruning enabled, the planner will examine the definition
 of each partition and prove that the partition need not
 be scanned because it could not contain any rows meeting the query's
 WHERE clause. When the planner can prove this, it
 excludes (prunes) the partition from the query
 plan.

 By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's
 possible to show the difference between a plan for which partitions have
 been pruned and one for which they have not. A typical unoptimized
 plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN
---​----------------
 Aggregate (cost=188.76..188.77 rows=1 width=8)
 -> Append (cost=0.00..181.05 rows=3085 width=0)
 -> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
...
 -> Seq Scan on measurement_y2007m11 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2007m12 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

 Some or all of the partitions might use index scans instead of
 full-table sequential scans, but the point here is that there
 is no need to scan the older partitions at all to answer this query.
 When we enable partition pruning, we get a significantly
 cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN
---​----------------
 Aggregate (cost=37.75..37.76 rows=1 width=8)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

 Note that partition pruning is driven only by the constraints defined
 implicitly by the partition keys, not by the presence of indexes.
 Therefore it isn't necessary to define indexes on the key columns.
 Whether an index needs to be created for a given partition depends on
 whether you expect that queries that scan the partition will
 generally scan a large part of the partition or just a small part.
 An index will be helpful in the latter case but not the former.

 Partition pruning can be performed not only during the planning of a
 given query, but also during its execution. This is useful as it can
 allow more partitions to be pruned when clauses contain expressions
 whose values are not known at query planning time, for example,
 parameters defined in a PREPARE statement, using a
 value obtained from a subquery, or using a parameterized value on the
 inner side of a nested loop join. Partition pruning during execution
 can be performed at any of the following times:

	
 During initialization of the query plan. Partition pruning can be
 performed here for parameter values which are known during the
 initialization phase of execution. Partitions which are pruned
 during this stage will not show up in the query's
 EXPLAIN or EXPLAIN ANALYZE.
 It is possible to determine the number of partitions which were
 removed during this phase by observing the
 “Subplans Removed” property in the
 EXPLAIN output. It's important to note that any
 partitions removed by the partition pruning done at this stage are
 still locked at the beginning of execution.

	
 During actual execution of the query plan. Partition pruning may
 also be performed here to remove partitions using values which are
 only known during actual query execution. This includes values
 from subqueries and values from execution-time parameters such as
 those from parameterized nested loop joins. Since the value of
 these parameters may change many times during the execution of the
 query, partition pruning is performed whenever one of the
 execution parameters being used by partition pruning changes.
 Determining if partitions were pruned during this phase requires
 careful inspection of the loops property in
 the EXPLAIN ANALYZE output. Subplans
 corresponding to different partitions may have different values
 for it depending on how many times each of them was pruned during
 execution. Some may be shown as (never executed)
 if they were pruned every time.

 Partition pruning can be disabled using the
 enable_partition_pruning setting.

Partitioning and Constraint Exclusion

 Constraint exclusion is a query optimization
 technique similar to partition pruning. While it is primarily used
 for partitioning implemented using the legacy inheritance method, it can be
 used for other purposes, including with declarative partitioning.

 Constraint exclusion works in a very similar way to partition
 pruning, except that it uses each table's CHECK
 constraints — which gives it its name — whereas partition
 pruning uses the table's partition bounds, which exist only in the
 case of declarative partitioning. Another difference is that
 constraint exclusion is only applied at plan time; there is no attempt
 to remove partitions at execution time.

 The fact that constraint exclusion uses CHECK
 constraints, which makes it slow compared to partition pruning, can
 sometimes be used as an advantage: because constraints can be defined
 even on declaratively-partitioned tables, in addition to their internal
 partition bounds, constraint exclusion may be able
 to elide additional partitions from the query plan.

 The default (and recommended) setting of
 constraint_exclusion is neither
 on nor off, but an intermediate setting
 called partition, which causes the technique to be
 applied only to queries that are likely to be working on inheritance partitioned
 tables. The on setting causes the planner to examine
 CHECK constraints in all queries, even simple ones that
 are unlikely to benefit.

 The following caveats apply to constraint exclusion:

	
 Constraint exclusion is only applied during query planning, unlike
 partition pruning, which can also be applied during query execution.

	
 Constraint exclusion only works when the query's WHERE
 clause contains constants (or externally supplied parameters).
 For example, a comparison against a non-immutable function such as
 CURRENT_TIMESTAMP cannot be optimized, since the
 planner cannot know which child table the function's value might fall
 into at run time.

	
 Keep the partitioning constraints simple, else the planner may not be
 able to prove that child tables might not need to be visited. Use simple
 equality conditions for list partitioning, or simple
 range tests for range partitioning, as illustrated in the preceding
 examples. A good rule of thumb is that partitioning constraints should
 contain only comparisons of the partitioning column(s) to constants
 using B-tree-indexable operators, because only B-tree-indexable
 column(s) are allowed in the partition key.

	
 All constraints on all children of the parent table are examined
 during constraint exclusion, so large numbers of children are likely
 to increase query planning time considerably. So the legacy
 inheritance based partitioning will work well with up to perhaps a
 hundred child tables; don't try to use many thousands of children.

Best Practices for Declarative Partitioning

 The choice of how to partition a table should be made carefully, as the
 performance of query planning and execution can be negatively affected by
 poor design.

 One of the most critical design decisions will be the column or columns
 by which you partition your data. Often the best choice will be to
 partition by the column or set of columns which most commonly appear in
 WHERE clauses of queries being executed on the
 partitioned table. WHERE clauses that are compatible
 with the partition bound constraints can be used to prune unneeded
 partitions. However, you may be forced into making other decisions by
 requirements for the PRIMARY KEY or a
 UNIQUE constraint. Removal of unwanted data is also a
 factor to consider when planning your partitioning strategy. An entire
 partition can be detached fairly quickly, so it may be beneficial to
 design the partition strategy in such a way that all data to be removed
 at once is located in a single partition.

 Choosing the target number of partitions that the table should be divided
 into is also a critical decision to make. Not having enough partitions
 may mean that indexes remain too large and that data locality remains poor
 which could result in low cache hit ratios. However, dividing the table
 into too many partitions can also cause issues. Too many partitions can
 mean longer query planning times and higher memory consumption during both
 query planning and execution, as further described below.
 When choosing how to partition your table,
 it's also important to consider what changes may occur in the future. For
 example, if you choose to have one partition per customer and you
 currently have a small number of large customers, consider the
 implications if in several years you instead find yourself with a large
 number of small customers. In this case, it may be better to choose to
 partition by HASH and choose a reasonable number of
 partitions rather than trying to partition by LIST and
 hoping that the number of customers does not increase beyond what it is
 practical to partition the data by.

 Sub-partitioning can be useful to further divide partitions that are
 expected to become larger than other partitions.
 Another option is to use range partitioning with multiple columns in
 the partition key.
 Either of these can easily lead to excessive numbers of partitions,
 so restraint is advisable.

 It is important to consider the overhead of partitioning during
 query planning and execution. The query planner is generally able to
 handle partition hierarchies with up to a few thousand partitions fairly
 well, provided that typical queries allow the query planner to prune all
 but a small number of partitions. Planning times become longer and memory
 consumption becomes higher when more partitions remain after the planner
 performs partition pruning. Another
 reason to be concerned about having a large number of partitions is that
 the server's memory consumption may grow significantly over
 time, especially if many sessions touch large numbers of partitions.
 That's because each partition requires its metadata to be loaded into the
 local memory of each session that touches it.

 With data warehouse type workloads, it can make sense to use a larger
 number of partitions than with an OLTP type workload.
 Generally, in data warehouses, query planning time is less of a concern as
 the majority of processing time is spent during query execution. With
 either of these two types of workload, it is important to make the right
 decisions early, as re-partitioning large quantities of data can be
 painfully slow. Simulations of the intended workload are often beneficial
 for optimizing the partitioning strategy. Never just assume that more
 partitions are better than fewer partitions, nor vice-versa.

Foreign Data

 PostgreSQL™ implements portions of the SQL/MED
 specification, allowing you to access data that resides outside
 PostgreSQL using regular SQL queries. Such data is referred to as
 foreign data. (Note that this usage is not to be confused
 with foreign keys, which are a type of constraint within the database.)

 Foreign data is accessed with help from a
 foreign data wrapper. A foreign data wrapper is a
 library that can communicate with an external data source, hiding the
 details of connecting to the data source and obtaining data from it.
 There are some foreign data wrappers available as contrib
 modules; see Appendix F, Additional Supplied Modules and Extensions. Other kinds of foreign data
 wrappers might be found as third party products. If none of the existing
 foreign data wrappers suit your needs, you can write your own; see Chapter 59, Writing a Foreign Data Wrapper.

 To access foreign data, you need to create a foreign server
 object, which defines how to connect to a particular external data source
 according to the set of options used by its supporting foreign data
 wrapper. Then you need to create one or more foreign
 tables, which define the structure of the remote data. A
 foreign table can be used in queries just like a normal table, but a
 foreign table has no storage in the PostgreSQL server. Whenever it is
 used, PostgreSQL™ asks the foreign data wrapper
 to fetch data from the external source, or transmit data to the external
 source in the case of update commands.

 Accessing remote data may require authenticating to the external
 data source. This information can be provided by a
 user mapping, which can provide additional data
 such as user names and passwords based
 on the current PostgreSQL™ role.

 For additional information, see
 CREATE FOREIGN DATA WRAPPER(7),
 CREATE SERVER(7),
 CREATE USER MAPPING(7),
 CREATE FOREIGN TABLE(7), and
 IMPORT FOREIGN SCHEMA(7).

Other Database Objects

 Tables are the central objects in a relational database structure,
 because they hold your data. But they are not the only objects
 that exist in a database. Many other kinds of objects can be
 created to make the use and management of the data more efficient
 or convenient. They are not discussed in this chapter, but we give
 you a list here so that you are aware of what is possible:

	
 Views

	
 Functions, procedures, and operators

	
 Data types and domains

	
 Triggers and rewrite rules

 Detailed information on
 these topics appears in Part V, “Server Programming”.

Dependency Tracking

 When you create complex database structures involving many tables
 with foreign key constraints, views, triggers, functions, etc. you
 implicitly create a net of dependencies between the objects.
 For instance, a table with a foreign key constraint depends on the
 table it references.

 To ensure the integrity of the entire database structure,
 PostgreSQL™ makes sure that you cannot
 drop objects that other objects still depend on. For example,
 attempting to drop the products table we considered in the section called “Foreign Keys”, with the orders table depending on
 it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

 The error message contains a useful hint: if you do not want to
 bother deleting all the dependent objects individually, you can run:

DROP TABLE products CASCADE;

 and all the dependent objects will be removed, as will any objects
 that depend on them, recursively. In this case, it doesn't remove
 the orders table, it only removes the foreign key constraint.
 It stops there because nothing depends on the foreign key constraint.
 (If you want to check what DROP ... CASCADE will do,
 run DROP without CASCADE and read the
 DETAIL output.)

 Almost all DROP commands in PostgreSQL™ support
 specifying CASCADE. Of course, the nature of
 the possible dependencies varies with the type of the object. You
 can also write RESTRICT instead of
 CASCADE to get the default behavior, which is to
 prevent dropping objects that any other objects depend on.

Note

 According to the SQL standard, specifying either
 RESTRICT or CASCADE is
 required in a DROP command. No database system actually
 enforces that rule, but whether the default behavior
 is RESTRICT or CASCADE varies
 across systems.

 If a DROP command lists multiple
 objects, CASCADE is only required when there are
 dependencies outside the specified group. For example, when saying
 DROP TABLE tab1, tab2 the existence of a foreign
 key referencing tab1 from tab2 would not mean
 that CASCADE is needed to succeed.

 For a user-defined function or procedure whose body is defined as a string
 literal, PostgreSQL™ tracks
 dependencies associated with the function's externally-visible properties,
 such as its argument and result types, but not dependencies
 that could only be known by examining the function body. As an example,
 consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
 'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
 'SELECT note FROM my_colors WHERE color = $1'
 LANGUAGE SQL;

 (See the section called “Query Language (SQL) Functions” for an explanation of SQL-language
 functions.) PostgreSQL™ will be aware that
 the get_color_note function depends on the rainbow
 type: dropping the type would force dropping the function, because its
 argument type would no longer be defined. But PostgreSQL™
 will not consider get_color_note to depend on
 the my_colors table, and so will not drop the function if
 the table is dropped. While there are disadvantages to this approach,
 there are also benefits. The function is still valid in some sense if the
 table is missing, though executing it would cause an error; creating a new
 table of the same name would allow the function to work again.

 On the other hand, for a SQL-language function or procedure whose body
 is written in SQL-standard style, the body is parsed at function
 definition time and all dependencies recognized by the parser are
 stored. Thus, if we write the function above as

CREATE FUNCTION get_color_note (rainbow) RETURNS text
BEGIN ATOMIC
 SELECT note FROM my_colors WHERE color = $1;
END;

 then the function's dependency on the my_colors
 table will be known and enforced by DROP.

Chapter 6. Data Manipulation

 The previous chapter discussed how to create tables and other
 structures to hold your data. Now it is time to fill the tables
 with data. This chapter covers how to insert, update, and delete
 table data. The chapter
 after this will finally explain how to extract your long-lost data
 from the database.

Inserting Data

 When a table is created, it contains no data. The first thing to
 do before a database can be of much use is to insert data. Data is
 inserted one row at a time. You can also insert more than one row
 in a single command, but it is not possible to insert something that
 is not a complete row. Even if you know only some column values, a
 complete row must be created.

 To create a new row, use the INSERT(7)
 command. The command requires the
 table name and column values. For
 example, consider the products table from Chapter 5, Data Definition:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

 An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

 The data values are listed in the order in which the columns appear
 in the table, separated by commas. Usually, the data values will
 be literals (constants), but scalar expressions are also allowed.

 The above syntax has the drawback that you need to know the order
 of the columns in the table. To avoid this you can also list the
 columns explicitly. For example, both of the following commands
 have the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

 Many users consider it good practice to always list the column
 names.

 If you don't have values for all the columns, you can omit some of
 them. In that case, the columns will be filled with their default
 values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

 The second form is a PostgreSQL™
 extension. It fills the columns from the left with as many values
 as are given, and the rest will be defaulted.

 For clarity, you can also request default values explicitly, for
 individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

 You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

 It is also possible to insert the result of a query (which might be no
 rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
 SELECT product_no, name, price FROM new_products
 WHERE release_date = 'today';

 This provides the full power of the SQL query mechanism (Chapter 7, Queries) for computing the rows to be inserted.

Tip

 When inserting a lot of data at the same time, consider using
 the COPY(7) command.
 It is not as flexible as the INSERT(7)
 command, but is more efficient. Refer
 to the section called “Populating a Database” for more information on improving
 bulk loading performance.

Updating Data

 The modification of data that is already in the database is
 referred to as updating. You can update individual rows, all the
 rows in a table, or a subset of all rows. Each column can be
 updated separately; the other columns are not affected.

 To update existing rows, use the UPDATE(7)
 command. This requires
 three pieces of information:

	The name of the table and column to update

	The new value of the column

	Which row(s) to update

 Recall from Chapter 5, Data Definition that SQL does not, in general,
 provide a unique identifier for rows. Therefore it is not
 always possible to directly specify which row to update.
 Instead, you specify which conditions a row must meet in order to
 be updated. Only if you have a primary key in the table (independent of
 whether you declared it or not) can you reliably address individual rows
 by choosing a condition that matches the primary key.
 Graphical database access tools rely on this fact to allow you to
 update rows individually.

 For example, this command updates all products that have a price of
 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

 This might cause zero, one, or many rows to be updated. It is not
 an error to attempt an update that does not match any rows.

 Let's look at that command in detail. First is the key word
 UPDATE followed by the table name. As usual,
 the table name can be schema-qualified, otherwise it is looked up
 in the path. Next is the key word SET followed
 by the column name, an equal sign, and the new column value. The
 new column value can be any scalar expression, not just a constant.
 For example, if you want to raise the price of all products by 10%
 you could use:

UPDATE products SET price = price * 1.10;

 As you see, the expression for the new value can refer to the existing
 value(s) in the row. We also left out the WHERE clause.
 If it is omitted, it means that all rows in the table are updated.
 If it is present, only those rows that match the
 WHERE condition are updated. Note that the equals
 sign in the SET clause is an assignment while
 the one in the WHERE clause is a comparison, but
 this does not create any ambiguity. Of course, the
 WHERE condition does
 not have to be an equality test. Many other operators are
 available (see Chapter 9, Functions and Operators). But the expression
 needs to evaluate to a Boolean result.

 You can update more than one column in an
 UPDATE command by listing more than one
 assignment in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

Deleting Data

 So far we have explained how to add data to tables and how to
 change data. What remains is to discuss how to remove data that is
 no longer needed. Just as adding data is only possible in whole
 rows, you can only remove entire rows from a table. In the
 previous section we explained that SQL does not provide a way to
 directly address individual rows. Therefore, removing rows can
 only be done by specifying conditions that the rows to be removed
 have to match. If you have a primary key in the table then you can
 specify the exact row. But you can also remove groups of rows
 matching a condition, or you can remove all rows in the table at
 once.

 You use the DELETE(7)
 command to remove rows; the syntax is very similar to the
 UPDATE(7) command. For instance, to remove all
 rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

 If you simply write:

DELETE FROM products;

 then all rows in the table will be deleted! Caveat programmer.

Returning Data from Modified Rows

 Sometimes it is useful to obtain data from modified rows while they are
 being manipulated. The INSERT, UPDATE,
 and DELETE commands all have an
 optional RETURNING clause that supports this. Use
 of RETURNING avoids performing an extra database query to
 collect the data, and is especially valuable when it would otherwise be
 difficult to identify the modified rows reliably.

 The allowed contents of a RETURNING clause are the same as
 a SELECT command's output list
 (see the section called “Select Lists”). It can contain column
 names of the command's target table, or value expressions using those
 columns. A common shorthand is RETURNING *, which selects
 all columns of the target table in order.

 In an INSERT, the data available to RETURNING is
 the row as it was inserted. This is not so useful in trivial inserts,
 since it would just repeat the data provided by the client. But it can
 be very handy when relying on computed default values. For example,
 when using a serial
 column to provide unique identifiers, RETURNING can return
 the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

 The RETURNING clause is also very useful
 with INSERT ... SELECT.

 In an UPDATE, the data available to RETURNING is
 the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
 WHERE price <= 99.99
 RETURNING name, price AS new_price;

 In a DELETE, the data available to RETURNING is
 the content of the deleted row. For example:

DELETE FROM products
 WHERE obsoletion_date = 'today'
 RETURNING *;

 If there are triggers (Chapter 39, Triggers) on the target table,
 the data available to RETURNING is the row as modified by
 the triggers. Thus, inspecting columns computed by triggers is another
 common use-case for RETURNING.

Chapter 7. Queries

 The previous chapters explained how to create tables, how to fill
 them with data, and how to manipulate that data. Now we finally
 discuss how to retrieve the data from the database.

Overview

 The process of retrieving or the command to retrieve data from a
 database is called a query. In SQL the
 SELECT command is
 used to specify queries. The general syntax of the
 SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

 The following sections describe the details of the select list, the
 table expression, and the sort specification. WITH
 queries are treated last since they are an advanced feature.

 A simple kind of query has the form:

SELECT * FROM table1;

 Assuming that there is a table called table1,
 this command would retrieve all rows and all user-defined columns from
 table1. (The method of retrieval depends on the
 client application. For example, the
 psql program will display an ASCII-art
 table on the screen, while client libraries will offer functions to
 extract individual values from the query result.) The select list
 specification * means all columns that the table
 expression happens to provide. A select list can also select a
 subset of the available columns or make calculations using the
 columns. For example, if
 table1 has columns named a,
 b, and c (and perhaps others) you can make
 the following query:

SELECT a, b + c FROM table1;

 (assuming that b and c are of a numerical
 data type).
 See the section called “Select Lists” for more details.

 FROM table1 is a simple kind of
 table expression: it reads just one table. In general, table
 expressions can be complex constructs of base tables, joins, and
 subqueries. But you can also omit the table expression entirely and
 use the SELECT command as a calculator:

SELECT 3 * 4;

 This is more useful if the expressions in the select list return
 varying results. For example, you could call a function this way:

SELECT random();

Table Expressions

 A table expression computes a table. The
 table expression contains a FROM clause that is
 optionally followed by WHERE, GROUP BY, and
 HAVING clauses. Trivial table expressions simply refer
 to a table on disk, a so-called base table, but more complex
 expressions can be used to modify or combine base tables in various
 ways.

 The optional WHERE, GROUP BY, and
 HAVING clauses in the table expression specify a
 pipeline of successive transformations performed on the table
 derived in the FROM clause. All these transformations
 produce a virtual table that provides the rows that are passed to
 the select list to compute the output rows of the query.

The FROM Clause

 The FROM clause derives a
 table from one or more other tables given in a comma-separated
 table reference list.

FROM table_reference [, table_reference [, ...]]

 A table reference can be a table name (possibly schema-qualified),
 or a derived table such as a subquery, a JOIN construct, or
 complex combinations of these. If more than one table reference is
 listed in the FROM clause, the tables are cross-joined
 (that is, the Cartesian product of their rows is formed; see below).
 The result of the FROM list is an intermediate virtual
 table that can then be subject to
 transformations by the WHERE, GROUP BY,
 and HAVING clauses and is finally the result of the
 overall table expression.

 When a table reference names a table that is the parent of a
 table inheritance hierarchy, the table reference produces rows of
 not only that table but all of its descendant tables, unless the
 key word ONLY precedes the table name. However, the
 reference produces only the columns that appear in the named table
 — any columns added in subtables are ignored.

 Instead of writing ONLY before the table name, you can write
 * after the table name to explicitly specify that descendant
 tables are included. There is no real reason to use this syntax any more,
 because searching descendant tables is now always the default behavior.
 However, it is supported for compatibility with older releases.

Joined Tables

 A joined table is a table derived from two other (real or
 derived) tables according to the rules of the particular join
 type. Inner, outer, and cross-joins are available.
 The general syntax of a joined table is

T1 join_type T2 [join_condition]

 Joins of all types can be chained together, or nested: either or
 both T1 and
 T2 can be joined tables. Parentheses
 can be used around JOIN clauses to control the join
 order. In the absence of parentheses, JOIN clauses
 nest left-to-right.

Join Types
	Cross join

	
T1 CROSS JOIN T2

 For every possible combination of rows from
 T1 and
 T2 (i.e., a Cartesian product),
 the joined table will contain a
 row consisting of all columns in T1
 followed by all columns in T2. If
 the tables have N and M rows respectively, the joined
 table will have N * M rows.

 FROM T1 CROSS JOIN
 T2 is equivalent to
 FROM T1 INNER JOIN
 T2 ON TRUE (see below).
 It is also equivalent to
 FROM T1,
 T2.

Note

 This latter equivalence does not hold exactly when more than two
 tables appear, because JOIN binds more tightly than
 comma. For example
 FROM T1 CROSS JOIN
 T2 INNER JOIN T3
 ON condition
 is not the same as
 FROM T1,
 T2 INNER JOIN T3
 ON condition
 because the condition can
 reference T1 in the first case but not
 the second.

	Qualified joins

	
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

 The words INNER and
 OUTER are optional in all forms.
 INNER is the default;
 LEFT, RIGHT, and
 FULL imply an outer join.

 The join condition is specified in the
 ON or USING clause, or implicitly by
 the word NATURAL. The join condition determines
 which rows from the two source tables are considered to
 “match”, as explained in detail below.

 The possible types of qualified join are:

	INNER JOIN
	
 For each row R1 of T1, the joined table has a row for each
 row in T2 that satisfies the join condition with R1.

	LEFT OUTER JOIN

	
 First, an inner join is performed. Then, for each row in
 T1 that does not satisfy the join condition with any row in
 T2, a joined row is added with null values in columns of
 T2. Thus, the joined table always has at least
 one row for each row in T1.

	RIGHT OUTER JOIN

	
 First, an inner join is performed. Then, for each row in
 T2 that does not satisfy the join condition with any row in
 T1, a joined row is added with null values in columns of
 T1. This is the converse of a left join: the result table
 will always have a row for each row in T2.

	FULL OUTER JOIN
	
 First, an inner join is performed. Then, for each row in
 T1 that does not satisfy the join condition with any row in
 T2, a joined row is added with null values in columns of
 T2. Also, for each row of T2 that does not satisfy the
 join condition with any row in T1, a joined row with null
 values in the columns of T1 is added.

 The ON clause is the most general kind of join
 condition: it takes a Boolean value expression of the same
 kind as is used in a WHERE clause. A pair of rows
 from T1 and T2 match if the
 ON expression evaluates to true.

 The USING clause is a shorthand that allows you to take
 advantage of the specific situation where both sides of the join use
 the same name for the joining column(s). It takes a
 comma-separated list of the shared column names
 and forms a join condition that includes an equality comparison
 for each one. For example, joining T1
 and T2 with USING (a, b) produces
 the join condition ON T1.a
 = T2.a AND T1.b
 = T2.b.

 Furthermore, the output of JOIN USING suppresses
 redundant columns: there is no need to print both of the matched
 columns, since they must have equal values. While JOIN
 ON produces all columns from T1 followed by all
 columns from T2, JOIN USING produces one
 output column for each of the listed column pairs (in the listed
 order), followed by any remaining columns from T1,
 followed by any remaining columns from T2.

 Finally, NATURAL is a shorthand form of
 USING: it forms a USING list
 consisting of all column names that appear in both
 input tables. As with USING, these columns appear
 only once in the output table. If there are no common
 column names, NATURAL JOIN behaves like
 JOIN ... ON TRUE, producing a cross-product join.

Note

 USING is reasonably safe from column changes
 in the joined relations since only the listed columns
 are combined. NATURAL is considerably more risky since
 any schema changes to either relation that cause a new matching
 column name to be present will cause the join to combine that new
 column as well.

 To put this together, assume we have tables t1:

 num | name
-----+------
 1 | a
 2 | b
 3 | c

 and t2:

 num | value
-----+-------
 1 | xxx
 3 | yyy
 5 | zzz

 then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 1 | a | 3 | yyy
 1 | a | 5 | zzz
 2 | b | 1 | xxx
 2 | b | 3 | yyy
 2 | b | 5 | zzz
 3 | c | 1 | xxx
 3 | c | 3 | yyy
 3 | c | 5 | zzz
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 2 | b |
 3 | c | yyy
(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
 | | 5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
 | | 5 | zzz
(4 rows)

 The join condition specified with ON can also contain
 conditions that do not relate directly to the join. This can
 prove useful for some queries but needs to be thought out
 carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | |
(3 rows)

 Notice that placing the restriction in the WHERE clause
 produces a different result:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
(1 row)

 This is because a restriction placed in the ON
 clause is processed before the join, while
 a restriction placed in the WHERE clause is processed
 after the join.
 That does not matter with inner joins, but it matters a lot with outer
 joins.

Table and Column Aliases

 A temporary name can be given to tables and complex table
 references to be used for references to the derived table in
 the rest of the query. This is called a table
 alias.

 To create a table alias, write

FROM table_reference AS alias

 or

FROM table_reference alias

 The AS key word is optional noise.
 alias can be any identifier.

 A typical application of table aliases is to assign short
 identifiers to long table names to keep the join clauses
 readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

 The alias becomes the new name of the table reference so far as the
 current query is concerned — it is not allowed to refer to the
 table by the original name elsewhere in the query. Thus, this is not
 valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

 Table aliases are mainly for notational convenience, but it is
 necessary to use them when joining a table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

 Parentheses are used to resolve ambiguities. In the following example,
 the first statement assigns the alias b to the second
 instance of my_table, but the second statement assigns the
 alias to the result of the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

 Another form of table aliasing gives temporary names to the columns of
 the table, as well as the table itself:

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

 If fewer column aliases are specified than the actual table has
 columns, the remaining columns are not renamed. This syntax is
 especially useful for self-joins or subqueries.

 When an alias is applied to the output of a JOIN
 clause, the alias hides the original
 name(s) within the JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

 is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

 is not valid; the table alias a is not visible
 outside the alias c.

Subqueries

 Subqueries specifying a derived table must be enclosed in
 parentheses. They may be assigned a table alias name, and optionally
 column alias names (as in the section called “Table and Column Aliases”).
 For example:

FROM (SELECT * FROM table1) AS alias_name

 This example is equivalent to FROM table1 AS
 alias_name. More interesting cases, which cannot be
 reduced to a plain join, arise when the subquery involves
 grouping or aggregation.

 A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
 AS names(first, last)

 Again, a table alias is optional. Assigning alias names to the columns
 of the VALUES list is optional, but is good practice.
 For more information see the section called “VALUES Lists”.

 According to the SQL standard, a table alias name must be supplied
 for a subquery. PostgreSQL™
 allows AS and the alias to be omitted, but
 writing one is good practice in SQL code that might be ported to
 another system.

Table Functions

 Table functions are functions that produce a set of rows, made up
 of either base data types (scalar types) or composite data types
 (table rows). They are used like a table, view, or subquery in
 the FROM clause of a query. Columns returned by table
 functions can be included in SELECT,
 JOIN, or WHERE clauses in the same manner
 as columns of a table, view, or subquery.

 Table functions may also be combined using the ROWS FROM
 syntax, with the results returned in parallel columns; the number of
 result rows in this case is that of the largest function result, with
 smaller results padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ...])]]

 If the WITH ORDINALITY clause is specified, an
 additional column of type bigint will be added to the
 function result columns. This column numbers the rows of the function
 result set, starting from 1. (This is a generalization of the
 SQL-standard syntax for UNNEST ... WITH ORDINALITY.)
 By default, the ordinal column is called ordinality, but
 a different column name can be assigned to it using
 an AS clause.

 The special table function UNNEST may be called with
 any number of array parameters, and it returns a corresponding number of
 columns, as if UNNEST
 (the section called “Array Functions and Operators”) had been called on each parameter
 separately and combined using the ROWS FROM construct.

UNNEST(array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ...])]]

 If no table_alias is specified, the function
 name is used as the table name; in the case of a ROWS FROM()
 construct, the first function's name is used.

 If column aliases are not supplied, then for a function returning a base
 data type, the column name is also the same as the function name. For a
 function returning a composite type, the result columns get the names
 of the individual attributes of the type.

 Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
 WHERE foosubid IN (
 SELECT foosubid
 FROM getfoo(foo.fooid) z
 WHERE z.fooid = foo.fooid
);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

 In some cases it is useful to define table functions that can
 return different column sets depending on how they are invoked.
 To support this, the table function can be declared as returning
 the pseudo-type record with no OUT
 parameters. When such a function is used in
 a query, the expected row structure must be specified in the
 query itself, so that the system can know how to parse and plan
 the query. This syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ...]) [, ...])

 When not using the ROWS FROM() syntax,
 the column_definition list replaces the column
 alias list that could otherwise be attached to the FROM
 item; the names in the column definitions serve as column aliases.
 When using the ROWS FROM() syntax,
 a column_definition list can be attached to
 each member function separately; or if there is only one member function
 and no WITH ORDINALITY clause,
 a column_definition list can be written in
 place of a column alias list following ROWS FROM().

 Consider this example:

SELECT *
 FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

 The dblink(3) function
 (part of the dblink module) executes
 a remote query. It is declared to return
 record since it might be used for any kind of query.
 The actual column set must be specified in the calling query so
 that the parser knows, for example, what * should
 expand to.

 This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
 (
 json_to_recordset('[{"a":40,"b":"foo"},{"a":"100","b":"bar"}]')
 AS (a INTEGER, b TEXT),
 generate_series(1, 3)
) AS x (p, q, s)
ORDER BY p;

 p | q | s
-----+-----+---
 40 | foo | 1
 100 | bar | 2
 | | 3

 It joins two functions into a single FROM
 target. json_to_recordset() is instructed
 to return two columns, the first integer
 and the second text. The result of
 generate_series() is used directly.
 The ORDER BY clause sorts the column values
 as integers.

LATERAL Subqueries

 Subqueries appearing in FROM can be
 preceded by the key word LATERAL. This allows them to
 reference columns provided by preceding FROM items.
 (Without LATERAL, each subquery is
 evaluated independently and so cannot cross-reference any other
 FROM item.)

 Table functions appearing in FROM can also be
 preceded by the key word LATERAL, but for functions the
 key word is optional; the function's arguments can contain references
 to columns provided by preceding FROM items in any case.

 A LATERAL item can appear at the top level in the
 FROM list, or within a JOIN tree. In the latter
 case it can also refer to any items that are on the left-hand side of a
 JOIN that it is on the right-hand side of.

 When a FROM item contains LATERAL
 cross-references, evaluation proceeds as follows: for each row of the
 FROM item providing the cross-referenced column(s), or
 set of rows of multiple FROM items providing the
 columns, the LATERAL item is evaluated using that
 row or row set's values of the columns. The resulting row(s) are
 joined as usual with the rows they were computed from. This is
 repeated for each row or set of rows from the column source table(s).

 A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;

 This is not especially useful since it has exactly the same result as
 the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

 LATERAL is primarily useful when the cross-referenced
 column is necessary for computing the row(s) to be joined. A common
 application is providing an argument value for a set-returning function.
 For example, supposing that vertices(polygon) returns the
 set of vertices of a polygon, we could identify close-together vertices
 of polygons stored in a table with:

SELECT p1.id, p2.id, v1, v2
FROM polygons p1, polygons p2,
 LATERAL vertices(p1.poly) v1,
 LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

 This query could also be written

SELECT p1.id, p2.id, v1, v2
FROM polygons p1 CROSS JOIN LATERAL vertices(p1.poly) v1,
 polygons p2 CROSS JOIN LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

 or in several other equivalent formulations. (As already mentioned,
 the LATERAL key word is unnecessary in this example, but
 we use it for clarity.)

 It is often particularly handy to LEFT JOIN to a
 LATERAL subquery, so that source rows will appear in
 the result even if the LATERAL subquery produces no
 rows for them. For example, if get_product_names() returns
 the names of products made by a manufacturer, but some manufacturers in
 our table currently produce no products, we could find out which ones
 those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true
WHERE pname IS NULL;

The WHERE Clause

 The syntax of the WHERE
 clause is

WHERE search_condition

 where search_condition is any value
 expression (see the section called “Value Expressions”) that
 returns a value of type boolean.

 After the processing of the FROM clause is done, each
 row of the derived virtual table is checked against the search
 condition. If the result of the condition is true, the row is
 kept in the output table, otherwise (i.e., if the result is
 false or null) it is discarded. The search condition typically
 references at least one column of the table generated in the
 FROM clause; this is not required, but otherwise the
 WHERE clause will be fairly useless.

Note

 The join condition of an inner join can be written either in
 the WHERE clause or in the JOIN clause.
 For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

 and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

 or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

 Which one of these you use is mainly a matter of style. The
 JOIN syntax in the FROM clause is
 probably not as portable to other SQL database management systems,
 even though it is in the SQL standard. For
 outer joins there is no choice: they must be done in
 the FROM clause. The ON or USING
 clause of an outer join is not equivalent to a
 WHERE condition, because it results in the addition
 of rows (for unmatched input rows) as well as the removal of rows
 in the final result.

 Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

 fdt is the table derived in the
 FROM clause. Rows that do not meet the search
 condition of the WHERE clause are eliminated from
 fdt. Notice the use of scalar subqueries as
 value expressions. Just like any other query, the subqueries can
 employ complex table expressions. Notice also how
 fdt is referenced in the subqueries.
 Qualifying c1 as fdt.c1 is only necessary
 if c1 is also the name of a column in the derived
 input table of the subquery. But qualifying the column name adds
 clarity even when it is not needed. This example shows how the column
 naming scope of an outer query extends into its inner queries.

The GROUP BY and HAVING Clauses

 After passing the WHERE filter, the derived input
 table might be subject to grouping, using the GROUP BY
 clause, and elimination of group rows using the HAVING
 clause.

SELECT select_list
 FROM ...
 [WHERE ...]
 GROUP BY grouping_column_reference [, grouping_column_reference]...

 The GROUP BY clause is
 used to group together those rows in a table that have the same
 values in all the columns listed. The order in which the columns
 are listed does not matter. The effect is to combine each set
 of rows having common values into one group row that
 represents all rows in the group. This is done to
 eliminate redundancy in the output and/or compute aggregates that
 apply to these groups. For instance:

=> SELECT * FROM test1;
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
 x

 a
 b
 c
(3 rows)

 In the second query, we could not have written SELECT *
 FROM test1 GROUP BY x, because there is no single value
 for the column y that could be associated with each
 group. The grouped-by columns can be referenced in the select list since
 they have a single value in each group.

 In general, if a table is grouped, columns that are not
 listed in GROUP BY cannot be referenced except in aggregate
 expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM test1 GROUP BY x;
 x | sum
---+-----
 a | 4
 b | 5
 c | 2
(3 rows)

 Here sum is an aggregate function that
 computes a single value over the entire group. More information
 about the available aggregate functions can be found in the section called “Aggregate Functions”.

Tip

 Grouping without aggregate expressions effectively calculates the
 set of distinct values in a column. This can also be achieved
 using the DISTINCT clause (see the section called “DISTINCT”).

 Here is another example: it calculates the total sales for each
 product (rather than the total sales of all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
 FROM products p LEFT JOIN sales s USING (product_id)
 GROUP BY product_id, p.name, p.price;

 In this example, the columns product_id,
 p.name, and p.price must be
 in the GROUP BY clause since they are referenced in
 the query select list (but see below). The column
 s.units does not have to be in the GROUP
 BY list since it is only used in an aggregate expression
 (sum(...)), which represents the sales
 of a product. For each product, the query returns a summary row about
 all sales of the product.

 If the products table is set up so that, say,
 product_id is the primary key, then it would be
 enough to group by product_id in the above example,
 since name and price would be functionally
 dependent on the product ID, and so there would be no
 ambiguity about which name and price value to return for each product
 ID group.

 In strict SQL, GROUP BY can only group by columns of
 the source table but PostgreSQL™ extends
 this to also allow GROUP BY to group by columns in the
 select list. Grouping by value expressions instead of simple
 column names is also allowed.

 If a table has been grouped using GROUP BY,
 but only certain groups are of interest, the
 HAVING clause can be used, much like a
 WHERE clause, to eliminate groups from the result.
 The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

 Expressions in the HAVING clause can refer both to
 grouped expressions and to ungrouped expressions (which necessarily
 involve an aggregate function).

 Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

 Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
 FROM products p LEFT JOIN sales s USING (product_id)
 WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
 GROUP BY product_id, p.name, p.price, p.cost
 HAVING sum(p.price * s.units) > 5000;

 In the example above, the WHERE clause is selecting
 rows by a column that is not grouped (the expression is only true for
 sales during the last four weeks), while the HAVING
 clause restricts the output to groups with total gross sales over
 5000. Note that the aggregate expressions do not necessarily need
 to be the same in all parts of the query.

 If a query contains aggregate function calls, but no GROUP BY
 clause, grouping still occurs: the result is a single group row (or
 perhaps no rows at all, if the single row is then eliminated by
 HAVING).
 The same is true if it contains a HAVING clause, even
 without any aggregate function calls or GROUP BY clause.

GROUPING SETS, CUBE, and ROLLUP

 More complex grouping operations than those described above are possible
 using the concept of grouping sets. The data selected by
 the FROM and WHERE clauses is grouped separately
 by each specified grouping set, aggregates computed for each group just as
 for simple GROUP BY clauses, and then the results returned.
 For example:

=> SELECT * FROM items_sold;
 brand | size | sales
-------+------+-------
 Foo | L | 10
 Foo | M | 20
 Bar | M | 15
 Bar | L | 5
(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand), (size), ());
 brand | size | sum
-------+------+-----
 Foo | | 30
 Bar | | 20
 | L | 15
 | M | 35
 | | 50
(5 rows)

 Each sublist of GROUPING SETS may specify zero or more columns
 or expressions and is interpreted the same way as though it were directly
 in the GROUP BY clause. An empty grouping set means that all
 rows are aggregated down to a single group (which is output even if no
 input rows were present), as described above for the case of aggregate
 functions with no GROUP BY clause.

 References to the grouping columns or expressions are replaced
 by null values in result rows for grouping sets in which those
 columns do not appear. To distinguish which grouping a particular output
 row resulted from, see Table 9.63, “Grouping Operations”.

 A shorthand notation is provided for specifying two common types of grouping set.
 A clause of the form

ROLLUP (e1, e2, e3, ...)

 represents the given list of expressions and all prefixes of the list including
 the empty list; thus it is equivalent to

GROUPING SETS (
 (e1, e2, e3, ...),
 ...
 (e1, e2),
 (e1),
 ()
)

 This is commonly used for analysis over hierarchical data; e.g., total
 salary by department, division, and company-wide total.

 A clause of the form

CUBE (e1, e2, ...)

 represents the given list and all of its possible subsets (i.e., the power
 set). Thus

CUBE (a, b, c)

 is equivalent to

GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 (b, c),
 (b),
 (c),
 ()
)

 The individual elements of a CUBE or ROLLUP
 clause may be either individual expressions, or sublists of elements in
 parentheses. In the latter case, the sublists are treated as single
 units for the purposes of generating the individual grouping sets.
 For example:

CUBE ((a, b), (c, d))

 is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b),
 (c, d),
 ()
)

 and

ROLLUP (a, (b, c), d)

 is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b, c),
 (a),
 ()
)

 The CUBE and ROLLUP constructs can be used either
 directly in the GROUP BY clause, or nested inside a
 GROUPING SETS clause. If one GROUPING SETS clause
 is nested inside another, the effect is the same as if all the elements of
 the inner clause had been written directly in the outer clause.

 If multiple grouping items are specified in a single GROUP BY
 clause, then the final list of grouping sets is the cross product of the
 individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

 is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c, d), (a, b, c, e),
 (a, b, d), (a, b, e),
 (a, c, d), (a, c, e),
 (a, d), (a, e)
)

 When specifying multiple grouping items together, the final set of grouping
 sets might contain duplicates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

 is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, b),
 (a, c),
 (a),
 (a),
 (a, c),
 (a),
 ()
)

 If these duplicates are undesirable, they can be removed using the
 DISTINCT clause directly on the GROUP BY.
 Therefore:

GROUP BY DISTINCT ROLLUP (a, b), ROLLUP (a, c)

 is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 ()
)

 This is not the same as using SELECT DISTINCT because the output
 rows may still contain duplicates. If any of the ungrouped columns contains NULL,
 it will be indistinguishable from the NULL used when that same column is grouped.

Note

 The construct (a, b) is normally recognized in expressions as
 a row constructor.
 Within the GROUP BY clause, this does not apply at the top
 levels of expressions, and (a, b) is parsed as a list of
 expressions as described above. If for some reason you need
 a row constructor in a grouping expression, use ROW(a, b).

Window Function Processing

 If the query contains any window functions (see
 the section called “Window Functions”,
 the section called “Window Functions” and
 the section called “Window Function Calls”), these functions are evaluated
 after any grouping, aggregation, and HAVING filtering is
 performed. That is, if the query uses any aggregates, GROUP
 BY, or HAVING, then the rows seen by the window functions
 are the group rows instead of the original table rows from
 FROM/WHERE.

 When multiple window functions are used, all the window functions having
 equivalent PARTITION BY and ORDER BY
 clauses in their window definitions are guaranteed to see the same
 ordering of the input rows, even if the ORDER BY does
 not uniquely determine the ordering.
 However, no guarantees are made about the evaluation of functions having
 different PARTITION BY or ORDER BY specifications.
 (In such cases a sort step is typically required between the passes of
 window function evaluations, and the sort is not guaranteed to preserve
 ordering of rows that its ORDER BY sees as equivalent.)

 Currently, window functions always require presorted data, and so the
 query output will be ordered according to one or another of the window
 functions' PARTITION BY/ORDER BY clauses.
 It is not recommended to rely on this, however. Use an explicit
 top-level ORDER BY clause if you want to be sure the
 results are sorted in a particular way.

Select Lists

 As shown in the previous section,
 the table expression in the SELECT command
 constructs an intermediate virtual table by possibly combining
 tables, views, eliminating rows, grouping, etc. This table is
 finally passed on to processing by the select list. The select
 list determines which columns of the
 intermediate table are actually output.

Select-List Items

 The simplest kind of select list is * which
 emits all columns that the table expression produces. Otherwise,
 a select list is a comma-separated list of value expressions (as
 defined in the section called “Value Expressions”). For instance, it
 could be a list of column names:

SELECT a, b, c FROM ...

 The columns names a, b, and c
 are either the actual names of the columns of tables referenced
 in the FROM clause, or the aliases given to them as
 explained in the section called “Table and Column Aliases”. The name
 space available in the select list is the same as in the
 WHERE clause, unless grouping is used, in which case
 it is the same as in the HAVING clause.

 If more than one table has a column of the same name, the table
 name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

 When working with multiple tables, it can also be useful to ask for
 all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...

 See the section called “Using Composite Types in Queries” for more about
 the table_name.* notation.

 If an arbitrary value expression is used in the select list, it
 conceptually adds a new virtual column to the returned table. The
 value expression is evaluated once for each result row, with
 the row's values substituted for any column references. But the
 expressions in the select list do not have to reference any
 columns in the table expression of the FROM clause;
 they can be constant arithmetic expressions, for instance.

Column Labels

 The entries in the select list can be assigned names for subsequent
 processing, such as for use in an ORDER BY clause
 or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

 If no output column name is specified using AS,
 the system assigns a default column name. For simple column references,
 this is the name of the referenced column. For function
 calls, this is the name of the function. For complex expressions,
 the system will generate a generic name.

 The AS key word is usually optional, but in some
 cases where the desired column name matches a
 PostgreSQL™ key word, you must write
 AS or double-quote the column name in order to
 avoid ambiguity.
 (Appendix C, SQL Key Words shows which key words
 require AS to be used as a column label.)
 For example, FROM is one such key word, so this
 does not work:

SELECT a from, b + c AS sum FROM ...

 but either of these do:

SELECT a AS from, b + c AS sum FROM ...
SELECT a "from", b + c AS sum FROM ...

 For greatest safety against possible
 future key word additions, it is recommended that you always either
 write AS or double-quote the output column name.

Note

 The naming of output columns here is different from that done in
 the FROM clause (see the section called “Table and Column Aliases”). It is possible
 to rename the same column twice, but the name assigned in
 the select list is the one that will be passed on.

DISTINCT

 After the select list has been processed, the result table can
 optionally be subject to the elimination of duplicate rows. The
 DISTINCT key word is written directly after
 SELECT to specify this:

SELECT DISTINCT select_list ...

 (Instead of DISTINCT the key word ALL
 can be used to specify the default behavior of retaining all rows.)

 Obviously, two rows are considered distinct if they differ in at
 least one column value. Null values are considered equal in this
 comparison.

 Alternatively, an arbitrary expression can determine what rows are
 to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

 Here expression is an arbitrary value
 expression that is evaluated for all rows. A set of rows for
 which all the expressions are equal are considered duplicates, and
 only the first row of the set is kept in the output. Note that
 the “first row” of a set is unpredictable unless the
 query is sorted on enough columns to guarantee a unique ordering
 of the rows arriving at the DISTINCT filter.
 (DISTINCT ON processing occurs after ORDER
 BY sorting.)

 The DISTINCT ON clause is not part of the SQL standard
 and is sometimes considered bad style because of the potentially
 indeterminate nature of its results. With judicious use of
 GROUP BY and subqueries in FROM, this
 construct can be avoided, but it is often the most convenient
 alternative.

Combining Queries (UNION, INTERSECT, EXCEPT)

 The results of two queries can be combined using the set operations
 union, intersection, and difference. The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

 where query1 and
 query2 are queries that can use any of
 the features discussed up to this point.

 UNION effectively appends the result of
 query2 to the result of
 query1 (although there is no guarantee
 that this is the order in which the rows are actually returned).
 Furthermore, it eliminates duplicate rows from its result, in the same
 way as DISTINCT, unless UNION ALL is used.

 INTERSECT returns all rows that are both in the result
 of query1 and in the result of
 query2. Duplicate rows are eliminated
 unless INTERSECT ALL is used.

 EXCEPT returns all rows that are in the result of
 query1 but not in the result of
 query2. (This is sometimes called the
 difference between two queries.) Again, duplicates
 are eliminated unless EXCEPT ALL is used.

 In order to calculate the union, intersection, or difference of two
 queries, the two queries must be “union compatible”,
 which means that they return the same number of columns and
 the corresponding columns have compatible data types, as
 described in the section called “UNION, CASE, and Related Constructs”.

 Set operations can be combined, for example

query1 UNION query2 EXCEPT query3

 which is equivalent to

(query1 UNION query2) EXCEPT query3

 As shown here, you can use parentheses to control the order of
 evaluation. Without parentheses, UNION
 and EXCEPT associate left-to-right,
 but INTERSECT binds more tightly than those two
 operators. Thus

query1 UNION query2 INTERSECT query3

 means

query1 UNION (query2 INTERSECT query3)

 You can also surround an individual query
 with parentheses. This is important if
 the query needs to use any of the clauses
 discussed in following sections, such as LIMIT.
 Without parentheses, you'll get a syntax error, or else the clause will
 be understood as applying to the output of the set operation rather
 than one of its inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10

 is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10

 not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

Sorting Rows (ORDER BY)

 After a query has produced an output table (after the select list
 has been processed) it can optionally be sorted. If sorting is not
 chosen, the rows will be returned in an unspecified order. The actual
 order in that case will depend on the scan and join plan types and
 the order on disk, but it must not be relied on. A particular
 output ordering can only be guaranteed if the sort step is explicitly
 chosen.

 The ORDER BY clause specifies the sort order:

SELECT select_list
 FROM table_expression
 ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
 [, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

 The sort expression(s) can be any expression that would be valid in the
 query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

 When more than one expression is specified,
 the later values are used to sort rows that are equal according to the
 earlier values. Each expression can be followed by an optional
 ASC or DESC keyword to set the sort direction to
 ascending or descending. ASC order is the default.
 Ascending order puts smaller values first, where
 “smaller” is defined in terms of the
 < operator. Similarly, descending order is
 determined with the > operator.
 [6]

 The NULLS FIRST and NULLS LAST options can be
 used to determine whether nulls appear before or after non-null values
 in the sort ordering. By default, null values sort as if larger than any
 non-null value; that is, NULLS FIRST is the default for
 DESC order, and NULLS LAST otherwise.

 Note that the ordering options are considered independently for each
 sort column. For example ORDER BY x, y DESC means
 ORDER BY x ASC, y DESC, which is not the same as
 ORDER BY x DESC, y DESC.

 A sort_expression can also be the column label or number
 of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

 both of which sort by the first output column. Note that an output
 column name has to stand alone, that is, it cannot be used in an expression
 — for example, this is not correct:

SELECT a + b AS sum, c FROM table1 ORDER BY sum + c; -- wrong

 This restriction is made to reduce ambiguity. There is still
 ambiguity if an ORDER BY item is a simple name that
 could match either an output column name or a column from the table
 expression. The output column is used in such cases. This would
 only cause confusion if you use AS to rename an output
 column to match some other table column's name.

 ORDER BY can be applied to the result of a
 UNION, INTERSECT, or EXCEPT
 combination, but in this case it is only permitted to sort by
 output column names or numbers, not by expressions.

[6]
 Actually, PostgreSQL™ uses the default B-tree
 operator class for the expression's data type to determine the sort
 ordering for ASC and DESC. Conventionally,
 data types will be set up so that the < and
 > operators correspond to this sort ordering,
 but a user-defined data type's designer could choose to do something
 different.

LIMIT and OFFSET

 LIMIT and OFFSET allow you to retrieve just
 a portion of the rows that are generated by the rest of the query:

SELECT select_list
 FROM table_expression
 [ORDER BY ...]
 [LIMIT { number | ALL }] [OFFSET number]

 If a limit count is given, no more than that many rows will be
 returned (but possibly fewer, if the query itself yields fewer rows).
 LIMIT ALL is the same as omitting the LIMIT
 clause, as is LIMIT with a NULL argument.

 OFFSET says to skip that many rows before beginning to
 return rows. OFFSET 0 is the same as omitting the
 OFFSET clause, as is OFFSET with a NULL argument.

 If both OFFSET
 and LIMIT appear, then OFFSET rows are
 skipped before starting to count the LIMIT rows that
 are returned.

 When using LIMIT, it is important to use an
 ORDER BY clause that constrains the result rows into a
 unique order. Otherwise you will get an unpredictable subset of
 the query's rows. You might be asking for the tenth through
 twentieth rows, but tenth through twentieth in what ordering? The
 ordering is unknown, unless you specified ORDER BY.

 The query optimizer takes LIMIT into account when
 generating query plans, so you are very likely to get different
 plans (yielding different row orders) depending on what you give
 for LIMIT and OFFSET. Thus, using
 different LIMIT/OFFSET values to select
 different subsets of a query result will give
 inconsistent results unless you enforce a predictable
 result ordering with ORDER BY. This is not a bug; it
 is an inherent consequence of the fact that SQL does not promise to
 deliver the results of a query in any particular order unless
 ORDER BY is used to constrain the order.

 The rows skipped by an OFFSET clause still have to be
 computed inside the server; therefore a large OFFSET
 might be inefficient.

VALUES Lists

 VALUES provides a way to generate a “constant table”
 that can be used in a query without having to actually create and populate
 a table on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

 Each parenthesized list of expressions generates a row in the table.
 The lists must all have the same number of elements (i.e., the number
 of columns in the table), and corresponding entries in each list must
 have compatible data types. The actual data type assigned to each column
 of the result is determined using the same rules as for UNION
 (see the section called “UNION, CASE, and Related Constructs”).

 As an example:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

 will return a table of two columns and three rows. It's effectively
 equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

 By default, PostgreSQL™ assigns the names
 column1, column2, etc. to the columns of a
 VALUES table. The column names are not specified by the
 SQL standard and different database systems do it differently, so
 it's usually better to override the default names with a table alias
 list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num,letter);
 num | letter
-----+--------
 1 | one
 2 | two
 3 | three
(3 rows)

 Syntactically, VALUES followed by expression lists is
 treated as equivalent to:

SELECT select_list FROM table_expression

 and can appear anywhere a SELECT can. For example, you can
 use it as part of a UNION, or attach a
 sort_specification (ORDER BY,
 LIMIT, and/or OFFSET) to it. VALUES
 is most commonly used as the data source in an INSERT command,
 and next most commonly as a subquery.

 For more information see VALUES(7).

WITH Queries (Common Table Expressions)

 WITH provides a way to write auxiliary statements for use in a
 larger query. These statements, which are often referred to as Common
 Table Expressions or CTEs, can be thought of as defining
 temporary tables that exist just for one query. Each auxiliary statement
 in a WITH clause can be a SELECT,
 INSERT, UPDATE, or DELETE; and the
 WITH clause itself is attached to a primary statement that can
 be a SELECT, INSERT, UPDATE,
 DELETE, or MERGE.

SELECT in WITH

 The basic value of SELECT in WITH is to
 break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

 which displays per-product sales totals in only the top sales regions.
 The WITH clause defines two auxiliary statements named
 regional_sales and top_regions,
 where the output of regional_sales is used in
 top_regions and the output of top_regions
 is used in the primary SELECT query.
 This example could have been written without WITH,
 but we'd have needed two levels of nested sub-SELECTs. It's a bit
 easier to follow this way.

Recursive Queries

 The optional RECURSIVE modifier changes WITH
 from a mere syntactic convenience into a feature that accomplishes
 things not otherwise possible in standard SQL. Using
 RECURSIVE, a WITH query can refer to its own
 output. A very simple example is this query to sum the integers from 1
 through 100:

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

 The general form of a recursive WITH query is always a
 non-recursive term, then UNION (or
 UNION ALL), then a
 recursive term, where only the recursive term can contain
 a reference to the query's own output. Such a query is executed as
 follows:

Procedure 7.1. Recursive Query Evaluation
	
 Evaluate the non-recursive term. For UNION (but not
 UNION ALL), discard duplicate rows. Include all remaining
 rows in the result of the recursive query, and also place them in a
 temporary working table.

	
 So long as the working table is not empty, repeat these steps:

	
 Evaluate the recursive term, substituting the current contents of
 the working table for the recursive self-reference.
 For UNION (but not UNION ALL), discard
 duplicate rows and rows that duplicate any previous result row.
 Include all remaining rows in the result of the recursive query, and
 also place them in a temporary intermediate table.

	
 Replace the contents of the working table with the contents of the
 intermediate table, then empty the intermediate table.

Note

 While RECURSIVE allows queries to be specified
 recursively, internally such queries are evaluated iteratively.

 In the example above, the working table has just a single row in each step,
 and it takes on the values from 1 through 100 in successive steps. In
 the 100th step, there is no output because of the WHERE
 clause, and so the query terminates.

 Recursive queries are typically used to deal with hierarchical or
 tree-structured data. A useful example is this query to find all the
 direct and indirect sub-parts of a product, given only a table that
 shows immediate inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
 SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part, p.quantity * pr.quantity
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

Search Order

 When computing a tree traversal using a recursive query, you might want to
 order the results in either depth-first or breadth-first order. This can
 be done by computing an ordering column alongside the other data columns
 and using that to sort the results at the end. Note that this does not
 actually control in which order the query evaluation visits the rows; that
 is as always in SQL implementation-dependent. This approach merely
 provides a convenient way to order the results afterwards.

 To create a depth-first order, we compute for each result row an array of
 rows that we have visited so far. For example, consider the following
 query that searches a table tree using a
 link field:

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree;

 To add depth-first ordering information, you can write this:

WITH RECURSIVE search_tree(id, link, data, path) AS (
 SELECT t.id, t.link, t.data, ARRAY[t.id]
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, path || t.id
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

 In the general case where more than one field needs to be used to identify
 a row, use an array of rows. For example, if we needed to track fields
 f1 and f2:

WITH RECURSIVE search_tree(id, link, data, path) AS (
 SELECT t.id, t.link, t.data, ARRAY[ROW(t.f1, t.f2)]
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, path || ROW(t.f1, t.f2)
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

Tip

 Omit the ROW() syntax in the common case where only one
 field needs to be tracked. This allows a simple array rather than a
 composite-type array to be used, gaining efficiency.

 To create a breadth-first order, you can add a column that tracks the depth
 of the search, for example:

WITH RECURSIVE search_tree(id, link, data, depth) AS (
 SELECT t.id, t.link, t.data, 0
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data, depth + 1
 FROM tree t, search_tree st
 WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY depth;

 To get a stable sort, add data columns as secondary sorting columns.

Tip

 The recursive query evaluation algorithm produces its output in
 breadth-first search order. However, this is an implementation detail and
 it is perhaps unsound to rely on it. The order of the rows within each
 level is certainly undefined, so some explicit ordering might be desired
 in any case.

 There is built-in syntax to compute a depth- or breadth-first sort column.
 For example:

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
) SEARCH DEPTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

WITH RECURSIVE search_tree(id, link, data) AS (
 SELECT t.id, t.link, t.data
 FROM tree t
 UNION ALL
 SELECT t.id, t.link, t.data
 FROM tree t, search_tree st
 WHERE t.id = st.link
) SEARCH BREADTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

 This syntax is internally expanded to something similar to the above
 hand-written forms. The SEARCH clause specifies whether
 depth- or breadth first search is wanted, the list of columns to track for
 sorting, and a column name that will contain the result data that can be
 used for sorting. That column will implicitly be added to the output rows
 of the CTE.

Cycle Detection

 When working with recursive queries it is important to be sure that
 the recursive part of the query will eventually return no tuples,
 or else the query will loop indefinitely. Sometimes, using
 UNION instead of UNION ALL can accomplish this
 by discarding rows that duplicate previous output rows. However, often a
 cycle does not involve output rows that are completely duplicate: it may be
 necessary to check just one or a few fields to see if the same point has
 been reached before. The standard method for handling such situations is
 to compute an array of the already-visited values. For example, consider again
 the following query that searches a table graph using a
 link field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 0
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
)
SELECT * FROM search_graph;

 This query will loop if the link relationships contain
 cycles. Because we require a “depth” output, just changing
 UNION ALL to UNION would not eliminate the looping.
 Instead we need to recognize whether we have reached the same row again
 while following a particular path of links. We add two columns
 is_cycle and path to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
 SELECT g.id, g.link, g.data, 0,
 false,
 ARRAY[g.id]
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 g.id = ANY(path),
 path || g.id
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

 Aside from preventing cycles, the array value is often useful in its own
 right as representing the “path” taken to reach any particular row.

 In the general case where more than one field needs to be checked to
 recognize a cycle, use an array of rows. For example, if we needed to
 compare fields f1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
 SELECT g.id, g.link, g.data, 0,
 false,
 ARRAY[ROW(g.f1, g.f2)]
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 ROW(g.f1, g.f2) = ANY(path),
 path || ROW(g.f1, g.f2)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Tip

 Omit the ROW() syntax in the common case where only one field
 needs to be checked to recognize a cycle. This allows a simple array
 rather than a composite-type array to be used, gaining efficiency.

 There is built-in syntax to simplify cycle detection. The above query can
 also be written like this:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 1
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM search_graph;

 and it will be internally rewritten to the above form. The
 CYCLE clause specifies first the list of columns to
 track for cycle detection, then a column name that will show whether a
 cycle has been detected, and finally the name of another column that will track the
 path. The cycle and path columns will implicitly be added to the output
 rows of the CTE.

Tip

 The cycle path column is computed in the same way as the depth-first
 ordering column show in the previous section. A query can have both a
 SEARCH and a CYCLE clause, but a
 depth-first search specification and a cycle detection specification would
 create redundant computations, so it's more efficient to just use the
 CYCLE clause and order by the path column. If
 breadth-first ordering is wanted, then specifying both
 SEARCH and CYCLE can be useful.

 A helpful trick for testing queries
 when you are not certain if they might loop is to place a LIMIT
 in the parent query. For example, this query would loop forever without
 the LIMIT:

WITH RECURSIVE t(n) AS (
 SELECT 1
 UNION ALL
 SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;

 This works because PostgreSQL™'s implementation
 evaluates only as many rows of a WITH query as are actually
 fetched by the parent query. Using this trick in production is not
 recommended, because other systems might work differently. Also, it
 usually won't work if you make the outer query sort the recursive query's
 results or join them to some other table, because in such cases the
 outer query will usually try to fetch all of the WITH query's
 output anyway.

Common Table Expression Materialization

 A useful property of WITH queries is that they are
 normally evaluated only once per execution of the parent query, even if
 they are referred to more than once by the parent query or
 sibling WITH queries.
 Thus, expensive calculations that are needed in multiple places can be
 placed within a WITH query to avoid redundant work. Another
 possible application is to prevent unwanted multiple evaluations of
 functions with side-effects.
 However, the other side of this coin is that the optimizer is not able to
 push restrictions from the parent query down into a multiply-referenced
 WITH query, since that might affect all uses of the
 WITH query's output when it should affect only one.
 The multiply-referenced WITH query will be
 evaluated as written, without suppression of rows that the parent query
 might discard afterwards. (But, as mentioned above, evaluation might stop
 early if the reference(s) to the query demand only a limited number of
 rows.)

 However, if a WITH query is non-recursive and
 side-effect-free (that is, it is a SELECT containing
 no volatile functions) then it can be folded into the parent query,
 allowing joint optimization of the two query levels. By default, this
 happens if the parent query references the WITH query
 just once, but not if it references the WITH query
 more than once. You can override that decision by
 specifying MATERIALIZED to force separate calculation
 of the WITH query, or by specifying NOT
 MATERIALIZED to force it to be merged into the parent query.
 The latter choice risks duplicate computation of
 the WITH query, but it can still give a net savings if
 each usage of the WITH query needs only a small part
 of the WITH query's full output.

 A simple example of these rules is

WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w WHERE key = 123;

 This WITH query will be folded, producing the same
 execution plan as

SELECT * FROM big_table WHERE key = 123;

 In particular, if there's an index on key,
 it will probably be used to fetch just the rows having key =
 123. On the other hand, in

WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

 the WITH query will be materialized, producing a
 temporary copy of big_table that is then
 joined with itself — without benefit of any index. This query
 will be executed much more efficiently if written as

WITH w AS NOT MATERIALIZED (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

 so that the parent query's restrictions can be applied directly
 to scans of big_table.

 An example where NOT MATERIALIZED could be
 undesirable is

WITH w AS (
 SELECT key, very_expensive_function(val) as f FROM some_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.f = w2.f;

 Here, materialization of the WITH query ensures
 that very_expensive_function is evaluated only
 once per table row, not twice.

 The examples above only show WITH being used with
 SELECT, but it can be attached in the same way to
 INSERT, UPDATE,
 DELETE, or MERGE.
 In each case it effectively provides temporary table(s) that can
 be referred to in the main command.

Data-Modifying Statements in WITH

 You can use most data-modifying statements (INSERT,
 UPDATE, or DELETE, but not
 MERGE) in WITH. This
 allows you to perform several different operations in the same query.
 An example is:

WITH moved_rows AS (
 DELETE FROM products
 WHERE
 "date" >= '2010-10-01' AND
 "date" < '2010-11-01'
 RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

 This query effectively moves rows from products to
 products_log. The DELETE in WITH
 deletes the specified rows from products, returning their
 contents by means of its RETURNING clause; and then the
 primary query reads that output and inserts it into
 products_log.

 A fine point of the above example is that the WITH clause is
 attached to the INSERT, not the sub-SELECT within
 the INSERT. This is necessary because data-modifying
 statements are only allowed in WITH clauses that are attached
 to the top-level statement. However, normal WITH visibility
 rules apply, so it is possible to refer to the WITH
 statement's output from the sub-SELECT.

 Data-modifying statements in WITH usually have
 RETURNING clauses (see the section called “Returning Data from Modified Rows”),
 as shown in the example above.
 It is the output of the RETURNING clause, not the
 target table of the data-modifying statement, that forms the temporary
 table that can be referred to by the rest of the query. If a
 data-modifying statement in WITH lacks a RETURNING
 clause, then it forms no temporary table and cannot be referred to in
 the rest of the query. Such a statement will be executed nonetheless.
 A not-particularly-useful example is:

WITH t AS (
 DELETE FROM foo
)
DELETE FROM bar;

 This example would remove all rows from tables foo and
 bar. The number of affected rows reported to the client
 would only include rows removed from bar.

 Recursive self-references in data-modifying statements are not
 allowed. In some cases it is possible to work around this limitation by
 referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

 This query would remove all direct and indirect subparts of a product.

 Data-modifying statements in WITH are executed exactly once,
 and always to completion, independently of whether the primary query
 reads all (or indeed any) of their output. Notice that this is different
 from the rule for SELECT in WITH: as stated in the
 previous section, execution of a SELECT is carried only as far
 as the primary query demands its output.

 The sub-statements in WITH are executed concurrently with
 each other and with the main query. Therefore, when using data-modifying
 statements in WITH, the order in which the specified updates
 actually happen is unpredictable. All the statements are executed with
 the same snapshot (see Chapter 13, Concurrency Control), so they
 cannot “see” one another's effects on the target tables. This
 alleviates the effects of the unpredictability of the actual order of row
 updates, and means that RETURNING data is the only way to
 communicate changes between different WITH sub-statements and
 the main query. An example of this is that in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM products;

 the outer SELECT would return the original prices before the
 action of the UPDATE, while in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM t;

 the outer SELECT would return the updated data.

 Trying to update the same row twice in a single statement is not
 supported. Only one of the modifications takes place, but it is not easy
 (and sometimes not possible) to reliably predict which one. This also
 applies to deleting a row that was already updated in the same statement:
 only the update is performed. Therefore you should generally avoid trying
 to modify a single row twice in a single statement. In particular avoid
 writing WITH sub-statements that could affect the same rows
 changed by the main statement or a sibling sub-statement. The effects
 of such a statement will not be predictable.

 At present, any table used as the target of a data-modifying statement in
 WITH must not have a conditional rule, nor an ALSO
 rule, nor an INSTEAD rule that expands to multiple statements.

Chapter 8. Data Types

 PostgreSQL™ has a rich set of native data
 types available to users. Users can add new types to
 PostgreSQL™ using the CREATE TYPE(7) command.

 Table 8.1, “Data Types” shows all the built-in general-purpose data
 types. Most of the alternative names listed in the
 “Aliases” column are the names used internally by
 PostgreSQL™ for historical reasons. In
 addition, some internally used or deprecated types are available,
 but are not listed here.

Table 8.1. Data Types
	Name	Aliases	Description
	bigint	int8	signed eight-byte integer
	bigserial	serial8	autoincrementing eight-byte integer
	bit [(n)]	 	fixed-length bit string
	bit varying [(n)]	varbit [(n)]	variable-length bit string
	boolean	bool	logical Boolean (true/false)
	box	 	rectangular box on a plane
	bytea	 	binary data (“byte array”)
	character [(n)]	char [(n)]	fixed-length character string
	character varying [(n)]	varchar [(n)]	variable-length character string
	cidr	 	IPv4 or IPv6 network address
	circle	 	circle on a plane
	date	 	calendar date (year, month, day)
	double precision	float, float8	double precision floating-point number (8 bytes)
	inet	 	IPv4 or IPv6 host address
	integer	int, int4	signed four-byte integer
	interval [fields] [(p)]	 	time span
	json	 	textual JSON data
	jsonb	 	binary JSON data, decomposed
	line	 	infinite line on a plane
	lseg	 	line segment on a plane
	macaddr	 	MAC (Media Access Control) address
	macaddr8	 	MAC (Media Access Control) address (EUI-64 format)
	money	 	currency amount
	numeric [(p,
 s)]	decimal [(p,
 s)]	exact numeric of selectable precision
	path	 	geometric path on a plane
	pg_lsn	 	PostgreSQL™ Log Sequence Number
	pg_snapshot	 	user-level transaction ID snapshot
	point	 	geometric point on a plane
	polygon	 	closed geometric path on a plane
	real	float4	single precision floating-point number (4 bytes)
	smallint	int2	signed two-byte integer
	smallserial	serial2	autoincrementing two-byte integer
	serial	serial4	autoincrementing four-byte integer
	text	 	variable-length character string
	time [(p)] [without time zone]	 	time of day (no time zone)
	time [(p)] with time zone	timetz	time of day, including time zone
	timestamp [(p)] [without time zone]	 	date and time (no time zone)
	timestamp [(p)] with time zone	timestamptz	date and time, including time zone
	tsquery	 	text search query
	tsvector	 	text search document
	txid_snapshot	 	user-level transaction ID snapshot (deprecated; see pg_snapshot)
	uuid	 	universally unique identifier
	xml	 	XML data

Compatibility

 The following types (or spellings thereof) are specified by
 SQL: bigint, bit, bit
 varying, boolean, char,
 character varying, character,
 varchar, date, double
 precision, integer, interval,
 numeric, decimal, real,
 smallint, time (with or without time zone),
 timestamp (with or without time zone),
 xml.

 Each data type has an external representation determined by its input
 and output functions. Many of the built-in types have
 obvious external formats. However, several types are either unique
 to PostgreSQL™, such as geometric
 paths, or have several possible formats, such as the date
 and time types.
 Some of the input and output functions are not invertible, i.e.,
 the result of an output function might lose accuracy when compared to
 the original input.

Numeric Types

 Numeric types consist of two-, four-, and eight-byte integers,
 four- and eight-byte floating-point numbers, and selectable-precision
 decimals. Table 8.2, “Numeric Types” lists the
 available types.

Table 8.2. Numeric Types
	Name	Storage Size	Description	Range
	smallint	2 bytes	small-range integer	-32768 to +32767
	integer	4 bytes	typical choice for integer	-2147483648 to +2147483647
	bigint	8 bytes	large-range integer	-9223372036854775808 to +9223372036854775807
	decimal	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
	numeric	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
	real	4 bytes	variable-precision, inexact	6 decimal digits precision
	double precision	8 bytes	variable-precision, inexact	15 decimal digits precision
	smallserial	2 bytes	small autoincrementing integer	1 to 32767
	serial	4 bytes	autoincrementing integer	1 to 2147483647
	bigserial	8 bytes	large autoincrementing integer	1 to 9223372036854775807

 The syntax of constants for the numeric types is described in
 the section called “Constants”. The numeric types have a
 full set of corresponding arithmetic operators and
 functions. Refer to Chapter 9, Functions and Operators for more
 information. The following sections describe the types in detail.

Integer Types

 The types smallint, integer, and
 bigint store whole numbers, that is, numbers without
 fractional components, of various ranges. Attempts to store
 values outside of the allowed range will result in an error.

 The type integer is the common choice, as it offers
 the best balance between range, storage size, and performance.
 The smallint type is generally only used if disk
 space is at a premium. The bigint type is designed to be
 used when the range of the integer type is insufficient.

 SQL only specifies the integer types
 integer (or int),
 smallint, and bigint. The
 type names int2, int4, and
 int8 are extensions, which are also used by some
 other SQL database systems.

Arbitrary Precision Numbers

 The type numeric can store numbers with a
 very large number of digits. It is especially recommended for
 storing monetary amounts and other quantities where exactness is
 required. Calculations with numeric values yield exact
 results where possible, e.g., addition, subtraction, multiplication.
 However, calculations on numeric values are very slow
 compared to the integer types, or to the floating-point types
 described in the next section.

 We use the following terms below: The
 precision of a numeric
 is the total count of significant digits in the whole number,
 that is, the number of digits to both sides of the decimal point.
 The scale of a numeric is the
 count of decimal digits in the fractional part, to the right of the
 decimal point. So the number 23.5141 has a precision of 6 and a
 scale of 4. Integers can be considered to have a scale of zero.

 Both the maximum precision and the maximum scale of a
 numeric column can be
 configured. To declare a column of type numeric use
 the syntax:

NUMERIC(precision, scale)

 The precision must be positive, while the scale may be positive or
 negative (see below). Alternatively:

NUMERIC(precision)

 selects a scale of 0. Specifying:

NUMERIC

 without any precision or scale creates an “unconstrained
 numeric” column in which numeric values of any length can be
 stored, up to the implementation limits. A column of this kind will
 not coerce input values to any particular scale, whereas
 numeric columns with a declared scale will coerce
 input values to that scale. (The SQL standard
 requires a default scale of 0, i.e., coercion to integer
 precision. We find this a bit useless. If you're concerned
 about portability, always specify the precision and scale
 explicitly.)

Note

 The maximum precision that can be explicitly specified in
 a numeric type declaration is 1000. An
 unconstrained numeric column is subject to the limits
 described in Table 8.2, “Numeric Types”.

 If the scale of a value to be stored is greater than the declared
 scale of the column, the system will round the value to the specified
 number of fractional digits. Then, if the number of digits to the
 left of the decimal point exceeds the declared precision minus the
 declared scale, an error is raised.
 For example, a column declared as

NUMERIC(3, 1)

 will round values to 1 decimal place and can store values between
 -99.9 and 99.9, inclusive.

 Beginning in PostgreSQL™ 15, it is allowed
 to declare a numeric column with a negative scale. Then
 values will be rounded to the left of the decimal point. The
 precision still represents the maximum number of non-rounded digits.
 Thus, a column declared as

NUMERIC(2, -3)

 will round values to the nearest thousand and can store values
 between -99000 and 99000, inclusive.
 It is also allowed to declare a scale larger than the declared
 precision. Such a column can only hold fractional values, and it
 requires the number of zero digits just to the right of the decimal
 point to be at least the declared scale minus the declared precision.
 For example, a column declared as

NUMERIC(3, 5)

 will round values to 5 decimal places and can store values between
 -0.00999 and 0.00999, inclusive.

Note

 PostgreSQL™ permits the scale in a
 numeric type declaration to be any value in the range
 -1000 to 1000. However, the SQL standard requires
 the scale to be in the range 0 to precision.
 Using scales outside that range may not be portable to other database
 systems.

 Numeric values are physically stored without any extra leading or
 trailing zeroes. Thus, the declared precision and scale of a column
 are maximums, not fixed allocations. (In this sense the numeric
 type is more akin to varchar(n)
 than to char(n).) The actual storage
 requirement is two bytes for each group of four decimal digits,
 plus three to eight bytes overhead.

 In addition to ordinary numeric values, the numeric type
 has several special values:

Infinity

-Infinity

NaN

 These are adapted from the IEEE 754 standard, and represent
 “infinity”, “negative infinity”, and
 “not-a-number”, respectively. When writing these values
 as constants in an SQL command, you must put quotes around them,
 for example UPDATE table SET x = '-Infinity'.
 On input, these strings are recognized in a case-insensitive manner.
 The infinity values can alternatively be spelled inf
 and -inf.

 The infinity values behave as per mathematical expectations. For
 example, Infinity plus any finite value equals
 Infinity, as does Infinity
 plus Infinity; but Infinity
 minus Infinity yields NaN (not a
 number), because it has no well-defined interpretation. Note that an
 infinity can only be stored in an unconstrained numeric
 column, because it notionally exceeds any finite precision limit.

 The NaN (not a number) value is used to represent
 undefined calculational results. In general, any operation with
 a NaN input yields another NaN.
 The only exception is when the operation's other inputs are such that
 the same output would be obtained if the NaN were to
 be replaced by any finite or infinite numeric value; then, that output
 value is used for NaN too. (An example of this
 principle is that NaN raised to the zero power
 yields one.)

Note

 In most implementations of the “not-a-number” concept,
 NaN is not considered equal to any other numeric
 value (including NaN). In order to allow
 numeric values to be sorted and used in tree-based
 indexes, PostgreSQL™ treats NaN
 values as equal, and greater than all non-NaN
 values.

 The types decimal and numeric are
 equivalent. Both types are part of the SQL
 standard.

 When rounding values, the numeric type rounds ties away
 from zero, while (on most machines) the real
 and double precision types round ties to the nearest even
 number. For example:

SELECT x,
 round(x::numeric) AS num_round,
 round(x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
 x | num_round | dbl_round
------+-----------+-----------
 -3.5 | -4 | -4
 -2.5 | -3 | -2
 -1.5 | -2 | -2
 -0.5 | -1 | -0
 0.5 | 1 | 0
 1.5 | 2 | 2
 2.5 | 3 | 2
 3.5 | 4 | 4
(8 rows)

Floating-Point Types

 The data types real and double precision are
 inexact, variable-precision numeric types. On all currently supported
 platforms, these types are implementations of IEEE
 Standard 754 for Binary Floating-Point Arithmetic (single and double
 precision, respectively), to the extent that the underlying processor,
 operating system, and compiler support it.

 Inexact means that some values cannot be converted exactly to the
 internal format and are stored as approximations, so that storing
 and retrieving a value might show slight discrepancies.
 Managing these errors and how they propagate through calculations
 is the subject of an entire branch of mathematics and computer
 science and will not be discussed here, except for the
 following points:

	
 If you require exact storage and calculations (such as for
 monetary amounts), use the numeric type instead.

	
 If you want to do complicated calculations with these types
 for anything important, especially if you rely on certain
 behavior in boundary cases (infinity, underflow), you should
 evaluate the implementation carefully.

	
 Comparing two floating-point values for equality might not
 always work as expected.

 On all currently supported platforms, the real type has a
 range of around 1E-37 to 1E+37 with a precision of at least 6 decimal
 digits. The double precision type has a range of around
 1E-307 to 1E+308 with a precision of at least 15 digits. Values that are
 too large or too small will cause an error. Rounding might take place if
 the precision of an input number is too high. Numbers too close to zero
 that are not representable as distinct from zero will cause an underflow
 error.

 By default, floating point values are output in text form in their
 shortest precise decimal representation; the decimal value produced is
 closer to the true stored binary value than to any other value
 representable in the same binary precision. (However, the output value is
 currently never exactly midway between two
 representable values, in order to avoid a widespread bug where input
 routines do not properly respect the round-to-nearest-even rule.) This value will
 use at most 17 significant decimal digits for float8
 values, and at most 9 digits for float4 values.

Note

 This shortest-precise output format is much faster to generate than the
 historical rounded format.

 For compatibility with output generated by older versions
 of PostgreSQL™, and to allow the output
 precision to be reduced, the extra_float_digits
 parameter can be used to select rounded decimal output instead. Setting a
 value of 0 restores the previous default of rounding the value to 6
 (for float4) or 15 (for float8)
 significant decimal digits. Setting a negative value reduces the number
 of digits further; for example -2 would round output to 4 or 13 digits
 respectively.

 Any value of extra_float_digits greater than 0
 selects the shortest-precise format.

Note

 Applications that wanted precise values have historically had to set
 extra_float_digits to 3 to obtain them. For
 maximum compatibility between versions, they should continue to do so.

 In addition to ordinary numeric values, the floating-point types
 have several special values:

Infinity

-Infinity

NaN

 These represent the IEEE 754 special values
 “infinity”, “negative infinity”, and
 “not-a-number”, respectively. When writing these values
 as constants in an SQL command, you must put quotes around them,
 for example UPDATE table SET x = '-Infinity'. On input,
 these strings are recognized in a case-insensitive manner.
 The infinity values can alternatively be spelled inf
 and -inf.

Note

 IEEE 754 specifies that NaN should not compare equal
 to any other floating-point value (including NaN).
 In order to allow floating-point values to be sorted and used
 in tree-based indexes, PostgreSQL™ treats
 NaN values as equal, and greater than all
 non-NaN values.

 PostgreSQL™ also supports the SQL-standard
 notations float and
 float(p) for specifying
 inexact numeric types. Here, p specifies
 the minimum acceptable precision in binary digits.
 PostgreSQL™ accepts
 float(1) to float(24) as selecting the
 real type, while
 float(25) to float(53) select
 double precision. Values of p
 outside the allowed range draw an error.
 float with no precision specified is taken to mean
 double precision.

Serial Types

Note

 This section describes a PostgreSQL-specific way to create an
 autoincrementing column. Another way is to use the SQL-standard
 identity column feature, described at CREATE TABLE(7).

 The data types smallserial, serial and
 bigserial are not true types, but merely
 a notational convenience for creating unique identifier columns
 (similar to the AUTO_INCREMENT property
 supported by some other databases). In the current
 implementation, specifying:

CREATE TABLE tablename (
 colname SERIAL
);

 is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (
 colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

 Thus, we have created an integer column and arranged for its default
 values to be assigned from a sequence generator. A NOT NULL
 constraint is applied to ensure that a null value cannot be
 inserted. (In most cases you would also want to attach a
 UNIQUE or PRIMARY KEY constraint to prevent
 duplicate values from being inserted by accident, but this is
 not automatic.) Lastly, the sequence is marked as “owned by”
 the column, so that it will be dropped if the column or table is dropped.

Note

 Because smallserial, serial and
 bigserial are implemented using sequences, there may
 be "holes" or gaps in the sequence of values which appears in the
 column, even if no rows are ever deleted. A value allocated
 from the sequence is still "used up" even if a row containing that
 value is never successfully inserted into the table column. This
 may happen, for example, if the inserting transaction rolls back.
 See nextval() in the section called “Sequence Manipulation Functions”
 for details.

 To insert the next value of the sequence into the serial
 column, specify that the serial
 column should be assigned its default value. This can be done
 either by excluding the column from the list of columns in
 the INSERT statement, or through the use of
 the DEFAULT key word.

 The type names serial and serial4 are
 equivalent: both create integer columns. The type
 names bigserial and serial8 work
 the same way, except that they create a bigint
 column. bigserial should be used if you anticipate
 the use of more than 231 identifiers over the
 lifetime of the table. The type names smallserial and
 serial2 also work the same way, except that they
 create a smallint column.

 The sequence created for a serial column is
 automatically dropped when the owning column is dropped.
 You can drop the sequence without dropping the column, but this
 will force removal of the column default expression.

Monetary Types

 The money type stores a currency amount with a fixed
 fractional precision; see Table 8.3, “Monetary Types”. The fractional precision is
 determined by the database's lc_monetary setting.
 The range shown in the table assumes there are two fractional digits.
 Input is accepted in a variety of formats, including integer and
 floating-point literals, as well as typical
 currency formatting, such as '$1,000.00'.
 Output is generally in the latter form but depends on the locale.

Table 8.3. Monetary Types
	Name	Storage Size	Description	Range
	money	8 bytes	currency amount	-92233720368547758.08 to +92233720368547758.07

 Since the output of this data type is locale-sensitive, it might not
 work to load money data into a database that has a different
 setting of lc_monetary. To avoid problems, before
 restoring a dump into a new database make sure lc_monetary has
 the same or equivalent value as in the database that was dumped.

 Values of the numeric, int, and
 bigint data types can be cast to money.
 Conversion from the real and double precision
 data types can be done by casting to numeric first, for
 example:

SELECT '12.34'::float8::numeric::money;

 However, this is not recommended. Floating point numbers should not be
 used to handle money due to the potential for rounding errors.

 A money value can be cast to numeric without
 loss of precision. Conversion to other types could potentially lose
 precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

 Division of a money value by an integer value is performed
 with truncation of the fractional part towards zero. To get a rounded
 result, divide by a floating-point value, or cast the money
 value to numeric before dividing and back to money
 afterwards. (The latter is preferable to avoid risking precision loss.)
 When a money value is divided by another money
 value, the result is double precision (i.e., a pure number,
 not money); the currency units cancel each other out in the division.

Character Types

Table 8.4. Character Types
	Name	Description
	character varying(n), varchar(n)	variable-length with limit
	character(n), char(n), bpchar(n)	fixed-length, blank-padded
	bpchar	variable unlimited length, blank-trimmed
	text	variable unlimited length

 Table 8.4, “Character Types” shows the
 general-purpose character types available in
 PostgreSQL™.

 SQL defines two primary character types:
 character varying(n) and
 character(n), where n
 is a positive integer. Both of these types can store strings up to
 n characters (not bytes) in length. An attempt to store a
 longer string into a column of these types will result in an
 error, unless the excess characters are all spaces, in which case
 the string will be truncated to the maximum length. (This somewhat
 bizarre exception is required by the SQL
 standard.)
 However, if one explicitly casts a value to character
 varying(n) or
 character(n), then an over-length
 value will be truncated to n characters without
 raising an error. (This too is required by the
 SQL standard.)
 If the string to be stored is shorter than the declared
 length, values of type character will be space-padded;
 values of type character varying will simply store the
 shorter
 string.

 In addition, PostgreSQL™ provides the
 text type, which stores strings of any length.
 Although the text type is not in the
 SQL standard, several other SQL database
 management systems have it as well.
 text is PostgreSQL™'s native
 string data type, in that most built-in functions operating on strings
 are declared to take or return text not character
 varying. For many purposes, character varying
 acts as though it were a domain
 over text.

 The type name varchar is an alias for character
 varying, while bpchar (with length specifier) and
 char are aliases for character. The
 varchar and char aliases are defined in the
 SQL standard; bpchar is a
 PostgreSQL™ extension.

 If specified, the length n must be greater
 than zero and cannot exceed 10,485,760. If character
 varying (or varchar) is used without
 length specifier, the type accepts strings of any length. If
 bpchar lacks a length specifier, it also accepts strings
 of any length, but trailing spaces are semantically insignificant.
 If character (or char) lacks a specifier,
 it is equivalent to character(1).

 Values of type character are physically padded
 with spaces to the specified width n, and are
 stored and displayed that way. However, trailing spaces are treated as
 semantically insignificant and disregarded when comparing two values
 of type character. In collations where whitespace
 is significant, this behavior can produce unexpected results;
 for example SELECT 'a '::CHAR(2) collate "C" <
 E'a\n'::CHAR(2) returns true, even though C
 locale would consider a space to be greater than a newline.
 Trailing spaces are removed when converting a character value
 to one of the other string types. Note that trailing spaces
 are semantically significant in
 character varying and text values, and
 when using pattern matching, that is LIKE and
 regular expressions.

 The characters that can be stored in any of these data types are
 determined by the database character set, which is selected when
 the database is created. Regardless of the specific character set,
 the character with code zero (sometimes called NUL) cannot be stored.
 For more information refer to the section called “Character Set Support”.

 The storage requirement for a short string (up to 126 bytes) is 1 byte
 plus the actual string, which includes the space padding in the case of
 character. Longer strings have 4 bytes of overhead instead
 of 1. Long strings are compressed by the system automatically, so
 the physical requirement on disk might be less. Very long values are also
 stored in background tables so that they do not interfere with rapid
 access to shorter column values. In any case, the longest
 possible character string that can be stored is about 1 GB. (The
 maximum value that will be allowed for n in the data
 type declaration is less than that. It wouldn't be useful to
 change this because with multibyte character encodings the number of
 characters and bytes can be quite different. If you desire to
 store long strings with no specific upper limit, use
 text or character varying without a length
 specifier, rather than making up an arbitrary length limit.)

Tip

 There is no performance difference among these three types,
 apart from increased storage space when using the blank-padded
 type, and a few extra CPU cycles to check the length when storing into
 a length-constrained column. While
 character(n) has performance
 advantages in some other database systems, there is no such advantage in
 PostgreSQL™; in fact
 character(n) is usually the slowest of
 the three because of its additional storage costs. In most situations
 text or character varying should be used
 instead.

 Refer to the section called “String Constants” for information about
 the syntax of string literals, and to Chapter 9, Functions and Operators
 for information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES ('ok');
SELECT a, char_length(a) FROM test1; -- [image: 1]

 a | char_length
------+-------------
 ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok');
INSERT INTO test2 VALUES ('good ');
INSERT INTO test2 VALUES ('too long');
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

 b | char_length
-------+-------------
 ok | 2
 good | 5
 too l | 5

	[image: 1]
	
 The char_length function is discussed in
 the section called “String Functions and Operators”.

 There are two other fixed-length character types in
 PostgreSQL™, shown in Table 8.5, “Special Character Types”.
 These are not intended for general-purpose use, only for use
 in the internal system catalogs.
 The name type is used to store identifiers. Its
 length is currently defined as 64 bytes (63 usable characters plus
 terminator) but should be referenced using the constant
 NAMEDATALEN in C source code.
 The length is set at compile time (and
 is therefore adjustable for special uses); the default maximum
 length might change in a future release. The type "char"
 (note the quotes) is different from char(1) in that it
 only uses one byte of storage, and therefore can store only a single
 ASCII character. It is used in the system
 catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types
	Name	Storage Size	Description
	"char"	1 byte	single-byte internal type
	name	64 bytes	internal type for object names

Binary Data Types

 The bytea data type allows storage of binary strings;
 see Table 8.6, “Binary Data Types”.

Table 8.6. Binary Data Types
	Name	Storage Size	Description
	bytea	1 or 4 bytes plus the actual binary string	variable-length binary string

 A binary string is a sequence of octets (or bytes). Binary
 strings are distinguished from character strings in two
 ways. First, binary strings specifically allow storing
 octets of value zero and other “non-printable”
 octets (usually, octets outside the decimal range 32 to 126).
 Character strings disallow zero octets, and also disallow any
 other octet values and sequences of octet values that are invalid
 according to the database's selected character set encoding.
 Second, operations on binary strings process the actual bytes,
 whereas the processing of character strings depends on locale settings.
 In short, binary strings are appropriate for storing data that the
 programmer thinks of as “raw bytes”, whereas character
 strings are appropriate for storing text.

 The bytea type supports two
 formats for input and output: “hex” format
 and PostgreSQL™'s historical
 “escape” format. Both
 of these are always accepted on input. The output format depends
 on the configuration parameter bytea_output;
 the default is hex. (Note that the hex format was introduced in
 PostgreSQL™ 9.0; earlier versions and some
 tools don't understand it.)

 The SQL standard defines a different binary
 string type, called BLOB or BINARY LARGE
 OBJECT. The input format is different from
 bytea, but the provided functions and operators are
 mostly the same.

bytea Hex Format

 The “hex” format encodes binary data as 2 hexadecimal digits
 per byte, most significant nibble first. The entire string is
 preceded by the sequence \x (to distinguish it
 from the escape format). In some contexts, the initial backslash may
 need to be escaped by doubling it
 (see the section called “String Constants”).
 For input, the hexadecimal digits can
 be either upper or lower case, and whitespace is permitted between
 digit pairs (but not within a digit pair nor in the starting
 \x sequence).
 The hex format is compatible with a wide
 range of external applications and protocols, and it tends to be
 faster to convert than the escape format, so its use is preferred.

 Example:

SET bytea_output = 'hex';

SELECT '\xDEADBEEF'::bytea;
 bytea

 \xdeadbeef

bytea Escape Format

 The “escape” format is the traditional
 PostgreSQL™ format for the bytea
 type. It
 takes the approach of representing a binary string as a sequence
 of ASCII characters, while converting those bytes that cannot be
 represented as an ASCII character into special escape sequences.
 If, from the point of view of the application, representing bytes
 as characters makes sense, then this representation can be
 convenient. But in practice it is usually confusing because it
 fuzzes up the distinction between binary strings and character
 strings, and also the particular escape mechanism that was chosen is
 somewhat unwieldy. Therefore, this format should probably be avoided
 for most new applications.

 When entering bytea values in escape format,
 octets of certain
 values must be escaped, while all octet
 values can be escaped. In
 general, to escape an octet, convert it into its three-digit
 octal value and precede it by a backslash.
 Backslash itself (octet decimal value 92) can alternatively be represented by
 double backslashes.
 Table 8.7, “bytea Literal Escaped Octets”
 shows the characters that must be escaped, and gives the alternative
 escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets
	Decimal Octet Value	Description	Escaped Input Representation	Example	Hex Representation
	0	zero octet	'\000'	'\000'::bytea	\x00
	39	single quote	'''' or '\047'	''''::bytea	\x27
	92	backslash	'\\' or '\134'	'\\'::bytea	\x5c
	0 to 31 and 127 to 255	“non-printable” octets	'\xxx' (octal value)	'\001'::bytea	\x01

 The requirement to escape non-printable octets
 varies depending on locale settings. In some instances you can get away
 with leaving them unescaped.

 The reason that single quotes must be doubled, as shown
 in Table 8.7, “bytea Literal Escaped Octets”, is that this
 is true for any string literal in an SQL command. The generic
 string-literal parser consumes the outermost single quotes
 and reduces any pair of single quotes to one data character.
 What the bytea input function sees is just one
 single quote, which it treats as a plain data character.
 However, the bytea input function treats
 backslashes as special, and the other behaviors shown in
 Table 8.7, “bytea Literal Escaped Octets” are implemented by
 that function.

 In some contexts, backslashes must be doubled compared to what is
 shown above, because the generic string-literal parser will also
 reduce pairs of backslashes to one data character;
 see the section called “String Constants”.

 Bytea octets are output in hex
 format by default. If you change bytea_output
 to escape,
 “non-printable” octets are converted to their
 equivalent three-digit octal value and preceded by one backslash.
 Most “printable” octets are output by their standard
 representation in the client character set, e.g.:

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124'::bytea;
 bytea

 abc klm *\251T

 The octet with decimal value 92 (backslash) is doubled in the output.
 Details are in Table 8.8, “bytea Output Escaped Octets”.

Table 8.8. bytea Output Escaped Octets
	Decimal Octet Value	Description	Escaped Output Representation	Example	Output Result
	92	backslash	\\	'\134'::bytea	\\
	0 to 31 and 127 to 255	“non-printable” octets	\xxx (octal value)	'\001'::bytea	\001
	32 to 126	“printable” octets	client character set representation	'\176'::bytea	~

 Depending on the front end to PostgreSQL™ you use,
 you might have additional work to do in terms of escaping and
 unescaping bytea strings. For example, you might also
 have to escape line feeds and carriage returns if your interface
 automatically translates these.

Date/Time Types

 PostgreSQL™ supports the full set of
 SQL date and time types, shown in Table 8.9, “Date/Time Types”. The operations available
 on these data types are described in
 the section called “Date/Time Functions and Operators”.
 Dates are counted according to the Gregorian calendar, even in
 years before that calendar was introduced (see the section called “History of Units” for more information).

Table 8.9. Date/Time Types
	Name	Storage Size	Description	Low Value	High Value	Resolution
	timestamp [(p)] [without time zone]	8 bytes	both date and time (no time zone)	4713 BC	294276 AD	1 microsecond
	timestamp [(p)] with time zone	8 bytes	both date and time, with time zone	4713 BC	294276 AD	1 microsecond
	date	4 bytes	date (no time of day)	4713 BC	5874897 AD	1 day
	time [(p)] [without time zone]	8 bytes	time of day (no date)	00:00:00	24:00:00	1 microsecond
	time [(p)] with time zone	12 bytes	time of day (no date), with time zone	00:00:00+1559	24:00:00-1559	1 microsecond
	interval [fields] [(p)]	16 bytes	time interval	-178000000 years	178000000 years	1 microsecond

Note

 The SQL standard requires that writing just timestamp
 be equivalent to timestamp without time
 zone, and PostgreSQL™ honors that
 behavior. timestamptz is accepted as an
 abbreviation for timestamp with time zone; this is a
 PostgreSQL™ extension.

 time, timestamp, and
 interval accept an optional precision value
 p which specifies the number of
 fractional digits retained in the seconds field. By default, there
 is no explicit bound on precision. The allowed range of
 p is from 0 to 6.

 The interval type has an additional option, which is
 to restrict the set of stored fields by writing one of these phrases:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

 Note that if both fields and
 p are specified, the
 fields must include SECOND,
 since the precision applies only to the seconds.

 The type time with time zone is defined by the SQL
 standard, but the definition exhibits properties which lead to
 questionable usefulness. In most cases, a combination of
 date, time, timestamp without time
 zone, and timestamp with time zone should
 provide a complete range of date/time functionality required by
 any application.

Date/Time Input

 Date and time input is accepted in almost any reasonable format, including
 ISO 8601, SQL-compatible,
 traditional POSTGRES™, and others.
 For some formats, ordering of day, month, and year in date input is
 ambiguous and there is support for specifying the expected
 ordering of these fields. Set the DateStyle parameter
 to MDY to select month-day-year interpretation,
 DMY to select day-month-year interpretation, or
 YMD to select year-month-day interpretation.

 PostgreSQL™ is more flexible in
 handling date/time input than the
 SQL standard requires.
 See Appendix B, Date/Time Support
 for the exact parsing rules of date/time input and for the
 recognized text fields including months, days of the week, and
 time zones.

 Remember that any date or time literal input needs to be enclosed
 in single quotes, like text strings. Refer to
 the section called “Constants of Other Types” for more
 information.
 SQL requires the following syntax

type [(p)] 'value'

 where p is an optional precision
 specification giving the number of
 fractional digits in the seconds field. Precision can be
 specified for time, timestamp, and
 interval types, and can range from 0 to 6.
 If no precision is specified in a constant specification,
 it defaults to the precision of the literal value (but not
 more than 6 digits).

Dates

 Table 8.10, “Date Input” shows some possible
 inputs for the date type.

Table 8.10. Date Input
	Example	Description
	1999-01-08	ISO 8601; January 8 in any mode
 (recommended format)
	January 8, 1999	unambiguous in any datestyle input mode
	1/8/1999	January 8 in MDY mode;
 August 1 in DMY mode
	1/18/1999	January 18 in MDY mode;
 rejected in other modes
	01/02/03	January 2, 2003 in MDY mode;
 February 1, 2003 in DMY mode;
 February 3, 2001 in YMD mode

	1999-Jan-08	January 8 in any mode
	Jan-08-1999	January 8 in any mode
	08-Jan-1999	January 8 in any mode
	99-Jan-08	January 8 in YMD mode, else error
	08-Jan-99	January 8, except error in YMD mode
	Jan-08-99	January 8, except error in YMD mode
	19990108	ISO 8601; January 8, 1999 in any mode
	990108	ISO 8601; January 8, 1999 in any mode
	1999.008	year and day of year
	J2451187	Julian date
	January 8, 99 BC	year 99 BC

Times

 The time-of-day types are time [
 (p)] without time zone and
 time [(p)] with time
 zone. time alone is equivalent to
 time without time zone.

 Valid input for these types consists of a time of day followed
 by an optional time zone. (See Table 8.11, “Time Input”
 and Table 8.12, “Time Zone Input”.) If a time zone is
 specified in the input for time without time zone,
 it is silently ignored. You can also specify a date but it will
 be ignored, except when you use a time zone name that involves a
 daylight-savings rule, such as
 America/New_York. In this case specifying the date
 is required in order to determine whether standard or daylight-savings
 time applies. The appropriate time zone offset is recorded in the
 time with time zone value and is output as stored;
 it is not adjusted to the active time zone.

Table 8.11. Time Input
	Example	Description
	04:05:06.789	ISO 8601
	04:05:06	ISO 8601
	04:05	ISO 8601
	040506	ISO 8601
	04:05 AM	same as 04:05; AM does not affect value
	04:05 PM	same as 16:05; input hour must be <= 12
	04:05:06.789-8	ISO 8601, with time zone as UTC offset
	04:05:06-08:00	ISO 8601, with time zone as UTC offset
	04:05-08:00	ISO 8601, with time zone as UTC offset
	040506-08	ISO 8601, with time zone as UTC offset
	040506+0730	ISO 8601, with fractional-hour time zone as UTC offset
	040506+07:30:00	UTC offset specified to seconds (not allowed in ISO 8601)
	04:05:06 PST	time zone specified by abbreviation
	2003-04-12 04:05:06 America/New_York	time zone specified by full name

Table 8.12. Time Zone Input
	Example	Description
	PST	Abbreviation (for Pacific Standard Time)
	America/New_York	Full time zone name
	PST8PDT	POSIX-style time zone specification
	-8:00:00	UTC offset for PST
	-8:00	UTC offset for PST (ISO 8601 extended format)
	-800	UTC offset for PST (ISO 8601 basic format)
	-8	UTC offset for PST (ISO 8601 basic format)
	zulu	Military abbreviation for UTC
	z	Short form of zulu (also in ISO 8601)

 Refer to the section called “Time Zones” for more information on how
 to specify time zones.

Time Stamps

 Valid input for the time stamp types consists of the concatenation
 of a date and a time, followed by an optional time zone,
 followed by an optional AD or BC.
 (Alternatively, AD/BC can appear
 before the time zone, but this is not the preferred ordering.)
 Thus:

1999-01-08 04:05:06

 and:

1999-01-08 04:05:06 -8:00

 are valid values, which follow the ISO 8601
 standard. In addition, the common format:

January 8 04:05:06 1999 PST

 is supported.

 The SQL standard differentiates
 timestamp without time zone
 and timestamp with time zone literals by the presence of a
 “+” or “-” symbol and time zone offset after
 the time. Hence, according to the standard,

TIMESTAMP '2004-10-19 10:23:54'

 is a timestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02'

 is a timestamp with time zone.
 PostgreSQL™ never examines the content of a
 literal string before determining its type, and therefore will treat
 both of the above as timestamp without time zone. To
 ensure that a literal is treated as timestamp with time
 zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

 In a value that has been determined to be timestamp without time
 zone, PostgreSQL™ will silently ignore
 any time zone indication.
 That is, the resulting value is derived from the date/time
 fields in the input string, and is not adjusted for time zone.

 For timestamp with time zone values, an input string
 that includes an explicit time zone will be converted to UTC
 (Universal Coordinated
 Time) using the appropriate offset
 for that time zone. If no time zone is stated in the input string,
 then it is assumed to be in the time zone indicated by the system's
 TimeZone parameter, and is converted to UTC using the
 offset for the timezone zone.
 In either case, the value is stored internally as UTC, and the
 originally stated or assumed time zone is not retained.

 When a timestamp with time
 zone value is output, it is always converted from UTC to the
 current timezone zone, and displayed as local time in that
 zone. To see the time in another time zone, either change
 timezone or use the AT TIME ZONE construct
 (see the section called “AT TIME ZONE”).

 Conversions between timestamp without time zone and
 timestamp with time zone normally assume that the
 timestamp without time zone value should be taken or given
 as timezone local time. A different time zone can
 be specified for the conversion using AT TIME ZONE.

Special Values

 PostgreSQL™ supports several
 special date/time input values for convenience, as shown in Table 8.13, “Special Date/Time Inputs”. The values
 infinity and -infinity
 are specially represented inside the system and will be displayed
 unchanged; but the others are simply notational shorthands
 that will be converted to ordinary date/time values when read.
 (In particular, now and related strings are converted
 to a specific time value as soon as they are read.)
 All of these values need to be enclosed in single quotes when used
 as constants in SQL commands.

Table 8.13. Special Date/Time Inputs
	Input String	Valid Types	Description
	epoch	date, timestamp	1970-01-01 00:00:00+00 (Unix system time zero)
	infinity	date, timestamp	later than all other time stamps
	-infinity	date, timestamp	earlier than all other time stamps
	now	date, time, timestamp	current transaction's start time
	today	date, timestamp	midnight (00:00) today
	tomorrow	date, timestamp	midnight (00:00) tomorrow
	yesterday	date, timestamp	midnight (00:00) yesterday
	allballs	time	00:00:00.00 UTC

 The following SQL-compatible functions can also
 be used to obtain the current time value for the corresponding data
 type:
 CURRENT_DATE, CURRENT_TIME,
 CURRENT_TIMESTAMP, LOCALTIME,
 LOCALTIMESTAMP. (See the section called “Current Date/Time”.) Note that these are
 SQL functions and are not recognized in data input strings.

Caution

 While the input strings now,
 today, tomorrow,
 and yesterday are fine to use in interactive SQL
 commands, they can have surprising behavior when the command is
 saved to be executed later, for example in prepared statements,
 views, and function definitions. The string can be converted to a
 specific time value that continues to be used long after it becomes
 stale. Use one of the SQL functions instead in such contexts.
 For example, CURRENT_DATE + 1 is safer than
 'tomorrow'::date.

Date/Time Output

 The output format of the date/time types can be set to one of the four
 styles ISO 8601,
 SQL (Ingres), traditional POSTGRES™
 (Unix date format), or
 German. The default
 is the ISO format. (The
 SQL standard requires the use of the ISO 8601
 format. The name of the “SQL” output format is a
 historical accident.) Table 8.14, “Date/Time Output Styles” shows examples of each
 output style. The output of the date and
 time types is generally only the date or time part
 in accordance with the given examples. However, the
 POSTGRES™ style outputs date-only values in
 ISO format.

Table 8.14. Date/Time Output Styles
	Style Specification	Description	Example
	ISO	ISO 8601, SQL standard	1997-12-17 07:37:16-08
	SQL	traditional style	12/17/1997 07:37:16.00 PST
	Postgres	original style	Wed Dec 17 07:37:16 1997 PST
	German	regional style	17.12.1997 07:37:16.00 PST

Note

 ISO 8601 specifies the use of uppercase letter T to separate
 the date and time. PostgreSQL™ accepts that format on
 input, but on output it uses a space rather than T, as shown
 above. This is for readability and for consistency with
 RFC 3339 as
 well as some other database systems.

 In the SQL and POSTGRES styles, day appears before
 month if DMY field ordering has been specified, otherwise month appears
 before day.
 (See the section called “Date/Time Input”
 for how this setting also affects interpretation of input values.)
 Table 8.15, “Date Order Conventions” shows examples.

Table 8.15. Date Order Conventions
	datestyle Setting	Input Ordering	Example Output
	SQL, DMY	day/month/year	17/12/1997 15:37:16.00 CET
	SQL, MDY	month/day/year	12/17/1997 07:37:16.00 PST
	Postgres, DMY	day/month/year	Wed 17 Dec 07:37:16 1997 PST

 In the ISO style, the time zone is always shown as
 a signed numeric offset from UTC, with positive sign used for zones
 east of Greenwich. The offset will be shown
 as hh (hours only) if it is an integral
 number of hours, else
 as hh:mm if it
 is an integral number of minutes, else as
 hh:mm:ss.
 (The third case is not possible with any modern time zone standard,
 but it can appear when working with timestamps that predate the
 adoption of standardized time zones.)
 In the other date styles, the time zone is shown as an alphabetic
 abbreviation if one is in common use in the current zone. Otherwise
 it appears as a signed numeric offset in ISO 8601 basic format
 (hh or hhmm).

 The date/time style can be selected by the user using the
 SET datestyle command, the DateStyle parameter in the
 postgresql.conf configuration file, or the
 PGDATESTYLE environment variable on the server or
 client.

 The formatting function to_char
 (see the section called “Data Type Formatting Functions”) is also available as
 a more flexible way to format date/time output.

Time Zones

 Time zones, and time-zone conventions, are influenced by
 political decisions, not just earth geometry. Time zones around the
 world became somewhat standardized during the 1900s,
 but continue to be prone to arbitrary changes, particularly with
 respect to daylight-savings rules.
 PostgreSQL™ uses the widely-used
 IANA (Olson) time zone database for information about
 historical time zone rules. For times in the future, the assumption
 is that the latest known rules for a given time zone will
 continue to be observed indefinitely far into the future.

 PostgreSQL™ endeavors to be compatible with
 the SQL standard definitions for typical usage.
 However, the SQL standard has an odd mix of date and
 time types and capabilities. Two obvious problems are:

	
 Although the date type
 cannot have an associated time zone, the
 time type can.
 Time zones in the real world have little meaning unless
 associated with a date as well as a time,
 since the offset can vary through the year with daylight-saving
 time boundaries.

	
 The default time zone is specified as a constant numeric offset
 from UTC. It is therefore impossible to adapt to
 daylight-saving time when doing date/time arithmetic across
 DST boundaries.

 To address these difficulties, we recommend using date/time types
 that contain both date and time when using time zones. We
 do not recommend using the type time with
 time zone (though it is supported by
 PostgreSQL™ for legacy applications and
 for compliance with the SQL standard).
 PostgreSQL™ assumes
 your local time zone for any type containing only date or time.

 All timezone-aware dates and times are stored internally in
 UTC. They are converted to local time
 in the zone specified by the TimeZone configuration
 parameter before being displayed to the client.

 PostgreSQL™ allows you to specify time zones in
 three different forms:

	
 A full time zone name, for example America/New_York.
 The recognized time zone names are listed in the
 pg_timezone_names view (see the section called “pg_timezone_names”).
 PostgreSQL™ uses the widely-used IANA
 time zone data for this purpose, so the same time zone
 names are also recognized by other software.

	
 A time zone abbreviation, for example PST. Such a
 specification merely defines a particular offset from UTC, in
 contrast to full time zone names which can imply a set of daylight
 savings transition rules as well. The recognized abbreviations
 are listed in the pg_timezone_abbrevs view (see the section called “pg_timezone_abbrevs”). You cannot set the
 configuration parameters TimeZone or
 log_timezone to a time
 zone abbreviation, but you can use abbreviations in
 date/time input values and with the AT TIME ZONE
 operator.

	
 In addition to the timezone names and abbreviations,
 PostgreSQL™ will accept POSIX-style time zone
 specifications, as described in
 the section called “POSIX Time Zone Specifications”. This option is not
 normally preferable to using a named time zone, but it may be
 necessary if no suitable IANA time zone entry is available.

 In short, this is the difference between abbreviations
 and full names: abbreviations represent a specific offset from UTC,
 whereas many of the full names imply a local daylight-savings time
 rule, and so have two possible UTC offsets. As an example,
 2014-06-04 12:00 America/New_York represents noon local
 time in New York, which for this particular date was Eastern Daylight
 Time (UTC-4). So 2014-06-04 12:00 EDT specifies that
 same time instant. But 2014-06-04 12:00 EST specifies
 noon Eastern Standard Time (UTC-5), regardless of whether daylight
 savings was nominally in effect on that date.

 To complicate matters, some jurisdictions have used the same timezone
 abbreviation to mean different UTC offsets at different times; for
 example, in Moscow MSK has meant UTC+3 in some years and
 UTC+4 in others. PostgreSQL™ interprets such
 abbreviations according to whatever they meant (or had most recently
 meant) on the specified date; but, as with the EST example
 above, this is not necessarily the same as local civil time on that date.

 In all cases, timezone names and abbreviations are recognized
 case-insensitively. (This is a change from PostgreSQL™
 versions prior to 8.2, which were case-sensitive in some contexts but
 not others.)

 Neither timezone names nor abbreviations are hard-wired into the server;
 they are obtained from configuration files stored under
 .../share/timezone/ and .../share/timezonesets/
 of the installation directory
 (see the section called “Date/Time Configuration Files”).

 The TimeZone configuration parameter can
 be set in the file postgresql.conf, or in any of the
 other standard ways described in Chapter 20, Server Configuration.
 There are also some special ways to set it:

	
 The SQL command SET TIME ZONE
 sets the time zone for the session. This is an alternative spelling
 of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

	
 The PGTZ environment variable is used by
 libpq clients
 to send a SET TIME ZONE
 command to the server upon connection.

Interval Input

 interval values can be written using the following
 verbose syntax:

[@] quantity unit [quantity unit...] [direction]

 where quantity is a number (possibly signed);
 unit is microsecond,
 millisecond, second,
 minute, hour, day,
 week, month, year,
 decade, century, millennium,
 or abbreviations or plurals of these units;
 direction can be ago or
 empty. The at sign (@) is optional noise. The amounts
 of the different units are implicitly added with appropriate
 sign accounting. ago negates all the fields.
 This syntax is also used for interval output, if
 IntervalStyle is set to
 postgres_verbose.

 Quantities of days, hours, minutes, and seconds can be specified without
 explicit unit markings. For example, '1 12:59:10' is read
 the same as '1 day 12 hours 59 min 10 sec'. Also,
 a combination of years and months can be specified with a dash;
 for example '200-10' is read the same as '200 years
 10 months'. (These shorter forms are in fact the only ones allowed
 by the SQL standard, and are used for output when
 IntervalStyle is set to sql_standard.)

 Interval values can also be written as ISO 8601 time intervals, using
 either the “format with designators” of the standard's section
 4.4.3.2 or the “alternative format” of section 4.4.3.3. The
 format with designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

 The string must start with a P, and may include a
 T that introduces the time-of-day units. The
 available unit abbreviations are given in Table 8.16, “ISO 8601 Interval Unit Abbreviations”. Units may be
 omitted, and may be specified in any order, but units smaller than
 a day must appear after T. In particular, the meaning of
 M depends on whether it is before or after
 T.

Table 8.16. ISO 8601 Interval Unit Abbreviations
	Abbreviation	Meaning
	Y	Years
	M	Months (in the date part)
	W	Weeks
	D	Days
	H	Hours
	M	Minutes (in the time part)
	S	Seconds

 In the alternative format:

P [years-months-days] [T hours:minutes:seconds]

 the string must begin with P, and a
 T separates the date and time parts of the interval.
 The values are given as numbers similar to ISO 8601 dates.

 When writing an interval constant with a fields
 specification, or when assigning a string to an interval column that was
 defined with a fields specification, the interpretation of
 unmarked quantities depends on the fields. For
 example INTERVAL '1' YEAR is read as 1 year, whereas
 INTERVAL '1' means 1 second. Also, field values
 “to the right” of the least significant field allowed by the
 fields specification are silently discarded. For
 example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE
 results in dropping the seconds field, but not the day field.

 According to the SQL standard all fields of an interval
 value must have the same sign, so a leading negative sign applies to all
 fields; for example the negative sign in the interval literal
 '-1 2:03:04' applies to both the days and hour/minute/second
 parts. PostgreSQL™ allows the fields to have different
 signs, and traditionally treats each field in the textual representation
 as independently signed, so that the hour/minute/second part is
 considered positive in this example. If IntervalStyle is
 set to sql_standard then a leading sign is considered
 to apply to all fields (but only if no additional signs appear).
 Otherwise the traditional PostgreSQL™ interpretation is
 used. To avoid ambiguity, it's recommended to attach an explicit sign
 to each field if any field is negative.

 Internally, interval values are stored as three integral
 fields: months, days, and microseconds. These fields are kept
 separate because the number of days in a month varies, while a day
 can have 23 or 25 hours if a daylight savings time transition is
 involved. An interval input string that uses other units is
 normalized into this format, and then reconstructed in a standardized
 way for output, for example:

SELECT '2 years 15 months 100 weeks 99 hours 123456789 milliseconds'::interval;
 interval

 3 years 3 mons 700 days 133:17:36.789

 Here weeks, which are understood as “7 days”, have been
 kept separate, while the smaller and larger time units were
 combined and normalized.

 Input field values can have fractional parts, for example '1.5
 weeks' or '01:02:03.45'. However,
 because interval internally stores only integral fields,
 fractional values must be converted into smaller
 units. Fractional parts of units greater than months are rounded to
 be an integer number of months, e.g. '1.5 years'
 becomes '1 year 6 mons'. Fractional parts of
 weeks and days are computed to be an integer number of days and
 microseconds, assuming 30 days per month and 24 hours per day, e.g.,
 '1.75 months' becomes 1 mon 22 days
 12:00:00. Only seconds will ever be shown as fractional
 on output.

 Table 8.17, “Interval Input” shows some examples
 of valid interval input.

Table 8.17. Interval Input
	Example	Description
	1-2	SQL standard format: 1 year 2 months
	3 4:05:06	SQL standard format: 3 days 4 hours 5 minutes 6 seconds
	1 year 2 months 3 days 4 hours 5 minutes 6 seconds	Traditional Postgres format: 1 year 2 months 3 days 4 hours 5 minutes 6 seconds
	P1Y2M3DT4H5M6S	ISO 8601 “format with designators”: same meaning as above
	P0001-02-03T04:05:06	ISO 8601 “alternative format”: same meaning as above

Interval Output

 As previously explained, PostgreSQL™
 stores interval values as months, days, and
 microseconds. For output, the months field is converted to years and
 months by dividing by 12. The days field is shown as-is. The
 microseconds field is converted to hours, minutes, seconds, and
 fractional seconds. Thus months, minutes, and seconds will never be
 shown as exceeding the ranges 0–11, 0–59, and 0–59
 respectively, while the displayed years, days, and hours fields can
 be quite large. (The justify_days
 and justify_hours
 functions can be used if it is desirable to transpose large days or
 hours values into the next higher field.)

 The output format of the interval type can be set to one of the
 four styles sql_standard, postgres,
 postgres_verbose, or iso_8601,
 using the command SET intervalstyle.
 The default is the postgres format.
 Table 8.18, “Interval Output Style Examples” shows examples of each
 output style.

 The sql_standard style produces output that conforms to
 the SQL standard's specification for interval literal strings, if
 the interval value meets the standard's restrictions (either year-month
 only or day-time only, with no mixing of positive
 and negative components). Otherwise the output looks like a standard
 year-month literal string followed by a day-time literal string,
 with explicit signs added to disambiguate mixed-sign intervals.

 The output of the postgres style matches the output of
 PostgreSQL™ releases prior to 8.4 when the
 DateStyle parameter was set to ISO.

 The output of the postgres_verbose style matches the output of
 PostgreSQL™ releases prior to 8.4 when the
 DateStyle parameter was set to non-ISO output.

 The output of the iso_8601 style matches the “format
 with designators” described in section 4.4.3.2 of the
 ISO 8601 standard.

Table 8.18. Interval Output Style Examples
	Style Specification	Year-Month Interval	Day-Time Interval	Mixed Interval
	sql_standard	1-2	3 4:05:06	-1-2 +3 -4:05:06
	postgres	1 year 2 mons	3 days 04:05:06	-1 year -2 mons +3 days -04:05:06
	postgres_verbose	@ 1 year 2 mons	@ 3 days 4 hours 5 mins 6 secs	@ 1 year 2 mons -3 days 4 hours 5 mins 6 secs ago
	iso_8601	P1Y2M	P3DT4H5M6S	P-1Y-2M3D​T-4H-5M-6S

Boolean Type

 PostgreSQL™ provides the
 standard SQL type boolean;
 see Table 8.19, “Boolean Data Type”.
 The boolean type can have several states:
 “true”, “false”, and a third state,
 “unknown”, which is represented by the
 SQL null value.

Table 8.19. Boolean Data Type
	Name	Storage Size	Description
	boolean	1 byte	state of true or false

 Boolean constants can be represented in SQL queries by the SQL
 key words TRUE, FALSE,
 and NULL.

 The datatype input function for type boolean accepts these
 string representations for the “true” state:

	true
	yes
	on
	1

 and these representations for the “false” state:

	false
	no
	off
	0

 Unique prefixes of these strings are also accepted, for
 example t or n.
 Leading or trailing whitespace is ignored, and case does not matter.

 The datatype output function for type boolean always emits
 either t or f, as shown in
 Example 8.2, “Using the boolean Type”.

Example 8.2. Using the boolean Type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, 'sic est');
INSERT INTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;
 a | b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a | b
---+---------
 t | sic est

 The key words TRUE and FALSE are
 the preferred (SQL-compliant) method for writing
 Boolean constants in SQL queries. But you can also use the string
 representations by following the generic string-literal constant syntax
 described in the section called “Constants of Other Types”, for
 example 'yes'::boolean.

 Note that the parser automatically understands
 that TRUE and FALSE are of
 type boolean, but this is not so
 for NULL because that can have any type.
 So in some contexts you might have to cast NULL
 to boolean explicitly, for
 example NULL::boolean. Conversely, the cast can be
 omitted from a string-literal Boolean value in contexts where the parser
 can deduce that the literal must be of type boolean.

Enumerated Types

 Enumerated (enum) types are data types that
 comprise a static, ordered set of values.
 They are equivalent to the enum
 types supported in a number of programming languages. An example of an enum
 type might be the days of the week, or a set of status values for
 a piece of data.

Declaration of Enumerated Types

 Enum types are created using the CREATE TYPE(7) command,
 for example:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');

 Once created, the enum type can be used in table and function
 definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
 name text,
 current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe | happy
(1 row)

Ordering

 The ordering of the values in an enum type is the
 order in which the values were listed when the type was created.
 All standard comparison operators and related
 aggregate functions are supported for enums. For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
 name | current_mood
-------+--------------
 Moe | happy
 Curly | ok
(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
 name | current_mood
-------+--------------
 Curly | ok
 Moe | happy
(2 rows)

SELECT name
FROM person
WHERE current_mood = (SELECT MIN(current_mood) FROM person);
 name

 Larry
(1 row)

Type Safety

 Each enumerated data type is separate and cannot
 be compared with other enumerated types. See this example:

CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (
 num_weeks integer,
 happiness happiness
);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, 'happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (6, 'very happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays(num_weeks,happiness) VALUES (2, 'sad');
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

 If you really need to do something like that, you can either
 write a custom operator or add explicit casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood::text = holidays.happiness::text;
 name | num_weeks
------+-----------
 Moe | 4
(1 row)

Implementation Details

 Enum labels are case sensitive, so
 'happy' is not the same as 'HAPPY'.
 White space in the labels is significant too.

 Although enum types are primarily intended for static sets of values,
 there is support for adding new values to an existing enum type, and for
 renaming values (see ALTER TYPE(7)). Existing values
 cannot be removed from an enum type, nor can the sort ordering of such
 values be changed, short of dropping and re-creating the enum type.

 An enum value occupies four bytes on disk. The length of an enum
 value's textual label is limited by the NAMEDATALEN
 setting compiled into PostgreSQL™; in standard
 builds this means at most 63 bytes.

 The translations from internal enum values to textual labels are
 kept in the system catalog
 pg_enum.
 Querying this catalog directly can be useful.

Geometric Types

 Geometric data types represent two-dimensional spatial
 objects. Table 8.20, “Geometric Types” shows the geometric
 types available in PostgreSQL™.

Table 8.20. Geometric Types
	Name	Storage Size	Description	Representation
	point	16 bytes	Point on a plane	(x,y)
	line	24 bytes	Infinite line	{A,B,C}
	lseg	32 bytes	Finite line segment	((x1,y1),(x2,y2))
	box	32 bytes	Rectangular box	((x1,y1),(x2,y2))
	path	16+16n bytes	Closed path (similar to polygon)	((x1,y1),...)
	path	16+16n bytes	Open path	[(x1,y1),...]
	polygon	40+16n bytes	Polygon (similar to closed path)	((x1,y1),...)
	circle	24 bytes	Circle	<(x,y),r> (center point and radius)

 In all these types, the individual coordinates are stored as
 double precision (float8) numbers.

 A rich set of functions and operators is available to perform various geometric
 operations such as scaling, translation, rotation, and determining
 intersections. They are explained in the section called “Geometric Functions and Operators”.

Points

 Points are the fundamental two-dimensional building block for geometric
 types. Values of type point are specified using either of
 the following syntaxes:

(x , y)
 x , y

 where x and y are the respective
 coordinates, as floating-point numbers.

 Points are output using the first syntax.

Lines

 Lines are represented by the linear
 equation Ax + By + C = 0,
 where A and B are not both zero. Values
 of type line are input and output in the following form:

{ A, B, C }

 Alternatively, any of the following forms can be used for input:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

 where
 (x1,y1)
 and
 (x2,y2)
 are two different points on the line.

Line Segments

 Line segments are represented by pairs of points that are the endpoints
 of the segment. Values of type lseg are specified using any
 of the following syntaxes:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

 where
 (x1,y1)
 and
 (x2,y2)
 are the end points of the line segment.

 Line segments are output using the first syntax.

Boxes

 Boxes are represented by pairs of points that are opposite
 corners of the box.
 Values of type box are specified using any of the following
 syntaxes:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

 where
 (x1,y1)
 and
 (x2,y2)
 are any two opposite corners of the box.

 Boxes are output using the second syntax.

 Any two opposite corners can be supplied on input, but the values
 will be reordered as needed to store the
 upper right and lower left corners, in that order.

Paths

 Paths are represented by lists of connected points. Paths can be
 open, where
 the first and last points in the list are considered not connected, or
 closed,
 where the first and last points are considered connected.

 Values of type path are specified using any of the following
 syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

 where the points are the end points of the line segments
 comprising the path. Square brackets ([]) indicate
 an open path, while parentheses (()) indicate a
 closed path. When the outermost parentheses are omitted, as
 in the third through fifth syntaxes, a closed path is assumed.

 Paths are output using the first or second syntax, as appropriate.

Polygons

 Polygons are represented by lists of points (the vertexes of the
 polygon). Polygons are very similar to closed paths; the essential
 semantic difference is that a polygon is considered to include the
 area within it, while a path is not.

 An important implementation difference between polygons and
 paths is that the stored representation of a polygon includes its
 smallest bounding box. This speeds up certain search operations,
 although computing the bounding box adds overhead while constructing
 new polygons.

 Values of type polygon are specified using any of the
 following syntaxes:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

 where the points are the end points of the line segments
 comprising the boundary of the polygon.

 Polygons are output using the first syntax.

Circles

 Circles are represented by a center point and radius.
 Values of type circle are specified using any of the
 following syntaxes:

< (x , y) , r >
((x , y) , r)
 (x , y) , r
 x , y , r

 where
 (x,y)
 is the center point and r is the radius of the
 circle.

 Circles are output using the first syntax.

Network Address Types

 PostgreSQL™ offers data types to store IPv4, IPv6, and MAC
 addresses, as shown in Table 8.21, “Network Address Types”. It
 is better to use these types instead of plain text types to store
 network addresses, because
 these types offer input error checking and specialized
 operators and functions (see the section called “Network Address Functions and Operators”).

Table 8.21. Network Address Types
	Name	Storage Size	Description
	cidr	7 or 19 bytes	IPv4 and IPv6 networks
	inet	7 or 19 bytes	IPv4 and IPv6 hosts and networks
	macaddr	6 bytes	MAC addresses
	macaddr8	8 bytes	MAC addresses (EUI-64 format)

 When sorting inet or cidr data types,
 IPv4 addresses will always sort before IPv6 addresses, including
 IPv4 addresses encapsulated or mapped to IPv6 addresses, such as
 ::10.2.3.4 or ::ffff:10.4.3.2.

inet

 The inet type holds an IPv4 or IPv6 host address, and
 optionally its subnet, all in one field.
 The subnet is represented by the number of network address bits
 present in the host address (the
 “netmask”). If the netmask is 32 and the address is IPv4,
 then the value does not indicate a subnet, only a single host.
 In IPv6, the address length is 128 bits, so 128 bits specify a
 unique host address. Note that if you
 want to accept only networks, you should use the
 cidr type rather than inet.

 The input format for this type is
 address/y
 where
 address
 is an IPv4 or IPv6 address and
 y
 is the number of bits in the netmask. If the
 /y
 portion is omitted, the
 netmask is taken to be 32 for IPv4 or 128 for IPv6,
 so the value represents
 just a single host. On display, the
 /y
 portion is suppressed if the netmask specifies a single host.

cidr

 The cidr type holds an IPv4 or IPv6 network specification.
 Input and output formats follow Classless Internet Domain Routing
 conventions.
 The format for specifying networks is address/y where address is the network's lowest
 address represented as an
 IPv4 or IPv6 address, and y is the number of bits in the netmask. If
 y is omitted, it is calculated
 using assumptions from the older classful network numbering system, except
 it will be at least large enough to include all of the octets
 written in the input. It is an error to specify a network address
 that has bits set to the right of the specified netmask.

 Table 8.22, “cidr Type Input Examples” shows some examples.

Table 8.22. cidr Type Input Examples
	cidr Input	cidr Output	abbrev(cidr)
	192.168.100.128/25	192.168.100.128/25	192.168.100.128/25
	192.168/24	192.168.0.0/24	192.168.0/24
	192.168/25	192.168.0.0/25	192.168.0.0/25
	192.168.1	192.168.1.0/24	192.168.1/24
	192.168	192.168.0.0/24	192.168.0/24
	128.1	128.1.0.0/16	128.1/16
	128	128.0.0.0/16	128.0/16
	128.1.2	128.1.2.0/24	128.1.2/24
	10.1.2	10.1.2.0/24	10.1.2/24
	10.1	10.1.0.0/16	10.1/16
	10	10.0.0.0/8	10/8
	10.1.2.3/32	10.1.2.3/32	10.1.2.3/32
	2001:4f8:3:ba::/64	2001:4f8:3:ba::/64	2001:4f8:3:ba/64
	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128
	::ffff:1.2.3.0/120	::ffff:1.2.3.0/120	::ffff:1.2.3/120
	::ffff:1.2.3.0/128	::ffff:1.2.3.0/128	::ffff:1.2.3.0/128

inet vs. cidr

 The essential difference between inet and cidr
 data types is that inet accepts values with nonzero bits to
 the right of the netmask, whereas cidr does not. For
 example, 192.168.0.1/24 is valid for inet
 but not for cidr.

Tip

 If you do not like the output format for inet or
 cidr values, try the functions host,
 text, and abbrev.

macaddr

 The macaddr type stores MAC addresses, known for example
 from Ethernet card hardware addresses (although MAC addresses are
 used for other purposes as well). Input is accepted in the
 following formats:

	'08:00:2b:01:02:03'
	'08-00-2b-01-02-03'
	'08002b:010203'
	'08002b-010203'
	'0800.2b01.0203'
	'0800-2b01-0203'
	'08002b010203'

 These examples all specify the same address. Upper and
 lower case is accepted for the digits
 a through f. Output is always in the
 first of the forms shown.

 IEEE Standard 802-2001 specifies the second form shown (with hyphens)
 as the canonical form for MAC addresses, and specifies the first
 form (with colons) as used with bit-reversed, MSB-first notation, so that
 08-00-2b-01-02-03 = 10:00:D4:80:40:C0. This convention is widely
 ignored nowadays, and it is relevant only for obsolete network
 protocols (such as Token Ring). PostgreSQL makes no provisions
 for bit reversal; all accepted formats use the canonical LSB
 order.

 The remaining five input formats are not part of any standard.

macaddr8

 The macaddr8 type stores MAC addresses in EUI-64
 format, known for example from Ethernet card hardware addresses
 (although MAC addresses are used for other purposes as well).
 This type can accept both 6 and 8 byte length MAC addresses
 and stores them in 8 byte length format. MAC addresses given
 in 6 byte format will be stored in 8 byte length format with the
 4th and 5th bytes set to FF and FE, respectively.

 Note that IPv6 uses a modified EUI-64 format where the 7th bit
 should be set to one after the conversion from EUI-48. The
 function macaddr8_set7bit is provided to make this
 change.

 Generally speaking, any input which is comprised of pairs of hex
 digits (on byte boundaries), optionally separated consistently by
 one of ':', '-' or '.', is
 accepted. The number of hex digits must be either 16 (8 bytes) or
 12 (6 bytes). Leading and trailing whitespace is ignored.

 The following are examples of input formats that are accepted:

	'08:00:2b:01:02:03:04:05'
	'08-00-2b-01-02-03-04-05'
	'08002b:0102030405'
	'08002b-0102030405'
	'0800.2b01.0203.0405'
	'0800-2b01-0203-0405'
	'08002b01:02030405'
	'08002b0102030405'

 These examples all specify the same address. Upper and
 lower case is accepted for the digits
 a through f. Output is always in the
 first of the forms shown.

 The last six input formats shown above are not part of any standard.

 To convert a traditional 48 bit MAC address in EUI-48 format to
 modified EUI-64 format to be included as the host portion of an
 IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit('08:00:2b:01:02:03');

 macaddr8_set7bit

 0a:00:2b:ff:fe:01:02:03
(1 row)

Bit String Types

 Bit strings are strings of 1's and 0's. They can be used to store
 or visualize bit masks. There are two SQL bit types:
 bit(n) and bit
 varying(n), where
 n is a positive integer.

 bit type data must match the length
 n exactly; it is an error to attempt to
 store shorter or longer bit strings. bit varying data is
 of variable length up to the maximum length
 n; longer strings will be rejected.
 Writing bit without a length is equivalent to
 bit(1), while bit varying without a length
 specification means unlimited length.

Note

 If one explicitly casts a bit-string value to
 bit(n), it will be truncated or
 zero-padded on the right to be exactly n bits,
 without raising an error. Similarly,
 if one explicitly casts a bit-string value to
 bit varying(n), it will be truncated
 on the right if it is more than n bits.

 Refer to the section called “Bit-String Constants” for information about the syntax
 of bit string constants. Bit-logical operators and string
 manipulation functions are available; see the section called “Bit String Functions and Operators”.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00');
INSERT INTO test VALUES (B'10', B'101');

ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B'10'::bit(3), B'101');
SELECT * FROM test;

 a | b
-----+-----
 101 | 00
 100 | 101

 A bit string value requires 1 byte for each group of 8 bits, plus
 5 or 8 bytes overhead depending on the length of the string
 (but long values may be compressed or moved out-of-line, as explained
 in the section called “Character Types” for character strings).

Text Search Types

 PostgreSQL™ provides two data types that
 are designed to support full text search, which is the activity of
 searching through a collection of natural-language documents
 to locate those that best match a query.
 The tsvector type represents a document in a form optimized
 for text search; the tsquery type similarly represents
 a text query.
 Chapter 12, Full Text Search provides a detailed explanation of this
 facility, and the section called “Text Search Functions and Operators” summarizes the
 related functions and operators.

tsvector

 A tsvector value is a sorted list of distinct
 lexemes, which are words that have been
 normalized to merge different variants of the same word
 (see Chapter 12, Full Text Search for details). Sorting and
 duplicate-elimination are done automatically during input, as shown in
 this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

 To represent
 lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'

 (We use dollar-quoted string literals in this example and the next one
 to avoid the confusion of having to double quote marks within the
 literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'

 Optionally, integer positions
 can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
 tsvector
---​------------
 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4

 A position normally indicates the source word's location in the
 document. Positional information can be used for
 proximity ranking. Position values can
 range from 1 to 16383; larger numbers are silently set to 16383.
 Duplicate positions for the same lexeme are discarded.

 Lexemes that have positions can further be labeled with a
 weight, which can be A,
 B, C, or D.
 D is the default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C

 Weights are typically used to reflect document structure, for example
 by marking title words differently from body words. Text search
 ranking functions can assign different priorities to the different
 weight markers.

 It is important to understand that the
 tsvector type itself does not perform any word
 normalization; it assumes the words it is given are normalized
 appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'

 For most English-text-searching applications the above words would
 be considered non-normalized, but tsvector doesn't care.
 Raw document text should usually be passed through
 to_tsvector to normalize the words appropriately
 for searching:

SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3

 Again, see Chapter 12, Full Text Search for more detail.

tsquery

 A tsquery value stores lexemes that are to be
 searched for, and can combine them using the Boolean operators
 & (AND), | (OR), and
 ! (NOT), as well as the phrase search operator
 <-> (FOLLOWED BY). There is also a variant
 <N> of the FOLLOWED BY
 operator, where N is an integer constant that
 specifies the distance between the two lexemes being searched
 for. <-> is equivalent to <1>.

 Parentheses can be used to enforce grouping of these operators.
 In the absence of parentheses, ! (NOT) binds most tightly,
 <-> (FOLLOWED BY) next most tightly, then
 & (AND), with | (OR) binding
 the least tightly.

 Here are some examples:

SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'

 Optionally, lexemes in a tsquery can be labeled with
 one or more weight letters, which restricts them to match only
 tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
 tsquery

 'fat':AB & 'cat'

 Also, lexemes in a tsquery can be labeled with *
 to specify prefix matching:

SELECT 'super:*'::tsquery;
 tsquery

 'super':*

 This query will match any word in a tsvector that begins
 with “super”.

 Quoting rules for lexemes are the same as described previously for
 lexemes in tsvector; and, as with tsvector,
 any required normalization of words must be done before converting
 to the tsquery type. The to_tsquery
 function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

 'fat':AB & 'cat'

 Note that to_tsquery will process prefixes in the same way
 as other words, which means this comparison returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
 ?column?

 t

 because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
 to_tsvector | to_tsquery
---------------+------------
 'postgradu':1 | 'postgr':*

 which will match the stemmed form of postgraduate.

UUID Type

 The data type uuid stores Universally Unique Identifiers
 (UUID) as defined by RFC 4122,
 ISO/IEC 9834-8:2005, and related standards.
 (Some systems refer to this data type as a globally unique identifier, or
 GUID, instead.) This
 identifier is a 128-bit quantity that is generated by an algorithm chosen
 to make it very unlikely that the same identifier will be generated by
 anyone else in the known universe using the same algorithm. Therefore,
 for distributed systems, these identifiers provide a better uniqueness
 guarantee than sequence generators, which
 are only unique within a single database.

 A UUID is written as a sequence of lower-case hexadecimal digits,
 in several groups separated by hyphens, specifically a group of 8
 digits followed by three groups of 4 digits followed by a group of
 12 digits, for a total of 32 digits representing the 128 bits. An
 example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

 PostgreSQL™ also accepts the following
 alternative forms for input:
 use of upper-case digits, the standard format surrounded by
 braces, omitting some or all hyphens, adding a hyphen after any
 group of four digits. Examples are:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}

 Output is always in the standard form.

 See the section called “UUID Functions” for how to generate a UUID in
 PostgreSQL™.

XML Type

 The xml data type can be used to store XML data. Its
 advantage over storing XML data in a text field is that it
 checks the input values for well-formedness, and there are support
 functions to perform type-safe operations on it; see the section called “XML Functions”. Use of this data type requires the
 installation to have been built with configure
 --with-libxml.

 The xml type can store well-formed
 “documents”, as defined by the XML standard, as well
 as “content” fragments, which are defined by reference
 to the more permissive
 “document node”
 of the XQuery and XPath data model.
 Roughly, this means that content fragments can have
 more than one top-level element or character node. The expression
 xmlvalue IS DOCUMENT
 can be used to evaluate whether a particular xml
 value is a full document or only a content fragment.

 Limits and compatibility notes for the xml data type
 can be found in the section called “XML Limits and Conformance to SQL/XML”.

Creating XML Values

 To produce a value of type xml from character data,
 use the function
 xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

 Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')

 While this is the only way to convert character strings into XML
 values according to the SQL standard, the PostgreSQL-specific
 syntaxes:

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

 can also be used.

 The xml type does not validate input values
 against a document type declaration
 (DTD),
 even when the input value specifies a DTD.
 There is also currently no built-in support for validating against
 other XML schema languages such as XML Schema.

 The inverse operation, producing a character string value from
 xml, uses the function
 xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type [[NO] INDENT])

 type can be
 character, character varying, or
 text (or an alias for one of those). Again, according
 to the SQL standard, this is the only way to convert between type
 xml and character types, but PostgreSQL also allows
 you to simply cast the value.

 The INDENT option causes the result to be
 pretty-printed, while NO INDENT (which is the
 default) just emits the original input string. Casting to a character
 type likewise produces the original string.

 When a character string value is cast to or from type
 xml without going through XMLPARSE or
 XMLSERIALIZE, respectively, the choice of
 DOCUMENT versus CONTENT is
 determined by the “XML option”

 session configuration parameter, which can be set using the
 standard command:

SET XML OPTION { DOCUMENT | CONTENT };

 or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

 The default is CONTENT, so all forms of XML
 data are allowed.

Encoding Handling

 Care must be taken when dealing with multiple character encodings
 on the client, server, and in the XML data passed through them.
 When using the text mode to pass queries to the server and query
 results to the client (which is the normal mode), PostgreSQL
 converts all character data passed between the client and the
 server and vice versa to the character encoding of the respective
 end; see the section called “Character Set Support”. This includes string
 representations of XML values, such as in the above examples.
 This would ordinarily mean that encoding declarations contained in
 XML data can become invalid as the character data is converted
 to other encodings while traveling between client and server,
 because the embedded encoding declaration is not changed. To cope
 with this behavior, encoding declarations contained in
 character strings presented for input to the xml type
 are ignored, and content is assumed
 to be in the current server encoding. Consequently, for correct
 processing, character strings of XML data must be sent
 from the client in the current client encoding. It is the
 responsibility of the client to either convert documents to the
 current client encoding before sending them to the server, or to
 adjust the client encoding appropriately. On output, values of
 type xml will not have an encoding declaration, and
 clients should assume all data is in the current client
 encoding.

 When using binary mode to pass query parameters to the server
 and query results back to the client, no encoding conversion
 is performed, so the situation is different. In this case, an
 encoding declaration in the XML data will be observed, and if it
 is absent, the data will be assumed to be in UTF-8 (as required by
 the XML standard; note that PostgreSQL does not support UTF-16).
 On output, data will have an encoding declaration
 specifying the client encoding, unless the client encoding is
 UTF-8, in which case it will be omitted.

 Needless to say, processing XML data with PostgreSQL will be less
 error-prone and more efficient if the XML data encoding, client encoding,
 and server encoding are the same. Since XML data is internally
 processed in UTF-8, computations will be most efficient if the
 server encoding is also UTF-8.

Caution

 Some XML-related functions may not work at all on non-ASCII data
 when the server encoding is not UTF-8. This is known to be an
 issue for xmltable() and xpath() in particular.

Accessing XML Values

 The xml data type is unusual in that it does not
 provide any comparison operators. This is because there is no
 well-defined and universally useful comparison algorithm for XML
 data. One consequence of this is that you cannot retrieve rows by
 comparing an xml column against a search value. XML
 values should therefore typically be accompanied by a separate key
 field such as an ID. An alternative solution for comparing XML
 values is to convert them to character strings first, but note
 that character string comparison has little to do with a useful
 XML comparison method.

 Since there are no comparison operators for the xml
 data type, it is not possible to create an index directly on a
 column of this type. If speedy searches in XML data are desired,
 possible workarounds include casting the expression to a
 character string type and indexing that, or indexing an XPath
 expression. Of course, the actual query would have to be adjusted
 to search by the indexed expression.

 The text-search functionality in PostgreSQL can also be used to speed
 up full-document searches of XML data. The necessary
 preprocessing support is, however, not yet available in the PostgreSQL
 distribution.

JSON Types

 JSON data types are for storing JSON (JavaScript Object Notation)
 data, as specified in RFC
 7159. Such data can also be stored as text, but
 the JSON data types have the advantage of enforcing that each
 stored value is valid according to the JSON rules. There are also
 assorted JSON-specific functions and operators available for data stored
 in these data types; see the section called “JSON Functions and Operators”.

 PostgreSQL™ offers two types for storing JSON
 data: json and jsonb. To implement efficient query
 mechanisms for these data types, PostgreSQL™
 also provides the jsonpath data type described in
 the section called “jsonpath Type”.

 The json and jsonb data types
 accept almost identical sets of values as
 input. The major practical difference is one of efficiency. The
 json data type stores an exact copy of the input text,
 which processing functions must reparse on each execution; while
 jsonb data is stored in a decomposed binary format that
 makes it slightly slower to input due to added conversion
 overhead, but significantly faster to process, since no reparsing
 is needed. jsonb also supports indexing, which can be a
 significant advantage.

 Because the json type stores an exact copy of the input text, it
 will preserve semantically-insignificant white space between tokens, as
 well as the order of keys within JSON objects. Also, if a JSON object
 within the value contains the same key more than once, all the key/value
 pairs are kept. (The processing functions consider the last value as the
 operative one.) By contrast, jsonb does not preserve white
 space, does not preserve the order of object keys, and does not keep
 duplicate object keys. If duplicate keys are specified in the input,
 only the last value is kept.

 In general, most applications should prefer to store JSON data as
 jsonb, unless there are quite specialized needs, such as
 legacy assumptions about ordering of object keys.

 RFC 7159 specifies that JSON strings should be encoded in UTF8.
 It is therefore not possible for the JSON
 types to conform rigidly to the JSON specification unless the database
 encoding is UTF8. Attempts to directly include characters that
 cannot be represented in the database encoding will fail; conversely,
 characters that can be represented in the database encoding but not
 in UTF8 will be allowed.

 RFC 7159 permits JSON strings to contain Unicode escape sequences
 denoted by \uXXXX. In the input
 function for the json type, Unicode escapes are allowed
 regardless of the database encoding, and are checked only for syntactic
 correctness (that is, that four hex digits follow \u).
 However, the input function for jsonb is stricter: it disallows
 Unicode escapes for characters that cannot be represented in the database
 encoding. The jsonb type also
 rejects \u0000 (because that cannot be represented in
 PostgreSQL™'s text type), and it insists
 that any use of Unicode surrogate pairs to designate characters outside
 the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes
 are converted to the equivalent single character for storage;
 this includes folding surrogate pairs into a single character.

Note

 Many of the JSON processing functions described
 in the section called “JSON Functions and Operators” will convert Unicode escapes to
 regular characters, and will therefore throw the same types of errors
 just described even if their input is of type json
 not jsonb. The fact that the json input function does
 not make these checks may be considered a historical artifact, although
 it does allow for simple storage (without processing) of JSON Unicode
 escapes in a database encoding that does not support the represented
 characters.

 When converting textual JSON input into jsonb, the primitive
 types described by RFC 7159 are effectively mapped onto
 native PostgreSQL™ types, as shown
 in Table 8.23, “JSON Primitive Types and Corresponding PostgreSQL™ Types”.
 Therefore, there are some minor additional constraints on what
 constitutes valid jsonb data that do not apply to
 the json type, nor to JSON in the abstract, corresponding
 to limits on what can be represented by the underlying data type.
 Notably, jsonb will reject numbers that are outside the
 range of the PostgreSQL™ numeric data
 type, while json will not. Such implementation-defined
 restrictions are permitted by RFC 7159. However, in
 practice such problems are far more likely to occur in other
 implementations, as it is common to represent JSON's number
 primitive type as IEEE 754 double precision floating point
 (which RFC 7159 explicitly anticipates and allows for).
 When using JSON as an interchange format with such systems, the danger
 of losing numeric precision compared to data originally stored
 by PostgreSQL™ should be considered.

 Conversely, as noted in the table there are some minor restrictions on
 the input format of JSON primitive types that do not apply to
 the corresponding PostgreSQL™ types.

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL™ Types
	JSON primitive type	PostgreSQL™ type	Notes
	string	text	\u0000 is disallowed, as are Unicode escapes
 representing characters not available in the database encoding
	number	numeric	NaN and infinity values are disallowed
	boolean	boolean	Only lowercase true and false spellings are accepted
	null	(none)	SQL NULL is a different concept

JSON Input and Output Syntax

 The input/output syntax for the JSON data types is as specified in
 RFC 7159.

 The following are all valid json (or jsonb) expressions:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

 As previously stated, when a JSON value is input and then printed without
 any additional processing, json outputs the same text that was
 input, while jsonb does not preserve semantically-insignificant
 details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
 json

 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
 jsonb
--
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

 One semantically-insignificant detail worth noting is that
 in jsonb, numbers will be printed according to the behavior of the
 underlying numeric type. In practice this means that numbers
 entered with E notation will be printed without it, for
 example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
 json | jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

 However, jsonb will preserve trailing fractional zeroes, as seen
 in this example, even though those are semantically insignificant for
 purposes such as equality checks.

 For the list of built-in functions and operators available for
 constructing and processing JSON values, see the section called “JSON Functions and Operators”.

Designing JSON Documents

 Representing data as JSON can be considerably more flexible than
 the traditional relational data model, which is compelling in
 environments where requirements are fluid. It is quite possible
 for both approaches to co-exist and complement each other within
 the same application. However, even for applications where maximal
 flexibility is desired, it is still recommended that JSON documents
 have a somewhat fixed structure. The structure is typically
 unenforced (though enforcing some business rules declaratively is
 possible), but having a predictable structure makes it easier to write
 queries that usefully summarize a set of “documents” (datums)
 in a table.

 JSON data is subject to the same concurrency-control
 considerations as any other data type when stored in a table.
 Although storing large documents is practicable, keep in mind that
 any update acquires a row-level lock on the whole row.
 Consider limiting JSON documents to a
 manageable size in order to decrease lock contention among updating
 transactions. Ideally, JSON documents should each
 represent an atomic datum that business rules dictate cannot
 reasonably be further subdivided into smaller datums that
 could be modified independently.

jsonb Containment and Existence

 Testing containment is an important capability of
 jsonb. There is no parallel set of facilities for the
 json type. Containment tests whether
 one jsonb document has contained within it another one.
 These examples return true except as noted:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @> '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- yields false

-- A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

 The general principle is that the contained object must match the
 containing object as to structure and data contents, possibly after
 discarding some non-matching array elements or object key/value pairs
 from the containing object.
 But remember that the order of array elements is not significant when
 doing a containment match, and duplicate array elements are effectively
 considered only once.

 As a special exception to the general principle that the structures
 must match, an array may contain a primitive value:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

 jsonb also has an existence operator, which is
 a variation on the theme of containment: it tests whether a string
 (given as a text value) appears as an object key or array
 element at the top level of the jsonb value.
 These examples return true except as noted:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

 JSON objects are better suited than arrays for testing containment or
 existence when there are many keys or elements involved, because
 unlike arrays they are internally optimized for searching, and do not
 need to be searched linearly.

Tip

 Because JSON containment is nested, an appropriate query can skip
 explicit selection of sub-objects. As an example, suppose that we have
 a doc column containing objects at the top level, with
 most objects containing tags fields that contain arrays of
 sub-objects. This query finds entries in which sub-objects containing
 both "term":"paris" and "term":"food" appear,
 while ignoring any such keys outside the tags array:

SELECT doc->'site_name' FROM websites
 WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

 One could accomplish the same thing with, say,

SELECT doc->'site_name' FROM websites
 WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

 but that approach is less flexible, and often less efficient as well.

 On the other hand, the JSON existence operator is not nested: it will
 only look for the specified key or array element at top level of the
 JSON value.

 The various containment and existence operators, along with all other
 JSON operators and functions are documented
 in the section called “JSON Functions and Operators”.

jsonb Indexing

 GIN indexes can be used to efficiently search for
 keys or key/value pairs occurring within a large number of
 jsonb documents (datums).
 Two GIN “operator classes” are provided, offering different
 performance and flexibility trade-offs.

 The default GIN operator class for jsonb supports queries with
 the key-exists operators ?, ?|
 and ?&, the containment operator
 @>, and the jsonpath match
 operators @? and @@.
 (For details of the semantics that these operators
 implement, see Table 9.46, “Additional jsonb Operators”.)
 An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

 The non-default GIN operator class jsonb_path_ops
 does not support the key-exists operators, but it does support
 @>, @? and @@.
 An example of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

 Consider the example of a table that stores JSON documents
 retrieved from a third-party web service, with a documented schema
 definition. A typical document is:

{
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
 "name": "Angela Barton",
 "is_active": true,
 "company": "Magnafone",
 "address": "178 Howard Place, Gulf, Washington, 702",
 "registered": "2009-11-07T08:53:22 +08:00",
 "latitude": 19.793713,
 "longitude": 86.513373,
 "tags": [
 "enim",
 "aliquip",
 "qui"
]
}

 We store these documents in a table named api,
 in a jsonb column named jdoc.
 If a GIN index is created on this column,
 queries like the following can make use of the index:

-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

 However, the index could not be used for queries like the
 following, because though the operator ? is indexable,
 it is not applied directly to the indexed column jdoc:

-- Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

 Still, with appropriate use of expression indexes, the above
 query can use an index. If querying for particular items within
 the "tags" key is common, defining an index like this
 may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

 Now, the WHERE clause jdoc -> 'tags' ? 'qui'
 will be recognized as an application of the indexable
 operator ? to the indexed
 expression jdoc -> 'tags'.
 (More information on expression indexes can be found in the section called “Indexes on Expressions”.)

 Another approach to querying is to exploit containment, for example:

-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

 A simple GIN index on the jdoc column can support this
 query. But note that such an index will store copies of every key and
 value in the jdoc column, whereas the expression index
 of the previous example stores only data found under
 the tags key. While the simple-index approach is far more
 flexible (since it supports queries about any key), targeted expression
 indexes are likely to be smaller and faster to search than a simple
 index.

 GIN indexes also support the @?
 and @@ operators, which
 perform jsonpath matching. Examples are

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @? '$.tags[*] ? (@ == "qui")';

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] == "qui"';

 For these operators, a GIN index extracts clauses of the form
 accessors_chain
 = constant out of
 the jsonpath pattern, and does the index search based on
 the keys and values mentioned in these clauses. The accessors chain
 may include .key,
 [*],
 and [index] accessors.
 The jsonb_ops operator class also
 supports .* and .** accessors,
 but the jsonb_path_ops operator class does not.

 Although the jsonb_path_ops operator class supports
 only queries with the @>, @?
 and @@ operators, it has notable
 performance advantages over the default operator
 class jsonb_ops. A jsonb_path_ops
 index is usually much smaller than a jsonb_ops
 index over the same data, and the specificity of searches is better,
 particularly when queries contain keys that appear frequently in the
 data. Therefore search operations typically perform better
 than with the default operator class.

 The technical difference between a jsonb_ops
 and a jsonb_path_ops GIN index is that the former
 creates independent index items for each key and value in the data,
 while the latter creates index items only for each value in the
 data.
 [7]
 Basically, each jsonb_path_ops index item is
 a hash of the value and the key(s) leading to it; for example to index
 {"foo": {"bar": "baz"}}, a single index item would
 be created incorporating all three of foo, bar,
 and baz into the hash value. Thus a containment query
 looking for this structure would result in an extremely specific index
 search; but there is no way at all to find out whether foo
 appears as a key. On the other hand, a jsonb_ops
 index would create three index items representing foo,
 bar, and baz separately; then to do the
 containment query, it would look for rows containing all three of
 these items. While GIN indexes can perform such an AND search fairly
 efficiently, it will still be less specific and slower than the
 equivalent jsonb_path_ops search, especially if
 there are a very large number of rows containing any single one of the
 three index items.

 A disadvantage of the jsonb_path_ops approach is
 that it produces no index entries for JSON structures not containing
 any values, such as {"a": {}}. If a search for
 documents containing such a structure is requested, it will require a
 full-index scan, which is quite slow. jsonb_path_ops is
 therefore ill-suited for applications that often perform such searches.

 jsonb also supports btree and hash
 indexes. These are usually useful only if it's important to check
 equality of complete JSON documents.
 The btree ordering for jsonb datums is seldom
 of great interest, but for completeness it is:

Object > Array > Boolean > Number > String > null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements

 with the exception that (for historical reasons) an empty top level array sorts less than null.
 Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

 Note that object keys are compared in their storage order;
 in particular, since shorter keys are stored before longer keys, this
 can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

 Similarly, arrays with equal numbers of elements are compared in the
 order:

element-1, element-2 ...

 Primitive JSON values are compared using the same
 comparison rules as for the underlying
 PostgreSQL™ data type. Strings are
 compared using the default database collation.

jsonb Subscripting

 The jsonb data type supports array-style subscripting expressions
 to extract and modify elements. Nested values can be indicated by chaining
 subscripting expressions, following the same rules as the path
 argument in the jsonb_set function. If a jsonb
 value is an array, numeric subscripts start at zero, and negative integers count
 backwards from the last element of the array. Slice expressions are not supported.
 The result of a subscripting expression is always of the jsonb data type.

 UPDATE statements may use subscripting in the
 SET clause to modify jsonb values. Subscript
 paths must be traversable for all affected values insofar as they exist. For
 instance, the path val['a']['b']['c'] can be traversed all
 the way to c if every val,
 val['a'], and val['a']['b'] is an
 object. If any val['a'] or val['a']['b']
 is not defined, it will be created as an empty object and filled as
 necessary. However, if any val itself or one of the
 intermediary values is defined as a non-object such as a string, number, or
 jsonb null, traversal cannot proceed so
 an error is raised and the transaction aborted.

 An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a']['b']['c'];

-- Extract array element by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Update object value by key. Note the quotes around '1': the assigned
-- value must be of the jsonb type as well
UPDATE table_name SET jsonb_field['key'] = '1';

-- This will raise an error if any record's jsonb_field['a']['b'] is something
-- other than an object. For example, the value {"a": 1} has a numeric value
-- of the key 'a'.
UPDATE table_name SET jsonb_field['a']['b']['c'] = '1';

-- Filter records using a WHERE clause with subscripting. Since the result of
-- subscripting is jsonb, the value we compare it against must also be jsonb.
-- The double quotes make "value" also a valid jsonb string.
SELECT * FROM table_name WHERE jsonb_field['key'] = '"value"';

 jsonb assignment via subscripting handles a few edge cases
 differently from jsonb_set. When a source jsonb
 value is NULL, assignment via subscripting will proceed
 as if it was an empty JSON value of the type (object or array) implied by the
 subscript key:

-- Where jsonb_field was NULL, it is now {"a": 1}
UPDATE table_name SET jsonb_field['a'] = '1';

-- Where jsonb_field was NULL, it is now [1]
UPDATE table_name SET jsonb_field[0] = '1';

 If an index is specified for an array containing too few elements,
 NULL elements will be appended until the index is reachable
 and the value can be set.

-- Where jsonb_field was [], it is now [null, null, 2];
-- where jsonb_field was [0], it is now [0, null, 2]
UPDATE table_name SET jsonb_field[2] = '2';

 A jsonb value will accept assignments to nonexistent subscript
 paths as long as the last existing element to be traversed is an object or
 array, as implied by the corresponding subscript (the element indicated by
 the last subscript in the path is not traversed and may be anything). Nested
 array and object structures will be created, and in the former case
 null-padded, as specified by the subscript path until the
 assigned value can be placed.

-- Where jsonb_field was {}, it is now {"a": [{"b": 1}]}
UPDATE table_name SET jsonb_field['a'][0]['b'] = '1';

-- Where jsonb_field was [], it is now [null, {"a": 1}]
UPDATE table_name SET jsonb_field[1]['a'] = '1';

Transforms

 Additional extensions are available that implement transforms for the
 jsonb type for different procedural languages.

 The extensions for PL/Perl are called jsonb_plperl and
 jsonb_plperlu. If you use them, jsonb
 values are mapped to Perl arrays, hashes, and scalars, as appropriate.

 The extension for PL/Python is called jsonb_plpython3u.
 If you use it, jsonb values are mapped to Python
 dictionaries, lists, and scalars, as appropriate.

 Of these extensions, jsonb_plperl is
 considered “trusted”, that is, it can be installed by
 non-superusers who have CREATE privilege on the
 current database. The rest require superuser privilege to install.

jsonpath Type

 The jsonpath type implements support for the SQL/JSON path language
 in PostgreSQL™ to efficiently query JSON data.
 It provides a binary representation of the parsed SQL/JSON path
 expression that specifies the items to be retrieved by the path
 engine from the JSON data for further processing with the
 SQL/JSON query functions.

 The semantics of SQL/JSON path predicates and operators generally follow SQL.
 At the same time, to provide a natural way of working with JSON data,
 SQL/JSON path syntax uses some JavaScript conventions:

	
 Dot (.) is used for member access.

	
 Square brackets ([]) are used for array access.

	
 SQL/JSON arrays are 0-relative, unlike regular SQL arrays that start from 1.

 Numeric literals in SQL/JSON path expressions follow JavaScript rules,
 which are different from both SQL and JSON in some minor details. For
 example, SQL/JSON path allows .1 and
 1., which are invalid in JSON. Non-decimal integer
 literals and underscore separators are supported, for example,
 1_000_000, 0x1EEE_FFFF,
 0o273, 0b100101. In SQL/JSON path
 (and in JavaScript, but not in SQL proper), there must not be an underscore
 separator directly after the radix prefix.

 An SQL/JSON path expression is typically written in an SQL query as an
 SQL character string literal, so it must be enclosed in single quotes,
 and any single quotes desired within the value must be doubled
 (see the section called “String Constants”).
 Some forms of path expressions require string literals within them.
 These embedded string literals follow JavaScript/ECMAScript conventions:
 they must be surrounded by double quotes, and backslash escapes may be
 used within them to represent otherwise-hard-to-type characters.
 In particular, the way to write a double quote within an embedded string
 literal is \", and to write a backslash itself, you
 must write \\. Other special backslash sequences
 include those recognized in JavaScript strings:
 \b,
 \f,
 \n,
 \r,
 \t,
 \v
 for various ASCII control characters,
 \xNN for a character code
 written with only two hex digits,
 \uNNNN for a Unicode
 character identified by its 4-hex-digit code point, and
 \u{N...} for a Unicode
 character code point written with 1 to 6 hex digits.

 A path expression consists of a sequence of path elements,
 which can be any of the following:

	
 Path literals of JSON primitive types:
 Unicode text, numeric, true, false, or null.

	
 Path variables listed in Table 8.24, “jsonpath Variables”.

	
 Accessor operators listed in Table 8.25, “jsonpath Accessors”.

	
 jsonpath operators and methods listed
 in the section called “SQL/JSON Path Operators and Methods”.

	
 Parentheses, which can be used to provide filter expressions
 or define the order of path evaluation.

 For details on using jsonpath expressions with SQL/JSON
 query functions, see the section called “The SQL/JSON Path Language”.

Table 8.24. jsonpath Variables
	Variable	Description
	$	A variable representing the JSON value being queried
 (the context item).

	$varname	
 A named variable. Its value can be set by the parameter
 vars of several JSON processing functions;
 see Table 9.49, “JSON Processing Functions” for details.

	@	A variable representing the result of path evaluation
 in filter expressions.

Table 8.25. jsonpath Accessors
	Accessor Operator	Description
	

 .key

 ."$varname"

 	

 Member accessor that returns an object member with
 the specified key. If the key name matches some named variable
 starting with $ or does not meet the
 JavaScript rules for an identifier, it must be enclosed in
 double quotes to make it a string literal.

	

 .*

 	

 Wildcard member accessor that returns the values of all
 members located at the top level of the current object.

	

 .**

 	

 Recursive wildcard member accessor that processes all levels
 of the JSON hierarchy of the current object and returns all
 the member values, regardless of their nesting level. This
 is a PostgreSQL™ extension of
 the SQL/JSON standard.

	

 .**{level}

 .**{start_level to
 end_level}

 	

 Like .**, but selects only the specified
 levels of the JSON hierarchy. Nesting levels are specified as integers.
 Level zero corresponds to the current object. To access the lowest
 nesting level, you can use the last keyword.
 This is a PostgreSQL™ extension of
 the SQL/JSON standard.

	

 [subscript, ...]

 	

 Array element accessor.
 subscript can be
 given in two forms: index
 or start_index to end_index.
 The first form returns a single array element by its index. The second
 form returns an array slice by the range of indexes, including the
 elements that correspond to the provided
 start_index and end_index.

 The specified index can be an integer, as
 well as an expression returning a single numeric value, which is
 automatically cast to integer. Index zero corresponds to the first
 array element. You can also use the last keyword
 to denote the last array element, which is useful for handling arrays
 of unknown length.

	

 [*]

 	

 Wildcard array element accessor that returns all array elements.

[7]
 For this purpose, the term “value” includes array elements,
 though JSON terminology sometimes considers array elements distinct
 from values within objects.

Arrays

 PostgreSQL™ allows columns of a table to be
 defined as variable-length multidimensional arrays. Arrays of any
 built-in or user-defined base type, enum type, composite type, range type,
 or domain can be created.

Declaration of Array Types

 To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter integer[],
 schedule text[][]
);

 As shown, an array data type is named by appending square brackets
 ([]) to the data type name of the array elements. The
 above command will create a table named
 sal_emp with a column of type
 text (name), a
 one-dimensional array of type integer
 (pay_by_quarter), which represents the
 employee's salary by quarter, and a two-dimensional array of
 text (schedule), which
 represents the employee's weekly schedule.

 The syntax for CREATE TABLE allows the exact size of
 arrays to be specified, for example:

CREATE TABLE tictactoe (
 squares integer[3][3]
);

 However, the current implementation ignores any supplied array size
 limits, i.e., the behavior is the same as for arrays of unspecified
 length.

 The current implementation does not enforce the declared
 number of dimensions either. Arrays of a particular element type are
 all considered to be of the same type, regardless of size or number
 of dimensions. So, declaring the array size or number of dimensions in
 CREATE TABLE is simply documentation; it does not
 affect run-time behavior.

 An alternative syntax, which conforms to the SQL standard by using
 the keyword ARRAY, can be used for one-dimensional arrays.
 pay_by_quarter could have been defined
 as:

 pay_by_quarter integer ARRAY[4],

 Or, if no array size is to be specified:

 pay_by_quarter integer ARRAY,

 As before, however, PostgreSQL™ does not enforce the
 size restriction in any case.

Array Value Input

 To write an array value as a literal constant, enclose the element
 values within curly braces and separate them by commas. (If you
 know C, this is not unlike the C syntax for initializing
 structures.) You can put double quotes around any element value,
 and must do so if it contains commas or curly braces. (More
 details appear below.) Thus, the general format of an array
 constant is the following:

'{ val1 delim val2 delim ... }'

 where delim is the delimiter character
 for the type, as recorded in its pg_type entry.
 Among the standard data types provided in the
 PostgreSQL™ distribution, all use a comma
 (,), except for type box which uses a semicolon
 (;). Each val is
 either a constant of the array element type, or a subarray. An example
 of an array constant is:

'{{1,2,3},{4,5,6},{7,8,9}}'

 This constant is a two-dimensional, 3-by-3 array consisting of
 three subarrays of integers.

 To set an element of an array constant to NULL, write NULL
 for the element value. (Any upper- or lower-case variant of
 NULL will do.) If you want an actual string value
 “NULL”, you must put double quotes around it.

 (These kinds of array constants are actually only a special case of
 the generic type constants discussed in the section called “Constants of Other Types”. The constant is initially
 treated as a string and passed to the array input conversion
 routine. An explicit type specification might be necessary.)

 Now we can show some INSERT statements:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
 VALUES ('Carol',
 '{20000, 25000, 25000, 25000}',
 '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');

 The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
 name | pay_by_quarter | schedule
-------+---------------------------+---
 Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)

 Multidimensional arrays must have matching extents for each
 dimension. A mismatch causes an error, for example:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"meeting"}}');
ERROR: multidimensional arrays must have array expressions with matching dimensions

 The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
 VALUES ('Bill',
 ARRAY[10000, 10000, 10000, 10000],
 ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
 VALUES ('Carol',
 ARRAY[20000, 25000, 25000, 25000],
 ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);

 Notice that the array elements are ordinary SQL constants or
 expressions; for instance, string literals are single quoted, instead of
 double quoted as they would be in an array literal. The ARRAY
 constructor syntax is discussed in more detail in
 the section called “Array Constructors”.

Accessing Arrays

 Now, we can run some queries on the table.
 First, we show how to access a single element of an array.
 This query retrieves the names of the employees whose pay changed in
 the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name

 Carol
(1 row)

 The array subscript numbers are written within square brackets.
 By default PostgreSQL™ uses a
 one-based numbering convention for arrays, that is,
 an array of n elements starts with array[1] and
 ends with array[n].

 This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter

 10000
 25000
(2 rows)

 We can also access arbitrary rectangular slices of an array, or
 subarrays. An array slice is denoted by writing
 lower-bound:upper-bound
 for one or more array dimensions. For example, this query retrieves the first
 item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

 If any dimension is written as a slice, i.e., contains a colon, then all
 dimensions are treated as slices. Any dimension that has only a single
 number (no colon) is treated as being from 1
 to the number specified. For example, [2] is treated as
 [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting,lunch},{training,presentation}}
(1 row)

 To avoid confusion with the non-slice case, it's best to use slice syntax
 for all dimensions, e.g., [1:2][1:1], not [2][1:1].

 It is possible to omit the lower-bound and/or
 upper-bound of a slice specifier; the missing
 bound is replaced by the lower or upper limit of the array's subscripts.
 For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

 An array subscript expression will return null if either the array itself or
 any of the subscript expressions are null. Also, null is returned if a
 subscript is outside the array bounds (this case does not raise an error).
 For example, if schedule
 currently has the dimensions [1:3][1:2] then referencing
 schedule[3][3] yields NULL. Similarly, an array reference
 with the wrong number of subscripts yields a null rather than an error.

 An array slice expression likewise yields null if the array itself or
 any of the subscript expressions are null. However, in other
 cases such as selecting an array slice that
 is completely outside the current array bounds, a slice expression
 yields an empty (zero-dimensional) array instead of null. (This
 does not match non-slice behavior and is done for historical reasons.)
 If the requested slice partially overlaps the array bounds, then it
 is silently reduced to just the overlapping region instead of
 returning null.

 The current dimensions of any array value can be retrieved with the
 array_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

 array_dims

 [1:2][1:2]
(1 row)

 array_dims produces a text result,
 which is convenient for people to read but perhaps inconvenient
 for programs. Dimensions can also be retrieved with
 array_upper and array_lower,
 which return the upper and lower bound of a
 specified array dimension, respectively:

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper

 2
(1 row)

 array_length will return the length of a specified
 array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length

 2
(1 row)

 cardinality returns the total number of elements in an
 array across all dimensions. It is effectively the number of rows a call to
 unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality

 4
(1 row)

Modifying Arrays

 An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
 WHERE name = 'Carol';

 or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
 WHERE name = 'Carol';

 An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = 'Bill';

 or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
 WHERE name = 'Carol';

 The slice syntaxes with omitted lower-bound and/or
 upper-bound can be used too, but only when
 updating an array value that is not NULL or zero-dimensional (otherwise,
 there is no existing subscript limit to substitute).

 A stored array value can be enlarged by assigning to elements not already
 present. Any positions between those previously present and the newly
 assigned elements will be filled with nulls. For example, if array
 myarray currently has 4 elements, it will have six
 elements after an update that assigns to myarray[6];
 myarray[5] will contain null.
 Currently, enlargement in this fashion is only allowed for one-dimensional
 arrays, not multidimensional arrays.

 Subscripted assignment allows creation of arrays that do not use one-based
 subscripts. For example one might assign to myarray[-2:7] to
 create an array with subscript values from -2 to 7.

 New array values can also be constructed using the concatenation operator,
 ||:

SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?

 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
 ?column?

 {{5,6},{1,2},{3,4}}
(1 row)

 The concatenation operator allows a single element to be pushed onto the
 beginning or end of a one-dimensional array. It also accepts two
 N-dimensional arrays, or an N-dimensional
 and an N+1-dimensional array.

 When a single element is pushed onto either the beginning or end of a
 one-dimensional array, the result is an array with the same lower bound
 subscript as the array operand. For example:

SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims

 [0:2]
(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims

 [1:3]
(1 row)

 When two arrays with an equal number of dimensions are concatenated, the
 result retains the lower bound subscript of the left-hand operand's outer
 dimension. The result is an array comprising every element of the left-hand
 operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims

 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims

 [1:5][1:2]
(1 row)

 When an N-dimensional array is pushed onto the beginning
 or end of an N+1-dimensional array, the result is
 analogous to the element-array case above. Each N-dimensional
 sub-array is essentially an element of the N+1-dimensional
 array's outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
 array_dims

 [1:3][1:2]
(1 row)

 An array can also be constructed by using the functions
 array_prepend, array_append,
 or array_cat. The first two only support one-dimensional
 arrays, but array_cat supports multidimensional arrays.
 Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend

 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append

 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat

 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
 array_cat

 {{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
 array_cat

 {{5,6},{1,2},{3,4}}

 In simple cases, the concatenation operator discussed above is preferred
 over direct use of these functions. However, because the concatenation
 operator is overloaded to serve all three cases, there are situations where
 use of one of the functions is helpful to avoid ambiguity. For example
 consider:

SELECT ARRAY[1, 2] || '{3, 4}'; -- the untyped literal is taken as an array
 ?column?

 {1,2,3,4}

SELECT ARRAY[1, 2] || '7'; -- so is this one
ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated NULL
 ?column?

 {1,2}
(1 row)

SELECT array_append(ARRAY[1, 2], NULL); -- this might have been meant
 array_append

 {1,2,NULL}

 In the examples above, the parser sees an integer array on one side of the
 concatenation operator, and a constant of undetermined type on the other.
 The heuristic it uses to resolve the constant's type is to assume it's of
 the same type as the operator's other input — in this case,
 integer array. So the concatenation operator is presumed to
 represent array_cat, not array_append. When
 that's the wrong choice, it could be fixed by casting the constant to the
 array's element type; but explicit use of array_append might
 be a preferable solution.

Searching in Arrays

 To search for a value in an array, each value must be checked.
 This can be done manually, if you know the size of the array.
 For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
 pay_by_quarter[2] = 10000 OR
 pay_by_quarter[3] = 10000 OR
 pay_by_quarter[4] = 10000;

 However, this quickly becomes tedious for large arrays, and is not
 helpful if the size of the array is unknown. An alternative method is
 described in the section called “Row and Array Comparisons”. The above
 query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

 In addition, you can find rows where the array has all values
 equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

 Alternatively, the generate_subscripts function can be used.
 For example:

SELECT * FROM
 (SELECT pay_by_quarter,
 generate_subscripts(pay_by_quarter, 1) AS s
 FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;

 This function is described in Table 9.66, “Subscript Generating Functions”.

 You can also search an array using the && operator,
 which checks whether the left operand overlaps with the right operand.
 For instance:

SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

 This and other array operators are further described in
 the section called “Array Functions and Operators”. It can be accelerated by an appropriate
 index, as described in the section called “Index Types”.

 You can also search for specific values in an array using the array_position
 and array_positions functions. The former returns the subscript of
 the first occurrence of a value in an array; the latter returns an array with the
 subscripts of all occurrences of the value in the array. For example:

SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon');
 array_position

 2
(1 row)

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions

 {1,4,8}
(1 row)

Tip

 Arrays are not sets; searching for specific array elements
 can be a sign of database misdesign. Consider
 using a separate table with a row for each item that would be an
 array element. This will be easier to search, and is likely to
 scale better for a large number of elements.

Array Input and Output Syntax

 The external text representation of an array value consists of items that
 are interpreted according to the I/O conversion rules for the array's
 element type, plus decoration that indicates the array structure.
 The decoration consists of curly braces ({ and })
 around the array value plus delimiter characters between adjacent items.
 The delimiter character is usually a comma (,) but can be
 something else: it is determined by the typdelim setting
 for the array's element type. Among the standard data types provided
 in the PostgreSQL™ distribution, all use a comma,
 except for type box, which uses a semicolon (;).
 In a multidimensional array, each dimension (row, plane,
 cube, etc.) gets its own level of curly braces, and delimiters
 must be written between adjacent curly-braced entities of the same level.

 The array output routine will put double quotes around element values
 if they are empty strings, contain curly braces, delimiter characters,
 double quotes, backslashes, or white space, or match the word
 NULL. Double quotes and backslashes
 embedded in element values will be backslash-escaped. For numeric
 data types it is safe to assume that double quotes will never appear, but
 for textual data types one should be prepared to cope with either the presence
 or absence of quotes.

 By default, the lower bound index value of an array's dimensions is
 set to one. To represent arrays with other lower bounds, the array
 subscript ranges can be specified explicitly before writing the
 array contents.
 This decoration consists of square brackets ([])
 around each array dimension's lower and upper bounds, with
 a colon (:) delimiter character in between. The
 array dimension decoration is followed by an equal sign (=).
 For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

 e1 | e2
----+----
 1 | 6
(1 row)

 The array output routine will include explicit dimensions in its result
 only when there are one or more lower bounds different from one.

 If the value written for an element is NULL (in any case
 variant), the element is taken to be NULL. The presence of any quotes
 or backslashes disables this and allows the literal string value
 “NULL” to be entered. Also, for backward compatibility with
 pre-8.2 versions of PostgreSQL™, the array_nulls configuration parameter can be turned
 off to suppress recognition of NULL as a NULL.

 As shown previously, when writing an array value you can use double
 quotes around any individual array element. You must do so
 if the element value would otherwise confuse the array-value parser.
 For example, elements containing curly braces, commas (or the data type's
 delimiter character), double quotes, backslashes, or leading or trailing
 whitespace must be double-quoted. Empty strings and strings matching the
 word NULL must be quoted, too. To put a double
 quote or backslash in a quoted array element value, precede it
 with a backslash. Alternatively, you can avoid quotes and use
 backslash-escaping to protect all data characters that would otherwise
 be taken as array syntax.

 You can add whitespace before a left brace or after a right
 brace. You can also add whitespace before or after any individual item
 string. In all of these cases the whitespace will be ignored. However,
 whitespace within double-quoted elements, or surrounded on both sides by
 non-whitespace characters of an element, is not ignored.

Tip

 The ARRAY constructor syntax (see
 the section called “Array Constructors”) is often easier to work
 with than the array-literal syntax when writing array values in SQL
 commands. In ARRAY, individual element values are written the
 same way they would be written when not members of an array.

Composite Types

 A composite type represents the structure of a row or record;
 it is essentially just a list of field names and their data types.
 PostgreSQL™ allows composite types to be
 used in many of the same ways that simple types can be used. For example, a
 column of a table can be declared to be of a composite type.

Declaration of Composite Types

 Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
 r double precision,
 i double precision
);

CREATE TYPE inventory_item AS (
 name text,
 supplier_id integer,
 price numeric
);

 The syntax is comparable to CREATE TABLE, except that only
 field names and types can be specified; no constraints (such as NOT
 NULL) can presently be included. Note that the AS keyword
 is essential; without it, the system will think a different kind
 of CREATE TYPE command is meant, and you will get odd syntax
 errors.

 Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
 item inventory_item,
 count integer
);

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

 or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

 Whenever you create a table, a composite type is also automatically
 created, with the same name as the table, to represent the table's
 row type. For example, had we said:

CREATE TABLE inventory_item (
 name text,
 supplier_id integer REFERENCES suppliers,
 price numeric CHECK (price > 0)
);

 then the same inventory_item composite type shown above would
 come into being as a
 byproduct, and could be used just as above. Note however an important
 restriction of the current implementation: since no constraints are
 associated with a composite type, the constraints shown in the table
 definition do not apply to values of the composite type
 outside the table. (To work around this, create a
 domain over the composite
 type, and apply the desired constraints as CHECK
 constraints of the domain.)

Constructing Composite Values

 To write a composite value as a literal constant, enclose the field
 values within parentheses and separate them by commas. You can put double
 quotes around any field value, and must do so if it contains commas or
 parentheses. (More details appear below.) Thus, the general format of
 a composite constant is the following:

'(val1 , val2 , ...)'

 An example is:

'("fuzzy dice",42,1.99)'

 which would be a valid value of the inventory_item type
 defined above. To make a field be NULL, write no characters at all
 in its position in the list. For example, this constant specifies
 a NULL third field:

'("fuzzy dice",42,)'

 If you want an empty string rather than NULL, write double quotes:

'("",42,)'

 Here the first field is a non-NULL empty string, the third is NULL.

 (These constants are actually only a special case of
 the generic type constants discussed in the section called “Constants of Other Types”. The constant is initially
 treated as a string and passed to the composite-type input conversion
 routine. An explicit type specification might be necessary to tell
 which type to convert the constant to.)

 The ROW expression syntax can also be used to
 construct composite values. In most cases this is considerably
 simpler to use than the string-literal syntax since you don't have
 to worry about multiple layers of quoting. We already used this
 method above:

ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

 The ROW keyword is actually optional as long as you have more than one
 field in the expression, so these can be simplified to:

('fuzzy dice', 42, 1.99)
('', 42, NULL)

 The ROW expression syntax is discussed in more detail in the section called “Row Constructors”.

Accessing Composite Types

 To access a field of a composite column, one writes a dot and the field
 name, much like selecting a field from a table name. In fact, it's so
 much like selecting from a table name that you often have to use parentheses
 to keep from confusing the parser. For example, you might try to select
 some subfields from our on_hand example table with something
 like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

 This will not work since the name item is taken to be a table
 name, not a column name of on_hand, per SQL syntax rules.
 You must write it like this:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

 or if you need to use the table name as well (for instance in a multitable
 query), like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

 Now the parenthesized object is correctly interpreted as a reference to
 the item column, and then the subfield can be selected from it.

 Similar syntactic issues apply whenever you select a field from a composite
 value. For instance, to select just one field from the result of a function
 that returns a composite value, you'd need to write something like:

SELECT (my_func(...)).field FROM ...

 Without the extra parentheses, this will generate a syntax error.

 The special field name * means “all fields”, as
 further explained in the section called “Using Composite Types in Queries”.

Modifying Composite Types

 Here are some examples of the proper syntax for inserting and updating
 composite columns.
 First, inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

 The first example omits ROW, the second uses it; we
 could have done it either way.

 We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

 Notice here that we don't need to (and indeed cannot)
 put parentheses around the column name appearing just after
 SET, but we do need parentheses when referencing the same
 column in the expression to the right of the equal sign.

 And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

 Had we not supplied values for all the subfields of the column, the
 remaining subfields would have been filled with null values.

Using Composite Types in Queries

 There are various special syntax rules and behaviors associated with
 composite types in queries. These rules provide useful shortcuts,
 but can be confusing if you don't know the logic behind them.

 In PostgreSQL™, a reference to a table name (or alias)
 in a query is effectively a reference to the composite value of the
 table's current row. For example, if we had a table
 inventory_item as shown
 above, we could write:

SELECT c FROM inventory_item c;

 This query produces a single composite-valued column, so we might get
 output like:

 c

 ("fuzzy dice",42,1.99)
(1 row)

 Note however that simple names are matched to column names before table
 names, so this example works only because there is no column
 named c in the query's tables.

 The ordinary qualified-column-name
 syntax table_name.column_name
 can be understood as applying field
 selection to the composite value of the table's current row.
 (For efficiency reasons, it's not actually implemented that way.)

 When we write

SELECT c.* FROM inventory_item c;

 then, according to the SQL standard, we should get the contents of the
 table expanded into separate columns:

 name | supplier_id | price
------------+-------------+-------
 fuzzy dice | 42 | 1.99
(1 row)

 as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

 PostgreSQL™ will apply this expansion behavior to
 any composite-valued expression, although as shown above, you need to write parentheses
 around the value that .* is applied to whenever it's not a
 simple table name. For example, if myfunc() is a function
 returning a composite type with columns a,
 b, and c, then these two queries have the
 same result:

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip

 PostgreSQL™ handles column expansion by
 actually transforming the first form into the second. So, in this
 example, myfunc() would get invoked three times per row
 with either syntax. If it's an expensive function you may wish to
 avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

 Placing the function in
 a LATERAL FROM item keeps it from
 being invoked more than once per row. m.* is still
 expanded into m.a, m.b, m.c, but now those variables
 are just references to the output of the FROM item.
 (The LATERAL keyword is optional here, but we show it
 to clarify that the function is getting x
 from some_table.)

 The composite_value.* syntax results in
 column expansion of this kind when it appears at the top level of
 a SELECT output
 list, a RETURNING
 list in INSERT/UPDATE/DELETE,
 a VALUES clause, or
 a row constructor.
 In all other contexts (including when nested inside one of those
 constructs), attaching .* to a composite value does not
 change the value, since it means “all columns” and so the
 same composite value is produced again. For example,
 if somefunc() accepts a composite-valued argument,
 these queries are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

 In both cases, the current row of inventory_item is
 passed to the function as a single composite-valued argument.
 Even though .* does nothing in such cases, using it is good
 style, since it makes clear that a composite value is intended. In
 particular, the parser will consider c in c.* to
 refer to a table name or alias, not to a column name, so that there is
 no ambiguity; whereas without .*, it is not clear
 whether c means a table name or a column name, and in fact
 the column-name interpretation will be preferred if there is a column
 named c.

 Another example demonstrating these concepts is that all these queries
 mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

 All of these ORDER BY clauses specify the row's composite
 value, resulting in sorting the rows according to the rules described
 in the section called “Composite Type Comparison”. However,
 if inventory_item contained a column
 named c, the first case would be different from the
 others, as it would mean to sort by that column only. Given the column
 names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

 (The last case uses a row constructor with the key word ROW
 omitted.)

 Another special syntactical behavior associated with composite values is
 that we can use functional notation for extracting a field
 of a composite value. The simple way to explain this is that
 the notations field(table)
 and table.field
 are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name(c) FROM inventory_item c WHERE price(c) > 1000;

 Moreover, if we have a function that accepts a single argument of a
 composite type, we can call it with either notation. These queries are
 all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

 This equivalence between functional notation and field notation
 makes it possible to use functions on composite types to implement
 “computed fields”.

 An application using the last query above wouldn't need to be directly
 aware that somefunc isn't a real column of the table.

Tip

 Because of this behavior, it's unwise to give a function that takes a
 single composite-type argument the same name as any of the fields of
 that composite type. If there is ambiguity, the field-name
 interpretation will be chosen if field-name syntax is used, while the
 function will be chosen if function-call syntax is used. However,
 PostgreSQL™ versions before 11 always chose the
 field-name interpretation, unless the syntax of the call required it to
 be a function call. One way to force the function interpretation in
 older versions is to schema-qualify the function name, that is, write
 schema.func(compositevalue).

Composite Type Input and Output Syntax

 The external text representation of a composite value consists of items that
 are interpreted according to the I/O conversion rules for the individual
 field types, plus decoration that indicates the composite structure.
 The decoration consists of parentheses ((and))
 around the whole value, plus commas (,) between adjacent
 items. Whitespace outside the parentheses is ignored, but within the
 parentheses it is considered part of the field value, and might or might not be
 significant depending on the input conversion rules for the field data type.
 For example, in:

'(42)'

 the whitespace will be ignored if the field type is integer, but not if
 it is text.

 As shown previously, when writing a composite value you can write double
 quotes around any individual field value.
 You must do so if the field value would otherwise
 confuse the composite-value parser. In particular, fields containing
 parentheses, commas, double quotes, or backslashes must be double-quoted.
 To put a double quote or backslash in a quoted composite field value,
 precede it with a backslash. (Also, a pair of double quotes within a
 double-quoted field value is taken to represent a double quote character,
 analogously to the rules for single quotes in SQL literal strings.)
 Alternatively, you can avoid quoting and use backslash-escaping to
 protect all data characters
 that would otherwise be taken as composite syntax.

 A completely empty field value (no characters at all between the commas
 or parentheses) represents a NULL. To write a value that is an empty
 string rather than NULL, write "".

 The composite output routine will put double quotes around field values
 if they are empty strings or contain parentheses, commas,
 double quotes, backslashes, or white space. (Doing so for white space
 is not essential, but aids legibility.) Double quotes and backslashes
 embedded in field values will be doubled.

Note

 Remember that what you write in an SQL command will first be interpreted
 as a string literal, and then as a composite. This doubles the number of
 backslashes you need (assuming escape string syntax is used).
 For example, to insert a text field
 containing a double quote and a backslash in a composite
 value, you'd need to write:

INSERT ... VALUES ('("\"\\")');

 The string-literal processor removes one level of backslashes, so that
 what arrives at the composite-value parser looks like
 ("\"\\"). In turn, the string
 fed to the text data type's input routine
 becomes "\. (If we were working
 with a data type whose input routine also treated backslashes specially,
 bytea for example, we might need as many as eight backslashes
 in the command to get one backslash into the stored composite field.)
 Dollar quoting (see the section called “Dollar-Quoted String Constants”) can be
 used to avoid the need to double backslashes.

Tip

 The ROW constructor syntax is usually easier to work with
 than the composite-literal syntax when writing composite values in SQL
 commands.
 In ROW, individual field values are written the same way
 they would be written when not members of a composite.

Range Types

 Range types are data types representing a range of values of some
 element type (called the range's subtype).
 For instance, ranges
 of timestamp might be used to represent the ranges of
 time that a meeting room is reserved. In this case the data type
 is tsrange (short for “timestamp range”),
 and timestamp is the subtype. The subtype must have
 a total order so that it is well-defined whether element values are
 within, before, or after a range of values.

 Range types are useful because they represent many element values in a
 single range value, and because concepts such as overlapping ranges can
 be expressed clearly. The use of time and date ranges for scheduling
 purposes is the clearest example; but price ranges, measurement
 ranges from an instrument, and so forth can also be useful.

 Every range type has a corresponding multirange type. A multirange is
 an ordered list of non-contiguous, non-empty, non-null ranges. Most
 range operators also work on multiranges, and they have a few functions
 of their own.

Built-in Range and Multirange Types

 PostgreSQL comes with the following built-in range types:

	
 int4range — Range of integer,
 int4multirange — corresponding Multirange

	
 int8range — Range of bigint,
 int8multirange — corresponding Multirange

	
 numrange — Range of numeric,
 nummultirange — corresponding Multirange

	
 tsrange — Range of timestamp without time zone,
 tsmultirange — corresponding Multirange

	
 tstzrange — Range of timestamp with time zone,
 tstzmultirange — corresponding Multirange

	
 daterange — Range of date,
 datemultirange — corresponding Multirange

 In addition, you can define your own range types;
 see CREATE TYPE(7) for more information.

Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

 See Table 9.55, “Range Operators”
 and Table 9.57, “Range Functions” for complete lists of
 operators and functions on range types.

Inclusive and Exclusive Bounds

 Every non-empty range has two bounds, the lower bound and the upper
 bound. All points between these values are included in the range. An
 inclusive bound means that the boundary point itself is included in
 the range as well, while an exclusive bound means that the boundary
 point is not included in the range.

 In the text form of a range, an inclusive lower bound is represented by
 “[” while an exclusive lower bound is
 represented by “(”. Likewise, an inclusive upper bound is represented by
 “]”, while an exclusive upper bound is
 represented by “)”.
 (See the section called “Range Input/Output” for more details.)

 The functions lower_inc
 and upper_inc test the inclusivity of the lower
 and upper bounds of a range value, respectively.

Infinite (Unbounded) Ranges

 The lower bound of a range can be omitted, meaning that all
 values less than the upper bound are included in the range, e.g.,
 (,3]. Likewise, if the upper bound of the range
 is omitted, then all values greater than the lower bound are included
 in the range. If both lower and upper bounds are omitted, all values
 of the element type are considered to be in the range. Specifying a
 missing bound as inclusive is automatically converted to exclusive,
 e.g., [,] is converted to (,).
 You can think of these missing values as +/-infinity, but they are
 special range type values and are considered to be beyond any range
 element type's +/-infinity values.

 Element types that have the notion of “infinity” can
 use them as explicit bound values. For example, with timestamp
 ranges, [today,infinity) excludes the special
 timestamp value infinity,
 while [today,infinity] include it, as does
 [today,) and [today,].

 The functions lower_inf
 and upper_inf test for infinite lower
 and upper bounds of a range, respectively.

Range Input/Output

 The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

 The parentheses or brackets indicate whether the lower and upper bounds
 are exclusive or inclusive, as described previously.
 Notice that the final pattern is empty, which
 represents an empty range (a range that contains no points).

 The lower-bound may be either a string
 that is valid input for the subtype, or empty to indicate no
 lower bound. Likewise, upper-bound may be
 either a string that is valid input for the subtype, or empty to
 indicate no upper bound.

 Each bound value can be quoted using " (double quote)
 characters. This is necessary if the bound value contains parentheses,
 brackets, commas, double quotes, or backslashes, since these characters
 would otherwise be taken as part of the range syntax. To put a double
 quote or backslash in a quoted bound value, precede it with a
 backslash. (Also, a pair of double quotes within a double-quoted bound
 value is taken to represent a double quote character, analogously to the
 rules for single quotes in SQL literal strings.) Alternatively, you can
 avoid quoting and use backslash-escaping to protect all data characters
 that would otherwise be taken as range syntax. Also, to write a bound
 value that is an empty string, write "", since writing
 nothing means an infinite bound.

 Whitespace is allowed before and after the range value, but any whitespace
 between the parentheses or brackets is taken as part of the lower or upper
 bound value. (Depending on the element type, it might or might not be
 significant.)

Note

 These rules are very similar to those for writing field values in
 composite-type literals. See the section called “Composite Type Input and Output Syntax” for
 additional commentary.

 Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

 The input for a multirange is curly brackets ({ and
 }) containing zero or more valid ranges,
 separated by commas. Whitespace is permitted around the brackets and
 commas. This is intended to be reminiscent of array syntax, although
 multiranges are much simpler: they have just one dimension and there is
 no need to quote their contents. (The bounds of their ranges may be
 quoted as above however.)

 Examples:

SELECT '{}'::int4multirange;
SELECT '{[3,7)}'::int4multirange;
SELECT '{[3,7), [8,9)}'::int4multirange;

Constructing Ranges and Multiranges

 Each range type has a constructor function with the same name as the range
 type. Using the constructor function is frequently more convenient than
 writing a range literal constant, since it avoids the need for extra
 quoting of the bound values. The constructor function
 accepts two or three arguments. The two-argument form constructs a range
 in standard form (lower bound inclusive, upper bound exclusive), while
 the three-argument form constructs a range with bounds of the form
 specified by the third argument.
 The third argument must be one of the strings
 “()”,
 “(]”,
 “[)”, or
 “[]”.
 For example:

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

 Each range type also has a multirange constructor with the same name as the
 multirange type. The constructor function takes zero or more arguments
 which are all ranges of the appropriate type.
 For example:

SELECT nummultirange();
SELECT nummultirange(numrange(1.0, 14.0));
SELECT nummultirange(numrange(1.0, 14.0), numrange(20.0, 25.0));

Discrete Range Types

 A discrete range is one whose element type has a well-defined
 “step”, such as integer or date.
 In these types two elements can be said to be adjacent, when there are
 no valid values between them. This contrasts with continuous ranges,
 where it's always (or almost always) possible to identify other element
 values between two given values. For example, a range over the
 numeric type is continuous, as is a range over timestamp.
 (Even though timestamp has limited precision, and so could
 theoretically be treated as discrete, it's better to consider it continuous
 since the step size is normally not of interest.)

 Another way to think about a discrete range type is that there is a clear
 idea of a “next” or “previous” value for each element value.
 Knowing that, it is possible to convert between inclusive and exclusive
 representations of a range's bounds, by choosing the next or previous
 element value instead of the one originally given.
 For example, in an integer range type [4,8] and
 (3,9) denote the same set of values; but this would not be so
 for a range over numeric.

 A discrete range type should have a canonicalization
 function that is aware of the desired step size for the element type.
 The canonicalization function is charged with converting equivalent values
 of the range type to have identical representations, in particular
 consistently inclusive or exclusive bounds.
 If a canonicalization function is not specified, then ranges with different
 formatting will always be treated as unequal, even though they might
 represent the same set of values in reality.

 The built-in range types int4range, int8range,
 and daterange all use a canonical form that includes
 the lower bound and excludes the upper bound; that is,
 [). User-defined range types can use other conventions,
 however.

Defining New Range Types

 Users can define their own range types. The most common reason to do
 this is to use ranges over subtypes not provided among the built-in
 range types.
 For example, to define a new range type of subtype float8:

CREATE TYPE floatrange AS RANGE (
 subtype = float8,
 subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

 Because float8 has no meaningful
 “step”, we do not define a canonicalization
 function in this example.

 When you define your own range you automatically get a corresponding
 multirange type.

 Defining your own range type also allows you to specify a different
 subtype B-tree operator class or collation to use, so as to change the sort
 ordering that determines which values fall into a given range.

 If the subtype is considered to have discrete rather than continuous
 values, the CREATE TYPE command should specify a
 canonical function.
 The canonicalization function takes an input range value, and must return
 an equivalent range value that may have different bounds and formatting.
 The canonical output for two ranges that represent the same set of values,
 for example the integer ranges [1, 7] and [1,
 8), must be identical. It doesn't matter which representation
 you choose to be the canonical one, so long as two equivalent values with
 different formattings are always mapped to the same value with the same
 formatting. In addition to adjusting the inclusive/exclusive bounds
 format, a canonicalization function might round off boundary values, in
 case the desired step size is larger than what the subtype is capable of
 storing. For instance, a range type over timestamp could be
 defined to have a step size of an hour, in which case the canonicalization
 function would need to round off bounds that weren't a multiple of an hour,
 or perhaps throw an error instead.

 In addition, any range type that is meant to be used with GiST or SP-GiST
 indexes should define a subtype difference, or subtype_diff,
 function. (The index will still work without subtype_diff,
 but it is likely to be considerably less efficient than if a difference
 function is provided.) The subtype difference function takes two input
 values of the subtype, and returns their difference
 (i.e., X minus Y) represented as
 a float8 value. In our example above, the
 function float8mi that underlies the regular float8
 minus operator can be used; but for any other subtype, some type
 conversion would be necessary. Some creative thought about how to
 represent differences as numbers might be needed, too. To the greatest
 extent possible, the subtype_diff function should agree with
 the sort ordering implied by the selected operator class and collation;
 that is, its result should be positive whenever its first argument is
 greater than its second according to the sort ordering.

 A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

 See CREATE TYPE(7) for more information about creating
 range types.

Indexing

 GiST and SP-GiST indexes can be created for table columns of range types.
 GiST indexes can be also created for table columns of multirange types.
 For instance, to create a GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

 A GiST or SP-GiST index on ranges can accelerate queries involving these
 range operators:
 =,
 &&,
 <@,
 @>,
 <<,
 >>,
 -|-,
 &<, and
 &>.
 A GiST index on multiranges can accelerate queries involving the same
 set of multirange operators.
 A GiST index on ranges and GiST index on multiranges can also accelerate
 queries involving these cross-type range to multirange and multirange to
 range operators correspondingly:
 &&,
 <@,
 @>,
 <<,
 >>,
 -|-,
 &<, and
 &>.
 See Table 9.55, “Range Operators” for more information.

 In addition, B-tree and hash indexes can be created for table columns of
 range types. For these index types, basically the only useful range
 operation is equality. There is a B-tree sort ordering defined for range
 values, with corresponding < and > operators,
 but the ordering is rather arbitrary and not usually useful in the real
 world. Range types' B-tree and hash support is primarily meant to
 allow sorting and hashing internally in queries, rather than creation of
 actual indexes.

Constraints on Ranges

 While UNIQUE is a natural constraint for scalar
 values, it is usually unsuitable for range types. Instead, an
 exclusion constraint is often more appropriate
 (see CREATE TABLE
 ... CONSTRAINT ... EXCLUDE). Exclusion constraints allow the
 specification of constraints such as “non-overlapping” on a
 range type. For example:

CREATE TABLE reservation (
 during tsrange,
 EXCLUDE USING GIST (during WITH &&)
);

 That constraint will prevent any overlapping values from existing
 in the table at the same time:

INSERT INTO reservation VALUES
 ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
 ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).

 You can use the btree_gist
 extension to define exclusion constraints on plain scalar data types, which
 can then be combined with range exclusions for maximum flexibility. For
 example, after btree_gist is installed, the following
 constraint will reject overlapping ranges only if the meeting room numbers
 are equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
 room text,
 during tsrange,
 EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key value violates exclusion constraint "room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
 ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

Domain Types

 A domain is a user-defined data type that is
 based on another underlying type. Optionally,
 it can have constraints that restrict its valid values to a subset of
 what the underlying type would allow. Otherwise it behaves like the
 underlying type — for example, any operator or function that
 can be applied to the underlying type will work on the domain type.
 The underlying type can be any built-in or user-defined base type,
 enum type, array type, composite type, range type, or another domain.

 For example, we could create a domain over integers that accepts only
 positive integers:

CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);
INSERT INTO mytable VALUES(1); -- works
INSERT INTO mytable VALUES(-1); -- fails

 When an operator or function of the underlying type is applied to a
 domain value, the domain is automatically down-cast to the underlying
 type. Thus, for example, the result of mytable.id - 1
 is considered to be of type integer not posint.
 We could write (mytable.id - 1)::posint to cast the
 result back to posint, causing the domain's constraints
 to be rechecked. In this case, that would result in an error if the
 expression had been applied to an id value of
 1. Assigning a value of the underlying type to a field or variable of
 the domain type is allowed without writing an explicit cast, but the
 domain's constraints will be checked.

 For additional information see CREATE DOMAIN(7).

Object Identifier Types

 Object identifiers (OIDs) are used internally by
 PostgreSQL™ as primary keys for various
 system tables.
 Type oid represents an object identifier. There are also
 several alias types for oid, each
 named regsomething.
 Table 8.26, “Object Identifier Types” shows an
 overview.

 The oid type is currently implemented as an unsigned
 four-byte integer. Therefore, it is not large enough to provide
 database-wide uniqueness in large databases, or even in large
 individual tables.

 The oid type itself has few operations beyond comparison.
 It can be cast to integer, however, and then manipulated using the
 standard integer operators. (Beware of possible
 signed-versus-unsigned confusion if you do this.)

 The OID alias types have no operations of their own except
 for specialized input and output routines. These routines are able
 to accept and display symbolic names for system objects, rather than
 the raw numeric value that type oid would use. The alias
 types allow simplified lookup of OID values for objects. For example,
 to examine the pg_attribute rows related to a table
 mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;

 rather than:

SELECT * FROM pg_attribute
 WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');

 While that doesn't look all that bad by itself, it's still oversimplified.
 A far more complicated sub-select would be needed to
 select the right OID if there are multiple tables named
 mytable in different schemas.
 The regclass input converter handles the table lookup according
 to the schema path setting, and so it does the “right thing”
 automatically. Similarly, casting a table's OID to
 regclass is handy for symbolic display of a numeric OID.

Table 8.26. Object Identifier Types
	Name	References	Description	Value Example
	oid	any	numeric object identifier	564182
	regclass	pg_class	relation name	pg_type
	regcollation	pg_collation	collation name	"POSIX"
	regconfig	pg_ts_config	text search configuration	english
	regdictionary	pg_ts_dict	text search dictionary	simple
	regnamespace	pg_namespace	namespace name	pg_catalog
	regoper	pg_operator	operator name	+
	regoperator	pg_operator	operator with argument types	*(integer,​integer)
 or -(NONE,​integer)
	regproc	pg_proc	function name	sum
	regprocedure	pg_proc	function with argument types	sum(int4)
	regrole	pg_authid	role name	smithee
	regtype	pg_type	data type name	integer

 All of the OID alias types for objects that are grouped by namespace
 accept schema-qualified names, and will
 display schema-qualified names on output if the object would not
 be found in the current search path without being qualified.
 For example, myschema.mytable is acceptable input
 for regclass (if there is such a table). That value
 might be output as myschema.mytable, or
 just mytable, depending on the current search path.
 The regproc and regoper alias types will only
 accept input names that are unique (not overloaded), so they are
 of limited use; for most uses regprocedure or
 regoperator are more appropriate. For regoperator,
 unary operators are identified by writing NONE for the unused
 operand.

 The input functions for these types allow whitespace between tokens,
 and will fold upper-case letters to lower case, except within double
 quotes; this is done to make the syntax rules similar to the way
 object names are written in SQL. Conversely, the output functions
 will use double quotes if needed to make the output be a valid SQL
 identifier. For example, the OID of a function
 named Foo (with upper case F)
 taking two integer arguments could be entered as
 ' "Foo" (int, integer) '::regprocedure. The
 output would look like "Foo"(integer,integer).
 Both the function name and the argument type names could be
 schema-qualified, too.

 Many built-in PostgreSQL™ functions accept
 the OID of a table, or another kind of database object, and for
 convenience are declared as taking regclass (or the
 appropriate OID alias type). This means you do not have to look up
 the object's OID by hand, but can just enter its name as a string
 literal. For example, the nextval(regclass) function
 takes a sequence relation's OID, so you could call it like this:

nextval('foo') operates on sequence foo
nextval('FOO') same as above
nextval('"Foo"') operates on sequence Foo
nextval('myschema.foo') operates on myschema.foo
nextval('"myschema".foo') same as above
nextval('foo') searches search path for foo

Note

 When you write the argument of such a function as an unadorned
 literal string, it becomes a constant of type regclass
 (or the appropriate type).
 Since this is really just an OID, it will track the originally
 identified object despite later renaming, schema reassignment,
 etc. This “early binding” behavior is usually desirable for
 object references in column defaults and views. But sometimes you might
 want “late binding” where the object reference is resolved
 at run time. To get late-binding behavior, force the constant to be
 stored as a text constant instead of regclass:

nextval('foo'::text) foo is looked up at runtime

 The to_regclass() function and its siblings
 can also be used to perform run-time lookups. See
 Table 9.72, “System Catalog Information Functions”.

 Another practical example of use of regclass
 is to look up the OID of a table listed in
 the information_schema views, which don't supply
 such OIDs directly. One might for example wish to call
 the pg_relation_size() function, which requires
 the table OID. Taking the above rules into account, the correct way
 to do that is

SELECT table_schema, table_name,
 pg_relation_size((quote_ident(table_schema) || '.' ||
 quote_ident(table_name))::regclass)
FROM information_schema.tables
WHERE ...

 The quote_ident() function will take care of
 double-quoting the identifiers where needed. The seemingly easier

SELECT pg_relation_size(table_name)
FROM information_schema.tables
WHERE ...

 is not recommended, because it will fail for
 tables that are outside your search path or have names that require
 quoting.

 An additional property of most of the OID alias types is the creation of
 dependencies. If a
 constant of one of these types appears in a stored expression
 (such as a column default expression or view), it creates a dependency
 on the referenced object. For example, if a column has a default
 expression nextval('my_seq'::regclass),
 PostgreSQL™
 understands that the default expression depends on the sequence
 my_seq, so the system will not let the sequence
 be dropped without first removing the default expression. The
 alternative of nextval('my_seq'::text) does not
 create a dependency.
 (regrole is an exception to this property. Constants of this
 type are not allowed in stored expressions.)

 Another identifier type used by the system is xid, or transaction
 (abbreviated xact) identifier. This is the data type of the system columns
 xmin and xmax. Transaction identifiers are 32-bit quantities.
 In some contexts, a 64-bit variant xid8 is used. Unlike
 xid values, xid8 values increase strictly
 monotonically and cannot be reused in the lifetime of a database
 cluster. See the section called “Transactions and Identifiers” for more details.

 A third identifier type used by the system is cid, or
 command identifier. This is the data type of the system columns
 cmin and cmax. Command identifiers are also 32-bit quantities.

 A final identifier type used by the system is tid, or tuple
 identifier (row identifier). This is the data type of the system column
 ctid. A tuple ID is a pair
 (block number, tuple index within block) that identifies the
 physical location of the row within its table.

 (The system columns are further explained in the section called “System Columns”.)

pg_lsn Type

 The pg_lsn data type can be used to store LSN (Log Sequence
 Number) data which is a pointer to a location in the WAL. This type is a
 representation of XLogRecPtr and an internal system type of
 PostgreSQL™.

 Internally, an LSN is a 64-bit integer, representing a byte position in
 the write-ahead log stream. It is printed as two hexadecimal numbers of
 up to 8 digits each, separated by a slash; for example,
 16/B374D848. The pg_lsn type supports the
 standard comparison operators, like = and
 >. Two LSNs can be subtracted using the
 - operator; the result is the number of bytes separating
 those write-ahead log locations. Also the number of bytes can be
 added into and subtracted from LSN using the
 +(pg_lsn,numeric) and
 -(pg_lsn,numeric) operators, respectively. Note that
 the calculated LSN should be in the range of pg_lsn type,
 i.e., between 0/0 and
 FFFFFFFF/FFFFFFFF.

Pseudo-Types

 The PostgreSQL™ type system contains a
 number of special-purpose entries that are collectively called
 pseudo-types. A pseudo-type cannot be used as a
 column data type, but it can be used to declare a function's
 argument or result type. Each of the available pseudo-types is
 useful in situations where a function's behavior does not
 correspond to simply taking or returning a value of a specific
 SQL data type. Table 8.27, “Pseudo-Types” lists the existing
 pseudo-types.

Table 8.27. Pseudo-Types
	Name	Description
	any	Indicates that a function accepts any input data type.
	anyelement	Indicates that a function accepts any data type
 (see the section called “Polymorphic Types”).
	anyarray	Indicates that a function accepts any array data type
 (see the section called “Polymorphic Types”).
	anynonarray	Indicates that a function accepts any non-array data type
 (see the section called “Polymorphic Types”).
	anyenum	Indicates that a function accepts any enum data type
 (see the section called “Polymorphic Types” and
 the section called “Enumerated Types”).
	anyrange	Indicates that a function accepts any range data type
 (see the section called “Polymorphic Types” and
 the section called “Range Types”).
	anymultirange	Indicates that a function accepts any multirange data type
 (see the section called “Polymorphic Types” and
 the section called “Range Types”).
	anycompatible	Indicates that a function accepts any data type,
 with automatic promotion of multiple arguments to a common data type
 (see the section called “Polymorphic Types”).
	anycompatiblearray	Indicates that a function accepts any array data type,
 with automatic promotion of multiple arguments to a common data type
 (see the section called “Polymorphic Types”).
	anycompatiblenonarray	Indicates that a function accepts any non-array data type,
 with automatic promotion of multiple arguments to a common data type
 (see the section called “Polymorphic Types”).
	anycompatiblerange	Indicates that a function accepts any range data type,
 with automatic promotion of multiple arguments to a common data type
 (see the section called “Polymorphic Types” and
 the section called “Range Types”).
	anycompatiblemultirange	Indicates that a function accepts any multirange data type,
 with automatic promotion of multiple arguments to a common data type
 (see the section called “Polymorphic Types” and
 the section called “Range Types”).
	cstring	Indicates that a function accepts or returns a null-terminated C string.
	internal	Indicates that a function accepts or returns a server-internal
 data type.
	language_handler	A procedural language call handler is declared to return language_handler.
	fdw_handler	A foreign-data wrapper handler is declared to return fdw_handler.
	table_am_handler	A table access method handler is declared to return table_am_handler.
	index_am_handler	An index access method handler is declared to return index_am_handler.
	tsm_handler	A tablesample method handler is declared to return tsm_handler.
	record	Identifies a function taking or returning an unspecified row type.
	trigger	A trigger function is declared to return trigger.
	event_trigger	An event trigger function is declared to return event_trigger.
	pg_ddl_command	Identifies a representation of DDL commands that is available to event triggers.
	void	Indicates that a function returns no value.
	unknown	Identifies a not-yet-resolved type, e.g., of an undecorated
 string literal.

 Functions coded in C (whether built-in or dynamically loaded) can be
 declared to accept or return any of these pseudo-types. It is up to
 the function author to ensure that the function will behave safely
 when a pseudo-type is used as an argument type.

 Functions coded in procedural languages can use pseudo-types only as
 allowed by their implementation languages. At present most procedural
 languages forbid use of a pseudo-type as an argument type, and allow
 only void and record as a result type (plus
 trigger or event_trigger when the function is used
 as a trigger or event trigger). Some also support polymorphic functions
 using the polymorphic pseudo-types, which are shown above and discussed
 in detail in the section called “Polymorphic Types”.

 The internal pseudo-type is used to declare functions
 that are meant only to be called internally by the database
 system, and not by direct invocation in an SQL
 query. If a function has at least one internal-type
 argument then it cannot be called from SQL. To
 preserve the type safety of this restriction it is important to
 follow this coding rule: do not create any function that is
 declared to return internal unless it has at least one
 internal argument.

Chapter 9. Functions and Operators

 PostgreSQL™ provides a large number of
 functions and operators for the built-in data types. This chapter
 describes most of them, although additional special-purpose functions
 appear in relevant sections of the manual. Users can also
 define their own functions and operators, as described in
 Part V, “Server Programming”. The
 psql commands \df and
 \do can be used to list all
 available functions and operators, respectively.

 The notation used throughout this chapter to describe the argument and
 result data types of a function or operator is like this:

repeat (text, integer) text

 which says that the function repeat takes one text and
 one integer argument and returns a result of type text. The right arrow
 is also used to indicate the result of an example, thus:

repeat('Pg', 4) PgPgPgPg

 If you are concerned about portability then note that most of
 the functions and operators described in this chapter, with the
 exception of the most trivial arithmetic and comparison operators
 and some explicitly marked functions, are not specified by the
 SQL standard. Some of this extended functionality
 is present in other SQL database management
 systems, and in many cases this functionality is compatible and
 consistent between the various implementations.

Logical Operators

 The usual logical operators are available:

boolean AND boolean boolean
boolean OR boolean boolean
NOT boolean boolean

 SQL uses a three-valued logic system with true,
 false, and null, which represents “unknown”.
 Observe the following truth tables:

	a	b	a AND b	a OR b
	TRUE	TRUE	TRUE	TRUE
	TRUE	FALSE	FALSE	TRUE
	TRUE	NULL	NULL	TRUE
	FALSE	FALSE	FALSE	FALSE
	FALSE	NULL	FALSE	NULL
	NULL	NULL	NULL	NULL

	a	NOT a
	TRUE	FALSE
	FALSE	TRUE
	NULL	NULL

 The operators AND and OR are
 commutative, that is, you can switch the left and right operands
 without affecting the result. (However, it is not guaranteed that
 the left operand is evaluated before the right operand. See the section called “Expression Evaluation Rules” for more information about the
 order of evaluation of subexpressions.)

Comparison Functions and Operators

 The usual comparison operators are available, as shown in Table 9.1, “Comparison Operators”.

Table 9.1. Comparison Operators
	Operator	Description
	
 datatype < datatype
 boolean
 	Less than
	
 datatype > datatype
 boolean
 	Greater than
	
 datatype <= datatype
 boolean
 	Less than or equal to
	
 datatype >= datatype
 boolean
 	Greater than or equal to
	
 datatype = datatype
 boolean
 	Equal
	
 datatype <> datatype
 boolean
 	Not equal
	
 datatype != datatype
 boolean
 	Not equal

Note

 <> is the standard SQL notation for “not
 equal”. != is an alias, which is converted
 to <> at a very early stage of parsing.
 Hence, it is not possible to implement !=
 and <> operators that do different things.

 These comparison operators are available for all built-in data types
 that have a natural ordering, including numeric, string, and date/time
 types. In addition, arrays, composite types, and ranges can be compared
 if their component data types are comparable.

 It is usually possible to compare values of related data
 types as well; for example integer >
 bigint will work. Some cases of this sort are implemented
 directly by “cross-type” comparison operators, but if no
 such operator is available, the parser will coerce the less-general type
 to the more-general type and apply the latter's comparison operator.

 As shown above, all comparison operators are binary operators that
 return values of type boolean. Thus, expressions like
 1 < 2 < 3 are not valid (because there is
 no < operator to compare a Boolean value with
 3). Use the BETWEEN predicates
 shown below to perform range tests.

 There are also some comparison predicates, as shown in Table 9.2, “Comparison Predicates”. These behave much like
 operators, but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates
	
 Predicate

 Description

 Example(s)

	
 datatype BETWEEN datatype AND datatype
 boolean

 Between (inclusive of the range endpoints).

 2 BETWEEN 1 AND 3
 t

 2 BETWEEN 3 AND 1
 f

	
 datatype NOT BETWEEN datatype AND datatype
 boolean

 Not between (the negation of BETWEEN).

 2 NOT BETWEEN 1 AND 3
 f

	
 datatype BETWEEN SYMMETRIC datatype AND datatype
 boolean

 Between, after sorting the two endpoint values.

 2 BETWEEN SYMMETRIC 3 AND 1
 t

	
 datatype NOT BETWEEN SYMMETRIC datatype AND datatype
 boolean

 Not between, after sorting the two endpoint values.

 2 NOT BETWEEN SYMMETRIC 3 AND 1
 f

	
 datatype IS DISTINCT FROM datatype
 boolean

 Not equal, treating null as a comparable value.

 1 IS DISTINCT FROM NULL
 t (rather than NULL)

 NULL IS DISTINCT FROM NULL
 f (rather than NULL)

	
 datatype IS NOT DISTINCT FROM datatype
 boolean

 Equal, treating null as a comparable value.

 1 IS NOT DISTINCT FROM NULL
 f (rather than NULL)

 NULL IS NOT DISTINCT FROM NULL
 t (rather than NULL)

	
 datatype IS NULL
 boolean

 Test whether value is null.

 1.5 IS NULL
 f

	
 datatype IS NOT NULL
 boolean

 Test whether value is not null.

 'null' IS NOT NULL
 t

	
 datatype ISNULL
 boolean

 Test whether value is null (nonstandard syntax).

	
 datatype NOTNULL
 boolean

 Test whether value is not null (nonstandard syntax).

	
 boolean IS TRUE
 boolean

 Test whether boolean expression yields true.

 true IS TRUE
 t

 NULL::boolean IS TRUE
 f (rather than NULL)

	
 boolean IS NOT TRUE
 boolean

 Test whether boolean expression yields false or unknown.

 true IS NOT TRUE
 f

 NULL::boolean IS NOT TRUE
 t (rather than NULL)

	
 boolean IS FALSE
 boolean

 Test whether boolean expression yields false.

 true IS FALSE
 f

 NULL::boolean IS FALSE
 f (rather than NULL)

	
 boolean IS NOT FALSE
 boolean

 Test whether boolean expression yields true or unknown.

 true IS NOT FALSE
 t

 NULL::boolean IS NOT FALSE
 t (rather than NULL)

	
 boolean IS UNKNOWN
 boolean

 Test whether boolean expression yields unknown.

 true IS UNKNOWN
 f

 NULL::boolean IS UNKNOWN
 t (rather than NULL)

	
 boolean IS NOT UNKNOWN
 boolean

 Test whether boolean expression yields true or false.

 true IS NOT UNKNOWN
 t

 NULL::boolean IS NOT UNKNOWN
 f (rather than NULL)

 The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

 is equivalent to

a >= x AND a <= y

 Notice that BETWEEN treats the endpoint values as included
 in the range.
 BETWEEN SYMMETRIC is like BETWEEN
 except there is no requirement that the argument to the left of
 AND be less than or equal to the argument on the right.
 If it is not, those two arguments are automatically swapped, so that
 a nonempty range is always implied.

 The various variants of BETWEEN are implemented in
 terms of the ordinary comparison operators, and therefore will work for
 any data type(s) that can be compared.

Note

 The use of AND in the BETWEEN
 syntax creates an ambiguity with the use of AND as a
 logical operator. To resolve this, only a limited set of expression
 types are allowed as the second argument of a BETWEEN
 clause. If you need to write a more complex sub-expression
 in BETWEEN, write parentheses around the
 sub-expression.

 Ordinary comparison operators yield null (signifying “unknown”),
 not true or false, when either input is null. For example,
 7 = NULL yields null, as does 7 <> NULL. When
 this behavior is not suitable, use the
 IS [NOT] DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

 For non-null inputs, IS DISTINCT FROM is
 the same as the <> operator. However, if both
 inputs are null it returns false, and if only one input is
 null it returns true. Similarly, IS NOT DISTINCT
 FROM is identical to = for non-null
 inputs, but it returns true when both inputs are null, and false when only
 one input is null. Thus, these predicates effectively act as though null
 were a normal data value, rather than “unknown”.

 To check whether a value is or is not null, use the predicates:

expression IS NULL
expression IS NOT NULL

 or the equivalent, but nonstandard, predicates:

expression ISNULL
expression NOTNULL

 Do not write
 expression = NULL
 because NULL is not “equal to”
 NULL. (The null value represents an unknown value,
 and it is not known whether two unknown values are equal.)

Tip

 Some applications might expect that
 expression = NULL
 returns true if expression evaluates to
 the null value. It is highly recommended that these applications
 be modified to comply with the SQL standard. However, if that
 cannot be done the transform_null_equals
 configuration variable is available. If it is enabled,
 PostgreSQL™ will convert x =
 NULL clauses to x IS NULL.

 If the expression is row-valued, then
 IS NULL is true when the row expression itself is null
 or when all the row's fields are null, while
 IS NOT NULL is true when the row expression itself is non-null
 and all the row's fields are non-null. Because of this behavior,
 IS NULL and IS NOT NULL do not always return
 inverse results for row-valued expressions; in particular, a row-valued
 expression that contains both null and non-null fields will return false
 for both tests. In some cases, it may be preferable to
 write row IS DISTINCT FROM NULL
 or row IS NOT DISTINCT FROM NULL,
 which will simply check whether the overall row value is null without any
 additional tests on the row fields.

 Boolean values can also be tested using the predicates

boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

 These will always return true or false, never a null value, even when the
 operand is null.
 A null input is treated as the logical value “unknown”.
 Notice that IS UNKNOWN and IS NOT UNKNOWN are
 effectively the same as IS NULL and
 IS NOT NULL, respectively, except that the input
 expression must be of Boolean type.

 Some comparison-related functions are also available, as shown in Table 9.3, “Comparison Functions”.

Table 9.3. Comparison Functions
	
 Function

 Description

 Example(s)

	

 num_nonnulls (VARIADIC "any")
 integer

 Returns the number of non-null arguments.

 num_nonnulls(1, NULL, 2)
 2

	

 num_nulls (VARIADIC "any")
 integer

 Returns the number of null arguments.

 num_nulls(1, NULL, 2)
 1

Mathematical Functions and Operators

 Mathematical operators are provided for many
 PostgreSQL™ types. For types without
 standard mathematical conventions
 (e.g., date/time types) we
 describe the actual behavior in subsequent sections.

 Table 9.4, “Mathematical Operators” shows the mathematical
 operators that are available for the standard numeric types.
 Unless otherwise noted, operators shown as
 accepting numeric_type are available for all
 the types smallint, integer,
 bigint, numeric, real,
 and double precision.
 Operators shown as accepting integral_type
 are available for the types smallint, integer,
 and bigint.
 Except where noted, each form of an operator returns the same data type
 as its argument(s). Calls involving multiple argument data types, such
 as integer + numeric,
 are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators
	
 Operator

 Description

 Example(s)

	
 numeric_type + numeric_type
 numeric_type

 Addition

 2 + 3
 5

	
 + numeric_type
 numeric_type

 Unary plus (no operation)

 + 3.5
 3.5

	
 numeric_type - numeric_type
 numeric_type

 Subtraction

 2 - 3
 -1

	
 - numeric_type
 numeric_type

 Negation

 - (-4)
 4

	
 numeric_type * numeric_type
 numeric_type

 Multiplication

 2 * 3
 6

	
 numeric_type / numeric_type
 numeric_type

 Division (for integral types, division truncates the result towards
 zero)

 5.0 / 2
 2.5000000000000000

 5 / 2
 2

 (-5) / 2
 -2

	
 numeric_type % numeric_type
 numeric_type

 Modulo (remainder); available for smallint,
 integer, bigint, and numeric

 5 % 4
 1

	
 numeric ^ numeric
 numeric

 double precision ^ double precision
 double precision

 Exponentiation

 2 ^ 3
 8

 Unlike typical mathematical practice, multiple uses of
 ^ will associate left to right by default:

 2 ^ 3 ^ 3
 512

 2 ^ (3 ^ 3)
 134217728

	
 |/ double precision
 double precision

 Square root

 |/ 25.0
 5

	
 ||/ double precision
 double precision

 Cube root

 ||/ 64.0
 4

	
 @ numeric_type
 numeric_type

 Absolute value

 @ -5.0
 5.0

	
 integral_type & integral_type
 integral_type

 Bitwise AND

 91 & 15
 11

	
 integral_type | integral_type
 integral_type

 Bitwise OR

 32 | 3
 35

	
 integral_type # integral_type
 integral_type

 Bitwise exclusive OR

 17 # 5
 20

	
 ~ integral_type
 integral_type

 Bitwise NOT

 ~1
 -2

	
 integral_type << integer
 integral_type

 Bitwise shift left

 1 << 4
 16

	
 integral_type >> integer
 integral_type

 Bitwise shift right

 8 >> 2
 2

 Table 9.5, “Mathematical Functions” shows the available
 mathematical functions.
 Many of these functions are provided in multiple forms with different
 argument types.
 Except where noted, any given form of a function returns the same
 data type as its argument(s); cross-type cases are resolved in the
 same way as explained above for operators.
 The functions working with double precision data are mostly
 implemented on top of the host system's C library; accuracy and behavior in
 boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions
	
 Function

 Description

 Example(s)

	

 abs (numeric_type)
 numeric_type

 Absolute value

 abs(-17.4)
 17.4

	

 cbrt (double precision)
 double precision

 Cube root

 cbrt(64.0)
 4

	

 ceil (numeric)
 numeric

 ceil (double precision)
 double precision

 Nearest integer greater than or equal to argument

 ceil(42.2)
 43

 ceil(-42.8)
 -42

	

 ceiling (numeric)
 numeric

 ceiling (double precision)
 double precision

 Nearest integer greater than or equal to argument (same
 as ceil)

 ceiling(95.3)
 96

	

 degrees (double precision)
 double precision

 Converts radians to degrees

 degrees(0.5)
 28.64788975654116

	

 div (y numeric,
 x numeric)
 numeric

 Integer quotient of y/x
 (truncates towards zero)

 div(9, 4)
 2

	

 erf (double precision)
 double precision

 Error function

 erf(1.0)
 0.8427007929497149

	

 erfc (double precision)
 double precision

 Complementary error function (1 - erf(x), without
 loss of precision for large inputs)

 erfc(1.0)
 0.15729920705028513

	

 exp (numeric)
 numeric

 exp (double precision)
 double precision

 Exponential (e raised to the given power)

 exp(1.0)
 2.7182818284590452

	

 factorial (bigint)
 numeric

 Factorial

 factorial(5)
 120

	

 floor (numeric)
 numeric

 floor (double precision)
 double precision

 Nearest integer less than or equal to argument

 floor(42.8)
 42

 floor(-42.8)
 -43

	

 gcd (numeric_type, numeric_type)
 numeric_type

 Greatest common divisor (the largest positive number that divides both
 inputs with no remainder); returns 0 if both inputs
 are zero; available for integer, bigint,
 and numeric

 gcd(1071, 462)
 21

	

 lcm (numeric_type, numeric_type)
 numeric_type

 Least common multiple (the smallest strictly positive number that is
 an integral multiple of both inputs); returns 0 if
 either input is zero; available for integer,
 bigint, and numeric

 lcm(1071, 462)
 23562

	

 ln (numeric)
 numeric

 ln (double precision)
 double precision

 Natural logarithm

 ln(2.0)
 0.6931471805599453

	

 log (numeric)
 numeric

 log (double precision)
 double precision

 Base 10 logarithm

 log(100)
 2

	

 log10 (numeric)
 numeric

 log10 (double precision)
 double precision

 Base 10 logarithm (same as log)

 log10(1000)
 3

	
 log (b numeric,
 x numeric)
 numeric

 Logarithm of x to base b

 log(2.0, 64.0)
 6.0000000000000000

	

 min_scale (numeric)
 integer

 Minimum scale (number of fractional decimal digits) needed
 to represent the supplied value precisely

 min_scale(8.4100)
 2

	

 mod (y numeric_type,
 x numeric_type)
 numeric_type

 Remainder of y/x;
 available for smallint, integer,
 bigint, and numeric

 mod(9, 4)
 1

	

 pi ()
 double precision

 Approximate value of π

 pi()
 3.141592653589793

	

 power (a numeric,
 b numeric)
 numeric

 power (a double precision,
 b double precision)
 double precision

 a raised to the power of b

 power(9, 3)
 729

	

 radians (double precision)
 double precision

 Converts degrees to radians

 radians(45.0)
 0.7853981633974483

	

 round (numeric)
 numeric

 round (double precision)
 double precision

 Rounds to nearest integer. For numeric, ties are
 broken by rounding away from zero. For double precision,
 the tie-breaking behavior is platform dependent, but
 “round to nearest even” is the most common rule.

 round(42.4)
 42

	
 round (v numeric, s integer)
 numeric

 Rounds v to s decimal
 places. Ties are broken by rounding away from zero.

 round(42.4382, 2)
 42.44

 round(1234.56, -1)
 1230

	

 scale (numeric)
 integer

 Scale of the argument (the number of decimal digits in the fractional part)

 scale(8.4100)
 4

	

 sign (numeric)
 numeric

 sign (double precision)
 double precision

 Sign of the argument (-1, 0, or +1)

 sign(-8.4)
 -1

	

 sqrt (numeric)
 numeric

 sqrt (double precision)
 double precision

 Square root

 sqrt(2)
 1.4142135623730951

	

 trim_scale (numeric)
 numeric

 Reduces the value's scale (number of fractional decimal digits) by
 removing trailing zeroes

 trim_scale(8.4100)
 8.41

	

 trunc (numeric)
 numeric

 trunc (double precision)
 double precision

 Truncates to integer (towards zero)

 trunc(42.8)
 42

 trunc(-42.8)
 -42

	
 trunc (v numeric, s integer)
 numeric

 Truncates v to s
 decimal places

 trunc(42.4382, 2)
 42.43

	

 width_bucket (operand numeric, low numeric, high numeric, count integer)
 integer

 width_bucket (operand double precision, low double precision, high double precision, count integer)
 integer

 Returns the number of the bucket in
 which operand falls in a histogram
 having count equal-width buckets spanning the
 range low to high.
 The buckets have inclusive lower bounds and exclusive upper bounds.
 Returns 0 for an input less
 than low,
 or count+1 for an input
 greater than or equal to high.
 If low > high,
 the behavior is mirror-reversed, with bucket 1
 now being the one just below low, and the
 inclusive bounds now being on the upper side.

 width_bucket(5.35, 0.024, 10.06, 5)
 3

 width_bucket(9, 10, 0, 10)
 2

	
 width_bucket (operand anycompatible, thresholds anycompatiblearray)
 integer

 Returns the number of the bucket in
 which operand falls given an array listing the
 inclusive lower bounds of the buckets.
 Returns 0 for an input less than the first lower
 bound. operand and the array elements can be
 of any type having standard comparison operators.
 The thresholds array must be
 sorted, smallest first, or unexpected results will be
 obtained.

 width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[])
 2

 Table 9.6, “Random Functions” shows functions for
 generating random numbers.

Table 9.6. Random Functions
	
 Function

 Description

 Example(s)

	

 random ()
 double precision

 Returns a random value in the range 0.0 <= x < 1.0

 random()
 0.897124072839091

	

 random_normal (
 [mean double precision
 [, stddev double precision]])
 double precision

 Returns a random value from the normal distribution with the given
 parameters; mean defaults to 0.0
 and stddev defaults to 1.0

 random_normal(0.0, 1.0)
 0.051285419

	

 setseed (double precision)
 void

 Sets the seed for subsequent random() and
 random_normal() calls;
 argument must be between -1.0 and 1.0, inclusive

 setseed(0.12345)

 The random() function uses a deterministic
 pseudo-random number generator.
 It is fast but not suitable for cryptographic
 applications; see the pgcrypto module for a more
 secure alternative.
 If setseed() is called, the series of results of
 subsequent random() calls in the current session
 can be repeated by re-issuing setseed() with the same
 argument.
 Without any prior setseed() call in the same
 session, the first random() call obtains a seed
 from a platform-dependent source of random bits.
 These remarks hold equally for random_normal().

 Table 9.7, “Trigonometric Functions” shows the
 available trigonometric functions. Each of these functions comes in
 two variants, one that measures angles in radians and one that
 measures angles in degrees.

Table 9.7. Trigonometric Functions
	
 Function

 Description

 Example(s)

	

 acos (double precision)
 double precision

 Inverse cosine, result in radians

 acos(1)
 0

	

 acosd (double precision)
 double precision

 Inverse cosine, result in degrees

 acosd(0.5)
 60

	

 asin (double precision)
 double precision

 Inverse sine, result in radians

 asin(1)
 1.5707963267948966

	

 asind (double precision)
 double precision

 Inverse sine, result in degrees

 asind(0.5)
 30

	

 atan (double precision)
 double precision

 Inverse tangent, result in radians

 atan(1)
 0.7853981633974483

	

 atand (double precision)
 double precision

 Inverse tangent, result in degrees

 atand(1)
 45

	

 atan2 (y double precision,
 x double precision)
 double precision

 Inverse tangent of
 y/x,
 result in radians

 atan2(1, 0)
 1.5707963267948966

	

 atan2d (y double precision,
 x double precision)
 double precision

 Inverse tangent of
 y/x,
 result in degrees

 atan2d(1, 0)
 90

	

 cos (double precision)
 double precision

 Cosine, argument in radians

 cos(0)
 1

	

 cosd (double precision)
 double precision

 Cosine, argument in degrees

 cosd(60)
 0.5

	

 cot (double precision)
 double precision

 Cotangent, argument in radians

 cot(0.5)
 1.830487721712452

	

 cotd (double precision)
 double precision

 Cotangent, argument in degrees

 cotd(45)
 1

	

 sin (double precision)
 double precision

 Sine, argument in radians

 sin(1)
 0.8414709848078965

	

 sind (double precision)
 double precision

 Sine, argument in degrees

 sind(30)
 0.5

	

 tan (double precision)
 double precision

 Tangent, argument in radians

 tan(1)
 1.5574077246549023

	

 tand (double precision)
 double precision

 Tangent, argument in degrees

 tand(45)
 1

Note

 Another way to work with angles measured in degrees is to use the unit
 transformation functions radians()
 and degrees() shown earlier.
 However, using the degree-based trigonometric functions is preferred,
 as that way avoids round-off error for special cases such
 as sind(30).

 Table 9.8, “Hyperbolic Functions” shows the
 available hyperbolic functions.

Table 9.8. Hyperbolic Functions
	
 Function

 Description

 Example(s)

	

 sinh (double precision)
 double precision

 Hyperbolic sine

 sinh(1)
 1.1752011936438014

	

 cosh (double precision)
 double precision

 Hyperbolic cosine

 cosh(0)
 1

	

 tanh (double precision)
 double precision

 Hyperbolic tangent

 tanh(1)
 0.7615941559557649

	

 asinh (double precision)
 double precision

 Inverse hyperbolic sine

 asinh(1)
 0.881373587019543

	

 acosh (double precision)
 double precision

 Inverse hyperbolic cosine

 acosh(1)
 0

	

 atanh (double precision)
 double precision

 Inverse hyperbolic tangent

 atanh(0.5)
 0.5493061443340548

String Functions and Operators

 This section describes functions and operators for examining and
 manipulating string values. Strings in this context include values
 of the types character, character varying,
 and text. Except where noted, these functions and operators
 are declared to accept and return type text. They will
 interchangeably accept character varying arguments.
 Values of type character will be converted
 to text before the function or operator is applied, resulting
 in stripping any trailing spaces in the character value.

 SQL defines some string functions that use
 key words, rather than commas, to separate
 arguments. Details are in
 Table 9.9, “SQL String Functions and Operators”.
 PostgreSQL™ also provides versions of these functions
 that use the regular function invocation syntax
 (see Table 9.10, “Other String Functions and Operators”).

Note

 The string concatenation operator (||) will accept
 non-string input, so long as at least one input is of string type, as shown
 in Table 9.9, “SQL String Functions and Operators”. For other cases, inserting an
 explicit coercion to text can be used to have non-string input
 accepted.

Table 9.9. SQL String Functions and Operators
	
 Function/Operator

 Description

 Example(s)

	

 text || text
 text

 Concatenates the two strings.

 'Post' || 'greSQL'
 PostgreSQL

	
 text || anynonarray
 text

 anynonarray || text
 text

 Converts the non-string input to text, then concatenates the two
 strings. (The non-string input cannot be of an array type, because
 that would create ambiguity with the array ||
 operators. If you want to concatenate an array's text equivalent,
 cast it to text explicitly.)

 'Value: ' || 42
 Value: 42

	

 btrim (string text
 [, characters text])
 text

 Removes the longest string containing only characters
 in characters (a space by default)
 from the start and end of string.

 btrim('xyxtrimyyx', 'xyz')
 trim

	

 text IS [NOT] [form] NORMALIZED
 boolean

 Checks whether the string is in the specified Unicode normalization
 form. The optional form key word specifies the
 form: NFC (the default), NFD,
 NFKC, or NFKD. This expression can
 only be used when the server encoding is UTF8. Note
 that checking for normalization using this expression is often faster
 than normalizing possibly already normalized strings.

 U&'\0061\0308bc' IS NFD NORMALIZED
 t

	

 bit_length (text)
 integer

 Returns number of bits in the string (8
 times the octet_length).

 bit_length('jose')
 32

	

 char_length (text)
 integer

 character_length (text)
 integer

 Returns number of characters in the string.

 char_length('josé')
 4

	

 lower (text)
 text

 Converts the string to all lower case, according to the rules of the
 database's locale.

 lower('TOM')
 tom

	

 lpad (string text,
 length integer
 [, fill text])
 text

 Extends the string to length
 length by prepending the characters
 fill (a space by default). If the
 string is already longer than
 length then it is truncated (on the right).

 lpad('hi', 5, 'xy')
 xyxhi

	

 ltrim (string text
 [, characters text])
 text

 Removes the longest string containing only characters in
 characters (a space by default) from the start of
 string.

 ltrim('zzzytest', 'xyz')
 test

	

 normalize (text
 [, form])
 text

 Converts the string to the specified Unicode
 normalization form. The optional form key word
 specifies the form: NFC (the default),
 NFD, NFKC, or
 NFKD. This function can only be used when the
 server encoding is UTF8.

 normalize(U&'\0061\0308bc', NFC)
 U&'\00E4bc'

	

 octet_length (text)
 integer

 Returns number of bytes in the string.

 octet_length('josé')
 5 (if server encoding is UTF8)

	

 octet_length (character)
 integer

 Returns number of bytes in the string. Since this version of the
 function accepts type character directly, it will not
 strip trailing spaces.

 octet_length('abc '::character(4))
 4

	

 overlay (string text PLACING newsubstring text FROM start integer [FOR count integer])
 text

 Replaces the substring of string that starts at
 the start'th character and extends
 for count characters
 with newsubstring.
 If count is omitted, it defaults to the length
 of newsubstring.

 overlay('Txxxxas' placing 'hom' from 2 for 4)
 Thomas

	

 position (substring text IN string text)
 integer

 Returns first starting index of the specified
 substring within
 string, or zero if it's not present.

 position('om' in 'Thomas')
 3

	

 rpad (string text,
 length integer
 [, fill text])
 text

 Extends the string to length
 length by appending the characters
 fill (a space by default). If the
 string is already longer than
 length then it is truncated.

 rpad('hi', 5, 'xy')
 hixyx

	

 rtrim (string text
 [, characters text])
 text

 Removes the longest string containing only characters in
 characters (a space by default) from the end of
 string.

 rtrim('testxxzx', 'xyz')
 test

	

 substring (string text [FROM start integer] [FOR count integer])
 text

 Extracts the substring of string starting at
 the start'th character if that is specified,
 and stopping after count characters if that is
 specified. Provide at least one of start
 and count.

 substring('Thomas' from 2 for 3)
 hom

 substring('Thomas' from 3)
 omas

 substring('Thomas' for 2)
 Th

	
 substring (string text FROM pattern text)
 text

 Extracts the first substring matching POSIX regular expression; see
 the section called “POSIX Regular Expressions”.

 substring('Thomas' from '...$')
 mas

	
 substring (string text SIMILAR pattern text ESCAPE escape text)
 text

 substring (string text FROM pattern text FOR escape text)
 text

 Extracts the first substring matching SQL regular expression;
 see the section called “SIMILAR TO Regular Expressions”. The first form has
 been specified since SQL:2003; the second form was only in SQL:1999
 and should be considered obsolete.

 substring('Thomas' similar '%#"o_a#"_' escape '#')
 oma

	

 trim ([LEADING | TRAILING | BOTH]
 [characters text] FROM
 string text)
 text

 Removes the longest string containing only characters in
 characters (a space by default) from the
 start, end, or both ends (BOTH is the default)
 of string.

 trim(both 'xyz' from 'yxTomxx')
 Tom

	
 trim ([LEADING | TRAILING | BOTH] [FROM]
 string text [,
 characters text])
 text

 This is a non-standard syntax for trim().

 trim(both from 'yxTomxx', 'xyz')
 Tom

	

 upper (text)
 text

 Converts the string to all upper case, according to the rules of the
 database's locale.

 upper('tom')
 TOM

 Additional string manipulation functions and operators are available
 and are listed in Table 9.10, “Other String Functions and Operators”. (Some of
 these are used internally to implement
 the SQL-standard string functions listed in
 Table 9.9, “SQL String Functions and Operators”.)
 There are also pattern-matching operators, which are described in
 the section called “Pattern Matching”, and operators for full-text
 search, which are described in Chapter 12, Full Text Search.

Table 9.10. Other String Functions and Operators
	
 Function/Operator

 Description

 Example(s)

	

 text ^@ text
 boolean

 Returns true if the first string starts with the second string
 (equivalent to the starts_with() function).

 'alphabet' ^@ 'alph'
 t

	

 ascii (text)
 integer

 Returns the numeric code of the first character of the argument.
 In UTF8 encoding, returns the Unicode code point
 of the character. In other multibyte encodings, the argument must
 be an ASCII character.

 ascii('x')
 120

	

 chr (integer)
 text

 Returns the character with the given code. In UTF8
 encoding the argument is treated as a Unicode code point. In other
 multibyte encodings the argument must designate
 an ASCII character. chr(0) is
 disallowed because text data types cannot store that character.

 chr(65)
 A

	

 concat (val1 "any"
 [, val2 "any" [, ...]])
 text

 Concatenates the text representations of all the arguments.
 NULL arguments are ignored.

 concat('abcde', 2, NULL, 22)
 abcde222

	

 concat_ws (sep text,
 val1 "any"
 [, val2 "any" [, ...]])
 text

 Concatenates all but the first argument, with separators. The first
 argument is used as the separator string, and should not be NULL.
 Other NULL arguments are ignored.

 concat_ws(',', 'abcde', 2, NULL, 22)
 abcde,2,22

	

 format (formatstr text
 [, formatarg "any" [, ...]])
 text

 Formats arguments according to a format string;
 see the section called “format”.
 This function is similar to the C function sprintf.

 format('Hello %s, %1$s', 'World')
 Hello World, World

	

 initcap (text)
 text

 Converts the first letter of each word to upper case and the
 rest to lower case. Words are sequences of alphanumeric
 characters separated by non-alphanumeric characters.

 initcap('hi THOMAS')
 Hi Thomas

	

 left (string text,
 n integer)
 text

 Returns first n characters in the
 string, or when n is negative, returns
 all but last |n| characters.

 left('abcde', 2)
 ab

	

 length (text)
 integer

 Returns the number of characters in the string.

 length('jose')
 4

	

 md5 (text)
 text

 Computes the MD5 hash of
 the argument, with the result written in hexadecimal.

 md5('abc')
 900150983cd24fb0​d6963f7d28e17f72

	

 parse_ident (qualified_identifier text
 [, strict_mode boolean DEFAULT true])
 text[]

 Splits qualified_identifier into an array of
 identifiers, removing any quoting of individual identifiers. By
 default, extra characters after the last identifier are considered an
 error; but if the second parameter is false, then such
 extra characters are ignored. (This behavior is useful for parsing
 names for objects like functions.) Note that this function does not
 truncate over-length identifiers. If you want truncation you can cast
 the result to name[].

 parse_ident('"SomeSchema".someTable')
 {SomeSchema,sometable}

	

 pg_client_encoding ()
 name

 Returns current client encoding name.

 pg_client_encoding()
 UTF8

	

 quote_ident (text)
 text

 Returns the given string suitably quoted to be used as an identifier
 in an SQL statement string.
 Quotes are added only if necessary (i.e., if the string contains
 non-identifier characters or would be case-folded).
 Embedded quotes are properly doubled.
 See also Example 43.1, “Quoting Values in Dynamic Queries”.

 quote_ident('Foo bar')
 "Foo bar"

	

 quote_literal (text)
 text

 Returns the given string suitably quoted to be used as a string literal
 in an SQL statement string.
 Embedded single-quotes and backslashes are properly doubled.
 Note that quote_literal returns null on null
 input; if the argument might be null,
 quote_nullable is often more suitable.
 See also Example 43.1, “Quoting Values in Dynamic Queries”.

 quote_literal(E'O\'Reilly')
 'O''Reilly'

	
 quote_literal (anyelement)
 text

 Converts the given value to text and then quotes it as a literal.
 Embedded single-quotes and backslashes are properly doubled.

 quote_literal(42.5)
 '42.5'

	

 quote_nullable (text)
 text

 Returns the given string suitably quoted to be used as a string literal
 in an SQL statement string; or, if the argument
 is null, returns NULL.
 Embedded single-quotes and backslashes are properly doubled.
 See also Example 43.1, “Quoting Values in Dynamic Queries”.

 quote_nullable(NULL)
 NULL

	
 quote_nullable (anyelement)
 text

 Converts the given value to text and then quotes it as a literal;
 or, if the argument is null, returns NULL.
 Embedded single-quotes and backslashes are properly doubled.

 quote_nullable(42.5)
 '42.5'

	

 regexp_count (string text, pattern text
 [, start integer
 [, flags text]])
 integer

 Returns the number of times the POSIX regular
 expression pattern matches in
 the string; see
 the section called “POSIX Regular Expressions”.

 regexp_count('123456789012', '\d\d\d', 2)
 3

	

 regexp_instr (string text, pattern text
 [, start integer
 [, N integer
 [, endoption integer
 [, flags text
 [, subexpr integer]]]]])
 integer

 Returns the position within string where
 the N'th match of the POSIX regular
 expression pattern occurs, or zero if there is
 no such match; see the section called “POSIX Regular Expressions”.

 regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i')
 3

 regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i', 2)
 5

	

 regexp_like (string text, pattern text
 [, flags text])
 boolean

 Checks whether a match of the POSIX regular
 expression pattern occurs
 within string; see
 the section called “POSIX Regular Expressions”.

 regexp_like('Hello World', 'world$', 'i')
 t

	

 regexp_match (string text, pattern text [, flags text])
 text[]

 Returns substrings within the first match of the POSIX regular
 expression pattern to
 the string; see
 the section called “POSIX Regular Expressions”.

 regexp_match('foobarbequebaz', '(bar)(beque)')
 {bar,beque}

	

 regexp_matches (string text, pattern text [, flags text])
 setof text[]

 Returns substrings within the first match of the POSIX regular
 expression pattern to
 the string, or substrings within all
 such matches if the g flag is used;
 see the section called “POSIX Regular Expressions”.

 regexp_matches('foobarbequebaz', 'ba.', 'g')

 {bar}
 {baz}

	

 regexp_replace (string text, pattern text, replacement text
 [, start integer]
 [, flags text])
 text

 Replaces the substring that is the first match to the POSIX
 regular expression pattern, or all such
 matches if the g flag is used; see
 the section called “POSIX Regular Expressions”.

 regexp_replace('Thomas', '.[mN]a.', 'M')
 ThM

	
 regexp_replace (string text, pattern text, replacement text,
 start integer,
 N integer
 [, flags text])
 text

 Replaces the substring that is the N'th
 match to the POSIX regular expression pattern,
 or all such matches if N is zero; see
 the section called “POSIX Regular Expressions”.

 regexp_replace('Thomas', '.', 'X', 3, 2)
 ThoXas

	

 regexp_split_to_array (string text, pattern text [, flags text])
 text[]

 Splits string using a POSIX regular
 expression as the delimiter, producing an array of results; see
 the section called “POSIX Regular Expressions”.

 regexp_split_to_array('hello world', '\s+')
 {hello,world}

	

 regexp_split_to_table (string text, pattern text [, flags text])
 setof text

 Splits string using a POSIX regular
 expression as the delimiter, producing a set of results; see
 the section called “POSIX Regular Expressions”.

 regexp_split_to_table('hello world', '\s+')

 hello
 world

	

 regexp_substr (string text, pattern text
 [, start integer
 [, N integer
 [, flags text
 [, subexpr integer]]]])
 text

 Returns the substring within string that
 matches the N'th occurrence of the POSIX
 regular expression pattern,
 or NULL if there is no such match; see
 the section called “POSIX Regular Expressions”.

 regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i')
 CDEF

 regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i', 2)
 EF

	

 repeat (string text, number integer)
 text

 Repeats string the specified
 number of times.

 repeat('Pg', 4)
 PgPgPgPg

	

 replace (string text,
 from text,
 to text)
 text

 Replaces all occurrences in string of
 substring from with
 substring to.

 replace('abcdefabcdef', 'cd', 'XX')
 abXXefabXXef

	

 reverse (text)
 text

 Reverses the order of the characters in the string.

 reverse('abcde')
 edcba

	

 right (string text,
 n integer)
 text

 Returns last n characters in the string,
 or when n is negative, returns all but
 first |n| characters.

 right('abcde', 2)
 de

	

 split_part (string text,
 delimiter text,
 n integer)
 text

 Splits string at occurrences
 of delimiter and returns
 the n'th field (counting from one),
 or when n is negative, returns
 the |n|'th-from-last field.

 split_part('abc~@~def~@~ghi', '~@~', 2)
 def

 split_part('abc,def,ghi,jkl', ',', -2)
 ghi

	

 starts_with (string text, prefix text)
 boolean

 Returns true if string starts
 with prefix.

 starts_with('alphabet', 'alph')
 t

	

 string_to_array (string text, delimiter text [, null_string text])
 text[]

 Splits the string at occurrences
 of delimiter and forms the resulting fields
 into a text array.
 If delimiter is NULL,
 each character in the string will become a
 separate element in the array.
 If delimiter is an empty string, then
 the string is treated as a single field.
 If null_string is supplied and is
 not NULL, fields matching that string are
 replaced by NULL.
 See also array_to_string.

 string_to_array('xx~~yy~~zz', '~~', 'yy')
 {xx,NULL,zz}

	

 string_to_table (string text, delimiter text [, null_string text])
 setof text

 Splits the string at occurrences
 of delimiter and returns the resulting fields
 as a set of text rows.
 If delimiter is NULL,
 each character in the string will become a
 separate row of the result.
 If delimiter is an empty string, then
 the string is treated as a single field.
 If null_string is supplied and is
 not NULL, fields matching that string are
 replaced by NULL.

 string_to_table('xx~^~yy~^~zz', '~^~', 'yy')

 xx
 NULL
 zz

	

 strpos (string text, substring text)
 integer

 Returns first starting index of the specified substring
 within string, or zero if it's not present.
 (Same as position(substring in
 string), but note the reversed
 argument order.)

 strpos('high', 'ig')
 2

	

 substr (string text, start integer [, count integer])
 text

 Extracts the substring of string starting at
 the start'th character,
 and extending for count characters if that is
 specified. (Same
 as substring(string
 from start
 for count).)

 substr('alphabet', 3)
 phabet

 substr('alphabet', 3, 2)
 ph

	

 to_ascii (string text)
 text

 to_ascii (string text,
 encoding name)
 text

 to_ascii (string text,
 encoding integer)
 text

 Converts string to ASCII
 from another encoding, which may be identified by name or number.
 If encoding is omitted the database encoding
 is assumed (which in practice is the only useful case).
 The conversion consists primarily of dropping accents.
 Conversion is only supported
 from LATIN1, LATIN2,
 LATIN9, and WIN1250 encodings.
 (See the unaccent module for another, more flexible
 solution.)

 to_ascii('Karél')
 Karel

	

 to_hex (integer)
 text

 to_hex (bigint)
 text

 Converts the number to its equivalent hexadecimal representation.

 to_hex(2147483647)
 7fffffff

	

 translate (string text,
 from text,
 to text)
 text

 Replaces each character in string that
 matches a character in the from set with the
 corresponding character in the to
 set. If from is longer than
 to, occurrences of the extra characters in
 from are deleted.

 translate('12345', '143', 'ax')
 a2x5

	

 unistr (text)
 text

 Evaluate escaped Unicode characters in the argument. Unicode characters
 can be specified as
 \XXXX (4 hexadecimal
 digits), \+XXXXXX (6
 hexadecimal digits),
 \uXXXX (4 hexadecimal
 digits), or \UXXXXXXXX
 (8 hexadecimal digits). To specify a backslash, write two
 backslashes. All other characters are taken literally.

 If the server encoding is not UTF-8, the Unicode code point identified
 by one of these escape sequences is converted to the actual server
 encoding; an error is reported if that's not possible.

 This function provides a (non-standard) alternative to string
 constants with Unicode escapes (see the section called “String Constants with Unicode Escapes”).

 unistr('d\0061t\+000061')
 data

 unistr('d\u0061t\U00000061')
 data

 The concat, concat_ws and
 format functions are variadic, so it is possible to
 pass the values to be concatenated or formatted as an array marked with
 the VARIADIC keyword (see the section called “SQL Functions with Variable Numbers of Arguments”). The array's elements are
 treated as if they were separate ordinary arguments to the function.
 If the variadic array argument is NULL, concat
 and concat_ws return NULL, but
 format treats a NULL as a zero-element array.

 See also the aggregate function string_agg in
 the section called “Aggregate Functions”, and the functions for
 converting between strings and the bytea type in
 Table 9.13, “Text/Binary String Conversion Functions”.

format

 The function format produces output formatted according to
 a format string, in a style similar to the C function
 sprintf.

format(formatstr text [, formatarg "any" [, ...]])

 formatstr is a format string that specifies how the
 result should be formatted. Text in the format string is copied
 directly to the result, except where format specifiers are
 used. Format specifiers act as placeholders in the string, defining how
 subsequent function arguments should be formatted and inserted into the
 result. Each formatarg argument is converted to text
 according to the usual output rules for its data type, and then formatted
 and inserted into the result string according to the format specifier(s).

 Format specifiers are introduced by a % character and have
 the form

%[position][flags][width]type

 where the component fields are:

	position (optional)
	
 A string of the form n$ where
 n is the index of the argument to print.
 Index 1 means the first argument after
 formatstr. If the position is
 omitted, the default is to use the next argument in sequence.

	flags (optional)
	
 Additional options controlling how the format specifier's output is
 formatted. Currently the only supported flag is a minus sign
 (-) which will cause the format specifier's output to be
 left-justified. This has no effect unless the width
 field is also specified.

	width (optional)
	
 Specifies the minimum number of characters to use to
 display the format specifier's output. The output is padded on the
 left or right (depending on the - flag) with spaces as
 needed to fill the width. A too-small width does not cause
 truncation of the output, but is simply ignored. The width may be
 specified using any of the following: a positive integer; an
 asterisk (*) to use the next function argument as the
 width; or a string of the form *n$ to
 use the nth function argument as the width.

 If the width comes from a function argument, that argument is
 consumed before the argument that is used for the format specifier's
 value. If the width argument is negative, the result is left
 aligned (as if the - flag had been specified) within a
 field of length abs(width).

	type (required)
	
 The type of format conversion to use to produce the format
 specifier's output. The following types are supported:

	
 s formats the argument value as a simple
 string. A null value is treated as an empty string.

	
 I treats the argument value as an SQL
 identifier, double-quoting it if necessary.
 It is an error for the value to be null (equivalent to
 quote_ident).

	
 L quotes the argument value as an SQL literal.
 A null value is displayed as the string NULL, without
 quotes (equivalent to quote_nullable).

 In addition to the format specifiers described above, the special sequence
 %% may be used to output a literal % character.

 Here are some examples of the basic format conversions:

SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

 Here are examples using width fields
 and the - flag:

SELECT format('|%10s|', 'foo');
Result: | foo|

SELECT format('|%-10s|', 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: | foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

SELECT format('|%-*s|', 10, 'foo');
Result: |foo |

SELECT format('|%-*s|', -10, 'foo');
Result: |foo |

 These examples show use of position fields:

SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

 Unlike the standard C function sprintf,
 PostgreSQL™'s format function allows format
 specifiers with and without position fields to be mixed
 in the same format string. A format specifier without a
 position field always uses the next argument after the
 last argument consumed.
 In addition, the format function does not require all
 function arguments to be used in the format string.
 For example:

SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three

 The %I and %L format specifiers are particularly
 useful for safely constructing dynamic SQL statements. See
 Example 43.1, “Quoting Values in Dynamic Queries”.

Binary String Functions and Operators

 This section describes functions and operators for examining and
 manipulating binary strings, that is values of type bytea.
 Many of these are equivalent, in purpose and syntax, to the
 text-string functions described in the previous section.

 SQL defines some string functions that use
 key words, rather than commas, to separate
 arguments. Details are in
 Table 9.11, “SQL Binary String Functions and Operators”.
 PostgreSQL™ also provides versions of these functions
 that use the regular function invocation syntax
 (see Table 9.12, “Other Binary String Functions”).

Table 9.11. SQL Binary String Functions and Operators
	
 Function/Operator

 Description

 Example(s)

	

 bytea || bytea
 bytea

 Concatenates the two binary strings.

 '\x123456'::bytea || '\x789a00bcde'::bytea
 \x123456789a00bcde

	

 bit_length (bytea)
 integer

 Returns number of bits in the binary string (8
 times the octet_length).

 bit_length('\x123456'::bytea)
 24

	

 btrim (bytes bytea,
 bytesremoved bytea)
 bytea

 Removes the longest string containing only bytes appearing in
 bytesremoved from the start and end of
 bytes.

 btrim('\x1234567890'::bytea, '\x9012'::bytea)
 \x345678

	

 ltrim (bytes bytea,
 bytesremoved bytea)
 bytea

 Removes the longest string containing only bytes appearing in
 bytesremoved from the start of
 bytes.

 ltrim('\x1234567890'::bytea, '\x9012'::bytea)
 \x34567890

	

 octet_length (bytea)
 integer

 Returns number of bytes in the binary string.

 octet_length('\x123456'::bytea)
 3

	

 overlay (bytes bytea PLACING newsubstring bytea FROM start integer [FOR count integer])
 bytea

 Replaces the substring of bytes that starts at
 the start'th byte and extends
 for count bytes
 with newsubstring.
 If count is omitted, it defaults to the length
 of newsubstring.

 overlay('\x1234567890'::bytea placing '\002\003'::bytea from 2 for 3)
 \x12020390

	

 position (substring bytea IN bytes bytea)
 integer

 Returns first starting index of the specified
 substring within
 bytes, or zero if it's not present.

 position('\x5678'::bytea in '\x1234567890'::bytea)
 3

	

 rtrim (bytes bytea,
 bytesremoved bytea)
 bytea

 Removes the longest string containing only bytes appearing in
 bytesremoved from the end of
 bytes.

 rtrim('\x1234567890'::bytea, '\x9012'::bytea)
 \x12345678

	

 substring (bytes bytea [FROM start integer] [FOR count integer])
 bytea

 Extracts the substring of bytes starting at
 the start'th byte if that is specified,
 and stopping after count bytes if that is
 specified. Provide at least one of start
 and count.

 substring('\x1234567890'::bytea from 3 for 2)
 \x5678

	

 trim ([LEADING | TRAILING | BOTH]
 bytesremoved bytea FROM
 bytes bytea)
 bytea

 Removes the longest string containing only bytes appearing in
 bytesremoved from the start,
 end, or both ends (BOTH is the default)
 of bytes.

 trim('\x9012'::bytea from '\x1234567890'::bytea)
 \x345678

	
 trim ([LEADING | TRAILING | BOTH] [FROM]
 bytes bytea,
 bytesremoved bytea)
 bytea

 This is a non-standard syntax for trim().

 trim(both from '\x1234567890'::bytea, '\x9012'::bytea)
 \x345678

 Additional binary string manipulation functions are available and
 are listed in Table 9.12, “Other Binary String Functions”. Some
 of them are used internally to implement the
 SQL-standard string functions listed in Table 9.11, “SQL Binary String Functions and Operators”.

Table 9.12. Other Binary String Functions
	
 Function

 Description

 Example(s)

	

 bit_count (bytes bytea)
 bigint

 Returns the number of bits set in the binary string (also known as
 “popcount”).

 bit_count('\x1234567890'::bytea)
 15

	

 get_bit (bytes bytea,
 n bigint)
 integer

 Extracts n'th bit
 from binary string.

 get_bit('\x1234567890'::bytea, 30)
 1

	

 get_byte (bytes bytea,
 n integer)
 integer

 Extracts n'th byte
 from binary string.

 get_byte('\x1234567890'::bytea, 4)
 144

	

 length (bytea)
 integer

 Returns the number of bytes in the binary string.

 length('\x1234567890'::bytea)
 5

	
 length (bytes bytea,
 encoding name)
 integer

 Returns the number of characters in the binary string, assuming
 that it is text in the given encoding.

 length('jose'::bytea, 'UTF8')
 4

	

 md5 (bytea)
 text

 Computes the MD5 hash of
 the binary string, with the result written in hexadecimal.

 md5('Th\000omas'::bytea)
 8ab2d3c9689aaf18​b4958c334c82d8b1

	

 set_bit (bytes bytea,
 n bigint,
 newvalue integer)
 bytea

 Sets n'th bit in
 binary string to newvalue.

 set_bit('\x1234567890'::bytea, 30, 0)
 \x1234563890

	

 set_byte (bytes bytea,
 n integer,
 newvalue integer)
 bytea

 Sets n'th byte in
 binary string to newvalue.

 set_byte('\x1234567890'::bytea, 4, 64)
 \x1234567840

	

 sha224 (bytea)
 bytea

 Computes the SHA-224 hash
 of the binary string.

 sha224('abc'::bytea)
 \x23097d223405d8228642a477bda2​55b32aadbce4bda0b3f7e36c9da7

	

 sha256 (bytea)
 bytea

 Computes the SHA-256 hash
 of the binary string.

 sha256('abc'::bytea)
 \xba7816bf8f01cfea414140de5dae2223​b00361a396177a9cb410ff61f20015ad

	

 sha384 (bytea)
 bytea

 Computes the SHA-384 hash
 of the binary string.

 sha384('abc'::bytea)
 \xcb00753f45a35e8bb5a03d699ac65007​272c32ab0eded1631a8b605a43ff5bed​8086072ba1e7cc2358baeca134c825a7

	

 sha512 (bytea)
 bytea

 Computes the SHA-512 hash
 of the binary string.

 sha512('abc'::bytea)
 \xddaf35a193617abacc417349ae204131​12e6fa4e89a97ea20a9eeee64b55d39a​2192992a274fc1a836ba3c23a3feebbd​454d4423643ce80e2a9ac94fa54ca49f

	

 substr (bytes bytea, start integer [, count integer])
 bytea

 Extracts the substring of bytes starting at
 the start'th byte,
 and extending for count bytes if that is
 specified. (Same
 as substring(bytes
 from start
 for count).)

 substr('\x1234567890'::bytea, 3, 2)
 \x5678

 Functions get_byte and set_byte
 number the first byte of a binary string as byte 0.
 Functions get_bit and set_bit
 number bits from the right within each byte; for example bit 0 is the least
 significant bit of the first byte, and bit 15 is the most significant bit
 of the second byte.

 For historical reasons, the function md5
 returns a hex-encoded value of type text whereas the SHA-2
 functions return type bytea. Use the functions
 encode
 and decode to
 convert between the two. For example write encode(sha256('abc'),
 'hex') to get a hex-encoded text representation,
 or decode(md5('abc'), 'hex') to get
 a bytea value.

 Functions for converting strings between different character sets
 (encodings), and for representing arbitrary binary data in textual
 form, are shown in
 Table 9.13, “Text/Binary String Conversion Functions”. For these
 functions, an argument or result of type text is expressed
 in the database's default encoding, while arguments or results of
 type bytea are in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions
	
 Function

 Description

 Example(s)

	

 convert (bytes bytea,
 src_encoding name,
 dest_encoding name)
 bytea

 Converts a binary string representing text in
 encoding src_encoding
 to a binary string in encoding dest_encoding
 (see the section called “Available Character Set Conversions” for
 available conversions).

 convert('text_in_utf8', 'UTF8', 'LATIN1')
 \x746578745f696e5f75746638

	

 convert_from (bytes bytea,
 src_encoding name)
 text

 Converts a binary string representing text in
 encoding src_encoding
 to text in the database encoding
 (see the section called “Available Character Set Conversions” for
 available conversions).

 convert_from('text_in_utf8', 'UTF8')
 text_in_utf8

	

 convert_to (string text,
 dest_encoding name)
 bytea

 Converts a text string (in the database encoding) to a
 binary string encoded in encoding dest_encoding
 (see the section called “Available Character Set Conversions” for
 available conversions).

 convert_to('some_text', 'UTF8')
 \x736f6d655f74657874

	

 encode (bytes bytea,
 format text)
 text

 Encodes binary data into a textual representation; supported
 format values are:
 base64,
 escape,
 hex.

 encode('123\000\001', 'base64')
 MTIzAAE=

	

 decode (string text,
 format text)
 bytea

 Decodes binary data from a textual representation; supported
 format values are the same as
 for encode.

 decode('MTIzAAE=', 'base64')
 \x3132330001

 The encode and decode
 functions support the following textual formats:

	base64

	
 The base64 format is that
 of RFC
 2045 Section 6.8. As per the RFC, encoded lines are
 broken at 76 characters. However instead of the MIME CRLF
 end-of-line marker, only a newline is used for end-of-line.
 The decode function ignores carriage-return,
 newline, space, and tab characters. Otherwise, an error is
 raised when decode is supplied invalid
 base64 data — including when trailing padding is incorrect.

	escape

	
 The escape format converts zero bytes and
 bytes with the high bit set into octal escape sequences
 (\nnn), and it doubles
 backslashes. Other byte values are represented literally.
 The decode function will raise an error if a
 backslash is not followed by either a second backslash or three
 octal digits; it accepts other byte values unchanged.

	hex

	
 The hex format represents each 4 bits of
 data as one hexadecimal digit, 0
 through f, writing the higher-order digit of
 each byte first. The encode function outputs
 the a-f hex digits in lower
 case. Because the smallest unit of data is 8 bits, there are
 always an even number of characters returned
 by encode.
 The decode function
 accepts the a-f characters in
 either upper or lower case. An error is raised
 when decode is given invalid hex data
 — including when given an odd number of characters.

 See also the aggregate function string_agg in
 the section called “Aggregate Functions” and the large object functions
 in the section called “Server-Side Functions”.

Bit String Functions and Operators

 This section describes functions and operators for examining and
 manipulating bit strings, that is values of the types
 bit and bit varying. (While only
 type bit is mentioned in these tables, values of
 type bit varying can be used interchangeably.)
 Bit strings support the usual comparison operators shown in
 Table 9.1, “Comparison Operators”, as well as the
 operators shown in Table 9.14, “Bit String Operators”.

Table 9.14. Bit String Operators
	
 Operator

 Description

 Example(s)

	
 bit || bit
 bit

 Concatenation

 B'10001' || B'011'
 10001011

	
 bit & bit
 bit

 Bitwise AND (inputs must be of equal length)

 B'10001' & B'01101'
 00001

	
 bit | bit
 bit

 Bitwise OR (inputs must be of equal length)

 B'10001' | B'01101'
 11101

	
 bit # bit
 bit

 Bitwise exclusive OR (inputs must be of equal length)

 B'10001' # B'01101'
 11100

	
 ~ bit
 bit

 Bitwise NOT

 ~ B'10001'
 01110

	
 bit << integer
 bit

 Bitwise shift left
 (string length is preserved)

 B'10001' << 3
 01000

	
 bit >> integer
 bit

 Bitwise shift right
 (string length is preserved)

 B'10001' >> 2
 00100

 Some of the functions available for binary strings are also available
 for bit strings, as shown in Table 9.15, “Bit String Functions”.

Table 9.15. Bit String Functions
	
 Function

 Description

 Example(s)

	

 bit_count (bit)
 bigint

 Returns the number of bits set in the bit string (also known as
 “popcount”).

 bit_count(B'10111')
 4

	

 bit_length (bit)
 integer

 Returns number of bits in the bit string.

 bit_length(B'10111')
 5

	

 length (bit)
 integer

 Returns number of bits in the bit string.

 length(B'10111')
 5

	

 octet_length (bit)
 integer

 Returns number of bytes in the bit string.

 octet_length(B'1011111011')
 2

	

 overlay (bits bit PLACING newsubstring bit FROM start integer [FOR count integer])
 bit

 Replaces the substring of bits that starts at
 the start'th bit and extends
 for count bits
 with newsubstring.
 If count is omitted, it defaults to the length
 of newsubstring.

 overlay(B'01010101010101010' placing B'11111' from 2 for 3)
 0111110101010101010

	

 position (substring bit IN bits bit)
 integer

 Returns first starting index of the specified substring
 within bits, or zero if it's not present.

 position(B'010' in B'000001101011')
 8

	

 substring (bits bit [FROM start integer] [FOR count integer])
 bit

 Extracts the substring of bits starting at
 the start'th bit if that is specified,
 and stopping after count bits if that is
 specified. Provide at least one of start
 and count.

 substring(B'110010111111' from 3 for 2)
 00

	

 get_bit (bits bit,
 n integer)
 integer

 Extracts n'th bit
 from bit string; the first (leftmost) bit is bit 0.

 get_bit(B'101010101010101010', 6)
 1

	

 set_bit (bits bit,
 n integer,
 newvalue integer)
 bit

 Sets n'th bit in
 bit string to newvalue;
 the first (leftmost) bit is bit 0.

 set_bit(B'101010101010101010', 6, 0)
 101010001010101010

 In addition, it is possible to cast integral values to and from type
 bit.
 Casting an integer to bit(n) copies the rightmost
 n bits. Casting an integer to a bit string width wider
 than the integer itself will sign-extend on the left.
 Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

 Note that casting to just “bit” means casting to
 bit(1), and so will deliver only the least significant
 bit of the integer.

Pattern Matching

 There are three separate approaches to pattern matching provided
 by PostgreSQL™: the traditional
 SQL LIKE operator, the
 more recent SIMILAR TO operator (added in
 SQL:1999), and POSIX-style regular
 expressions. Aside from the basic “does this string match
 this pattern?” operators, functions are available to extract
 or replace matching substrings and to split a string at matching
 locations.

Tip

 If you have pattern matching needs that go beyond this,
 consider writing a user-defined function in Perl or Tcl.

Caution

 While most regular-expression searches can be executed very quickly,
 regular expressions can be contrived that take arbitrary amounts of
 time and memory to process. Be wary of accepting regular-expression
 search patterns from hostile sources. If you must do so, it is
 advisable to impose a statement timeout.

 Searches using SIMILAR TO patterns have the same
 security hazards, since SIMILAR TO provides many
 of the same capabilities as POSIX-style regular
 expressions.

 LIKE searches, being much simpler than the other
 two options, are safer to use with possibly-hostile pattern sources.

 The pattern matching operators of all three kinds do not support
 nondeterministic collations. If required, apply a different collation to
 the expression to work around this limitation.

LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

 The LIKE expression returns true if the
 string matches the supplied
 pattern. (As
 expected, the NOT LIKE expression returns
 false if LIKE returns true, and vice versa.
 An equivalent expression is
 NOT (string LIKE
 pattern).)

 If pattern does not contain percent
 signs or underscores, then the pattern only represents the string
 itself; in that case LIKE acts like the
 equals operator. An underscore (_) in
 pattern stands for (matches) any single
 character; a percent sign (%) matches any sequence
 of zero or more characters.

 Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

 LIKE pattern matching always covers the entire
 string. Therefore, if it's desired to match a sequence anywhere within
 a string, the pattern must start and end with a percent sign.

 To match a literal underscore or percent sign without matching
 other characters, the respective character in
 pattern must be
 preceded by the escape character. The default escape
 character is the backslash but a different one can be selected by
 using the ESCAPE clause. To match the escape
 character itself, write two escape characters.

Note

 If you have standard_conforming_strings turned off,
 any backslashes you write in literal string constants will need to be
 doubled. See the section called “String Constants” for more information.

 It's also possible to select no escape character by writing
 ESCAPE ''. This effectively disables the
 escape mechanism, which makes it impossible to turn off the
 special meaning of underscore and percent signs in the pattern.

 According to the SQL standard, omitting ESCAPE
 means there is no escape character (rather than defaulting to a
 backslash), and a zero-length ESCAPE value is
 disallowed. PostgreSQL™'s behavior in
 this regard is therefore slightly nonstandard.

 The key word ILIKE can be used instead of
 LIKE to make the match case-insensitive according
 to the active locale. This is not in the SQL standard but is a
 PostgreSQL™ extension.

 The operator ~~ is equivalent to
 LIKE, and ~~* corresponds to
 ILIKE. There are also
 !~~ and !~~* operators that
 represent NOT LIKE and NOT
 ILIKE, respectively. All of these operators are
 PostgreSQL™-specific. You may see these
 operator names in EXPLAIN output and similar
 places, since the parser actually translates LIKE
 et al. to these operators.

 The phrases LIKE, ILIKE,
 NOT LIKE, and NOT ILIKE are
 generally treated as operators
 in PostgreSQL™ syntax; for example they can
 be used in expression
 operator ANY
 (subquery) constructs, although
 an ESCAPE clause cannot be included there. In some
 obscure cases it may be necessary to use the underlying operator names
 instead.

 Also see the starts-with operator ^@ and the
 corresponding starts_with() function, which are
 useful in cases where simply matching the beginning of a string is
 needed.

SIMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

 The SIMILAR TO operator returns true or
 false depending on whether its pattern matches the given string.
 It is similar to LIKE, except that it
 interprets the pattern using the SQL standard's definition of a
 regular expression. SQL regular expressions are a curious cross
 between LIKE notation and common (POSIX) regular
 expression notation.

 Like LIKE, the SIMILAR TO
 operator succeeds only if its pattern matches the entire string;
 this is unlike common regular expression behavior where the pattern
 can match any part of the string.
 Also like
 LIKE, SIMILAR TO uses
 _ and % as wildcard characters denoting
 any single character and any string, respectively (these are
 comparable to . and .* in POSIX regular
 expressions).

 In addition to these facilities borrowed from LIKE,
 SIMILAR TO supports these pattern-matching
 metacharacters borrowed from POSIX regular expressions:

	
 | denotes alternation (either of two alternatives).

	
 * denotes repetition of the previous item zero
 or more times.

	
 + denotes repetition of the previous item one
 or more times.

	
 ? denotes repetition of the previous item zero
 or one time.

	
 {m} denotes repetition
 of the previous item exactly m times.

	
 {m,} denotes repetition
 of the previous item m or more times.

	
 {m,n}
 denotes repetition of the previous item at least m and
 not more than n times.

	
 Parentheses () can be used to group items into
 a single logical item.

	
 A bracket expression [...] specifies a character
 class, just as in POSIX regular expressions.

 Notice that the period (.) is not a metacharacter
 for SIMILAR TO.

 As with LIKE, a backslash disables the special
 meaning of any of these metacharacters. A different escape character
 can be specified with ESCAPE, or the escape
 capability can be disabled by writing ESCAPE ''.

 According to the SQL standard, omitting ESCAPE
 means there is no escape character (rather than defaulting to a
 backslash), and a zero-length ESCAPE value is
 disallowed. PostgreSQL™'s behavior in
 this regard is therefore slightly nonstandard.

 Another nonstandard extension is that following the escape character
 with a letter or digit provides access to the escape sequences
 defined for POSIX regular expressions; see
 Table 9.20, “Regular Expression Character-Entry Escapes”,
 Table 9.21, “Regular Expression Class-Shorthand Escapes”, and
 Table 9.22, “Regular Expression Constraint Escapes” below.

 Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '%(b|d)%' true
'abc' SIMILAR TO '(b|c)%' false
'-abc-' SIMILAR TO '%\mabc\M%' true
'xabcy' SIMILAR TO '%\mabc\M%' false

 The substring function with three parameters
 provides extraction of a substring that matches an SQL
 regular expression pattern. The function can be written according
 to standard SQL syntax:

substring(string similar pattern escape escape-character)

 or using the now obsolete SQL:1999 syntax:

substring(string from pattern for escape-character)

 or as a plain three-argument function:

substring(string, pattern, escape-character)

 As with SIMILAR TO, the
 specified pattern must match the entire data string, or else the
 function fails and returns null. To indicate the part of the
 pattern for which the matching data sub-string is of interest,
 the pattern should contain
 two occurrences of the escape character followed by a double quote
 (").
 The text matching the portion of the pattern
 between these separators is returned when the match is successful.

 The escape-double-quote separators actually
 divide substring's pattern into three independent
 regular expressions; for example, a vertical bar (|)
 in any of the three sections affects only that section. Also, the first
 and third of these regular expressions are defined to match the smallest
 possible amount of text, not the largest, when there is any ambiguity
 about how much of the data string matches which pattern. (In POSIX
 parlance, the first and third regular expressions are forced to be
 non-greedy.)

 As an extension to the SQL standard, PostgreSQL™
 allows there to be just one escape-double-quote separator, in which case
 the third regular expression is taken as empty; or no separators, in which
 case the first and third regular expressions are taken as empty.

 Some examples, with #" delimiting the return string:

substring('foobar' similar '%#"o_b#"%' escape '#') oob
substring('foobar' similar '#"o_b#"%' escape '#') NULL

POSIX Regular Expressions

 Table 9.16, “Regular Expression Match Operators” lists the available
 operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators
	
 Operator

 Description

 Example(s)

	
 text ~ text
 boolean

 String matches regular expression, case sensitively

 'thomas' ~ 't.*ma'
 t

	
 text ~* text
 boolean

 String matches regular expression, case-insensitively

 'thomas' ~* 'T.*ma'
 t

	
 text !~ text
 boolean

 String does not match regular expression, case sensitively

 'thomas' !~ 't.*max'
 t

	
 text !~* text
 boolean

 String does not match regular expression, case-insensitively

 'thomas' !~* 'T.*ma'
 f

 POSIX regular expressions provide a more
 powerful means for pattern matching than the LIKE and
 SIMILAR TO operators.
 Many Unix tools such as egrep,
 sed, or awk use a pattern
 matching language that is similar to the one described here.

 A regular expression is a character sequence that is an
 abbreviated definition of a set of strings (a regular
 set). A string is said to match a regular expression
 if it is a member of the regular set described by the regular
 expression. As with LIKE, pattern characters
 match string characters exactly unless they are special characters
 in the regular expression language — but regular expressions use
 different special characters than LIKE does.
 Unlike LIKE patterns, a
 regular expression is allowed to match anywhere within a string, unless
 the regular expression is explicitly anchored to the beginning or
 end of the string.

 Some examples:

'abcd' ~ 'bc' true
'abcd' ~ 'a.c' true — dot matches any character
'abcd' ~ 'a.*d' true — * repeats the preceding pattern item
'abcd' ~ '(b|x)' true — | means OR, parentheses group
'abcd' ~ '^a' true — ^ anchors to start of string
'abcd' ~ '^(b|c)' false — would match except for anchoring

 The POSIX pattern language is described in much
 greater detail below.

 The substring function with two parameters,
 substring(string from
 pattern), provides extraction of a
 substring
 that matches a POSIX regular expression pattern. It returns null if
 there is no match, otherwise the first portion of the text that matched the
 pattern. But if the pattern contains any parentheses, the portion
 of the text that matched the first parenthesized subexpression (the
 one whose left parenthesis comes first) is
 returned. You can put parentheses around the whole expression
 if you want to use parentheses within it without triggering this
 exception. If you need parentheses in the pattern before the
 subexpression you want to extract, see the non-capturing parentheses
 described below.

 Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b') o

 The regexp_count function counts the number of
 places where a POSIX regular expression pattern matches a string.
 It has the syntax
 regexp_count(string,
 pattern
 [, start
 [, flags
]]).
 pattern is searched for
 in string, normally from the beginning of
 the string, but if the start parameter is
 provided then beginning from that character index.
 The flags parameter is an optional text
 string containing zero or more single-letter flags that change the
 function's behavior. For example, including i in
 flags specifies case-insensitive matching.
 Supported flags are described in
 Table 9.24, “ARE Embedded-Option Letters”.

 Some examples:

regexp_count('ABCABCAXYaxy', 'A.') 3
regexp_count('ABCABCAXYaxy', 'A.', 1, 'i') 4

 The regexp_instr function returns the starting or
 ending position of the N'th match of a
 POSIX regular expression pattern to a string, or zero if there is no
 such match. It has the syntax
 regexp_instr(string,
 pattern
 [, start
 [, N
 [, endoption
 [, flags
 [, subexpr
]]]]]).
 pattern is searched for
 in string, normally from the beginning of
 the string, but if the start parameter is
 provided then beginning from that character index.
 If N is specified
 then the N'th match of the pattern
 is located, otherwise the first match is located.
 If the endoption parameter is omitted or
 specified as zero, the function returns the position of the first
 character of the match. Otherwise, endoption
 must be one, and the function returns the position of the character
 following the match.
 The flags parameter is an optional text
 string containing zero or more single-letter flags that change the
 function's behavior. Supported flags are described
 in Table 9.24, “ARE Embedded-Option Letters”.
 For a pattern containing parenthesized
 subexpressions, subexpr is an integer
 indicating which subexpression is of interest: the result identifies
 the position of the substring matching that subexpression.
 Subexpressions are numbered in the order of their leading parentheses.
 When subexpr is omitted or zero, the result
 identifies the position of the whole match regardless of
 parenthesized subexpressions.

 Some examples:

regexp_instr('number of your street, town zip, FR', '[^,]+', 1, 2)
 23
regexp_instr('ABCDEFGHI', '(c..)(...)', 1, 1, 0, 'i', 2)
 6

 The regexp_like function checks whether a match
 of a POSIX regular expression pattern occurs within a string,
 returning boolean true or false. It has the syntax
 regexp_like(string,
 pattern
 [, flags]).
 The flags parameter is an optional text
 string containing zero or more single-letter flags that change the
 function's behavior. Supported flags are described
 in Table 9.24, “ARE Embedded-Option Letters”.
 This function has the same results as the ~
 operator if no flags are specified. If only the i
 flag is specified, it has the same results as
 the ~* operator.

 Some examples:

regexp_like('Hello World', 'world') false
regexp_like('Hello World', 'world', 'i') true

 The regexp_match function returns a text array of
 matching substring(s) within the first match of a POSIX
 regular expression pattern to a string. It has the syntax
 regexp_match(string,
 pattern [, flags]).
 If there is no match, the result is NULL.
 If a match is found, and the pattern contains no
 parenthesized subexpressions, then the result is a single-element text
 array containing the substring matching the whole pattern.
 If a match is found, and the pattern contains
 parenthesized subexpressions, then the result is a text array
 whose n'th element is the substring matching
 the n'th parenthesized subexpression of
 the pattern (not counting “non-capturing”
 parentheses; see below for details).
 The flags parameter is an optional text string
 containing zero or more single-letter flags that change the function's
 behavior. Supported flags are described
 in Table 9.24, “ARE Embedded-Option Letters”.

 Some examples:

SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match

 {barbeque}
(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match

 {bar,beque}
(1 row)

Tip

 In the common case where you just want the whole matching substring
 or NULL for no match, the best solution is to
 use regexp_substr().
 However, regexp_substr() only exists
 in PostgreSQL™ version 15 and up. When
 working in older versions, you can extract the first element
 of regexp_match()'s result, for example:

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match

 barbeque
(1 row)

 The regexp_matches function returns a set of text arrays
 of matching substring(s) within matches of a POSIX regular
 expression pattern to a string. It has the same syntax as
 regexp_match.
 This function returns no rows if there is no match, one row if there is
 a match and the g flag is not given, or N
 rows if there are N matches and the g flag
 is given. Each returned row is a text array containing the whole
 matched substring or the substrings matching parenthesized
 subexpressions of the pattern, just as described above
 for regexp_match.
 regexp_matches accepts all the flags shown
 in Table 9.24, “ARE Embedded-Option Letters”, plus
 the g flag which commands it to return all matches, not
 just the first one.

 Some examples:

SELECT regexp_matches('foo', 'not there');
 regexp_matches

(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches

 {bar,beque}
 {bazil,barf}
(2 rows)

Tip

 In most cases regexp_matches() should be used with
 the g flag, since if you only want the first match, it's
 easier and more efficient to use regexp_match().
 However, regexp_match() only exists
 in PostgreSQL™ version 10 and up. When working in older
 versions, a common trick is to place a regexp_matches()
 call in a sub-select, for example:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab;

 This produces a text array if there's a match, or NULL if
 not, the same as regexp_match() would do. Without the
 sub-select, this query would produce no output at all for table rows
 without a match, which is typically not the desired behavior.

 The regexp_replace function provides substitution of
 new text for substrings that match POSIX regular expression patterns.
 It has the syntax
 regexp_replace(source,
 pattern, replacement
 [, start
 [, N
]]
 [, flags]).
 (Notice that N cannot be specified
 unless start is,
 but flags can be given in any case.)
 The source string is returned unchanged if
 there is no match to the pattern. If there is a
 match, the source string is returned with the
 replacement string substituted for the matching
 substring. The replacement string can contain
 \n, where n is 1
 through 9, to indicate that the source substring matching the
 n'th parenthesized subexpression of the pattern should be
 inserted, and it can contain \& to indicate that the
 substring matching the entire pattern should be inserted. Write
 \\ if you need to put a literal backslash in the replacement
 text.
 pattern is searched for
 in string, normally from the beginning of
 the string, but if the start parameter is
 provided then beginning from that character index.
 By default, only the first match of the pattern is replaced.
 If N is specified and is greater than zero,
 then the N'th match of the pattern
 is replaced.
 If the g flag is given, or
 if N is specified and is zero, then all
 matches at or after the start position are
 replaced. (The g flag is ignored
 when N is specified.)
 The flags parameter is an optional text
 string containing zero or more single-letter flags that change the
 function's behavior. Supported flags (though
 not g) are
 described in Table 9.24, “ARE Embedded-Option Letters”.

 Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
 fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
 fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
 fooXarYXazY
regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 0, 'i')
 X PXstgrXSQL fXnctXXn
regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 3, 'i')
 A PostgrXSQL function

 The regexp_split_to_table function splits a string using a POSIX
 regular expression pattern as a delimiter. It has the syntax
 regexp_split_to_table(string, pattern
 [, flags]).
 If there is no match to the pattern, the function returns the
 string. If there is at least one match, for each match it returns
 the text from the end of the last match (or the beginning of the string)
 to the beginning of the match. When there are no more matches, it
 returns the text from the end of the last match to the end of the string.
 The flags parameter is an optional text string containing
 zero or more single-letter flags that change the function's behavior.
 regexp_split_to_table supports the flags described in
 Table 9.24, “ARE Embedded-Option Letters”.

 The regexp_split_to_array function behaves the same as
 regexp_split_to_table, except that regexp_split_to_array
 returns its result as an array of text. It has the syntax
 regexp_split_to_array(string, pattern
 [, flags]).
 The parameters are the same as for regexp_split_to_table.

 Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog', '\s+') AS foo;
 foo

 the
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+');
 regexp_split_to_array

 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
 foo

 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f
 o
 x
(16 rows)

 As the last example demonstrates, the regexp split functions ignore
 zero-length matches that occur at the start or end of the string
 or immediately after a previous match. This is contrary to the strict
 definition of regexp matching that is implemented by
 the other regexp functions, but is usually the most convenient behavior
 in practice. Other software systems such as Perl use similar definitions.

 The regexp_substr function returns the substring
 that matches a POSIX regular expression pattern,
 or NULL if there is no match. It has the syntax
 regexp_substr(string,
 pattern
 [, start
 [, N
 [, flags
 [, subexpr
]]]]).
 pattern is searched for
 in string, normally from the beginning of
 the string, but if the start parameter is
 provided then beginning from that character index.
 If N is specified
 then the N'th match of the pattern
 is returned, otherwise the first match is returned.
 The flags parameter is an optional text
 string containing zero or more single-letter flags that change the
 function's behavior. Supported flags are described
 in Table 9.24, “ARE Embedded-Option Letters”.
 For a pattern containing parenthesized
 subexpressions, subexpr is an integer
 indicating which subexpression is of interest: the result is the
 substring matching that subexpression.
 Subexpressions are numbered in the order of their leading parentheses.
 When subexpr is omitted or zero, the result
 is the whole match regardless of parenthesized subexpressions.

 Some examples:

regexp_substr('number of your street, town zip, FR', '[^,]+', 1, 2)
 town zip
regexp_substr('ABCDEFGHI', '(c..)(...)', 1, 1, 'i', 2)
 FGH

Regular Expression Details

 PostgreSQL™'s regular expressions are implemented
 using a software package written by Henry Spencer. Much of
 the description of regular expressions below is copied verbatim from his
 manual.

 Regular expressions (REs), as defined in
 POSIX 1003.2, come in two forms:
 extended REs or EREs
 (roughly those of egrep), and
 basic REs or BREs
 (roughly those of ed).
 PostgreSQL™ supports both forms, and
 also implements some extensions
 that are not in the POSIX standard, but have become widely used
 due to their availability in programming languages such as Perl and Tcl.
 REs using these non-POSIX extensions are called
 advanced REs or AREs
 in this documentation. AREs are almost an exact superset of EREs,
 but BREs have several notational incompatibilities (as well as being
 much more limited).
 We first describe the ARE and ERE forms, noting features that apply
 only to AREs, and then describe how BREs differ.

Note

 PostgreSQL™ always initially presumes that a regular
 expression follows the ARE rules. However, the more limited ERE or
 BRE rules can be chosen by prepending an embedded option
 to the RE pattern, as described in the section called “Regular Expression Metasyntax”.
 This can be useful for compatibility with applications that expect
 exactly the POSIX 1003.2 rules.

 A regular expression is defined as one or more
 branches, separated by
 |. It matches anything that matches one of the
 branches.

 A branch is zero or more quantified atoms or
 constraints, concatenated.
 It matches a match for the first, followed by a match for the second, etc.;
 an empty branch matches the empty string.

 A quantified atom is an atom possibly followed
 by a single quantifier.
 Without a quantifier, it matches a match for the atom.
 With a quantifier, it can match some number of matches of the atom.
 An atom can be any of the possibilities
 shown in Table 9.17, “Regular Expression Atoms”.
 The possible quantifiers and their meanings are shown in
 Table 9.18, “Regular Expression Quantifiers”.

 A constraint matches an empty string, but matches only when
 specific conditions are met. A constraint can be used where an atom
 could be used, except it cannot be followed by a quantifier.
 The simple constraints are shown in
 Table 9.19, “Regular Expression Constraints”;
 some more constraints are described later.

Table 9.17. Regular Expression Atoms
	Atom	Description
	 (re) 	 (where re is any regular expression)
 matches a match for
 re, with the match noted for possible reporting
	 (?:re) 	 as above, but the match is not noted for reporting
 (a “non-capturing” set of parentheses)
 (AREs only)
	 . 	 matches any single character
	 [chars] 	 a bracket expression,
 matching any one of the chars (see
 the section called “Bracket Expressions” for more detail)
	 \k 	 (where k is a non-alphanumeric character)
 matches that character taken as an ordinary character,
 e.g., \\ matches a backslash character
	 \c 	 where c is alphanumeric
 (possibly followed by other characters)
 is an escape, see the section called “Regular Expression Escapes”
 (AREs only; in EREs and BREs, this matches c)
	 { 	 when followed by a character other than a digit,
 matches the left-brace character {;
 when followed by a digit, it is the beginning of a
 bound (see below)
	 x 	 where x is a single character with no other
 significance, matches that character

 An RE cannot end with a backslash (\).

Note

 If you have standard_conforming_strings turned off,
 any backslashes you write in literal string constants will need to be
 doubled. See the section called “String Constants” for more information.

Table 9.18. Regular Expression Quantifiers
	Quantifier	Matches
	 * 	 a sequence of 0 or more matches of the atom
	 + 	 a sequence of 1 or more matches of the atom
	 ? 	 a sequence of 0 or 1 matches of the atom
	 {m} 	 a sequence of exactly m matches of the atom
	 {m,} 	 a sequence of m or more matches of the atom
	
 {m,n} 	 a sequence of m through n
 (inclusive) matches of the atom; m cannot exceed
 n
	 *? 	 non-greedy version of *
	 +? 	 non-greedy version of +
	 ?? 	 non-greedy version of ?
	 {m}? 	 non-greedy version of {m}
	 {m,}? 	 non-greedy version of {m,}
	
 {m,n}? 	 non-greedy version of {m,n}

 The forms using {...}
 are known as bounds.
 The numbers m and n within a bound are
 unsigned decimal integers with permissible values from 0 to 255 inclusive.

 Non-greedy quantifiers (available in AREs only) match the
 same possibilities as their corresponding normal (greedy)
 counterparts, but prefer the smallest number rather than the largest
 number of matches.
 See the section called “Regular Expression Matching Rules” for more detail.

Note

 A quantifier cannot immediately follow another quantifier, e.g.,
 ** is invalid.
 A quantifier cannot
 begin an expression or subexpression or follow
 ^ or |.

Table 9.19. Regular Expression Constraints
	Constraint	Description
	 ^ 	 matches at the beginning of the string
	 $ 	 matches at the end of the string
	 (?=re) 	 positive lookahead matches at any point
 where a substring matching re begins
 (AREs only)
	 (?!re) 	 negative lookahead matches at any point
 where no substring matching re begins
 (AREs only)
	 (?<=re) 	 positive lookbehind matches at any point
 where a substring matching re ends
 (AREs only)
	 (?<!re) 	 negative lookbehind matches at any point
 where no substring matching re ends
 (AREs only)

 Lookahead and lookbehind constraints cannot contain back
 references (see the section called “Regular Expression Escapes”),
 and all parentheses within them are considered non-capturing.

Bracket Expressions

 A bracket expression is a list of
 characters enclosed in []. It normally matches
 any single character from the list (but see below). If the list
 begins with ^, it matches any single character
 not from the rest of the list.
 If two characters
 in the list are separated by -, this is
 shorthand for the full range of characters between those two
 (inclusive) in the collating sequence,
 e.g., [0-9] in ASCII matches
 any decimal digit. It is illegal for two ranges to share an
 endpoint, e.g., a-c-e. Ranges are very
 collating-sequence-dependent, so portable programs should avoid
 relying on them.

 To include a literal] in the list, make it the
 first character (after ^, if that is used). To
 include a literal -, make it the first or last
 character, or the second endpoint of a range. To use a literal
 - as the first endpoint of a range, enclose it
 in [. and .] to make it a
 collating element (see below). With the exception of these characters,
 some combinations using [
 (see next paragraphs), and escapes (AREs only), all other special
 characters lose their special significance within a bracket expression.
 In particular, \ is not special when following
 ERE or BRE rules, though it is special (as introducing an escape)
 in AREs.

 Within a bracket expression, a collating element (a character, a
 multiple-character sequence that collates as if it were a single
 character, or a collating-sequence name for either) enclosed in
 [. and .] stands for the
 sequence of characters of that collating element. The sequence is
 treated as a single element of the bracket expression's list. This
 allows a bracket
 expression containing a multiple-character collating element to
 match more than one character, e.g., if the collating sequence
 includes a ch collating element, then the RE
 [[.ch.]]*c matches the first five characters of
 chchcc.

Note

 PostgreSQL™ currently does not support multi-character collating
 elements. This information describes possible future behavior.

 Within a bracket expression, a collating element enclosed in
 [= and =] is an equivalence
 class, standing for the sequences of characters of all collating
 elements equivalent to that one, including itself. (If there are
 no other equivalent collating elements, the treatment is as if the
 enclosing delimiters were [. and
 .].) For example, if o and
 ^ are the members of an equivalence class, then
 [[=o=]], [[=^=]], and
 [o^] are all synonymous. An equivalence class
 cannot be an endpoint of a range.

 Within a bracket expression, the name of a character class
 enclosed in [: and :] stands
 for the list of all characters belonging to that class. A character
 class cannot be used as an endpoint of a range.
 The POSIX standard defines these character class
 names:
 alnum (letters and numeric digits),
 alpha (letters),
 blank (space and tab),
 cntrl (control characters),
 digit (numeric digits),
 graph (printable characters except space),
 lower (lower-case letters),
 print (printable characters including space),
 punct (punctuation),
 space (any white space),
 upper (upper-case letters),
 and xdigit (hexadecimal digits).
 The behavior of these standard character classes is generally
 consistent across platforms for characters in the 7-bit ASCII set.
 Whether a given non-ASCII character is considered to belong to one
 of these classes depends on the collation
 that is used for the regular-expression function or operator
 (see the section called “Collation Support”), or by default on the
 database's LC_CTYPE locale setting (see
 the section called “Locale Support”). The classification of non-ASCII
 characters can vary across platforms even in similarly-named
 locales. (But the C locale never considers any
 non-ASCII characters to belong to any of these classes.)
 In addition to these standard character
 classes, PostgreSQL™ defines
 the word character class, which is the same as
 alnum plus the underscore (_)
 character, and
 the ascii character class, which contains exactly
 the 7-bit ASCII set.

 There are two special cases of bracket expressions: the bracket
 expressions [[:<:]] and
 [[:>:]] are constraints,
 matching empty strings at the beginning
 and end of a word respectively. A word is defined as a sequence
 of word characters that is neither preceded nor followed by word
 characters. A word character is any character belonging to the
 word character class, that is, any letter, digit,
 or underscore. This is an extension, compatible with but not
 specified by POSIX 1003.2, and should be used with
 caution in software intended to be portable to other systems.
 The constraint escapes described below are usually preferable; they
 are no more standard, but are easier to type.

Regular Expression Escapes

 Escapes are special sequences beginning with \
 followed by an alphanumeric character. Escapes come in several varieties:
 character entry, class shorthands, constraint escapes, and back references.
 A \ followed by an alphanumeric character but not constituting
 a valid escape is illegal in AREs.
 In EREs, there are no escapes: outside a bracket expression,
 a \ followed by an alphanumeric character merely stands for
 that character as an ordinary character, and inside a bracket expression,
 \ is an ordinary character.
 (The latter is the one actual incompatibility between EREs and AREs.)

 Character-entry escapes exist to make it easier to specify
 non-printing and other inconvenient characters in REs. They are
 shown in Table 9.20, “Regular Expression Character-Entry Escapes”.

 Class-shorthand escapes provide shorthands for certain
 commonly-used character classes. They are
 shown in Table 9.21, “Regular Expression Class-Shorthand Escapes”.

 A constraint escape is a constraint,
 matching the empty string if specific conditions are met,
 written as an escape. They are
 shown in Table 9.22, “Regular Expression Constraint Escapes”.

 A back reference (\n) matches the
 same string matched by the previous parenthesized subexpression specified
 by the number n
 (see Table 9.23, “Regular Expression Back References”). For example,
 ([bc])\1 matches bb or cc
 but not bc or cb.
 The subexpression must entirely precede the back reference in the RE.
 Subexpressions are numbered in the order of their leading parentheses.
 Non-capturing parentheses do not define subexpressions.
 The back reference considers only the string characters matched by the
 referenced subexpression, not any constraints contained in it. For
 example, (^\d)\1 will match 22.

Table 9.20. Regular Expression Character-Entry Escapes
	Escape	Description
	 \a 	 alert (bell) character, as in C
	 \b 	 backspace, as in C
	 \B 	 synonym for backslash (\) to help reduce the need for backslash
 doubling
	 \cX 	 (where X is any character) the character whose
 low-order 5 bits are the same as those of
 X, and whose other bits are all zero
	 \e 	 the character whose collating-sequence name
 is ESC,
 or failing that, the character with octal value 033
	 \f 	 form feed, as in C
	 \n 	 newline, as in C
	 \r 	 carriage return, as in C
	 \t 	 horizontal tab, as in C
	 \uwxyz 	 (where wxyz is exactly four hexadecimal digits)
 the character whose hexadecimal value is
 0xwxyz

	 \Ustuvwxyz 	 (where stuvwxyz is exactly eight hexadecimal
 digits)
 the character whose hexadecimal value is
 0xstuvwxyz

	 \v 	 vertical tab, as in C
	 \xhhh 	 (where hhh is any sequence of hexadecimal
 digits)
 the character whose hexadecimal value is
 0xhhh
 (a single character no matter how many hexadecimal digits are used)

	 \0 	 the character whose value is 0 (the null byte)
	 \xy 	 (where xy is exactly two octal digits,
 and is not a back reference)
 the character whose octal value is
 0xy
	 \xyz 	 (where xyz is exactly three octal digits,
 and is not a back reference)
 the character whose octal value is
 0xyz

 Hexadecimal digits are 0-9,
 a-f, and A-F.
 Octal digits are 0-7.

 Numeric character-entry escapes specifying values outside the ASCII range
 (0–127) have meanings dependent on the database encoding. When the
 encoding is UTF-8, escape values are equivalent to Unicode code points,
 for example \u1234 means the character U+1234.
 For other multibyte encodings, character-entry escapes usually just
 specify the concatenation of the byte values for the character. If the
 escape value does not correspond to any legal character in the database
 encoding, no error will be raised, but it will never match any data.

 The character-entry escapes are always taken as ordinary characters.
 For example, \135 is] in ASCII, but
 \135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes
	Escape	Description
	 \d 	 matches any digit, like
 [[:digit:]]
	 \s 	 matches any whitespace character, like
 [[:space:]]
	 \w 	 matches any word character, like
 [[:word:]]
	 \D 	 matches any non-digit, like
 [^[:digit:]]
	 \S 	 matches any non-whitespace character, like
 [^[:space:]]
	 \W 	 matches any non-word character, like
 [^[:word:]]

 The class-shorthand escapes also work within bracket expressions,
 although the definitions shown above are not quite syntactically
 valid in that context.
 For example, [a-c\d] is equivalent to
 [a-c[:digit:]].

Table 9.22. Regular Expression Constraint Escapes
	Escape	Description
	 \A 	 matches only at the beginning of the string
 (see the section called “Regular Expression Matching Rules” for how this differs from
 ^)
	 \m 	 matches only at the beginning of a word
	 \M 	 matches only at the end of a word
	 \y 	 matches only at the beginning or end of a word
	 \Y 	 matches only at a point that is not the beginning or end of a
 word
	 \Z 	 matches only at the end of the string
 (see the section called “Regular Expression Matching Rules” for how this differs from
 $)

 A word is defined as in the specification of
 [[:<:]] and [[:>:]] above.
 Constraint escapes are illegal within bracket expressions.

Table 9.23. Regular Expression Back References
	Escape	Description
	 \m 	 (where m is a nonzero digit)
 a back reference to the m'th subexpression
	 \mnn 	 (where m is a nonzero digit, and
 nn is some more digits, and the decimal value
 mnn is not greater than the number of closing capturing
 parentheses seen so far)
 a back reference to the mnn'th subexpression

Note

 There is an inherent ambiguity between octal character-entry
 escapes and back references, which is resolved by the following heuristics,
 as hinted at above.
 A leading zero always indicates an octal escape.
 A single non-zero digit, not followed by another digit,
 is always taken as a back reference.
 A multi-digit sequence not starting with a zero is taken as a back
 reference if it comes after a suitable subexpression
 (i.e., the number is in the legal range for a back reference),
 and otherwise is taken as octal.

Regular Expression Metasyntax

 In addition to the main syntax described above, there are some special
 forms and miscellaneous syntactic facilities available.

 An RE can begin with one of two special director prefixes.
 If an RE begins with ***:,
 the rest of the RE is taken as an ARE. (This normally has no effect in
 PostgreSQL™, since REs are assumed to be AREs;
 but it does have an effect if ERE or BRE mode had been specified by
 the flags parameter to a regex function.)
 If an RE begins with ***=,
 the rest of the RE is taken to be a literal string,
 with all characters considered ordinary characters.

 An ARE can begin with embedded options:
 a sequence (?xyz)
 (where xyz is one or more alphabetic characters)
 specifies options affecting the rest of the RE.
 These options override any previously determined options —
 in particular, they can override the case-sensitivity behavior implied by
 a regex operator, or the flags parameter to a regex
 function.
 The available option letters are
 shown in Table 9.24, “ARE Embedded-Option Letters”.
 Note that these same option letters are used in the flags
 parameters of regex functions.

Table 9.24. ARE Embedded-Option Letters
	Option	Description
	 b 	 rest of RE is a BRE
	 c 	 case-sensitive matching (overrides operator type)
	 e 	 rest of RE is an ERE
	 i 	 case-insensitive matching (see
 the section called “Regular Expression Matching Rules”) (overrides operator type)
	 m 	 historical synonym for n
	 n 	 newline-sensitive matching (see
 the section called “Regular Expression Matching Rules”)
	 p 	 partial newline-sensitive matching (see
 the section called “Regular Expression Matching Rules”)
	 q 	 rest of RE is a literal (“quoted”) string, all ordinary
 characters
	 s 	 non-newline-sensitive matching (default)
	 t 	 tight syntax (default; see below)
	 w 	 inverse partial newline-sensitive (“weird”) matching
 (see the section called “Regular Expression Matching Rules”)
	 x 	 expanded syntax (see below)

 Embedded options take effect at the) terminating the sequence.
 They can appear only at the start of an ARE (after the
 ***: director if any).

 In addition to the usual (tight) RE syntax, in which all
 characters are significant, there is an expanded syntax,
 available by specifying the embedded x option.
 In the expanded syntax,
 white-space characters in the RE are ignored, as are
 all characters between a #
 and the following newline (or the end of the RE). This
 permits paragraphing and commenting a complex RE.
 There are three exceptions to that basic rule:

	
 a white-space character or # preceded by \ is
 retained

	
 white space or # within a bracket expression is retained

	
 white space and comments cannot appear within multi-character symbols,
 such as (?:

 For this purpose, white-space characters are blank, tab, newline, and
 any character that belongs to the space character class.

 Finally, in an ARE, outside bracket expressions, the sequence
 (?#ttt)
 (where ttt is any text not containing a))
 is a comment, completely ignored.
 Again, this is not allowed between the characters of
 multi-character symbols, like (?:.
 Such comments are more a historical artifact than a useful facility,
 and their use is deprecated; use the expanded syntax instead.

 None of these metasyntax extensions is available if
 an initial ***= director
 has specified that the user's input be treated as a literal string
 rather than as an RE.

Regular Expression Matching Rules

 In the event that an RE could match more than one substring of a given
 string, the RE matches the one starting earliest in the string.
 If the RE could match more than one substring starting at that point,
 either the longest possible match or the shortest possible match will
 be taken, depending on whether the RE is greedy or
 non-greedy.

 Whether an RE is greedy or not is determined by the following rules:

	
 Most atoms, and all constraints, have no greediness attribute (because
 they cannot match variable amounts of text anyway).

	
 Adding parentheses around an RE does not change its greediness.

	
 A quantified atom with a fixed-repetition quantifier
 ({m}
 or
 {m}?)
 has the same greediness (possibly none) as the atom itself.

	
 A quantified atom with other normal quantifiers (including
 {m,n}
 with m equal to n)
 is greedy (prefers longest match).

	
 A quantified atom with a non-greedy quantifier (including
 {m,n}?
 with m equal to n)
 is non-greedy (prefers shortest match).

	
 A branch — that is, an RE that has no top-level
 | operator — has the same greediness as the first
 quantified atom in it that has a greediness attribute.

	
 An RE consisting of two or more branches connected by the
 | operator is always greedy.

 The above rules associate greediness attributes not only with individual
 quantified atoms, but with branches and entire REs that contain quantified
 atoms. What that means is that the matching is done in such a way that
 the branch, or whole RE, matches the longest or shortest possible
 substring as a whole. Once the length of the entire match
 is determined, the part of it that matches any particular subexpression
 is determined on the basis of the greediness attribute of that
 subexpression, with subexpressions starting earlier in the RE taking
 priority over ones starting later.

 An example of what this means:

SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1

 In the first case, the RE as a whole is greedy because Y*
 is greedy. It can match beginning at the Y, and it matches
 the longest possible string starting there, i.e., Y123.
 The output is the parenthesized part of that, or 123.
 In the second case, the RE as a whole is non-greedy because Y*?
 is non-greedy. It can match beginning at the Y, and it matches
 the shortest possible string starting there, i.e., Y1.
 The subexpression [0-9]{1,3} is greedy but it cannot change
 the decision as to the overall match length; so it is forced to match
 just 1.

 In short, when an RE contains both greedy and non-greedy subexpressions,
 the total match length is either as long as possible or as short as
 possible, according to the attribute assigned to the whole RE. The
 attributes assigned to the subexpressions only affect how much of that
 match they are allowed to “eat” relative to each other.

 The quantifiers {1,1} and {1,1}?
 can be used to force greediness or non-greediness, respectively,
 on a subexpression or a whole RE.
 This is useful when you need the whole RE to have a greediness attribute
 different from what's deduced from its elements. As an example,
 suppose that we are trying to separate a string containing some digits
 into the digits and the parts before and after them. We might try to
 do that like this:

SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}

 That didn't work: the first .* is greedy so
 it “eats” as much as it can, leaving the \d+ to
 match at the last possible place, the last digit. We might try to fix
 that by making it non-greedy:

SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}

 That didn't work either, because now the RE as a whole is non-greedy
 and so it ends the overall match as soon as possible. We can get what
 we want by forcing the RE as a whole to be greedy:

SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}

 Controlling the RE's overall greediness separately from its components'
 greediness allows great flexibility in handling variable-length patterns.

 When deciding what is a longer or shorter match,
 match lengths are measured in characters, not collating elements.
 An empty string is considered longer than no match at all.
 For example:
 bb*
 matches the three middle characters of abbbc;
 (week|wee)(night|knights)
 matches all ten characters of weeknights;
 when (.*).*
 is matched against abc the parenthesized subexpression
 matches all three characters; and when
 (a*)* is matched against bc
 both the whole RE and the parenthesized
 subexpression match an empty string.

 If case-independent matching is specified,
 the effect is much as if all case distinctions had vanished from the
 alphabet.
 When an alphabetic that exists in multiple cases appears as an
 ordinary character outside a bracket expression, it is effectively
 transformed into a bracket expression containing both cases,
 e.g., x becomes [xX].
 When it appears inside a bracket expression, all case counterparts
 of it are added to the bracket expression, e.g.,
 [x] becomes [xX]
 and [^x] becomes [^xX].

 If newline-sensitive matching is specified, .
 and bracket expressions using ^
 will never match the newline character
 (so that matches will not cross lines unless the RE
 explicitly includes a newline)
 and ^ and $
 will match the empty string after and before a newline
 respectively, in addition to matching at beginning and end of string
 respectively.
 But the ARE escapes \A and \Z
 continue to match beginning or end of string only.
 Also, the character class shorthands \D
 and \W will match a newline regardless of this mode.
 (Before PostgreSQL™ 14, they did not match
 newlines when in newline-sensitive mode.
 Write [^[:digit:]]
 or [^[:word:]] to get the old behavior.)

 If partial newline-sensitive matching is specified,
 this affects . and bracket expressions
 as with newline-sensitive matching, but not ^
 and $.

 If inverse partial newline-sensitive matching is specified,
 this affects ^ and $
 as with newline-sensitive matching, but not .
 and bracket expressions.
 This isn't very useful but is provided for symmetry.

Limits and Compatibility

 No particular limit is imposed on the length of REs in this
 implementation. However,
 programs intended to be highly portable should not employ REs longer
 than 256 bytes,
 as a POSIX-compliant implementation can refuse to accept such REs.

 The only feature of AREs that is actually incompatible with
 POSIX EREs is that \ does not lose its special
 significance inside bracket expressions.
 All other ARE features use syntax which is illegal or has
 undefined or unspecified effects in POSIX EREs;
 the *** syntax of directors likewise is outside the POSIX
 syntax for both BREs and EREs.

 Many of the ARE extensions are borrowed from Perl, but some have
 been changed to clean them up, and a few Perl extensions are not present.
 Incompatibilities of note include \b, \B,
 the lack of special treatment for a trailing newline,
 the addition of complemented bracket expressions to the things
 affected by newline-sensitive matching,
 the restrictions on parentheses and back references in lookahead/lookbehind
 constraints, and the longest/shortest-match (rather than first-match)
 matching semantics.

Basic Regular Expressions

 BREs differ from EREs in several respects.
 In BREs, |, +, and ?
 are ordinary characters and there is no equivalent
 for their functionality.
 The delimiters for bounds are
 \{ and \},
 with { and }
 by themselves ordinary characters.
 The parentheses for nested subexpressions are
 \(and \),
 with (and) by themselves ordinary characters.
 ^ is an ordinary character except at the beginning of the
 RE or the beginning of a parenthesized subexpression,
 $ is an ordinary character except at the end of the
 RE or the end of a parenthesized subexpression,
 and * is an ordinary character if it appears at the beginning
 of the RE or the beginning of a parenthesized subexpression
 (after a possible leading ^).
 Finally, single-digit back references are available, and
 \< and \>
 are synonyms for
 [[:<:]] and [[:>:]]
 respectively; no other escapes are available in BREs.

Differences from SQL Standard and XQuery

 Since SQL:2008, the SQL standard includes regular expression operators
 and functions that performs pattern
 matching according to the XQuery regular expression
 standard:

	LIKE_REGEX

	OCCURRENCES_REGEX

	POSITION_REGEX

	SUBSTRING_REGEX

	TRANSLATE_REGEX

 PostgreSQL™ does not currently implement these
 operators and functions. You can get approximately equivalent
 functionality in each case as shown in Table 9.25, “Regular Expression Functions Equivalencies”. (Various optional clauses on
 both sides have been omitted in this table.)

Table 9.25. Regular Expression Functions Equivalencies
	SQL standard	PostgreSQL™
	string LIKE_REGEX pattern	regexp_like(string, pattern) or string ~ pattern
	OCCURRENCES_REGEX(pattern IN string)	regexp_count(string, pattern)
	POSITION_REGEX(pattern IN string)	regexp_instr(string, pattern)
	SUBSTRING_REGEX(pattern IN string)	regexp_substr(string, pattern)
	TRANSLATE_REGEX(pattern IN string WITH replacement)	regexp_replace(string, pattern, replacement)

 Regular expression functions similar to those provided by PostgreSQL are
 also available in a number of other SQL implementations, whereas the
 SQL-standard functions are not as widely implemented. Some of the
 details of the regular expression syntax will likely differ in each
 implementation.

 The SQL-standard operators and functions use XQuery regular expressions,
 which are quite close to the ARE syntax described above.
 Notable differences between the existing POSIX-based
 regular-expression feature and XQuery regular expressions include:

	
 XQuery character class subtraction is not supported. An example of
 this feature is using the following to match only English
 consonants: [a-z-[aeiou]].

	
 XQuery character class shorthands \c,
 \C, \i,
 and \I are not supported.

	
 XQuery character class elements
 using \p{UnicodeProperty} or the
 inverse \P{UnicodeProperty} are not supported.

	
 POSIX interprets character classes such as \w
 (see Table 9.21, “Regular Expression Class-Shorthand Escapes”)
 according to the prevailing locale (which you can control by
 attaching a COLLATE clause to the operator or
 function). XQuery specifies these classes by reference to Unicode
 character properties, so equivalent behavior is obtained only with
 a locale that follows the Unicode rules.

	
 The SQL standard (not XQuery itself) attempts to cater for more
 variants of “newline” than POSIX does. The
 newline-sensitive matching options described above consider only
 ASCII NL (\n) to be a newline, but SQL would have
 us treat CR (\r), CRLF (\r\n)
 (a Windows-style newline), and some Unicode-only characters like
 LINE SEPARATOR (U+2028) as newlines as well.
 Notably, . and \s should
 count \r\n as one character not two according to
 SQL.

	
 Of the character-entry escapes described in
 Table 9.20, “Regular Expression Character-Entry Escapes”,
 XQuery supports only \n, \r,
 and \t.

	
 XQuery does not support
 the [:name:] syntax
 for character classes within bracket expressions.

	
 XQuery does not have lookahead or lookbehind constraints,
 nor any of the constraint escapes described in
 Table 9.22, “Regular Expression Constraint Escapes”.

	
 The metasyntax forms described in the section called “Regular Expression Metasyntax”
 do not exist in XQuery.

	
 The regular expression flag letters defined by XQuery are
 related to but not the same as the option letters for POSIX
 (Table 9.24, “ARE Embedded-Option Letters”). While the
 i and q options behave the
 same, others do not:

	
 XQuery's s (allow dot to match newline)
 and m (allow ^
 and $ to match at newlines) flags provide
 access to the same behaviors as
 POSIX's n, p
 and w flags, but they
 do not match the behavior of
 POSIX's s and m flags.
 Note in particular that dot-matches-newline is the default
 behavior in POSIX but not XQuery.

	
 XQuery's x (ignore whitespace in pattern) flag
 is noticeably different from POSIX's expanded-mode flag.
 POSIX's x flag also
 allows # to begin a comment in the pattern,
 and POSIX will not ignore a whitespace character after a
 backslash.

Data Type Formatting Functions

 The PostgreSQL™ formatting functions
 provide a powerful set of tools for converting various data types
 (date/time, integer, floating point, numeric) to formatted strings
 and for converting from formatted strings to specific data types.
 Table 9.26, “Formatting Functions” lists them.
 These functions all follow a common calling convention: the first
 argument is the value to be formatted and the second argument is a
 template that defines the output or input format.

Table 9.26. Formatting Functions
	
 Function

 Description

 Example(s)

	

 to_char (timestamp, text)
 text

 to_char (timestamp with time zone, text)
 text

 Converts time stamp to string according to the given format.

 to_char(timestamp '2002-04-20 17:31:12.66', 'HH12:MI:SS')
 05:31:12

	
 to_char (interval, text)
 text

 Converts interval to string according to the given format.

 to_char(interval '15h 2m 12s', 'HH24:MI:SS')
 15:02:12

	
 to_char (numeric_type, text)
 text

 Converts number to string according to the given format; available
 for integer, bigint, numeric,
 real, double precision.

 to_char(125, '999')
 125

 to_char(125.8::real, '999D9')
 125.8

 to_char(-125.8, '999D99S')
 125.80-

	

 to_date (text, text)
 date

 Converts string to date according to the given format.

 to_date('05 Dec 2000', 'DD Mon YYYY')
 2000-12-05

	

 to_number (text, text)
 numeric

 Converts string to numeric according to the given format.

 to_number('12,454.8-', '99G999D9S')
 -12454.8

	

 to_timestamp (text, text)
 timestamp with time zone

 Converts string to time stamp according to the given format.
 (See also to_timestamp(double precision) in
 Table 9.33, “Date/Time Functions”.)

 to_timestamp('05 Dec 2000', 'DD Mon YYYY')
 2000-12-05 00:00:00-05

Tip

 to_timestamp and to_date
 exist to handle input formats that cannot be converted by
 simple casting. For most standard date/time formats, simply casting the
 source string to the required data type works, and is much easier.
 Similarly, to_number is unnecessary for standard numeric
 representations.

 In a to_char output template string, there are certain
 patterns that are recognized and replaced with appropriately-formatted
 data based on the given value. Any text that is not a template pattern is
 simply copied verbatim. Similarly, in an input template string (for the
 other functions), template patterns identify the values to be supplied by
 the input data string. If there are characters in the template string
 that are not template patterns, the corresponding characters in the input
 data string are simply skipped over (whether or not they are equal to the
 template string characters).

 Table 9.27, “Template Patterns for Date/Time Formatting” shows the
 template patterns available for formatting date and time values.

Table 9.27. Template Patterns for Date/Time Formatting
	Pattern	Description
	HH	hour of day (01–12)
	HH12	hour of day (01–12)
	HH24	hour of day (00–23)
	MI	minute (00–59)
	SS	second (00–59)
	MS	millisecond (000–999)
	US	microsecond (000000–999999)
	FF1	tenth of second (0–9)
	FF2	hundredth of second (00–99)
	FF3	millisecond (000–999)
	FF4	tenth of a millisecond (0000–9999)
	FF5	hundredth of a millisecond (00000–99999)
	FF6	microsecond (000000–999999)
	SSSS, SSSSS	seconds past midnight (0–86399)
	AM, am,
 PM or pm	meridiem indicator (without periods)
	A.M., a.m.,
 P.M. or p.m.	meridiem indicator (with periods)
	Y,YYY	year (4 or more digits) with comma
	YYYY	year (4 or more digits)
	YYY	last 3 digits of year
	YY	last 2 digits of year
	Y	last digit of year
	IYYY	ISO 8601 week-numbering year (4 or more digits)
	IYY	last 3 digits of ISO 8601 week-numbering year
	IY	last 2 digits of ISO 8601 week-numbering year
	I	last digit of ISO 8601 week-numbering year
	BC, bc,
 AD or ad	era indicator (without periods)
	B.C., b.c.,
 A.D. or a.d.	era indicator (with periods)
	MONTH	full upper case month name (blank-padded to 9 chars)
	Month	full capitalized month name (blank-padded to 9 chars)
	month	full lower case month name (blank-padded to 9 chars)
	MON	abbreviated upper case month name (3 chars in English, localized lengths vary)
	Mon	abbreviated capitalized month name (3 chars in English, localized lengths vary)
	mon	abbreviated lower case month name (3 chars in English, localized lengths vary)
	MM	month number (01–12)
	DAY	full upper case day name (blank-padded to 9 chars)
	Day	full capitalized day name (blank-padded to 9 chars)
	day	full lower case day name (blank-padded to 9 chars)
	DY	abbreviated upper case day name (3 chars in English, localized lengths vary)
	Dy	abbreviated capitalized day name (3 chars in English, localized lengths vary)
	dy	abbreviated lower case day name (3 chars in English, localized lengths vary)
	DDD	day of year (001–366)
	IDDD	day of ISO 8601 week-numbering year (001–371; day 1 of the year is Monday of the first ISO week)
	DD	day of month (01–31)
	D	day of the week, Sunday (1) to Saturday (7)
	ID	ISO 8601 day of the week, Monday (1) to Sunday (7)
	W	week of month (1–5) (the first week starts on the first day of the month)
	WW	week number of year (1–53) (the first week starts on the first day of the year)
	IW	week number of ISO 8601 week-numbering year (01–53; the first Thursday of the year is in week 1)
	CC	century (2 digits) (the twenty-first century starts on 2001-01-01)
	J	Julian Date (integer days since November 24, 4714 BC at local
 midnight; see the section called “Julian Dates”)
	Q	quarter
	RM	month in upper case Roman numerals (I–XII; I=January)
	rm	month in lower case Roman numerals (i–xii; i=January)
	TZ	upper case time-zone abbreviation
 (only supported in to_char)
	tz	lower case time-zone abbreviation
 (only supported in to_char)
	TZH	time-zone hours
	TZM	time-zone minutes
	OF	time-zone offset from UTC
 (only supported in to_char)

 Modifiers can be applied to any template pattern to alter its
 behavior. For example, FMMonth
 is the Month pattern with the
 FM modifier.
 Table 9.28, “Template Pattern Modifiers for Date/Time Formatting” shows the
 modifier patterns for date/time formatting.

Table 9.28. Template Pattern Modifiers for Date/Time Formatting
	Modifier	Description	Example
	FM prefix	fill mode (suppress leading zeroes and padding blanks)	FMMonth
	TH suffix	upper case ordinal number suffix	DDTH, e.g., 12TH
	th suffix	lower case ordinal number suffix	DDth, e.g., 12th
	FX prefix	fixed format global option (see usage notes)	FX Month DD Day
	TM prefix	translation mode (use localized day and month names based on
 lc_time)	TMMonth
	SP suffix	spell mode (not implemented)	DDSP

 Usage notes for date/time formatting:

	
 FM suppresses leading zeroes and trailing blanks
 that would otherwise be added to make the output of a pattern be
 fixed-width. In PostgreSQL™,
 FM modifies only the next specification, while in
 Oracle FM affects all subsequent
 specifications, and repeated FM modifiers
 toggle fill mode on and off.

	
 TM suppresses trailing blanks whether or
 not FM is specified.

	
 to_timestamp and to_date
 ignore letter case in the input; so for
 example MON, Mon,
 and mon all accept the same strings. When using
 the TM modifier, case-folding is done according to
 the rules of the function's input collation (see
 the section called “Collation Support”).

	
 to_timestamp and to_date
 skip multiple blank spaces at the beginning of the input string and
 around date and time values unless the FX option is used. For example,
 to_timestamp(' 2000 JUN', 'YYYY MON') and
 to_timestamp('2000 - JUN', 'YYYY-MON') work, but
 to_timestamp('2000 JUN', 'FXYYYY MON') returns an error
 because to_timestamp expects only a single space.
 FX must be specified as the first item in
 the template.

	
 A separator (a space or non-letter/non-digit character) in the template string of
 to_timestamp and to_date
 matches any single separator in the input string or is skipped,
 unless the FX option is used.
 For example, to_timestamp('2000JUN', 'YYYY///MON') and
 to_timestamp('2000/JUN', 'YYYY MON') work, but
 to_timestamp('2000//JUN', 'YYYY/MON')
 returns an error because the number of separators in the input string
 exceeds the number of separators in the template.

 If FX is specified, a separator in the template string
 matches exactly one character in the input string. But note that the
 input string character is not required to be the same as the separator from the template string.
 For example, to_timestamp('2000/JUN', 'FXYYYY MON')
 works, but to_timestamp('2000/JUN', 'FXYYYY MON')
 returns an error because the second space in the template string consumes
 the letter J from the input string.

	
 A TZH template pattern can match a signed number.
 Without the FX option, minus signs may be ambiguous,
 and could be interpreted as a separator.
 This ambiguity is resolved as follows: If the number of separators before
 TZH in the template string is less than the number of
 separators before the minus sign in the input string, the minus sign
 is interpreted as part of TZH.
 Otherwise, the minus sign is considered to be a separator between values.
 For example, to_timestamp('2000 -10', 'YYYY TZH') matches
 -10 to TZH, but
 to_timestamp('2000 -10', 'YYYY TZH')
 matches 10 to TZH.

	
 Ordinary text is allowed in to_char
 templates and will be output literally. You can put a substring
 in double quotes to force it to be interpreted as literal text
 even if it contains template patterns. For example, in
 '"Hello Year "YYYY', the YYYY
 will be replaced by the year data, but the single Y in Year
 will not be.
 In to_date, to_number,
 and to_timestamp, literal text and double-quoted
 strings result in skipping the number of characters contained in the
 string; for example "XX" skips two input characters
 (whether or not they are XX).

Tip

 Prior to PostgreSQL™ 12, it was possible to
 skip arbitrary text in the input string using non-letter or non-digit
 characters. For example,
 to_timestamp('2000y6m1d', 'yyyy-MM-DD') used to
 work. Now you can only use letter characters for this purpose. For example,
 to_timestamp('2000y6m1d', 'yyyytMMtDDt') and
 to_timestamp('2000y6m1d', 'yyyy"y"MM"m"DD"d"')
 skip y, m, and
 d.

	
 If you want to have a double quote in the output you must
 precede it with a backslash, for example '\"YYYY
 Month\"'.
 Backslashes are not otherwise special outside of double-quoted
 strings. Within a double-quoted string, a backslash causes the
 next character to be taken literally, whatever it is (but this
 has no special effect unless the next character is a double quote
 or another backslash).

	
 In to_timestamp and to_date,
 if the year format specification is less than four digits, e.g.,
 YYY, and the supplied year is less than four digits,
 the year will be adjusted to be nearest to the year 2020, e.g.,
 95 becomes 1995.

	
 In to_timestamp and to_date,
 negative years are treated as signifying BC. If you write both a
 negative year and an explicit BC field, you get AD
 again. An input of year zero is treated as 1 BC.

	
 In to_timestamp and to_date,
 the YYYY conversion has a restriction when
 processing years with more than 4 digits. You must
 use some non-digit character or template after YYYY,
 otherwise the year is always interpreted as 4 digits. For example
 (with the year 20000):
 to_date('200001130', 'YYYYMMDD') will be
 interpreted as a 4-digit year; instead use a non-digit
 separator after the year, like
 to_date('20000-1130', 'YYYY-MMDD') or
 to_date('20000Nov30', 'YYYYMonDD').

	
 In to_timestamp and to_date,
 the CC (century) field is accepted but ignored
 if there is a YYY, YYYY or
 Y,YYY field. If CC is used with
 YY or Y then the result is
 computed as that year in the specified century. If the century is
 specified but the year is not, the first year of the century
 is assumed.

	
 In to_timestamp and to_date,
 weekday names or numbers (DAY, D,
 and related field types) are accepted but are ignored for purposes of
 computing the result. The same is true for quarter
 (Q) fields.

	
 In to_timestamp and to_date,
 an ISO 8601 week-numbering date (as distinct from a Gregorian date)
 can be specified in one of two ways:

	
 Year, week number, and weekday: for
 example to_date('2006-42-4', 'IYYY-IW-ID')
 returns the date 2006-10-19.
 If you omit the weekday it is assumed to be 1 (Monday).

	
 Year and day of year: for example to_date('2006-291',
 'IYYY-IDDD') also returns 2006-10-19.

 Attempting to enter a date using a mixture of ISO 8601 week-numbering
 fields and Gregorian date fields is nonsensical, and will cause an
 error. In the context of an ISO 8601 week-numbering year, the
 concept of a “month” or “day of month” has no
 meaning. In the context of a Gregorian year, the ISO week has no
 meaning.

Caution

 While to_date will reject a mixture of
 Gregorian and ISO week-numbering date
 fields, to_char will not, since output format
 specifications like YYYY-MM-DD (IYYY-IDDD) can be
 useful. But avoid writing something like IYYY-MM-DD;
 that would yield surprising results near the start of the year.
 (See the section called “EXTRACT, date_part” for more
 information.)

	
 In to_timestamp, millisecond
 (MS) or microsecond (US)
 fields are used as the
 seconds digits after the decimal point. For example
 to_timestamp('12.3', 'SS.MS') is not 3 milliseconds,
 but 300, because the conversion treats it as 12 + 0.3 seconds.
 So, for the format SS.MS, the input values
 12.3, 12.30,
 and 12.300 specify the
 same number of milliseconds. To get three milliseconds, one must write
 12.003, which the conversion treats as
 12 + 0.003 = 12.003 seconds.

 Here is a more
 complex example:
 to_timestamp('15:12:02.020.001230', 'HH24:MI:SS.MS.US')
 is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds +
 1230 microseconds = 2.021230 seconds.

	
 to_char(..., 'ID')'s day of the week numbering
 matches the extract(isodow from ...) function, but
 to_char(..., 'D')'s does not match
 extract(dow from ...)'s day numbering.

	
 to_char(interval) formats HH and
 HH12 as shown on a 12-hour clock, for example zero hours
 and 36 hours both output as 12, while HH24
 outputs the full hour value, which can exceed 23 in
 an interval value.

 Table 9.29, “Template Patterns for Numeric Formatting” shows the
 template patterns available for formatting numeric values.

Table 9.29. Template Patterns for Numeric Formatting
	Pattern	Description
	9	digit position (can be dropped if insignificant)
	0	digit position (will not be dropped, even if insignificant)
	. (period)	decimal point
	, (comma)	group (thousands) separator
	PR	negative value in angle brackets
	S	sign anchored to number (uses locale)
	L	currency symbol (uses locale)
	D	decimal point (uses locale)
	G	group separator (uses locale)
	MI	minus sign in specified position (if number < 0)
	PL	plus sign in specified position (if number > 0)
	SG	plus/minus sign in specified position
	RN	Roman numeral (input between 1 and 3999)
	TH or th	ordinal number suffix
	V	shift specified number of digits (see notes)
	EEEE	exponent for scientific notation

 Usage notes for numeric formatting:

	
 0 specifies a digit position that will always be printed,
 even if it contains a leading/trailing zero. 9 also
 specifies a digit position, but if it is a leading zero then it will
 be replaced by a space, while if it is a trailing zero and fill mode
 is specified then it will be deleted. (For to_number(),
 these two pattern characters are equivalent.)

	
 If the format provides fewer fractional digits than the number being
 formatted, to_char() will round the number to
 the specified number of fractional digits.

	
 The pattern characters S, L, D,
 and G represent the sign, currency symbol, decimal point,
 and thousands separator characters defined by the current locale
 (see lc_monetary
 and lc_numeric). The pattern characters period
 and comma represent those exact characters, with the meanings of
 decimal point and thousands separator, regardless of locale.

	
 If no explicit provision is made for a sign
 in to_char()'s pattern, one column will be reserved for
 the sign, and it will be anchored to (appear just left of) the
 number. If S appears just left of some 9's,
 it will likewise be anchored to the number.

	
 A sign formatted using SG, PL, or
 MI is not anchored to
 the number; for example,
 to_char(-12, 'MI9999') produces '- 12'
 but to_char(-12, 'S9999') produces ' -12'.
 (The Oracle implementation does not allow the use of
 MI before 9, but rather
 requires that 9 precede
 MI.)

	
 TH does not convert values less than zero
 and does not convert fractional numbers.

	
 PL, SG, and
 TH are PostgreSQL™
 extensions.

	
 In to_number, if non-data template patterns such
 as L or TH are used, the
 corresponding number of input characters are skipped, whether or not
 they match the template pattern, unless they are data characters
 (that is, digits, sign, decimal point, or comma). For
 example, TH would skip two non-data characters.

	
 V with to_char
 multiplies the input values by
 10^n, where
 n is the number of digits following
 V. V with
 to_number divides in a similar manner.
 to_char and to_number
 do not support the use of
 V combined with a decimal point
 (e.g., 99.9V99 is not allowed).

	
 EEEE (scientific notation) cannot be used in
 combination with any of the other formatting patterns or
 modifiers other than digit and decimal point patterns, and must be at the end of the format string
 (e.g., 9.99EEEE is a valid pattern).

 Certain modifiers can be applied to any template pattern to alter its
 behavior. For example, FM99.99
 is the 99.99 pattern with the
 FM modifier.
 Table 9.30, “Template Pattern Modifiers for Numeric Formatting” shows the
 modifier patterns for numeric formatting.

Table 9.30. Template Pattern Modifiers for Numeric Formatting
	Modifier	Description	Example
	FM prefix	fill mode (suppress trailing zeroes and padding blanks)	FM99.99
	TH suffix	upper case ordinal number suffix	999TH
	th suffix	lower case ordinal number suffix	999th

 Table 9.31, “to_char Examples” shows some
 examples of the use of the to_char function.

Table 9.31. to_char Examples
	Expression	Result
	to_char(current_timestamp, 'Day, DD HH12:MI:SS')	'Tuesday , 06 05:39:18'
	to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS')	'Tuesday, 6 05:39:18'
	to_char(-0.1, '99.99')	' -.10'
	to_char(-0.1, 'FM9.99')	'-.1'
	to_char(-0.1, 'FM90.99')	'-0.1'
	to_char(0.1, '0.9')	' 0.1'
	to_char(12, '9990999.9')	' 0012.0'
	to_char(12, 'FM9990999.9')	'0012.'
	to_char(485, '999')	' 485'
	to_char(-485, '999')	'-485'
	to_char(485, '9 9 9')	' 4 8 5'
	to_char(1485, '9,999')	' 1,485'
	to_char(1485, '9G999')	' 1 485'
	to_char(148.5, '999.999')	' 148.500'
	to_char(148.5, 'FM999.999')	'148.5'
	to_char(148.5, 'FM999.990')	'148.500'
	to_char(148.5, '999D999')	' 148,500'
	to_char(3148.5, '9G999D999')	' 3 148,500'
	to_char(-485, '999S')	'485-'
	to_char(-485, '999MI')	'485-'
	to_char(485, '999MI')	'485 '
	to_char(485, 'FM999MI')	'485'
	to_char(485, 'PL999')	'+485'
	to_char(485, 'SG999')	'+485'
	to_char(-485, 'SG999')	'-485'
	to_char(-485, '9SG99')	'4-85'
	to_char(-485, '999PR')	'<485>'
	to_char(485, 'L999')	'DM 485'
	to_char(485, 'RN')	' CDLXXXV'
	to_char(485, 'FMRN')	'CDLXXXV'
	to_char(5.2, 'FMRN')	'V'
	to_char(482, '999th')	' 482nd'
	to_char(485, '"Good number:"999')	'Good number: 485'
	to_char(485.8, '"Pre:"999" Post:" .999')	'Pre: 485 Post: .800'
	to_char(12, '99V999')	' 12000'
	to_char(12.4, '99V999')	' 12400'
	to_char(12.45, '99V9')	' 125'
	to_char(0.0004859, '9.99EEEE')	' 4.86e-04'

Date/Time Functions and Operators

 Table 9.33, “Date/Time Functions” shows the available
 functions for date/time value processing, with details appearing in
 the following subsections. Table 9.32, “Date/Time Operators” illustrates the behaviors of
 the basic arithmetic operators (+,
 *, etc.). For formatting functions, refer to
 the section called “Data Type Formatting Functions”. You should be familiar with
 the background information on date/time data types from the section called “Date/Time Types”.

 In addition, the usual comparison operators shown in
 Table 9.1, “Comparison Operators” are available for the
 date/time types. Dates and timestamps (with or without time zone) are
 all comparable, while times (with or without time zone) and intervals
 can only be compared to other values of the same data type. When
 comparing a timestamp without time zone to a timestamp with time zone,
 the former value is assumed to be given in the time zone specified by
 the TimeZone configuration parameter, and is
 rotated to UTC for comparison to the latter value (which is already
 in UTC internally). Similarly, a date value is assumed to represent
 midnight in the TimeZone zone when comparing it
 to a timestamp.

 All the functions and operators described below that take time or timestamp
 inputs actually come in two variants: one that takes time with time zone or timestamp
 with time zone, and one that takes time without time zone or timestamp without time zone.
 For brevity, these variants are not shown separately. Also, the
 + and * operators come in commutative pairs (for
 example both date + integer
 and integer + date); we show
 only one of each such pair.

Table 9.32. Date/Time Operators
	
 Operator

 Description

 Example(s)

	
 date + integer
 date

 Add a number of days to a date

 date '2001-09-28' + 7
 2001-10-05

	
 date + interval
 timestamp

 Add an interval to a date

 date '2001-09-28' + interval '1 hour'
 2001-09-28 01:00:00

	
 date + time
 timestamp

 Add a time-of-day to a date

 date '2001-09-28' + time '03:00'
 2001-09-28 03:00:00

	
 interval + interval
 interval

 Add intervals

 interval '1 day' + interval '1 hour'
 1 day 01:00:00

	
 timestamp + interval
 timestamp

 Add an interval to a timestamp

 timestamp '2001-09-28 01:00' + interval '23 hours'
 2001-09-29 00:00:00

	
 time + interval
 time

 Add an interval to a time

 time '01:00' + interval '3 hours'
 04:00:00

	
 - interval
 interval

 Negate an interval

 - interval '23 hours'
 -23:00:00

	
 date - date
 integer

 Subtract dates, producing the number of days elapsed

 date '2001-10-01' - date '2001-09-28'
 3

	
 date - integer
 date

 Subtract a number of days from a date

 date '2001-10-01' - 7
 2001-09-24

	
 date - interval
 timestamp

 Subtract an interval from a date

 date '2001-09-28' - interval '1 hour'
 2001-09-27 23:00:00

	
 time - time
 interval

 Subtract times

 time '05:00' - time '03:00'
 02:00:00

	
 time - interval
 time

 Subtract an interval from a time

 time '05:00' - interval '2 hours'
 03:00:00

	
 timestamp - interval
 timestamp

 Subtract an interval from a timestamp

 timestamp '2001-09-28 23:00' - interval '23 hours'
 2001-09-28 00:00:00

	
 interval - interval
 interval

 Subtract intervals

 interval '1 day' - interval '1 hour'
 1 day -01:00:00

	
 timestamp - timestamp
 interval

 Subtract timestamps (converting 24-hour intervals into days,
 similarly to justify_hours())

 timestamp '2001-09-29 03:00' - timestamp '2001-07-27 12:00'
 63 days 15:00:00

	
 interval * double precision
 interval

 Multiply an interval by a scalar

 interval '1 second' * 900
 00:15:00

 interval '1 day' * 21
 21 days

 interval '1 hour' * 3.5
 03:30:00

	
 interval / double precision
 interval

 Divide an interval by a scalar

 interval '1 hour' / 1.5
 00:40:00

Table 9.33. Date/Time Functions
	
 Function

 Description

 Example(s)

	

 age (timestamp, timestamp)
 interval

 Subtract arguments, producing a “symbolic” result that
 uses years and months, rather than just days

 age(timestamp '2001-04-10', timestamp '1957-06-13')
 43 years 9 mons 27 days

	
 age (timestamp)
 interval

 Subtract argument from current_date (at midnight)

 age(timestamp '1957-06-13')
 62 years 6 mons 10 days

	

 clock_timestamp ()
 timestamp with time zone

 Current date and time (changes during statement execution);
 see the section called “Current Date/Time”

 clock_timestamp()
 2019-12-23 14:39:53.662522-05

	

 current_date
 date

 Current date; see the section called “Current Date/Time”

 current_date
 2019-12-23

	

 current_time
 time with time zone

 Current time of day; see the section called “Current Date/Time”

 current_time
 14:39:53.662522-05

	
 current_time (integer)
 time with time zone

 Current time of day, with limited precision;
 see the section called “Current Date/Time”

 current_time(2)
 14:39:53.66-05

	

 current_timestamp
 timestamp with time zone

 Current date and time (start of current transaction);
 see the section called “Current Date/Time”

 current_timestamp
 2019-12-23 14:39:53.662522-05

	
 current_timestamp (integer)
 timestamp with time zone

 Current date and time (start of current transaction), with limited precision;
 see the section called “Current Date/Time”

 current_timestamp(0)
 2019-12-23 14:39:53-05

	

 date_add (timestamp with time zone, interval [, text])
 timestamp with time zone

 Add an interval to a timestamp with time
 zone, computing times of day and daylight-savings adjustments
 according to the time zone named by the third argument, or the
 current TimeZone setting if that is omitted.
 The form with two arguments is equivalent to the timestamp with
 time zone + interval operator.

 date_add('2021-10-31 00:00:00+02'::timestamptz, '1 day'::interval, 'Europe/Warsaw')
 2021-10-31 23:00:00+00

	
 date_bin (interval, timestamp, timestamp)
 timestamp

 Bin input into specified interval aligned with specified origin; see the section called “date_bin”

 date_bin('15 minutes', timestamp '2001-02-16 20:38:40', timestamp '2001-02-16 20:05:00')
 2001-02-16 20:35:00

	

 date_part (text, timestamp)
 double precision

 Get timestamp subfield (equivalent to extract);
 see the section called “EXTRACT, date_part”

 date_part('hour', timestamp '2001-02-16 20:38:40')
 20

	
 date_part (text, interval)
 double precision

 Get interval subfield (equivalent to extract);
 see the section called “EXTRACT, date_part”

 date_part('month', interval '2 years 3 months')
 3

	

 date_subtract (timestamp with time zone, interval [, text])
 timestamp with time zone

 Subtract an interval from a timestamp with time
 zone, computing times of day and daylight-savings adjustments
 according to the time zone named by the third argument, or the
 current TimeZone setting if that is omitted.
 The form with two arguments is equivalent to the timestamp with
 time zone - interval operator.

 date_subtract('2021-11-01 00:00:00+01'::timestamptz, '1 day'::interval, 'Europe/Warsaw')
 2021-10-30 22:00:00+00

	

 date_trunc (text, timestamp)
 timestamp

 Truncate to specified precision; see the section called “date_trunc”

 date_trunc('hour', timestamp '2001-02-16 20:38:40')
 2001-02-16 20:00:00

	
 date_trunc (text, timestamp with time zone, text)
 timestamp with time zone

 Truncate to specified precision in the specified time zone; see
 the section called “date_trunc”

 date_trunc('day', timestamptz '2001-02-16 20:38:40+00', 'Australia/Sydney')
 2001-02-16 13:00:00+00

	
 date_trunc (text, interval)
 interval

 Truncate to specified precision; see
 the section called “date_trunc”

 date_trunc('hour', interval '2 days 3 hours 40 minutes')
 2 days 03:00:00

	

 extract (field from timestamp)
 numeric

 Get timestamp subfield; see the section called “EXTRACT, date_part”

 extract(hour from timestamp '2001-02-16 20:38:40')
 20

	
 extract (field from interval)
 numeric

 Get interval subfield; see the section called “EXTRACT, date_part”

 extract(month from interval '2 years 3 months')
 3

	

 isfinite (date)
 boolean

 Test for finite date (not +/-infinity)

 isfinite(date '2001-02-16')
 true

	
 isfinite (timestamp)
 boolean

 Test for finite timestamp (not +/-infinity)

 isfinite(timestamp 'infinity')
 false

	
 isfinite (interval)
 boolean

 Test for finite interval (currently always true)

 isfinite(interval '4 hours')
 true

	

 justify_days (interval)
 interval

 Adjust interval, converting 30-day time periods to months

 justify_days(interval '1 year 65 days')
 1 year 2 mons 5 days

	

 justify_hours (interval)
 interval

 Adjust interval, converting 24-hour time periods to days

 justify_hours(interval '50 hours 10 minutes')
 2 days 02:10:00

	

 justify_interval (interval)
 interval

 Adjust interval using justify_days
 and justify_hours, with additional sign
 adjustments

 justify_interval(interval '1 mon -1 hour')
 29 days 23:00:00

	

 localtime
 time

 Current time of day;
 see the section called “Current Date/Time”

 localtime
 14:39:53.662522

	
 localtime (integer)
 time

 Current time of day, with limited precision;
 see the section called “Current Date/Time”

 localtime(0)
 14:39:53

	

 localtimestamp
 timestamp

 Current date and time (start of current transaction);
 see the section called “Current Date/Time”

 localtimestamp
 2019-12-23 14:39:53.662522

	
 localtimestamp (integer)
 timestamp

 Current date and time (start of current
 transaction), with limited precision;
 see the section called “Current Date/Time”

 localtimestamp(2)
 2019-12-23 14:39:53.66

	

 make_date (year int,
 month int,
 day int)
 date

 Create date from year, month and day fields
 (negative years signify BC)

 make_date(2013, 7, 15)
 2013-07-15

	
 make_interval ([years int
 [, months int
 [, weeks int
 [, days int
 [, hours int
 [, mins int
 [, secs double precision
]]]]]]])
 interval

 Create interval from years, months, weeks, days, hours, minutes and
 seconds fields, each of which can default to zero

 make_interval(days => 10)
 10 days

	

 make_time (hour int,
 min int,
 sec double precision)
 time

 Create time from hour, minute and seconds fields

 make_time(8, 15, 23.5)
 08:15:23.5

	

 make_timestamp (year int,
 month int,
 day int,
 hour int,
 min int,
 sec double precision)
 timestamp

 Create timestamp from year, month, day, hour, minute and seconds fields
 (negative years signify BC)

 make_timestamp(2013, 7, 15, 8, 15, 23.5)
 2013-07-15 08:15:23.5

	

 make_timestamptz (year int,
 month int,
 day int,
 hour int,
 min int,
 sec double precision
 [, timezone text])
 timestamp with time zone

 Create timestamp with time zone from year, month, day, hour, minute
 and seconds fields (negative years signify BC).
 If timezone is not
 specified, the current time zone is used; the examples assume the
 session time zone is Europe/London

 make_timestamptz(2013, 7, 15, 8, 15, 23.5)
 2013-07-15 08:15:23.5+01

 make_timestamptz(2013, 7, 15, 8, 15, 23.5, 'America/New_York')
 2013-07-15 13:15:23.5+01

	

 now ()
 timestamp with time zone

 Current date and time (start of current transaction);
 see the section called “Current Date/Time”

 now()
 2019-12-23 14:39:53.662522-05

	

 statement_timestamp ()
 timestamp with time zone

 Current date and time (start of current statement);
 see the section called “Current Date/Time”

 statement_timestamp()
 2019-12-23 14:39:53.662522-05

	

 timeofday ()
 text

 Current date and time
 (like clock_timestamp, but as a text string);
 see the section called “Current Date/Time”

 timeofday()
 Mon Dec 23 14:39:53.662522 2019 EST

	

 transaction_timestamp ()
 timestamp with time zone

 Current date and time (start of current transaction);
 see the section called “Current Date/Time”

 transaction_timestamp()
 2019-12-23 14:39:53.662522-05

	

 to_timestamp (double precision)
 timestamp with time zone

 Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to
 timestamp with time zone

 to_timestamp(1284352323)
 2010-09-13 04:32:03+00

 In addition to these functions, the SQL OVERLAPS operator is
 supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

 This expression yields true when two time periods (defined by their
 endpoints) overlap, false when they do not overlap. The endpoints
 can be specified as pairs of dates, times, or time stamps; or as
 a date, time, or time stamp followed by an interval. When a pair
 of values is provided, either the start or the end can be written
 first; OVERLAPS automatically takes the earlier value
 of the pair as the start. Each time period is considered to
 represent the half-open interval start <=
 time < end, unless
 start and end are equal in which case it
 represents that single time instant. This means for instance that two
 time periods with only an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: true

 When adding an interval value to (or subtracting an
 interval value from) a timestamp
 or timestamp with time zone value, the months, days, and
 microseconds fields of the interval value are handled in turn.
 First, a nonzero months field advances or decrements the date of the
 timestamp by the indicated number of months, keeping the day of month the
 same unless it would be past the end of the new month, in which case the
 last day of that month is used. (For example, March 31 plus 1 month
 becomes April 30, but March 31 plus 2 months becomes May 31.)
 Then the days field advances or decrements the date of the timestamp by
 the indicated number of days. In both these steps the local time of day
 is kept the same. Finally, if there is a nonzero microseconds field, it
 is added or subtracted literally.
 When doing arithmetic on a timestamp with time zone value in
 a time zone that recognizes DST, this means that adding or subtracting
 (say) interval '1 day' does not necessarily have the
 same result as adding or subtracting interval '24
 hours'.
 For example, with the session time zone set
 to America/Denver:

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day';
Result: 2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours';
Result: 2005-04-03 13:00:00-06

 This happens because an hour was skipped due to a change in daylight saving
 time at 2005-04-03 02:00:00 in time zone
 America/Denver.

 Note there can be ambiguity in the months field returned by
 age because different months have different numbers of
 days. PostgreSQL™'s approach uses the month from the
 earlier of the two dates when calculating partial months. For example,
 age('2004-06-01', '2004-04-30') uses April to yield
 1 mon 1 day, while using May would yield 1 mon 2
 days because May has 31 days, while April has only 30.

 Subtraction of dates and timestamps can also be complex. One conceptually
 simple way to perform subtraction is to convert each value to a number
 of seconds using EXTRACT(EPOCH FROM ...), then subtract the
 results; this produces the
 number of seconds between the two values. This will adjust
 for the number of days in each month, timezone changes, and daylight
 saving time adjustments. Subtraction of date or timestamp
 values with the “-” operator
 returns the number of days (24-hours) and hours/minutes/seconds
 between the values, making the same adjustments. The age
 function returns years, months, days, and hours/minutes/seconds,
 performing field-by-field subtraction and then adjusting for negative
 field values. The following queries illustrate the differences in these
 approaches. The sample results were produced with timezone
 = 'US/Eastern'; there is a daylight saving time change between the
 two dates used:

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200.000000
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
 / 60 / 60 / 24;
Result: 121.9583333333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00');
Result: 4 mons

EXTRACT, date_part

EXTRACT(field FROM source)

 The extract function retrieves subfields
 such as year or hour from date/time values.
 source must be a value expression of
 type timestamp, date, time,
 or interval. (Timestamps and times can be with or
 without time zone.)
 field is an identifier or
 string that selects what field to extract from the source value.
 Not all fields are valid for every input data type; for example, fields
 smaller than a day cannot be extracted from a date, while
 fields of a day or more cannot be extracted from a time.
 The extract function returns values of type
 numeric.

 The following are valid field names:

	century
	
 The century; for interval values, the year field
 divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21
SELECT EXTRACT(CENTURY FROM DATE '0001-01-01 AD');
Result: 1
SELECT EXTRACT(CENTURY FROM DATE '0001-12-31 BC');
Result: -1
SELECT EXTRACT(CENTURY FROM INTERVAL '2001 years');
Result: 20

	day
	
 The day of the month (1–31); for interval
 values, the number of days

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40

	decade
	
 The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

	dow
	
 The day of the week as Sunday (0) to
 Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

 Note that extract's day of the week numbering
 differs from that of the to_char(...,
 'D') function.

	doy
	
 The day of the year (1–365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

	epoch
	
 For timestamp with time zone values, the
 number of seconds since 1970-01-01 00:00:00 UTC (negative for
 timestamps before that);
 for date and timestamp values, the
 nominal number of seconds since 1970-01-01 00:00:00,
 without regard to timezone or daylight-savings rules;
 for interval values, the total number
 of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
Result: 982384720.120000
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12');
Result: 982355920.120000
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800.000000

 You can convert an epoch value back to a timestamp with time zone
 with to_timestamp:

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00

 Beware that applying to_timestamp to an epoch
 extracted from a date or timestamp value
 could produce a misleading result: the result will effectively
 assume that the original value had been given in UTC, which might
 not be the case.

	hour
	
 The hour field (0–23 in timestamps, unrestricted in
 intervals)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

	isodow
	
 The day of the week as Monday (1) to
 Sunday (7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7

 This is identical to dow except for Sunday. This
 matches the ISO 8601 day of the week numbering.

	isoyear
	
 The ISO 8601 week-numbering year that the date
 falls in

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

 Each ISO 8601 week-numbering year begins with the
 Monday of the week containing the 4th of January, so in early
 January or late December the ISO year may be
 different from the Gregorian year. See the week
 field for more information.

	julian
	
 The Julian Date corresponding to the
 date or timestamp. Timestamps
 that are not local midnight result in a fractional value. See
 the section called “Julian Dates” for more information.

SELECT EXTRACT(JULIAN FROM DATE '2006-01-01');
Result: 2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00');
Result: 2453737.50000000000000000000

	microseconds
	
 The seconds field, including fractional parts, multiplied by 1
 000 000; note that this includes full seconds

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

	millennium
	
 The millennium; for interval values, the year field
 divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
SELECT EXTRACT(MILLENNIUM FROM INTERVAL '2001 years');
Result: 2

 Years in the 1900s are in the second millennium.
 The third millennium started January 1, 2001.

	milliseconds
	
 The seconds field, including fractional parts, multiplied by
 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500.000

	minute
	
 The minutes field (0–59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

	month
	
 The number of the month within the year (1–12);
 for interval values, the number of months modulo 12
 (0–11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

	quarter
	
 The quarter of the year (1–4) that the date is in

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1

	second
	
 The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.500000

	timezone
	
 The time zone offset from UTC, measured in seconds. Positive values
 correspond to time zones east of UTC, negative values to
 zones west of UTC. (Technically,
 PostgreSQL™ does not use UTC because
 leap seconds are not handled.)

	timezone_hour
	
 The hour component of the time zone offset

	timezone_minute
	
 The minute component of the time zone offset

	week
	
 The number of the ISO 8601 week-numbering week of
 the year. By definition, ISO weeks start on Mondays and the first
 week of a year contains January 4 of that year. In other words, the
 first Thursday of a year is in week 1 of that year.

 In the ISO week-numbering system, it is possible for early-January
 dates to be part of the 52nd or 53rd week of the previous year, and for
 late-December dates to be part of the first week of the next year.
 For example, 2005-01-01 is part of the 53rd week of year
 2004, and 2006-01-01 is part of the 52nd week of year
 2005, while 2012-12-31 is part of the first week of 2013.
 It's recommended to use the isoyear field together with
 week to get consistent results.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

	year
	
 The year field. Keep in mind there is no 0 AD, so subtracting
 BC years from AD years should be done with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

 When processing an interval value,
 the extract function produces field values that
 match the interpretation used by the interval output function. This
 can produce surprising results if one starts with a non-normalized
 interval representation, for example:

SELECT INTERVAL '80 minutes';
Result: 01:20:00
SELECT EXTRACT(MINUTES FROM INTERVAL '80 minutes');
Result: 20

Note

 When the input value is +/-Infinity, extract returns
 +/-Infinity for monotonically-increasing fields (epoch,
 julian, year, isoyear,
 decade, century, and millennium).
 For other fields, NULL is returned. PostgreSQL™
 versions before 9.6 returned zero for all cases of infinite input.

 The extract function is primarily intended
 for computational processing. For formatting date/time values for
 display, see the section called “Data Type Formatting Functions”.

 The date_part function is modeled on the traditional
 Ingres™ equivalent to the
 SQL-standard function extract:

date_part('field', source)

 Note that here the field parameter needs to
 be a string value, not a name. The valid field names for
 date_part are the same as for
 extract.
 For historical reasons, the date_part function
 returns values of type double precision. This can result in
 a loss of precision in certain uses. Using extract
 is recommended instead.

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4

date_trunc

 The function date_trunc is conceptually
 similar to the trunc function for numbers.

date_trunc(field, source [, time_zone])

 source is a value expression of type
 timestamp, timestamp with time zone,
 or interval.
 (Values of type date and
 time are cast automatically to timestamp or
 interval, respectively.)
 field selects to which precision to
 truncate the input value. The return value is likewise of type
 timestamp, timestamp with time zone,
 or interval,
 and it has all fields that are less significant than the
 selected one set to zero (or one, for day and month).

 Valid values for field are:

	microseconds
	milliseconds
	second
	minute
	hour
	day
	week
	month
	quarter
	year
	decade
	century
	millennium

 When the input value is of type timestamp with time zone,
 the truncation is performed with respect to a particular time zone;
 for example, truncation to day produces a value that
 is midnight in that zone. By default, truncation is done with respect
 to the current TimeZone setting, but the
 optional time_zone argument can be provided
 to specify a different time zone. The time zone name can be specified
 in any of the ways described in the section called “Time Zones”.

 A time zone cannot be specified when processing timestamp without
 time zone or interval inputs. These are always
 taken at face value.

 Examples (assuming the local time zone is America/New_York):

SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00
SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00');
Result: 2001-02-16 00:00:00-05
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/Sydney');
Result: 2001-02-16 08:00:00-05
SELECT date_trunc('hour', INTERVAL '3 days 02:47:33');
Result: 3 days 02:00:00

date_bin

 The function date_bin “bins” the input
 timestamp into the specified interval (the stride)
 aligned with a specified origin.

date_bin(stride, source, origin)

 source is a value expression of type
 timestamp or timestamp with time zone. (Values
 of type date are cast automatically to
 timestamp.) stride is a value
 expression of type interval. The return value is likewise
 of type timestamp or timestamp with time zone,
 and it marks the beginning of the bin into which the
 source is placed.

 Examples:

SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01');
Result: 2020-02-11 15:30:00
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01 00:02:30');
Result: 2020-02-11 15:32:30

 In the case of full units (1 minute, 1 hour, etc.), it gives the same result as
 the analogous date_trunc call, but the difference is
 that date_bin can truncate to an arbitrary interval.

 The stride interval must be greater than zero and
 cannot contain units of month or larger.

AT TIME ZONE

 The AT TIME ZONE operator converts time
 stamp without time zone to/from
 time stamp with time zone, and
 time with time zone values to different time
 zones. Table 9.34, “AT TIME ZONE Variants” shows its
 variants.

Table 9.34. AT TIME ZONE Variants
	
 Operator

 Description

 Example(s)

	
 timestamp without time zone AT TIME ZONE zone
 timestamp with time zone

 Converts given time stamp without time zone to
 time stamp with time zone, assuming the given
 value is in the named time zone.

 timestamp '2001-02-16 20:38:40' at time zone 'America/Denver'
 2001-02-17 03:38:40+00

	
 timestamp with time zone AT TIME ZONE zone
 timestamp without time zone

 Converts given time stamp with time zone to
 time stamp without time zone, as the time would
 appear in that zone.

 timestamp with time zone '2001-02-16 20:38:40-05' at time zone 'America/Denver'
 2001-02-16 18:38:40

	
 time with time zone AT TIME ZONE zone
 time with time zone

 Converts given time with time zone to a new time
 zone. Since no date is supplied, this uses the currently active UTC
 offset for the named destination zone.

 time with time zone '05:34:17-05' at time zone 'UTC'
 10:34:17+00

 In these expressions, the desired time zone zone can be
 specified either as a text value (e.g., 'America/Los_Angeles')
 or as an interval (e.g., INTERVAL '-08:00').
 In the text case, a time zone name can be specified in any of the ways
 described in the section called “Time Zones”.
 The interval case is only useful for zones that have fixed offsets from
 UTC, so it is not very common in practice.

 Examples (assuming the current TimeZone setting
 is America/Los_Angeles):

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 18:38:40
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/Chicago';
Result: 2001-02-16 05:38:40

 The first example adds a time zone to a value that lacks it, and
 displays the value using the current TimeZone
 setting. The second example shifts the time stamp with time zone value
 to the specified time zone, and returns the value without a time zone.
 This allows storage and display of values different from the current
 TimeZone setting. The third example converts
 Tokyo time to Chicago time.

 The function timezone(zone,
 timestamp) is equivalent to the SQL-conforming construct
 timestamp AT TIME ZONE
 zone.

Current Date/Time

 PostgreSQL™ provides a number of functions
 that return values related to the current date and time. These
 SQL-standard functions all return values based on the start time of
 the current transaction:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

 CURRENT_TIME and
 CURRENT_TIMESTAMP deliver values with time zone;
 LOCALTIME and
 LOCALTIMESTAMP deliver values without time zone.

 CURRENT_TIME,
 CURRENT_TIMESTAMP,
 LOCALTIME, and
 LOCALTIMESTAMP
 can optionally take
 a precision parameter, which causes the result to be rounded
 to that many fractional digits in the seconds field. Without a precision parameter,
 the result is given to the full available precision.

 Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05
SELECT CURRENT_DATE;
Result: 2019-12-23
SELECT CURRENT_TIMESTAMP;
Result: 2019-12-23 14:39:53.662522-05
SELECT CURRENT_TIMESTAMP(2);
Result: 2019-12-23 14:39:53.66-05
SELECT LOCALTIMESTAMP;
Result: 2019-12-23 14:39:53.662522

 Since these functions return
 the start time of the current transaction, their values do not
 change during the transaction. This is considered a feature:
 the intent is to allow a single transaction to have a consistent
 notion of the “current” time, so that multiple
 modifications within the same transaction bear the same
 time stamp.

Note

 Other database systems might advance these values more
 frequently.

 PostgreSQL™ also provides functions that
 return the start time of the current statement, as well as the actual
 current time at the instant the function is called. The complete list
 of non-SQL-standard time functions is:

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

 transaction_timestamp() is equivalent to
 CURRENT_TIMESTAMP, but is named to clearly reflect
 what it returns.
 statement_timestamp() returns the start time of the current
 statement (more specifically, the time of receipt of the latest command
 message from the client).
 statement_timestamp() and transaction_timestamp()
 return the same value during the first statement of a transaction, but might
 differ during subsequent statements.
 clock_timestamp() returns the actual current time, and
 therefore its value changes even within a single SQL statement.
 timeofday() is a historical
 PostgreSQL™ function. Like
 clock_timestamp(), it returns the actual current time,
 but as a formatted text string rather than a timestamp
 with time zone value.
 now() is a traditional PostgreSQL™
 equivalent to transaction_timestamp().

 All the date/time data types also accept the special literal value
 now to specify the current date and time (again,
 interpreted as the transaction start time). Thus,
 the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now'; -- but see tip below

Tip

 Do not use the third form when specifying a value to be evaluated later,
 for example in a DEFAULT clause for a table column.
 The system will convert now
 to a timestamp as soon as the constant is parsed, so that when
 the default value is needed,
 the time of the table creation would be used! The first two
 forms will not be evaluated until the default value is used,
 because they are function calls. Thus they will give the desired
 behavior of defaulting to the time of row insertion.
 (See also the section called “Special Values”.)

Delaying Execution

 The following functions are available to delay execution of the server
 process:

pg_sleep (double precision)
pg_sleep_for (interval)
pg_sleep_until (timestamp with time zone)

 pg_sleep makes the current session's process
 sleep until the given number of seconds have
 elapsed. Fractional-second delays can be specified.
 pg_sleep_for is a convenience function to
 allow the sleep time to be specified as an interval.
 pg_sleep_until is a convenience function for when
 a specific wake-up time is desired.
 For example:

SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Note

 The effective resolution of the sleep interval is platform-specific;
 0.01 seconds is a common value. The sleep delay will be at least as long
 as specified. It might be longer depending on factors such as server load.
 In particular, pg_sleep_until is not guaranteed to
 wake up exactly at the specified time, but it will not wake up any earlier.

Warning

 Make sure that your session does not hold more locks than necessary
 when calling pg_sleep or its variants. Otherwise
 other sessions might have to wait for your sleeping process, slowing down
 the entire system.

Enum Support Functions

 For enum types (described in the section called “Enumerated Types”),
 there are several functions that allow cleaner programming without
 hard-coding particular values of an enum type.
 These are listed in Table 9.35, “Enum Support Functions”. The examples
 assume an enum type created as:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');

Table 9.35. Enum Support Functions
	
 Function

 Description

 Example(s)

	

 enum_first (anyenum)
 anyenum

 Returns the first value of the input enum type.

 enum_first(null::rainbow)
 red

	

 enum_last (anyenum)
 anyenum

 Returns the last value of the input enum type.

 enum_last(null::rainbow)
 purple

	

 enum_range (anyenum)
 anyarray

 Returns all values of the input enum type in an ordered array.

 enum_range(null::rainbow)
 {red,orange,yellow,​green,blue,purple}

	
 enum_range (anyenum, anyenum)
 anyarray

 Returns the range between the two given enum values, as an ordered
 array. The values must be from the same enum type. If the first
 parameter is null, the result will start with the first value of
 the enum type.
 If the second parameter is null, the result will end with the last
 value of the enum type.

 enum_range('orange'::rainbow, 'green'::rainbow)
 {orange,yellow,green}

 enum_range(NULL, 'green'::rainbow)
 {red,orange,​yellow,green}

 enum_range('orange'::rainbow, NULL)
 {orange,yellow,green,​blue,purple}

 Notice that except for the two-argument form of enum_range,
 these functions disregard the specific value passed to them; they care
 only about its declared data type. Either null or a specific value of
 the type can be passed, with the same result. It is more common to
 apply these functions to a table column or function argument than to
 a hardwired type name as used in the examples.

Geometric Functions and Operators

 The geometric types point, box,
 lseg, line, path,
 polygon, and circle have a large set of
 native support functions and operators, shown in Table 9.36, “Geometric Operators”, Table 9.37, “Geometric Functions”, and Table 9.38, “Geometric Type Conversion Functions”.

Table 9.36. Geometric Operators
	
 Operator

 Description

 Example(s)

	
 geometric_type + point
 geometric_type

 Adds the coordinates of the second point to those of each
 point of the first argument, thus performing translation.
 Available for point, box, path,
 circle.

 box '(1,1),(0,0)' + point '(2,0)'
 (3,1),(2,0)

	
 path + path
 path

 Concatenates two open paths (returns NULL if either path is closed).

 path '[(0,0),(1,1)]' + path '[(2,2),(3,3),(4,4)]'
 [(0,0),(1,1),(2,2),(3,3),(4,4)]

	
 geometric_type - point
 geometric_type

 Subtracts the coordinates of the second point from those
 of each point of the first argument, thus performing translation.
 Available for point, box, path,
 circle.

 box '(1,1),(0,0)' - point '(2,0)'
 (-1,1),(-2,0)

	
 geometric_type * point
 geometric_type

 Multiplies each point of the first argument by the second
 point (treating a point as being a complex number
 represented by real and imaginary parts, and performing standard
 complex multiplication). If one interprets
 the second point as a vector, this is equivalent to
 scaling the object's size and distance from the origin by the length
 of the vector, and rotating it counterclockwise around the origin by
 the vector's angle from the x axis.
 Available for point, box,[a]
 path, circle.

 path '((0,0),(1,0),(1,1))' * point '(3.0,0)'
 ((0,0),(3,0),(3,3))

 path '((0,0),(1,0),(1,1))' * point(cosd(45), sind(45))
 ((0,0),​(0.7071067811865475,0.7071067811865475),​(0,1.414213562373095))

	
 geometric_type / point
 geometric_type

 Divides each point of the first argument by the second
 point (treating a point as being a complex number
 represented by real and imaginary parts, and performing standard
 complex division). If one interprets
 the second point as a vector, this is equivalent to
 scaling the object's size and distance from the origin down by the
 length of the vector, and rotating it clockwise around the origin by
 the vector's angle from the x axis.
 Available for point, box,[a] path,
 circle.

 path '((0,0),(1,0),(1,1))' / point '(2.0,0)'
 ((0,0),(0.5,0),(0.5,0.5))

 path '((0,0),(1,0),(1,1))' / point(cosd(45), sind(45))
 ((0,0),​(0.7071067811865476,-0.7071067811865476),​(1.4142135623730951,0))

	
 @-@ geometric_type
 double precision

 Computes the total length.
 Available for lseg, path.

 @-@ path '[(0,0),(1,0),(1,1)]'
 2

	
 @@ geometric_type
 point

 Computes the center point.
 Available for box, lseg,
 polygon, circle.

 @@ box '(2,2),(0,0)'
 (1,1)

	
 # geometric_type
 integer

 Returns the number of points.
 Available for path, polygon.

 # path '((1,0),(0,1),(-1,0))'
 3

	
 geometric_type # geometric_type
 point

 Computes the point of intersection, or NULL if there is none.
 Available for lseg, line.

 lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]'
 (0.5,0.5)

	
 box # box
 box

 Computes the intersection of two boxes, or NULL if there is none.

 box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)'
 (1,1),(-1,-1)

	
 geometric_type ## geometric_type
 point

 Computes the closest point to the first object on the second object.
 Available for these pairs of types:
 (point, box),
 (point, lseg),
 (point, line),
 (lseg, box),
 (lseg, lseg),
 (line, lseg).

 point '(0,0)' ## lseg '[(2,0),(0,2)]'
 (1,1)

	
 geometric_type <-> geometric_type
 double precision

 Computes the distance between the objects.
 Available for all seven geometric types, for all combinations
 of point with another geometric type, and for
 these additional pairs of types:
 (box, lseg),
 (lseg, line),
 (polygon, circle)
 (and the commutator cases).

 circle '<(0,0),1>' <-> circle '<(5,0),1>'
 3

	
 geometric_type @> geometric_type
 boolean

 Does first object contain second?
 Available for these pairs of types:
 (box, point),
 (box, box),
 (path, point),
 (polygon, point),
 (polygon, polygon),
 (circle, point),
 (circle, circle).

 circle '<(0,0),2>' @> point '(1,1)'
 t

	
 geometric_type <@ geometric_type
 boolean

 Is first object contained in or on second?
 Available for these pairs of types:
 (point, box),
 (point, lseg),
 (point, line),
 (point, path),
 (point, polygon),
 (point, circle),
 (box, box),
 (lseg, box),
 (lseg, line),
 (polygon, polygon),
 (circle, circle).

 point '(1,1)' <@ circle '<(0,0),2>'
 t

	
 geometric_type && geometric_type
 boolean

 Do these objects overlap? (One point in common makes this true.)
 Available for box, polygon,
 circle.

 box '(1,1),(0,0)' && box '(2,2),(0,0)'
 t

	
 geometric_type << geometric_type
 boolean

 Is first object strictly left of second?
 Available for point, box,
 polygon, circle.

 circle '<(0,0),1>' << circle '<(5,0),1>'
 t

	
 geometric_type >> geometric_type
 boolean

 Is first object strictly right of second?
 Available for point, box,
 polygon, circle.

 circle '<(5,0),1>' >> circle '<(0,0),1>'
 t

	
 geometric_type &< geometric_type
 boolean

 Does first object not extend to the right of second?
 Available for box, polygon,
 circle.

 box '(1,1),(0,0)' &< box '(2,2),(0,0)'
 t

	
 geometric_type &> geometric_type
 boolean

 Does first object not extend to the left of second?
 Available for box, polygon,
 circle.

 box '(3,3),(0,0)' &> box '(2,2),(0,0)'
 t

	
 geometric_type <<| geometric_type
 boolean

 Is first object strictly below second?
 Available for point, box, polygon,
 circle.

 box '(3,3),(0,0)' <<| box '(5,5),(3,4)'
 t

	
 geometric_type |>> geometric_type
 boolean

 Is first object strictly above second?
 Available for point, box, polygon,
 circle.

 box '(5,5),(3,4)' |>> box '(3,3),(0,0)'
 t

	
 geometric_type &<| geometric_type
 boolean

 Does first object not extend above second?
 Available for box, polygon,
 circle.

 box '(1,1),(0,0)' &<| box '(2,2),(0,0)'
 t

	
 geometric_type |&> geometric_type
 boolean

 Does first object not extend below second?
 Available for box, polygon,
 circle.

 box '(3,3),(0,0)' |&> box '(2,2),(0,0)'
 t

	
 box <^ box
 boolean

 Is first object below second (allows edges to touch)?

 box '((1,1),(0,0))' <^ box '((2,2),(1,1))'
 t

	
 box >^ box
 boolean

 Is first object above second (allows edges to touch)?

 box '((2,2),(1,1))' >^ box '((1,1),(0,0))'
 t

	
 geometric_type ?# geometric_type
 boolean

 Do these objects intersect?
 Available for these pairs of types:
 (box, box),
 (lseg, box),
 (lseg, lseg),
 (lseg, line),
 (line, box),
 (line, line),
 (path, path).

 lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)'
 t

	
 ?- line
 boolean

 ?- lseg
 boolean

 Is line horizontal?

 ?- lseg '[(-1,0),(1,0)]'
 t

	
 point ?- point
 boolean

 Are points horizontally aligned (that is, have same y coordinate)?

 point '(1,0)' ?- point '(0,0)'
 t

	
 ?| line
 boolean

 ?| lseg
 boolean

 Is line vertical?

 ?| lseg '[(-1,0),(1,0)]'
 f

	
 point ?| point
 boolean

 Are points vertically aligned (that is, have same x coordinate)?

 point '(0,1)' ?| point '(0,0)'
 t

	
 line ?-| line
 boolean

 lseg ?-| lseg
 boolean

 Are lines perpendicular?

 lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]'
 t

	
 line ?|| line
 boolean

 lseg ?|| lseg
 boolean

 Are lines parallel?

 lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]'
 t

	
 geometric_type ~= geometric_type
 boolean

 Are these objects the same?
 Available for point, box,
 polygon, circle.

 polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))'
 t

	[a] “Rotating” a
 box with these operators only moves its corner points: the box is
 still considered to have sides parallel to the axes. Hence the box's
 size is not preserved, as a true rotation would do.

Caution

 Note that the “same as” operator, ~=,
 represents the usual notion of equality for the point,
 box, polygon, and circle types.
 Some of the geometric types also have an = operator, but
 = compares for equal areas only.
 The other scalar comparison operators (<= and so
 on), where available for these types, likewise compare areas.

Note

 Before PostgreSQL™ 14, the point
 is strictly below/above comparison operators point
 <<| point and point
 |>> point were respectively
 called <^ and >^. These
 names are still available, but are deprecated and will eventually be
 removed.

Table 9.37. Geometric Functions
	
 Function

 Description

 Example(s)

	

 area (geometric_type)
 double precision

 Computes area.
 Available for box, path, circle.
 A path input must be closed, else NULL is returned.
 Also, if the path is self-intersecting, the result may be
 meaningless.

 area(box '(2,2),(0,0)')
 4

	

 center (geometric_type)
 point

 Computes center point.
 Available for box, circle.

 center(box '(1,2),(0,0)')
 (0.5,1)

	

 diagonal (box)
 lseg

 Extracts box's diagonal as a line segment
 (same as lseg(box)).

 diagonal(box '(1,2),(0,0)')
 [(1,2),(0,0)]

	

 diameter (circle)
 double precision

 Computes diameter of circle.

 diameter(circle '<(0,0),2>')
 4

	

 height (box)
 double precision

 Computes vertical size of box.

 height(box '(1,2),(0,0)')
 2

	

 isclosed (path)
 boolean

 Is path closed?

 isclosed(path '((0,0),(1,1),(2,0))')
 t

	

 isopen (path)
 boolean

 Is path open?

 isopen(path '[(0,0),(1,1),(2,0)]')
 t

	

 length (geometric_type)
 double precision

 Computes the total length.
 Available for lseg, path.

 length(path '((-1,0),(1,0))')
 4

	

 npoints (geometric_type)
 integer

 Returns the number of points.
 Available for path, polygon.

 npoints(path '[(0,0),(1,1),(2,0)]')
 3

	

 pclose (path)
 path

 Converts path to closed form.

 pclose(path '[(0,0),(1,1),(2,0)]')
 ((0,0),(1,1),(2,0))

	

 popen (path)
 path

 Converts path to open form.

 popen(path '((0,0),(1,1),(2,0))')
 [(0,0),(1,1),(2,0)]

	

 radius (circle)
 double precision

 Computes radius of circle.

 radius(circle '<(0,0),2>')
 2

	

 slope (point, point)
 double precision

 Computes slope of a line drawn through the two points.

 slope(point '(0,0)', point '(2,1)')
 0.5

	

 width (box)
 double precision

 Computes horizontal size of box.

 width(box '(1,2),(0,0)')
 1

Table 9.38. Geometric Type Conversion Functions
	
 Function

 Description

 Example(s)

	

 box (circle)
 box

 Computes box inscribed within the circle.

 box(circle '<(0,0),2>')
 (1.414213562373095,1.414213562373095),​(-1.414213562373095,-1.414213562373095)

	
 box (point)
 box

 Converts point to empty box.

 box(point '(1,0)')
 (1,0),(1,0)

	
 box (point, point)
 box

 Converts any two corner points to box.

 box(point '(0,1)', point '(1,0)')
 (1,1),(0,0)

	
 box (polygon)
 box

 Computes bounding box of polygon.

 box(polygon '((0,0),(1,1),(2,0))')
 (2,1),(0,0)

	

 bound_box (box, box)
 box

 Computes bounding box of two boxes.

 bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)')
 (4,4),(0,0)

	

 circle (box)
 circle

 Computes smallest circle enclosing box.

 circle(box '(1,1),(0,0)')
 <(0.5,0.5),0.7071067811865476>

	
 circle (point, double precision)
 circle

 Constructs circle from center and radius.

 circle(point '(0,0)', 2.0)
 <(0,0),2>

	
 circle (polygon)
 circle

 Converts polygon to circle. The circle's center is the mean of the
 positions of the polygon's points, and the radius is the average
 distance of the polygon's points from that center.

 circle(polygon '((0,0),(1,3),(2,0))')
 <(1,1),1.6094757082487299>

	

 line (point, point)
 line

 Converts two points to the line through them.

 line(point '(-1,0)', point '(1,0)')
 {0,-1,0}

	

 lseg (box)
 lseg

 Extracts box's diagonal as a line segment.

 lseg(box '(1,0),(-1,0)')
 [(1,0),(-1,0)]

	
 lseg (point, point)
 lseg

 Constructs line segment from two endpoints.

 lseg(point '(-1,0)', point '(1,0)')
 [(-1,0),(1,0)]

	

 path (polygon)
 path

 Converts polygon to a closed path with the same list of points.

 path(polygon '((0,0),(1,1),(2,0))')
 ((0,0),(1,1),(2,0))

	

 point (double precision, double precision)
 point

 Constructs point from its coordinates.

 point(23.4, -44.5)
 (23.4,-44.5)

	
 point (box)
 point

 Computes center of box.

 point(box '(1,0),(-1,0)')
 (0,0)

	
 point (circle)
 point

 Computes center of circle.

 point(circle '<(0,0),2>')
 (0,0)

	
 point (lseg)
 point

 Computes center of line segment.

 point(lseg '[(-1,0),(1,0)]')
 (0,0)

	
 point (polygon)
 point

 Computes center of polygon (the mean of the
 positions of the polygon's points).

 point(polygon '((0,0),(1,1),(2,0))')
 (1,0.3333333333333333)

	

 polygon (box)
 polygon

 Converts box to a 4-point polygon.

 polygon(box '(1,1),(0,0)')
 ((0,0),(0,1),(1,1),(1,0))

	
 polygon (circle)
 polygon

 Converts circle to a 12-point polygon.

 polygon(circle '<(0,0),2>')
 ((-2,0),​(-1.7320508075688774,0.9999999999999999),​(-1.0000000000000002,1.7320508075688772),​(-1.2246063538223773e-16,2),​(0.9999999999999996,1.7320508075688774),​(1.732050807568877,1.0000000000000007),​(2,2.4492127076447545e-16),​(1.7320508075688776,-0.9999999999999994),​(1.0000000000000009,-1.7320508075688767),​(3.673819061467132e-16,-2),​(-0.9999999999999987,-1.732050807568878),​(-1.7320508075688767,-1.0000000000000009))

	
 polygon (integer, circle)
 polygon

 Converts circle to an n-point polygon.

 polygon(4, circle '<(3,0),1>')
 ((2,0),​(3,1),​(4,1.2246063538223773e-16),​(3,-1))

	
 polygon (path)
 polygon

 Converts closed path to a polygon with the same list of points.

 polygon(path '((0,0),(1,1),(2,0))')
 ((0,0),(1,1),(2,0))

 It is possible to access the two component numbers of a point
 as though the point were an array with indexes 0 and 1. For example, if
 t.p is a point column then
 SELECT p[0] FROM t retrieves the X coordinate and
 UPDATE t SET p[1] = ... changes the Y coordinate.
 In the same way, a value of type box or lseg can be treated
 as an array of two point values.

Network Address Functions and Operators

 The IP network address types, cidr and inet,
 support the usual comparison operators shown in
 Table 9.1, “Comparison Operators”
 as well as the specialized operators and functions shown in
 Table 9.39, “IP Address Operators” and
 Table 9.40, “IP Address Functions”.

 Any cidr value can be cast to inet implicitly;
 therefore, the operators and functions shown below as operating on
 inet also work on cidr values. (Where there are
 separate functions for inet and cidr, it is
 because the behavior should be different for the two cases.)
 Also, it is permitted to cast an inet value
 to cidr. When this is done, any bits to the right of the
 netmask are silently zeroed to create a valid cidr value.

Table 9.39. IP Address Operators
	
 Operator

 Description

 Example(s)

	
 inet << inet
 boolean

 Is subnet strictly contained by subnet?
 This operator, and the next four, test for subnet inclusion. They
 consider only the network parts of the two addresses (ignoring any
 bits to the right of the netmasks) and determine whether one network
 is identical to or a subnet of the other.

 inet '192.168.1.5' << inet '192.168.1/24'
 t

 inet '192.168.0.5' << inet '192.168.1/24'
 f

 inet '192.168.1/24' << inet '192.168.1/24'
 f

	
 inet <<= inet
 boolean

 Is subnet contained by or equal to subnet?

 inet '192.168.1/24' <<= inet '192.168.1/24'
 t

	
 inet >> inet
 boolean

 Does subnet strictly contain subnet?

 inet '192.168.1/24' >> inet '192.168.1.5'
 t

	
 inet >>= inet
 boolean

 Does subnet contain or equal subnet?

 inet '192.168.1/24' >>= inet '192.168.1/24'
 t

	
 inet && inet
 boolean

 Does either subnet contain or equal the other?

 inet '192.168.1/24' && inet '192.168.1.80/28'
 t

 inet '192.168.1/24' && inet '192.168.2.0/28'
 f

	
 ~ inet
 inet

 Computes bitwise NOT.

 ~ inet '192.168.1.6'
 63.87.254.249

	
 inet & inet
 inet

 Computes bitwise AND.

 inet '192.168.1.6' & inet '0.0.0.255'
 0.0.0.6

	
 inet | inet
 inet

 Computes bitwise OR.

 inet '192.168.1.6' | inet '0.0.0.255'
 192.168.1.255

	
 inet + bigint
 inet

 Adds an offset to an address.

 inet '192.168.1.6' + 25
 192.168.1.31

	
 bigint + inet
 inet

 Adds an offset to an address.

 200 + inet '::ffff:fff0:1'
 ::ffff:255.240.0.201

	
 inet - bigint
 inet

 Subtracts an offset from an address.

 inet '192.168.1.43' - 36
 192.168.1.7

	
 inet - inet
 bigint

 Computes the difference of two addresses.

 inet '192.168.1.43' - inet '192.168.1.19'
 24

 inet '::1' - inet '::ffff:1'
 -4294901760

Table 9.40. IP Address Functions
	
 Function

 Description

 Example(s)

	

 abbrev (inet)
 text

 Creates an abbreviated display format as text.
 (The result is the same as the inet output function
 produces; it is “abbreviated” only in comparison to the
 result of an explicit cast to text, which for historical
 reasons will never suppress the netmask part.)

 abbrev(inet '10.1.0.0/32')
 10.1.0.0

	
 abbrev (cidr)
 text

 Creates an abbreviated display format as text.
 (The abbreviation consists of dropping all-zero octets to the right
 of the netmask; more examples are in
 Table 8.22, “cidr Type Input Examples”.)

 abbrev(cidr '10.1.0.0/16')
 10.1/16

	

 broadcast (inet)
 inet

 Computes the broadcast address for the address's network.

 broadcast(inet '192.168.1.5/24')
 192.168.1.255/24

	

 family (inet)
 integer

 Returns the address's family: 4 for IPv4,
 6 for IPv6.

 family(inet '::1')
 6

	

 host (inet)
 text

 Returns the IP address as text, ignoring the netmask.

 host(inet '192.168.1.0/24')
 192.168.1.0

	

 hostmask (inet)
 inet

 Computes the host mask for the address's network.

 hostmask(inet '192.168.23.20/30')
 0.0.0.3

	

 inet_merge (inet, inet)
 cidr

 Computes the smallest network that includes both of the given networks.

 inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24')
 192.168.0.0/22

	

 inet_same_family (inet, inet)
 boolean

 Tests whether the addresses belong to the same IP family.

 inet_same_family(inet '192.168.1.5/24', inet '::1')
 f

	

 masklen (inet)
 integer

 Returns the netmask length in bits.

 masklen(inet '192.168.1.5/24')
 24

	

 netmask (inet)
 inet

 Computes the network mask for the address's network.

 netmask(inet '192.168.1.5/24')
 255.255.255.0

	

 network (inet)
 cidr

 Returns the network part of the address, zeroing out
 whatever is to the right of the netmask.
 (This is equivalent to casting the value to cidr.)

 network(inet '192.168.1.5/24')
 192.168.1.0/24

	

 set_masklen (inet, integer)
 inet

 Sets the netmask length for an inet value.
 The address part does not change.

 set_masklen(inet '192.168.1.5/24', 16)
 192.168.1.5/16

	
 set_masklen (cidr, integer)
 cidr

 Sets the netmask length for a cidr value.
 Address bits to the right of the new netmask are set to zero.

 set_masklen(cidr '192.168.1.0/24', 16)
 192.168.0.0/16

	

 text (inet)
 text

 Returns the unabbreviated IP address and netmask length as text.
 (This has the same result as an explicit cast to text.)

 text(inet '192.168.1.5')
 192.168.1.5/32

Tip

 The abbrev, host,
 and text functions are primarily intended to offer
 alternative display formats for IP addresses.

 The MAC address types, macaddr and macaddr8,
 support the usual comparison operators shown in
 Table 9.1, “Comparison Operators”
 as well as the specialized functions shown in
 Table 9.41, “MAC Address Functions”.
 In addition, they support the bitwise logical operators
 ~, & and |
 (NOT, AND and OR), just as shown above for IP addresses.

Table 9.41. MAC Address Functions
	
 Function

 Description

 Example(s)

	

 trunc (macaddr)
 macaddr

 Sets the last 3 bytes of the address to zero. The remaining prefix
 can be associated with a particular manufacturer (using data not
 included in PostgreSQL™).

 trunc(macaddr '12:34:56:78:90:ab')
 12:34:56:00:00:00

	
 trunc (macaddr8)
 macaddr8

 Sets the last 5 bytes of the address to zero. The remaining prefix
 can be associated with a particular manufacturer (using data not
 included in PostgreSQL™).

 trunc(macaddr8 '12:34:56:78:90:ab:cd:ef')
 12:34:56:00:00:00:00:00

	

 macaddr8_set7bit (macaddr8)
 macaddr8

 Sets the 7th bit of the address to one, creating what is known as
 modified EUI-64, for inclusion in an IPv6 address.

 macaddr8_set7bit(macaddr8 '00:34:56:ab:cd:ef')
 02:34:56:ff:fe:ab:cd:ef

Text Search Functions and Operators

 Table 9.42, “Text Search Operators”,
 Table 9.43, “Text Search Functions” and
 Table 9.44, “Text Search Debugging Functions”
 summarize the functions and operators that are provided
 for full text searching. See Chapter 12, Full Text Search for a detailed
 explanation of PostgreSQL™'s text search
 facility.

Table 9.42. Text Search Operators
	
 Operator

 Description

 Example(s)

	
 tsvector @@ tsquery
 boolean

 tsquery @@ tsvector
 boolean

 Does tsvector match tsquery?
 (The arguments can be given in either order.)

 to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat')
 t

	
 text @@ tsquery
 boolean

 Does text string, after implicit invocation
 of to_tsvector(), match tsquery?

 'fat cats ate rats' @@ to_tsquery('cat & rat')
 t

	
 tsvector @@@ tsquery
 boolean

 tsquery @@@ tsvector
 boolean

 This is a deprecated synonym for @@.

 to_tsvector('fat cats ate rats') @@@ to_tsquery('cat & rat')
 t

	
 tsvector || tsvector
 tsvector

 Concatenates two tsvectors. If both inputs contain
 lexeme positions, the second input's positions are adjusted
 accordingly.

 'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector
 'a':1 'b':2,5 'c':3 'd':4

	
 tsquery && tsquery
 tsquery

 ANDs two tsquerys together, producing a query that
 matches documents that match both input queries.

 'fat | rat'::tsquery && 'cat'::tsquery
 ('fat' | 'rat') & 'cat'

	
 tsquery || tsquery
 tsquery

 ORs two tsquerys together, producing a query that
 matches documents that match either input query.

 'fat | rat'::tsquery || 'cat'::tsquery
 'fat' | 'rat' | 'cat'

	
 !! tsquery
 tsquery

 Negates a tsquery, producing a query that matches
 documents that do not match the input query.

 !! 'cat'::tsquery
 !'cat'

	
 tsquery <-> tsquery
 tsquery

 Constructs a phrase query, which matches if the two input queries
 match at successive lexemes.

 to_tsquery('fat') <-> to_tsquery('rat')
 'fat' <-> 'rat'

	
 tsquery @> tsquery
 boolean

 Does first tsquery contain the second? (This considers
 only whether all the lexemes appearing in one query appear in the
 other, ignoring the combining operators.)

 'cat'::tsquery @> 'cat & rat'::tsquery
 f

	
 tsquery <@ tsquery
 boolean

 Is first tsquery contained in the second? (This
 considers only whether all the lexemes appearing in one query appear
 in the other, ignoring the combining operators.)

 'cat'::tsquery <@ 'cat & rat'::tsquery
 t

 'cat'::tsquery <@ '!cat & rat'::tsquery
 t

 In addition to these specialized operators, the usual comparison
 operators shown in Table 9.1, “Comparison Operators” are
 available for types tsvector and tsquery.
 These are not very
 useful for text searching but allow, for example, unique indexes to be
 built on columns of these types.

Table 9.43. Text Search Functions
	
 Function

 Description

 Example(s)

	

 array_to_tsvector (text[])
 tsvector

 Converts an array of text strings to a tsvector.
 The given strings are used as lexemes as-is, without further
 processing. Array elements must not be empty strings
 or NULL.

 array_to_tsvector('{fat,cat,rat}'::text[])
 'cat' 'fat' 'rat'

	

 get_current_ts_config ()
 regconfig

 Returns the OID of the current default text search configuration
 (as set by default_text_search_config).

 get_current_ts_config()
 english

	

 length (tsvector)
 integer

 Returns the number of lexemes in the tsvector.

 length('fat:2,4 cat:3 rat:5A'::tsvector)
 3

	

 numnode (tsquery)
 integer

 Returns the number of lexemes plus operators in
 the tsquery.

 numnode('(fat & rat) | cat'::tsquery)
 5

	

 plainto_tsquery (
 [config regconfig,]
 query text)
 tsquery

 Converts text to a tsquery, normalizing words according to
 the specified or default configuration. Any punctuation in the string
 is ignored (it does not determine query operators). The resulting
 query matches documents containing all non-stopwords in the text.

 plainto_tsquery('english', 'The Fat Rats')
 'fat' & 'rat'

	

 phraseto_tsquery (
 [config regconfig,]
 query text)
 tsquery

 Converts text to a tsquery, normalizing words according to
 the specified or default configuration. Any punctuation in the string
 is ignored (it does not determine query operators). The resulting
 query matches phrases containing all non-stopwords in the text.

 phraseto_tsquery('english', 'The Fat Rats')
 'fat' <-> 'rat'

 phraseto_tsquery('english', 'The Cat and Rats')
 'cat' <2> 'rat'

	

 websearch_to_tsquery (
 [config regconfig,]
 query text)
 tsquery

 Converts text to a tsquery, normalizing words according
 to the specified or default configuration. Quoted word sequences are
 converted to phrase tests. The word “or” is understood
 as producing an OR operator, and a dash produces a NOT operator;
 other punctuation is ignored.
 This approximates the behavior of some common web search tools.

 websearch_to_tsquery('english', '"fat rat" or cat dog')
 'fat' <-> 'rat' | 'cat' & 'dog'

	

 querytree (tsquery)
 text

 Produces a representation of the indexable portion of
 a tsquery. A result that is empty or
 just T indicates a non-indexable query.

 querytree('foo & ! bar'::tsquery)
 'foo'

	

 setweight (vector tsvector, weight "char")
 tsvector

 Assigns the specified weight to each element
 of the vector.

 setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A')
 'cat':3A 'fat':2A,4A 'rat':5A

	

 setweight (vector tsvector, weight "char", lexemes text[])
 tsvector

 Assigns the specified weight to elements
 of the vector that are listed
 in lexemes.
 The strings in lexemes are taken as lexemes
 as-is, without further processing. Strings that do not match any
 lexeme in vector are ignored.

 setweight('fat:2,4 cat:3 rat:5,6B'::tsvector, 'A', '{cat,rat}')
 'cat':3A 'fat':2,4 'rat':5A,6A

	

 strip (tsvector)
 tsvector

 Removes positions and weights from the tsvector.

 strip('fat:2,4 cat:3 rat:5A'::tsvector)
 'cat' 'fat' 'rat'

	

 to_tsquery (
 [config regconfig,]
 query text)
 tsquery

 Converts text to a tsquery, normalizing words according to
 the specified or default configuration. The words must be combined
 by valid tsquery operators.

 to_tsquery('english', 'The & Fat & Rats')
 'fat' & 'rat'

	

 to_tsvector (
 [config regconfig,]
 document text)
 tsvector

 Converts text to a tsvector, normalizing words according
 to the specified or default configuration. Position information is
 included in the result.

 to_tsvector('english', 'The Fat Rats')
 'fat':2 'rat':3

	
 to_tsvector (
 [config regconfig,]
 document json)
 tsvector

 to_tsvector (
 [config regconfig,]
 document jsonb)
 tsvector

 Converts each string value in the JSON document to
 a tsvector, normalizing words according to the specified
 or default configuration. The results are then concatenated in
 document order to produce the output. Position information is
 generated as though one stopword exists between each pair of string
 values. (Beware that “document order” of the fields of a
 JSON object is implementation-dependent when the input
 is jsonb; observe the difference in the examples.)

 to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json)
 'dog':5 'fat':2 'rat':3

 to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::jsonb)
 'dog':1 'fat':4 'rat':5

	

 json_to_tsvector (
 [config regconfig,]
 document json,
 filter jsonb)
 tsvector

 jsonb_to_tsvector (
 [config regconfig,]
 document jsonb,
 filter jsonb)
 tsvector

 Selects each item in the JSON document that is requested by
 the filter and converts each one to
 a tsvector, normalizing words according to the specified
 or default configuration. The results are then concatenated in
 document order to produce the output. Position information is
 generated as though one stopword exists between each pair of selected
 items. (Beware that “document order” of the fields of a
 JSON object is implementation-dependent when the input
 is jsonb.)
 The filter must be a jsonb
 array containing zero or more of these keywords:
 "string" (to include all string values),
 "numeric" (to include all numeric values),
 "boolean" (to include all boolean values),
 "key" (to include all keys), or
 "all" (to include all the above).
 As a special case, the filter can also be a
 simple JSON value that is one of these keywords.

 json_to_tsvector('english', '{"a": "The Fat Rats", "b": 123}'::json, '["string", "numeric"]')
 '123':5 'fat':2 'rat':3

 json_to_tsvector('english', '{"cat": "The Fat Rats", "dog": 123}'::json, '"all"')
 '123':9 'cat':1 'dog':7 'fat':4 'rat':5

	

 ts_delete (vector tsvector, lexeme text)
 tsvector

 Removes any occurrence of the given lexeme
 from the vector.
 The lexeme string is treated as a lexeme as-is,
 without further processing.

 ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat')
 'cat':3 'rat':5A

	
 ts_delete (vector tsvector, lexemes text[])
 tsvector

 Removes any occurrences of the lexemes
 in lexemes
 from the vector.
 The strings in lexemes are taken as lexemes
 as-is, without further processing. Strings that do not match any
 lexeme in vector are ignored.

 ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat'])
 'cat':3

	

 ts_filter (vector tsvector, weights "char"[])
 tsvector

 Selects only elements with the given weights
 from the vector.

 ts_filter('fat:2,4 cat:3b,7c rat:5A'::tsvector, '{a,b}')
 'cat':3B 'rat':5A

	

 ts_headline (
 [config regconfig,]
 document text,
 query tsquery
 [, options text])
 text

 Displays, in an abbreviated form, the match(es) for
 the query in
 the document, which must be raw text not
 a tsvector. Words in the document are normalized
 according to the specified or default configuration before matching to
 the query. Use of this function is discussed in
 the section called “Highlighting Results”, which also describes the
 available options.

 ts_headline('The fat cat ate the rat.', 'cat')
 The fat cat ate the rat.

	
 ts_headline (
 [config regconfig,]
 document json,
 query tsquery
 [, options text])
 text

 ts_headline (
 [config regconfig,]
 document jsonb,
 query tsquery
 [, options text])
 text

 Displays, in an abbreviated form, match(es) for
 the query that occur in string values
 within the JSON document.
 See the section called “Highlighting Results” for more details.

 ts_headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat')
 {"cat": "raining cats and dogs"}

	

 ts_rank (
 [weights real[],]
 vector tsvector,
 query tsquery
 [, normalization integer])
 real

 Computes a score showing how well
 the vector matches
 the query. See
 the section called “Ranking Search Results” for details.

 ts_rank(to_tsvector('raining cats and dogs'), 'cat')
 0.06079271

	

 ts_rank_cd (
 [weights real[],]
 vector tsvector,
 query tsquery
 [, normalization integer])
 real

 Computes a score showing how well
 the vector matches
 the query, using a cover density
 algorithm. See the section called “Ranking Search Results” for details.

 ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat')
 0.1

	

 ts_rewrite (query tsquery,
 target tsquery,
 substitute tsquery)
 tsquery

 Replaces occurrences of target
 with substitute
 within the query.
 See the section called “Query Rewriting” for details.

 ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery)
 'b' & ('foo' | 'bar')

	
 ts_rewrite (query tsquery,
 select text)
 tsquery

 Replaces portions of the query according to
 target(s) and substitute(s) obtained by executing
 a SELECT command.
 See the section called “Query Rewriting” for details.

 SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases')
 'b' & ('foo' | 'bar')

	

 tsquery_phrase (query1 tsquery, query2 tsquery)
 tsquery

 Constructs a phrase query that searches
 for matches of query1
 and query2 at successive lexemes (same
 as <-> operator).

 tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'))
 'fat' <-> 'cat'

	
 tsquery_phrase (query1 tsquery, query2 tsquery, distance integer)
 tsquery

 Constructs a phrase query that searches
 for matches of query1 and
 query2 that occur exactly
 distance lexemes apart.

 tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10)
 'fat' <10> 'cat'

	

 tsvector_to_array (tsvector)
 text[]

 Converts a tsvector to an array of lexemes.

 tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector)
 {cat,fat,rat}

	

 unnest (tsvector)
 setof record
 (lexeme text,
 positions smallint[],
 weights text)

 Expands a tsvector into a set of rows, one per lexeme.

 select * from unnest('cat:3 fat:2,4 rat:5A'::tsvector)

 lexeme | positions | weights
--------+-----------+---------
 cat | {3} | {D}
 fat | {2,4} | {D,D}
 rat | {5} | {A}

Note

 All the text search functions that accept an optional regconfig
 argument will use the configuration specified by
 default_text_search_config
 when that argument is omitted.

 The functions in
 Table 9.44, “Text Search Debugging Functions”
 are listed separately because they are not usually used in everyday text
 searching operations. They are primarily helpful for development and
 debugging of new text search configurations.

Table 9.44. Text Search Debugging Functions
	
 Function

 Description

 Example(s)

	

 ts_debug (
 [config regconfig,]
 document text)
 setof record
 (alias text,
 description text,
 token text,
 dictionaries regdictionary[],
 dictionary regdictionary,
 lexemes text[])

 Extracts and normalizes tokens from
 the document according to the specified or
 default text search configuration, and returns information about how
 each token was processed.
 See the section called “Configuration Testing” for details.

 ts_debug('english', 'The Brightest supernovaes')
 (asciiword,"Word, all ASCII",The,{english_stem},english_stem,{}) ...

	

 ts_lexize (dict regdictionary, token text)
 text[]

 Returns an array of replacement lexemes if the input token is known to
 the dictionary, or an empty array if the token is known to the
 dictionary but it is a stop word, or NULL if it is not a known word.
 See the section called “Dictionary Testing” for details.

 ts_lexize('english_stem', 'stars')
 {star}

	

 ts_parse (parser_name text,
 document text)
 setof record
 (tokid integer,
 token text)

 Extracts tokens from the document using the
 named parser.
 See the section called “Parser Testing” for details.

 ts_parse('default', 'foo - bar')
 (1,foo) ...

	
 ts_parse (parser_oid oid,
 document text)
 setof record
 (tokid integer,
 token text)

 Extracts tokens from the document using a
 parser specified by OID.
 See the section called “Parser Testing” for details.

 ts_parse(3722, 'foo - bar')
 (1,foo) ...

	

 ts_token_type (parser_name text)
 setof record
 (tokid integer,
 alias text,
 description text)

 Returns a table that describes each type of token the named parser can
 recognize.
 See the section called “Parser Testing” for details.

 ts_token_type('default')
 (1,asciiword,"Word, all ASCII") ...

	
 ts_token_type (parser_oid oid)
 setof record
 (tokid integer,
 alias text,
 description text)

 Returns a table that describes each type of token a parser specified
 by OID can recognize.
 See the section called “Parser Testing” for details.

 ts_token_type(3722)
 (1,asciiword,"Word, all ASCII") ...

	

 ts_stat (sqlquery text
 [, weights text])
 setof record
 (word text,
 ndoc integer,
 nentry integer)

 Executes the sqlquery, which must return a
 single tsvector column, and returns statistics about each
 distinct lexeme contained in the data.
 See the section called “Gathering Document Statistics” for details.

 ts_stat('SELECT vector FROM apod')
 (foo,10,15) ...

UUID Functions

 PostgreSQL™ includes one function to generate a UUID:

gen_random_uuid () uuid

 This function returns a version 4 (random) UUID. This is the most commonly
 used type of UUID and is appropriate for most applications.

 The uuid-ossp module provides additional functions that
 implement other standard algorithms for generating UUIDs.

 PostgreSQL™ also provides the usual comparison
 operators shown in Table 9.1, “Comparison Operators” for
 UUIDs.

XML Functions

 The functions and function-like expressions described in this
 section operate on values of type xml. See the section called “XML Type” for information about the xml
 type. The function-like expressions xmlparse
 and xmlserialize for converting to and from
 type xml are documented there, not in this section.

 Use of most of these functions
 requires PostgreSQL™ to have been built
 with configure --with-libxml.

Producing XML Content

 A set of functions and function-like expressions is available for
 producing XML content from SQL data. As such, they are
 particularly suitable for formatting query results into XML
 documents for processing in client applications.

xmlcomment

xmlcomment (text) xml

 The function xmlcomment creates an XML value
 containing an XML comment with the specified text as content.
 The text cannot contain “--” or end with a
 “-”, otherwise the resulting construct
 would not be a valid XML comment.
 If the argument is null, the result is null.

 Example:

SELECT xmlcomment('hello');

 xmlcomment

 <!--hello-->

xmlconcat

xmlconcat (xml [, ...]) xml

 The function xmlconcat concatenates a list
 of individual XML values to create a single value containing an
 XML content fragment. Null values are omitted; the result is
 only null if there are no nonnull arguments.

 Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

 XML declarations, if present, are combined as follows. If all
 argument values have the same XML version declaration, that
 version is used in the result, else no version is used. If all
 argument values have the standalone declaration value
 “yes”, then that value is used in the result. If
 all argument values have a standalone declaration value and at
 least one is “no”, then that is used in the result.
 Else the result will have no standalone declaration. If the
 result is determined to require a standalone declaration but no
 version declaration, a version declaration with version 1.0 will
 be used because XML requires an XML declaration to contain a
 version declaration. Encoding declarations are ignored and
 removed in all cases.

 Example:

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

xmlelement

xmlelement (NAME name [, XMLATTRIBUTES (attvalue [AS attname] [, ...])] [, content [, ...]]) xml

 The xmlelement expression produces an XML
 element with the given name, attributes, and content.
 The name
 and attname items shown in the syntax are
 simple identifiers, not values. The attvalue
 and content items are expressions, which can
 yield any PostgreSQL™ data type. The
 argument(s) within XMLATTRIBUTES generate attributes
 of the XML element; the content value(s) are
 concatenated to form its content.

 Examples:

SELECT xmlelement(name foo);

 xmlelement

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent');

 xmlelement

 <foo bar="2007-01-26">content</foo>

 Element and attribute names that are not valid XML names are
 escaped by replacing the offending characters by the sequence
 xHHHH, where
 HHHH is the character's Unicode
 codepoint in hexadecimal notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

 An explicit attribute name need not be specified if the attribute
 value is a column reference, in which case the column's name will
 be used as the attribute name by default. In other cases, the
 attribute must be given an explicit name. So this example is
 valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

 But these are not:

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

 Element content, if specified, will be formatted according to
 its data type. If the content is itself of type xml,
 complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

 Content of other types will be formatted into valid XML character
 data. This means in particular that the characters <, >,
 and & will be converted to entities. Binary data (data type
 bytea) will be represented in base64 or hex
 encoding, depending on the setting of the configuration parameter
 xmlbinary. The particular behavior for
 individual data types is expected to evolve in order to align the
 PostgreSQL mappings with those specified in SQL:2006 and later,
 as discussed in the section called “Mappings between SQL and XML Data Types and Values”.

xmlforest

xmlforest (content [AS name] [, ...]) xml

 The xmlforest expression produces an XML
 forest (sequence) of elements using the given names and content.
 As for xmlelement,
 each name must be a simple identifier, while
 the content expressions can have any data
 type.

 Examples:

SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest
------------------------------------​-----------------------------------
 <table_name>pg_authid</table_name>​<column_name>rolname</column_name>
 <table_name>pg_authid</table_name>​<column_name>rolsuper</column_name>
 ...

 As seen in the second example, the element name can be omitted if
 the content value is a column reference, in which case the column
 name is used by default. Otherwise, a name must be specified.

 Element names that are not valid XML names are escaped as shown
 for xmlelement above. Similarly, content
 data is escaped to make valid XML content, unless it is already
 of type xml.

 Note that XML forests are not valid XML documents if they consist
 of more than one element, so it might be useful to wrap
 xmlforest expressions in
 xmlelement.

xmlpi

xmlpi (NAME name [, content]) xml

 The xmlpi expression creates an XML
 processing instruction.
 As for xmlelement,
 the name must be a simple identifier, while
 the content expression can have any data type.
 The content, if present, must not contain the
 character sequence ?>.

 Example:

SELECT xmlpi(name php, 'echo "hello world";');

 xmlpi

 <?php echo "hello world";?>

xmlroot

xmlroot (xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO VALUE}]) xml

 The xmlroot expression alters the properties
 of the root node of an XML value. If a version is specified,
 it replaces the value in the root node's version declaration; if a
 standalone setting is specified, it replaces the value in the
 root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</content>'),
 version '1.0', standalone yes);

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

xmlagg

xmlagg (xml) xml

 The function xmlagg is, unlike the other
 functions described here, an aggregate function. It concatenates the
 input values to the aggregate function call,
 much like xmlconcat does, except that concatenation
 occurs across rows rather than across expressions in a single row.
 See the section called “Aggregate Functions” for additional information
 about aggregate functions.

 Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

 To determine the order of the concatenation, an ORDER BY
 clause may be added to the aggregate call as described in
 the section called “Aggregate Expressions”. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

 The following non-standard approach used to be recommended
 in previous versions, and may still be useful in specific
 cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

XML Predicates

 The expressions described in this section check properties
 of xml values.

IS DOCUMENT

xml IS DOCUMENT boolean

 The expression IS DOCUMENT returns true if the
 argument XML value is a proper XML document, false if it is not
 (that is, it is a content fragment), or null if the argument is
 null. See the section called “XML Type” about the difference
 between documents and content fragments.

IS NOT DOCUMENT

xml IS NOT DOCUMENT boolean

 The expression IS NOT DOCUMENT returns false if the
 argument XML value is a proper XML document, true if it is not (that is,
 it is a content fragment), or null if the argument is null.

XMLEXISTS

XMLEXISTS (text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}]) boolean

 The function xmlexists evaluates an XPath 1.0
 expression (the first argument), with the passed XML value as its context
 item. The function returns false if the result of that evaluation
 yields an empty node-set, true if it yields any other value. The
 function returns null if any argument is null. A nonnull value
 passed as the context item must be an XML document, not a content
 fragment or any non-XML value.

 Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

 The BY REF and BY VALUE clauses
 are accepted in PostgreSQL™, but are ignored,
 as discussed in the section called “Incidental Limits of the Implementation”.

 In the SQL standard, the xmlexists function
 evaluates an expression in the XML Query language,
 but PostgreSQL™ allows only an XPath 1.0
 expression, as discussed in
 the section called “Queries Are Restricted to XPath 1.0”.

xml_is_well_formed

xml_is_well_formed (text) boolean
xml_is_well_formed_document (text) boolean
xml_is_well_formed_content (text) boolean

 These functions check whether a text string represents
 well-formed XML, returning a Boolean result.
 xml_is_well_formed_document checks for a well-formed
 document, while xml_is_well_formed_content checks
 for well-formed content. xml_is_well_formed does
 the former if the xmloption configuration
 parameter is set to DOCUMENT, or the latter if it is set to
 CONTENT. This means that
 xml_is_well_formed is useful for seeing whether
 a simple cast to type xml will succeed, whereas the other two
 functions are useful for seeing whether the corresponding variants of
 XMLPARSE will succeed.

 Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

 The last example shows that the checks include whether
 namespaces are correctly matched.

Processing XML

 To process values of data type xml, PostgreSQL offers
 the functions xpath and
 xpath_exists, which evaluate XPath 1.0
 expressions, and the XMLTABLE
 table function.

xpath

xpath (xpath text, xml xml [, nsarray text[]]) xml[]

 The function xpath evaluates the XPath 1.0
 expression xpath (given as text)
 against the XML value
 xml. It returns an array of XML values
 corresponding to the node-set produced by the XPath expression.
 If the XPath expression returns a scalar value rather than a node-set,
 a single-element array is returned.

 The second argument must be a well formed XML document. In particular,
 it must have a single root node element.

 The optional third argument of the function is an array of namespace
 mappings. This array should be a two-dimensional text array with
 the length of the second axis being equal to 2 (i.e., it should be an
 array of arrays, each of which consists of exactly 2 elements).
 The first element of each array entry is the namespace name (alias), the
 second the namespace URI. It is not required that aliases provided in
 this array be the same as those being used in the XML document itself (in
 other words, both in the XML document and in the xpath
 function context, aliases are local).

 Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}
(1 row)

 To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', 'test',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

xpath_exists

xpath_exists (xpath text, xml xml [, nsarray text[]]) boolean

 The function xpath_exists is a specialized form
 of the xpath function. Instead of returning the
 individual XML values that satisfy the XPath 1.0 expression, this function
 returns a Boolean indicating whether the query was satisfied or not
 (specifically, whether it produced any value other than an empty node-set).
 This function is equivalent to the XMLEXISTS predicate,
 except that it also offers support for a namespace mapping argument.

 Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

xmltable

XMLTABLE (
 [XMLNAMESPACES (namespace_uri AS namespace_name [, ...]),]
 row_expression PASSING [BY {REF|VALUE}] document_expression [BY {REF|VALUE}]
 COLUMNS name { type [PATH column_expression] [DEFAULT default_expression] [NOT NULL | NULL]
 | FOR ORDINALITY }
 [, ...]
) setof record

 The xmltable expression produces a table based
 on an XML value, an XPath filter to extract rows, and a
 set of column definitions.
 Although it syntactically resembles a function, it can only appear
 as a table in a query's FROM clause.

 The optional XMLNAMESPACES clause gives a
 comma-separated list of namespace definitions, where
 each namespace_uri is a text
 expression and each namespace_name is a simple
 identifier. It specifies the XML namespaces used in the document and
 their aliases. A default namespace specification is not currently
 supported.

 The required row_expression argument is an
 XPath 1.0 expression (given as text) that is evaluated,
 passing the XML value document_expression as
 its context item, to obtain a set of XML nodes. These nodes are what
 xmltable transforms into output rows. No rows
 will be produced if the document_expression
 is null, nor if the row_expression produces
 an empty node-set or any value other than a node-set.

 document_expression provides the context
 item for the row_expression. It must be a
 well-formed XML document; fragments/forests are not accepted.
 The BY REF and BY VALUE clauses
 are accepted but ignored, as discussed in
 the section called “Incidental Limits of the Implementation”.

 In the SQL standard, the xmltable function
 evaluates expressions in the XML Query language,
 but PostgreSQL™ allows only XPath 1.0
 expressions, as discussed in
 the section called “Queries Are Restricted to XPath 1.0”.

 The required COLUMNS clause specifies the
 column(s) that will be produced in the output table.
 See the syntax summary above for the format.
 A name is required for each column, as is a data type
 (unless FOR ORDINALITY is specified, in which case
 type integer is implicit). The path, default and
 nullability clauses are optional.

 A column marked FOR ORDINALITY will be populated
 with row numbers, starting with 1, in the order of nodes retrieved from
 the row_expression's result node-set.
 At most one column may be marked FOR ORDINALITY.

Note

 XPath 1.0 does not specify an order for nodes in a node-set, so code
 that relies on a particular order of the results will be
 implementation-dependent. Details can be found in
 the section called “Restriction of XPath to 1.0”.

 The column_expression for a column is an
 XPath 1.0 expression that is evaluated for each row, with the current
 node from the row_expression result as its
 context item, to find the value of the column. If
 no column_expression is given, then the
 column name is used as an implicit path.

 If a column's XPath expression returns a non-XML value (which is limited
 to string, boolean, or double in XPath 1.0) and the column has a
 PostgreSQL type other than xml, the column will be set
 as if by assigning the value's string representation to the PostgreSQL
 type. (If the value is a boolean, its string representation is taken
 to be 1 or 0 if the output
 column's type category is numeric, otherwise true or
 false.)

 If a column's XPath expression returns a non-empty set of XML nodes
 and the column's PostgreSQL type is xml, the column will
 be assigned the expression result exactly, if it is of document or
 content form.
 [8]

 A non-XML result assigned to an xml output column produces
 content, a single text node with the string value of the result.
 An XML result assigned to a column of any other type may not have more than
 one node, or an error is raised. If there is exactly one node, the column
 will be set as if by assigning the node's string
 value (as defined for the XPath 1.0 string function)
 to the PostgreSQL type.

 The string value of an XML element is the concatenation, in document order,
 of all text nodes contained in that element and its descendants. The string
 value of an element with no descendant text nodes is an
 empty string (not NULL).
 Any xsi:nil attributes are ignored.
 Note that the whitespace-only text() node between two non-text
 elements is preserved, and that leading whitespace on a text()
 node is not flattened.
 The XPath 1.0 string function may be consulted for the
 rules defining the string value of other XML node types and non-XML values.

 The conversion rules presented here are not exactly those of the SQL
 standard, as discussed in the section called “Mappings between SQL and XML Data Types and Values”.

 If the path expression returns an empty node-set
 (typically, when it does not match)
 for a given row, the column will be set to NULL, unless
 a default_expression is specified; then the
 value resulting from evaluating that expression is used.

 A default_expression, rather than being
 evaluated immediately when xmltable is called,
 is evaluated each time a default is needed for the column.
 If the expression qualifies as stable or immutable, the repeat
 evaluation may be skipped.
 This means that you can usefully use volatile functions like
 nextval in
 default_expression.

 Columns may be marked NOT NULL. If the
 column_expression for a NOT
 NULL column does not match anything and there is
 no DEFAULT or
 the default_expression also evaluates to null,
 an error is reported.

 Examples:

CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
 <ROW id="1">
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 </ROW>
 <ROW id="5">
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
 <SIZE unit="sq_mi">145935</SIZE>
 </ROW>
 <ROW id="6">
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <SIZE unit="sq_km">697</SIZE>
 </ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
 FROM xmldata,
 XMLTABLE('//ROWS/ROW'
 PASSING data
 COLUMNS id int PATH '@id',
 ordinality FOR ORDINALITY,
 "COUNTRY_NAME" text,
 country_id text PATH 'COUNTRY_ID',
 size_sq_km float PATH 'SIZE[@unit = "sq_km"]',
 size_other text PATH
 'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!="sq_km"]/@unit)',
 premier_name text PATH 'PREMIER_NAME' DEFAULT 'not specified');

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km | size_other | premier_name
----+------------+--------------+------------+------------+--------------+---------------
 1 | 1 | Australia | AU | | | not specified
 5 | 2 | Japan | JP | | 145935 sq_mi | Shinzo Abe
 6 | 3 | Singapore | SG | 697 | | not specified

 The following example shows concatenation of multiple text() nodes,
 usage of the column name as XPath filter, and the treatment of whitespace,
 XML comments and processing instructions:

CREATE TABLE xmlelements AS SELECT
xml $$
 <root>
 <element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</x>CC </element>
 </root>
$$ AS data;

SELECT xmltable.*
 FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element text);
 element

 Hello2a2 bbbxxxCC

 The following example illustrates how
 the XMLNAMESPACES clause can be used to specify
 a list of namespaces
 used in the XML document as well as in the XPath expressions:

WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
 FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
 'http://example.com/b' AS "B"),
 '/x:example/x:item'
 PASSING (SELECT data FROM xmldata)
 COLUMNS foo int PATH '@foo',
 bar int PATH '@B:bar');
 foo | bar
-----+-----
 1 | 2
 3 | 4
 4 | 5
(3 rows)

Mapping Tables to XML

 The following functions map the contents of relational tables to
 XML values. They can be thought of as XML export functionality:

table_to_xml (table regclass, nulls boolean,
 tableforest boolean, targetns text) xml
query_to_xml (query text, nulls boolean,
 tableforest boolean, targetns text) xml
cursor_to_xml (cursor refcursor, count integer, nulls boolean,
 tableforest boolean, targetns text) xml

 table_to_xml maps the content of the named
 table, passed as parameter table. The
 regclass type accepts strings identifying tables using the
 usual notation, including optional schema qualification and
 double quotes (see the section called “Object Identifier Types” for details).
 query_to_xml executes the
 query whose text is passed as parameter
 query and maps the result set.
 cursor_to_xml fetches the indicated number of
 rows from the cursor specified by the parameter
 cursor. This variant is recommended if
 large tables have to be mapped, because the result value is built
 up in memory by each function.

 If tableforest is false, then the resulting
 XML document looks like this:

<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

 If tableforest is true, the result is an
 XML content fragment that looks like this:

<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>
 ...
</tablename>

...

 If no table name is available, that is, when mapping a query or a
 cursor, the string table is used in the first
 format, row in the second format.

 The choice between these formats is up to the user. The first
 format is a proper XML document, which will be important in many
 applications. The second format tends to be more useful in the
 cursor_to_xml function if the result values are to be
 reassembled into one document later on. The functions for
 producing XML content discussed above, in particular
 xmlelement, can be used to alter the results
 to taste.

 The data values are mapped in the same way as described for the
 function xmlelement above.

 The parameter nulls determines whether null
 values should be included in the output. If true, null values in
 columns are represented as:

<columnname xsi:nil="true"/>

 where xsi is the XML namespace prefix for XML
 Schema Instance. An appropriate namespace declaration will be
 added to the result value. If false, columns containing null
 values are simply omitted from the output.

 The parameter targetns specifies the
 desired XML namespace of the result. If no particular namespace
 is wanted, an empty string should be passed.

 The following functions return XML Schema documents describing the
 mappings performed by the corresponding functions above:

table_to_xmlschema (table regclass, nulls boolean,
 tableforest boolean, targetns text) xml
query_to_xmlschema (query text, nulls boolean,
 tableforest boolean, targetns text) xml
cursor_to_xmlschema (cursor refcursor, nulls boolean,
 tableforest boolean, targetns text) xml

 It is essential that the same parameters are passed in order to
 obtain matching XML data mappings and XML Schema documents.

 The following functions produce XML data mappings and the
 corresponding XML Schema in one document (or forest), linked
 together. They can be useful where self-contained and
 self-describing results are wanted:

table_to_xml_and_xmlschema (table regclass, nulls boolean,
 tableforest boolean, targetns text) xml
query_to_xml_and_xmlschema (query text, nulls boolean,
 tableforest boolean, targetns text) xml

 In addition, the following functions are available to produce
 analogous mappings of entire schemas or the entire current
 database:

schema_to_xml (schema name, nulls boolean,
 tableforest boolean, targetns text) xml
schema_to_xmlschema (schema name, nulls boolean,
 tableforest boolean, targetns text) xml
schema_to_xml_and_xmlschema (schema name, nulls boolean,
 tableforest boolean, targetns text) xml

database_to_xml (nulls boolean,
 tableforest boolean, targetns text) xml
database_to_xmlschema (nulls boolean,
 tableforest boolean, targetns text) xml
database_to_xml_and_xmlschema (nulls boolean,
 tableforest boolean, targetns text) xml

 These functions ignore tables that are not readable by the current user.
 The database-wide functions additionally ignore schemas that the current
 user does not have USAGE (lookup) privilege for.

 Note that these potentially produce a lot of data, which needs to
 be built up in memory. When requesting content mappings of large
 schemas or databases, it might be worthwhile to consider mapping the
 tables separately instead, possibly even through a cursor.

 The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

 where the format of a table mapping depends on the
 tableforest parameter as explained above.

 The result of a database content mapping looks like this:

<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

 where the schema mapping is as above.

 As an example of using the output produced by these functions,
 Example 9.1, “XSLT Stylesheet for Converting SQL/XML Output to HTML” shows an XSLT stylesheet that
 converts the output of
 table_to_xml_and_xmlschema to an HTML
 document containing a tabular rendition of the table data. In a
 similar manner, the results from these functions can be
 converted into other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"
>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/@type"/>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=$tabletypename]/xsd:sequence/xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=$rowtypename]/xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

[8]
 A result containing more than one element node at the top level, or
 non-whitespace text outside of an element, is an example of content form.
 An XPath result can be of neither form, for example if it returns an
 attribute node selected from the element that contains it. Such a result
 will be put into content form with each such disallowed node replaced by
 its string value, as defined for the XPath 1.0
 string function.

JSON Functions and Operators

 This section describes:

	
 functions and operators for processing and creating JSON data

	
 the SQL/JSON path language

 To provide native support for JSON data types within the SQL environment,
 PostgreSQL™ implements the
 SQL/JSON data model.
 This model comprises sequences of items. Each item can hold SQL scalar
 values, with an additional SQL/JSON null value, and composite data structures
 that use JSON arrays and objects. The model is a formalization of the implied
 data model in the JSON specification
 RFC 7159.

 SQL/JSON allows you to handle JSON data alongside regular SQL data,
 with transaction support, including:

	
 Uploading JSON data into the database and storing it in
 regular SQL columns as character or binary strings.

	
 Generating JSON objects and arrays from relational data.

	
 Querying JSON data using SQL/JSON query functions and
 SQL/JSON path language expressions.

 To learn more about the SQL/JSON standard, see
 [sqltr-19075-6]. For details on JSON types
 supported in PostgreSQL™,
 see the section called “JSON Types”.

Processing and Creating JSON Data

 Table 9.45, “json and jsonb Operators” shows the operators that
 are available for use with JSON data types (see the section called “JSON Types”).
 In addition, the usual comparison operators shown in Table 9.1, “Comparison Operators” are available for
 jsonb, though not for json. The comparison
 operators follow the ordering rules for B-tree operations outlined in
 the section called “jsonb Indexing”.
 See also the section called “Aggregate Functions” for the aggregate
 function json_agg which aggregates record
 values as JSON, the aggregate function
 json_object_agg which aggregates pairs of values
 into a JSON object, and their jsonb equivalents,
 jsonb_agg and jsonb_object_agg.

Table 9.45. json and jsonb Operators
	
 Operator

 Description

 Example(s)

	
 json -> integer
 json

 jsonb -> integer
 jsonb

 Extracts n'th element of JSON array
 (array elements are indexed from zero, but negative integers count
 from the end).

 '[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2
 {"c":"baz"}

 '[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3
 {"a":"foo"}

	
 json -> text
 json

 jsonb -> text
 jsonb

 Extracts JSON object field with the given key.

 '{"a": {"b":"foo"}}'::json -> 'a'
 {"b":"foo"}

	
 json ->> integer
 text

 jsonb ->> integer
 text

 Extracts n'th element of JSON array,
 as text.

 '[1,2,3]'::json ->> 2
 3

	
 json ->> text
 text

 jsonb ->> text
 text

 Extracts JSON object field with the given key, as text.

 '{"a":1,"b":2}'::json ->> 'b'
 2

	
 json #> text[]
 json

 jsonb #> text[]
 jsonb

 Extracts JSON sub-object at the specified path, where path elements
 can be either field keys or array indexes.

 '{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}'
 "bar"

	
 json #>> text[]
 text

 jsonb #>> text[]
 text

 Extracts JSON sub-object at the specified path as text.

 '{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}'
 bar

Note

 The field/element/path extraction operators return NULL, rather than
 failing, if the JSON input does not have the right structure to match
 the request; for example if no such key or array element exists.

 Some further operators exist only for jsonb, as shown
 in Table 9.46, “Additional jsonb Operators”.
 the section called “jsonb Indexing”
 describes how these operators can be used to effectively search indexed
 jsonb data.

Table 9.46. Additional jsonb Operators
	
 Operator

 Description

 Example(s)

	
 jsonb @> jsonb
 boolean

 Does the first JSON value contain the second?
 (See the section called “jsonb Containment and Existence” for details about containment.)

 '{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb
 t

	
 jsonb <@ jsonb
 boolean

 Is the first JSON value contained in the second?

 '{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb
 t

	
 jsonb ? text
 boolean

 Does the text string exist as a top-level key or array element within
 the JSON value?

 '{"a":1, "b":2}'::jsonb ? 'b'
 t

 '["a", "b", "c"]'::jsonb ? 'b'
 t

	
 jsonb ?| text[]
 boolean

 Do any of the strings in the text array exist as top-level keys or
 array elements?

 '{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd']
 t

	
 jsonb ?& text[]
 boolean

 Do all of the strings in the text array exist as top-level keys or
 array elements?

 '["a", "b", "c"]'::jsonb ?& array['a', 'b']
 t

	
 jsonb || jsonb
 jsonb

 Concatenates two jsonb values.
 Concatenating two arrays generates an array containing all the
 elements of each input. Concatenating two objects generates an
 object containing the union of their
 keys, taking the second object's value when there are duplicate keys.
 All other cases are treated by converting a non-array input into a
 single-element array, and then proceeding as for two arrays.
 Does not operate recursively: only the top-level array or object
 structure is merged.

 '["a", "b"]'::jsonb || '["a", "d"]'::jsonb
 ["a", "b", "a", "d"]

 '{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb
 {"a": "b", "c": "d"}

 '[1, 2]'::jsonb || '3'::jsonb
 [1, 2, 3]

 '{"a": "b"}'::jsonb || '42'::jsonb
 [{"a": "b"}, 42]

 To append an array to another array as a single entry, wrap it
 in an additional layer of array, for example:

 '[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb)
 [1, 2, [3, 4]]

	
 jsonb - text
 jsonb

 Deletes a key (and its value) from a JSON object, or matching string
 value(s) from a JSON array.

 '{"a": "b", "c": "d"}'::jsonb - 'a'
 {"c": "d"}

 '["a", "b", "c", "b"]'::jsonb - 'b'
 ["a", "c"]

	
 jsonb - text[]
 jsonb

 Deletes all matching keys or array elements from the left operand.

 '{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[]
 {}

	
 jsonb - integer
 jsonb

 Deletes the array element with specified index (negative
 integers count from the end). Throws an error if JSON value
 is not an array.

 '["a", "b"]'::jsonb - 1
 ["a"]

	
 jsonb #- text[]
 jsonb

 Deletes the field or array element at the specified path, where path
 elements can be either field keys or array indexes.

 '["a", {"b":1}]'::jsonb #- '{1,b}'
 ["a", {}]

	
 jsonb @? jsonpath
 boolean

 Does JSON path return any item for the specified JSON value?

 '{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)'
 t

	
 jsonb @@ jsonpath
 boolean

 Returns the result of a JSON path predicate check for the
 specified JSON value. Only the first item of the result is taken into
 account. If the result is not Boolean, then NULL
 is returned.

 '{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2'
 t

Note

 The jsonpath operators @?
 and @@ suppress the following errors: missing object
 field or array element, unexpected JSON item type, datetime and numeric
 errors. The jsonpath-related functions described below can
 also be told to suppress these types of errors. This behavior might be
 helpful when searching JSON document collections of varying structure.

 Table 9.47, “JSON Creation Functions” shows the functions that are
 available for constructing json and jsonb values.
 Some functions in this table have a RETURNING clause,
 which specifies the data type returned. It must be one of json,
 jsonb, bytea, a character string type (text,
 char, or varchar), or a type
 that can be cast to json.
 By default, the json type is returned.

Table 9.47. JSON Creation Functions
	
 Function

 Description

 Example(s)

	

 to_json (anyelement)
 json

 to_jsonb (anyelement)
 jsonb

 Converts any SQL value to json or jsonb.
 Arrays and composites are converted recursively to arrays and
 objects (multidimensional arrays become arrays of arrays in JSON).
 Otherwise, if there is a cast from the SQL data type
 to json, the cast function will be used to perform the
 conversion;[a]
 otherwise, a scalar JSON value is produced. For any scalar other than
 a number, a Boolean, or a null value, the text representation will be
 used, with escaping as necessary to make it a valid JSON string value.

 to_json('Fred said "Hi."'::text)
 "Fred said \"Hi.\""

 to_jsonb(row(42, 'Fred said "Hi."'::text))
 {"f1": 42, "f2": "Fred said \"Hi.\""}

	

 array_to_json (anyarray [, boolean])
 json

 Converts an SQL array to a JSON array. The behavior is the same
 as to_json except that line feeds will be added
 between top-level array elements if the optional boolean parameter is
 true.

 array_to_json('{{1,5},{99,100}}'::int[])
 [[1,5],[99,100]]

	

 json_array (
 [{ value_expression [FORMAT JSON] } [, ...]]
 [{ NULL | ABSENT } ON NULL]
 [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

 json_array (
 [query_expression]
 [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

 Constructs a JSON array from either a series of
 value_expression parameters or from the results
 of query_expression,
 which must be a SELECT query returning a single column. If
 ABSENT ON NULL is specified, NULL values are ignored.
 This is always the case if a
 query_expression is used.

 json_array(1,true,json '{"a":null}')
 [1, true, {"a":null}]

 json_array(SELECT * FROM (VALUES(1),(2)) t)
 [1, 2]

	

 row_to_json (record [, boolean])
 json

 Converts an SQL composite value to a JSON object. The behavior is the
 same as to_json except that line feeds will be
 added between top-level elements if the optional boolean parameter is
 true.

 row_to_json(row(1,'foo'))
 {"f1":1,"f2":"foo"}

	

 json_build_array (VARIADIC "any")
 json

 jsonb_build_array (VARIADIC "any")
 jsonb

 Builds a possibly-heterogeneously-typed JSON array out of a variadic
 argument list. Each argument is converted as
 per to_json or to_jsonb.

 json_build_array(1, 2, 'foo', 4, 5)
 [1, 2, "foo", 4, 5]

	

 json_build_object (VARIADIC "any")
 json

 jsonb_build_object (VARIADIC "any")
 jsonb

 Builds a JSON object out of a variadic argument list. By convention,
 the argument list consists of alternating keys and values. Key
 arguments are coerced to text; value arguments are converted as
 per to_json or to_jsonb.

 json_build_object('foo', 1, 2, row(3,'bar'))
 {"foo" : 1, "2" : {"f1":3,"f2":"bar"}}

	

 json_object (
 [{ key_expression { VALUE | ':' }
 value_expression [FORMAT JSON [ENCODING UTF8]] }[, ...]]
 [{ NULL | ABSENT } ON NULL]
 [{ WITH | WITHOUT } UNIQUE [KEYS]]
 [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

 Constructs a JSON object of all the key/value pairs given,
 or an empty object if none are given.
 key_expression is a scalar expression
 defining the JSON key, which is
 converted to the text type.
 It cannot be NULL nor can it
 belong to a type that has a cast to the json type.
 If WITH UNIQUE KEYS is specified, there must not
 be any duplicate key_expression.
 Any pair for which the value_expression
 evaluates to NULL is omitted from the output
 if ABSENT ON NULL is specified;
 if NULL ON NULL is specified or the clause
 omitted, the key is included with value NULL.

 json_object('code' VALUE 'P123', 'title': 'Jaws')
 {"code" : "P123", "title" : "Jaws"}

	

 json_object (text[])
 json

 jsonb_object (text[])
 jsonb

 Builds a JSON object out of a text array. The array must have either
 exactly one dimension with an even number of members, in which case
 they are taken as alternating key/value pairs, or two dimensions
 such that each inner array has exactly two elements, which
 are taken as a key/value pair. All values are converted to JSON
 strings.

 json_object('{a, 1, b, "def", c, 3.5}')
 {"a" : "1", "b" : "def", "c" : "3.5"}

 json_object('{{a, 1}, {b, "def"}, {c, 3.5}}')
 {"a" : "1", "b" : "def", "c" : "3.5"}

	
 json_object (keys text[], values text[])
 json

 jsonb_object (keys text[], values text[])
 jsonb

 This form of json_object takes keys and values
 pairwise from separate text arrays. Otherwise it is identical to
 the one-argument form.

 json_object('{a,b}', '{1,2}')
 {"a": "1", "b": "2"}

	[a]
 For example, the hstore extension has a cast
 from hstore to json, so that
 hstore values converted via the JSON creation functions
 will be represented as JSON objects, not as primitive string values.

 Table 9.48, “SQL/JSON Testing Functions” details SQL/JSON
 facilities for testing JSON.

Table 9.48. SQL/JSON Testing Functions
	
 Function signature

 Description

 Example(s)

	

 expression IS [NOT] JSON
 [{ VALUE | SCALAR | ARRAY | OBJECT }]
 [{ WITH | WITHOUT } UNIQUE [KEYS]]

 This predicate tests whether expression can be
 parsed as JSON, possibly of a specified type.
 If SCALAR or ARRAY or
 OBJECT is specified, the
 test is whether or not the JSON is of that particular type. If
 WITH UNIQUE KEYS is specified, then any object in the
 expression is also tested to see if it
 has duplicate keys.

SELECT js,
 js IS JSON "json?",
 js IS JSON SCALAR "scalar?",
 js IS JSON OBJECT "object?",
 js IS JSON ARRAY "array?"
FROM (VALUES
 ('123'), ('"abc"'), ('{"a": "b"}'), ('[1,2]'),('abc')) foo(js);
 js | json? | scalar? | object? | array?
------------+-------+---------+---------+--------
 123 | t | t | f | f
 "abc" | t | t | f | f
 {"a": "b"} | t | f | t | f
 [1,2] | t | f | f | t
 abc | f | f | f | f

SELECT js,
 js IS JSON OBJECT "object?",
 js IS JSON ARRAY "array?",
 js IS JSON ARRAY WITH UNIQUE KEYS "array w. UK?",
 js IS JSON ARRAY WITHOUT UNIQUE KEYS "array w/o UK?"
FROM (VALUES ('[{"a":"1"},
 {"b":"2","b":"3"}]')) foo(js);
-[RECORD 1]-+--------------------
js | [{"a":"1"}, +
 | {"b":"2","b":"3"}]
object? | f
array? | t
array w. UK? | f
array w/o UK? | t

 Table 9.49, “JSON Processing Functions” shows the functions that
 are available for processing json and jsonb values.

Table 9.49. JSON Processing Functions
	
 Function

 Description

 Example(s)

	

 json_array_elements (json)
 setof json

 jsonb_array_elements (jsonb)
 setof jsonb

 Expands the top-level JSON array into a set of JSON values.

 select * from json_array_elements('[1,true, [2,false]]')

 value

 1
 true
 [2,false]

	

 json_array_elements_text (json)
 setof text

 jsonb_array_elements_text (jsonb)
 setof text

 Expands the top-level JSON array into a set of text values.

 select * from json_array_elements_text('["foo", "bar"]')

 value

 foo
 bar

	

 json_array_length (json)
 integer

 jsonb_array_length (jsonb)
 integer

 Returns the number of elements in the top-level JSON array.

 json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]')
 5

 jsonb_array_length('[]')
 0

	

 json_each (json)
 setof record
 (key text,
 value json)

 jsonb_each (jsonb)
 setof record
 (key text,
 value jsonb)

 Expands the top-level JSON object into a set of key/value pairs.

 select * from json_each('{"a":"foo", "b":"bar"}')

 key | value
-----+-------
 a | "foo"
 b | "bar"

	

 json_each_text (json)
 setof record
 (key text,
 value text)

 jsonb_each_text (jsonb)
 setof record
 (key text,
 value text)

 Expands the top-level JSON object into a set of key/value pairs.
 The returned values will be of
 type text.

 select * from json_each_text('{"a":"foo", "b":"bar"}')

 key | value
-----+-------
 a | foo
 b | bar

	

 json_extract_path (from_json json, VARIADIC path_elems text[])
 json

 jsonb_extract_path (from_json jsonb, VARIADIC path_elems text[])
 jsonb

 Extracts JSON sub-object at the specified path.
 (This is functionally equivalent to the #>
 operator, but writing the path out as a variadic list can be more
 convenient in some cases.)

 json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6')
 "foo"

	

 json_extract_path_text (from_json json, VARIADIC path_elems text[])
 text

 jsonb_extract_path_text (from_json jsonb, VARIADIC path_elems text[])
 text

 Extracts JSON sub-object at the specified path as text.
 (This is functionally equivalent to the #>>
 operator.)

 json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6')
 foo

	

 json_object_keys (json)
 setof text

 jsonb_object_keys (jsonb)
 setof text

 Returns the set of keys in the top-level JSON object.

 select * from json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}')

 json_object_keys

 f1
 f2

	

 json_populate_record (base anyelement, from_json json)
 anyelement

 jsonb_populate_record (base anyelement, from_json jsonb)
 anyelement

 Expands the top-level JSON object to a row having the composite type
 of the base argument. The JSON object
 is scanned for fields whose names match column names of the output row
 type, and their values are inserted into those columns of the output.
 (Fields that do not correspond to any output column name are ignored.)
 In typical use, the value of base is just
 NULL, which means that any output columns that do
 not match any object field will be filled with nulls. However,
 if base isn't NULL then
 the values it contains will be used for unmatched columns.

 To convert a JSON value to the SQL type of an output column, the
 following rules are applied in sequence:

	
 A JSON null value is converted to an SQL null in all cases.

	
 If the output column is of type json
 or jsonb, the JSON value is just reproduced exactly.

	
 If the output column is a composite (row) type, and the JSON value
 is a JSON object, the fields of the object are converted to columns
 of the output row type by recursive application of these rules.

	
 Likewise, if the output column is an array type and the JSON value
 is a JSON array, the elements of the JSON array are converted to
 elements of the output array by recursive application of these
 rules.

	
 Otherwise, if the JSON value is a string, the contents of the
 string are fed to the input conversion function for the column's
 data type.

	
 Otherwise, the ordinary text representation of the JSON value is
 fed to the input conversion function for the column's data type.

 While the example below uses a constant JSON value, typical use would
 be to reference a json or jsonb column
 laterally from another table in the query's FROM
 clause. Writing json_populate_record in
 the FROM clause is good practice, since all of the
 extracted columns are available for use without duplicate function
 calls.

 create type subrowtype as (d int, e text);
 create type myrowtype as (a int, b text[], c subrowtype);

 select * from json_populate_record(null::myrowtype,
 '{"a": 1, "b": ["2", "a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo"}')

 a | b | c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")

	

 json_populate_recordset (base anyelement, from_json json)
 setof anyelement

 jsonb_populate_recordset (base anyelement, from_json jsonb)
 setof anyelement

 Expands the top-level JSON array of objects to a set of rows having
 the composite type of the base argument.
 Each element of the JSON array is processed as described above
 for json[b]_populate_record.

 create type twoints as (a int, b int);

 select * from json_populate_recordset(null::twoints, '[{"a":1,"b":2}, {"a":3,"b":4}]')

 a | b
---+---
 1 | 2
 3 | 4

	

 json_to_record (json)
 record

 jsonb_to_record (jsonb)
 record

 Expands the top-level JSON object to a row having the composite type
 defined by an AS clause. (As with all functions
 returning record, the calling query must explicitly
 define the structure of the record with an AS
 clause.) The output record is filled from fields of the JSON object,
 in the same way as described above
 for json[b]_populate_record. Since there is no
 input record value, unmatched columns are always filled with nulls.

 create type myrowtype as (a int, b text);

 select * from json_to_record('{"a":1,"b":[1,2,3],"c":[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text, c int[], d text, r myrowtype)

 a | b | c | d | r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} | | (123,"a b c")

	

 json_to_recordset (json)
 setof record

 jsonb_to_recordset (jsonb)
 setof record

 Expands the top-level JSON array of objects to a set of rows having
 the composite type defined by an AS clause. (As
 with all functions returning record, the calling query
 must explicitly define the structure of the record with
 an AS clause.) Each element of the JSON array is
 processed as described above
 for json[b]_populate_record.

 select * from json_to_recordset('[{"a":1,"b":"foo"}, {"a":"2","c":"bar"}]') as x(a int, b text)

 a | b
---+-----
 1 | foo
 2 |

	

 jsonb_set (target jsonb, path text[], new_value jsonb [, create_if_missing boolean])
 jsonb

 Returns target
 with the item designated by path
 replaced by new_value, or with
 new_value added if
 create_if_missing is true (which is the
 default) and the item designated by path
 does not exist.
 All earlier steps in the path must exist, or
 the target is returned unchanged.
 As with the path oriented operators, negative integers that
 appear in the path count from the end
 of JSON arrays.
 If the last path step is an array index that is out of range,
 and create_if_missing is true, the new
 value is added at the beginning of the array if the index is negative,
 or at the end of the array if it is positive.

 jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]', false)
 [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]

 jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]')
 [{"f1": 1, "f2": null, "f3": [2, 3, 4]}, 2]

	

 jsonb_set_lax (target jsonb, path text[], new_value jsonb [, create_if_missing boolean [, null_value_treatment text]])
 jsonb

 If new_value is not NULL,
 behaves identically to jsonb_set. Otherwise behaves
 according to the value
 of null_value_treatment which must be one
 of 'raise_exception',
 'use_json_null', 'delete_key', or
 'return_target'. The default is
 'use_json_null'.

 jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null)
 [{"f1": null, "f2": null}, 2, null, 3]

 jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true, 'return_target')
 [{"f1": 99, "f2": null}, 2]

	

 jsonb_insert (target jsonb, path text[], new_value jsonb [, insert_after boolean])
 jsonb

 Returns target
 with new_value inserted. If the item
 designated by the path is an array
 element, new_value will be inserted before
 that item if insert_after is false (which
 is the default), or after it
 if insert_after is true. If the item
 designated by the path is an object
 field, new_value will be inserted only if
 the object does not already contain that key.
 All earlier steps in the path must exist, or
 the target is returned unchanged.
 As with the path oriented operators, negative integers that
 appear in the path count from the end
 of JSON arrays.
 If the last path step is an array index that is out of range, the new
 value is added at the beginning of the array if the index is negative,
 or at the end of the array if it is positive.

 jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"')
 {"a": [0, "new_value", 1, 2]}

 jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true)
 {"a": [0, 1, "new_value", 2]}

	

 json_strip_nulls (json)
 json

 jsonb_strip_nulls (jsonb)
 jsonb

 Deletes all object fields that have null values from the given JSON
 value, recursively. Null values that are not object fields are
 untouched.

 json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]')
 [{"f1":1},2,null,3]

	

 jsonb_path_exists (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 boolean

 Checks whether the JSON path returns any item for the specified JSON
 value.
 If the vars argument is specified, it must
 be a JSON object, and its fields provide named values to be
 substituted into the jsonpath expression.
 If the silent argument is specified and
 is true, the function suppresses the same errors
 as the @? and @@ operators do.

 jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
 t

	

 jsonb_path_match (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 boolean

 Returns the result of a JSON path predicate check for the specified
 JSON value. Only the first item of the result is taken into account.
 If the result is not Boolean, then NULL is returned.
 The optional vars
 and silent arguments act the same as
 for jsonb_path_exists.

 jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min && @ <= $max))', '{"min":2, "max":4}')
 t

	

 jsonb_path_query (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 setof jsonb

 Returns all JSON items returned by the JSON path for the specified
 JSON value.
 The optional vars
 and silent arguments act the same as
 for jsonb_path_exists.

 select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')

 jsonb_path_query

 2
 3
 4

	

 jsonb_path_query_array (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 jsonb

 Returns all JSON items returned by the JSON path for the specified
 JSON value, as a JSON array.
 The optional vars
 and silent arguments act the same as
 for jsonb_path_exists.

 jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
 [2, 3, 4]

	

 jsonb_path_query_first (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 jsonb

 Returns the first JSON item returned by the JSON path for the
 specified JSON value. Returns NULL if there are no
 results.
 The optional vars
 and silent arguments act the same as
 for jsonb_path_exists.

 jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
 2

	

 jsonb_path_exists_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 boolean

 jsonb_path_match_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 boolean

 jsonb_path_query_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 setof jsonb

 jsonb_path_query_array_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 jsonb

 jsonb_path_query_first_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])
 jsonb

 These functions act like their counterparts described above without
 the _tz suffix, except that these functions support
 comparisons of date/time values that require timezone-aware
 conversions. The example below requires interpretation of the
 date-only value 2015-08-02 as a timestamp with time
 zone, so the result depends on the current
 TimeZone setting. Due to this dependency, these
 functions are marked as stable, which means these functions cannot be
 used in indexes. Their counterparts are immutable, and so can be used
 in indexes; but they will throw errors if asked to make such
 comparisons.

 jsonb_path_exists_tz('["2015-08-01 12:00:00-05"]', '$[*] ? (@.datetime() < "2015-08-02".datetime())')
 t

	

 jsonb_pretty (jsonb)
 text

 Converts the given JSON value to pretty-printed, indented text.

 jsonb_pretty('[{"f1":1,"f2":null}, 2]')

[
 {
 "f1": 1,
 "f2": null
 },
 2
]

	

 json_typeof (json)
 text

 jsonb_typeof (jsonb)
 text

 Returns the type of the top-level JSON value as a text string.
 Possible types are
 object, array,
 string, number,
 boolean, and null.
 (The null result should not be confused
 with an SQL NULL; see the examples.)

 json_typeof('-123.4')
 number

 json_typeof('null'::json)
 null

 json_typeof(NULL::json) IS NULL
 t

The SQL/JSON Path Language

 SQL/JSON path expressions specify the items to be retrieved
 from the JSON data, similar to XPath expressions used
 for SQL access to XML. In PostgreSQL™,
 path expressions are implemented as the jsonpath
 data type and can use any elements described in
 the section called “jsonpath Type”.

 JSON query functions and operators
 pass the provided path expression to the path engine
 for evaluation. If the expression matches the queried JSON data,
 the corresponding JSON item, or set of items, is returned.
 Path expressions are written in the SQL/JSON path language
 and can include arithmetic expressions and functions.

 A path expression consists of a sequence of elements allowed
 by the jsonpath data type.
 The path expression is normally evaluated from left to right, but
 you can use parentheses to change the order of operations.
 If the evaluation is successful, a sequence of JSON items is produced,
 and the evaluation result is returned to the JSON query function
 that completes the specified computation.

 To refer to the JSON value being queried (the
 context item), use the $ variable
 in the path expression. It can be followed by one or more
 accessor operators,
 which go down the JSON structure level by level to retrieve sub-items
 of the context item. Each operator that follows deals with the
 result of the previous evaluation step.

 For example, suppose you have some JSON data from a GPS tracker that you
 would like to parse, such as:

{
 "track": {
 "segments": [
 {
 "location": [47.763, 13.4034],
 "start time": "2018-10-14 10:05:14",
 "HR": 73
 },
 {
 "location": [47.706, 13.2635],
 "start time": "2018-10-14 10:39:21",
 "HR": 135
 }
]
 }
}

 To retrieve the available track segments, you need to use the
 .key accessor
 operator to descend through surrounding JSON objects:

$.track.segments

 To retrieve the contents of an array, you typically use the
 [*] operator. For example,
 the following path will return the location coordinates for all
 the available track segments:

$.track.segments[*].location

 To return the coordinates of the first segment only, you can
 specify the corresponding subscript in the []
 accessor operator. Recall that JSON array indexes are 0-relative:

$.track.segments[0].location

 The result of each path evaluation step can be processed
 by one or more jsonpath operators and methods
 listed in the section called “SQL/JSON Path Operators and Methods”.
 Each method name must be preceded by a dot. For example,
 you can get the size of an array:

$.track.segments.size()

 More examples of using jsonpath operators
 and methods within path expressions appear below in
 the section called “SQL/JSON Path Operators and Methods”.

 When defining a path, you can also use one or more
 filter expressions that work similarly to the
 WHERE clause in SQL. A filter expression begins with
 a question mark and provides a condition in parentheses:

? (condition)

 Filter expressions must be written just after the path evaluation step
 to which they should apply. The result of that step is filtered to include
 only those items that satisfy the provided condition. SQL/JSON defines
 three-valued logic, so the condition can be true, false,
 or unknown. The unknown value
 plays the same role as SQL NULL and can be tested
 for with the is unknown predicate. Further path
 evaluation steps use only those items for which the filter expression
 returned true.

 The functions and operators that can be used in filter expressions are
 listed in Table 9.51, “jsonpath Filter Expression Elements”. Within a
 filter expression, the @ variable denotes the value
 being filtered (i.e., one result of the preceding path step). You can
 write accessor operators after @ to retrieve component
 items.

 For example, suppose you would like to retrieve all heart rate values higher
 than 130. You can achieve this using the following expression:

$.track.segments[*].HR ? (@ > 130)

 To get the start times of segments with such values, you have to
 filter out irrelevant segments before returning the start times, so the
 filter expression is applied to the previous step, and the path used
 in the condition is different:

$.track.segments[*] ? (@.HR > 130)."start time"

 You can use several filter expressions in sequence, if required. For
 example, the following expression selects start times of all segments that
 contain locations with relevant coordinates and high heart rate values:

$.track.segments[*] ? (@.location[1] < 13.4) ? (@.HR > 130)."start time"

 Using filter expressions at different nesting levels is also allowed.
 The following example first filters all segments by location, and then
 returns high heart rate values for these segments, if available:

$.track.segments[*] ? (@.location[1] < 13.4).HR ? (@ > 130)

 You can also nest filter expressions within each other:

$.track ? (exists(@.segments[*] ? (@.HR > 130))).segments.size()

 This expression returns the size of the track if it contains any
 segments with high heart rate values, or an empty sequence otherwise.

 PostgreSQL™'s implementation of the SQL/JSON path
 language has the following deviations from the SQL/JSON standard:

	
 A path expression can be a Boolean predicate, although the SQL/JSON
 standard allows predicates only in filters. This is necessary for
 implementation of the @@ operator. For example,
 the following jsonpath expression is valid in
 PostgreSQL™:

$.track.segments[*].HR < 70

	
 There are minor differences in the interpretation of regular
 expression patterns used in like_regex filters, as
 described in the section called “SQL/JSON Regular Expressions”.

Strict and Lax Modes

 When you query JSON data, the path expression may not match the
 actual JSON data structure. An attempt to access a non-existent
 member of an object or element of an array results in a
 structural error. SQL/JSON path expressions have two modes
 of handling structural errors:

	
 lax (default) — the path engine implicitly adapts
 the queried data to the specified path.
 Any remaining structural errors are suppressed and converted
 to empty SQL/JSON sequences.

	
 strict — if a structural error occurs, an error is raised.

 The lax mode facilitates matching of a JSON document structure and path
 expression if the JSON data does not conform to the expected schema.
 If an operand does not match the requirements of a particular operation,
 it can be automatically wrapped as an SQL/JSON array or unwrapped by
 converting its elements into an SQL/JSON sequence before performing
 this operation. Besides, comparison operators automatically unwrap their
 operands in the lax mode, so you can compare SQL/JSON arrays
 out-of-the-box. An array of size 1 is considered equal to its sole element.
 Automatic unwrapping is not performed only when:

	
 The path expression contains type() or
 size() methods that return the type
 and the number of elements in the array, respectively.

	
 The queried JSON data contain nested arrays. In this case, only
 the outermost array is unwrapped, while all the inner arrays
 remain unchanged. Thus, implicit unwrapping can only go one
 level down within each path evaluation step.

 For example, when querying the GPS data listed above, you can
 abstract from the fact that it stores an array of segments
 when using the lax mode:

lax $.track.segments.location

 In the strict mode, the specified path must exactly match the structure of
 the queried JSON document to return an SQL/JSON item, so using this
 path expression will cause an error. To get the same result as in
 the lax mode, you have to explicitly unwrap the
 segments array:

strict $.track.segments[*].location

 The .** accessor can lead to surprising results
 when using the lax mode. For instance, the following query selects every
 HR value twice:

lax $.**.HR

 This happens because the .** accessor selects both
 the segments array and each of its elements, while
 the .HR accessor automatically unwraps arrays when
 using the lax mode. To avoid surprising results, we recommend using
 the .** accessor only in the strict mode. The
 following query selects each HR value just once:

strict $.**.HR

SQL/JSON Path Operators and Methods

 Table 9.50, “jsonpath Operators and Methods” shows the operators and
 methods available in jsonpath. Note that while the unary
 operators and methods can be applied to multiple values resulting from a
 preceding path step, the binary operators (addition etc.) can only be
 applied to single values.

Table 9.50. jsonpath Operators and Methods
	
 Operator/Method

 Description

 Example(s)

	
 number + number
 number

 Addition

 jsonb_path_query('[2]', '$[0] + 3')
 5

	
 + number
 number

 Unary plus (no operation); unlike addition, this can iterate over
 multiple values

 jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x')
 [2, 3, 4]

	
 number - number
 number

 Subtraction

 jsonb_path_query('[2]', '7 - $[0]')
 5

	
 - number
 number

 Negation; unlike subtraction, this can iterate over
 multiple values

 jsonb_path_query_array('{"x": [2,3,4]}', '- $.x')
 [-2, -3, -4]

	
 number * number
 number

 Multiplication

 jsonb_path_query('[4]', '2 * $[0]')
 8

	
 number / number
 number

 Division

 jsonb_path_query('[8.5]', '$[0] / 2')
 4.2500000000000000

	
 number % number
 number

 Modulo (remainder)

 jsonb_path_query('[32]', '$[0] % 10')
 2

	
 value . type()
 string

 Type of the JSON item (see json_typeof)

 jsonb_path_query_array('[1, "2", {}]', '$[*].type()')
 ["number", "string", "object"]

	
 value . size()
 number

 Size of the JSON item (number of array elements, or 1 if not an
 array)

 jsonb_path_query('{"m": [11, 15]}', '$.m.size()')
 2

	
 value . double()
 number

 Approximate floating-point number converted from a JSON number or
 string

 jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2')
 3.8

	
 number . ceiling()
 number

 Nearest integer greater than or equal to the given number

 jsonb_path_query('{"h": 1.3}', '$.h.ceiling()')
 2

	
 number . floor()
 number

 Nearest integer less than or equal to the given number

 jsonb_path_query('{"h": 1.7}', '$.h.floor()')
 1

	
 number . abs()
 number

 Absolute value of the given number

 jsonb_path_query('{"z": -0.3}', '$.z.abs()')
 0.3

	
 string . datetime()
 datetime_type
 (see note)

 Date/time value converted from a string

 jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.datetime() < "2015-08-2".datetime())')
 "2015-8-1"

	
 string . datetime(template)
 datetime_type
 (see note)

 Date/time value converted from a string using the
 specified to_timestamp template

 jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("HH24:MI")')
 ["12:30:00", "18:40:00"]

	
 object . keyvalue()
 array

 The object's key-value pairs, represented as an array of objects
 containing three fields: "key",
 "value", and "id";
 "id" is a unique identifier of the object the
 key-value pair belongs to

 jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()')
 [{"id": 0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "value": 32}]

Note

 The result type of the datetime() and
 datetime(template)
 methods can be date, timetz, time,
 timestamptz, or timestamp.
 Both methods determine their result type dynamically.

 The datetime() method sequentially tries to
 match its input string to the ISO formats
 for date, timetz, time,
 timestamptz, and timestamp. It stops on
 the first matching format and emits the corresponding data type.

 The datetime(template)
 method determines the result type according to the fields used in the
 provided template string.

 The datetime() and
 datetime(template) methods
 use the same parsing rules as the to_timestamp SQL
 function does (see the section called “Data Type Formatting Functions”), with three
 exceptions. First, these methods don't allow unmatched template
 patterns. Second, only the following separators are allowed in the
 template string: minus sign, period, solidus (slash), comma, apostrophe,
 semicolon, colon and space. Third, separators in the template string
 must exactly match the input string.

 If different date/time types need to be compared, an implicit cast is
 applied. A date value can be cast to timestamp
 or timestamptz, timestamp can be cast to
 timestamptz, and time to timetz.
 However, all but the first of these conversions depend on the current
 TimeZone setting, and thus can only be performed
 within timezone-aware jsonpath functions.

 Table 9.51, “jsonpath Filter Expression Elements” shows the available
 filter expression elements.

Table 9.51. jsonpath Filter Expression Elements
	
 Predicate/Value

 Description

 Example(s)

	
 value == value
 boolean

 Equality comparison (this, and the other comparison operators, work on
 all JSON scalar values)

 jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)')
 [1, 1]

 jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")')
 ["a"]

	
 value != value
 boolean

 value <> value
 boolean

 Non-equality comparison

 jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)')
 [2, 3]

 jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")')
 ["a", "c"]

	
 value < value
 boolean

 Less-than comparison

 jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)')
 [1]

	
 value <= value
 boolean

 Less-than-or-equal-to comparison

 jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")')
 ["a", "b"]

	
 value > value
 boolean

 Greater-than comparison

 jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)')
 [3]

	
 value >= value
 boolean

 Greater-than-or-equal-to comparison

 jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)')
 [2, 3]

	
 true
 boolean

 JSON constant true

 jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == true)')
 {"name": "Chris", "parent": true}

	
 false
 boolean

 JSON constant false

 jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == false)')
 {"name": "John", "parent": false}

	
 null
 value

 JSON constant null (note that, unlike in SQL,
 comparison to null works normally)

 jsonb_path_query('[{"name": "Mary", "job": null}, {"name": "Michael", "job": "driver"}]', '$[*] ? (@.job == null) .name')
 "Mary"

	
 boolean && boolean
 boolean

 Boolean AND

 jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)')
 3

	
 boolean || boolean
 boolean

 Boolean OR

 jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)')
 7

	
 ! boolean
 boolean

 Boolean NOT

 jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))')
 7

	
 boolean is unknown
 boolean

 Tests whether a Boolean condition is unknown.

 jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is unknown)')
 "foo"

	
 string like_regex string [flag string]
 boolean

 Tests whether the first operand matches the regular expression
 given by the second operand, optionally with modifications
 described by a string of flag characters (see
 the section called “SQL/JSON Regular Expressions”).

 jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c")')
 ["abc", "abdacb"]

 jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c" flag "i")')
 ["abc", "aBdC", "abdacb"]

	
 string starts with string
 boolean

 Tests whether the second operand is an initial substring of the first
 operand.

 jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]', '$[*] ? (@ starts with "John")')
 "John Smith"

	
 exists (path_expression)
 boolean

 Tests whether a path expression matches at least one SQL/JSON item.
 Returns unknown if the path expression would result
 in an error; the second example uses this to avoid a no-such-key error
 in strict mode.

 jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists (@ ? (@[*] > 2)))')
 [2, 4]

 jsonb_path_query_array('{"value": 41}', 'strict $? (exists (@.name)) .name')
 []

SQL/JSON Regular Expressions

 SQL/JSON path expressions allow matching text to a regular expression
 with the like_regex filter. For example, the
 following SQL/JSON path query would case-insensitively match all
 strings in an array that start with an English vowel:

$[*] ? (@ like_regex "^[aeiou]" flag "i")

 The optional flag string may include one or more of
 the characters
 i for case-insensitive match,
 m to allow ^
 and $ to match at newlines,
 s to allow . to match a newline,
 and q to quote the whole pattern (reducing the
 behavior to a simple substring match).

 The SQL/JSON standard borrows its definition for regular expressions
 from the LIKE_REGEX operator, which in turn uses the
 XQuery standard. PostgreSQL does not currently support the
 LIKE_REGEX operator. Therefore,
 the like_regex filter is implemented using the
 POSIX regular expression engine described in
 the section called “POSIX Regular Expressions”. This leads to various minor
 discrepancies from standard SQL/JSON behavior, which are cataloged in
 the section called “Differences from SQL Standard and XQuery”.
 Note, however, that the flag-letter incompatibilities described there
 do not apply to SQL/JSON, as it translates the XQuery flag letters to
 match what the POSIX engine expects.

 Keep in mind that the pattern argument of like_regex
 is a JSON path string literal, written according to the rules given in
 the section called “jsonpath Type”. This means in particular that any
 backslashes you want to use in the regular expression must be doubled.
 For example, to match string values of the root document that contain
 only digits:

$.* ? (@ like_regex "^\\d+$")

Sequence Manipulation Functions

 This section describes functions for operating on sequence
 objects, also called sequence generators or just sequences.
 Sequence objects are special single-row tables created with CREATE SEQUENCE(7).
 Sequence objects are commonly used to generate unique identifiers
 for rows of a table. The sequence functions, listed in Table 9.52, “Sequence Functions”, provide simple, multiuser-safe
 methods for obtaining successive sequence values from sequence
 objects.

Table 9.52. Sequence Functions
	
 Function

 Description

	

 nextval (regclass)
 bigint

 Advances the sequence object to its next value and returns that value.
 This is done atomically: even if multiple sessions
 execute nextval concurrently, each will safely
 receive a distinct sequence value.
 If the sequence object has been created with default parameters,
 successive nextval calls will return successive
 values beginning with 1. Other behaviors can be obtained by using
 appropriate parameters in the CREATE SEQUENCE(7)
 command.

 This function requires USAGE
 or UPDATE privilege on the sequence.

	

 setval (regclass, bigint [, boolean])
 bigint

 Sets the sequence object's current value, and optionally
 its is_called flag. The two-parameter
 form sets the sequence's last_value field to the
 specified value and sets its is_called field to
 true, meaning that the next
 nextval will advance the sequence before
 returning a value. The value that will be reported
 by currval is also set to the specified value.
 In the three-parameter form, is_called can be set
 to either true
 or false. true has the same
 effect as the two-parameter form. If it is set
 to false, the next nextval
 will return exactly the specified value, and sequence advancement
 commences with the following nextval.
 Furthermore, the value reported by currval is not
 changed in this case. For example,

SELECT setval('myseq', 42); Next nextval will return 43
SELECT setval('myseq', 42, true); Same as above
SELECT setval('myseq', 42, false); Next nextval will return 42

 The result returned by setval is just the value of its
 second argument.

 This function requires UPDATE privilege on the
 sequence.

	

 currval (regclass)
 bigint

 Returns the value most recently obtained
 by nextval for this sequence in the current
 session. (An error is reported if nextval has
 never been called for this sequence in this session.) Because this is
 returning a session-local value, it gives a predictable answer whether
 or not other sessions have executed nextval since
 the current session did.

 This function requires USAGE
 or SELECT privilege on the sequence.

	

 lastval ()
 bigint

 Returns the value most recently returned by
 nextval in the current session. This function is
 identical to currval, except that instead
 of taking the sequence name as an argument it refers to whichever
 sequence nextval was most recently applied to
 in the current session. It is an error to call
 lastval if nextval
 has not yet been called in the current session.

 This function requires USAGE
 or SELECT privilege on the last used sequence.

Caution

 To avoid blocking concurrent transactions that obtain numbers from
 the same sequence, the value obtained by nextval
 is not reclaimed for re-use if the calling transaction later aborts.
 This means that transaction aborts or database crashes can result in
 gaps in the sequence of assigned values. That can happen without a
 transaction abort, too. For example an INSERT with
 an ON CONFLICT clause will compute the to-be-inserted
 tuple, including doing any required nextval
 calls, before detecting any conflict that would cause it to follow
 the ON CONFLICT rule instead.
 Thus, PostgreSQL™ sequence
 objects cannot be used to obtain “gapless”
 sequences.

 Likewise, sequence state changes made by setval
 are immediately visible to other transactions, and are not undone if
 the calling transaction rolls back.

 If the database cluster crashes before committing a transaction
 containing a nextval
 or setval call, the sequence state change might
 not have made its way to persistent storage, so that it is uncertain
 whether the sequence will have its original or updated state after the
 cluster restarts. This is harmless for usage of the sequence within
 the database, since other effects of uncommitted transactions will not
 be visible either. However, if you wish to use a sequence value for
 persistent outside-the-database purposes, make sure that the
 nextval call has been committed before doing so.

 The sequence to be operated on by a sequence function is specified by
 a regclass argument, which is simply the OID of the sequence in the
 pg_class system catalog. You do not have to look up the
 OID by hand, however, since the regclass data type's input
 converter will do the work for you. See the section called “Object Identifier Types”
 for details.

Conditional Expressions

 This section describes the SQL-compliant conditional expressions
 available in PostgreSQL™.

Tip

 If your needs go beyond the capabilities of these conditional
 expressions, you might want to consider writing a server-side function
 in a more expressive programming language.

Note

 Although COALESCE, GREATEST, and
 LEAST are syntactically similar to functions, they are
 not ordinary functions, and thus cannot be used with explicit
 VARIADIC array arguments.

CASE

 The SQL CASE expression is a
 generic conditional expression, similar to if/else statements in
 other programming languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

 CASE clauses can be used wherever
 an expression is valid. Each condition is an
 expression that returns a boolean result. If the condition's
 result is true, the value of the CASE expression is the
 result that follows the condition, and the
 remainder of the CASE expression is not processed. If the
 condition's result is not true, any subsequent WHEN clauses
 are examined in the same manner. If no WHEN
 condition yields true, the value of the
 CASE expression is the result of the
 ELSE clause. If the ELSE clause is
 omitted and no condition is true, the result is null.

 An example:

SELECT * FROM test;

 a

 1
 2
 3

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

 The data types of all the result
 expressions must be convertible to a single output type.
 See the section called “UNION, CASE, and Related Constructs” for more details.

 There is a “simple” form of CASE expression
 that is a variant of the general form above:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

 The first
 expression is computed, then compared to
 each of the value expressions in the
 WHEN clauses until one is found that is equal to it. If
 no match is found, the result of the
 ELSE clause (or a null value) is returned. This is similar
 to the switch statement in C.

 The example above can be written using the simple
 CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

 A CASE expression does not evaluate any subexpressions
 that are not needed to determine the result. For example, this is a
 possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note

 As described in the section called “Expression Evaluation Rules”, there are various
 situations in which subexpressions of an expression are evaluated at
 different times, so that the principle that “CASE
 evaluates only necessary subexpressions” is not ironclad. For
 example a constant 1/0 subexpression will usually result in
 a division-by-zero failure at planning time, even if it's within
 a CASE arm that would never be entered at run time.

COALESCE

COALESCE(value [, ...])

 The COALESCE function returns the first of its
 arguments that is not null. Null is returned only if all arguments
 are null. It is often used to substitute a default value for
 null values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

 This returns description if it is not null, otherwise
 short_description if it is not null, otherwise (none).

 The arguments must all be convertible to a common data type, which
 will be the type of the result (see
 the section called “UNION, CASE, and Related Constructs” for details).

 Like a CASE expression, COALESCE only
 evaluates the arguments that are needed to determine the result;
 that is, arguments to the right of the first non-null argument are
 not evaluated. This SQL-standard function provides capabilities similar
 to NVL and IFNULL, which are used in some other
 database systems.

NULLIF

NULLIF(value1, value2)

 The NULLIF function returns a null value if
 value1 equals value2;
 otherwise it returns value1.
 This can be used to perform the inverse operation of the
 COALESCE example given above:

SELECT NULLIF(value, '(none)') ...

 In this example, if value is (none),
 null is returned, otherwise the value of value
 is returned.

 The two arguments must be of comparable types.
 To be specific, they are compared exactly as if you had
 written value1
 = value2, so there must be a
 suitable = operator available.

 The result has the same type as the first argument — but there is
 a subtlety. What is actually returned is the first argument of the
 implied = operator, and in some cases that will have
 been promoted to match the second argument's type. For
 example, NULLIF(1, 2.2) yields numeric,
 because there is no integer =
 numeric operator,
 only numeric = numeric.

GREATEST and LEAST

GREATEST(value [, ...])

LEAST(value [, ...])

 The GREATEST and LEAST functions select the
 largest or smallest value from a list of any number of expressions.
 The expressions must all be convertible to a common data type, which
 will be the type of the result
 (see the section called “UNION, CASE, and Related Constructs” for details).

 NULL values in the argument list are ignored. The result will be NULL
 only if all the expressions evaluate to NULL. (This is a deviation from
 the SQL standard. According to the standard, the return value is NULL if
 any argument is NULL. Some other databases behave this way.)

Array Functions and Operators

 Table 9.53, “Array Operators” shows the specialized operators
 available for array types.
 In addition to those, the usual comparison operators shown in Table 9.1, “Comparison Operators” are available for
 arrays. The comparison operators compare the array contents
 element-by-element, using the default B-tree comparison function for
 the element data type, and sort based on the first difference.
 In multidimensional arrays the elements are visited in row-major order
 (last subscript varies most rapidly).
 If the contents of two arrays are equal but the dimensionality is
 different, the first difference in the dimensionality information
 determines the sort order.

Table 9.53. Array Operators
	
 Operator

 Description

 Example(s)

	
 anyarray @> anyarray
 boolean

 Does the first array contain the second, that is, does each element
 appearing in the second array equal some element of the first array?
 (Duplicates are not treated specially,
 thus ARRAY[1] and ARRAY[1,1] are
 each considered to contain the other.)

 ARRAY[1,4,3] @> ARRAY[3,1,3]
 t

	
 anyarray <@ anyarray
 boolean

 Is the first array contained by the second?

 ARRAY[2,2,7] <@ ARRAY[1,7,4,2,6]
 t

	
 anyarray && anyarray
 boolean

 Do the arrays overlap, that is, have any elements in common?

 ARRAY[1,4,3] && ARRAY[2,1]
 t

	
 anycompatiblearray || anycompatiblearray
 anycompatiblearray

 Concatenates the two arrays. Concatenating a null or empty array is a
 no-op; otherwise the arrays must have the same number of dimensions
 (as illustrated by the first example) or differ in number of
 dimensions by one (as illustrated by the second).
 If the arrays are not of identical element types, they will be coerced
 to a common type (see the section called “UNION, CASE, and Related Constructs”).

 ARRAY[1,2,3] || ARRAY[4,5,6,7]
 {1,2,3,4,5,6,7}

 ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]]
 {{1,2,3},{4,5,6},{7,8,9.9}}

	
 anycompatible || anycompatiblearray
 anycompatiblearray

 Concatenates an element onto the front of an array (which must be
 empty or one-dimensional).

 3 || ARRAY[4,5,6]
 {3,4,5,6}

	
 anycompatiblearray || anycompatible
 anycompatiblearray

 Concatenates an element onto the end of an array (which must be
 empty or one-dimensional).

 ARRAY[4,5,6] || 7
 {4,5,6,7}

 See the section called “Arrays” for more details about array operator
 behavior. See the section called “Index Types” for more details about
 which operators support indexed operations.

 Table 9.54, “Array Functions” shows the functions
 available for use with array types. See the section called “Arrays”
 for more information and examples of the use of these functions.

Table 9.54. Array Functions
	
 Function

 Description

 Example(s)

	

 array_append (anycompatiblearray, anycompatible)
 anycompatiblearray

 Appends an element to the end of an array (same as
 the anycompatiblearray || anycompatible
 operator).

 array_append(ARRAY[1,2], 3)
 {1,2,3}

	

 array_cat (anycompatiblearray, anycompatiblearray)
 anycompatiblearray

 Concatenates two arrays (same as
 the anycompatiblearray || anycompatiblearray
 operator).

 array_cat(ARRAY[1,2,3], ARRAY[4,5])
 {1,2,3,4,5}

	

 array_dims (anyarray)
 text

 Returns a text representation of the array's dimensions.

 array_dims(ARRAY[[1,2,3], [4,5,6]])
 [1:2][1:3]

	

 array_fill (anyelement, integer[]
 [, integer[]])
 anyarray

 Returns an array filled with copies of the given value, having
 dimensions of the lengths specified by the second argument.
 The optional third argument supplies lower-bound values for each
 dimension (which default to all 1).

 array_fill(11, ARRAY[2,3])
 {{11,11,11},{11,11,11}}

 array_fill(7, ARRAY[3], ARRAY[2])
 [2:4]={7,7,7}

	

 array_length (anyarray, integer)
 integer

 Returns the length of the requested array dimension.
 (Produces NULL instead of 0 for empty or missing array dimensions.)

 array_length(array[1,2,3], 1)
 3

 array_length(array[]::int[], 1)
 NULL

 array_length(array['text'], 2)
 NULL

	

 array_lower (anyarray, integer)
 integer

 Returns the lower bound of the requested array dimension.

 array_lower('[0:2]={1,2,3}'::integer[], 1)
 0

	

 array_ndims (anyarray)
 integer

 Returns the number of dimensions of the array.

 array_ndims(ARRAY[[1,2,3], [4,5,6]])
 2

	

 array_position (anycompatiblearray, anycompatible [, integer])
 integer

 Returns the subscript of the first occurrence of the second argument
 in the array, or NULL if it's not present.
 If the third argument is given, the search begins at that subscript.
 The array must be one-dimensional.
 Comparisons are done using IS NOT DISTINCT FROM
 semantics, so it is possible to search for NULL.

 array_position(ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'], 'mon')
 2

	

 array_positions (anycompatiblearray, anycompatible)
 integer[]

 Returns an array of the subscripts of all occurrences of the second
 argument in the array given as first argument.
 The array must be one-dimensional.
 Comparisons are done using IS NOT DISTINCT FROM
 semantics, so it is possible to search for NULL.
 NULL is returned only if the array
 is NULL; if the value is not found in the array, an
 empty array is returned.

 array_positions(ARRAY['A','A','B','A'], 'A')
 {1,2,4}

	

 array_prepend (anycompatible, anycompatiblearray)
 anycompatiblearray

 Prepends an element to the beginning of an array (same as
 the anycompatible || anycompatiblearray
 operator).

 array_prepend(1, ARRAY[2,3])
 {1,2,3}

	

 array_remove (anycompatiblearray, anycompatible)
 anycompatiblearray

 Removes all elements equal to the given value from the array.
 The array must be one-dimensional.
 Comparisons are done using IS NOT DISTINCT FROM
 semantics, so it is possible to remove NULLs.

 array_remove(ARRAY[1,2,3,2], 2)
 {1,3}

	

 array_replace (anycompatiblearray, anycompatible, anycompatible)
 anycompatiblearray

 Replaces each array element equal to the second argument with the
 third argument.

 array_replace(ARRAY[1,2,5,4], 5, 3)
 {1,2,3,4}

	

 array_sample (array anyarray, n integer)
 anyarray

 Returns an array of n items randomly selected
 from array. n may not
 exceed the length of array's first dimension.
 If array is multi-dimensional,
 an “item” is a slice having a given first subscript.

 array_sample(ARRAY[1,2,3,4,5,6], 3)
 {2,6,1}

 array_sample(ARRAY[[1,2],[3,4],[5,6]], 2)
 {{5,6},{1,2}}

	

 array_shuffle (anyarray)
 anyarray

 Randomly shuffles the first dimension of the array.

 array_shuffle(ARRAY[[1,2],[3,4],[5,6]])
 {{5,6},{1,2},{3,4}}

	

 array_to_string (array anyarray, delimiter text [, null_string text])
 text

 Converts each array element to its text representation, and
 concatenates those separated by
 the delimiter string.
 If null_string is given and is
 not NULL, then NULL array
 entries are represented by that string; otherwise, they are omitted.
 See also string_to_array.

 array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*')
 1,2,3,*,5

	

 array_upper (anyarray, integer)
 integer

 Returns the upper bound of the requested array dimension.

 array_upper(ARRAY[1,8,3,7], 1)
 4

	

 cardinality (anyarray)
 integer

 Returns the total number of elements in the array, or 0 if the array
 is empty.

 cardinality(ARRAY[[1,2],[3,4]])
 4

	

 trim_array (array anyarray, n integer)
 anyarray

 Trims an array by removing the last n elements.
 If the array is multidimensional, only the first dimension is trimmed.

 trim_array(ARRAY[1,2,3,4,5,6], 2)
 {1,2,3,4}

	

 unnest (anyarray)
 setof anyelement

 Expands an array into a set of rows.
 The array's elements are read out in storage order.

 unnest(ARRAY[1,2])

 1
 2

 unnest(ARRAY[['foo','bar'],['baz','quux']])

 foo
 bar
 baz
 quux

	
 unnest (anyarray, anyarray [, ...])
 setof anyelement, anyelement [, ...]

 Expands multiple arrays (possibly of different data types) into a set of
 rows. If the arrays are not all the same length then the shorter ones
 are padded with NULLs. This form is only allowed
 in a query's FROM clause; see the section called “Table Functions”.

 select * from unnest(ARRAY[1,2], ARRAY['foo','bar','baz']) as x(a,b)

 a | b
---+-----
 1 | foo
 2 | bar
 | baz

 See also the section called “Aggregate Functions” about the aggregate
 function array_agg for use with arrays.

Range/Multirange Functions and Operators

 See the section called “Range Types” for an overview of range types.

 Table 9.55, “Range Operators” shows the specialized operators
 available for range types.
 Table 9.56, “Multirange Operators” shows the specialized operators
 available for multirange types.
 In addition to those, the usual comparison operators shown in
 Table 9.1, “Comparison Operators” are available for range
 and multirange types. The comparison operators order first by the range lower
 bounds, and only if those are equal do they compare the upper bounds. The
 multirange operators compare each range until one is unequal. This
 does not usually result in a useful overall ordering, but the operators are
 provided to allow unique indexes to be constructed on ranges.

Table 9.55. Range Operators
	
 Operator

 Description

 Example(s)

	
 anyrange @> anyrange
 boolean

 Does the first range contain the second?

 int4range(2,4) @> int4range(2,3)
 t

	
 anyrange @> anyelement
 boolean

 Does the range contain the element?

 '[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp
 t

	
 anyrange <@ anyrange
 boolean

 Is the first range contained by the second?

 int4range(2,4) <@ int4range(1,7)
 t

	
 anyelement <@ anyrange
 boolean

 Is the element contained in the range?

 42 <@ int4range(1,7)
 f

	
 anyrange && anyrange
 boolean

 Do the ranges overlap, that is, have any elements in common?

 int8range(3,7) && int8range(4,12)
 t

	
 anyrange << anyrange
 boolean

 Is the first range strictly left of the second?

 int8range(1,10) << int8range(100,110)
 t

	
 anyrange >> anyrange
 boolean

 Is the first range strictly right of the second?

 int8range(50,60) >> int8range(20,30)
 t

	
 anyrange &< anyrange
 boolean

 Does the first range not extend to the right of the second?

 int8range(1,20) &< int8range(18,20)
 t

	
 anyrange &> anyrange
 boolean

 Does the first range not extend to the left of the second?

 int8range(7,20) &> int8range(5,10)
 t

	
 anyrange -|- anyrange
 boolean

 Are the ranges adjacent?

 numrange(1.1,2.2) -|- numrange(2.2,3.3)
 t

	
 anyrange + anyrange
 anyrange

 Computes the union of the ranges. The ranges must overlap or be
 adjacent, so that the union is a single range (but
 see range_merge()).

 numrange(5,15) + numrange(10,20)
 [5,20)

	
 anyrange * anyrange
 anyrange

 Computes the intersection of the ranges.

 int8range(5,15) * int8range(10,20)
 [10,15)

	
 anyrange - anyrange
 anyrange

 Computes the difference of the ranges. The second range must not be
 contained in the first in such a way that the difference would not be
 a single range.

 int8range(5,15) - int8range(10,20)
 [5,10)

Table 9.56. Multirange Operators
	
 Operator

 Description

 Example(s)

	
 anymultirange @> anymultirange
 boolean

 Does the first multirange contain the second?

 '{[2,4)}'::int4multirange @> '{[2,3)}'::int4multirange
 t

	
 anymultirange @> anyrange
 boolean

 Does the multirange contain the range?

 '{[2,4)}'::int4multirange @> int4range(2,3)
 t

	
 anymultirange @> anyelement
 boolean

 Does the multirange contain the element?

 '{[2011-01-01,2011-03-01)}'::tsmultirange @> '2011-01-10'::timestamp
 t

	
 anyrange @> anymultirange
 boolean

 Does the range contain the multirange?

 '[2,4)'::int4range @> '{[2,3)}'::int4multirange
 t

	
 anymultirange <@ anymultirange
 boolean

 Is the first multirange contained by the second?

 '{[2,4)}'::int4multirange <@ '{[1,7)}'::int4multirange
 t

	
 anymultirange <@ anyrange
 boolean

 Is the multirange contained by the range?

 '{[2,4)}'::int4multirange <@ int4range(1,7)
 t

	
 anyrange <@ anymultirange
 boolean

 Is the range contained by the multirange?

 int4range(2,4) <@ '{[1,7)}'::int4multirange
 t

	
 anyelement <@ anymultirange
 boolean

 Is the element contained by the multirange?

 4 <@ '{[1,7)}'::int4multirange
 t

	
 anymultirange && anymultirange
 boolean

 Do the multiranges overlap, that is, have any elements in common?

 '{[3,7)}'::int8multirange && '{[4,12)}'::int8multirange
 t

	
 anymultirange && anyrange
 boolean

 Does the multirange overlap the range?

 '{[3,7)}'::int8multirange && int8range(4,12)
 t

	
 anyrange && anymultirange
 boolean

 Does the range overlap the multirange?

 int8range(3,7) && '{[4,12)}'::int8multirange
 t

	
 anymultirange << anymultirange
 boolean

 Is the first multirange strictly left of the second?

 '{[1,10)}'::int8multirange << '{[100,110)}'::int8multirange
 t

	
 anymultirange << anyrange
 boolean

 Is the multirange strictly left of the range?

 '{[1,10)}'::int8multirange << int8range(100,110)
 t

	
 anyrange << anymultirange
 boolean

 Is the range strictly left of the multirange?

 int8range(1,10) << '{[100,110)}'::int8multirange
 t

	
 anymultirange >> anymultirange
 boolean

 Is the first multirange strictly right of the second?

 '{[50,60)}'::int8multirange >> '{[20,30)}'::int8multirange
 t

	
 anymultirange >> anyrange
 boolean

 Is the multirange strictly right of the range?

 '{[50,60)}'::int8multirange >> int8range(20,30)
 t

	
 anyrange >> anymultirange
 boolean

 Is the range strictly right of the multirange?

 int8range(50,60) >> '{[20,30)}'::int8multirange
 t

	
 anymultirange &< anymultirange
 boolean

 Does the first multirange not extend to the right of the second?

 '{[1,20)}'::int8multirange &< '{[18,20)}'::int8multirange
 t

	
 anymultirange &< anyrange
 boolean

 Does the multirange not extend to the right of the range?

 '{[1,20)}'::int8multirange &< int8range(18,20)
 t

	
 anyrange &< anymultirange
 boolean

 Does the range not extend to the right of the multirange?

 int8range(1,20) &< '{[18,20)}'::int8multirange
 t

	
 anymultirange &> anymultirange
 boolean

 Does the first multirange not extend to the left of the second?

 '{[7,20)}'::int8multirange &> '{[5,10)}'::int8multirange
 t

	
 anymultirange &> anyrange
 boolean

 Does the multirange not extend to the left of the range?

 '{[7,20)}'::int8multirange &> int8range(5,10)
 t

	
 anyrange &> anymultirange
 boolean

 Does the range not extend to the left of the multirange?

 int8range(7,20) &> '{[5,10)}'::int8multirange
 t

	
 anymultirange -|- anymultirange
 boolean

 Are the multiranges adjacent?

 '{[1.1,2.2)}'::nummultirange -|- '{[2.2,3.3)}'::nummultirange
 t

	
 anymultirange -|- anyrange
 boolean

 Is the multirange adjacent to the range?

 '{[1.1,2.2)}'::nummultirange -|- numrange(2.2,3.3)
 t

	
 anyrange -|- anymultirange
 boolean

 Is the range adjacent to the multirange?

 numrange(1.1,2.2) -|- '{[2.2,3.3)}'::nummultirange
 t

	
 anymultirange + anymultirange
 anymultirange

 Computes the union of the multiranges. The multiranges need not overlap
 or be adjacent.

 '{[5,10)}'::nummultirange + '{[15,20)}'::nummultirange
 {[5,10), [15,20)}

	
 anymultirange * anymultirange
 anymultirange

 Computes the intersection of the multiranges.

 '{[5,15)}'::int8multirange * '{[10,20)}'::int8multirange
 {[10,15)}

	
 anymultirange - anymultirange
 anymultirange

 Computes the difference of the multiranges.

 '{[5,20)}'::int8multirange - '{[10,15)}'::int8multirange
 {[5,10), [15,20)}

 The left-of/right-of/adjacent operators always return false when an empty
 range or multirange is involved; that is, an empty range is not considered to
 be either before or after any other range.

 Elsewhere empty ranges and multiranges are treated as the additive identity:
 anything unioned with an empty value is itself. Anything minus an empty
 value is itself. An empty multirange has exactly the same points as an empty
 range. Every range contains the empty range. Every multirange contains as many
 empty ranges as you like.

 The range union and difference operators will fail if the resulting range would
 need to contain two disjoint sub-ranges, as such a range cannot be
 represented. There are separate operators for union and difference that take
 multirange parameters and return a multirange, and they do not fail even if
 their arguments are disjoint. So if you need a union or difference operation
 for ranges that may be disjoint, you can avoid errors by first casting your
 ranges to multiranges.

 Table 9.57, “Range Functions” shows the functions
 available for use with range types.
 Table 9.58, “Multirange Functions” shows the functions
 available for use with multirange types.

Table 9.57. Range Functions
	
 Function

 Description

 Example(s)

	

 lower (anyrange)
 anyelement

 Extracts the lower bound of the range (NULL if the
 range is empty or has no lower bound).

 lower(numrange(1.1,2.2))
 1.1

	

 upper (anyrange)
 anyelement

 Extracts the upper bound of the range (NULL if the
 range is empty or has no upper bound).

 upper(numrange(1.1,2.2))
 2.2

	

 isempty (anyrange)
 boolean

 Is the range empty?

 isempty(numrange(1.1,2.2))
 f

	

 lower_inc (anyrange)
 boolean

 Is the range's lower bound inclusive?

 lower_inc(numrange(1.1,2.2))
 t

	

 upper_inc (anyrange)
 boolean

 Is the range's upper bound inclusive?

 upper_inc(numrange(1.1,2.2))
 f

	

 lower_inf (anyrange)
 boolean

 Does the range have no lower bound? (A lower bound of
 -Infinity returns false.)

 lower_inf('(,)'::daterange)
 t

	

 upper_inf (anyrange)
 boolean

 Does the range have no upper bound? (An upper bound of
 Infinity returns false.)

 upper_inf('(,)'::daterange)
 t

	

 range_merge (anyrange, anyrange)
 anyrange

 Computes the smallest range that includes both of the given ranges.

 range_merge('[1,2)'::int4range, '[3,4)'::int4range)
 [1,4)

Table 9.58. Multirange Functions
	
 Function

 Description

 Example(s)

	

 lower (anymultirange)
 anyelement

 Extracts the lower bound of the multirange (NULL if the
 multirange is empty has no lower bound).

 lower('{[1.1,2.2)}'::nummultirange)
 1.1

	

 upper (anymultirange)
 anyelement

 Extracts the upper bound of the multirange (NULL if the
 multirange is empty or has no upper bound).

 upper('{[1.1,2.2)}'::nummultirange)
 2.2

	

 isempty (anymultirange)
 boolean

 Is the multirange empty?

 isempty('{[1.1,2.2)}'::nummultirange)
 f

	

 lower_inc (anymultirange)
 boolean

 Is the multirange's lower bound inclusive?

 lower_inc('{[1.1,2.2)}'::nummultirange)
 t

	

 upper_inc (anymultirange)
 boolean

 Is the multirange's upper bound inclusive?

 upper_inc('{[1.1,2.2)}'::nummultirange)
 f

	

 lower_inf (anymultirange)
 boolean

 Does the multirange have no lower bound? (A lower bound of
 -Infinity returns false.)

 lower_inf('{(,)}'::datemultirange)
 t

	

 upper_inf (anymultirange)
 boolean

 Does the multirange have no upper bound? (An upper bound of
 Infinity returns false.)

 upper_inf('{(,)}'::datemultirange)
 t

	

 range_merge (anymultirange)
 anyrange

 Computes the smallest range that includes the entire multirange.

 range_merge('{[1,2), [3,4)}'::int4multirange)
 [1,4)

	

 multirange (anyrange)
 anymultirange

 Returns a multirange containing just the given range.

 multirange('[1,2)'::int4range)
 {[1,2)}

	

 unnest (anymultirange)
 setof anyrange

 Expands a multirange into a set of ranges.
 The ranges are read out in storage order (ascending).

 unnest('{[1,2), [3,4)}'::int4multirange)

 [1,2)
 [3,4)

 The lower_inc, upper_inc,
 lower_inf, and upper_inf
 functions all return false for an empty range or multirange.

Aggregate Functions

 Aggregate functions compute a single result
 from a set of input values. The built-in general-purpose aggregate
 functions are listed in Table 9.59, “General-Purpose Aggregate Functions”
 while statistical aggregates are in Table 9.60, “Aggregate Functions for Statistics”.
 The built-in within-group ordered-set aggregate functions
 are listed in Table 9.61, “Ordered-Set Aggregate Functions”
 while the built-in within-group hypothetical-set ones are in Table 9.62, “Hypothetical-Set Aggregate Functions”. Grouping operations,
 which are closely related to aggregate functions, are listed in
 Table 9.63, “Grouping Operations”.
 The special syntax considerations for aggregate
 functions are explained in the section called “Aggregate Expressions”.
 Consult the section called “Aggregate Functions” for additional introductory
 information.

 Aggregate functions that support Partial Mode
 are eligible to participate in various optimizations, such as parallel
 aggregation.

Table 9.59. General-Purpose Aggregate Functions
	
 Function

 Description

	Partial Mode
	

 any_value (anyelement)
 same as input type

 Returns an arbitrary value from the non-null input values.

	Yes
	

 array_agg (anynonarray)
 anyarray

 Collects all the input values, including nulls, into an array.

	Yes
	
 array_agg (anyarray)
 anyarray

 Concatenates all the input arrays into an array of one higher
 dimension. (The inputs must all have the same dimensionality, and
 cannot be empty or null.)

	Yes
	

 avg (smallint)
 numeric

 avg (integer)
 numeric

 avg (bigint)
 numeric

 avg (numeric)
 numeric

 avg (real)
 double precision

 avg (double precision)
 double precision

 avg (interval)
 interval

 Computes the average (arithmetic mean) of all the non-null input
 values.

	Yes
	

 bit_and (smallint)
 smallint

 bit_and (integer)
 integer

 bit_and (bigint)
 bigint

 bit_and (bit)
 bit

 Computes the bitwise AND of all non-null input values.

	Yes
	

 bit_or (smallint)
 smallint

 bit_or (integer)
 integer

 bit_or (bigint)
 bigint

 bit_or (bit)
 bit

 Computes the bitwise OR of all non-null input values.

	Yes
	

 bit_xor (smallint)
 smallint

 bit_xor (integer)
 integer

 bit_xor (bigint)
 bigint

 bit_xor (bit)
 bit

 Computes the bitwise exclusive OR of all non-null input values.
 Can be useful as a checksum for an unordered set of values.

	Yes
	

 bool_and (boolean)
 boolean

 Returns true if all non-null input values are true, otherwise false.

	Yes
	

 bool_or (boolean)
 boolean

 Returns true if any non-null input value is true, otherwise false.

	Yes
	

 count (*)
 bigint

 Computes the number of input rows.

	Yes
	
 count ("any")
 bigint

 Computes the number of input rows in which the input value is not
 null.

	Yes
	

 every (boolean)
 boolean

 This is the SQL standard's equivalent to bool_and.

	Yes
	

 json_agg (anyelement)
 json

 jsonb_agg (anyelement)
 jsonb

 Collects all the input values, including nulls, into a JSON array.
 Values are converted to JSON as per to_json
 or to_jsonb.

	No
	

 json_agg_strict (anyelement)
 json

 jsonb_agg_strict (anyelement)
 jsonb

 Collects all the input values, skipping nulls, into a JSON array.
 Values are converted to JSON as per to_json
 or to_jsonb.

	No
	

 json_arrayagg (
 [value_expression]
 [ORDER BY sort_expression]
 [{ NULL | ABSENT } ON NULL]
 [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

 Behaves in the same way as json_array
 but as an aggregate function so it only takes one
 value_expression parameter.
 If ABSENT ON NULL is specified, any NULL
 values are omitted.
 If ORDER BY is specified, the elements will
 appear in the array in that order rather than in the input order.

 SELECT json_arrayagg(v) FROM (VALUES(2),(1)) t(v)
 [2, 1]

	No
	

 json_objectagg (
 [{ key_expression { VALUE | ':' } value_expression }]
 [{ NULL | ABSENT } ON NULL]
 [{ WITH | WITHOUT } UNIQUE [KEYS]]
 [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

 Behaves like json_object, but as an
 aggregate function, so it only takes one
 key_expression and one
 value_expression parameter.

 SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,current_date),('b',current_date + 1)) AS t(k,v)
 { "a" : "2022-05-10", "b" : "2022-05-11" }

	No
	

 json_object_agg (key
 "any", value
 "any")
 json

 jsonb_object_agg (key
 "any", value
 "any")
 jsonb

 Collects all the key/value pairs into a JSON object. Key arguments
 are coerced to text; value arguments are converted as per
 to_json or to_jsonb.
 Values can be null, but keys cannot.

	No
	

 json_object_agg_strict (
 key "any",
 value "any")
 json

 jsonb_object_agg_strict (
 key "any",
 value "any")
 jsonb

 Collects all the key/value pairs into a JSON object. Key arguments
 are coerced to text; value arguments are converted as per
 to_json or to_jsonb.
 The key can not be null. If the
 value is null then the entry is skipped,

	No
	

 json_object_agg_unique (
 key "any",
 value "any")
 json

 jsonb_object_agg_unique (
 key "any",
 value "any")
 jsonb

 Collects all the key/value pairs into a JSON object. Key arguments
 are coerced to text; value arguments are converted as per
 to_json or to_jsonb.
 Values can be null, but keys cannot.
 If there is a duplicate key an error is thrown.

	No
	

 json_object_agg_unique_strict (
 key "any",
 value "any")
 json

 jsonb_object_agg_unique_strict (
 key "any",
 value "any")
 jsonb

 Collects all the key/value pairs into a JSON object. Key arguments
 are coerced to text; value arguments are converted as per
 to_json or to_jsonb.
 The key can not be null. If the
 value is null then the entry is skipped.
 If there is a duplicate key an error is thrown.

	No
	

 max (see text)
 same as input type

 Computes the maximum of the non-null input
 values. Available for any numeric, string, date/time, or enum type,
 as well as inet, interval,
 money, oid, pg_lsn,
 tid, xid8,
 and arrays of any of these types.

	Yes
	

 min (see text)
 same as input type

 Computes the minimum of the non-null input
 values. Available for any numeric, string, date/time, or enum type,
 as well as inet, interval,
 money, oid, pg_lsn,
 tid, xid8,
 and arrays of any of these types.

	Yes
	

 range_agg (value
 anyrange)
 anymultirange

 range_agg (value
 anymultirange)
 anymultirange

 Computes the union of the non-null input values.

	No
	

 range_intersect_agg (value
 anyrange)
 anyrange

 range_intersect_agg (value
 anymultirange)
 anymultirange

 Computes the intersection of the non-null input values.

	No
	

 string_agg (value
 text, delimiter text)
 text

 string_agg (value
 bytea, delimiter bytea)
 bytea

 Concatenates the non-null input values into a string. Each value
 after the first is preceded by the
 corresponding delimiter (if it's not null).

	Yes
	

 sum (smallint)
 bigint

 sum (integer)
 bigint

 sum (bigint)
 numeric

 sum (numeric)
 numeric

 sum (real)
 real

 sum (double precision)
 double precision

 sum (interval)
 interval

 sum (money)
 money

 Computes the sum of the non-null input values.

	Yes
	

 xmlagg (xml)
 xml

 Concatenates the non-null XML input values (see
 the section called “xmlagg”).

	No

 It should be noted that except for count,
 these functions return a null value when no rows are selected. In
 particular, sum of no rows returns null, not
 zero as one might expect, and array_agg
 returns null rather than an empty array when there are no input
 rows. The coalesce function can be used to
 substitute zero or an empty array for null when necessary.

 The aggregate functions array_agg,
 json_agg, jsonb_agg,
 json_agg_strict, jsonb_agg_strict,
 json_object_agg, jsonb_object_agg,
 json_object_agg_strict, jsonb_object_agg_strict,
 json_object_agg_unique, jsonb_object_agg_unique,
 json_object_agg_unique_strict,
 jsonb_object_agg_unique_strict,
 string_agg,
 and xmlagg, as well as similar user-defined
 aggregate functions, produce meaningfully different result values
 depending on the order of the input values. This ordering is
 unspecified by default, but can be controlled by writing an
 ORDER BY clause within the aggregate call, as shown in
 the section called “Aggregate Expressions”.
 Alternatively, supplying the input values from a sorted subquery
 will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

 Beware that this approach can fail if the outer query level contains
 additional processing, such as a join, because that might cause the
 subquery's output to be reordered before the aggregate is computed.

Note

 The boolean aggregates bool_and and
 bool_or correspond to the standard SQL aggregates
 every and any or
 some.
 PostgreSQL™
 supports every, but not any
 or some, because there is an ambiguity built into
 the standard syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

 Here ANY can be considered either as introducing
 a subquery, or as being an aggregate function, if the subquery
 returns one row with a Boolean value.
 Thus the standard name cannot be given to these aggregates.

Note

 Users accustomed to working with other SQL database management
 systems might be disappointed by the performance of the
 count aggregate when it is applied to the
 entire table. A query like:

SELECT count(*) FROM sometable;

 will require effort proportional to the size of the table:
 PostgreSQL™ will need to scan either the
 entire table or the entirety of an index that includes all rows in
 the table.

 Table 9.60, “Aggregate Functions for Statistics” shows
 aggregate functions typically used in statistical analysis.
 (These are separated out merely to avoid cluttering the listing
 of more-commonly-used aggregates.) Functions shown as
 accepting numeric_type are available for all
 the types smallint, integer,
 bigint, numeric, real,
 and double precision.
 Where the description mentions
 N, it means the
 number of input rows for which all the input expressions are non-null.
 In all cases, null is returned if the computation is meaningless,
 for example when N is zero.

Table 9.60. Aggregate Functions for Statistics
	
 Function

 Description

	Partial Mode
	

 corr (Y double precision, X double precision)
 double precision

 Computes the correlation coefficient.

	Yes
	

 covar_pop (Y double precision, X double precision)
 double precision

 Computes the population covariance.

	Yes
	

 covar_samp (Y double precision, X double precision)
 double precision

 Computes the sample covariance.

	Yes
	

 regr_avgx (Y double precision, X double precision)
 double precision

 Computes the average of the independent variable,
 sum(X)/N.

	Yes
	

 regr_avgy (Y double precision, X double precision)
 double precision

 Computes the average of the dependent variable,
 sum(Y)/N.

	Yes
	

 regr_count (Y double precision, X double precision)
 bigint

 Computes the number of rows in which both inputs are non-null.

	Yes
	

 regr_intercept (Y double precision, X double precision)
 double precision

 Computes the y-intercept of the least-squares-fit linear equation
 determined by the
 (X, Y) pairs.

	Yes
	

 regr_r2 (Y double precision, X double precision)
 double precision

 Computes the square of the correlation coefficient.

	Yes
	

 regr_slope (Y double precision, X double precision)
 double precision

 Computes the slope of the least-squares-fit linear equation determined
 by the (X, Y)
 pairs.

	Yes
	

 regr_sxx (Y double precision, X double precision)
 double precision

 Computes the “sum of squares” of the independent
 variable,
 sum(X^2) - sum(X)^2/N.

	Yes
	

 regr_sxy (Y double precision, X double precision)
 double precision

 Computes the “sum of products” of independent times
 dependent variables,
 sum(X*Y) - sum(X) * sum(Y)/N.

	Yes
	

 regr_syy (Y double precision, X double precision)
 double precision

 Computes the “sum of squares” of the dependent
 variable,
 sum(Y^2) - sum(Y)^2/N.

	Yes
	

 stddev (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 This is a historical alias for stddev_samp.

	Yes
	

 stddev_pop (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 Computes the population standard deviation of the input values.

	Yes
	

 stddev_samp (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 Computes the sample standard deviation of the input values.

	Yes
	

 variance (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 This is a historical alias for var_samp.

	Yes
	

 var_pop (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 Computes the population variance of the input values (square of the
 population standard deviation).

	Yes
	

 var_samp (numeric_type)
 double precision
 for real or double precision,
 otherwise numeric

 Computes the sample variance of the input values (square of the sample
 standard deviation).

	Yes

 Table 9.61, “Ordered-Set Aggregate Functions” shows some
 aggregate functions that use the ordered-set aggregate
 syntax. These functions are sometimes referred to as “inverse
 distribution” functions. Their aggregated input is introduced by
 ORDER BY, and they may also take a direct
 argument that is not aggregated, but is computed only once.
 All these functions ignore null values in their aggregated input.
 For those that take a fraction parameter, the
 fraction value must be between 0 and 1; an error is thrown if not.
 However, a null fraction value simply produces a
 null result.

Table 9.61. Ordered-Set Aggregate Functions
	
 Function

 Description

	Partial Mode
	

 mode () WITHIN GROUP (ORDER BY anyelement)
 anyelement

 Computes the mode, the most frequent
 value of the aggregated argument (arbitrarily choosing the first one
 if there are multiple equally-frequent values). The aggregated
 argument must be of a sortable type.

	No
	

 percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY double precision)
 double precision

 percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY interval)
 interval

 Computes the continuous percentile, a value
 corresponding to the specified fraction
 within the ordered set of aggregated argument values. This will
 interpolate between adjacent input items if needed.

	No
	
 percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY double precision)
 double precision[]

 percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY interval)
 interval[]

 Computes multiple continuous percentiles. The result is an array of
 the same dimensions as the fractions
 parameter, with each non-null element replaced by the (possibly
 interpolated) value corresponding to that percentile.

	No
	

 percentile_disc (fraction double precision) WITHIN GROUP (ORDER BY anyelement)
 anyelement

 Computes the discrete percentile, the first
 value within the ordered set of aggregated argument values whose
 position in the ordering equals or exceeds the
 specified fraction. The aggregated
 argument must be of a sortable type.

	No
	
 percentile_disc (fractions double precision[]) WITHIN GROUP (ORDER BY anyelement)
 anyarray

 Computes multiple discrete percentiles. The result is an array of the
 same dimensions as the fractions parameter,
 with each non-null element replaced by the input value corresponding
 to that percentile.
 The aggregated argument must be of a sortable type.

	No

 Each of the “hypothetical-set” aggregates listed in
 Table 9.62, “Hypothetical-Set Aggregate Functions” is associated with a
 window function of the same name defined in
 the section called “Window Functions”. In each case, the aggregate's result
 is the value that the associated window function would have
 returned for the “hypothetical” row constructed from
 args, if such a row had been added to the sorted
 group of rows represented by the sorted_args.
 For each of these functions, the list of direct arguments
 given in args must match the number and types of
 the aggregated arguments given in sorted_args.
 Unlike most built-in aggregates, these aggregates are not strict, that is
 they do not drop input rows containing nulls. Null values sort according
 to the rule specified in the ORDER BY clause.

Table 9.62. Hypothetical-Set Aggregate Functions
	
 Function

 Description

	Partial Mode
	

 rank (args) WITHIN GROUP (ORDER BY sorted_args)
 bigint

 Computes the rank of the hypothetical row, with gaps; that is, the row
 number of the first row in its peer group.

	No
	

 dense_rank (args) WITHIN GROUP (ORDER BY sorted_args)
 bigint

 Computes the rank of the hypothetical row, without gaps; this function
 effectively counts peer groups.

	No
	

 percent_rank (args) WITHIN GROUP (ORDER BY sorted_args)
 double precision

 Computes the relative rank of the hypothetical row, that is
 (rank - 1) / (total rows - 1).
 The value thus ranges from 0 to 1 inclusive.

	No
	

 cume_dist (args) WITHIN GROUP (ORDER BY sorted_args)
 double precision

 Computes the cumulative distribution, that is (number of rows
 preceding or peers with hypothetical row) / (total rows). The value
 thus ranges from 1/N to 1.

	No

Table 9.63. Grouping Operations
	
 Function

 Description

	

 GROUPING (group_by_expression(s))
 integer

 Returns a bit mask indicating which GROUP BY
 expressions are not included in the current grouping set.
 Bits are assigned with the rightmost argument corresponding to the
 least-significant bit; each bit is 0 if the corresponding expression
 is included in the grouping criteria of the grouping set generating
 the current result row, and 1 if it is not included.

 The grouping operations shown in
 Table 9.63, “Grouping Operations” are used in conjunction with
 grouping sets (see the section called “GROUPING SETS, CUBE, and ROLLUP”) to distinguish
 result rows. The arguments to the GROUPING function
 are not actually evaluated, but they must exactly match expressions given
 in the GROUP BY clause of the associated query level.
 For example:

=> SELECT * FROM items_sold;
 make | model | sales
-------+-------+-------
 Foo | GT | 10
 Foo | Tour | 20
 Bar | City | 15
 Bar | Sport | 5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY ROLLUP(make,model);
 make | model | grouping | sum
-------+-------+----------+-----
 Foo | GT | 0 | 10
 Foo | Tour | 0 | 20
 Bar | City | 0 | 15
 Bar | Sport | 0 | 5
 Foo | | 1 | 30
 Bar | | 1 | 20
 | | 3 | 50
(7 rows)

 Here, the grouping value 0 in the
 first four rows shows that those have been grouped normally, over both the
 grouping columns. The value 1 indicates
 that model was not grouped by in the next-to-last two
 rows, and the value 3 indicates that
 neither make nor model was grouped
 by in the last row (which therefore is an aggregate over all the input
 rows).

Window Functions

 Window functions provide the ability to perform
 calculations across sets of rows that are related to the current query
 row. See the section called “Window Functions” for an introduction to this
 feature, and the section called “Window Function Calls” for syntax
 details.

 The built-in window functions are listed in
 Table 9.64, “General-Purpose Window Functions”. Note that these functions
 must be invoked using window function syntax, i.e., an
 OVER clause is required.

 In addition to these functions, any built-in or user-defined
 ordinary aggregate (i.e., not ordered-set or hypothetical-set aggregates)
 can be used as a window function; see
 the section called “Aggregate Functions” for a list of the built-in aggregates.
 Aggregate functions act as window functions only when an OVER
 clause follows the call; otherwise they act as plain aggregates
 and return a single row for the entire set.

Table 9.64. General-Purpose Window Functions
	
 Function

 Description

	

 row_number ()
 bigint

 Returns the number of the current row within its partition, counting
 from 1.

	

 rank ()
 bigint

 Returns the rank of the current row, with gaps; that is,
 the row_number of the first row in its peer
 group.

	

 dense_rank ()
 bigint

 Returns the rank of the current row, without gaps; this function
 effectively counts peer groups.

	

 percent_rank ()
 double precision

 Returns the relative rank of the current row, that is
 (rank - 1) / (total partition rows - 1).
 The value thus ranges from 0 to 1 inclusive.

	

 cume_dist ()
 double precision

 Returns the cumulative distribution, that is (number of partition rows
 preceding or peers with current row) / (total partition rows).
 The value thus ranges from 1/N to 1.

	

 ntile (num_buckets integer)
 integer

 Returns an integer ranging from 1 to the argument value, dividing the
 partition as equally as possible.

	

 lag (value anycompatible
 [, offset integer
 [, default anycompatible]])
 anycompatible

 Returns value evaluated at
 the row that is offset
 rows before the current row within the partition; if there is no such
 row, instead returns default
 (which must be of a type compatible with
 value).
 Both offset and
 default are evaluated
 with respect to the current row. If omitted,
 offset defaults to 1 and
 default to NULL.

	

 lead (value anycompatible
 [, offset integer
 [, default anycompatible]])
 anycompatible

 Returns value evaluated at
 the row that is offset
 rows after the current row within the partition; if there is no such
 row, instead returns default
 (which must be of a type compatible with
 value).
 Both offset and
 default are evaluated
 with respect to the current row. If omitted,
 offset defaults to 1 and
 default to NULL.

	

 first_value (value anyelement)
 anyelement

 Returns value evaluated
 at the row that is the first row of the window frame.

	

 last_value (value anyelement)
 anyelement

 Returns value evaluated
 at the row that is the last row of the window frame.

	

 nth_value (value anyelement, n integer)
 anyelement

 Returns value evaluated
 at the row that is the n'th
 row of the window frame (counting from 1);
 returns NULL if there is no such row.

 All of the functions listed in
 Table 9.64, “General-Purpose Window Functions” depend on the sort ordering
 specified by the ORDER BY clause of the associated window
 definition. Rows that are not distinct when considering only the
 ORDER BY columns are said to be peers.
 The four ranking functions (including cume_dist) are
 defined so that they give the same answer for all rows of a peer group.

 Note that first_value, last_value, and
 nth_value consider only the rows within the “window
 frame”, which by default contains the rows from the start of the
 partition through the last peer of the current row. This is
 likely to give unhelpful results for last_value and
 sometimes also nth_value. You can redefine the frame by
 adding a suitable frame specification (RANGE,
 ROWS or GROUPS) to
 the OVER clause.
 See the section called “Window Function Calls” for more information
 about frame specifications.

 When an aggregate function is used as a window function, it aggregates
 over the rows within the current row's window frame.
 An aggregate used with ORDER BY and the default window frame
 definition produces a “running sum” type of behavior, which may or
 may not be what's wanted. To obtain
 aggregation over the whole partition, omit ORDER BY or use
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
 Other frame specifications can be used to obtain other effects.

Note

 The SQL standard defines a RESPECT NULLS or
 IGNORE NULLS option for lead, lag,
 first_value, last_value, and
 nth_value. This is not implemented in
 PostgreSQL™: the behavior is always the
 same as the standard's default, namely RESPECT NULLS.
 Likewise, the standard's FROM FIRST or FROM LAST
 option for nth_value is not implemented: only the
 default FROM FIRST behavior is supported. (You can achieve
 the result of FROM LAST by reversing the ORDER BY
 ordering.)

Subquery Expressions

 This section describes the SQL-compliant subquery
 expressions available in PostgreSQL™.
 All of the expression forms documented in this section return
 Boolean (true/false) results.

EXISTS

EXISTS (subquery)

 The argument of EXISTS is an arbitrary SELECT statement,
 or subquery. The
 subquery is evaluated to determine whether it returns any rows.
 If it returns at least one row, the result of EXISTS is
 “true”; if the subquery returns no rows, the result of EXISTS
 is “false”.

 The subquery can refer to variables from the surrounding query,
 which will act as constants during any one evaluation of the subquery.

 The subquery will generally only be executed long enough to determine
 whether at least one row is returned, not all the way to completion.
 It is unwise to write a subquery that has side effects (such as
 calling sequence functions); whether the side effects occur
 might be unpredictable.

 Since the result depends only on whether any rows are returned,
 and not on the contents of those rows, the output list of the
 subquery is normally unimportant. A common coding convention is
 to write all EXISTS tests in the form
 EXISTS(SELECT 1 WHERE ...). There are exceptions to
 this rule however, such as subqueries that use INTERSECT.

 This simple example is like an inner join on col2, but
 it produces at most one output row for each tab1 row,
 even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

IN

expression IN (subquery)

 The right-hand side is a parenthesized
 subquery, which must return exactly one column. The left-hand expression
 is evaluated and compared to each row of the subquery result.
 The result of IN is “true” if any equal subquery row is found.
 The result is “false” if no equal row is found (including the
 case where the subquery returns no rows).

 Note that if the left-hand expression yields null, or if there are
 no equal right-hand values and at least one right-hand row yields
 null, the result of the IN construct will be null, not false.
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

 As with EXISTS, it's unwise to assume that the subquery will
 be evaluated completely.

row_constructor IN (subquery)

 The left-hand side of this form of IN is a row constructor,
 as described in the section called “Row Constructors”.
 The right-hand side is a parenthesized
 subquery, which must return exactly as many columns as there are
 expressions in the left-hand row. The left-hand expressions are
 evaluated and compared row-wise to each row of the subquery result.
 The result of IN is “true” if any equal subquery row is found.
 The result is “false” if no equal row is found (including the
 case where the subquery returns no rows).

 As usual, null values in the rows are combined per
 the normal rules of SQL Boolean expressions. Two rows are considered
 equal if all their corresponding members are non-null and equal; the rows
 are unequal if any corresponding members are non-null and unequal;
 otherwise the result of that row comparison is unknown (null).
 If all the per-row results are either unequal or null, with at least one
 null, then the result of IN is null.

NOT IN

expression NOT IN (subquery)

 The right-hand side is a parenthesized
 subquery, which must return exactly one column. The left-hand expression
 is evaluated and compared to each row of the subquery result.
 The result of NOT IN is “true” if only unequal subquery rows
 are found (including the case where the subquery returns no rows).
 The result is “false” if any equal row is found.

 Note that if the left-hand expression yields null, or if there are
 no equal right-hand values and at least one right-hand row yields
 null, the result of the NOT IN construct will be null, not true.
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

 As with EXISTS, it's unwise to assume that the subquery will
 be evaluated completely.

row_constructor NOT IN (subquery)

 The left-hand side of this form of NOT IN is a row constructor,
 as described in the section called “Row Constructors”.
 The right-hand side is a parenthesized
 subquery, which must return exactly as many columns as there are
 expressions in the left-hand row. The left-hand expressions are
 evaluated and compared row-wise to each row of the subquery result.
 The result of NOT IN is “true” if only unequal subquery rows
 are found (including the case where the subquery returns no rows).
 The result is “false” if any equal row is found.

 As usual, null values in the rows are combined per
 the normal rules of SQL Boolean expressions. Two rows are considered
 equal if all their corresponding members are non-null and equal; the rows
 are unequal if any corresponding members are non-null and unequal;
 otherwise the result of that row comparison is unknown (null).
 If all the per-row results are either unequal or null, with at least one
 null, then the result of NOT IN is null.

ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

 The right-hand side is a parenthesized
 subquery, which must return exactly one column. The left-hand expression
 is evaluated and compared to each row of the subquery result using the
 given operator, which must yield a Boolean
 result.
 The result of ANY is “true” if any true result is obtained.
 The result is “false” if no true result is found (including the
 case where the subquery returns no rows).

 SOME is a synonym for ANY.
 IN is equivalent to = ANY.

 Note that if there are no successes and at least one right-hand row yields
 null for the operator's result, the result of the ANY construct
 will be null, not false.
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

 As with EXISTS, it's unwise to assume that the subquery will
 be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

 The left-hand side of this form of ANY is a row constructor,
 as described in the section called “Row Constructors”.
 The right-hand side is a parenthesized
 subquery, which must return exactly as many columns as there are
 expressions in the left-hand row. The left-hand expressions are
 evaluated and compared row-wise to each row of the subquery result,
 using the given operator.
 The result of ANY is “true” if the comparison
 returns true for any subquery row.
 The result is “false” if the comparison returns false for every
 subquery row (including the case where the subquery returns no
 rows).
 The result is NULL if no comparison with a subquery row returns true,
 and at least one comparison returns NULL.

 See the section called “Row Constructor Comparison” for details about the meaning
 of a row constructor comparison.

ALL

expression operator ALL (subquery)

 The right-hand side is a parenthesized
 subquery, which must return exactly one column. The left-hand expression
 is evaluated and compared to each row of the subquery result using the
 given operator, which must yield a Boolean
 result.
 The result of ALL is “true” if all rows yield true
 (including the case where the subquery returns no rows).
 The result is “false” if any false result is found.
 The result is NULL if no comparison with a subquery row returns false,
 and at least one comparison returns NULL.

 NOT IN is equivalent to <> ALL.

 As with EXISTS, it's unwise to assume that the subquery will
 be evaluated completely.

row_constructor operator ALL (subquery)

 The left-hand side of this form of ALL is a row constructor,
 as described in the section called “Row Constructors”.
 The right-hand side is a parenthesized
 subquery, which must return exactly as many columns as there are
 expressions in the left-hand row. The left-hand expressions are
 evaluated and compared row-wise to each row of the subquery result,
 using the given operator.
 The result of ALL is “true” if the comparison
 returns true for all subquery rows (including the
 case where the subquery returns no rows).
 The result is “false” if the comparison returns false for any
 subquery row.
 The result is NULL if no comparison with a subquery row returns false,
 and at least one comparison returns NULL.

 See the section called “Row Constructor Comparison” for details about the meaning
 of a row constructor comparison.

Single-Row Comparison

row_constructor operator (subquery)

 The left-hand side is a row constructor,
 as described in the section called “Row Constructors”.
 The right-hand side is a parenthesized subquery, which must return exactly
 as many columns as there are expressions in the left-hand row. Furthermore,
 the subquery cannot return more than one row. (If it returns zero rows,
 the result is taken to be null.) The left-hand side is evaluated and
 compared row-wise to the single subquery result row.

 See the section called “Row Constructor Comparison” for details about the meaning
 of a row constructor comparison.

Row and Array Comparisons

 This section describes several specialized constructs for making
 multiple comparisons between groups of values. These forms are
 syntactically related to the subquery forms of the previous section,
 but do not involve subqueries.
 The forms involving array subexpressions are
 PostgreSQL™ extensions; the rest are
 SQL-compliant.
 All of the expression forms documented in this section return
 Boolean (true/false) results.

IN

expression IN (value [, ...])

 The right-hand side is a parenthesized list
 of expressions. The result is “true” if the left-hand expression's
 result is equal to any of the right-hand expressions. This is a shorthand
 notation for

expression = value1
OR
expression = value2
OR
...

 Note that if the left-hand expression yields null, or if there are
 no equal right-hand values and at least one right-hand expression yields
 null, the result of the IN construct will be null, not false.
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

NOT IN

expression NOT IN (value [, ...])

 The right-hand side is a parenthesized list
 of expressions. The result is “true” if the left-hand expression's
 result is unequal to all of the right-hand expressions. This is a shorthand
 notation for

expression <> value1
AND
expression <> value2
AND
...

 Note that if the left-hand expression yields null, or if there are
 no equal right-hand values and at least one right-hand expression yields
 null, the result of the NOT IN construct will be null, not true
 as one might naively expect.
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

Tip

 x NOT IN y is equivalent to NOT (x IN y) in all
 cases. However, null values are much more likely to trip up the novice when
 working with NOT IN than when working with IN.
 It is best to express your condition positively if possible.

ANY/SOME (array)

expression operator ANY (array expression)
expression operator SOME (array expression)

 The right-hand side is a parenthesized expression, which must yield an
 array value.
 The left-hand expression
 is evaluated and compared to each element of the array using the
 given operator, which must yield a Boolean
 result.
 The result of ANY is “true” if any true result is obtained.
 The result is “false” if no true result is found (including the
 case where the array has zero elements).

 If the array expression yields a null array, the result of
 ANY will be null. If the left-hand expression yields null,
 the result of ANY is ordinarily null (though a non-strict
 comparison operator could possibly yield a different result).
 Also, if the right-hand array contains any null elements and no true
 comparison result is obtained, the result of ANY
 will be null, not false (again, assuming a strict comparison operator).
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

 SOME is a synonym for ANY.

ALL (array)

expression operator ALL (array expression)

 The right-hand side is a parenthesized expression, which must yield an
 array value.
 The left-hand expression
 is evaluated and compared to each element of the array using the
 given operator, which must yield a Boolean
 result.
 The result of ALL is “true” if all comparisons yield true
 (including the case where the array has zero elements).
 The result is “false” if any false result is found.

 If the array expression yields a null array, the result of
 ALL will be null. If the left-hand expression yields null,
 the result of ALL is ordinarily null (though a non-strict
 comparison operator could possibly yield a different result).
 Also, if the right-hand array contains any null elements and no false
 comparison result is obtained, the result of ALL
 will be null, not true (again, assuming a strict comparison operator).
 This is in accordance with SQL's normal rules for Boolean combinations
 of null values.

Row Constructor Comparison

row_constructor operator row_constructor

 Each side is a row constructor,
 as described in the section called “Row Constructors”.
 The two row constructors must have the same number of fields.
 The given operator is applied to each pair
 of corresponding fields. (Since the fields could be of different
 types, this means that a different specific operator could be selected
 for each pair.)
 All the selected operators must be members of some B-tree operator
 class, or be the negator of an = member of a B-tree
 operator class, meaning that row constructor comparison is only
 possible when the operator is
 =,
 <>,
 <,
 <=,
 >, or
 >=,
 or has semantics similar to one of these.

 The = and <> cases work slightly differently
 from the others. Two rows are considered
 equal if all their corresponding members are non-null and equal; the rows
 are unequal if any corresponding members are non-null and unequal;
 otherwise the result of the row comparison is unknown (null).

 For the <, <=, > and
 >= cases, the row elements are compared left-to-right,
 stopping as soon as an unequal or null pair of elements is found.
 If either of this pair of elements is null, the result of the
 row comparison is unknown (null); otherwise comparison of this pair
 of elements determines the result. For example,
 ROW(1,2,NULL) < ROW(1,3,0)
 yields true, not null, because the third pair of elements are not
 considered.

row_constructor IS DISTINCT FROM row_constructor

 This construct is similar to a <> row comparison,
 but it does not yield null for null inputs. Instead, any null value is
 considered unequal to (distinct from) any non-null value, and any two
 nulls are considered equal (not distinct). Thus the result will
 either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

 This construct is similar to a = row comparison,
 but it does not yield null for null inputs. Instead, any null value is
 considered unequal to (distinct from) any non-null value, and any two
 nulls are considered equal (not distinct). Thus the result will always
 be either true or false, never null.

Composite Type Comparison

record operator record

 The SQL specification requires row-wise comparison to return NULL if the
 result depends on comparing two NULL values or a NULL and a non-NULL.
 PostgreSQL™ does this only when comparing the
 results of two row constructors (as in
 the section called “Row Constructor Comparison”) or comparing a row constructor
 to the output of a subquery (as in the section called “Subquery Expressions”).
 In other contexts where two composite-type values are compared, two
 NULL field values are considered equal, and a NULL is considered larger
 than a non-NULL. This is necessary in order to have consistent sorting
 and indexing behavior for composite types.

 Each side is evaluated and they are compared row-wise. Composite type
 comparisons are allowed when the operator is
 =,
 <>,
 <,
 <=,
 > or
 >=,
 or has semantics similar to one of these. (To be specific, an operator
 can be a row comparison operator if it is a member of a B-tree operator
 class, or is the negator of the = member of a B-tree operator
 class.) The default behavior of the above operators is the same as for
 IS [NOT] DISTINCT FROM for row constructors (see
 the section called “Row Constructor Comparison”).

 To support matching of rows which include elements without a default
 B-tree operator class, the following operators are defined for composite
 type comparison:
 *=,
 *<>,
 *<,
 *<=,
 *>, and
 *>=.
 These operators compare the internal binary representation of the two
 rows. Two rows might have a different binary representation even
 though comparisons of the two rows with the equality operator is true.
 The ordering of rows under these comparison operators is deterministic
 but not otherwise meaningful. These operators are used internally
 for materialized views and might be useful for other specialized
 purposes such as replication and B-Tree deduplication (see the section called “Deduplication”). They are not intended to be
 generally useful for writing queries, though.

Set Returning Functions

 This section describes functions that possibly return more than one row.
 The most widely used functions in this class are series generating
 functions, as detailed in Table 9.65, “Series Generating Functions” and
 Table 9.66, “Subscript Generating Functions”. Other, more specialized
 set-returning functions are described elsewhere in this manual.
 See the section called “Table Functions” for ways to combine multiple
 set-returning functions.

Table 9.65. Series Generating Functions
	
 Function

 Description

	

 generate_series (start integer, stop integer [, step integer])
 setof integer

 generate_series (start bigint, stop bigint [, step bigint])
 setof bigint

 generate_series (start numeric, stop numeric [, step numeric])
 setof numeric

 Generates a series of values from start
 to stop, with a step size
 of step. step
 defaults to 1.

	
 generate_series (start timestamp, stop timestamp, step interval)
 setof timestamp

 generate_series (start timestamp with time zone, stop timestamp with time zone, step interval [, timezone text])
 setof timestamp with time zone

 Generates a series of values from start
 to stop, with a step size
 of step.
 In the timezone-aware form, times of day and daylight-savings
 adjustments are computed according to the time zone named by
 the timezone argument, or the current
 TimeZone setting if that is omitted.

 When step is positive, zero rows are returned if
 start is greater than stop.
 Conversely, when step is negative, zero rows are
 returned if start is less than stop.
 Zero rows are also returned if any input is NULL.
 It is an error
 for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
 generate_series

 2
 3
 4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series

 5
 3
 1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series

(0 rows)

SELECT generate_series(1.1, 4, 1.3);
 generate_series

 1.1
 2.4
 3.7
(3 rows)

-- this example relies on the date-plus-integer operator:
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
 dates

 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
 '2008-03-04 12:00', '10 hours');
 generate_series

 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

-- this example assumes that TimeZone is set to UTC; note the DST transition:
SELECT * FROM generate_series('2001-10-22 00:00 -04:00'::timestamptz,
 '2001-11-01 00:00 -05:00'::timestamptz,
 '1 day'::interval, 'America/New_York');
 generate_series

 2001-10-22 04:00:00+00
 2001-10-23 04:00:00+00
 2001-10-24 04:00:00+00
 2001-10-25 04:00:00+00
 2001-10-26 04:00:00+00
 2001-10-27 04:00:00+00
 2001-10-28 04:00:00+00
 2001-10-29 05:00:00+00
 2001-10-30 05:00:00+00
 2001-10-31 05:00:00+00
 2001-11-01 05:00:00+00
(11 rows)

Table 9.66. Subscript Generating Functions
	
 Function

 Description

	

 generate_subscripts (array anyarray, dim integer)
 setof integer

 Generates a series comprising the valid subscripts of
 the dim'th dimension of the given array.

	
 generate_subscripts (array anyarray, dim integer, reverse boolean)
 setof integer

 Generates a series comprising the valid subscripts of
 the dim'th dimension of the given array.
 When reverse is true, returns the series in
 reverse order.

 generate_subscripts is a convenience function that generates
 the set of valid subscripts for the specified dimension of the given
 array.
 Zero rows are returned for arrays that do not have the requested dimension,
 or if any input is NULL.
 Some examples follow:

-- basic usage:
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s

 1
 2
 3
 4
(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;
 a

 {-1,-2}
 {100,200,300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
 array | subscript | value
---------------+-----------+-------
 {-1,-2} | 1 | -1
 {-1,-2} | 2 | -2
 {100,200,300} | 1 | 100
 {100,200,300} | 2 | 200
 {100,200,300} | 3 | 300
(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
 from generate_subscripts($1,1) g1(i),
 generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2

 1
 2
 3
 4
(4 rows)

 When a function in the FROM clause is suffixed
 by WITH ORDINALITY, a bigint column is
 appended to the function's output column(s), which starts from 1 and
 increments by 1 for each row of the function's output.
 This is most useful in the case of set returning
 functions such as unnest().

-- set returning function WITH ORDINALITY:
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
 ls | n
-----------------+----
 pg_serial | 1
 pg_twophase | 2
 postmaster.opts | 3
 pg_notify | 4
 postgresql.conf | 5
 pg_tblspc | 6
 logfile | 7
 base | 8
 postmaster.pid | 9
 pg_ident.conf | 10
 global | 11
 pg_xact | 12
 pg_snapshots | 13
 pg_multixact | 14
 PG_VERSION | 15
 pg_wal | 16
 pg_hba.conf | 17
 pg_stat_tmp | 18
 pg_subtrans | 19
(19 rows)

System Information Functions and Operators

 The functions described in this section are used to obtain various
 information about a PostgreSQL™ installation.

Session Information Functions

 Table 9.67, “Session Information Functions” shows several
 functions that extract session and system information.

 In addition to the functions listed in this section, there are a number of
 functions related to the statistics system that also provide system
 information. See the section called “Statistics Functions” for more
 information.

Table 9.67. Session Information Functions
	
 Function

 Description

	

 current_catalog
 name

 current_database ()
 name

 Returns the name of the current database. (Databases are
 called “catalogs” in the SQL standard,
 so current_catalog is the standard's
 spelling.)

	

 current_query ()
 text

 Returns the text of the currently executing query, as submitted
 by the client (which might contain more than one statement).

	

 current_role
 name

 This is equivalent to current_user.

	

 current_schema
 name

 current_schema ()
 name

 Returns the name of the schema that is first in the search path (or a
 null value if the search path is empty). This is the schema that will
 be used for any tables or other named objects that are created without
 specifying a target schema.

	

 current_schemas (include_implicit boolean)
 name[]

 Returns an array of the names of all schemas presently in the
 effective search path, in their priority order. (Items in the current
 search_path setting that do not correspond to
 existing, searchable schemas are omitted.) If the Boolean argument
 is true, then implicitly-searched system schemas
 such as pg_catalog are included in the result.

	

 current_user
 name

 Returns the user name of the current execution context.

	

 inet_client_addr ()
 inet

 Returns the IP address of the current client,
 or NULL if the current connection is via a
 Unix-domain socket.

	

 inet_client_port ()
 integer

 Returns the IP port number of the current client,
 or NULL if the current connection is via a
 Unix-domain socket.

	

 inet_server_addr ()
 inet

 Returns the IP address on which the server accepted the current
 connection,
 or NULL if the current connection is via a
 Unix-domain socket.

	

 inet_server_port ()
 integer

 Returns the IP port number on which the server accepted the current
 connection,
 or NULL if the current connection is via a
 Unix-domain socket.

	

 pg_backend_pid ()
 integer

 Returns the process ID of the server process attached to the current
 session.

	

 pg_blocking_pids (integer)
 integer[]

 Returns an array of the process ID(s) of the sessions that are
 blocking the server process with the specified process ID from
 acquiring a lock, or an empty array if there is no such server process
 or it is not blocked.

 One server process blocks another if it either holds a lock that
 conflicts with the blocked process's lock request (hard block), or is
 waiting for a lock that would conflict with the blocked process's lock
 request and is ahead of it in the wait queue (soft block). When using
 parallel queries the result always lists client-visible process IDs
 (that is, pg_backend_pid results) even if the
 actual lock is held or awaited by a child worker process. As a result
 of that, there may be duplicated PIDs in the result. Also note that
 when a prepared transaction holds a conflicting lock, it will be
 represented by a zero process ID.

 Frequent calls to this function could have some impact on database
 performance, because it needs exclusive access to the lock manager's
 shared state for a short time.

	

 pg_conf_load_time ()
 timestamp with time zone

 Returns the time when the server configuration files were last loaded.
 If the current session was alive at the time, this will be the time
 when the session itself re-read the configuration files (so the
 reading will vary a little in different sessions). Otherwise it is
 the time when the postmaster process re-read the configuration files.

	

 pg_current_logfile ([text])
 text

 Returns the path name of the log file currently in use by the logging
 collector. The path includes the log_directory
 directory and the individual log file name. The result
 is NULL if the logging collector is disabled.
 When multiple log files exist, each in a different
 format, pg_current_logfile without an argument
 returns the path of the file having the first format found in the
 ordered list: stderr,
 csvlog, jsonlog.
 NULL is returned if no log file has any of these
 formats.
 To request information about a specific log file format, supply
 either csvlog, jsonlog or
 stderr as the
 value of the optional parameter. The result is NULL
 if the log format requested is not configured in
 log_destination.
 The result reflects the contents of
 the current_logfiles file.

	

 pg_my_temp_schema ()
 oid

 Returns the OID of the current session's temporary schema, or zero if
 it has none (because it has not created any temporary tables).

	

 pg_is_other_temp_schema (oid)
 boolean

 Returns true if the given OID is the OID of another session's
 temporary schema. (This can be useful, for example, to exclude other
 sessions' temporary tables from a catalog display.)

	

 pg_jit_available ()
 boolean

 Returns true if a JIT compiler extension is
 available (see Chapter 32, Just-in-Time Compilation (JIT)) and the
 jit configuration parameter is set to
 on.

	

 pg_listening_channels ()
 setof text

 Returns the set of names of asynchronous notification channels that
 the current session is listening to.

	

 pg_notification_queue_usage ()
 double precision

 Returns the fraction (0–1) of the asynchronous notification
 queue's maximum size that is currently occupied by notifications that
 are waiting to be processed.
 See LISTEN(7) and NOTIFY(7)
 for more information.

	

 pg_postmaster_start_time ()
 timestamp with time zone

 Returns the time when the server started.

	

 pg_safe_snapshot_blocking_pids (integer)
 integer[]

 Returns an array of the process ID(s) of the sessions that are blocking
 the server process with the specified process ID from acquiring a safe
 snapshot, or an empty array if there is no such server process or it
 is not blocked.

 A session running a SERIALIZABLE transaction blocks
 a SERIALIZABLE READ ONLY DEFERRABLE transaction
 from acquiring a snapshot until the latter determines that it is safe
 to avoid taking any predicate locks. See
 the section called “Serializable Isolation Level” for more information about
 serializable and deferrable transactions.

 Frequent calls to this function could have some impact on database
 performance, because it needs access to the predicate lock manager's
 shared state for a short time.

	

 pg_trigger_depth ()
 integer

 Returns the current nesting level
 of PostgreSQL™ triggers (0 if not called,
 directly or indirectly, from inside a trigger).

	

 session_user
 name

 Returns the session user's name.

	

 system_user
 text

 Returns the authentication method and the identity (if any) that the
 user presented during the authentication cycle before they were
 assigned a database role. It is represented as
 auth_method:identity or
 NULL if the user has not been authenticated (for
 example if Trust authentication has
 been used).

	

 user
 name

 This is equivalent to current_user.

	

 version ()
 text

 Returns a string describing the PostgreSQL™
 server's version. You can also get this information from
 server_version, or for a machine-readable
 version use server_version_num. Software
 developers should use server_version_num (available
 since 8.2) or PQserverVersion instead of
 parsing the text version.

Note

 current_catalog,
 current_role,
 current_schema,
 current_user,
 session_user,
 and user have special syntactic status
 in SQL: they must be called without trailing
 parentheses. In PostgreSQL, parentheses can optionally be used with
 current_schema, but not with the others.

 The session_user is normally the user who initiated
 the current database connection; but superusers can change this setting
 with SET SESSION AUTHORIZATION(7).
 The current_user is the user identifier
 that is applicable for permission checking. Normally it is equal
 to the session user, but it can be changed with
 SET ROLE(7).
 It also changes during the execution of
 functions with the attribute SECURITY DEFINER.
 In Unix parlance, the session user is the “real user” and
 the current user is the “effective user”.
 current_role and user are
 synonyms for current_user. (The SQL standard draws
 a distinction between current_role
 and current_user, but PostgreSQL™
 does not, since it unifies users and roles into a single kind of entity.)

Access Privilege Inquiry Functions

 Table 9.68, “Access Privilege Inquiry Functions” lists functions that
 allow querying object access privileges programmatically.
 (See the section called “Privileges” for more information about
 privileges.)
 In these functions, the user whose privileges are being inquired about
 can be specified by name or by OID
 (pg_authid.oid), or if
 the name is given as public then the privileges of the
 PUBLIC pseudo-role are checked. Also, the user
 argument can be omitted entirely, in which case
 the current_user is assumed.
 The object that is being inquired about can be specified either by name or
 by OID, too. When specifying by name, a schema name can be included if
 relevant.
 The access privilege of interest is specified by a text string, which must
 evaluate to one of the appropriate privilege keywords for the object's type
 (e.g., SELECT). Optionally, WITH GRANT
 OPTION can be added to a privilege type to test whether the
 privilege is held with grant option. Also, multiple privilege types can be
 listed separated by commas, in which case the result will be true if any of
 the listed privileges is held. (Case of the privilege string is not
 significant, and extra whitespace is allowed between but not within
 privilege names.)
 Some examples:

SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH GRANT OPTION');

Table 9.68. Access Privilege Inquiry Functions
	
 Function

 Description

	

 has_any_column_privilege (
 [user name or oid,]
 table text or oid,
 privilege text)
 boolean

 Does user have privilege for any column of table?
 This succeeds either if the privilege is held for the whole table, or
 if there is a column-level grant of the privilege for at least one
 column.
 Allowable privilege types are
 SELECT, INSERT,
 UPDATE, and REFERENCES.

	

 has_column_privilege (
 [user name or oid,]
 table text or oid,
 column text or smallint,
 privilege text)
 boolean

 Does user have privilege for the specified table column?
 This succeeds either if the privilege is held for the whole table, or
 if there is a column-level grant of the privilege for the column.
 The column can be specified by name or by attribute number
 (pg_attribute.attnum).
 Allowable privilege types are
 SELECT, INSERT,
 UPDATE, and REFERENCES.

	

 has_database_privilege (
 [user name or oid,]
 database text or oid,
 privilege text)
 boolean

 Does user have privilege for database?
 Allowable privilege types are
 CREATE,
 CONNECT,
 TEMPORARY, and
 TEMP (which is equivalent to
 TEMPORARY).

	

 has_foreign_data_wrapper_privilege (
 [user name or oid,]
 fdw text or oid,
 privilege text)
 boolean

 Does user have privilege for foreign-data wrapper?
 The only allowable privilege type is USAGE.

	

 has_function_privilege (
 [user name or oid,]
 function text or oid,
 privilege text)
 boolean

 Does user have privilege for function?
 The only allowable privilege type is EXECUTE.

 When specifying a function by name rather than by OID, the allowed
 input is the same as for the regprocedure data type (see
 the section called “Object Identifier Types”).
 An example is:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)', 'execute');

	

 has_language_privilege (
 [user name or oid,]
 language text or oid,
 privilege text)
 boolean

 Does user have privilege for language?
 The only allowable privilege type is USAGE.

	

 has_parameter_privilege (
 [user name or oid,]
 parameter text,
 privilege text)
 boolean

 Does user have privilege for configuration parameter?
 The parameter name is case-insensitive.
 Allowable privilege types are SET
 and ALTER SYSTEM.

	

 has_schema_privilege (
 [user name or oid,]
 schema text or oid,
 privilege text)
 boolean

 Does user have privilege for schema?
 Allowable privilege types are
 CREATE and
 USAGE.

	

 has_sequence_privilege (
 [user name or oid,]
 sequence text or oid,
 privilege text)
 boolean

 Does user have privilege for sequence?
 Allowable privilege types are
 USAGE,
 SELECT, and
 UPDATE.

	

 has_server_privilege (
 [user name or oid,]
 server text or oid,
 privilege text)
 boolean

 Does user have privilege for foreign server?
 The only allowable privilege type is USAGE.

	

 has_table_privilege (
 [user name or oid,]
 table text or oid,
 privilege text)
 boolean

 Does user have privilege for table?
 Allowable privilege types
 are SELECT, INSERT,
 UPDATE, DELETE,
 TRUNCATE, REFERENCES,
 and TRIGGER.

	

 has_tablespace_privilege (
 [user name or oid,]
 tablespace text or oid,
 privilege text)
 boolean

 Does user have privilege for tablespace?
 The only allowable privilege type is CREATE.

	

 has_type_privilege (
 [user name or oid,]
 type text or oid,
 privilege text)
 boolean

 Does user have privilege for data type?
 The only allowable privilege type is USAGE.
 When specifying a type by name rather than by OID, the allowed input
 is the same as for the regtype data type (see
 the section called “Object Identifier Types”).

	

 pg_has_role (
 [user name or oid,]
 role text or oid,
 privilege text)
 boolean

 Does user have privilege for role?
 Allowable privilege types are
 MEMBER, USAGE,
 and SET.
 MEMBER denotes direct or indirect membership in
 the role without regard to what specific privileges may be conferred.
 USAGE denotes whether the privileges of the role
 are immediately available without doing SET ROLE,
 while SET denotes whether it is possible to change
 to the role using the SET ROLE command.
 WITH ADMIN OPTION or WITH GRANT
 OPTION can be added to any of these privilege types to
 test whether the ADMIN privilege is held (all
 six spellings test the same thing).
 This function does not allow the special case of
 setting user to public,
 because the PUBLIC pseudo-role can never be a member of real roles.

	

 row_security_active (
 table text or oid)
 boolean

 Is row-level security active for the specified table in the context of
 the current user and current environment?

 Table 9.69, “aclitem Operators” shows the operators
 available for the aclitem type, which is the catalog
 representation of access privileges. See the section called “Privileges”
 for information about how to read access privilege values.

Table 9.69. aclitem Operators
	
 Operator

 Description

 Example(s)

	

 aclitem = aclitem
 boolean

 Are aclitems equal? (Notice that
 type aclitem lacks the usual set of comparison
 operators; it has only equality. In turn, aclitem
 arrays can only be compared for equality.)

 'calvin=r*w/hobbes'::aclitem = 'calvin=r*w*/hobbes'::aclitem
 f

	

 aclitem[] @> aclitem
 boolean

 Does array contain the specified privileges? (This is true if there
 is an array entry that matches the aclitem's grantee and
 grantor, and has at least the specified set of privileges.)

 '{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] @> 'calvin=r*/hobbes'::aclitem
 t

	
 aclitem[] ~ aclitem
 boolean

 This is a deprecated alias for @>.

 '{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] ~ 'calvin=r*/hobbes'::aclitem
 t

 Table 9.70, “aclitem Functions” shows some additional
 functions to manage the aclitem type.

Table 9.70. aclitem Functions
	
 Function

 Description

	

 acldefault (
 type "char",
 ownerId oid)
 aclitem[]

 Constructs an aclitem array holding the default access
 privileges for an object of type type belonging
 to the role with OID ownerId. This represents
 the access privileges that will be assumed when an object's ACL entry
 is null. (The default access privileges are described in
 the section called “Privileges”.)
 The type parameter must be one of
 'c' for COLUMN,
 'r' for TABLE and table-like objects,
 's' for SEQUENCE,
 'd' for DATABASE,
 'f' for FUNCTION or PROCEDURE,
 'l' for LANGUAGE,
 'L' for LARGE OBJECT,
 'n' for SCHEMA,
 'p' for PARAMETER,
 't' for TABLESPACE,
 'F' for FOREIGN DATA WRAPPER,
 'S' for FOREIGN SERVER,
 or
 'T' for TYPE or DOMAIN.

	

 aclexplode (aclitem[])
 setof record
 (grantor oid,
 grantee oid,
 privilege_type text,
 is_grantable boolean)

 Returns the aclitem array as a set of rows.
 If the grantee is the pseudo-role PUBLIC, it is represented by zero in
 the grantee column. Each granted privilege is
 represented as SELECT, INSERT,
 etc (see Table 5.1, “ACL Privilege Abbreviations” for a full list).
 Note that each privilege is broken out as a separate row, so
 only one keyword appears in the privilege_type
 column.

	

 makeaclitem (
 grantee oid,
 grantor oid,
 privileges text,
 is_grantable boolean)
 aclitem

 Constructs an aclitem with the given properties.
 privileges is a comma-separated list of
 privilege names such as SELECT,
 INSERT, etc, all of which are set in the
 result. (Case of the privilege string is not significant, and
 extra whitespace is allowed between but not within privilege
 names.)

Schema Visibility Inquiry Functions

 Table 9.71, “Schema Visibility Inquiry Functions” shows functions that
 determine whether a certain object is visible in the
 current schema search path.
 For example, a table is said to be visible if its
 containing schema is in the search path and no table of the same
 name appears earlier in the search path. This is equivalent to the
 statement that the table can be referenced by name without explicit
 schema qualification. Thus, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

 For functions and operators, an object in the search path is said to be
 visible if there is no object of the same name and argument data
 type(s) earlier in the path. For operator classes and families,
 both the name and the associated index access method are considered.

Table 9.71. Schema Visibility Inquiry Functions
	
 Function

 Description

	

 pg_collation_is_visible (collation oid)
 boolean

 Is collation visible in search path?

	

 pg_conversion_is_visible (conversion oid)
 boolean

 Is conversion visible in search path?

	

 pg_function_is_visible (function oid)
 boolean

 Is function visible in search path?
 (This also works for procedures and aggregates.)

	

 pg_opclass_is_visible (opclass oid)
 boolean

 Is operator class visible in search path?

	

 pg_operator_is_visible (operator oid)
 boolean

 Is operator visible in search path?

	

 pg_opfamily_is_visible (opclass oid)
 boolean

 Is operator family visible in search path?

	

 pg_statistics_obj_is_visible (stat oid)
 boolean

 Is statistics object visible in search path?

	

 pg_table_is_visible (table oid)
 boolean

 Is table visible in search path?
 (This works for all types of relations, including views, materialized
 views, indexes, sequences and foreign tables.)

	

 pg_ts_config_is_visible (config oid)
 boolean

 Is text search configuration visible in search path?

	

 pg_ts_dict_is_visible (dict oid)
 boolean

 Is text search dictionary visible in search path?

	

 pg_ts_parser_is_visible (parser oid)
 boolean

 Is text search parser visible in search path?

	

 pg_ts_template_is_visible (template oid)
 boolean

 Is text search template visible in search path?

	

 pg_type_is_visible (type oid)
 boolean

 Is type (or domain) visible in search path?

 All these functions require object OIDs to identify the object to be
 checked. If you want to test an object by name, it is convenient to use
 the OID alias types (regclass, regtype,
 regprocedure, regoperator, regconfig,
 or regdictionary),
 for example:

SELECT pg_type_is_visible('myschema.widget'::regtype);

 Note that it would not make much sense to test a non-schema-qualified
 type name in this way — if the name can be recognized at all, it must be visible.

System Catalog Information Functions

 Table 9.72, “System Catalog Information Functions” lists functions that
 extract information from the system catalogs.

Table 9.72. System Catalog Information Functions
	
 Function

 Description

	

 format_type (type oid, typemod integer)
 text

 Returns the SQL name for a data type that is identified by its type
 OID and possibly a type modifier. Pass NULL for the type modifier if
 no specific modifier is known.

	

 pg_char_to_encoding (encoding name)
 integer

 Converts the supplied encoding name into an integer representing the
 internal identifier used in some system catalog tables.
 Returns -1 if an unknown encoding name is provided.

	

 pg_encoding_to_char (encoding integer)
 name

 Converts the integer used as the internal identifier of an encoding in some
 system catalog tables into a human-readable string.
 Returns an empty string if an invalid encoding number is provided.

	

 pg_get_catalog_foreign_keys ()
 setof record
 (fktable regclass,
 fkcols text[],
 pktable regclass,
 pkcols text[],
 is_array boolean,
 is_opt boolean)

 Returns a set of records describing the foreign key relationships
 that exist within the PostgreSQL™ system
 catalogs.
 The fktable column contains the name of the
 referencing catalog, and the fkcols column
 contains the name(s) of the referencing column(s). Similarly,
 the pktable column contains the name of the
 referenced catalog, and the pkcols column
 contains the name(s) of the referenced column(s).
 If is_array is true, the last referencing
 column is an array, each of whose elements should match some entry
 in the referenced catalog.
 If is_opt is true, the referencing column(s)
 are allowed to contain zeroes instead of a valid reference.

	

 pg_get_constraintdef (constraint oid [, pretty boolean])
 text

 Reconstructs the creating command for a constraint.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

 pg_get_expr (expr pg_node_tree, relation oid [, pretty boolean])
 text

 Decompiles the internal form of an expression stored in the system
 catalogs, such as the default value for a column. If the expression
 might contain Vars, specify the OID of the relation they refer to as
 the second parameter; if no Vars are expected, passing zero is
 sufficient.

	

 pg_get_functiondef (func oid)
 text

 Reconstructs the creating command for a function or procedure.
 (This is a decompiled reconstruction, not the original text
 of the command.)
 The result is a complete CREATE OR REPLACE FUNCTION
 or CREATE OR REPLACE PROCEDURE statement.

	

 pg_get_function_arguments (func oid)
 text

 Reconstructs the argument list of a function or procedure, in the form
 it would need to appear in within CREATE FUNCTION
 (including default values).

	

 pg_get_function_identity_arguments (func oid)
 text

 Reconstructs the argument list necessary to identify a function or
 procedure, in the form it would need to appear in within commands such
 as ALTER FUNCTION. This form omits default values.

	

 pg_get_function_result (func oid)
 text

 Reconstructs the RETURNS clause of a function, in
 the form it would need to appear in within CREATE
 FUNCTION. Returns NULL for a procedure.

	

 pg_get_indexdef (index oid [, column integer, pretty boolean])
 text

 Reconstructs the creating command for an index.
 (This is a decompiled reconstruction, not the original text
 of the command.) If column is supplied and is
 not zero, only the definition of that column is reconstructed.

	

 pg_get_keywords ()
 setof record
 (word text,
 catcode "char",
 barelabel boolean,
 catdesc text,
 baredesc text)

 Returns a set of records describing the SQL keywords recognized by the
 server. The word column contains the
 keyword. The catcode column contains a
 category code: U for an unreserved
 keyword, C for a keyword that can be a column
 name, T for a keyword that can be a type or
 function name, or R for a fully reserved keyword.
 The barelabel column
 contains true if the keyword can be used as
 a “bare” column label in SELECT lists,
 or false if it can only be used
 after AS.
 The catdesc column contains a
 possibly-localized string describing the keyword's category.
 The baredesc column contains a
 possibly-localized string describing the keyword's column label status.

	

 pg_get_partition_constraintdef (table oid)
 text

 Reconstructs the definition of a partition constraint.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

 pg_get_partkeydef (table oid)
 text

 Reconstructs the definition of a partitioned table's partition
 key, in the form it would have in the PARTITION
 BY clause of CREATE TABLE.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

 pg_get_ruledef (rule oid [, pretty boolean])
 text

 Reconstructs the creating command for a rule.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

 pg_get_serial_sequence (table text, column text)
 text

 Returns the name of the sequence associated with a column,
 or NULL if no sequence is associated with the column.
 If the column is an identity column, the associated sequence is the
 sequence internally created for that column.
 For columns created using one of the serial types
 (serial, smallserial, bigserial),
 it is the sequence created for that serial column definition.
 In the latter case, the association can be modified or removed
 with ALTER SEQUENCE OWNED BY.
 (This function probably should have been
 called pg_get_owned_sequence; its current name
 reflects the fact that it has historically been used with serial-type
 columns.) The first parameter is a table name with optional
 schema, and the second parameter is a column name. Because the first
 parameter potentially contains both schema and table names, it is
 parsed per usual SQL rules, meaning it is lower-cased by default.
 The second parameter, being just a column name, is treated literally
 and so has its case preserved. The result is suitably formatted
 for passing to the sequence functions (see
 the section called “Sequence Manipulation Functions”).

 A typical use is in reading the current value of the sequence for an
 identity or serial column, for example:

SELECT currval(pg_get_serial_sequence('sometable', 'id'));

	

 pg_get_statisticsobjdef (statobj oid)
 text

 Reconstructs the creating command for an extended statistics object.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

pg_get_triggerdef (trigger oid [, pretty boolean])
 text

 Reconstructs the creating command for a trigger.
 (This is a decompiled reconstruction, not the original text
 of the command.)

	

 pg_get_userbyid (role oid)
 name

 Returns a role's name given its OID.

	

 pg_get_viewdef (view oid [, pretty boolean])
 text

 Reconstructs the underlying SELECT command for a
 view or materialized view. (This is a decompiled reconstruction, not
 the original text of the command.)

	
 pg_get_viewdef (view oid, wrap_column integer)
 text

 Reconstructs the underlying SELECT command for a
 view or materialized view. (This is a decompiled reconstruction, not
 the original text of the command.) In this form of the function,
 pretty-printing is always enabled, and long lines are wrapped to try
 to keep them shorter than the specified number of columns.

	
 pg_get_viewdef (view text [, pretty boolean])
 text

 Reconstructs the underlying SELECT command for a
 view or materialized view, working from a textual name for the view
 rather than its OID. (This is deprecated; use the OID variant
 instead.)

	

 pg_index_column_has_property (index regclass, column integer, property text)
 boolean

 Tests whether an index column has the named property.
 Common index column properties are listed in
 Table 9.73, “Index Column Properties”.
 (Note that extension access methods can define additional property
 names for their indexes.)
 NULL is returned if the property name is not known
 or does not apply to the particular object, or if the OID or column
 number does not identify a valid object.

	

 pg_index_has_property (index regclass, property text)
 boolean

 Tests whether an index has the named property.
 Common index properties are listed in
 Table 9.74, “Index Properties”.
 (Note that extension access methods can define additional property
 names for their indexes.)
 NULL is returned if the property name is not known
 or does not apply to the particular object, or if the OID does not
 identify a valid object.

	

 pg_indexam_has_property (am oid, property text)
 boolean

 Tests whether an index access method has the named property.
 Access method properties are listed in
 Table 9.75, “Index Access Method Properties”.
 NULL is returned if the property name is not known
 or does not apply to the particular object, or if the OID does not
 identify a valid object.

	

 pg_options_to_table (options_array text[])
 setof record
 (option_name text,
 option_value text)

 Returns the set of storage options represented by a value from
 pg_class.reloptions or
 pg_attribute.attoptions.

	

 pg_settings_get_flags (guc text)
 text[]

 Returns an array of the flags associated with the given GUC, or
 NULL if it does not exist. The result is
 an empty array if the GUC exists but there are no flags to show.
 Only the most useful flags listed in
 Table 9.76, “GUC Flags” are exposed.

	

 pg_tablespace_databases (tablespace oid)
 setof oid

 Returns the set of OIDs of databases that have objects stored in the
 specified tablespace. If this function returns any rows, the
 tablespace is not empty and cannot be dropped. To identify the specific
 objects populating the tablespace, you will need to connect to the
 database(s) identified by pg_tablespace_databases
 and query their pg_class catalogs.

	

 pg_tablespace_location (tablespace oid)
 text

 Returns the file system path that this tablespace is located in.

	

 pg_typeof ("any")
 regtype

 Returns the OID of the data type of the value that is passed to it.
 This can be helpful for troubleshooting or dynamically constructing
 SQL queries. The function is declared as
 returning regtype, which is an OID alias type (see
 the section called “Object Identifier Types”); this means that it is the same as an
 OID for comparison purposes but displays as a type name.

 For example:

SELECT pg_typeof(33);
 pg_typeof

 integer

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
 typlen

 4

	

 COLLATION FOR ("any")
 text

 Returns the name of the collation of the value that is passed to it.
 The value is quoted and schema-qualified if necessary. If no
 collation was derived for the argument expression,
 then NULL is returned. If the argument is not of a
 collatable data type, then an error is raised.

 For example:

SELECT collation for (description) FROM pg_description LIMIT 1;
 pg_collation_for

 "default"

SELECT collation for ('foo' COLLATE "de_DE");
 pg_collation_for

 "de_DE"

	

 to_regclass (text)
 regclass

 Translates a textual relation name to its OID. A similar result is
 obtained by casting the string to type regclass (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regcollation (text)
 regcollation

 Translates a textual collation name to its OID. A similar result is
 obtained by casting the string to type regcollation (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regnamespace (text)
 regnamespace

 Translates a textual schema name to its OID. A similar result is
 obtained by casting the string to type regnamespace (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regoper (text)
 regoper

 Translates a textual operator name to its OID. A similar result is
 obtained by casting the string to type regoper (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found or is ambiguous.

	

 to_regoperator (text)
 regoperator

 Translates a textual operator name (with parameter types) to its OID. A similar result is
 obtained by casting the string to type regoperator (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regproc (text)
 regproc

 Translates a textual function or procedure name to its OID. A similar result is
 obtained by casting the string to type regproc (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found or is ambiguous.

	

 to_regprocedure (text)
 regprocedure

 Translates a textual function or procedure name (with argument types) to its OID. A similar result is
 obtained by casting the string to type regprocedure (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regrole (text)
 regrole

 Translates a textual role name to its OID. A similar result is
 obtained by casting the string to type regrole (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

	

 to_regtype (text)
 regtype

 Translates a textual type name to its OID. A similar result is
 obtained by casting the string to type regtype (see
 the section called “Object Identifier Types”); however, this function will return
 NULL rather than throwing an error if the name is
 not found.

 Most of the functions that reconstruct (decompile) database objects
 have an optional pretty flag, which
 if true causes the result to
 be “pretty-printed”. Pretty-printing suppresses unnecessary
 parentheses and adds whitespace for legibility.
 The pretty-printed format is more readable, but the default format
 is more likely to be interpreted the same way by future versions of
 PostgreSQL™; so avoid using pretty-printed output
 for dump purposes. Passing false for
 the pretty parameter yields the same result as
 omitting the parameter.

Table 9.73. Index Column Properties
	Name	Description
	asc	Does the column sort in ascending order on a forward scan?

	desc	Does the column sort in descending order on a forward scan?

	nulls_first	Does the column sort with nulls first on a forward scan?

	nulls_last	Does the column sort with nulls last on a forward scan?

	orderable	Does the column possess any defined sort ordering?

	distance_orderable	Can the column be scanned in order by a “distance”
 operator, for example ORDER BY col <-> constant ?

	returnable	Can the column value be returned by an index-only scan?

	search_array	Does the column natively support col = ANY(array)
 searches?

	search_nulls	Does the column support IS NULL and
 IS NOT NULL searches?

Table 9.74. Index Properties
	Name	Description
	clusterable	Can the index be used in a CLUSTER command?

	index_scan	Does the index support plain (non-bitmap) scans?

	bitmap_scan	Does the index support bitmap scans?

	backward_scan	Can the scan direction be changed in mid-scan (to
 support FETCH BACKWARD on a cursor without
 needing materialization)?

Table 9.75. Index Access Method Properties
	Name	Description
	can_order	Does the access method support ASC,
 DESC and related keywords in
 CREATE INDEX?

	can_unique	Does the access method support unique indexes?

	can_multi_col	Does the access method support indexes with multiple columns?

	can_exclude	Does the access method support exclusion constraints?

	can_include	Does the access method support the INCLUDE
 clause of CREATE INDEX?

Table 9.76. GUC Flags
	Flag	Description
	EXPLAIN	Parameters with this flag are included in
 EXPLAIN (SETTINGS) commands.

	NO_SHOW_ALL	Parameters with this flag are excluded from
 SHOW ALL commands.

	NO_RESET	Parameters with this flag do not support
 RESET commands.

	NO_RESET_ALL	Parameters with this flag are excluded from
 RESET ALL commands.

	NOT_IN_SAMPLE	Parameters with this flag are not included in
 postgresql.conf by default.

	RUNTIME_COMPUTED	Parameters with this flag are runtime-computed ones.

Object Information and Addressing Functions

 Table 9.77, “Object Information and Addressing Functions” lists functions related to
 database object identification and addressing.

Table 9.77. Object Information and Addressing Functions
	
 Function

 Description

	

 pg_describe_object (classid oid, objid oid, objsubid integer)
 text

 Returns a textual description of a database object identified by
 catalog OID, object OID, and sub-object ID (such as a column number
 within a table; the sub-object ID is zero when referring to a whole
 object). This description is intended to be human-readable, and might
 be translated, depending on server configuration. This is especially
 useful to determine the identity of an object referenced in the
 pg_depend catalog. This function returns
 NULL values for undefined objects.

	

 pg_identify_object (classid oid, objid oid, objsubid integer)
 record
 (type text,
 schema text,
 name text,
 identity text)

 Returns a row containing enough information to uniquely identify the
 database object specified by catalog OID, object OID and sub-object
 ID.
 This information is intended to be machine-readable, and is never
 translated.
 type identifies the type of database object;
 schema is the schema name that the object
 belongs in, or NULL for object types that do not
 belong to schemas;
 name is the name of the object, quoted if
 necessary, if the name (along with schema name, if pertinent) is
 sufficient to uniquely identify the object,
 otherwise NULL;
 identity is the complete object identity, with
 the precise format depending on object type, and each name within the
 format being schema-qualified and quoted as necessary. Undefined
 objects are identified with NULL values.

	

 pg_identify_object_as_address (classid oid, objid oid, objsubid integer)
 record
 (type text,
 object_names text[],
 object_args text[])

 Returns a row containing enough information to uniquely identify the
 database object specified by catalog OID, object OID and sub-object
 ID.
 The returned information is independent of the current server, that
 is, it could be used to identify an identically named object in
 another server.
 type identifies the type of database object;
 object_names and
 object_args
 are text arrays that together form a reference to the object.
 These three values can be passed
 to pg_get_object_address to obtain the internal
 address of the object.

	

 pg_get_object_address (type text, object_names text[], object_args text[])
 record
 (classid oid,
 objid oid,
 objsubid integer)

 Returns a row containing enough information to uniquely identify the
 database object specified by a type code and object name and argument
 arrays.
 The returned values are the ones that would be used in system catalogs
 such as pg_depend; they can be passed to
 other system functions such as pg_describe_object
 or pg_identify_object.
 classid is the OID of the system catalog
 containing the object;
 objid is the OID of the object itself, and
 objsubid is the sub-object ID, or zero if none.
 This function is the inverse
 of pg_identify_object_as_address.
 Undefined objects are identified with NULL values.

Comment Information Functions

 The functions shown in Table 9.78, “Comment Information Functions”
 extract comments previously stored with the COMMENT(7)
 command. A null value is returned if no
 comment could be found for the specified parameters.

Table 9.78. Comment Information Functions
	
 Function

 Description

	

 col_description (table oid, column integer)
 text

 Returns the comment for a table column, which is specified by the OID
 of its table and its column number.
 (obj_description cannot be used for table
 columns, since columns do not have OIDs of their own.)

	

 obj_description (object oid, catalog name)
 text

 Returns the comment for a database object specified by its OID and the
 name of the containing system catalog. For
 example, obj_description(123456, 'pg_class') would
 retrieve the comment for the table with OID 123456.

	
 obj_description (object oid)
 text

 Returns the comment for a database object specified by its OID alone.
 This is deprecated since there is no guarantee
 that OIDs are unique across different system catalogs; therefore, the
 wrong comment might be returned.

	

 shobj_description (object oid, catalog name)
 text

 Returns the comment for a shared database object specified by its OID
 and the name of the containing system catalog. This is just
 like obj_description except that it is used for
 retrieving comments on shared objects (that is, databases, roles, and
 tablespaces). Some system catalogs are global to all databases within
 each cluster, and the descriptions for objects in them are stored
 globally as well.

Data Validity Checking Functions

 The functions shown in Table 9.79, “Data Validity Checking Functions”
 can be helpful for checking validity of proposed input data.

Table 9.79. Data Validity Checking Functions
	
 Function

 Description

 Example(s)

	

 pg_input_is_valid (
 string text,
 type text
)
 boolean

 Tests whether the given string is valid
 input for the specified data type, returning true or false.

 This function will only work as desired if the data type's input
 function has been updated to report invalid input as
 a “soft” error. Otherwise, invalid input will abort
 the transaction, just as if the string had been cast to the type
 directly.

 pg_input_is_valid('42', 'integer')
 t

 pg_input_is_valid('42000000000', 'integer')
 f

 pg_input_is_valid('1234.567', 'numeric(7,4)')
 f

	

 pg_input_error_info (
 string text,
 type text
)
 record
 (message text,
 detail text,
 hint text,
 sql_error_code text)

 Tests whether the given string is valid
 input for the specified data type; if not, return the details of
 the error that would have been thrown. If the input is valid, the
 results are NULL. The inputs are the same as
 for pg_input_is_valid.

 This function will only work as desired if the data type's input
 function has been updated to report invalid input as
 a “soft” error. Otherwise, invalid input will abort
 the transaction, just as if the string had been cast to the type
 directly.

 select * from pg_input_error_info('42000000000', 'integer')

 message | detail | hint | sql_error_code
--+--------+------+----------------
 value "42000000000" is out of range for type integer | | | 22003

 select message, detail from pg_input_error_info('1234.567', 'numeric(7,4)')

 message | detail
------------------------+----------------------------------​---
 numeric field overflow | A field with precision 7, scale 4 must round to an absolute value less than 10^3.

Transaction ID and Snapshot Information Functions

 The functions shown in Table 9.80, “Transaction ID and Snapshot Information Functions”
 provide server transaction information in an exportable form. The main
 use of these functions is to determine which transactions were committed
 between two snapshots.

Table 9.80. Transaction ID and Snapshot Information Functions
	
 Function

 Description

	

 age (xid)
 integer

 Returns the number of transactions between the supplied
 transaction id and the current transaction counter.

	

 mxid_age (xid)
 integer

 Returns the number of multixacts IDs between the supplied
 multixact ID and the current multixacts counter.

	

 pg_current_xact_id ()
 xid8

 Returns the current transaction's ID. It will assign a new one if the
 current transaction does not have one already (because it has not
 performed any database updates); see the section called “Transactions and Identifiers” for details. If executed in a
 subtransaction, this will return the top-level transaction ID;
 see the section called “Subtransactions” for details.

	

 pg_current_xact_id_if_assigned ()
 xid8

 Returns the current transaction's ID, or NULL if no
 ID is assigned yet. (It's best to use this variant if the transaction
 might otherwise be read-only, to avoid unnecessary consumption of an
 XID.)
 If executed in a subtransaction, this will return the top-level
 transaction ID.

	

 pg_xact_status (xid8)
 text

 Reports the commit status of a recent transaction.
 The result is one of in progress,
 committed, or aborted,
 provided that the transaction is recent enough that the system retains
 the commit status of that transaction.
 If it is old enough that no references to the transaction survive in
 the system and the commit status information has been discarded, the
 result is NULL.
 Applications might use this function, for example, to determine
 whether their transaction committed or aborted after the application
 and database server become disconnected while
 a COMMIT is in progress.
 Note that prepared transactions are reported as in
 progress; applications must check pg_prepared_xacts
 if they need to determine whether a transaction ID belongs to a
 prepared transaction.

	

 pg_current_snapshot ()
 pg_snapshot

 Returns a current snapshot, a data structure
 showing which transaction IDs are now in-progress.
 Only top-level transaction IDs are included in the snapshot;
 subtransaction IDs are not shown; see the section called “Subtransactions”
 for details.

	

 pg_snapshot_xip (pg_snapshot)
 setof xid8

 Returns the set of in-progress transaction IDs contained in a snapshot.

	

 pg_snapshot_xmax (pg_snapshot)
 xid8

 Returns the xmax of a snapshot.

	

 pg_snapshot_xmin (pg_snapshot)
 xid8

 Returns the xmin of a snapshot.

	

 pg_visible_in_snapshot (xid8, pg_snapshot)
 boolean

 Is the given transaction ID visible according
 to this snapshot (that is, was it completed before the snapshot was
 taken)? Note that this function will not give the correct answer for
 a subtransaction ID (subxid); see the section called “Subtransactions” for
 details.

	

 pg_get_multixact_members (multixid xid)
 setof record
 (xid xid,
 mode text)

 Returns the transaction ID and lock mode for each member of the
 specified multixact ID. The lock modes forupd,
 fornokeyupd, sh, and
 keysh correspond to the row-level locks
 FOR UPDATE, FOR NO KEY UPDATE,
 FOR SHARE, and FOR KEY SHARE,
 respectively, as described in the section called “Row-Level Locks”. Two
 additional modes are specific to multixacts:
 nokeyupd, used by updates that do not modify key
 columns, and upd, used by updates or deletes that
 modify key columns.

 The internal transaction ID type xid is 32 bits wide and
 wraps around every 4 billion transactions. However,
 the functions shown in Table 9.80, “Transaction ID and Snapshot Information Functions”, except
 age, mxid_age, and
 pg_get_multixact_members, use a
 64-bit type xid8 that does not wrap around during the life
 of an installation and can be converted to xid by casting if
 required; see the section called “Transactions and Identifiers” for details.
 The data type pg_snapshot stores information about
 transaction ID visibility at a particular moment in time. Its components
 are described in Table 9.81, “Snapshot Components”.
 pg_snapshot's textual representation is
 xmin:xmax:xip_list.
 For example 10:20:10,14,15 means
 xmin=10, xmax=20, xip_list=10, 14, 15.

Table 9.81. Snapshot Components
	Name	Description
	xmin	
 Lowest transaction ID that was still active. All transaction IDs
 less than xmin are either committed and visible,
 or rolled back and dead.

	xmax	
 One past the highest completed transaction ID. All transaction IDs
 greater than or equal to xmax had not yet
 completed as of the time of the snapshot, and thus are invisible.

	xip_list	
 Transactions in progress at the time of the snapshot. A transaction
 ID that is xmin <= X <
 xmax and not in this list was already completed at the time
 of the snapshot, and thus is either visible or dead according to its
 commit status. This list does not include the transaction IDs of
 subtransactions (subxids).

 In releases of PostgreSQL™ before 13 there was
 no xid8 type, so variants of these functions were provided
 that used bigint to represent a 64-bit XID, with a
 correspondingly distinct snapshot data type txid_snapshot.
 These older functions have txid in their names. They
 are still supported for backward compatibility, but may be removed from a
 future release. See Table 9.82, “Deprecated Transaction ID and Snapshot Information Functions”.

Table 9.82. Deprecated Transaction ID and Snapshot Information Functions
	
 Function

 Description

	

 txid_current ()
 bigint

 See pg_current_xact_id().

	

 txid_current_if_assigned ()
 bigint

 See pg_current_xact_id_if_assigned().

	

 txid_current_snapshot ()
 txid_snapshot

 See pg_current_snapshot().

	

 txid_snapshot_xip (txid_snapshot)
 setof bigint

 See pg_snapshot_xip().

	

 txid_snapshot_xmax (txid_snapshot)
 bigint

 See pg_snapshot_xmax().

	

 txid_snapshot_xmin (txid_snapshot)
 bigint

 See pg_snapshot_xmin().

	

 txid_visible_in_snapshot (bigint, txid_snapshot)
 boolean

 See pg_visible_in_snapshot().

	

 txid_status (bigint)
 text

 See pg_xact_status().

Committed Transaction Information Functions

 The functions shown in Table 9.83, “Committed Transaction Information Functions”
 provide information about when past transactions were committed.
 They only provide useful data when the
 track_commit_timestamp configuration option is
 enabled, and only for transactions that were committed after it was
 enabled. Commit timestamp information is routinely removed during
 vacuum.

Table 9.83. Committed Transaction Information Functions
	
 Function

 Description

	

 pg_xact_commit_timestamp (xid)
 timestamp with time zone

 Returns the commit timestamp of a transaction.

	

 pg_xact_commit_timestamp_origin (xid)
 record
 (timestamp timestamp with time zone,
 roident oid)

 Returns the commit timestamp and replication origin of a transaction.

	

 pg_last_committed_xact ()
 record
 (xid xid,
 timestamp timestamp with time zone,
 roident oid)

 Returns the transaction ID, commit timestamp and replication origin
 of the latest committed transaction.

Control Data Functions

 The functions shown in Table 9.84, “Control Data Functions”
 print information initialized during initdb, such
 as the catalog version. They also show information about write-ahead
 logging and checkpoint processing. This information is cluster-wide,
 not specific to any one database. These functions provide most of the same
 information, from the same source, as the
 pg_controldata(1) application.

Table 9.84. Control Data Functions
	
 Function

 Description

	

 pg_control_checkpoint ()
 record

 Returns information about current checkpoint state, as shown in
 Table 9.85, “pg_control_checkpoint Output Columns”.

	

 pg_control_system ()
 record

 Returns information about current control file state, as shown in
 Table 9.86, “pg_control_system Output Columns”.

	

 pg_control_init ()
 record

 Returns information about cluster initialization state, as shown in
 Table 9.87, “pg_control_init Output Columns”.

	

 pg_control_recovery ()
 record

 Returns information about recovery state, as shown in
 Table 9.88, “pg_control_recovery Output Columns”.

Table 9.85. pg_control_checkpoint Output Columns
	Column Name	Data Type
	checkpoint_lsn	pg_lsn
	redo_lsn	pg_lsn
	redo_wal_file	text
	timeline_id	integer
	prev_timeline_id	integer
	full_page_writes	boolean
	next_xid	text
	next_oid	oid
	next_multixact_id	xid
	next_multi_offset	xid
	oldest_xid	xid
	oldest_xid_dbid	oid
	oldest_active_xid	xid
	oldest_multi_xid	xid
	oldest_multi_dbid	oid
	oldest_commit_ts_xid	xid
	newest_commit_ts_xid	xid
	checkpoint_time	timestamp with time zone

Table 9.86. pg_control_system Output Columns
	Column Name	Data Type
	pg_control_version	integer
	catalog_version_no	integer
	system_identifier	bigint
	pg_control_last_modified	timestamp with time zone

Table 9.87. pg_control_init Output Columns
	Column Name	Data Type
	max_data_alignment	integer
	database_block_size	integer
	blocks_per_segment	integer
	wal_block_size	integer
	bytes_per_wal_segment	integer
	max_identifier_length	integer
	max_index_columns	integer
	max_toast_chunk_size	integer
	large_object_chunk_size	integer
	float8_pass_by_value	boolean
	data_page_checksum_version	integer

Table 9.88. pg_control_recovery Output Columns
	Column Name	Data Type
	min_recovery_end_lsn	pg_lsn
	min_recovery_end_timeline	integer
	backup_start_lsn	pg_lsn
	backup_end_lsn	pg_lsn
	end_of_backup_record_required	boolean

System Administration Functions

 The functions described in this section are used to control and
 monitor a PostgreSQL™ installation.

Configuration Settings Functions

 Table 9.89, “Configuration Settings Functions” shows the functions
 available to query and alter run-time configuration parameters.

Table 9.89. Configuration Settings Functions
	
 Function

 Description

 Example(s)

	

 current_setting (setting_name text [, missing_ok boolean])
 text

 Returns the current value of the
 setting setting_name. If there is no such
 setting, current_setting throws an error
 unless missing_ok is supplied and
 is true (in which case NULL is returned).
 This function corresponds to
 the SQL command SHOW(7).

 current_setting('datestyle')
 ISO, MDY

	

 set_config (
 setting_name text,
 new_value text,
 is_local boolean)
 text

 Sets the parameter setting_name
 to new_value, and returns that value.
 If is_local is true, the new
 value will only apply during the current transaction. If you want the
 new value to apply for the rest of the current session,
 use false instead. This function corresponds to
 the SQL command SET(7).

 set_config('log_statement_stats', 'off', false)
 off

Server Signaling Functions

 The functions shown in Table 9.90, “Server Signaling Functions” send control signals to
 other server processes. Use of these functions is restricted to
 superusers by default but access may be granted to others using
 GRANT, with noted exceptions.

 Each of these functions returns true if
 the signal was successfully sent and false
 if sending the signal failed.

Table 9.90. Server Signaling Functions
	
 Function

 Description

	

 pg_cancel_backend (pid integer)
 boolean

 Cancels the current query of the session whose backend process has the
 specified process ID. This is also allowed if the
 calling role is a member of the role whose backend is being canceled or
 the calling role has privileges of pg_signal_backend,
 however only superusers can cancel superuser backends.

	

 pg_log_backend_memory_contexts (pid integer)
 boolean

 Requests to log the memory contexts of the backend with the
 specified process ID. This function can send the request to
 backends and auxiliary processes except logger. These memory contexts
 will be logged at
 LOG message level. They will appear in
 the server log based on the log configuration set
 (see the section called “Error Reporting and Logging” for more information),
 but will not be sent to the client regardless of
 client_min_messages.

	

 pg_reload_conf ()
 boolean

 Causes all processes of the PostgreSQL™
 server to reload their configuration files. (This is initiated by
 sending a SIGHUP signal to the postmaster
 process, which in turn sends SIGHUP to each
 of its children.) You can use the
 pg_file_settings,
 pg_hba_file_rules and
 pg_ident_file_mappings views
 to check the configuration files for possible errors, before reloading.

	

 pg_rotate_logfile ()
 boolean

 Signals the log-file manager to switch to a new output file
 immediately. This works only when the built-in log collector is
 running, since otherwise there is no log-file manager subprocess.

	

 pg_terminate_backend (pid integer, timeout bigint DEFAULT 0)
 boolean

 Terminates the session whose backend process has the
 specified process ID. This is also allowed if the calling role
 is a member of the role whose backend is being terminated or the
 calling role has privileges of pg_signal_backend,
 however only superusers can terminate superuser backends.

 If timeout is not specified or zero, this
 function returns true whether the process actually
 terminates or not, indicating only that the sending of the signal was
 successful. If the timeout is specified (in
 milliseconds) and greater than zero, the function waits until the
 process is actually terminated or until the given time has passed. If
 the process is terminated, the function
 returns true. On timeout, a warning is emitted and
 false is returned.

 pg_cancel_backend and pg_terminate_backend
 send signals (SIGINT or SIGTERM
 respectively) to backend processes identified by process ID.
 The process ID of an active backend can be found from
 the pid column of the
 pg_stat_activity view, or by listing the
 postgres processes on the server (using
 ps on Unix or the Task
 Manager on Windows™).
 The role of an active backend can be found from the
 usename column of the
 pg_stat_activity view.

 pg_log_backend_memory_contexts can be used
 to log the memory contexts of a backend process. For example:

postgres=# SELECT pg_log_backend_memory_contexts(pg_backend_pid());
 pg_log_backend_memory_contexts

 t
(1 row)

One message for each memory context will be logged. For example:

LOG: logging memory contexts of PID 10377
STATEMENT: SELECT pg_log_backend_memory_contexts(pg_backend_pid());
LOG: level: 0; TopMemoryContext: 80800 total in 6 blocks; 14432 free (5 chunks); 66368 used
LOG: level: 1; pgstat TabStatusArray lookup hash table: 8192 total in 1 blocks; 1408 free (0 chunks); 6784 used
LOG: level: 1; TopTransactionContext: 8192 total in 1 blocks; 7720 free (1 chunks); 472 used
LOG: level: 1; RowDescriptionContext: 8192 total in 1 blocks; 6880 free (0 chunks); 1312 used
LOG: level: 1; MessageContext: 16384 total in 2 blocks; 5152 free (0 chunks); 11232 used
LOG: level: 1; Operator class cache: 8192 total in 1 blocks; 512 free (0 chunks); 7680 used
LOG: level: 1; smgr relation table: 16384 total in 2 blocks; 4544 free (3 chunks); 11840 used
LOG: level: 1; TransactionAbortContext: 32768 total in 1 blocks; 32504 free (0 chunks); 264 used
...
LOG: level: 1; ErrorContext: 8192 total in 1 blocks; 7928 free (3 chunks); 264 used
LOG: Grand total: 1651920 bytes in 201 blocks; 622360 free (88 chunks); 1029560 used

 If there are more than 100 child contexts under the same parent, the first
 100 child contexts are logged, along with a summary of the remaining contexts.
 Note that frequent calls to this function could incur significant overhead,
 because it may generate a large number of log messages.

Backup Control Functions

 The functions shown in Table 9.91, “Backup Control Functions” assist in making on-line backups.
 These functions cannot be executed during recovery (except
 pg_backup_start,
 pg_backup_stop,
 and pg_wal_lsn_diff).

 For details about proper usage of these functions, see
 the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”.

Table 9.91. Backup Control Functions
	
 Function

 Description

	

 pg_create_restore_point (name text)
 pg_lsn

 Creates a named marker record in the write-ahead log that can later be
 used as a recovery target, and returns the corresponding write-ahead
 log location. The given name can then be used with
 recovery_target_name to specify the point up to
 which recovery will proceed. Avoid creating multiple restore points
 with the same name, since recovery will stop at the first one whose
 name matches the recovery target.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_current_wal_flush_lsn ()
 pg_lsn

 Returns the current write-ahead log flush location (see notes below).

	

 pg_current_wal_insert_lsn ()
 pg_lsn

 Returns the current write-ahead log insert location (see notes below).

	

 pg_current_wal_lsn ()
 pg_lsn

 Returns the current write-ahead log write location (see notes below).

	

 pg_backup_start (
 label text
 [, fast boolean
])
 pg_lsn

 Prepares the server to begin an on-line backup. The only required
 parameter is an arbitrary user-defined label for the backup.
 (Typically this would be the name under which the backup dump file
 will be stored.)
 If the optional second parameter is given as true,
 it specifies executing pg_backup_start as quickly
 as possible. This forces an immediate checkpoint which will cause a
 spike in I/O operations, slowing any concurrently executing queries.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_backup_stop (
 [wait_for_archive boolean
])
 record
 (lsn pg_lsn,
 labelfile text,
 spcmapfile text)

 Finishes performing an on-line backup. The desired contents of the
 backup label file and the tablespace map file are returned as part of
 the result of the function and must be written to files in the
 backup area. These files must not be written to the live data directory
 (doing so will cause PostgreSQL to fail to restart in the event of a
 crash).

 There is an optional parameter of type boolean.
 If false, the function will return immediately after the backup is
 completed, without waiting for WAL to be archived. This behavior is
 only useful with backup software that independently monitors WAL
 archiving. Otherwise, WAL required to make the backup consistent might
 be missing and make the backup useless. By default or when this
 parameter is true, pg_backup_stop will wait for
 WAL to be archived when archiving is enabled. (On a standby, this
 means that it will wait only when archive_mode =
 always. If write activity on the primary is low,
 it may be useful to run pg_switch_wal on the
 primary in order to trigger an immediate segment switch.)

 When executed on a primary, this function also creates a backup
 history file in the write-ahead log archive area. The history file
 includes the label given to pg_backup_start, the
 starting and ending write-ahead log locations for the backup, and the
 starting and ending times of the backup. After recording the ending
 location, the current write-ahead log insertion point is automatically
 advanced to the next write-ahead log file, so that the ending
 write-ahead log file can be archived immediately to complete the
 backup.

 The result of the function is a single record.
 The lsn column holds the backup's ending
 write-ahead log location (which again can be ignored). The second
 column returns the contents of the backup label file, and the third
 column returns the contents of the tablespace map file. These must be
 stored as part of the backup and are required as part of the restore
 process.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_switch_wal ()
 pg_lsn

 Forces the server to switch to a new write-ahead log file, which
 allows the current file to be archived (assuming you are using
 continuous archiving). The result is the ending write-ahead log
 location plus 1 within the just-completed write-ahead log file. If
 there has been no write-ahead log activity since the last write-ahead
 log switch, pg_switch_wal does nothing and
 returns the start location of the write-ahead log file currently in
 use.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_walfile_name (lsn pg_lsn)
 text

 Converts a write-ahead log location to the name of the WAL file
 holding that location.

	

 pg_walfile_name_offset (lsn pg_lsn)
 record
 (file_name text,
 file_offset integer)

 Converts a write-ahead log location to a WAL file name and byte offset
 within that file.

	

 pg_split_walfile_name (file_name text)
 record
 (segment_number numeric,
 timeline_id bigint)

 Extracts the sequence number and timeline ID from a WAL file
 name.

	

 pg_wal_lsn_diff (lsn1 pg_lsn, lsn2 pg_lsn)
 numeric

 Calculates the difference in bytes (lsn1 - lsn2) between two write-ahead log
 locations. This can be used
 with pg_stat_replication or some of the
 functions shown in Table 9.91, “Backup Control Functions” to
 get the replication lag.

 pg_current_wal_lsn displays the current write-ahead
 log write location in the same format used by the above functions.
 Similarly, pg_current_wal_insert_lsn displays the
 current write-ahead log insertion location
 and pg_current_wal_flush_lsn displays the current
 write-ahead log flush location. The insertion location is
 the “logical” end of the write-ahead log at any instant,
 while the write location is the end of what has actually been written out
 from the server's internal buffers, and the flush location is the last
 location known to be written to durable storage. The write location is the
 end of what can be examined from outside the server, and is usually what
 you want if you are interested in archiving partially-complete write-ahead
 log files. The insertion and flush locations are made available primarily
 for server debugging purposes. These are all read-only operations and do
 not require superuser permissions.

 You can use pg_walfile_name_offset to extract the
 corresponding write-ahead log file name and byte offset from
 a pg_lsn value. For example:

postgres=# SELECT * FROM pg_walfile_name_offset((pg_backup_stop()).lsn);
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

 Similarly, pg_walfile_name extracts just the write-ahead log file name.
 When the given write-ahead log location is exactly at a write-ahead log file boundary, both
 these functions return the name of the preceding write-ahead log file.
 This is usually the desired behavior for managing write-ahead log archiving
 behavior, since the preceding file is the last one that currently
 needs to be archived.

 pg_split_walfile_name is useful to compute a
 LSN from a file offset and WAL file name, for example:

postgres=# \set file_name '000000010000000100C000AB'
postgres=# \set offset 256
postgres=# SELECT '0/0'::pg_lsn + pd.segment_number * ps.setting::int + :offset AS lsn
 FROM pg_split_walfile_name(:'file_name') pd,
 pg_show_all_settings() ps
 WHERE ps.name = 'wal_segment_size';
 lsn

 C001/AB000100
(1 row)

Recovery Control Functions

 The functions shown in Table 9.92, “Recovery Information Functions” provide information
 about the current status of a standby server.
 These functions may be executed both during recovery and in normal running.

Table 9.92. Recovery Information Functions
	
 Function

 Description

	

 pg_is_in_recovery ()
 boolean

 Returns true if recovery is still in progress.

	

 pg_last_wal_receive_lsn ()
 pg_lsn

 Returns the last write-ahead log location that has been received and
 synced to disk by streaming replication. While streaming replication
 is in progress this will increase monotonically. If recovery has
 completed then this will remain static at the location of the last WAL
 record received and synced to disk during recovery. If streaming
 replication is disabled, or if it has not yet started, the function
 returns NULL.

	

 pg_last_wal_replay_lsn ()
 pg_lsn

 Returns the last write-ahead log location that has been replayed
 during recovery. If recovery is still in progress this will increase
 monotonically. If recovery has completed then this will remain
 static at the location of the last WAL record applied during recovery.
 When the server has been started normally without recovery, the
 function returns NULL.

	

 pg_last_xact_replay_timestamp ()
 timestamp with time zone

 Returns the time stamp of the last transaction replayed during
 recovery. This is the time at which the commit or abort WAL record
 for that transaction was generated on the primary. If no transactions
 have been replayed during recovery, the function
 returns NULL. Otherwise, if recovery is still in
 progress this will increase monotonically. If recovery has completed
 then this will remain static at the time of the last transaction
 applied during recovery. When the server has been started normally
 without recovery, the function returns NULL.

	

 pg_get_wal_resource_managers ()
 setof record
 (rm_id integer,
 rm_name text,
 rm_builtin boolean)

 Returns the currently-loaded WAL resource managers in the system. The
 column rm_builtin indicates whether it's a
 built-in resource manager, or a custom resource manager loaded by an
 extension.

 The functions shown in Table 9.93, “Recovery Control Functions” control the progress of recovery.
 These functions may be executed only during recovery.

Table 9.93. Recovery Control Functions
	
 Function

 Description

	

 pg_is_wal_replay_paused ()
 boolean

 Returns true if recovery pause is requested.

	

 pg_get_wal_replay_pause_state ()
 text

 Returns recovery pause state. The return values are
 not paused if pause is not requested,
 pause requested if pause is requested but recovery is
 not yet paused, and paused if the recovery is
 actually paused.

	

 pg_promote (wait boolean DEFAULT true, wait_seconds integer DEFAULT 60)
 boolean

 Promotes a standby server to primary status.
 With wait set to true (the
 default), the function waits until promotion is completed
 or wait_seconds seconds have passed, and
 returns true if promotion is successful
 and false otherwise.
 If wait is set to false, the
 function returns true immediately after sending a
 SIGUSR1 signal to the postmaster to trigger
 promotion.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_wal_replay_pause ()
 void

 Request to pause recovery. A request doesn't mean that recovery stops
 right away. If you want a guarantee that recovery is actually paused,
 you need to check for the recovery pause state returned by
 pg_get_wal_replay_pause_state(). Note that
 pg_is_wal_replay_paused() returns whether a request
 is made. While recovery is paused, no further database changes are applied.
 If hot standby is active, all new queries will see the same consistent
 snapshot of the database, and no further query conflicts will be generated
 until recovery is resumed.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_wal_replay_resume ()
 void

 Restarts recovery if it was paused.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

 pg_wal_replay_pause and
 pg_wal_replay_resume cannot be executed while
 a promotion is ongoing. If a promotion is triggered while recovery
 is paused, the paused state ends and promotion continues.

 If streaming replication is disabled, the paused state may continue
 indefinitely without a problem. If streaming replication is in
 progress then WAL records will continue to be received, which will
 eventually fill available disk space, depending upon the duration of
 the pause, the rate of WAL generation and available disk space.

Snapshot Synchronization Functions

 PostgreSQL™ allows database sessions to synchronize their
 snapshots. A snapshot determines which data is visible to the
 transaction that is using the snapshot. Synchronized snapshots are
 necessary when two or more sessions need to see identical content in the
 database. If two sessions just start their transactions independently,
 there is always a possibility that some third transaction commits
 between the executions of the two START TRANSACTION commands,
 so that one session sees the effects of that transaction and the other
 does not.

 To solve this problem, PostgreSQL™ allows a transaction to
 export the snapshot it is using. As long as the exporting
 transaction remains open, other transactions can import its
 snapshot, and thereby be guaranteed that they see exactly the same view
 of the database that the first transaction sees. But note that any
 database changes made by any one of these transactions remain invisible
 to the other transactions, as is usual for changes made by uncommitted
 transactions. So the transactions are synchronized with respect to
 pre-existing data, but act normally for changes they make themselves.

 Snapshots are exported with the pg_export_snapshot function,
 shown in Table 9.94, “Snapshot Synchronization Functions”, and
 imported with the SET TRANSACTION(7) command.

Table 9.94. Snapshot Synchronization Functions
	
 Function

 Description

	

 pg_export_snapshot ()
 text

 Saves the transaction's current snapshot and returns
 a text string identifying the snapshot. This string must
 be passed (outside the database) to clients that want to import the
 snapshot. The snapshot is available for import only until the end of
 the transaction that exported it.

 A transaction can export more than one snapshot, if needed. Note that
 doing so is only useful in READ COMMITTED
 transactions, since in REPEATABLE READ and higher
 isolation levels, transactions use the same snapshot throughout their
 lifetime. Once a transaction has exported any snapshots, it cannot be
 prepared with PREPARE TRANSACTION(7).

	

 pg_log_standby_snapshot ()
 pg_lsn

 Take a snapshot of running transactions and write it to WAL, without
 having to wait for bgwriter or checkpointer to log one. This is useful
 for logical decoding on standby, as logical slot creation has to wait
 until such a record is replayed on the standby.

Replication Management Functions

 The functions shown
 in Table 9.95, “Replication Management Functions” are for
 controlling and interacting with replication features.
 See the section called “Streaming Replication”,
 the section called “Replication Slots”, and
 Chapter 50, Replication Progress Tracking
 for information about the underlying features.
 Use of functions for replication origin is only allowed to the
 superuser by default, but may be allowed to other users by using the
 GRANT command.
 Use of functions for replication slots is restricted to superusers
 and users having REPLICATION privilege.

 Many of these functions have equivalent commands in the replication
 protocol; see the section called “Streaming Replication Protocol”.

 The functions described in
 the section called “Backup Control Functions”,
 the section called “Recovery Control Functions”, and
 the section called “Snapshot Synchronization Functions”
 are also relevant for replication.

Table 9.95. Replication Management Functions
	
 Function

 Description

	

 pg_create_physical_replication_slot (slot_name name [, immediately_reserve boolean, temporary boolean])
 record
 (slot_name name,
 lsn pg_lsn)

 Creates a new physical replication slot named
 slot_name. The optional second parameter,
 when true, specifies that the LSN for this
 replication slot be reserved immediately; otherwise
 the LSN is reserved on first connection from a streaming
 replication client. Streaming changes from a physical slot is only
 possible with the streaming-replication protocol —
 see the section called “Streaming Replication Protocol”. The optional third
 parameter, temporary, when set to true, specifies that
 the slot should not be permanently stored to disk and is only meant
 for use by the current session. Temporary slots are also
 released upon any error. This function corresponds
 to the replication protocol command CREATE_REPLICATION_SLOT
 ... PHYSICAL.

	

 pg_drop_replication_slot (slot_name name)
 void

 Drops the physical or logical replication slot
 named slot_name. Same as replication protocol
 command DROP_REPLICATION_SLOT.

	

 pg_create_logical_replication_slot (slot_name name, plugin name [, temporary boolean, twophase boolean])
 record
 (slot_name name,
 lsn pg_lsn)

 Creates a new logical (decoding) replication slot named
 slot_name using the output plugin
 plugin. The optional third
 parameter, temporary, when set to true, specifies that
 the slot should not be permanently stored to disk and is only meant
 for use by the current session. Temporary slots are also
 released upon any error. The optional fourth parameter,
 twophase, when set to true, specifies
 that the decoding of prepared transactions is enabled for this
 slot. A call to this function has the same effect as the replication
 protocol command CREATE_REPLICATION_SLOT ... LOGICAL.

	

 pg_copy_physical_replication_slot (src_slot_name name, dst_slot_name name [, temporary boolean])
 record
 (slot_name name,
 lsn pg_lsn)

 Copies an existing physical replication slot named src_slot_name
 to a physical replication slot named dst_slot_name.
 The copied physical slot starts to reserve WAL from the same LSN as the
 source slot.
 temporary is optional. If temporary
 is omitted, the same value as the source slot is used. Copy of an
 invalidated slot is not allowed.

	

 pg_copy_logical_replication_slot (src_slot_name name, dst_slot_name name [, temporary boolean [, plugin name]])
 record
 (slot_name name,
 lsn pg_lsn)

 Copies an existing logical replication slot
 named src_slot_name to a logical replication
 slot named dst_slot_name, optionally changing
 the output plugin and persistence. The copied logical slot starts
 from the same LSN as the source logical slot. Both
 temporary and plugin are
 optional; if they are omitted, the values of the source slot are used.
 Copy of an invalidated slot is not allowed.

	

 pg_logical_slot_get_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[])
 setof record
 (lsn pg_lsn,
 xid xid,
 data text)

 Returns changes in the slot slot_name, starting
 from the point from which changes have been consumed last. If
 upto_lsn
 and upto_nchanges are NULL,
 logical decoding will continue until end of WAL. If
 upto_lsn is non-NULL, decoding will include only
 those transactions which commit prior to the specified LSN. If
 upto_nchanges is non-NULL, decoding will
 stop when the number of rows produced by decoding exceeds
 the specified value. Note, however, that the actual number of
 rows returned may be larger, since this limit is only checked after
 adding the rows produced when decoding each new transaction commit.

	

 pg_logical_slot_peek_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[])
 setof record
 (lsn pg_lsn,
 xid xid,
 data text)

 Behaves just like
 the pg_logical_slot_get_changes() function,
 except that changes are not consumed; that is, they will be returned
 again on future calls.

	

 pg_logical_slot_get_binary_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[])
 setof record
 (lsn pg_lsn,
 xid xid,
 data bytea)

 Behaves just like
 the pg_logical_slot_get_changes() function,
 except that changes are returned as bytea.

	

 pg_logical_slot_peek_binary_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[])
 setof record
 (lsn pg_lsn,
 xid xid,
 data bytea)

 Behaves just like
 the pg_logical_slot_peek_changes() function,
 except that changes are returned as bytea.

	

 pg_replication_slot_advance (slot_name name, upto_lsn pg_lsn)
 record
 (slot_name name,
 end_lsn pg_lsn)

 Advances the current confirmed position of a replication slot named
 slot_name. The slot will not be moved backwards,
 and it will not be moved beyond the current insert location. Returns
 the name of the slot and the actual position that it was advanced to.
 The updated slot position information is written out at the next
 checkpoint if any advancing is done. So in the event of a crash, the
 slot may return to an earlier position.

	

 pg_replication_origin_create (node_name text)
 oid

 Creates a replication origin with the given external
 name, and returns the internal ID assigned to it.

	

 pg_replication_origin_drop (node_name text)
 void

 Deletes a previously-created replication origin, including any
 associated replay progress.

	

 pg_replication_origin_oid (node_name text)
 oid

 Looks up a replication origin by name and returns the internal ID. If
 no such replication origin is found, NULL is
 returned.

	

 pg_replication_origin_session_setup (node_name text)
 void

 Marks the current session as replaying from the given
 origin, allowing replay progress to be tracked.
 Can only be used if no origin is currently selected.
 Use pg_replication_origin_session_reset to undo.

	

 pg_replication_origin_session_reset ()
 void

 Cancels the effects
 of pg_replication_origin_session_setup().

	

 pg_replication_origin_session_is_setup ()
 boolean

 Returns true if a replication origin has been selected in the
 current session.

	

 pg_replication_origin_session_progress (flush boolean)
 pg_lsn

 Returns the replay location for the replication origin selected in
 the current session. The parameter flush
 determines whether the corresponding local transaction will be
 guaranteed to have been flushed to disk or not.

	

 pg_replication_origin_xact_setup (origin_lsn pg_lsn, origin_timestamp timestamp with time zone)
 void

 Marks the current transaction as replaying a transaction that has
 committed at the given LSN and timestamp. Can
 only be called when a replication origin has been selected
 using pg_replication_origin_session_setup.

	

 pg_replication_origin_xact_reset ()
 void

 Cancels the effects of
 pg_replication_origin_xact_setup().

	

 pg_replication_origin_advance (node_name text, lsn pg_lsn)
 void

 Sets replication progress for the given node to the given
 location. This is primarily useful for setting up the initial
 location, or setting a new location after configuration changes and
 similar. Be aware that careless use of this function can lead to
 inconsistently replicated data.

	

 pg_replication_origin_progress (node_name text, flush boolean)
 pg_lsn

 Returns the replay location for the given replication origin. The
 parameter flush determines whether the
 corresponding local transaction will be guaranteed to have been
 flushed to disk or not.

	

 pg_logical_emit_message (transactional boolean, prefix text, content text)
 pg_lsn

 pg_logical_emit_message (transactional boolean, prefix text, content bytea)
 pg_lsn

 Emits a logical decoding message. This can be used to pass generic
 messages to logical decoding plugins through
 WAL. The transactional parameter specifies if
 the message should be part of the current transaction, or if it should
 be written immediately and decoded as soon as the logical decoder
 reads the record. The prefix parameter is a
 textual prefix that can be used by logical decoding plugins to easily
 recognize messages that are interesting for them.
 The content parameter is the content of the
 message, given either in text or binary form.

Database Object Management Functions

 The functions shown in Table 9.96, “Database Object Size Functions” calculate
 the disk space usage of database objects, or assist in presentation
 or understanding of usage results. bigint results
 are measured in bytes. If an OID that does
 not represent an existing object is passed to one of these
 functions, NULL is returned.

Table 9.96. Database Object Size Functions
	
 Function

 Description

	

 pg_column_size ("any")
 integer

 Shows the number of bytes used to store any individual data value. If
 applied directly to a table column value, this reflects any
 compression that was done.

	

 pg_column_compression ("any")
 text

 Shows the compression algorithm that was used to compress
 an individual variable-length value. Returns NULL
 if the value is not compressed.

	

 pg_database_size (name)
 bigint

 pg_database_size (oid)
 bigint

 Computes the total disk space used by the database with the specified
 name or OID. To use this function, you must
 have CONNECT privilege on the specified database
 (which is granted by default) or have privileges of
 the pg_read_all_stats role.

	

 pg_indexes_size (regclass)
 bigint

 Computes the total disk space used by indexes attached to the
 specified table.

	

 pg_relation_size (relation regclass [, fork text])
 bigint

 Computes the disk space used by one “fork” of the
 specified relation. (Note that for most purposes it is more
 convenient to use the higher-level
 functions pg_total_relation_size
 or pg_table_size, which sum the sizes of all
 forks.) With one argument, this returns the size of the main data
 fork of the relation. The second argument can be provided to specify
 which fork to examine:

	
 main returns the size of the main
 data fork of the relation.

	
 fsm returns the size of the Free Space Map
 (see the section called “Free Space Map”) associated with the relation.

	
 vm returns the size of the Visibility Map
 (see the section called “Visibility Map”) associated with the relation.

	
 init returns the size of the initialization
 fork, if any, associated with the relation.

	

 pg_size_bytes (text)
 bigint

 Converts a size in human-readable format (as returned
 by pg_size_pretty) into bytes. Valid units are
 bytes, B, kB,
 MB, GB, TB,
 and PB.

	

 pg_size_pretty (bigint)
 text

 pg_size_pretty (numeric)
 text

 Converts a size in bytes into a more easily human-readable format with
 size units (bytes, kB, MB, GB, TB, or PB as appropriate). Note that the
 units are powers of 2 rather than powers of 10, so 1kB is 1024 bytes,
 1MB is 10242 = 1048576 bytes, and so on.

	

 pg_table_size (regclass)
 bigint

 Computes the disk space used by the specified table, excluding indexes
 (but including its TOAST table if any, free space map, and visibility
 map).

	

 pg_tablespace_size (name)
 bigint

 pg_tablespace_size (oid)
 bigint

 Computes the total disk space used in the tablespace with the
 specified name or OID. To use this function, you must
 have CREATE privilege on the specified tablespace
 or have privileges of the pg_read_all_stats role,
 unless it is the default tablespace for the current database.

	

 pg_total_relation_size (regclass)
 bigint

 Computes the total disk space used by the specified table, including
 all indexes and TOAST data. The result is
 equivalent to pg_table_size
 + pg_indexes_size.

 The functions above that operate on tables or indexes accept a
 regclass argument, which is simply the OID of the table or index
 in the pg_class system catalog. You do not have to look up
 the OID by hand, however, since the regclass data type's input
 converter will do the work for you. See the section called “Object Identifier Types”
 for details.

 The functions shown in Table 9.97, “Database Object Location Functions” assist
 in identifying the specific disk files associated with database objects.

Table 9.97. Database Object Location Functions
	
 Function

 Description

	

 pg_relation_filenode (relation regclass)
 oid

 Returns the “filenode” number currently assigned to the
 specified relation. The filenode is the base component of the file
 name(s) used for the relation (see
 the section called “Database File Layout” for more information).
 For most relations the result is the same as
 pg_class.relfilenode,
 but for certain system catalogs relfilenode
 is zero and this function must be used to get the correct value. The
 function returns NULL if passed a relation that does not have storage,
 such as a view.

	

 pg_relation_filepath (relation regclass)
 text

 Returns the entire file path name (relative to the database cluster's
 data directory, PGDATA) of the relation.

	

 pg_filenode_relation (tablespace oid, filenode oid)
 regclass

 Returns a relation's OID given the tablespace OID and filenode it is
 stored under. This is essentially the inverse mapping of
 pg_relation_filepath. For a relation in the
 database's default tablespace, the tablespace can be specified as zero.
 Returns NULL if no relation in the current database
 is associated with the given values, or if dealing with a temporary
 relation.

 Table 9.98, “Collation Management Functions” lists functions used to manage
 collations.

Table 9.98. Collation Management Functions
	
 Function

 Description

	

 pg_collation_actual_version (oid)
 text

 Returns the actual version of the collation object as it is currently
 installed in the operating system. If this is different from the
 value in
 pg_collation.collversion,
 then objects depending on the collation might need to be rebuilt. See
 also ALTER COLLATION(7).

	

 pg_database_collation_actual_version (oid)
 text

 Returns the actual version of the database's collation as it is currently
 installed in the operating system. If this is different from the
 value in
 pg_database.datcollversion,
 then objects depending on the collation might need to be rebuilt. See
 also ALTER DATABASE(7).

	

 pg_import_system_collations (schema regnamespace)
 integer

 Adds collations to the system
 catalog pg_collation based on all the locales
 it finds in the operating system. This is
 what initdb uses; see
 the section called “Managing Collations” for more details. If additional
 locales are installed into the operating system later on, this
 function can be run again to add collations for the new locales.
 Locales that match existing entries
 in pg_collation will be skipped. (But
 collation objects based on locales that are no longer present in the
 operating system are not removed by this function.)
 The schema parameter would typically
 be pg_catalog, but that is not a requirement; the
 collations could be installed into some other schema as well. The
 function returns the number of new collation objects it created.
 Use of this function is restricted to superusers.

 Table 9.99, “Partitioning Information Functions” lists functions that provide
 information about the structure of partitioned tables.

Table 9.99. Partitioning Information Functions
	
 Function

 Description

	

 pg_partition_tree (regclass)
 setof record
 (relid regclass,
 parentrelid regclass,
 isleaf boolean,
 level integer)

 Lists the tables or indexes in the partition tree of the
 given partitioned table or partitioned index, with one row for each
 partition. Information provided includes the OID of the partition,
 the OID of its immediate parent, a boolean value telling if the
 partition is a leaf, and an integer telling its level in the hierarchy.
 The level value is 0 for the input table or index, 1 for its
 immediate child partitions, 2 for their partitions, and so on.
 Returns no rows if the relation does not exist or is not a partition
 or partitioned table.

	

 pg_partition_ancestors (regclass)
 setof regclass

 Lists the ancestor relations of the given partition,
 including the relation itself. Returns no rows if the relation
 does not exist or is not a partition or partitioned table.

	

 pg_partition_root (regclass)
 regclass

 Returns the top-most parent of the partition tree to which the given
 relation belongs. Returns NULL if the relation
 does not exist or is not a partition or partitioned table.

 For example, to check the total size of the data contained in a
 partitioned table measurement, one could use the
 following query:

SELECT pg_size_pretty(sum(pg_relation_size(relid))) AS total_size
 FROM pg_partition_tree('measurement');

Index Maintenance Functions

 Table 9.100, “Index Maintenance Functions” shows the functions
 available for index maintenance tasks. (Note that these maintenance
 tasks are normally done automatically by autovacuum; use of these
 functions is only required in special cases.)
 These functions cannot be executed during recovery.
 Use of these functions is restricted to superusers and the owner
 of the given index.

Table 9.100. Index Maintenance Functions
	
 Function

 Description

	

 brin_summarize_new_values (index regclass)
 integer

 Scans the specified BRIN index to find page ranges in the base table
 that are not currently summarized by the index; for any such range it
 creates a new summary index tuple by scanning those table pages.
 Returns the number of new page range summaries that were inserted
 into the index.

	

 brin_summarize_range (index regclass, blockNumber bigint)
 integer

 Summarizes the page range covering the given block, if not already
 summarized. This is
 like brin_summarize_new_values except that it
 only processes the page range that covers the given table block number.

	

 brin_desummarize_range (index regclass, blockNumber bigint)
 void

 Removes the BRIN index tuple that summarizes the page range covering
 the given table block, if there is one.

	

 gin_clean_pending_list (index regclass)
 bigint

 Cleans up the “pending” list of the specified GIN index
 by moving entries in it, in bulk, to the main GIN data structure.
 Returns the number of pages removed from the pending list.
 If the argument is a GIN index built with
 the fastupdate option disabled, no cleanup happens
 and the result is zero, because the index doesn't have a pending list.
 See the section called “GIN Fast Update Technique” and the section called “GIN Tips and Tricks”
 for details about the pending list and fastupdate
 option.

Generic File Access Functions

 The functions shown in Table 9.101, “Generic File Access Functions” provide native access to
 files on the machine hosting the server. Only files within the
 database cluster directory and the log_directory can be
 accessed, unless the user is a superuser or is granted the role
 pg_read_server_files. Use a relative path for files in
 the cluster directory, and a path matching the log_directory
 configuration setting for log files.

 Note that granting users the EXECUTE privilege on
 pg_read_file(), or related functions, allows them the
 ability to read any file on the server that the database server process can
 read; these functions bypass all in-database privilege checks. This means
 that, for example, a user with such access is able to read the contents of
 the pg_authid table where authentication
 information is stored, as well as read any table data in the database.
 Therefore, granting access to these functions should be carefully
 considered.

 When granting privilege on these functions, note that the table entries
 showing optional parameters are mostly implemented as several physical
 functions with different parameter lists. Privilege must be granted
 separately on each such function, if it is to be
 used. psql's \df command
 can be useful to check what the actual function signatures are.

 Some of these functions take an optional missing_ok
 parameter, which specifies the behavior when the file or directory does
 not exist. If true, the function
 returns NULL or an empty result set, as appropriate.
 If false, an error is raised. (Failure conditions
 other than “file not found” are reported as errors in any
 case.) The default is false.

Table 9.101. Generic File Access Functions
	
 Function

 Description

	

 pg_ls_dir (dirname text [, missing_ok boolean, include_dot_dirs boolean])
 setof text

 Returns the names of all files (and directories and other special
 files) in the specified
 directory. The include_dot_dirs parameter
 indicates whether “.” and “..” are to be
 included in the result set; the default is to exclude them. Including
 them can be useful when missing_ok
 is true, to distinguish an empty directory from a
 non-existent directory.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_ls_logdir ()
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's log directory. Filenames beginning with
 a dot, directories, and other special files are excluded.

 This function is restricted to superusers and roles with privileges of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_waldir ()
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's write-ahead log (WAL) directory.
 Filenames beginning with a dot, directories, and other special files
 are excluded.

 This function is restricted to superusers and roles with privileges of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_logicalmapdir ()
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's pg_logical/mappings
 directory. Filenames beginning with a dot, directories, and other
 special files are excluded.

 This function is restricted to superusers and members of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_logicalsnapdir ()
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's pg_logical/snapshots
 directory. Filenames beginning with a dot, directories, and other
 special files are excluded.

 This function is restricted to superusers and members of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_replslotdir (slot_name text)
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's pg_replslot/slot_name
 directory, where slot_name is the name of the
 replication slot provided as input of the function. Filenames beginning
 with a dot, directories, and other special files are excluded.

 This function is restricted to superusers and members of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_archive_statusdir ()
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the server's WAL archive status directory
 (pg_wal/archive_status). Filenames beginning
 with a dot, directories, and other special files are excluded.

 This function is restricted to superusers and members of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_ls_tmpdir ([tablespace oid])
 setof record
 (name text,
 size bigint,
 modification timestamp with time zone)

 Returns the name, size, and last modification time (mtime) of each
 ordinary file in the temporary file directory for the
 specified tablespace.
 If tablespace is not provided,
 the pg_default tablespace is examined. Filenames
 beginning with a dot, directories, and other special files are
 excluded.

 This function is restricted to superusers and members of
 the pg_monitor role by default, but other users can
 be granted EXECUTE to run the function.

	

 pg_read_file (filename text [, offset bigint, length bigint] [, missing_ok boolean])
 text

 Returns all or part of a text file, starting at the
 given byte offset, returning at
 most length bytes (less if the end of file is
 reached first). If offset is negative, it is
 relative to the end of the file. If offset
 and length are omitted, the entire file is
 returned. The bytes read from the file are interpreted as a string in
 the database's encoding; an error is thrown if they are not valid in
 that encoding.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_read_binary_file (filename text [, offset bigint, length bigint] [, missing_ok boolean])
 bytea

 Returns all or part of a file. This function is identical to
 pg_read_file except that it can read arbitrary
 binary data, returning the result as bytea
 not text; accordingly, no encoding checks are performed.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

 In combination with the convert_from function,
 this function can be used to read a text file in a specified encoding
 and convert to the database's encoding:

SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'), 'UTF8');

	

 pg_stat_file (filename text [, missing_ok boolean])
 record
 (size bigint,
 access timestamp with time zone,
 modification timestamp with time zone,
 change timestamp with time zone,
 creation timestamp with time zone,
 isdir boolean)

 Returns a record containing the file's size, last access time stamp,
 last modification time stamp, last file status change time stamp (Unix
 platforms only), file creation time stamp (Windows only), and a flag
 indicating if it is a directory.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

Advisory Lock Functions

 The functions shown in Table 9.102, “Advisory Lock Functions”
 manage advisory locks. For details about proper use of these functions,
 see the section called “Advisory Locks”.

 All these functions are intended to be used to lock application-defined
 resources, which can be identified either by a single 64-bit key value or
 two 32-bit key values (note that these two key spaces do not overlap).
 If another session already holds a conflicting lock on the same resource
 identifier, the functions will either wait until the resource becomes
 available, or return a false result, as appropriate for
 the function.
 Locks can be either shared or exclusive: a shared lock does not conflict
 with other shared locks on the same resource, only with exclusive locks.
 Locks can be taken at session level (so that they are held until released
 or the session ends) or at transaction level (so that they are held until
 the current transaction ends; there is no provision for manual release).
 Multiple session-level lock requests stack, so that if the same resource
 identifier is locked three times there must then be three unlock requests
 to release the resource in advance of session end.

Table 9.102. Advisory Lock Functions
	
 Function

 Description

	

 pg_advisory_lock (key bigint)
 void

 pg_advisory_lock (key1 integer, key2 integer)
 void

 Obtains an exclusive session-level advisory lock, waiting if necessary.

	

 pg_advisory_lock_shared (key bigint)
 void

 pg_advisory_lock_shared (key1 integer, key2 integer)
 void

 Obtains a shared session-level advisory lock, waiting if necessary.

	

 pg_advisory_unlock (key bigint)
 boolean

 pg_advisory_unlock (key1 integer, key2 integer)
 boolean

 Releases a previously-acquired exclusive session-level advisory lock.
 Returns true if the lock is successfully released.
 If the lock was not held, false is returned, and in
 addition, an SQL warning will be reported by the server.

	

 pg_advisory_unlock_all ()
 void

 Releases all session-level advisory locks held by the current session.
 (This function is implicitly invoked at session end, even if the
 client disconnects ungracefully.)

	

 pg_advisory_unlock_shared (key bigint)
 boolean

 pg_advisory_unlock_shared (key1 integer, key2 integer)
 boolean

 Releases a previously-acquired shared session-level advisory lock.
 Returns true if the lock is successfully released.
 If the lock was not held, false is returned, and in
 addition, an SQL warning will be reported by the server.

	

 pg_advisory_xact_lock (key bigint)
 void

 pg_advisory_xact_lock (key1 integer, key2 integer)
 void

 Obtains an exclusive transaction-level advisory lock, waiting if
 necessary.

	

 pg_advisory_xact_lock_shared (key bigint)
 void

 pg_advisory_xact_lock_shared (key1 integer, key2 integer)
 void

 Obtains a shared transaction-level advisory lock, waiting if
 necessary.

	

 pg_try_advisory_lock (key bigint)
 boolean

 pg_try_advisory_lock (key1 integer, key2 integer)
 boolean

 Obtains an exclusive session-level advisory lock if available.
 This will either obtain the lock immediately and
 return true, or return false
 without waiting if the lock cannot be acquired immediately.

	

 pg_try_advisory_lock_shared (key bigint)
 boolean

 pg_try_advisory_lock_shared (key1 integer, key2 integer)
 boolean

 Obtains a shared session-level advisory lock if available.
 This will either obtain the lock immediately and
 return true, or return false
 without waiting if the lock cannot be acquired immediately.

	

 pg_try_advisory_xact_lock (key bigint)
 boolean

 pg_try_advisory_xact_lock (key1 integer, key2 integer)
 boolean

 Obtains an exclusive transaction-level advisory lock if available.
 This will either obtain the lock immediately and
 return true, or return false
 without waiting if the lock cannot be acquired immediately.

	

 pg_try_advisory_xact_lock_shared (key bigint)
 boolean

 pg_try_advisory_xact_lock_shared (key1 integer, key2 integer)
 boolean

 Obtains a shared transaction-level advisory lock if available.
 This will either obtain the lock immediately and
 return true, or return false
 without waiting if the lock cannot be acquired immediately.

Trigger Functions

 While many uses of triggers involve user-written trigger functions,
 PostgreSQL™ provides a few built-in trigger
 functions that can be used directly in user-defined triggers. These
 are summarized in Table 9.103, “Built-In Trigger Functions”.
 (Additional built-in trigger functions exist, which implement foreign
 key constraints and deferred index constraints. Those are not documented
 here since users need not use them directly.)

 For more information about creating triggers, see
 CREATE TRIGGER(7).

Table 9.103. Built-In Trigger Functions
	
 Function

 Description

 Example Usage

	

 suppress_redundant_updates_trigger ()
 trigger

 Suppresses do-nothing update operations. See below for details.

 CREATE TRIGGER ... suppress_redundant_updates_trigger()

	

 tsvector_update_trigger ()
 trigger

 Automatically updates a tsvector column from associated
 plain-text document column(s). The text search configuration to use
 is specified by name as a trigger argument. See
 the section called “Triggers for Automatic Updates” for details.

 CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_catalog.swedish', title, body)

	

 tsvector_update_trigger_column ()
 trigger

 Automatically updates a tsvector column from associated
 plain-text document column(s). The text search configuration to use
 is taken from a regconfig column of the table. See
 the section called “Triggers for Automatic Updates” for details.

 CREATE TRIGGER ... tsvector_update_trigger_column(tsvcol, tsconfigcol, title, body)

 The suppress_redundant_updates_trigger function,
 when applied as a row-level BEFORE UPDATE trigger,
 will prevent any update that does not actually change the data in the
 row from taking place. This overrides the normal behavior which always
 performs a physical row update
 regardless of whether or not the data has changed. (This normal behavior
 makes updates run faster, since no checking is required, and is also
 useful in certain cases.)

 Ideally, you should avoid running updates that don't actually
 change the data in the record. Redundant updates can cost considerable
 unnecessary time, especially if there are lots of indexes to alter,
 and space in dead rows that will eventually have to be vacuumed.
 However, detecting such situations in client code is not
 always easy, or even possible, and writing expressions to detect
 them can be error-prone. An alternative is to use
 suppress_redundant_updates_trigger, which will skip
 updates that don't change the data. You should use this with care,
 however. The trigger takes a small but non-trivial time for each record,
 so if most of the records affected by updates do actually change,
 use of this trigger will make updates run slower on average.

 The suppress_redundant_updates_trigger function can be
 added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();

 In most cases, you need to fire this trigger last for each row, so that
 it does not override other triggers that might wish to alter the row.
 Bearing in mind that triggers fire in name order, you would therefore
 choose a trigger name that comes after the name of any other trigger
 you might have on the table. (Hence the “z” prefix in the
 example.)

Event Trigger Functions

 PostgreSQL™ provides these helper functions
 to retrieve information from event triggers.

 For more information about event triggers,
 see Chapter 40, Event Triggers.

Capturing Changes at Command End

pg_event_trigger_ddl_commands () setof record

 pg_event_trigger_ddl_commands returns a list of
 DDL commands executed by each user action,
 when invoked in a function attached to a
 ddl_command_end event trigger. If called in any other
 context, an error is raised.
 pg_event_trigger_ddl_commands returns one row for each
 base command executed; some commands that are a single SQL sentence
 may return more than one row. This function returns the following
 columns:

	Name	Type	Description
	classid	oid	OID of catalog the object belongs in
	objid	oid	OID of the object itself
	objsubid	integer	Sub-object ID (e.g., attribute number for a column)
	command_tag	text	Command tag
	object_type	text	Type of the object
	schema_name	text	
 Name of the schema the object belongs in, if any; otherwise NULL.
 No quoting is applied.

	object_identity	text	
 Text rendering of the object identity, schema-qualified. Each
 identifier included in the identity is quoted if necessary.

	in_extension	boolean	True if the command is part of an extension script
	command	pg_ddl_command	
 A complete representation of the command, in internal format.
 This cannot be output directly, but it can be passed to other
 functions to obtain different pieces of information about the
 command.

Processing Objects Dropped by a DDL Command

pg_event_trigger_dropped_objects () setof record

 pg_event_trigger_dropped_objects returns a list of all objects
 dropped by the command in whose sql_drop event it is called.
 If called in any other context, an error is raised.
 This function returns the following columns:

	Name	Type	Description
	classid	oid	OID of catalog the object belonged in
	objid	oid	OID of the object itself
	objsubid	integer	Sub-object ID (e.g., attribute number for a column)
	original	boolean	True if this was one of the root object(s) of the deletion
	normal	boolean	
 True if there was a normal dependency relationship
 in the dependency graph leading to this object

	is_temporary	boolean	
 True if this was a temporary object

	object_type	text	Type of the object
	schema_name	text	
 Name of the schema the object belonged in, if any; otherwise NULL.
 No quoting is applied.

	object_name	text	
 Name of the object, if the combination of schema and name can be
 used as a unique identifier for the object; otherwise NULL.
 No quoting is applied, and name is never schema-qualified.

	object_identity	text	
 Text rendering of the object identity, schema-qualified. Each
 identifier included in the identity is quoted if necessary.

	address_names	text[]	
 An array that, together with object_type and
 address_args, can be used by
 the pg_get_object_address function to
 recreate the object address in a remote server containing an
 identically named object of the same kind.

	address_args	text[]	
 Complement for address_names

 The pg_event_trigger_dropped_objects function can be used
 in an event trigger like this:

CREATE FUNCTION test_event_trigger_for_drops()
 RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
 obj record;
BEGIN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
 LOOP
 RAISE NOTICE '% dropped object: % %.% %',
 tg_tag,
 obj.object_type,
 obj.schema_name,
 obj.object_name,
 obj.object_identity;
 END LOOP;
END;
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
 ON sql_drop
 EXECUTE FUNCTION test_event_trigger_for_drops();

Handling a Table Rewrite Event

 The functions shown in
 Table 9.104, “Table Rewrite Information Functions”
 provide information about a table for which a
 table_rewrite event has just been called.
 If called in any other context, an error is raised.

Table 9.104. Table Rewrite Information Functions
	
 Function

 Description

	

 pg_event_trigger_table_rewrite_oid ()
 oid

 Returns the OID of the table about to be rewritten.

	

 pg_event_trigger_table_rewrite_reason ()
 integer

 Returns a code explaining the reason(s) for rewriting. The value is
 a bitmap built from the following values: 1
 (the table has changed its persistence), 2
 (default value of a column has changed), 4
 (a column has a new data type) and 8
 (the table access method has changed).

 These functions can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'rewriting table % for reason %',
 pg_event_trigger_table_rewrite_oid()::regclass,
 pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
 ON table_rewrite
 EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();

Statistics Information Functions

 PostgreSQL™ provides a function to inspect complex
 statistics defined using the CREATE STATISTICS command.

Inspecting MCV Lists

pg_mcv_list_items (pg_mcv_list) setof record

 pg_mcv_list_items returns a set of records describing
 all items stored in a multi-column MCV list. It
 returns the following columns:

	Name	Type	Description
	index	integer	index of the item in the MCV list
	values	text[]	values stored in the MCV item
	nulls	boolean[]	flags identifying NULL values
	frequency	double precision	frequency of this MCV item
	base_frequency	double precision	base frequency of this MCV item

 The pg_mcv_list_items function can be used like this:

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts';

 Values of the pg_mcv_list type can be obtained only from the
 pg_statistic_ext_data.stxdmcv
 column.

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require
the mixing of different data types in the same expression.
PostgreSQL™ has extensive facilities for
evaluating mixed-type expressions.

In many cases a user does not need
to understand the details of the type conversion mechanism.
However, implicit conversions done by PostgreSQL™
can affect the results of a query. When necessary, these results
can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL™
type conversion mechanisms and conventions.
Refer to the relevant sections in Chapter 8, Data Types and Chapter 9, Functions and Operators
for more information on specific data types and allowed functions and
operators.

Overview

SQL is a strongly typed language. That is, every data item
has an associated data type which determines its behavior and allowed usage.
PostgreSQL™ has an extensible type system that is
more general and flexible than other SQL implementations.
Hence, most type conversion behavior in PostgreSQL™
is governed by general rules rather than by ad hoc
heuristics. This allows the use of mixed-type expressions even with
user-defined types.

The PostgreSQL™ scanner/parser divides lexical
elements into five fundamental categories: integers, non-integer numbers,
strings, identifiers, and key words. Constants of most non-numeric types are
first classified as strings. The SQL language definition
allows specifying type names with strings, and this mechanism can be used in
PostgreSQL™ to start the parser down the correct
path. For example, the query:

SELECT text 'Origin' AS "label", point '(0,0)' AS "value";

 label | value
--------+-------
 Origin | (0,0)
(1 row)

has two literal constants, of type text and point.
If a type is not specified for a string literal, then the placeholder type
unknown is assigned initially, to be resolved in later
stages as described below.

There are four fundamental SQL constructs requiring
distinct type conversion rules in the PostgreSQL™
parser:

	
Function calls

	
Much of the PostgreSQL™ type system is built around a
rich set of functions. Functions can have one or more arguments.
Since PostgreSQL™ permits function
overloading, the function name alone does not uniquely identify the function
to be called; the parser must select the right function based on the data
types of the supplied arguments.

	
Operators

	
PostgreSQL™ allows expressions with
prefix (one-argument) operators,
as well as infix (two-argument) operators. Like functions, operators can
be overloaded, so the same problem of selecting the right operator
exists.

	
Value Storage

	
SQL INSERT and UPDATE statements place the results of
expressions into a table. The expressions in the statement must be matched up
with, and perhaps converted to, the types of the target columns.

	
UNION, CASE, and related constructs

	
Since all query results from a unionized SELECT statement
must appear in a single set of columns, the types of the results of each
SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be
converted to a common type so that the CASE expression as a whole
has a known output type. Some other constructs, such
as ARRAY[] and the GREATEST
and LEAST functions, likewise require determination of a
common type for several subexpressions.

The system catalogs store information about which conversions, or
casts, exist between which data types, and how to
perform those conversions. Additional casts can be added by the user
with the CREATE CAST(7)
command. (This is usually
done in conjunction with defining new data types. The set of casts
between built-in types has been carefully crafted and is best not
altered.)

An additional heuristic provided by the parser allows improved determination
of the proper casting behavior among groups of types that have implicit casts.
Data types are divided into several basic type
categories, including boolean, numeric,
string, bitstring, datetime,
timespan, geometric, network, and
user-defined. (For a list see Table 53.65, “typcategory Codes”;
but note it is also possible to create custom type categories.) Within each
category there can be one or more preferred types, which
are preferred when there is a choice of possible types. With careful selection
of preferred types and available implicit casts, it is possible to ensure that
ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:

	
Implicit conversions should never have surprising or unpredictable outcomes.

	
There should be no extra overhead in the parser or executor
if a query does not need implicit type conversion.
That is, if a query is well-formed and the types already match, then the query should execute
without spending extra time in the parser and without introducing unnecessary implicit conversion
calls in the query.

	
Additionally, if a query usually requires an implicit conversion for a function, and
if then the user defines a new function with the correct argument types, the parser
should use this new function and no longer do implicit conversion to use the old function.

Operators

 The specific operator that is referenced by an operator expression
 is determined using the following procedure.
 Note that this procedure is indirectly affected
 by the precedence of the operators involved, since that will determine
 which sub-expressions are taken to be the inputs of which operators.
 See the section called “Operator Precedence” for more information.

Procedure 10.1. Operator Type Resolution
	
Select the operators to be considered from the
pg_operator system catalog. If a non-schema-qualified
operator name was used (the usual case), the operators
considered are those with the matching name and argument count that are
visible in the current search path (see the section called “The Schema Search Path”).
If a qualified operator name was given, only operators in the specified
schema are considered.

	
If the search path finds multiple operators with identical argument types,
only the one appearing earliest in the path is considered. Operators with
different argument types are considered on an equal footing regardless of
search path position.

	
Check for an operator accepting exactly the input argument types.
If one exists (there can be only one exact match in the set of
operators considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified name
 [9]
(not typical), any operator found in a schema that permits untrusted users to
create objects. In such situations, cast arguments to force an exact match.

	
If one argument of a binary operator invocation is of the unknown type,
then assume it is the same type as the other argument for this check.
Invocations involving two unknown inputs, or a prefix operator
with an unknown input, will never find a match at this step.

	
If one argument of a binary operator invocation is of the unknown
type and the other is of a domain type, next check to see if there is an
operator accepting exactly the domain's base type on both sides; if so, use it.

	
Look for the best match.

	
Discard candidate operators for which the input types do not match
and cannot be converted (using an implicit conversion) to match.
unknown literals are
assumed to be convertible to anything for this purpose. If only one
candidate remains, use it; else continue to the next step.

	
If any input argument is of a domain type, treat it as being of the
domain's base type for all subsequent steps. This ensures that domains
act like their base types for purposes of ambiguous-operator resolution.

	
Run through all candidates and keep those with the most exact matches
on input types. Keep all candidates if none have exact matches.
If only one candidate remains, use it; else continue to the next step.

	
Run through all candidates and keep those that accept preferred types (of the
input data type's type category) at the most positions where type conversion
will be required.
Keep all candidates if none accept preferred types.
If only one candidate remains, use it; else continue to the next step.

	
If any input arguments are unknown, check the type
categories accepted at those argument positions by the remaining
candidates. At each position, select the string category
if any
candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal looks like a string.) Otherwise, if
all the remaining candidates accept the same type category, select that
category; otherwise fail because the correct choice cannot be deduced
without more clues. Now discard
candidates that do not accept the selected type category. Furthermore,
if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survive these tests.
If only one candidate remains, use it; else continue to the next step.

	
If there are both unknown and known-type arguments, and all
the known-type arguments have the same type, assume that the
unknown arguments are also of that type, and check which
candidates can accept that type at the unknown-argument
positions. If exactly one candidate passes this test, use it.
Otherwise, fail.

Some examples follow.

Example 10.1. Square Root Operator Type Resolution

There is only one square root operator (prefix |/)
defined in the standard catalog, and it takes an argument of type
double precision.
The scanner assigns an initial type of integer to the argument
in this query expression:

SELECT |/ 40 AS "square root of 40";
 square root of 40

 6.324555320336759
(1 row)

So the parser does a type conversion on the operand and the query
is equivalent to:

SELECT |/ CAST(40 AS double precision) AS "square root of 40";

Example 10.2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for
working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text 'abc' || 'def' AS "text and unknown";

 text and unknown

 abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text
for both arguments. Since there is, it assumes that the second argument should
be interpreted as type text.

Here is a concatenation of two values of unspecified types:

SELECT 'abc' || 'def' AS "unspecified";

 unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types
are specified in the query. So, the parser looks for all candidate operators
and finds that there are candidates accepting both string-category and
bit-string-category inputs. Since string category is preferred when available,
that category is selected, and then the
preferred type for strings, text, is used as the specific
type to resolve the unknown-type literals as.

Example 10.3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL™ operator catalog has several
entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these
entries is for type float8, which is the preferred type in
the numeric category. Therefore, PostgreSQL™
will use that entry when faced with an unknown input:

SELECT @ '-4.5' AS "abs";
 abs

 4.5
(1 row)

Here the system has implicitly resolved the unknown-type literal as type
float8 before applying the chosen operator. We can verify that
float8 and not some other type was used:

SELECT @ '-4.5e500' AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation)
is defined only for integer data types, not for float8. So, if we
try a similar case with ~, we get:

SELECT ~ '20' AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several
possible ~ operators should be preferred. We can help
it out with an explicit cast:

SELECT ~ CAST('20' AS int8) AS "negation";

 negation

 -21
(1 row)

Example 10.4. Array Inclusion Operator Type Resolution

Here is another example of resolving an operator with one known and one
unknown input:

SELECT array[1,2] <@ '{1,2,3}' as "is subset";

 is subset

 t
(1 row)

The PostgreSQL™ operator catalog has several
entries for the infix operator <@, but the only two that
could possibly accept an integer array on the left-hand side are
array inclusion (anyarray <@ anyarray)
and range inclusion (anyelement <@ anyrange).
Since none of these polymorphic pseudo-types (see the section called “Pseudo-Types”) are considered preferred, the parser cannot
resolve the ambiguity on that basis.
However, Step 3.f tells
it to assume that the unknown-type literal is of the same type as the other
input, that is, integer array. Now only one of the two operators can match,
so array inclusion is selected. (Had range inclusion been selected, we would
have gotten an error, because the string does not have the right format to be
a range literal.)

Example 10.5. Custom Operator on a Domain Type

Users sometimes try to declare operators applying just to a domain type.
This is possible but is not nearly as useful as it might seem, because the
operator resolution rules are designed to select operators applying to the
domain's base type. As an example consider

CREATE DOMAIN mytext AS text CHECK(...);
CREATE FUNCTION mytext_eq_text (mytext, text) RETURNS boolean AS ...;
CREATE OPERATOR = (procedure=mytext_eq_text, leftarg=mytext, rightarg=text);
CREATE TABLE mytable (val mytext);

SELECT * FROM mytable WHERE val = 'foo';

This query will not use the custom operator. The parser will first see if
there is a mytext = mytext operator
(Step 2.a), which there is not;
then it will consider the domain's base type text, and see if
there is a text = text operator
(Step 2.b), which there is;
so it resolves the unknown-type literal as text and
uses the text = text operator.
The only way to get the custom operator to be used is to explicitly cast
the literal:

SELECT * FROM mytable WHERE val = text 'foo';

so that the mytext = text operator is found
immediately according to the exact-match rule. If the best-match rules
are reached, they actively discriminate against operators on domain types.
If they did not, such an operator would create too many ambiguous-operator
failures, because the casting rules always consider a domain as castable
to or from its base type, and so the domain operator would be considered
usable in all the same cases as a similarly-named operator on the base type.

[9]
 The hazard does not arise with a non-schema-qualified name, because a
 search path containing schemas that permit untrusted users to create
 objects is not a secure schema usage
 pattern.

Functions

 The specific function that is referenced by a function call
 is determined using the following procedure.

Procedure 10.2. Function Type Resolution
	
Select the functions to be considered from the
pg_proc system catalog. If a non-schema-qualified
function name was used, the functions
considered are those with the matching name and argument count that are
visible in the current search path (see the section called “The Schema Search Path”).
If a qualified function name was given, only functions in the specified
schema are considered.

	
If the search path finds multiple functions of identical argument types,
only the one appearing earliest in the path is considered. Functions of
different argument types are considered on an equal footing regardless of
search path position.

	
If a function is declared with a VARIADIC array parameter, and
the call does not use the VARIADIC keyword, then the function
is treated as if the array parameter were replaced by one or more occurrences
of its element type, as needed to match the call. After such expansion the
function might have effective argument types identical to some non-variadic
function. In that case the function appearing earlier in the search path is
used, or if the two functions are in the same schema, the non-variadic one is
preferred.

This creates a security hazard when calling, via qualified name
 [10],
a variadic function found in a schema that permits untrusted users to create
objects. A malicious user can take control and execute arbitrary SQL
functions as though you executed them. Substitute a call bearing
the VARIADIC keyword, which bypasses this hazard. Calls
populating VARIADIC "any" parameters often have no
equivalent formulation containing the VARIADIC keyword. To
issue those calls safely, the function's schema must permit only trusted users
to create objects.

	
Functions that have default values for parameters are considered to match any
call that omits zero or more of the defaultable parameter positions. If more
than one such function matches a call, the one appearing earliest in the
search path is used. If there are two or more such functions in the same
schema with identical parameter types in the non-defaulted positions (which is
possible if they have different sets of defaultable parameters), the system
will not be able to determine which to prefer, and so an “ambiguous
function call” error will result if no better match to the call can be
found.

This creates an availability hazard when calling, via qualified
name[10], any function found in a
schema that permits untrusted users to create objects. A malicious user can
create a function with the name of an existing function, replicating that
function's parameters and appending novel parameters having default values.
This precludes new calls to the original function. To forestall this hazard,
place functions in schemas that permit only trusted users to create objects.

	
Check for a function accepting exactly the input argument types.
If one exists (there can be only one exact match in the set of
functions considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified
name[10], a function found in a
schema that permits untrusted users to create objects. In such situations,
cast arguments to force an exact match. (Cases involving unknown
will never find a match at this step.)

	
If no exact match is found, see if the function call appears
to be a special type conversion request. This happens if the function call
has just one argument and the function name is the same as the (internal)
name of some data type. Furthermore, the function argument must be either
an unknown-type literal, or a type that is binary-coercible to the named
data type, or a type that could be converted to the named data type by
applying that type's I/O functions (that is, the conversion is either to or
from one of the standard string types). When these conditions are met,
the function call is treated as a form of CAST specification.
 [11]

	
Look for the best match.

	
Discard candidate functions for which the input types do not match
and cannot be converted (using an implicit conversion) to match.
unknown literals are
assumed to be convertible to anything for this purpose. If only one
candidate remains, use it; else continue to the next step.

	
If any input argument is of a domain type, treat it as being of the
domain's base type for all subsequent steps. This ensures that domains
act like their base types for purposes of ambiguous-function resolution.

	
Run through all candidates and keep those with the most exact matches
on input types. Keep all candidates if none have exact matches.
If only one candidate remains, use it; else continue to the next step.

	
Run through all candidates and keep those that accept preferred types (of the
input data type's type category) at the most positions where type conversion
will be required.
Keep all candidates if none accept preferred types.
If only one candidate remains, use it; else continue to the next step.

	
If any input arguments are unknown, check the type categories
accepted
at those argument positions by the remaining candidates. At each position,
select the string category if any candidate accepts that category.
(This bias towards string
is appropriate since an unknown-type literal looks like a string.)
Otherwise, if all the remaining candidates accept the same type category,
select that category; otherwise fail because
the correct choice cannot be deduced without more clues.
Now discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survive these tests.
If only one candidate remains, use it; else continue to the next step.

	
If there are both unknown and known-type arguments, and all
the known-type arguments have the same type, assume that the
unknown arguments are also of that type, and check which
candidates can accept that type at the unknown-argument
positions. If exactly one candidate passes this test, use it.
Otherwise, fail.

Note that the “best match” rules are identical for operator and
function type resolution.
Some examples follow.

Example 10.6. Rounding Function Argument Type Resolution

There is only one round function that takes two
arguments; it takes a first argument of type numeric and
a second argument of type integer.
So the following query automatically converts
the first argument of type integer to
numeric:

SELECT round(4, 4);

 round

 4.0000
(1 row)

That query is actually transformed by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the
type numeric, the following query will require no type
conversion and therefore might be slightly more efficient:

SELECT round(4.0, 4);

Example 10.7. Variadic Function Resolution

CREATE FUNCTION public.variadic_example(VARIADIC numeric[]) RETURNS int
 LANGUAGE sql AS 'SELECT 1';
CREATE FUNCTION

This function accepts, but does not require, the VARIADIC keyword. It
tolerates both integer and numeric arguments:

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 1 | 1 | 1
(1 row)

However, the first and second calls will prefer more-specific functions, if
available:

CREATE FUNCTION public.variadic_example(numeric) RETURNS int
 LANGUAGE sql AS 'SELECT 2';
CREATE FUNCTION

CREATE FUNCTION public.variadic_example(int) RETURNS int
 LANGUAGE sql AS 'SELECT 3';
CREATE FUNCTION

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 3 | 2 | 1
(1 row)

Given the default configuration and only the first function existing, the
first and second calls are insecure. Any user could intercept them by
creating the second or third function. By matching the argument type exactly
and using the VARIADIC keyword, the third call is secure.

Example 10.8. Substring Function Type Resolution

There are several substr functions, one of which
takes types text and integer. If called
with a string constant of unspecified type, the system chooses the
candidate function that accepts an argument of the preferred category
string (namely of type text).

SELECT substr('1234', 3);

 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case
if it comes from a table, then the parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);

 substr

 34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Note

The parser learns from the pg_cast catalog that
text and varchar
are binary-compatible, meaning that one can be passed to a function that
accepts the other without doing any physical conversion. Therefore, no
type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer,
the parser will try to convert that to text:

SELECT substr(1234, 3);
ERROR: function substr(integer, integer) does not exist
HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast
to text. An explicit cast will work, however:

SELECT substr(CAST (1234 AS text), 3);

 substr

 34
(1 row)

[10]
 The hazard does not arise with a non-schema-qualified name, because a
 search path containing schemas that permit untrusted users to create
 objects is not a secure schema usage
 pattern.

[11]
 The reason for this step is to support function-style cast specifications
 in cases where there is not an actual cast function. If there is a cast
 function, it is conventionally named after its output type, and so there
 is no need to have a special case. See
 CREATE CAST(7)
 for additional commentary.

Value Storage

 Values to be inserted into a table are converted to the destination
 column's data type according to the
 following steps.

Procedure 10.3. Value Storage Type Conversion
	
Check for an exact match with the target.

	
Otherwise, try to convert the expression to the target type. This is possible
if an assignment cast between the two types is registered in the
pg_cast catalog (see CREATE CAST(7)).
Alternatively, if the expression is an unknown-type literal, the contents of
the literal string will be fed to the input conversion routine for the target
type.

	
Check to see if there is a sizing cast for the target type. A sizing
cast is a cast from that type to itself. If one is found in the
pg_cast catalog, apply it to the expression before storing
into the destination column. The implementation function for such a cast
always takes an extra parameter of type integer, which receives
the destination column's atttypmod value (typically its
declared length, although the interpretation of atttypmod
varies for different data types), and it may take a third boolean
parameter that says whether the cast is explicit or implicit. The cast
function
is responsible for applying any length-dependent semantics such as size
checking or truncation.

Example 10.9. character Storage Type Conversion

For a target column declared as character(20) the following
statement shows that the stored value is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT 'abc' || 'def';
SELECT v, octet_length(v) FROM vv;

 v | octet_length
----------------------+--------------
 abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved
to text by default, allowing the || operator
to be resolved as text concatenation. Then the text
result of the operator is converted to bpchar (“blank-padded
char”, the internal name of the character data type) to match the target
column type. (Since the conversion from text to
bpchar is binary-coercible, this conversion does
not insert any real function call.) Finally, the sizing function
bpchar(bpchar, integer, boolean) is found in the system catalog
and applied to the operator's result and the stored column length. This
type-specific function performs the required length check and addition of
padding spaces.

UNION, CASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar
types to become a single result set. The resolution algorithm is
applied separately to each output column of a union query. The
INTERSECT and EXCEPT constructs resolve
dissimilar types in the same way as UNION.
Some other constructs, including
CASE, ARRAY, VALUES,
and the GREATEST and LEAST
functions, use the identical
algorithm to match up their component expressions and select a result
data type.

Procedure 10.4. Type Resolution for UNION, CASE,
and Related Constructs
	
If all inputs are of the same type, and it is not unknown,
resolve as that type.

	
If any input is of a domain type, treat it as being of the
domain's base type for all subsequent steps.
 [12]

	
If all inputs are of type unknown, resolve as type
text (the preferred type of the string category).
Otherwise, unknown inputs are ignored for the purposes
of the remaining rules.

	
If the non-unknown inputs are not all of the same type category, fail.

	
Select the first non-unknown input type as the candidate type,
then consider each other non-unknown input type, left to right.
 [13]
If the candidate type can be implicitly converted to the other type,
but not vice-versa, select the other type as the new candidate type.
Then continue considering the remaining inputs. If, at any stage of this
process, a preferred type is selected, stop considering additional
inputs.

	
Convert all inputs to the final candidate type. Fail if there is not an
implicit conversion from a given input type to the candidate type.

Some examples follow.

Example 10.10. Type Resolution with Underspecified Types in a Union

SELECT text 'a' AS "text" UNION SELECT 'b';

 text

 a
 b
(2 rows)

Here, the unknown-type literal 'b' will be resolved to type text.

Example 10.11. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

 numeric

 1
 1.2
(2 rows)

The literal 1.2 is of type numeric,
and the integer value 1 can be cast implicitly to
numeric, so that type is used.

Example 10.12. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);

 real

 1
 2.2
(2 rows)

Here, since type real cannot be implicitly cast to integer,
but integer can be implicitly cast to real, the union
result type is resolved as real.

Example 10.13. Type Resolution in a Nested Union

SELECT NULL UNION SELECT NULL UNION SELECT 1;

ERROR: UNION types text and integer cannot be matched

This failure occurs because PostgreSQL™ treats
multiple UNIONs as a nest of pairwise operations;
that is, this input is the same as

(SELECT NULL UNION SELECT NULL) UNION SELECT 1;

The inner UNION is resolved as emitting
type text, according to the rules given above. Then the
outer UNION has inputs of types text
and integer, leading to the observed error. The problem
can be fixed by ensuring that the leftmost UNION
has at least one input of the desired result type.

INTERSECT and EXCEPT operations are
likewise resolved pairwise. However, the other constructs described in this
section consider all of their inputs in one resolution step.

[12]
 Somewhat like the treatment of domain inputs for operators and
 functions, this behavior allows a domain type to be preserved through
 a UNION or similar construct, so long as the user is
 careful to ensure that all inputs are implicitly or explicitly of that
 exact type. Otherwise the domain's base type will be used.

[13]
 For historical reasons, CASE treats
 its ELSE clause (if any) as the “first”
 input, with the THEN clauses(s) considered after
 that. In all other cases, “left to right” means the order
 in which the expressions appear in the query text.

SELECT Output Columns

The rules given in the preceding sections will result in assignment
of non-unknown data types to all expressions in an SQL query,
except for unspecified-type literals that appear as simple output
columns of a SELECT command. For example, in

SELECT 'Hello World';

there is nothing to identify what type the string literal should be
taken as. In this situation PostgreSQL™ will fall back
to resolving the literal's type as text.

When the SELECT is one arm of a UNION
(or INTERSECT or EXCEPT) construct, or when it
appears within INSERT ... SELECT, this rule is not applied
since rules given in preceding sections take precedence. The type of an
unspecified-type literal can be taken from the other UNION arm
in the first case, or from the destination column in the second case.

RETURNING lists are treated the same as SELECT
output lists for this purpose.

Note

 Prior to PostgreSQL™ 10, this rule did not exist, and
 unspecified-type literals in a SELECT output list were
 left as type unknown. That had assorted bad consequences,
 so it's been changed.

Chapter 11. Indexes

 Indexes are a common way to enhance database performance. An index
 allows the database server to find and retrieve specific rows much
 faster than it could do without an index. But indexes also add
 overhead to the database system as a whole, so they should be used
 sensibly.

Introduction

 Suppose we have a table similar to this:

CREATE TABLE test1 (
 id integer,
 content varchar
);

 and the application issues many queries of the form:

SELECT content FROM test1 WHERE id = constant;

 With no advance preparation, the system would have to scan the entire
 test1 table, row by row, to find all
 matching entries. If there are many rows in
 test1 and only a few rows (perhaps zero
 or one) that would be returned by such a query, this is clearly an
 inefficient method. But if the system has been instructed to maintain an
 index on the id column, it can use a more
 efficient method for locating matching rows. For instance, it
 might only have to walk a few levels deep into a search tree.

 A similar approach is used in most non-fiction books: terms and
 concepts that are frequently looked up by readers are collected in
 an alphabetic index at the end of the book. The interested reader
 can scan the index relatively quickly and flip to the appropriate
 page(s), rather than having to read the entire book to find the
 material of interest. Just as it is the task of the author to
 anticipate the items that readers are likely to look up,
 it is the task of the database programmer to foresee which indexes
 will be useful.

 The following command can be used to create an index on the
 id column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

 The name test1_id_index can be chosen
 freely, but you should pick something that enables you to remember
 later what the index was for.

 To remove an index, use the DROP INDEX command.
 Indexes can be added to and removed from tables at any time.

 Once an index is created, no further intervention is required: the
 system will update the index when the table is modified, and it will
 use the index in queries when it thinks doing so would be more efficient
 than a sequential table scan. But you might have to run the
 ANALYZE command regularly to update
 statistics to allow the query planner to make educated decisions.
 See Chapter 14, Performance Tips for information about
 how to find out whether an index is used and when and why the
 planner might choose not to use an index.

 Indexes can also benefit UPDATE and
 DELETE commands with search conditions.
 Indexes can moreover be used in join searches. Thus,
 an index defined on a column that is part of a join condition can
 also significantly speed up queries with joins.

 In general, PostgreSQL™ indexes can be used
 to optimize queries that contain one or more WHERE
 or JOIN clauses of the form

indexed-column indexable-operator comparison-value

 Here, the indexed-column is whatever
 column or expression the index has been defined on.
 The indexable-operator is an operator that
 is a member of the index's operator class for
 the indexed column. (More details about that appear below.)
 And the comparison-value can be any
 expression that is not volatile and does not reference the index's
 table.

 In some cases the query planner can extract an indexable clause of
 this form from another SQL construct. A simple example is that if
 the original clause was

comparison-value operator indexed-column

 then it can be flipped around into indexable form if the
 original operator has a commutator
 operator that is a member of the index's operator class.

 Creating an index on a large table can take a long time. By default,
 PostgreSQL™ allows reads (SELECT statements) to occur
 on the table in parallel with index creation, but writes (INSERT,
 UPDATE, DELETE) are blocked until the index build is finished.
 In production environments this is often unacceptable.
 It is possible to allow writes to occur in parallel with index
 creation, but there are several caveats to be aware of —
 for more information see Building Indexes Concurrently.

 After an index is created, the system has to keep it synchronized with the
 table. This adds overhead to data manipulation operations. Indexes can
 also prevent the creation of heap-only
 tuples.
 Therefore indexes that are seldom or never used in queries
 should be removed.

Index Types

 PostgreSQL™ provides several index types:
 B-tree, Hash, GiST, SP-GiST, GIN, BRIN, and the extension bloom.
 Each index type uses a different
 algorithm that is best suited to different types of indexable clauses.
 By default, the CREATE
 INDEX command creates
 B-tree indexes, which fit the most common situations.
 The other index types are selected by writing the keyword
 USING followed by the index type name.
 For example, to create a Hash index:

CREATE INDEX name ON table USING HASH (column);

B-Tree

 B-trees can handle equality and range queries on data that can be sorted
 into some ordering.
 In particular, the PostgreSQL™ query planner
 will consider using a B-tree index whenever an indexed column is
 involved in a comparison using one of these operators:

< <= = >= >

 Constructs equivalent to combinations of these operators, such as
 BETWEEN and IN, can also be implemented with
 a B-tree index search. Also, an IS NULL or IS NOT
 NULL condition on an index column can be used with a B-tree index.

 The optimizer can also use a B-tree index for queries involving the
 pattern matching operators LIKE and ~
 if the pattern is a constant and is anchored to
 the beginning of the string — for example, col LIKE
 'foo%' or col ~ '^foo', but not
 col LIKE '%bar'. However, if your database does not
 use the C locale you will need to create the index with a special
 operator class to support indexing of pattern-matching queries; see
 the section called “Operator Classes and Operator Families” below. It is also possible to use
 B-tree indexes for ILIKE and
 ~*, but only if the pattern starts with
 non-alphabetic characters, i.e., characters that are not affected by
 upper/lower case conversion.

 B-tree indexes can also be used to retrieve data in sorted order.
 This is not always faster than a simple scan and sort, but it is
 often helpful.

Hash

 Hash indexes store a 32-bit hash code derived from the
 value of the indexed column. Hence,
 such indexes can only handle simple equality comparisons.
 The query planner will consider using a hash index whenever an
 indexed column is involved in a comparison using the
 equal operator:

=

GiST

 GiST indexes are not a single kind of index, but rather an infrastructure
 within which many different indexing strategies can be implemented.
 Accordingly, the particular operators with which a GiST index can be
 used vary depending on the indexing strategy (the operator
 class). As an example, the standard distribution of
 PostgreSQL™ includes GiST operator classes
 for several two-dimensional geometric data types, which support indexed
 queries using these operators:

<< &< &> >> <<| &<| |&> |>> @> <@ ~= &&

 (See the section called “Geometric Functions and Operators” for the meaning of
 these operators.)
 The GiST operator classes included in the standard distribution are
 documented in Table 68.1, “Built-in GiST Operator Classes”.
 Many other GiST operator
 classes are available in the contrib collection or as separate
 projects. For more information see Chapter 68, GiST Indexes.

 GiST indexes are also capable of optimizing “nearest-neighbor”
 searches, such as

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

 which finds the ten places closest to a given target point. The ability
 to do this is again dependent on the particular operator class being used.
 In Table 68.1, “Built-in GiST Operator Classes”, operators that can be
 used in this way are listed in the column “Ordering Operators”.

SP-GiST

 SP-GiST indexes, like GiST indexes, offer an infrastructure that supports
 various kinds of searches. SP-GiST permits implementation of a wide range
 of different non-balanced disk-based data structures, such as quadtrees,
 k-d trees, and radix trees (tries). As an example, the standard distribution of
 PostgreSQL™ includes SP-GiST operator classes
 for two-dimensional points, which support indexed
 queries using these operators:

<< >> ~= <@ <<| |>>

 (See the section called “Geometric Functions and Operators” for the meaning of
 these operators.)
 The SP-GiST operator classes included in the standard distribution are
 documented in Table 69.1, “Built-in SP-GiST Operator Classes”.
 For more information see Chapter 69, SP-GiST Indexes.

 Like GiST, SP-GiST supports “nearest-neighbor” searches.
 For SP-GiST operator classes that support distance ordering, the
 corresponding operator is listed in the “Ordering Operators”
 column in Table 69.1, “Built-in SP-GiST Operator Classes”.

GIN

 GIN indexes are “inverted indexes” which are appropriate for
 data values that contain multiple component values, such as arrays. An
 inverted index contains a separate entry for each component value, and
 can efficiently handle queries that test for the presence of specific
 component values.

 Like GiST and SP-GiST, GIN can support
 many different user-defined indexing strategies, and the particular
 operators with which a GIN index can be used vary depending on the
 indexing strategy.
 As an example, the standard distribution of
 PostgreSQL™ includes a GIN operator class
 for arrays, which supports indexed queries using these operators:

<@ @> = &&

 (See the section called “Array Functions and Operators” for the meaning of
 these operators.)
 The GIN operator classes included in the standard distribution are
 documented in Table 70.1, “Built-in GIN Operator Classes”.
 Many other GIN operator
 classes are available in the contrib collection or as separate
 projects. For more information see Chapter 70, GIN Indexes.

BRIN

 BRIN indexes (a shorthand for Block Range INdexes) store summaries about
 the values stored in consecutive physical block ranges of a table.
 Thus, they are most effective for columns whose values are well-correlated
 with the physical order of the table rows.
 Like GiST, SP-GiST and GIN,
 BRIN can support many different indexing strategies,
 and the particular operators with which a BRIN index can be used
 vary depending on the indexing strategy.
 For data types that have a linear sort order, the indexed data
 corresponds to the minimum and maximum values of the
 values in the column for each block range. This supports indexed queries
 using these operators:

< <= = >= >

 The BRIN operator classes included in the standard distribution are
 documented in Table 71.1, “Built-in BRIN Operator Classes”.
 For more information see Chapter 71, BRIN Indexes.

Multicolumn Indexes

 An index can be defined on more than one column of a table. For example, if
 you have a table of this form:

CREATE TABLE test2 (
 major int,
 minor int,
 name varchar
);

 (say, you keep your /dev
 directory in a database...) and you frequently issue queries like:

SELECT name FROM test2 WHERE major = constant AND minor = constant;

 then it might be appropriate to define an index on the columns
 major and
 minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

 Currently, only the B-tree, GiST, GIN, and BRIN index types support
 multiple-key-column indexes. Whether there can be multiple key
 columns is independent of whether INCLUDE columns
 can be added to the index. Indexes can have up to 32 columns,
 including INCLUDE columns. (This limit can be
 altered when building PostgreSQL™; see the
 file pg_config_manual.h.)

 A multicolumn B-tree index can be used with query conditions that
 involve any subset of the index's columns, but the index is most
 efficient when there are constraints on the leading (leftmost) columns.
 The exact rule is that equality constraints on leading columns, plus
 any inequality constraints on the first column that does not have an
 equality constraint, will be used to limit the portion of the index
 that is scanned. Constraints on columns to the right of these columns
 are checked in the index, so they save visits to the table proper, but
 they do not reduce the portion of the index that has to be scanned.
 For example, given an index on (a, b, c) and a
 query condition WHERE a = 5 AND b >= 42 AND c < 77,
 the index would have to be scanned from the first entry with
 a = 5 and b = 42 up through the last entry with
 a = 5. Index entries with c >= 77 would be
 skipped, but they'd still have to be scanned through.
 This index could in principle be used for queries that have constraints
 on b and/or c with no constraint on a
 — but the entire index would have to be scanned, so in most cases
 the planner would prefer a sequential table scan over using the index.

 A multicolumn GiST index can be used with query conditions that
 involve any subset of the index's columns. Conditions on additional
 columns restrict the entries returned by the index, but the condition on
 the first column is the most important one for determining how much of
 the index needs to be scanned. A GiST index will be relatively
 ineffective if its first column has only a few distinct values, even if
 there are many distinct values in additional columns.

 A multicolumn GIN index can be used with query conditions that
 involve any subset of the index's columns. Unlike B-tree or GiST,
 index search effectiveness is the same regardless of which index column(s)
 the query conditions use.

 A multicolumn BRIN index can be used with query conditions that
 involve any subset of the index's columns. Like GIN and unlike B-tree or
 GiST, index search effectiveness is the same regardless of which index
 column(s) the query conditions use. The only reason to have multiple BRIN
 indexes instead of one multicolumn BRIN index on a single table is to have
 a different pages_per_range storage parameter.

 Of course, each column must be used with operators appropriate to the index
 type; clauses that involve other operators will not be considered.

 Multicolumn indexes should be used sparingly. In most situations,
 an index on a single column is sufficient and saves space and time.
 Indexes with more than three columns are unlikely to be helpful
 unless the usage of the table is extremely stylized. See also
 the section called “Combining Multiple Indexes” and
 the section called “Index-Only Scans and Covering Indexes” for some discussion of the
 merits of different index configurations.

Indexes and ORDER BY

 In addition to simply finding the rows to be returned by a query,
 an index may be able to deliver them in a specific sorted order.
 This allows a query's ORDER BY specification to be honored
 without a separate sorting step. Of the index types currently
 supported by PostgreSQL™, only B-tree
 can produce sorted output — the other index types return
 matching rows in an unspecified, implementation-dependent order.

 The planner will consider satisfying an ORDER BY specification
 either by scanning an available index that matches the specification,
 or by scanning the table in physical order and doing an explicit
 sort. For a query that requires scanning a large fraction of the
 table, an explicit sort is likely to be faster than using an index
 because it requires
 less disk I/O due to following a sequential access pattern. Indexes are
 more useful when only a few rows need be fetched. An important
 special case is ORDER BY in combination with
 LIMIT n: an explicit sort will have to process
 all the data to identify the first n rows, but if there is
 an index matching the ORDER BY, the first n
 rows can be retrieved directly, without scanning the remainder at all.

 By default, B-tree indexes store their entries in ascending order
 with nulls last (table TID is treated as a tiebreaker column among
 otherwise equal entries). This means that a forward scan of an
 index on column x produces output satisfying ORDER BY x
 (or more verbosely, ORDER BY x ASC NULLS LAST). The
 index can also be scanned backward, producing output satisfying
 ORDER BY x DESC
 (or more verbosely, ORDER BY x DESC NULLS FIRST, since
 NULLS FIRST is the default for ORDER BY DESC).

 You can adjust the ordering of a B-tree index by including the
 options ASC, DESC, NULLS FIRST,
 and/or NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

 An index stored in ascending order with nulls first can satisfy
 either ORDER BY x ASC NULLS FIRST or
 ORDER BY x DESC NULLS LAST depending on which direction
 it is scanned in.

 You might wonder why bother providing all four options, when two
 options together with the possibility of backward scan would cover
 all the variants of ORDER BY. In single-column indexes
 the options are indeed redundant, but in multicolumn indexes they can be
 useful. Consider a two-column index on (x, y): this can
 satisfy ORDER BY x, y if we scan forward, or
 ORDER BY x DESC, y DESC if we scan backward.
 But it might be that the application frequently needs to use
 ORDER BY x ASC, y DESC. There is no way to get that
 ordering from a plain index, but it is possible if the index is defined
 as (x ASC, y DESC) or (x DESC, y ASC).

 Obviously, indexes with non-default sort orderings are a fairly
 specialized feature, but sometimes they can produce tremendous
 speedups for certain queries. Whether it's worth maintaining such an
 index depends on how often you use queries that require a special
 sort ordering.

Combining Multiple Indexes

 A single index scan can only use query clauses that use the index's
 columns with operators of its operator class and are joined with
 AND. For example, given an index on (a, b)
 a query condition like WHERE a = 5 AND b = 6 could
 use the index, but a query like WHERE a = 5 OR b = 6 could not
 directly use the index.

 Fortunately,
 PostgreSQL™ has the ability to combine multiple indexes
 (including multiple uses of the same index) to handle cases that cannot
 be implemented by single index scans. The system can form AND
 and OR conditions across several index scans. For example,
 a query like WHERE x = 42 OR x = 47 OR x = 53 OR x = 99
 could be broken down into four separate scans of an index on x,
 each scan using one of the query clauses. The results of these scans are
 then ORed together to produce the result. Another example is that if we
 have separate indexes on x and y, one possible
 implementation of a query like WHERE x = 5 AND y = 6 is to
 use each index with the appropriate query clause and then AND together
 the index results to identify the result rows.

 To combine multiple indexes, the system scans each needed index and
 prepares a bitmap in memory giving the locations of
 table rows that are reported as matching that index's conditions.
 The bitmaps are then ANDed and ORed together as needed by the query.
 Finally, the actual table rows are visited and returned. The table rows
 are visited in physical order, because that is how the bitmap is laid
 out; this means that any ordering of the original indexes is lost, and
 so a separate sort step will be needed if the query has an ORDER
 BY clause. For this reason, and because each additional index scan
 adds extra time, the planner will sometimes choose to use a simple index
 scan even though additional indexes are available that could have been
 used as well.

 In all but the simplest applications, there are various combinations of
 indexes that might be useful, and the database developer must make
 trade-offs to decide which indexes to provide. Sometimes multicolumn
 indexes are best, but sometimes it's better to create separate indexes
 and rely on the index-combination feature. For example, if your
 workload includes a mix of queries that sometimes involve only column
 x, sometimes only column y, and sometimes both
 columns, you might choose to create two separate indexes on
 x and y, relying on index combination to
 process the queries that use both columns. You could also create a
 multicolumn index on (x, y). This index would typically be
 more efficient than index combination for queries involving both
 columns, but as discussed in the section called “Multicolumn Indexes”, it
 would be almost useless for queries involving only y, so it
 should not be the only index. A combination of the multicolumn index
 and a separate index on y would serve reasonably well. For
 queries involving only x, the multicolumn index could be
 used, though it would be larger and hence slower than an index on
 x alone. The last alternative is to create all three
 indexes, but this is probably only reasonable if the table is searched
 much more often than it is updated and all three types of query are
 common. If one of the types of query is much less common than the
 others, you'd probably settle for creating just the two indexes that
 best match the common types.

Unique Indexes

 Indexes can also be used to enforce uniqueness of a column's value,
 or the uniqueness of the combined values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]) [NULLS [NOT] DISTINCT];

 Currently, only B-tree indexes can be declared unique.

 When an index is declared unique, multiple table rows with equal
 indexed values are not allowed. By default, null values in a unique column
 are not considered equal, allowing multiple nulls in the column. The
 NULLS NOT DISTINCT option modifies this and causes the
 index to treat nulls as equal. A multicolumn unique index will only reject
 cases where all indexed columns are equal in multiple rows.

 PostgreSQL™ automatically creates a unique
 index when a unique constraint or primary key is defined for a table.
 The index covers the columns that make up the primary key or unique
 constraint (a multicolumn index, if appropriate), and is the mechanism
 that enforces the constraint.

Note

 There's no need to manually
 create indexes on unique columns; doing so would just duplicate
 the automatically-created index.

Indexes on Expressions

 An index column need not be just a column of the underlying table,
 but can be a function or scalar expression computed from one or
 more columns of the table. This feature is useful to obtain fast
 access to tables based on the results of computations.

 For example, a common way to do case-insensitive comparisons is to
 use the lower function:

SELECT * FROM test1 WHERE lower(col1) = 'value';

 This query can use an index if one has been
 defined on the result of the lower(col1)
 function:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

 If we were to declare this index UNIQUE, it would prevent
 creation of rows whose col1 values differ only in case,
 as well as rows whose col1 values are actually identical.
 Thus, indexes on expressions can be used to enforce constraints that
 are not definable as simple unique constraints.

 As another example, if one often does queries like:

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';

 then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

 The syntax of the CREATE INDEX command normally requires
 writing parentheses around index expressions, as shown in the second
 example. The parentheses can be omitted when the expression is just
 a function call, as in the first example.

 Index expressions are relatively expensive to maintain, because the
 derived expression(s) must be computed for each row insertion
 and non-HOT update. However, the index expressions are
 not recomputed during an indexed search, since they are
 already stored in the index. In both examples above, the system
 sees the query as just WHERE indexedcolumn = 'constant'
 and so the speed of the search is equivalent to any other simple index
 query. Thus, indexes on expressions are useful when retrieval speed
 is more important than insertion and update speed.

Partial Indexes

 A partial index is an index built over a
 subset of a table; the subset is defined by a conditional
 expression (called the predicate of the
 partial index). The index contains entries only for those table
 rows that satisfy the predicate. Partial indexes are a specialized
 feature, but there are several situations in which they are useful.

 One major reason for using a partial index is to avoid indexing common
 values. Since a query searching for a common value (one that
 accounts for more than a few percent of all the table rows) will not
 use the index anyway, there is no point in keeping those rows in the
 index at all. This reduces the size of the index, which will speed
 up those queries that do use the index. It will also speed up many table
 update operations because the index does not need to be
 updated in all cases. Example 11.1, “Setting up a Partial Index to Exclude Common Values” shows a
 possible application of this idea.

Example 11.1. Setting up a Partial Index to Exclude Common Values

 Suppose you are storing web server access logs in a database.
 Most accesses originate from the IP address range of your organization but
 some are from elsewhere (say, employees on dial-up connections).
 If your searches by IP are primarily for outside accesses,
 you probably do not need to index the IP range that corresponds to your
 organization's subnet.

 Assume a table like this:

CREATE TABLE access_log (
 url varchar,
 client_ip inet,
 ...
);

 To create a partial index that suits our example, use a command
 such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND
 client_ip < inet '192.168.100.255');

 A typical query that can use this index would be:

SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';

 Here the query's IP address is covered by the partial index. The
 following query cannot use the partial index, as it uses an IP address
 that is excluded from the index:

SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '192.168.100.23';

 Observe that this kind of partial index requires that the common
 values be predetermined, so such partial indexes are best used for
 data distributions that do not change. Such indexes can be recreated
 occasionally to adjust for new data distributions, but this adds
 maintenance effort.

 Another possible use for a partial index is to exclude values from the
 index that the
 typical query workload is not interested in; this is shown in Example 11.2, “Setting up a Partial Index to Exclude Uninteresting Values”. This results in the same
 advantages as listed above, but it prevents the
 “uninteresting” values from being accessed via that
 index, even if an index scan might be profitable in that
 case. Obviously, setting up partial indexes for this kind of
 scenario will require a lot of care and experimentation.

Example 11.2. Setting up a Partial Index to Exclude Uninteresting Values

 If you have a table that contains both billed and unbilled orders,
 where the unbilled orders take up a small fraction of the total
 table and yet those are the most-accessed rows, you can improve
 performance by creating an index on just the unbilled rows. The
 command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
 WHERE billed is not true;

 A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

 However, the index can also be used in queries that do not involve
 order_nr at all, e.g.:

SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

 This is not as efficient as a partial index on the
 amount column would be, since the system has to
 scan the entire index. Yet, if there are relatively few unbilled
 orders, using this partial index just to find the unbilled orders
 could be a win.

 Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

 The order 3501 might be among the billed or unbilled
 orders.

 Example 11.2, “Setting up a Partial Index to Exclude Uninteresting Values” also illustrates that the
 indexed column and the column used in the predicate do not need to
 match. PostgreSQL™ supports partial
 indexes with arbitrary predicates, so long as only columns of the
 table being indexed are involved. However, keep in mind that the
 predicate must match the conditions used in the queries that
 are supposed to benefit from the index. To be precise, a partial
 index can be used in a query only if the system can recognize that
 the WHERE condition of the query mathematically implies
 the predicate of the index.
 PostgreSQL™ does not have a sophisticated
 theorem prover that can recognize mathematically equivalent
 expressions that are written in different forms. (Not
 only is such a general theorem prover extremely difficult to
 create, it would probably be too slow to be of any real use.)
 The system can recognize simple inequality implications, for example
 “x < 1” implies “x < 2”; otherwise
 the predicate condition must exactly match part of the query's
 WHERE condition
 or the index will not be recognized as usable. Matching takes
 place at query planning time, not at run time. As a result,
 parameterized query clauses do not work with a partial index. For
 example a prepared query with a parameter might specify
 “x < ?” which will never imply
 “x < 2” for all possible values of the parameter.

 A third possible use for partial indexes does not require the
 index to be used in queries at all. The idea here is to create
 a unique index over a subset of a table, as in Example 11.3, “Setting up a Partial Unique Index”. This enforces uniqueness
 among the rows that satisfy the index predicate, without constraining
 those that do not.

Example 11.3. Setting up a Partial Unique Index

 Suppose that we have a table describing test outcomes. We wish
 to ensure that there is only one “successful” entry for
 a given subject and target combination, but there might be any number of
 “unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
 subject text,
 target text,
 success boolean,
 ...
);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

 This is a particularly efficient approach when there are few
 successful tests and many unsuccessful ones. It is also possible to
 allow only one null in a column by creating a unique partial index
 with an IS NULL restriction.

 Finally, a partial index can also be used to override the system's
 query plan choices. Also, data sets with peculiar
 distributions might cause the system to use an index when it really
 should not. In that case the index can be set up so that it is not
 available for the offending query. Normally,
 PostgreSQL™ makes reasonable choices about index
 usage (e.g., it avoids them when retrieving common values, so the
 earlier example really only saves index size, it is not required to
 avoid index usage), and grossly incorrect plan choices are cause
 for a bug report.

 Keep in mind that setting up a partial index indicates that you
 know at least as much as the query planner knows, in particular you
 know when an index might be profitable. Forming this knowledge
 requires experience and understanding of how indexes in
 PostgreSQL™ work. In most cases, the
 advantage of a partial index over a regular index will be minimal.
 There are cases where they are quite counterproductive, as in Example 11.4, “Do Not Use Partial Indexes as a Substitute for Partitioning”.

Example 11.4. Do Not Use Partial Indexes as a Substitute for Partitioning

 You might be tempted to create a large set of non-overlapping partial
 indexes, for example

CREATE INDEX mytable_cat_1 ON mytable (data) WHERE category = 1;
CREATE INDEX mytable_cat_2 ON mytable (data) WHERE category = 2;
CREATE INDEX mytable_cat_3 ON mytable (data) WHERE category = 3;
...
CREATE INDEX mytable_cat_N ON mytable (data) WHERE category = N;

 This is a bad idea! Almost certainly, you'll be better off with a
 single non-partial index, declared like

CREATE INDEX mytable_cat_data ON mytable (category, data);

 (Put the category column first, for the reasons described in
 the section called “Multicolumn Indexes”.) While a search in this larger
 index might have to descend through a couple more tree levels than a
 search in a smaller index, that's almost certainly going to be cheaper
 than the planner effort needed to select the appropriate one of the
 partial indexes. The core of the problem is that the system does not
 understand the relationship among the partial indexes, and will
 laboriously test each one to see if it's applicable to the current
 query.

 If your table is large enough that a single index really is a bad idea,
 you should look into using partitioning instead (see
 the section called “Table Partitioning”). With that mechanism, the system
 does understand that the tables and indexes are non-overlapping, so
 far better performance is possible.

 More information about partial indexes can be found in [ston89b], [olson93], and [seshadri95].

Index-Only Scans and Covering Indexes

 All indexes in PostgreSQL™
 are secondary indexes, meaning that each index is
 stored separately from the table's main data area (which is called the
 table's heap
 in PostgreSQL™ terminology). This means that
 in an ordinary index scan, each row retrieval requires fetching data from
 both the index and the heap. Furthermore, while the index entries that
 match a given indexable WHERE condition are usually
 close together in the index, the table rows they reference might be
 anywhere in the heap. The heap-access portion of an index scan thus
 involves a lot of random access into the heap, which can be slow,
 particularly on traditional rotating media. (As described in
 the section called “Combining Multiple Indexes”, bitmap scans try to alleviate
 this cost by doing the heap accesses in sorted order, but that only goes
 so far.)

 To solve this performance problem, PostgreSQL™
 supports index-only scans, which can answer
 queries from an index alone without any heap access. The basic idea is
 to return values directly out of each index entry instead of consulting
 the associated heap entry. There are two fundamental restrictions on
 when this method can be used:

	
 The index type must support index-only scans. B-tree indexes always
 do. GiST and SP-GiST indexes support index-only scans for some
 operator classes but not others. Other index types have no support.
 The underlying requirement is that the index must physically store, or
 else be able to reconstruct, the original data value for each index
 entry. As a counterexample, GIN indexes cannot support index-only
 scans because each index entry typically holds only part of the
 original data value.

	
 The query must reference only columns stored in the index. For
 example, given an index on columns x
 and y of a table that also has a
 column z, these queries could use index-only scans:

SELECT x, y FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND y < 42;

 but these queries could not:

SELECT x, z FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND z < 42;

 (Expression indexes and partial indexes complicate this rule,
 as discussed below.)

 If these two fundamental requirements are met, then all the data values
 required by the query are available from the index, so an index-only scan
 is physically possible. But there is an additional requirement for any
 table scan in PostgreSQL™: it must verify that
 each retrieved row be “visible” to the query's MVCC
 snapshot, as discussed in Chapter 13, Concurrency Control. Visibility information
 is not stored in index entries, only in heap entries; so at first glance
 it would seem that every row retrieval would require a heap access
 anyway. And this is indeed the case, if the table row has been modified
 recently. However, for seldom-changing data there is a way around this
 problem. PostgreSQL™ tracks, for each page in
 a table's heap, whether all rows stored in that page are old enough to be
 visible to all current and future transactions. This information is
 stored in a bit in the table's visibility map. An
 index-only scan, after finding a candidate index entry, checks the
 visibility map bit for the corresponding heap page. If it's set, the row
 is known visible and so the data can be returned with no further work.
 If it's not set, the heap entry must be visited to find out whether it's
 visible, so no performance advantage is gained over a standard index
 scan. Even in the successful case, this approach trades visibility map
 accesses for heap accesses; but since the visibility map is four orders
 of magnitude smaller than the heap it describes, far less physical I/O is
 needed to access it. In most situations the visibility map remains
 cached in memory all the time.

 In short, while an index-only scan is possible given the two fundamental
 requirements, it will be a win only if a significant fraction of the
 table's heap pages have their all-visible map bits set. But tables in
 which a large fraction of the rows are unchanging are common enough to
 make this type of scan very useful in practice.

 To make effective use of the index-only scan feature, you might choose to
 create a covering index, which is an index
 specifically designed to include the columns needed by a particular
 type of query that you run frequently. Since queries typically need to
 retrieve more columns than just the ones they search
 on, PostgreSQL™ allows you to create an index
 in which some columns are just “payload” and are not part
 of the search key. This is done by adding an INCLUDE
 clause listing the extra columns. For example, if you commonly run
 queries like

SELECT y FROM tab WHERE x = 'key';

 the traditional approach to speeding up such queries would be to create
 an index on x only. However, an index defined as

CREATE INDEX tab_x_y ON tab(x) INCLUDE (y);

 could handle these queries as index-only scans,
 because y can be obtained from the index without
 visiting the heap.

 Because column y is not part of the index's search
 key, it does not have to be of a data type that the index can handle;
 it's merely stored in the index and is not interpreted by the index
 machinery. Also, if the index is a unique index, that is

CREATE UNIQUE INDEX tab_x_y ON tab(x) INCLUDE (y);

 the uniqueness condition applies to just column x,
 not to the combination of x and y.
 (An INCLUDE clause can also be written
 in UNIQUE and PRIMARY KEY
 constraints, providing alternative syntax for setting up an index like
 this.)

 It's wise to be conservative about adding non-key payload columns to an
 index, especially wide columns. If an index tuple exceeds the
 maximum size allowed for the index type, data insertion will fail.
 In any case, non-key columns duplicate data from the index's table
 and bloat the size of the index, thus potentially slowing searches.
 And remember that there is little point in including payload columns in an
 index unless the table changes slowly enough that an index-only scan is
 likely to not need to access the heap. If the heap tuple must be visited
 anyway, it costs nothing more to get the column's value from there.
 Other restrictions are that expressions are not currently supported as
 included columns, and that only B-tree, GiST and SP-GiST indexes currently
 support included columns.

 Before PostgreSQL™ had
 the INCLUDE feature, people sometimes made covering
 indexes by writing the payload columns as ordinary index columns,
 that is writing

CREATE INDEX tab_x_y ON tab(x, y);

 even though they had no intention of ever using y as
 part of a WHERE clause. This works fine as long as
 the extra columns are trailing columns; making them be leading columns is
 unwise for the reasons explained in the section called “Multicolumn Indexes”.
 However, this method doesn't support the case where you want the index to
 enforce uniqueness on the key column(s).

 Suffix truncation always removes non-key
 columns from upper B-Tree levels. As payload columns, they are
 never used to guide index scans. The truncation process also
 removes one or more trailing key column(s) when the remaining
 prefix of key column(s) happens to be sufficient to describe tuples
 on the lowest B-Tree level. In practice, covering indexes without
 an INCLUDE clause often avoid storing columns
 that are effectively payload in the upper levels. However,
 explicitly defining payload columns as non-key columns
 reliably keeps the tuples in upper levels
 small.

 In principle, index-only scans can be used with expression indexes.
 For example, given an index on f(x)
 where x is a table column, it should be possible to
 execute

SELECT f(x) FROM tab WHERE f(x) < 1;

 as an index-only scan; and this is very attractive
 if f() is an expensive-to-compute function.
 However, PostgreSQL™'s planner is currently not
 very smart about such cases. It considers a query to be potentially
 executable by index-only scan only when all columns
 needed by the query are available from the index. In this
 example, x is not needed except in the
 context f(x), but the planner does not notice that and
 concludes that an index-only scan is not possible. If an index-only scan
 seems sufficiently worthwhile, this can be worked around by
 adding x as an included column, for example

CREATE INDEX tab_f_x ON tab (f(x)) INCLUDE (x);

 An additional caveat, if the goal is to avoid
 recalculating f(x), is that the planner won't
 necessarily match uses of f(x) that aren't in
 indexable WHERE clauses to the index column. It will
 usually get this right in simple queries such as shown above, but not in
 queries that involve joins. These deficiencies may be remedied in future
 versions of PostgreSQL™.

 Partial indexes also have interesting interactions with index-only scans.
 Consider the partial index shown in Example 11.3, “Setting up a Partial Unique Index”:

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

 In principle, we could do an index-only scan on this index to satisfy a
 query like

SELECT target FROM tests WHERE subject = 'some-subject' AND success;

 But there's a problem: the WHERE clause refers
 to success which is not available as a result column
 of the index. Nonetheless, an index-only scan is possible because the
 plan does not need to recheck that part of the WHERE
 clause at run time: all entries found in the index necessarily
 have success = true so this need not be explicitly
 checked in the plan. PostgreSQL™ versions 9.6
 and later will recognize such cases and allow index-only scans to be
 generated, but older versions will not.

Operator Classes and Operator Families

 An index definition can specify an operator
 class for each column of an index.

CREATE INDEX name ON table (column opclass [(opclass_options)] [sort options] [, ...]);

 The operator class identifies the operators to be used by the index
 for that column. For example, a B-tree index on the type int4
 would use the int4_ops class; this operator
 class includes comparison functions for values of type int4.
 In practice the default operator class for the column's data type is
 usually sufficient. The main reason for having operator classes is
 that for some data types, there could be more than one meaningful
 index behavior. For example, we might want to sort a complex-number data
 type either by absolute value or by real part. We could do this by
 defining two operator classes for the data type and then selecting
 the proper class when making an index. The operator class determines
 the basic sort ordering (which can then be modified by adding sort options
 COLLATE,
 ASC/DESC and/or
 NULLS FIRST/NULLS LAST).

 There are also some built-in operator classes besides the default ones:

	
 The operator classes text_pattern_ops,
 varchar_pattern_ops, and
 bpchar_pattern_ops support B-tree indexes on
 the types text, varchar, and
 char respectively. The
 difference from the default operator classes is that the values
 are compared strictly character by character rather than
 according to the locale-specific collation rules. This makes
 these operator classes suitable for use by queries involving
 pattern matching expressions (LIKE or POSIX
 regular expressions) when the database does not use the standard
 “C” locale. As an example, you might index a
 varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

 Note that you should also create an index with the default operator
 class if you want queries involving ordinary <,
 <=, >, or >= comparisons
 to use an index. Such queries cannot use the
 xxx_pattern_ops
 operator classes. (Ordinary equality comparisons can use these
 operator classes, however.) It is possible to create multiple
 indexes on the same column with different operator classes.
 If you do use the C locale, you do not need the
 xxx_pattern_ops
 operator classes, because an index with the default operator class
 is usable for pattern-matching queries in the C locale.

 The following query shows all defined operator classes:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc
 WHERE opc.opcmethod = am.oid
 ORDER BY index_method, opclass_name;

 An operator class is actually just a subset of a larger structure called an
 operator family. In cases where several data types have
 similar behaviors, it is frequently useful to define cross-data-type
 operators and allow these to work with indexes. To do this, the operator
 classes for each of the types must be grouped into the same operator
 family. The cross-type operators are members of the family, but are not
 associated with any single class within the family.

 This expanded version of the previous query shows the operator family
 each operator class belongs to:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opf.opfname AS opfamily_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc, pg_opfamily opf
 WHERE opc.opcmethod = am.oid AND
 opc.opcfamily = opf.oid
 ORDER BY index_method, opclass_name;

 This query shows all defined operator families and all
 the operators included in each family:

SELECT am.amname AS index_method,
 opf.opfname AS opfamily_name,
 amop.amopopr::regoperator AS opfamily_operator
 FROM pg_am am, pg_opfamily opf, pg_amop amop
 WHERE opf.opfmethod = am.oid AND
 amop.amopfamily = opf.oid
 ORDER BY index_method, opfamily_name, opfamily_operator;

Tip

 psql(1) has
 commands \dAc, \dAf,
 and \dAo, which provide slightly more sophisticated
 versions of these queries.

Indexes and Collations

 An index can support only one collation per index column.
 If multiple collations are of interest, multiple indexes may be needed.

 Consider these statements:

CREATE TABLE test1c (
 id integer,
 content varchar COLLATE "x"
);

CREATE INDEX test1c_content_index ON test1c (content);

 The index automatically uses the collation of the
 underlying column. So a query of the form

SELECT * FROM test1c WHERE content > constant;

 could use the index, because the comparison will by default use the
 collation of the column. However, this index cannot accelerate queries
 that involve some other collation. So if queries of the form, say,

SELECT * FROM test1c WHERE content > constant COLLATE "y";

 are also of interest, an additional index could be created that supports
 the "y" collation, like this:

CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");

Examining Index Usage

 Although indexes in PostgreSQL™ do not need
 maintenance or tuning, it is still important to check
 which indexes are actually used by the real-life query workload.
 Examining index usage for an individual query is done with the
 EXPLAIN(7)
 command; its application for this purpose is
 illustrated in the section called “Using EXPLAIN”.
 It is also possible to gather overall statistics about index usage
 in a running server, as described in the section called “The Cumulative Statistics System”.

 It is difficult to formulate a general procedure for determining
 which indexes to create. There are a number of typical cases that
 have been shown in the examples throughout the previous sections.
 A good deal of experimentation is often necessary.
 The rest of this section gives some tips for that:

	
 Always run ANALYZE(7)
 first. This command
 collects statistics about the distribution of the values in the
 table. This information is required to estimate the number of rows
 returned by a query, which is needed by the planner to assign
 realistic costs to each possible query plan. In absence of any
 real statistics, some default values are assumed, which are
 almost certain to be inaccurate. Examining an application's
 index usage without having run ANALYZE is
 therefore a lost cause.
 See the section called “Updating Planner Statistics”
 and the section called “The Autovacuum Daemon” for more information.

	
 Use real data for experimentation. Using test data for setting
 up indexes will tell you what indexes you need for the test data,
 but that is all.

 It is especially fatal to use very small test data sets.
 While selecting 1000 out of 100000 rows could be a candidate for
 an index, selecting 1 out of 100 rows will hardly be, because the
 100 rows probably fit within a single disk page, and there
 is no plan that can beat sequentially fetching 1 disk page.

 Also be careful when making up test data, which is often
 unavoidable when the application is not yet in production.
 Values that are very similar, completely random, or inserted in
 sorted order will skew the statistics away from the distribution
 that real data would have.

	
 When indexes are not used, it can be useful for testing to force
 their use. There are run-time parameters that can turn off
 various plan types (see the section called “Planner Method Configuration”).
 For instance, turning off sequential scans
 (enable_seqscan) and nested-loop joins
 (enable_nestloop), which are the most basic plans,
 will force the system to use a different plan. If the system
 still chooses a sequential scan or nested-loop join then there is
 probably a more fundamental reason why the index is not being
 used; for example, the query condition does not match the index.
 (What kind of query can use what kind of index is explained in
 the previous sections.)

	
 If forcing index usage does use the index, then there are two
 possibilities: Either the system is right and using the index is
 indeed not appropriate, or the cost estimates of the query plans
 are not reflecting reality. So you should time your query with
 and without indexes. The EXPLAIN ANALYZE
 command can be useful here.

	
 If it turns out that the cost estimates are wrong, there are,
 again, two possibilities. The total cost is computed from the
 per-row costs of each plan node times the selectivity estimate of
 the plan node. The costs estimated for the plan nodes can be adjusted
 via run-time parameters (described in the section called “Planner Cost Constants”).
 An inaccurate selectivity estimate is due to
 insufficient statistics. It might be possible to improve this by
 tuning the statistics-gathering parameters (see
 ALTER TABLE(7)).

 If you do not succeed in adjusting the costs to be more
 appropriate, then you might have to resort to forcing index usage
 explicitly. You might also want to contact the
 PostgreSQL™ developers to examine the issue.

Chapter 12. Full Text Search

Introduction

 Full Text Searching (or just text search) provides
 the capability to identify natural-language documents that
 satisfy a query, and optionally to sort them by
 relevance to the query. The most common type of search
 is to find all documents containing given query terms
 and return them in order of their similarity to the
 query. Notions of query and
 similarity are very flexible and depend on the specific
 application. The simplest search considers query as a
 set of words and similarity as the frequency of query
 words in the document.

 Textual search operators have existed in databases for years.
 PostgreSQL™ has
 ~, ~*, LIKE, and
 ILIKE operators for textual data types, but they lack
 many essential properties required by modern information systems:

	
 There is no linguistic support, even for English. Regular expressions
 are not sufficient because they cannot easily handle derived words, e.g.,
 satisfies and satisfy. You might
 miss documents that contain satisfies, although you
 probably would like to find them when searching for
 satisfy. It is possible to use OR
 to search for multiple derived forms, but this is tedious and error-prone
 (some words can have several thousand derivatives).

	
 They provide no ordering (ranking) of search results, which makes them
 ineffective when thousands of matching documents are found.

	
 They tend to be slow because there is no index support, so they must
 process all documents for every search.

 Full text indexing allows documents to be preprocessed
 and an index saved for later rapid searching. Preprocessing includes:

	
 Parsing documents into tokens. It is
 useful to identify various classes of tokens, e.g., numbers, words,
 complex words, email addresses, so that they can be processed
 differently. In principle token classes depend on the specific
 application, but for most purposes it is adequate to use a predefined
 set of classes.
 PostgreSQL™ uses a parser to
 perform this step. A standard parser is provided, and custom parsers
 can be created for specific needs.

	
 Converting tokens into lexemes.
 A lexeme is a string, just like a token, but it has been
 normalized so that different forms of the same word
 are made alike. For example, normalization almost always includes
 folding upper-case letters to lower-case, and often involves removal
 of suffixes (such as s or es in English).
 This allows searches to find variant forms of the
 same word, without tediously entering all the possible variants.
 Also, this step typically eliminates stop words, which
 are words that are so common that they are useless for searching.
 (In short, then, tokens are raw fragments of the document text, while
 lexemes are words that are believed useful for indexing and searching.)
 PostgreSQL™ uses dictionaries to
 perform this step. Various standard dictionaries are provided, and
 custom ones can be created for specific needs.

	
 Storing preprocessed documents optimized for
 searching. For example, each document can be represented
 as a sorted array of normalized lexemes. Along with the lexemes it is
 often desirable to store positional information to use for
 proximity ranking, so that a document that
 contains a more “dense” region of query words is
 assigned a higher rank than one with scattered query words.

 Dictionaries allow fine-grained control over how tokens are normalized.
 With appropriate dictionaries, you can:

	
 Define stop words that should not be indexed.

	
 Map synonyms to a single word using Ispell.

	
 Map phrases to a single word using a thesaurus.

	
 Map different variations of a word to a canonical form using
 an Ispell dictionary.

	
 Map different variations of a word to a canonical form using
 Snowball stemmer rules.

 A data type tsvector is provided for storing preprocessed
 documents, along with a type tsquery for representing processed
 queries (the section called “Text Search Types”). There are many
 functions and operators available for these data types
 (the section called “Text Search Functions and Operators”), the most important of which is
 the match operator @@, which we introduce in
 the section called “Basic Text Matching”. Full text searches can be accelerated
 using indexes (the section called “Preferred Index Types for Text Search”).

What Is a Document?

 A document is the unit of searching in a full text search
 system; for example, a magazine article or email message. The text search
 engine must be able to parse documents and store associations of lexemes
 (key words) with their parent document. Later, these associations are
 used to search for documents that contain query words.

 For searches within PostgreSQL™,
 a document is normally a textual field within a row of a database table,
 or possibly a combination (concatenation) of such fields, perhaps stored
 in several tables or obtained dynamically. In other words, a document can
 be constructed from different parts for indexing and it might not be
 stored anywhere as a whole. For example:

SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE m.mid = d.did AND m.mid = 12;

Note

 Actually, in these example queries, coalesce
 should be used to prevent a single NULL attribute from
 causing a NULL result for the whole document.

 Another possibility is to store the documents as simple text files in the
 file system. In this case, the database can be used to store the full text
 index and to execute searches, and some unique identifier can be used to
 retrieve the document from the file system. However, retrieving files
 from outside the database requires superuser permissions or special
 function support, so this is usually less convenient than keeping all
 the data inside PostgreSQL™. Also, keeping
 everything inside the database allows easy access
 to document metadata to assist in indexing and display.

 For text search purposes, each document must be reduced to the
 preprocessed tsvector format. Searching and ranking
 are performed entirely on the tsvector representation
 of a document — the original text need only be retrieved
 when the document has been selected for display to a user.
 We therefore often speak of the tsvector as being the
 document, but of course it is only a compact representation of
 the full document.

Basic Text Matching

 Full text searching in PostgreSQL™ is based on
 the match operator @@, which returns
 true if a tsvector
 (document) matches a tsquery (query).
 It doesn't matter which data type is written first:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery;
 ?column?

 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 ?column?

 f

 As the above example suggests, a tsquery is not just raw
 text, any more than a tsvector is. A tsquery
 contains search terms, which must be already-normalized lexemes, and
 may combine multiple terms using AND, OR, NOT, and FOLLOWED BY operators.
 (For syntax details see the section called “tsquery”.) There are
 functions to_tsquery, plainto_tsquery,
 and phraseto_tsquery
 that are helpful in converting user-written text into a proper
 tsquery, primarily by normalizing words appearing in
 the text. Similarly, to_tsvector is used to parse and
 normalize a document string. So in practice a text search match would
 look more like this:

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?

 t

 Observe that this match would not succeed if written as

SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?

 f

 since here no normalization of the word rats will occur.
 The elements of a tsvector are lexemes, which are assumed
 already normalized, so rats does not match rat.

 The @@ operator also
 supports text input, allowing explicit conversion of a text
 string to tsvector or tsquery to be skipped
 in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

 The first two of these we saw already.
 The form text @@ tsquery
 is equivalent to to_tsvector(x) @@ y.
 The form text @@ text
 is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

 Within a tsquery, the & (AND) operator
 specifies that both its arguments must appear in the document to have a
 match. Similarly, the | (OR) operator specifies that
 at least one of its arguments must appear, while the ! (NOT)
 operator specifies that its argument must not appear in
 order to have a match.
 For example, the query fat & ! rat matches documents that
 contain fat but not rat.

 Searching for phrases is possible with the help of
 the <-> (FOLLOWED BY) tsquery operator, which
 matches only if its arguments have matches that are adjacent and in the
 given order. For example:

SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
 ?column?

 t

SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <-> error');
 ?column?

 f

 There is a more general version of the FOLLOWED BY operator having the
 form <N>,
 where N is an integer standing for the difference between
 the positions of the matching lexemes. <1> is
 the same as <->, while <2>
 allows exactly one other lexeme to appear between the matches, and so
 on. The phraseto_tsquery function makes use of this
 operator to construct a tsquery that can match a multi-word
 phrase when some of the words are stop words. For example:

SELECT phraseto_tsquery('cats ate rats');
 phraseto_tsquery

 'cat' <-> 'ate' <-> 'rat'

SELECT phraseto_tsquery('the cats ate the rats');
 phraseto_tsquery

 'cat' <-> 'ate' <2> 'rat'

 A special case that's sometimes useful is that <0>
 can be used to require that two patterns match the same word.

 Parentheses can be used to control nesting of the tsquery
 operators. Without parentheses, | binds least tightly,
 then &, then <->,
 and ! most tightly.

 It's worth noticing that the AND/OR/NOT operators mean something subtly
 different when they are within the arguments of a FOLLOWED BY operator
 than when they are not, because within FOLLOWED BY the exact position of
 the match is significant. For example, normally !x matches
 only documents that do not contain x anywhere.
 But !x <-> y matches y if it is not
 immediately after an x; an occurrence of x
 elsewhere in the document does not prevent a match. Another example is
 that x & y normally only requires that x
 and y both appear somewhere in the document, but
 (x & y) <-> z requires x
 and y to match at the same place, immediately before
 a z. Thus this query behaves differently from
 x <-> z & y <-> z, which will match a
 document containing two separate sequences x z and
 y z. (This specific query is useless as written,
 since x and y could not match at the same place;
 but with more complex situations such as prefix-match patterns, a query
 of this form could be useful.)

Configurations

 The above are all simple text search examples. As mentioned before, full
 text search functionality includes the ability to do many more things:
 skip indexing certain words (stop words), process synonyms, and use
 sophisticated parsing, e.g., parse based on more than just white space.
 This functionality is controlled by text search
 configurations. PostgreSQL™ comes with predefined
 configurations for many languages, and you can easily create your own
 configurations. (psql's \dF command
 shows all available configurations.)

 During installation an appropriate configuration is selected and
 default_text_search_config is set accordingly
 in postgresql.conf. If you are using the same text search
 configuration for the entire cluster you can use the value in
 postgresql.conf. To use different configurations
 throughout the cluster but the same configuration within any one database,
 use ALTER DATABASE ... SET. Otherwise, you can set
 default_text_search_config in each session.

 Each text search function that depends on a configuration has an optional
 regconfig argument, so that the configuration to use can be
 specified explicitly. default_text_search_config
 is used only when this argument is omitted.

 To make it easier to build custom text search configurations, a
 configuration is built up from simpler database objects.
 PostgreSQL™'s text search facility provides
 four types of configuration-related database objects:

	
 Text search parsers break documents into tokens
 and classify each token (for example, as words or numbers).

	
 Text search dictionaries convert tokens to normalized
 form and reject stop words.

	
 Text search templates provide the functions underlying
 dictionaries. (A dictionary simply specifies a template and a set
 of parameters for the template.)

	
 Text search configurations select a parser and a set
 of dictionaries to use to normalize the tokens produced by the parser.

 Text search parsers and templates are built from low-level C functions;
 therefore it requires C programming ability to develop new ones, and
 superuser privileges to install one into a database. (There are examples
 of add-on parsers and templates in the contrib/ area of the
 PostgreSQL™ distribution.) Since dictionaries and
 configurations just parameterize and connect together some underlying
 parsers and templates, no special privilege is needed to create a new
 dictionary or configuration. Examples of creating custom dictionaries and
 configurations appear later in this chapter.

Tables and Indexes

 The examples in the previous section illustrated full text matching using
 simple constant strings. This section shows how to search table data,
 optionally using indexes.

Searching a Table

 It is possible to do a full text search without an index. A simple query
 to print the title of each row that contains the word
 friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');

 This will also find related words such as friends
 and friendly, since all these are reduced to the same
 normalized lexeme.

 The query above specifies that the english configuration
 is to be used to parse and normalize the strings. Alternatively we
 could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');

 This query will use the configuration set by default_text_search_config.

 A more complex example is to
 select the ten most recent documents that contain create and
 table in the title or body:

SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

 For clarity we omitted the coalesce function calls
 which would be needed to find rows that contain NULL
 in one of the two fields.

 Although these queries will work without an index, most applications
 will find this approach too slow, except perhaps for occasional ad-hoc
 searches. Practical use of text searching usually requires creating
 an index.

Creating Indexes

 We can create a GIN index (the section called “Preferred Index Types for Text Search”) to speed up text searches:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));

 Notice that the 2-argument version of to_tsvector is
 used. Only text search functions that specify a configuration name can
 be used in expression indexes (the section called “Indexes on Expressions”).
 This is because the index contents must be unaffected by default_text_search_config. If they were affected, the
 index contents might be inconsistent because different entries could
 contain tsvectors that were created with different text search
 configurations, and there would be no way to guess which was which. It
 would be impossible to dump and restore such an index correctly.

 Because the two-argument version of to_tsvector was
 used in the index above, only a query reference that uses the 2-argument
 version of to_tsvector with the same configuration
 name will use that index. That is, WHERE
 to_tsvector('english', body) @@ 'a & b' can use the index,
 but WHERE to_tsvector(body) @@ 'a & b' cannot.
 This ensures that an index will be used only with the same configuration
 used to create the index entries.

 It is possible to set up more complex expression indexes wherein the
 configuration name is specified by another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));

 where config_name is a column in the pgweb
 table. This allows mixed configurations in the same index while
 recording which configuration was used for each index entry. This
 would be useful, for example, if the document collection contained
 documents in different languages. Again,
 queries that are meant to use the index must be phrased to match, e.g.,
 WHERE to_tsvector(config_name, body) @@ 'a & b'.

 Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));

 Another approach is to create a separate tsvector column
 to hold the output of to_tsvector. To keep this
 column automatically up to date with its source data, use a stored
 generated column. This example is a
 concatenation of title and body,
 using coalesce to ensure that one field will still be
 indexed when the other is NULL:

ALTER TABLE pgweb
 ADD COLUMN textsearchable_index_col tsvector
 GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' ' || coalesce(body, ''))) STORED;

 Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);

 Now we are ready to perform a fast full text search:

SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

 One advantage of the separate-column approach over an expression index
 is that it is not necessary to explicitly specify the text search
 configuration in queries in order to make use of the index. As shown
 in the example above, the query can depend on
 default_text_search_config. Another advantage is that
 searches will be faster, since it will not be necessary to redo the
 to_tsvector calls to verify index matches. (This is more
 important when using a GiST index than a GIN index; see the section called “Preferred Index Types for Text Search”.) The expression-index approach is
 simpler to set up, however, and it requires less disk space since the
 tsvector representation is not stored explicitly.

Controlling Text Search

 To implement full text searching there must be a function to create a
 tsvector from a document and a tsquery from a
 user query. Also, we need to return results in a useful order, so we need
 a function that compares documents with respect to their relevance to
 the query. It's also important to be able to display the results nicely.
 PostgreSQL™ provides support for all of these
 functions.

Parsing Documents

 PostgreSQL™ provides the
 function to_tsvector for converting a document to
 the tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

 to_tsvector parses a textual document into tokens,
 reduces the tokens to lexemes, and returns a tsvector which
 lists the lexemes together with their positions in the document.
 The document is processed according to the specified or default
 text search configuration.
 Here is a simple example:

SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
 to_tsvector

 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

 In the example above we see that the resulting tsvector does not
 contain the words a, on, or
 it, the word rats became
 rat, and the punctuation sign - was
 ignored.

 The to_tsvector function internally calls a parser
 which breaks the document text into tokens and assigns a type to
 each token. For each token, a list of
 dictionaries (the section called “Dictionaries”) is consulted,
 where the list can vary depending on the token type. The first dictionary
 that recognizes the token emits one or more normalized
 lexemes to represent the token. For example,
 rats became rat because one of the
 dictionaries recognized that the word rats is a plural
 form of rat. Some words are recognized as
 stop words (the section called “Stop Words”), which
 causes them to be ignored since they occur too frequently to be useful in
 searching. In our example these are
 a, on, and it.
 If no dictionary in the list recognizes the token then it is also ignored.
 In this example that happened to the punctuation sign -
 because there are in fact no dictionaries assigned for its token type
 (Space symbols), meaning space tokens will never be
 indexed. The choices of parser, dictionaries and which types of tokens to
 index are determined by the selected text search configuration (the section called “Configuration Example”). It is possible to have
 many different configurations in the same database, and predefined
 configurations are available for various languages. In our example
 we used the default configuration english for the
 English language.

 The function setweight can be used to label the
 entries of a tsvector with a given weight,
 where a weight is one of the letters A, B,
 C, or D.
 This is typically used to mark entries coming from
 different parts of a document, such as title versus body. Later, this
 information can be used for ranking of search results.

 Because to_tsvector(NULL) will
 return NULL, it is recommended to use
 coalesce whenever a field might be null.
 Here is the recommended method for creating
 a tsvector from a structured document:

UPDATE tt SET ti =
 setweight(to_tsvector(coalesce(title,'')), 'A') ||
 setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
 setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
 setweight(to_tsvector(coalesce(body,'')), 'D');

 Here we have used setweight to label the source
 of each lexeme in the finished tsvector, and then merged
 the labeled tsvector values using the tsvector
 concatenation operator ||. (the section called “Manipulating Documents” gives details about these
 operations.)

Parsing Queries

 PostgreSQL™ provides the
 functions to_tsquery,
 plainto_tsquery,
 phraseto_tsquery and
 websearch_to_tsquery
 for converting a query to the tsquery data type.
 to_tsquery offers access to more features
 than either plainto_tsquery or
 phraseto_tsquery, but it is less forgiving about its
 input. websearch_to_tsquery is a simplified version
 of to_tsquery with an alternative syntax, similar
 to the one used by web search engines.

to_tsquery([config regconfig,] querytext text) returns tsquery

 to_tsquery creates a tsquery value from
 querytext, which must consist of single tokens
 separated by the tsquery operators & (AND),
 | (OR), ! (NOT), and
 <-> (FOLLOWED BY), possibly grouped
 using parentheses. In other words, the input to
 to_tsquery must already follow the general rules for
 tsquery input, as described in the section called “tsquery”. The difference is that while basic
 tsquery input takes the tokens at face value,
 to_tsquery normalizes each token into a lexeme using
 the specified or default configuration, and discards any tokens that are
 stop words according to the configuration. For example:

SELECT to_tsquery('english', 'The & Fat & Rats');
 to_tsquery

 'fat' & 'rat'

 As in basic tsquery input, weight(s) can be attached to each
 lexeme to restrict it to match only tsvector lexemes of those
 weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
 to_tsquery

 'fat' | 'rat':AB

 Also, * can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
 to_tsquery

 'supern':*A & 'star':*AB

 Such a lexeme will match any word in a tsvector that begins
 with the given string.

 to_tsquery can also accept single-quoted
 phrases. This is primarily useful when the configuration includes a
 thesaurus dictionary that may trigger on such phrases.
 In the example below, a thesaurus contains the rule supernovae
 stars : sn:

SELECT to_tsquery('''supernovae stars'' & !crab');
 to_tsquery

 'sn' & !'crab'

 Without quotes, to_tsquery will generate a syntax
 error for tokens that are not separated by an AND, OR, or FOLLOWED BY
 operator.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

 plainto_tsquery transforms the unformatted text
 querytext to a tsquery value.
 The text is parsed and normalized much as for to_tsvector,
 then the & (AND) tsquery operator is
 inserted between surviving words.

 Example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery

 'fat' & 'rat'

 Note that plainto_tsquery will not
 recognize tsquery operators, weight labels,
 or prefix-match labels in its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
 plainto_tsquery

 'fat' & 'rat' & 'c'

 Here, all the input punctuation was discarded.

phraseto_tsquery([config regconfig,] querytext text) returns tsquery

 phraseto_tsquery behaves much like
 plainto_tsquery, except that it inserts
 the <-> (FOLLOWED BY) operator between
 surviving words instead of the & (AND) operator.
 Also, stop words are not simply discarded, but are accounted for by
 inserting <N> operators rather
 than <-> operators. This function is useful
 when searching for exact lexeme sequences, since the FOLLOWED BY
 operators check lexeme order not just the presence of all the lexemes.

 Example:

SELECT phraseto_tsquery('english', 'The Fat Rats');
 phraseto_tsquery

 'fat' <-> 'rat'

 Like plainto_tsquery, the
 phraseto_tsquery function will not
 recognize tsquery operators, weight labels,
 or prefix-match labels in its input:

SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
 phraseto_tsquery

 'fat' <-> 'rat' <-> 'c'

websearch_to_tsquery([config regconfig,] querytext text) returns tsquery

 websearch_to_tsquery creates a tsquery
 value from querytext using an alternative
 syntax in which simple unformatted text is a valid query.
 Unlike plainto_tsquery
 and phraseto_tsquery, it also recognizes certain
 operators. Moreover, this function will never raise syntax errors,
 which makes it possible to use raw user-supplied input for search.
 The following syntax is supported:

	
 unquoted text: text not inside quote marks will be
 converted to terms separated by & operators, as
 if processed by plainto_tsquery.

	
 "quoted text": text inside quote marks will be
 converted to terms separated by <->
 operators, as if processed by phraseto_tsquery.

	
 OR: the word “or” will be converted to
 the | operator.

	
 -: a dash will be converted to
 the ! operator.

 Other punctuation is ignored. So
 like plainto_tsquery
 and phraseto_tsquery,
 the websearch_to_tsquery function will not
 recognize tsquery operators, weight labels, or prefix-match
 labels in its input.

 Examples:

SELECT websearch_to_tsquery('english', 'The fat rats');
 websearch_to_tsquery

 'fat' & 'rat'
(1 row)

SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
 websearch_to_tsquery

 'supernova' <-> 'star' & !'crab'
(1 row)

SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
 websearch_to_tsquery

 'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)

SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
 websearch_to_tsquery

 'signal' & !('segment' <-> 'fault')
(1 row)

SELECT websearch_to_tsquery('english', '""")(dummy \\ query <->');
 websearch_to_tsquery

 'dummi' & 'queri'
(1 row)

Ranking Search Results

 Ranking attempts to measure how relevant documents are to a particular
 query, so that when there are many matches the most relevant ones can be
 shown first. PostgreSQL™ provides two
 predefined ranking functions, which take into account lexical, proximity,
 and structural information; that is, they consider how often the query
 terms appear in the document, how close together the terms are in the
 document, and how important is the part of the document where they occur.
 However, the concept of relevancy is vague and very application-specific.
 Different applications might require additional information for ranking,
 e.g., document modification time. The built-in ranking functions are only
 examples. You can write your own ranking functions and/or combine their
 results with additional factors to fit your specific needs.

 The two ranking functions currently available are:

	

 ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization integer]) returns float4

	
 Ranks vectors based on the frequency of their matching lexemes.

	

 ts_rank_cd([weights float4[],] vector tsvector, query tsquery [, normalization integer]) returns float4

	
 This function computes the cover density
 ranking for the given document vector and query, as described in
 Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three
 Term Queries" in the journal "Information Processing and Management",
 1999. Cover density is similar to ts_rank ranking
 except that the proximity of matching lexemes to each other is
 taken into consideration.

 This function requires lexeme positional information to perform
 its calculation. Therefore, it ignores any “stripped”
 lexemes in the tsvector. If there are no unstripped
 lexemes in the input, the result will be zero. (See the section called “Manipulating Documents” for more information
 about the strip function and positional information
 in tsvectors.)

 For both these functions,
 the optional weights
 argument offers the ability to weigh word instances more or less
 heavily depending on how they are labeled. The weight arrays specify
 how heavily to weigh each category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}

 If no weights are provided,
 then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

 Typically weights are used to mark words from special areas of the
 document, like the title or an initial abstract, so they can be
 treated with more or less importance than words in the document body.

 Since a longer document has a greater chance of containing a query term
 it is reasonable to take into account document size, e.g., a hundred-word
 document with five instances of a search word is probably more relevant
 than a thousand-word document with five instances. Both ranking functions
 take an integer normalization option that
 specifies whether and how a document's length should impact its rank.
 The integer option controls several behaviors, so it is a bit mask:
 you can specify one or more behaviors using
 | (for example, 2|4).

	
 0 (the default) ignores the document length

	
 1 divides the rank by 1 + the logarithm of the document length

	
 2 divides the rank by the document length

	
 4 divides the rank by the mean harmonic distance between extents
 (this is implemented only by ts_rank_cd)

	
 8 divides the rank by the number of unique words in document

	
 16 divides the rank by 1 + the logarithm of the number
 of unique words in document

	
 32 divides the rank by itself + 1

 If more than one flag bit is specified, the transformations are
 applied in the order listed.

 It is important to note that the ranking functions do not use any global
 information, so it is impossible to produce a fair normalization to 1% or
 100% as sometimes desired. Normalization option 32
 (rank/(rank+1)) can be applied to scale all ranks
 into the range zero to one, but of course this is just a cosmetic change;
 it will not affect the ordering of the search results.

 Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+----------
 Neutrinos in the Sun | 3.1
 The Sudbury Neutrino Detector | 2.4
 A MACHO View of Galactic Dark Matter | 2.01317
 Hot Gas and Dark Matter | 1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
 Rafting for Solar Neutrinos | 1.9
 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
 Hot Gas and Dark Matter | 1.6123
 Ice Fishing for Cosmic Neutrinos | 1.6
 Weak Lensing Distorts the Universe | 0.818218

 This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+-------------------
 Neutrinos in the Sun | 0.756097569485493
 The Sudbury Neutrino Detector | 0.705882361190954
 A MACHO View of Galactic Dark Matter | 0.668123210574724
 Hot Gas and Dark Matter | 0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
 Hot Gas and Dark Matter | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos | 0.615384618911517
 Weak Lensing Distorts the Universe | 0.450010798361481

 Ranking can be expensive since it requires consulting the
 tsvector of each matching document, which can be I/O bound and
 therefore slow. Unfortunately, it is almost impossible to avoid since
 practical queries often result in large numbers of matches.

Highlighting Results

 To present search results it is ideal to show a part of each document and
 how it is related to the query. Usually, search engines show fragments of
 the document with marked search terms. PostgreSQL™
 provides a function ts_headline that
 implements this functionality.

ts_headline([config regconfig,] document text, query tsquery [, options text]) returns text

 ts_headline accepts a document along
 with a query, and returns an excerpt from
 the document in which terms from the query are highlighted.
 Specifically, the function will use the query to select relevant
 text fragments, and then highlight all words that appear in the query,
 even if those word positions do not match the query's restrictions. The
 configuration to be used to parse the document can be specified by
 config; if config
 is omitted, the
 default_text_search_config configuration is used.

 If an options string is specified it must
 consist of a comma-separated list of one or more
 option=value pairs.
 The available options are:

	
 MaxWords, MinWords (integers):
 these numbers determine the longest and shortest headlines to output.
 The default values are 35 and 15.

	
 ShortWord (integer): words of this length or less
 will be dropped at the start and end of a headline, unless they are
 query terms. The default value of three eliminates common English
 articles.

	
 HighlightAll (boolean): if
 true the whole document will be used as the
 headline, ignoring the preceding three parameters. The default
 is false.

	
 MaxFragments (integer): maximum number of text
 fragments to display. The default value of zero selects a
 non-fragment-based headline generation method. A value greater
 than zero selects fragment-based headline generation (see below).

	
 StartSel, StopSel (strings):
 the strings with which to delimit query words appearing in the
 document, to distinguish them from other excerpted words. The
 default values are “” and
 “”, which can be suitable
 for HTML output (but see the warning below).

	
 FragmentDelimiter (string): When more than one
 fragment is displayed, the fragments will be separated by this string.
 The default is “ ... ”.

Warning: Cross-site scripting (XSS) safety

 The output from ts_headline is not guaranteed to
 be safe for direct inclusion in web pages. When
 HighlightAll is false (the
 default), some simple XML tags are removed from the document, but this
 is not guaranteed to remove all HTML markup. Therefore, this does not
 provide an effective defense against attacks such as cross-site
 scripting (XSS) attacks, when working with untrusted input. To guard
 against such attacks, all HTML markup should be removed from the input
 document, or an HTML sanitizer should be used on the output.

 These option names are recognized case-insensitively.
 You must double-quote string values if they contain spaces or commas.

 In non-fragment-based headline
 generation, ts_headline locates matches for the
 given query and chooses a
 single one to display, preferring matches that have more query words
 within the allowed headline length.
 In fragment-based headline generation, ts_headline
 locates the query matches and splits each match
 into “fragments” of no more than MaxWords
 words each, preferring fragments with more query words, and when
 possible “stretching” fragments to include surrounding
 words. The fragment-based mode is thus more useful when the query
 matches span large sections of the document, or when it's desirable to
 display multiple matches.
 In either mode, if no query matches can be identified, then a single
 fragment of the first MinWords words in the document
 will be displayed.

 For example:

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('english', 'query & similarity'));
 ts_headline
--
 containing given query terms +
 and return them in order of their similarity to the+
 query.

SELECT ts_headline('english',
 'Search terms may occur
many times in a document,
requiring ranking of the search matches to decide which
occurrences to display in the result.',
 to_tsquery('english', 'search & term'),
 'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=<<, StopSel=>>');
 ts_headline
--
 <<Search>> <<terms>> may occur +
 many times ... ranking of the <<search>> matches to decide

 ts_headline uses the original document, not a
 tsvector summary, so it can be slow and should be used with
 care.

Additional Features

 This section describes additional functions and operators that are
 useful in connection with text search.

Manipulating Documents

 the section called “Parsing Documents” showed how raw textual
 documents can be converted into tsvector values.
 PostgreSQL™ also provides functions and
 operators that can be used to manipulate documents that are already
 in tsvector form.

	

 tsvector || tsvector

	
 The tsvector concatenation operator
 returns a vector which combines the lexemes and positional information
 of the two vectors given as arguments. Positions and weight labels
 are retained during the concatenation.
 Positions appearing in the right-hand vector are offset by the largest
 position mentioned in the left-hand vector, so that the result is
 nearly equivalent to the result of performing to_tsvector
 on the concatenation of the two original document strings. (The
 equivalence is not exact, because any stop-words removed from the
 end of the left-hand argument will not affect the result, whereas
 they would have affected the positions of the lexemes in the
 right-hand argument if textual concatenation were used.)

 One advantage of using concatenation in the vector form, rather than
 concatenating text before applying to_tsvector, is that
 you can use different configurations to parse different sections
 of the document. Also, because the setweight function
 marks all lexemes of the given vector the same way, it is necessary
 to parse the text and do setweight before concatenating
 if you want to label different parts of the document with different
 weights.

	

 setweight(vector tsvector, weight "char") returns tsvector

	
 setweight returns a copy of the input vector in which every
 position has been labeled with the given weight, either
 A, B, C, or
 D. (D is the default for new
 vectors and as such is not displayed on output.) These labels are
 retained when vectors are concatenated, allowing words from different
 parts of a document to be weighted differently by ranking functions.

 Note that weight labels apply to positions, not
 lexemes. If the input vector has been stripped of
 positions then setweight does nothing.

	

 length(vector tsvector) returns integer

	
 Returns the number of lexemes stored in the vector.

	

 strip(vector tsvector) returns tsvector

	
 Returns a vector that lists the same lexemes as the given vector, but
 lacks any position or weight information. The result is usually much
 smaller than an unstripped vector, but it is also less useful.
 Relevance ranking does not work as well on stripped vectors as
 unstripped ones. Also,
 the <-> (FOLLOWED BY) tsquery operator
 will never match stripped input, since it cannot determine the
 distance between lexeme occurrences.

 A full list of tsvector-related functions is available
 in Table 9.43, “Text Search Functions”.

Manipulating Queries

 the section called “Parsing Queries” showed how raw textual
 queries can be converted into tsquery values.
 PostgreSQL™ also provides functions and
 operators that can be used to manipulate queries that are already
 in tsquery form.

	
 tsquery && tsquery

	
 Returns the AND-combination of the two given queries.

	
 tsquery || tsquery

	
 Returns the OR-combination of the two given queries.

	
 !! tsquery

	
 Returns the negation (NOT) of the given query.

	
 tsquery <-> tsquery

	
 Returns a query that searches for a match to the first given query
 immediately followed by a match to the second given query, using
 the <-> (FOLLOWED BY)
 tsquery operator. For example:

SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');
 ?column?

 'fat' <-> ('cat' | 'rat')

	

 tsquery_phrase(query1 tsquery, query2 tsquery [, distance integer]) returns tsquery

	
 Returns a query that searches for a match to the first given query
 followed by a match to the second given query at a distance of exactly
 distance lexemes, using
 the <N>
 tsquery operator. For example:

SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
 tsquery_phrase

 'fat' <10> 'cat'

	

 numnode(query tsquery) returns integer

	
 Returns the number of nodes (lexemes plus operators) in a
 tsquery. This function is useful
 to determine if the query is meaningful
 (returns > 0), or contains only stop words (returns 0).
 Examples:

SELECT numnode(plainto_tsquery('the any'));
NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored
 numnode

 0

SELECT numnode('foo & bar'::tsquery);
 numnode

 3

	

 querytree(query tsquery) returns text

	
 Returns the portion of a tsquery that can be used for
 searching an index. This function is useful for detecting
 unindexable queries, for example those containing only stop words
 or only negated terms. For example:

SELECT querytree(to_tsquery('defined'));
 querytree

 'defin'

SELECT querytree(to_tsquery('!defined'));
 querytree

 T

Query Rewriting

 The ts_rewrite family of functions search a
 given tsquery for occurrences of a target
 subquery, and replace each occurrence with a
 substitute subquery. In essence this operation is a
 tsquery-specific version of substring replacement.
 A target and substitute combination can be
 thought of as a query rewrite rule. A collection
 of such rewrite rules can be a powerful search aid.
 For example, you can expand the search using synonyms
 (e.g., new york, big apple, nyc,
 gotham) or narrow the search to direct the user to some hot
 topic. There is some overlap in functionality between this feature
 and thesaurus dictionaries (the section called “Thesaurus Dictionary”).
 However, you can modify a set of rewrite rules on-the-fly without
 reindexing, whereas updating a thesaurus requires reindexing to be
 effective.

	
 ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

	
 This form of ts_rewrite simply applies a single
 rewrite rule: target
 is replaced by substitute
 wherever it appears in query. For example:

SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite

 'b' & 'c'

	
 ts_rewrite (query tsquery, select text) returns tsquery

	
 This form of ts_rewrite accepts a starting
 query and an SQL select command, which
 is given as a text string. The select must yield two
 columns of tsquery type. For each row of the
 select result, occurrences of the first column value
 (the target) are replaced by the second column value (the substitute)
 within the current query value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite

 'b' & 'c'

 Note that when multiple rewrite rules are applied in this way,
 the order of application can be important; so in practice you will
 want the source query to ORDER BY some ordering key.

 Let's consider a real-life astronomical example. We'll expand query
 supernovae using table-driven rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn')

 We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn' & !'nebula')

 Rewriting can be slow when there are many rewriting rules, since it
 checks every rule for a possible match. To filter out obvious non-candidate
 rules we can use the containment operators for the tsquery
 type. In the example below, we select only those rules which might match
 the original query:

SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite

 'b' & 'c'

Triggers for Automatic Updates

Note

 The method described in this section has been obsoleted by the use of
 stored generated columns, as described in the section called “Creating Indexes”.

 When using a separate column to store the tsvector representation
 of your documents, it is necessary to create a trigger to update the
 tsvector column when the document content columns change.
 Two built-in trigger functions are available for this, or you can write
 your own.

tsvector_update_trigger(tsvector_column_name,​ config_name, text_column_name [, ...])
tsvector_update_trigger_column(tsvector_column_name,​ config_column_name, text_column_name [, ...])

 These trigger functions automatically compute a tsvector
 column from one or more textual columns, under the control of
 parameters specified in the CREATE TRIGGER command.
 An example of their use is:

CREATE TABLE messages (
 title text,
 body text,
 tsv tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
 title | body | tsv
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
 title | body
------------+-----------------------
 title here | the body text is here

 Having created this trigger, any change in title or
 body will automatically be reflected into
 tsv, without the application having to worry about it.

 The first trigger argument must be the name of the tsvector
 column to be updated. The second argument specifies the text search
 configuration to be used to perform the conversion. For
 tsvector_update_trigger, the configuration name is simply
 given as the second trigger argument. It must be schema-qualified as
 shown above, so that the trigger behavior will not change with changes
 in search_path. For
 tsvector_update_trigger_column, the second trigger argument
 is the name of another table column, which must be of type
 regconfig. This allows a per-row selection of configuration
 to be made. The remaining argument(s) are the names of textual columns
 (of type text, varchar, or char). These
 will be included in the document in the order given. NULL values will
 be skipped (but the other columns will still be indexed).

 A limitation of these built-in triggers is that they treat all the
 input columns alike. To process columns differently — for
 example, to weight title differently from body — it is necessary
 to write a custom trigger. Here is an example using
 PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
 new.tsv :=
 setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
 setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
 return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
 ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();

 Keep in mind that it is important to specify the configuration name
 explicitly when creating tsvector values inside triggers,
 so that the column's contents will not be affected by changes to
 default_text_search_config. Failure to do this is likely to
 lead to problems such as search results changing after a dump and restore.

Gathering Document Statistics

 The function ts_stat is useful for checking your
 configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
 OUT word text, OUT ndoc integer,
 OUT nentry integer) returns setof record

 sqlquery is a text value containing an SQL
 query which must return a single tsvector column.
 ts_stat executes the query and returns statistics about
 each distinct lexeme (word) contained in the tsvector
 data. The columns returned are

	
 word text — the value of a lexeme

	
 ndoc integer — number of documents
 (tsvectors) the word occurred in

	
 nentry integer — total number of
 occurrences of the word

 If weights is supplied, only occurrences
 having one of those weights are counted.

 For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

 The same, but counting only word occurrences with weight A
 or B:

SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

Parsers

 Text search parsers are responsible for splitting raw document text
 into tokens and identifying each token's type, where
 the set of possible types is defined by the parser itself.
 Note that a parser does not modify the text at all — it simply
 identifies plausible word boundaries. Because of this limited scope,
 there is less need for application-specific custom parsers than there is
 for custom dictionaries. At present PostgreSQL™
 provides just one built-in parser, which has been found to be useful for a
 wide range of applications.

 The built-in parser is named pg_catalog.default.
 It recognizes 23 token types, shown in Table 12.1, “Default Parser's Token Types”.

Table 12.1. Default Parser's Token Types
	Alias	Description	Example
	asciiword	Word, all ASCII letters	elephant
	word	Word, all letters	mañana
	numword	Word, letters and digits	beta1
	asciihword	Hyphenated word, all ASCII	up-to-date
	hword	Hyphenated word, all letters	lógico-matemática
	numhword	Hyphenated word, letters and digits	postgresql-beta1
	hword_asciipart	Hyphenated word part, all ASCII	postgresql in the context postgresql-beta1
	hword_part	Hyphenated word part, all letters	lógico or matemática
 in the context lógico-matemática
	hword_numpart	Hyphenated word part, letters and digits	beta1 in the context
 postgresql-beta1
	email	Email address	foo@example.com
	protocol	Protocol head	http://
	url	URL	example.com/stuff/index.html
	host	Host	example.com
	url_path	URL path	/stuff/index.html, in the context of a URL
	file	File or path name	/usr/local/foo.txt, if not within a URL
	sfloat	Scientific notation	-1.234e56
	float	Decimal notation	-1.234
	int	Signed integer	-1234
	uint	Unsigned integer	1234
	version	Version number	8.3.0
	tag	XML tag	
	entity	XML entity	&
	blank	Space symbols	(any whitespace or punctuation not otherwise recognized)

Note

 The parser's notion of a “letter” is determined by the database's
 locale setting, specifically lc_ctype. Words containing
 only the basic ASCII letters are reported as a separate token type,
 since it is sometimes useful to distinguish them. In most European
 languages, token types word and asciiword
 should be treated alike.

 email does not support all valid email characters as
 defined by RFC 5322.
 Specifically, the only non-alphanumeric characters supported for
 email user names are period, dash, and underscore.

 tag does not support all valid tag names as defined by
 W3C Recommendation, XML.
 Specifically, the only tag names supported are those starting with an
 ASCII letter, underscore, or colon, and containing only letters, digits,
 hyphens, underscores, periods, and colons. tag also
 includes XML comments starting with <!-- and ending
 with -->, and XML declarations (but note that this
 includes anything starting with <?x and ending with
 >).

 It is possible for the parser to produce overlapping tokens from the same
 piece of text. As an example, a hyphenated word will be reported both
 as the entire word and as each component:

SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
 alias | description | token
-----------------+--+---------------
 numhword | Hyphenated word, letters and digits | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII | foo
 blank | Space symbols | -
 hword_asciipart | Hyphenated word part, all ASCII | bar
 blank | Space symbols | -
 hword_numpart | Hyphenated word part, letters and digits | beta1

 This behavior is desirable since it allows searches to work for both
 the whole compound word and for components. Here is another
 instructive example:

SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
 alias | description | token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url | URL | example.com/stuff/index.html
 host | Host | example.com
 url_path | URL path | /stuff/index.html

Dictionaries

 Dictionaries are used to eliminate words that should not be considered in a
 search (stop words), and to normalize words so
 that different derived forms of the same word will match. A successfully
 normalized word is called a lexeme. Aside from
 improving search quality, normalization and removal of stop words reduce the
 size of the tsvector representation of a document, thereby
 improving performance. Normalization does not always have linguistic meaning
 and usually depends on application semantics.

 Some examples of normalization:

	
 Linguistic — Ispell dictionaries try to reduce input words to a
 normalized form; stemmer dictionaries remove word endings

	
 URL locations can be canonicalized to make
 equivalent URLs match:

	
 http://www.pgsql.ru/db/mw/index.html

	
 http://www.pgsql.ru/db/mw/

	
 http://www.pgsql.ru/db/../db/mw/index.html

	
 Color names can be replaced by their hexadecimal values, e.g.,
 red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF

	
 If indexing numbers, we can
 remove some fractional digits to reduce the range of possible
 numbers, so for example 3.14159265359,
 3.1415926, 3.14 will be the same
 after normalization if only two digits are kept after the decimal point.

 A dictionary is a program that accepts a token as
 input and returns:

	
 an array of lexemes if the input token is known to the dictionary
 (notice that one token can produce more than one lexeme)

	
 a single lexeme with the TSL_FILTER flag set, to replace
 the original token with a new token to be passed to subsequent
 dictionaries (a dictionary that does this is called a
 filtering dictionary)

	
 an empty array if the dictionary knows the token, but it is a stop word

	
 NULL if the dictionary does not recognize the input token

 PostgreSQL™ provides predefined dictionaries for
 many languages. There are also several predefined templates that can be
 used to create new dictionaries with custom parameters. Each predefined
 dictionary template is described below. If no existing
 template is suitable, it is possible to create new ones; see the
 contrib/ area of the PostgreSQL™ distribution
 for examples.

 A text search configuration binds a parser together with a set of
 dictionaries to process the parser's output tokens. For each token
 type that the parser can return, a separate list of dictionaries is
 specified by the configuration. When a token of that type is found
 by the parser, each dictionary in the list is consulted in turn,
 until some dictionary recognizes it as a known word. If it is identified
 as a stop word, or if no dictionary recognizes the token, it will be
 discarded and not indexed or searched for.
 Normally, the first dictionary that returns a non-NULL
 output determines the result, and any remaining dictionaries are not
 consulted; but a filtering dictionary can replace the given word
 with a modified word, which is then passed to subsequent dictionaries.

 The general rule for configuring a list of dictionaries
 is to place first the most narrow, most specific dictionary, then the more
 general dictionaries, finishing with a very general dictionary, like
 a Snowball stemmer or simple, which
 recognizes everything. For example, for an astronomy-specific search
 (astro_en configuration) one could bind token type
 asciiword (ASCII word) to a synonym dictionary of astronomical
 terms, a general English dictionary and a Snowball English
 stemmer:

ALTER TEXT SEARCH CONFIGURATION astro_en
 ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

 A filtering dictionary can be placed anywhere in the list, except at the
 end where it'd be useless. Filtering dictionaries are useful to partially
 normalize words to simplify the task of later dictionaries. For example,
 a filtering dictionary could be used to remove accents from accented
 letters, as is done by the unaccent module.

Stop Words

 Stop words are words that are very common, appear in almost every
 document, and have no discrimination value. Therefore, they can be ignored
 in the context of full text searching. For example, every English text
 contains words like a and the, so it is
 useless to store them in an index. However, stop words do affect the
 positions in tsvector, which in turn affect ranking:

SELECT to_tsvector('english', 'in the list of stop words');
 to_tsvector

 'list':3 'stop':5 'word':6

 The missing positions 1,2,4 are because of stop words. Ranks
 calculated for documents with and without stop words are quite different:

SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'), to_tsquery('list & stop'));
 ts_rank_cd

 0.05

SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list & stop'));
 ts_rank_cd

 0.1

 It is up to the specific dictionary how it treats stop words. For example,
 ispell dictionaries first normalize words and then
 look at the list of stop words, while Snowball stemmers
 first check the list of stop words. The reason for the different
 behavior is an attempt to decrease noise.

Simple Dictionary

 The simple dictionary template operates by converting the
 input token to lower case and checking it against a file of stop words.
 If it is found in the file then an empty array is returned, causing
 the token to be discarded. If not, the lower-cased form of the word
 is returned as the normalized lexeme. Alternatively, the dictionary
 can be configured to report non-stop-words as unrecognized, allowing
 them to be passed on to the next dictionary in the list.

 Here is an example of a dictionary definition using the simple
 template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
 TEMPLATE = pg_catalog.simple,
 STOPWORDS = english
);

 Here, english is the base name of a file of stop words.
 The file's full name will be
 $SHAREDIR/tsearch_data/english.stop,
 where $SHAREDIR means the
 PostgreSQL™ installation's shared-data directory,
 often /usr/local/share/postgresql (use pg_config
 --sharedir to determine it if you're not sure).
 The file format is simply a list
 of words, one per line. Blank lines and trailing spaces are ignored,
 and upper case is folded to lower case, but no other processing is done
 on the file contents.

 Now we can test our dictionary:

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

 {yes}

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

 We can also choose to return NULL, instead of the lower-cased
 word, if it is not found in the stop words file. This behavior is
 selected by setting the dictionary's Accept parameter to
 false. Continuing the example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

 With the default setting of Accept = true,
 it is only useful to place a simple dictionary at the end
 of a list of dictionaries, since it will never pass on any token to
 a following dictionary. Conversely, Accept = false
 is only useful when there is at least one following dictionary.

Caution

 Most types of dictionaries rely on configuration files, such as files of
 stop words. These files must be stored in UTF-8 encoding.
 They will be translated to the actual database encoding, if that is
 different, when they are read into the server.

Caution

 Normally, a database session will read a dictionary configuration file
 only once, when it is first used within the session. If you modify a
 configuration file and want to force existing sessions to pick up the
 new contents, issue an ALTER TEXT SEARCH DICTIONARY command
 on the dictionary. This can be a “dummy” update that doesn't
 actually change any parameter values.

Synonym Dictionary

 This dictionary template is used to create dictionaries that replace a
 word with a synonym. Phrases are not supported (use the thesaurus
 template (the section called “Thesaurus Dictionary”) for that). A synonym
 dictionary can be used to overcome linguistic problems, for example, to
 prevent an English stemmer dictionary from reducing the word “Paris” to
 “pari”. It is enough to have a Paris paris line in the
 synonym dictionary and put it before the english_stem
 dictionary. For example:

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
 TEMPLATE = synonym,
 SYNONYMS = my_synonyms
);

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR asciiword
 WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}

 The only parameter required by the synonym template is
 SYNONYMS, which is the base name of its configuration file
 — my_synonyms in the above example.
 The file's full name will be
 $SHAREDIR/tsearch_data/my_synonyms.syn
 (where $SHAREDIR means the
 PostgreSQL™ installation's shared-data directory).
 The file format is just one line
 per word to be substituted, with the word followed by its synonym,
 separated by white space. Blank lines and trailing spaces are ignored.

 The synonym template also has an optional parameter
 CaseSensitive, which defaults to false. When
 CaseSensitive is false, words in the synonym file
 are folded to lower case, as are input tokens. When it is
 true, words and tokens are not folded to lower case,
 but are compared as-is.

 An asterisk (*) can be placed at the end of a synonym
 in the configuration file. This indicates that the synonym is a prefix.
 The asterisk is ignored when the entry is used in
 to_tsvector(), but when it is used in
 to_tsquery(), the result will be a query item with
 the prefix match marker (see
 the section called “Parsing Queries”).
 For example, suppose we have these entries in
 $SHAREDIR/tsearch_data/synonym_sample.syn:

postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

 Then we will get these results:

mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn', 'indices');
 ts_lexize

 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector('tst', 'indices');
 to_tsvector

 'index':1
(1 row)

mydb=# SELECT to_tsquery('tst', 'indices');
 to_tsquery

 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
 tsvector

 'are' 'indexes' 'useful' 'very'
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
 ?column?

 t
(1 row)

Thesaurus Dictionary

 A thesaurus dictionary (sometimes abbreviated as TZ) is
 a collection of words that includes information about the relationships
 of words and phrases, i.e., broader terms (BT), narrower
 terms (NT), preferred terms, non-preferred terms, related
 terms, etc.

 Basically a thesaurus dictionary replaces all non-preferred terms by one
 preferred term and, optionally, preserves the original terms for indexing
 as well. PostgreSQL™'s current implementation of the
 thesaurus dictionary is an extension of the synonym dictionary with added
 phrase support. A thesaurus dictionary requires
 a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

 where the colon (:) symbol acts as a delimiter between a
 phrase and its replacement.

 A thesaurus dictionary uses a subdictionary (which
 is specified in the dictionary's configuration) to normalize the input
 text before checking for phrase matches. It is only possible to select one
 subdictionary. An error is reported if the subdictionary fails to
 recognize a word. In that case, you should remove the use of the word or
 teach the subdictionary about it. You can place an asterisk
 (*) at the beginning of an indexed word to skip applying
 the subdictionary to it, but all sample words must be known
 to the subdictionary.

 The thesaurus dictionary chooses the longest match if there are multiple
 phrases matching the input, and ties are broken by using the last
 definition.

 Specific stop words recognized by the subdictionary cannot be
 specified; instead use ? to mark the location where any
 stop word can appear. For example, assuming that a and
 the are stop words according to the subdictionary:

? one ? two : swsw

 matches a one the two and the one a two;
 both would be replaced by swsw.

 Since a thesaurus dictionary has the capability to recognize phrases it
 must remember its state and interact with the parser. A thesaurus dictionary
 uses these assignments to check if it should handle the next word or stop
 accumulation. The thesaurus dictionary must be configured
 carefully. For example, if the thesaurus dictionary is assigned to handle
 only the asciiword token, then a thesaurus dictionary
 definition like one 7 will not work since token type
 uint is not assigned to the thesaurus dictionary.

Caution

 Thesauruses are used during indexing so any change in the thesaurus
 dictionary's parameters requires reindexing.
 For most other dictionary types, small changes such as adding or
 removing stopwords does not force reindexing.

Thesaurus Configuration

 To define a new thesaurus dictionary, use the thesaurus
 template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
 TEMPLATE = thesaurus,
 DictFile = mythesaurus,
 Dictionary = pg_catalog.english_stem
);

 Here:

	
 thesaurus_simple is the new dictionary's name

	
 mythesaurus is the base name of the thesaurus
 configuration file.
 (Its full name will be $SHAREDIR/tsearch_data/mythesaurus.ths,
 where $SHAREDIR means the installation shared-data
 directory.)

	
 pg_catalog.english_stem is the subdictionary (here,
 a Snowball English stemmer) to use for thesaurus normalization.
 Notice that the subdictionary will have its own
 configuration (for example, stop words), which is not shown here.

 Now it is possible to bind the thesaurus dictionary thesaurus_simple
 to the desired token types in a configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_simple;

Thesaurus Example

 Consider a simple astronomical thesaurus thesaurus_astro,
 which contains some astronomical word combinations:

supernovae stars : sn
crab nebulae : crab

 Below we create a dictionary and bind some token types to
 an astronomical thesaurus and English stemmer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
 TEMPLATE = thesaurus,
 DictFile = thesaurus_astro,
 Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_astro, english_stem;

 Now we can see how it works.
 ts_lexize is not very useful for testing a thesaurus,
 because it treats its input as a single token. Instead we can use
 plainto_tsquery and to_tsvector
 which will break their input strings into multiple tokens:

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn'

SELECT to_tsvector('supernova star');
 to_tsvector

 'sn':1

 In principle, one can use to_tsquery if you quote
 the argument:

SELECT to_tsquery('''supernova star''');
 to_tsquery

 'sn'

 Notice that supernova star matches supernovae
 stars in thesaurus_astro because we specified
 the english_stem stemmer in the thesaurus definition.
 The stemmer removed the e and s.

 To index the original phrase as well as the substitute, just include it
 in the right-hand part of the definition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn' & 'supernova' & 'star'

Ispell Dictionary

 The Ispell dictionary template supports
 morphological dictionaries, which can normalize many
 different linguistic forms of a word into the same lexeme. For example,
 an English Ispell dictionary can match all declensions and
 conjugations of the search term bank, e.g.,
 banking, banked, banks,
 banks', and bank's.

 The standard PostgreSQL™ distribution does
 not include any Ispell configuration files.
 Dictionaries for a large number of languages are available from Ispell.
 Also, some more modern dictionary file formats are supported — MySpell (OO < 2.0.1)
 and Hunspell
 (OO >= 2.0.2). A large list of dictionaries is available on the OpenOffice
 Wiki.

 To create an Ispell dictionary perform these steps:

	
 download dictionary configuration files. OpenOffice™
 extension files have the .oxt extension. It is necessary
 to extract .aff and .dic files, change
 extensions to .affix and .dict. For some
 dictionary files it is also needed to convert characters to the UTF-8
 encoding with commands (for example, for a Norwegian language dictionary):

iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic

	
 copy files to the $SHAREDIR/tsearch_data directory

	
 load files into PostgreSQL with the following command:

CREATE TEXT SEARCH DICTIONARY english_hunspell (
 TEMPLATE = ispell,
 DictFile = en_us,
 AffFile = en_us,
 Stopwords = english);

 Here, DictFile, AffFile, and StopWords
 specify the base names of the dictionary, affixes, and stop-words files.
 The stop-words file has the same format explained above for the
 simple dictionary type. The format of the other files is
 not specified here but is available from the above-mentioned web sites.

 Ispell dictionaries usually recognize a limited set of words, so they
 should be followed by another broader dictionary; for
 example, a Snowball dictionary, which recognizes everything.

 The .affix file of Ispell has the following
 structure:

prefixes
flag *A:
 . > RE # As in enter > reenter
suffixes
flag T:
 E > ST # As in late > latest
 [^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
 [AEIOU]Y > EST # As in gray > grayest
 [^EY] > EST # As in small > smallest

 And the .dict file has the following structure:

lapse/ADGRS
lard/DGRS
large/PRTY
lark/MRS

 Format of the .dict file is:

basic_form/affix_class_name

 In the .affix file every affix flag is described in the
 following format:

condition > [-stripping_letters,] adding_affix

 Here, condition has a format similar to the format of regular expressions.
 It can use groupings [...] and [^...].
 For example, [AEIOU]Y means that the last letter of the word
 is "y" and the penultimate letter is "a",
 "e", "i", "o" or "u".
 [^EY] means that the last letter is neither "e"
 nor "y".

 Ispell dictionaries support splitting compound words;
 a useful feature.
 Notice that the affix file should specify a special flag using the
 compoundwords controlled statement that marks dictionary
 words that can participate in compound formation:

compoundwords controlled z

 Here are some examples for the Norwegian language:

SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
 {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
 {sjokoladefabrikk,sjokolade,fabrikk}

 MySpell format is a subset of Hunspell.
 The .affix file of Hunspell has the following
 structure:

PFX A Y 1
PFX A 0 re .
SFX T N 4
SFX T 0 st e
SFX T y iest [^aeiou]y
SFX T 0 est [aeiou]y
SFX T 0 est [^ey]

 The first line of an affix class is the header. Fields of an affix rules are
 listed after the header:

	
 parameter name (PFX or SFX)

	
 flag (name of the affix class)

	
 stripping characters from beginning (at prefix) or end (at suffix) of the
 word

	
 adding affix

	
 condition that has a format similar to the format of regular expressions.

 The .dict file looks like the .dict file of
 Ispell:

larder/M
lardy/RT
large/RSPMYT
largehearted

Note

 MySpell does not support compound words.
 Hunspell has sophisticated support for compound words. At
 present, PostgreSQL™ implements only the basic
 compound word operations of Hunspell.

Snowball Dictionary

 The Snowball dictionary template is based on a project
 by Martin Porter, inventor of the popular Porter's stemming algorithm
 for the English language. Snowball now provides stemming algorithms for
 many languages (see the Snowball
 site for more information). Each algorithm understands how to
 reduce common variant forms of words to a base, or stem, spelling within
 its language. A Snowball dictionary requires a language
 parameter to identify which stemmer to use, and optionally can specify a
 stopword file name that gives a list of words to eliminate.
 (PostgreSQL™'s standard stopword lists are also
 provided by the Snowball project.)
 For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
 TEMPLATE = snowball,
 Language = english,
 StopWords = english
);

 The stopword file format is the same as already explained.

 A Snowball dictionary recognizes everything, whether
 or not it is able to simplify the word, so it should be placed
 at the end of the dictionary list. It is useless to have it
 before any other dictionary because a token will never pass through it to
 the next dictionary.

Configuration Example

 A text search configuration specifies all options necessary to transform a
 document into a tsvector: the parser to use to break text
 into tokens, and the dictionaries to use to transform each token into a
 lexeme. Every call of
 to_tsvector or to_tsquery
 needs a text search configuration to perform its processing.
 The configuration parameter
 default_text_search_config
 specifies the name of the default configuration, which is the
 one used by text search functions if an explicit configuration
 parameter is omitted.
 It can be set in postgresql.conf, or set for an
 individual session using the SET command.

 Several predefined text search configurations are available, and
 you can create custom configurations easily. To facilitate management
 of text search objects, a set of SQL commands
 is available, and there are several psql commands that display information
 about text search objects (the section called “psql Support”).

 As an example we will create a configuration
 pg, starting by duplicating the built-in
 english configuration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

 We will use a PostgreSQL-specific synonym list
 and store it in $SHAREDIR/tsearch_data/pg_dict.syn.
 The file contents look like:

postgres pg
pgsql pg
postgresql pg

 We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
 TEMPLATE = synonym,
 SYNONYMS = pg_dict
);

 Next we register the Ispell™ dictionary
 english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

 Now we can set up the mappings for words in configuration
 pg:

ALTER TEXT SEARCH CONFIGURATION pg
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH pg_dict, english_ispell, english_stem;

 We choose not to index or search some token types that the built-in
 configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
 DROP MAPPING FOR email, url, url_path, sfloat, float;

 Now we can test our configuration:

SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
');

 The next step is to set the session to use the new configuration, which was
 created in the public schema:

=> \dF
 List of text search configurations
 Schema | Name | Description
---------+------+-------------
 public | pg |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config

 public.pg

Testing and Debugging Text Search

 The behavior of a custom text search configuration can easily become
 confusing. The functions described
 in this section are useful for testing text search objects. You can
 test a complete configuration, or test parsers and dictionaries separately.

Configuration Testing

 The function ts_debug allows easy testing of a
 text search configuration.

ts_debug([config regconfig,] document text,
 OUT alias text,
 OUT description text,
 OUT token text,
 OUT dictionaries regdictionary[],
 OUT dictionary regdictionary,
 OUT lexemes text[])
 returns setof record

 ts_debug displays information about every token of
 document as produced by the
 parser and processed by the configured dictionaries. It uses the
 configuration specified by config,
 or default_text_search_config if that argument is
 omitted.

 ts_debug returns one row for each token identified in the text
 by the parser. The columns returned are

	
 alias text — short name of the token type

	
 description text — description of the
 token type

	
 token text — text of the token

	
 dictionaries regdictionary[] — the
 dictionaries selected by the configuration for this token type

	
 dictionary regdictionary — the dictionary
 that recognized the token, or NULL if none did

	
 lexemes text[] — the lexeme(s) produced
 by the dictionary that recognized the token, or NULL if
 none did; an empty array ({}) means it was recognized as a
 stop word

 Here is a simple example:

SELECT * FROM ts_debug('english', 'a fat cat sat on a mat - it ate a fat rats');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
 blank | Space symbols | | {} | |
 blank | Space symbols | - | {} | |
 asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

 For a more extensive demonstration, we
 first create a public.english configuration and
 Ispell dictionary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY = pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------------+-------------------------------+----------------+-------------
 asciiword | Word, all ASCII | The | {english_ispell,english_stem} | english_ispell | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} | english_ispell | {bright}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem | {supernova}

 In this example, the word Brightest was recognized by the
 parser as an ASCII word (alias asciiword).
 For this token type the dictionary list is
 english_ispell and
 english_stem. The word was recognized by
 english_ispell, which reduced it to the noun
 bright. The word supernovaes is
 unknown to the english_ispell dictionary so it
 was passed to the next dictionary, and, fortunately, was recognized (in
 fact, english_stem is a Snowball dictionary which
 recognizes everything; that is why it was placed at the end of the
 dictionary list).

 The word The was recognized by the
 english_ispell dictionary as a stop word (the section called “Stop Words”) and will not be indexed.
 The spaces are discarded too, since the configuration provides no
 dictionaries at all for them.

 You can reduce the width of the output by explicitly specifying which columns
 you want to see:

SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
 asciiword | The | english_ispell | {}
 blank | | |
 asciiword | Brightest | english_ispell | {bright}
 blank | | |
 asciiword | supernovaes | english_stem | {supernova}

Parser Testing

 The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
 OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
 OUT tokid integer, OUT token text) returns setof record

 ts_parse parses the given document
 and returns a series of records, one for each token produced by
 parsing. Each record includes a tokid showing the
 assigned token type and a token which is the text of the
 token. For example:

SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
 22 | 123
 12 |
 12 | -
 1 | a
 12 |
 1 | number

ts_token_type(parser_name text, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record

 ts_token_type returns a table which describes each type of
 token the specified parser can recognize. For each token type, the table
 gives the integer tokid that the parser uses to label a
 token of that type, the alias that names the token type
 in configuration commands, and a short description. For
 example:

SELECT * FROM ts_token_type('default');
 tokid | alias | description
-------+-----------------+--
 1 | asciiword | Word, all ASCII
 2 | word | Word, all letters
 3 | numword | Word, letters and digits
 4 | email | Email address
 5 | url | URL
 6 | host | Host
 7 | sfloat | Scientific notation
 8 | version | Version number
 9 | hword_numpart | Hyphenated word part, letters and digits
 10 | hword_part | Hyphenated word part, all letters
 11 | hword_asciipart | Hyphenated word part, all ASCII
 12 | blank | Space symbols
 13 | tag | XML tag
 14 | protocol | Protocol head
 15 | numhword | Hyphenated word, letters and digits
 16 | asciihword | Hyphenated word, all ASCII
 17 | hword | Hyphenated word, all letters
 18 | url_path | URL path
 19 | file | File or path name
 20 | float | Decimal notation
 21 | int | Signed integer
 22 | uint | Unsigned integer
 23 | entity | XML entity

Dictionary Testing

 The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[]

 ts_lexize returns an array of lexemes if the input
 token is known to the dictionary,
 or an empty array if the token
 is known to the dictionary but it is a stop word, or
 NULL if it is an unknown word.

 Examples:

SELECT ts_lexize('english_stem', 'stars');
 ts_lexize

 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize

 {}

Note

 The ts_lexize function expects a single
 token, not text. Here is a case
 where this can be confusing:

SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
 ?column?

 t

 The thesaurus dictionary thesaurus_astro does know the
 phrase supernovae stars, but ts_lexize
 fails since it does not parse the input text but treats it as a single
 token. Use plainto_tsquery or to_tsvector to
 test thesaurus dictionaries, for example:

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery

 'sn'

Preferred Index Types for Text Search

 There are two kinds of indexes that can be used to speed up full text
 searches:
 GIN and
 GiST.
 Note that indexes are not mandatory for full text searching, but in
 cases where a column is searched on a regular basis, an index is
 usually desirable.

 To create such an index, do one of:

	

 CREATE INDEX name ON table USING GIN (column);

	
 Creates a GIN (Generalized Inverted Index)-based index.
 The column must be of tsvector type.

	

 CREATE INDEX name ON table USING GIST (column [{ DEFAULT | tsvector_ops } (siglen = number)]);

	
 Creates a GiST (Generalized Search Tree)-based index.
 The column can be of tsvector or
 tsquery type.
 Optional integer parameter siglen determines
 signature length in bytes (see below for details).

 GIN indexes are the preferred text search index type. As inverted
 indexes, they contain an index entry for each word (lexeme), with a
 compressed list of matching locations. Multi-word searches can find
 the first match, then use the index to remove rows that are lacking
 additional words. GIN indexes store only the words (lexemes) of
 tsvector values, and not their weight labels. Thus a table
 row recheck is needed when using a query that involves weights.

 A GiST index is lossy, meaning that the index
 might produce false matches, and it is necessary
 to check the actual table row to eliminate such false matches.
 (PostgreSQL™ does this automatically when needed.)
 GiST indexes are lossy because each document is represented in the
 index by a fixed-length signature. The signature length in bytes is determined
 by the value of the optional integer parameter siglen.
 The default signature length (when siglen is not specified) is
 124 bytes, the maximum signature length is 2024 bytes. The signature is generated by hashing
 each word into a single bit in an n-bit string, with all these bits OR-ed
 together to produce an n-bit document signature. When two words hash to
 the same bit position there will be a false match. If all words in
 the query have matches (real or false) then the table row must be
 retrieved to see if the match is correct. Longer signatures lead to a more
 precise search (scanning a smaller fraction of the index and fewer heap
 pages), at the cost of a larger index.

 A GiST index can be covering, i.e., use the INCLUDE
 clause. Included columns can have data types without any GiST operator
 class. Included attributes will be stored uncompressed.

 Lossiness causes performance degradation due to unnecessary fetches of table
 records that turn out to be false matches. Since random access to table
 records is slow, this limits the usefulness of GiST indexes. The
 likelihood of false matches depends on several factors, in particular the
 number of unique words, so using dictionaries to reduce this number is
 recommended.

 Note that GIN index build time can often be improved
 by increasing maintenance_work_mem, while
 GiST index build time is not sensitive to that
 parameter.

 Partitioning of big collections and the proper use of GIN and GiST indexes
 allows the implementation of very fast searches with online update.
 Partitioning can be done at the database level using table inheritance,
 or by distributing documents over
 servers and collecting external search results, e.g., via Foreign Data access.
 The latter is possible because ranking functions use
 only local information.

psql Support

 Information about text search configuration objects can be obtained
 in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

 An optional + produces more details.

 The optional parameter PATTERN can be the name of
 a text search object, optionally schema-qualified. If
 PATTERN is omitted then information about all
 visible objects will be displayed. PATTERN can be a
 regular expression and can provide separate patterns
 for the schema and object names. The following examples illustrate this:

=> \dF *fulltext*
 List of text search configurations
 Schema | Name | Description
--------+--------------+-------------
 public | fulltext_cfg |

=> \dF *.fulltext*
 List of text search configurations
 Schema | Name | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public | fulltext_cfg |

 The available commands are:

	\dF[+] [PATTERN]
	
 List text search configurations (add + for more detail).

=> \dF russian
 List of text search configurations
 Schema | Name | Description
------------+---------+------------------------------------
 pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
 Token | Dictionaries
-----------------+--------------
 asciihword | english_stem
 asciiword | english_stem
 email | simple
 file | simple
 float | simple
 host | simple
 hword | russian_stem
 hword_asciipart | english_stem
 hword_numpart | simple
 hword_part | russian_stem
 int | simple
 numhword | simple
 numword | simple
 sfloat | simple
 uint | simple
 url | simple
 url_path | simple
 version | simple
 word | russian_stem

	\dFd[+] [PATTERN]
	
 List text search dictionaries (add + for more detail).

=> \dFd
 List of text search dictionaries
 Schema | Name | Description
------------+-----------------+---
 pg_catalog | arabic_stem | snowball stemmer for arabic language
 pg_catalog | armenian_stem | snowball stemmer for armenian language
 pg_catalog | basque_stem | snowball stemmer for basque language
 pg_catalog | catalan_stem | snowball stemmer for catalan language
 pg_catalog | danish_stem | snowball stemmer for danish language
 pg_catalog | dutch_stem | snowball stemmer for dutch language
 pg_catalog | english_stem | snowball stemmer for english language
 pg_catalog | finnish_stem | snowball stemmer for finnish language
 pg_catalog | french_stem | snowball stemmer for french language
 pg_catalog | german_stem | snowball stemmer for german language
 pg_catalog | greek_stem | snowball stemmer for greek language
 pg_catalog | hindi_stem | snowball stemmer for hindi language
 pg_catalog | hungarian_stem | snowball stemmer for hungarian language
 pg_catalog | indonesian_stem | snowball stemmer for indonesian language
 pg_catalog | irish_stem | snowball stemmer for irish language
 pg_catalog | italian_stem | snowball stemmer for italian language
 pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
 pg_catalog | nepali_stem | snowball stemmer for nepali language
 pg_catalog | norwegian_stem | snowball stemmer for norwegian language
 pg_catalog | portuguese_stem | snowball stemmer for portuguese language
 pg_catalog | romanian_stem | snowball stemmer for romanian language
 pg_catalog | russian_stem | snowball stemmer for russian language
 pg_catalog | serbian_stem | snowball stemmer for serbian language
 pg_catalog | simple | simple dictionary: just lower case and check for stopword
 pg_catalog | spanish_stem | snowball stemmer for spanish language
 pg_catalog | swedish_stem | snowball stemmer for swedish language
 pg_catalog | tamil_stem | snowball stemmer for tamil language
 pg_catalog | turkish_stem | snowball stemmer for turkish language
 pg_catalog | yiddish_stem | snowball stemmer for yiddish language

	\dFp[+] [PATTERN]
	
 List text search parsers (add + for more detail).

=> \dFp
 List of text search parsers
 Schema | Name | Description
------------+---------+---------------------
 pg_catalog | default | default word parser
=> \dFp+
 Text search parser "pg_catalog.default"
 Method | Function | Description
-----------------+----------------+-------------
 Start parse | prsd_start |
 Get next token | prsd_nexttoken |
 End parse | prsd_end |
 Get headline | prsd_headline |
 Get token types | prsd_lextype |

 Token types for parser "pg_catalog.default"
 Token name | Description
-----------------+--
 asciihword | Hyphenated word, all ASCII
 asciiword | Word, all ASCII
 blank | Space symbols
 email | Email address
 entity | XML entity
 file | File or path name
 float | Decimal notation
 host | Host
 hword | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart | Hyphenated word part, letters and digits
 hword_part | Hyphenated word part, all letters
 int | Signed integer
 numhword | Hyphenated word, letters and digits
 numword | Word, letters and digits
 protocol | Protocol head
 sfloat | Scientific notation
 tag | XML tag
 uint | Unsigned integer
 url | URL
 url_path | URL path
 version | Version number
 word | Word, all letters
(23 rows)

	\dFt[+] [PATTERN]
	
 List text search templates (add + for more detail).

=> \dFt
 List of text search templates
 Schema | Name | Description
------------+-----------+---
 pg_catalog | ispell | ispell dictionary
 pg_catalog | simple | simple dictionary: just lower case and check for stopword
 pg_catalog | snowball | snowball stemmer
 pg_catalog | synonym | synonym dictionary: replace word by its synonym
 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution

Limitations

 The current limitations of PostgreSQL™'s
 text search features are:

	The length of each lexeme must be less than 2 kilobytes

	The length of a tsvector (lexemes + positions) must be
 less than 1 megabyte

	The number of lexemes must be less than
 264

	Position values in tsvector must be greater than 0 and
 no more than 16,383

	The match distance in a <N>
 (FOLLOWED BY) tsquery operator cannot be more than
 16,384

	No more than 256 positions per lexeme

	The number of nodes (lexemes + operators) in a tsquery
 must be less than 32,768

 For comparison, the PostgreSQL™ 8.1 documentation
 contained 10,441 unique words, a total of 335,420 words, and the most
 frequent word “postgresql” was mentioned 6,127 times in 655
 documents.

 Another example — the PostgreSQL™ mailing
 list archives contained 910,989 unique words with 57,491,343 lexemes in
 461,020 messages.

Chapter 13. Concurrency Control

 This chapter describes the behavior of the
 PostgreSQL™ database system when two or
 more sessions try to access the same data at the same time. The
 goals in that situation are to allow efficient access for all
 sessions while maintaining strict data integrity. Every developer
 of database applications should be familiar with the topics covered
 in this chapter.

Introduction

 PostgreSQL™ provides a rich set of tools
 for developers to manage concurrent access to data. Internally,
 data consistency is maintained by using a multiversion
 model (Multiversion Concurrency Control, MVCC).
 This means that each SQL statement sees
 a snapshot of data (a database version)
 as it was some
 time ago, regardless of the current state of the underlying data.
 This prevents statements from viewing inconsistent data produced
 by concurrent transactions performing updates on the same
 data rows, providing transaction isolation
 for each database session. MVCC, by eschewing
 the locking methodologies of traditional database systems,
 minimizes lock contention in order to allow for reasonable
 performance in multiuser environments.

 The main advantage of using the MVCC model of
 concurrency control rather than locking is that in
 MVCC locks acquired for querying (reading) data
 do not conflict with locks acquired for writing data, and so
 reading never blocks writing and writing never blocks reading.
 PostgreSQL™ maintains this guarantee
 even when providing the strictest level of transaction
 isolation through the use of an innovative Serializable
 Snapshot Isolation (SSI) level.

 Table- and row-level locking facilities are also available in
 PostgreSQL™ for applications which don't
 generally need full transaction isolation and prefer to explicitly
 manage particular points of conflict. However, proper
 use of MVCC will generally provide better
 performance than locks. In addition, application-defined advisory
 locks provide a mechanism for acquiring locks that are not tied
 to a single transaction.

Transaction Isolation

 The SQL standard defines four levels of
 transaction isolation. The most strict is Serializable,
 which is defined by the standard in a paragraph which says that any
 concurrent execution of a set of Serializable transactions is guaranteed
 to produce the same effect as running them one at a time in some order.
 The other three levels are defined in terms of phenomena, resulting from
 interaction between concurrent transactions, which must not occur at
 each level. The standard notes that due to the definition of
 Serializable, none of these phenomena are possible at that level. (This
 is hardly surprising -- if the effect of the transactions must be
 consistent with having been run one at a time, how could you see any
 phenomena caused by interactions?)

 The phenomena which are prohibited at various levels are:

	
 dirty read

	
 A transaction reads data written by a concurrent uncommitted transaction.

	
 nonrepeatable read

	
 A transaction re-reads data it has previously read and finds that data
 has been modified by another transaction (that committed since the
 initial read).

	
 phantom read

	
 A transaction re-executes a query returning a set of rows that satisfy a
 search condition and finds that the set of rows satisfying the condition
 has changed due to another recently-committed transaction.

	
 serialization anomaly

	
 The result of successfully committing a group of transactions
 is inconsistent with all possible orderings of running those
 transactions one at a time.

 The SQL standard and PostgreSQL-implemented transaction isolation levels
 are described in Table 13.1, “Transaction Isolation Levels”.

Table 13.1. Transaction Isolation Levels
	
 Isolation Level
 	
 Dirty Read
 	
 Nonrepeatable Read
 	
 Phantom Read
 	
 Serialization Anomaly

	
 Read uncommitted
 	
 Allowed, but not in PG
 	
 Possible
 	
 Possible
 	
 Possible

	
 Read committed
 	
 Not possible
 	
 Possible
 	
 Possible
 	
 Possible

	
 Repeatable read
 	
 Not possible
 	
 Not possible
 	
 Allowed, but not in PG
 	
 Possible

	
 Serializable
 	
 Not possible
 	
 Not possible
 	
 Not possible
 	
 Not possible

 In PostgreSQL™, you can request any of
 the four standard transaction isolation levels, but internally only
 three distinct isolation levels are implemented, i.e., PostgreSQL's
 Read Uncommitted mode behaves like Read Committed. This is because
 it is the only sensible way to map the standard isolation levels to
 PostgreSQL's multiversion concurrency control architecture.

 The table also shows that PostgreSQL's Repeatable Read implementation
 does not allow phantom reads. This is acceptable under the SQL
 standard because the standard specifies which anomalies must
 not occur at certain isolation levels; higher
 guarantees are acceptable.
 The behavior of the available isolation levels is detailed in the
 following subsections.

 To set the transaction isolation level of a transaction, use the
 command SET TRANSACTION(7).

Important

 Some PostgreSQL™ data types and functions have
 special rules regarding transactional behavior. In particular, changes
 made to a sequence (and therefore the counter of a
 column declared using serial) are immediately visible
 to all other transactions and are not rolled back if the transaction
 that made the changes aborts. See the section called “Sequence Manipulation Functions”
 and the section called “Serial Types”.

Read Committed Isolation Level

 Read Committed is the default isolation
 level in PostgreSQL™. When a transaction
 uses this isolation level, a SELECT query
 (without a FOR UPDATE/SHARE clause) sees only data
 committed before the query began; it never sees either uncommitted
 data or changes committed by concurrent transactions during the query's
 execution. In effect, a SELECT query sees
 a snapshot of the database as of the instant the query begins to
 run. However, SELECT does see the effects
 of previous updates executed within its own transaction, even
 though they are not yet committed. Also note that two successive
 SELECT commands can see different data, even
 though they are within a single transaction, if other transactions
 commit changes after the first SELECT starts and
 before the second SELECT starts.

 UPDATE, DELETE, SELECT
 FOR UPDATE, and SELECT FOR SHARE commands
 behave the same as SELECT
 in terms of searching for target rows: they will only find target rows
 that were committed as of the command start time. However, such a target
 row might have already been updated (or deleted or locked) by
 another concurrent transaction by the time it is found. In this case, the
 would-be updater will wait for the first updating transaction to commit or
 roll back (if it is still in progress). If the first updater rolls back,
 then its effects are negated and the second updater can proceed with
 updating the originally found row. If the first updater commits, the
 second updater will ignore the row if the first updater deleted it,
 otherwise it will attempt to apply its operation to the updated version of
 the row. The search condition of the command (the WHERE clause) is
 re-evaluated to see if the updated version of the row still matches the
 search condition. If so, the second updater proceeds with its operation
 using the updated version of the row. In the case of
 SELECT FOR UPDATE and SELECT FOR
 SHARE, this means it is the updated version of the row that is
 locked and returned to the client.

 INSERT with an ON CONFLICT DO UPDATE clause
 behaves similarly. In Read Committed mode, each row proposed for insertion
 will either insert or update. Unless there are unrelated errors, one of
 those two outcomes is guaranteed. If a conflict originates in another
 transaction whose effects are not yet visible to the INSERT,
 the UPDATE clause will affect that row,
 even though possibly no version of that row is
 conventionally visible to the command.

 INSERT with an ON CONFLICT DO
 NOTHING clause may have insertion not proceed for a row due to
 the outcome of another transaction whose effects are not visible
 to the INSERT snapshot. Again, this is only
 the case in Read Committed mode.

 MERGE allows the user to specify various
 combinations of INSERT, UPDATE
 and DELETE subcommands. A MERGE
 command with both INSERT and UPDATE
 subcommands looks similar to INSERT with an
 ON CONFLICT DO UPDATE clause but does not
 guarantee that either INSERT or
 UPDATE will occur.
 If MERGE attempts an UPDATE or
 DELETE and the row is concurrently updated but
 the join condition still passes for the current target and the
 current source tuple, then MERGE will behave
 the same as the UPDATE or
 DELETE commands and perform its action on the
 updated version of the row. However, because MERGE
 can specify several actions and they can be conditional, the
 conditions for each action are re-evaluated on the updated version of
 the row, starting from the first action, even if the action that had
 originally matched appears later in the list of actions.
 On the other hand, if the row is concurrently updated or deleted so
 that the join condition fails, then MERGE will
 evaluate the condition's NOT MATCHED actions next,
 and execute the first one that succeeds.
 If MERGE attempts an INSERT
 and a unique index is present and a duplicate row is concurrently
 inserted, then a uniqueness violation error is raised;
 MERGE does not attempt to avoid such
 errors by restarting evaluation of MATCHED
 conditions.

 Because of the above rules, it is possible for an updating command to see
 an inconsistent snapshot: it can see the effects of concurrent updating
 commands on the same rows it is trying to update, but it
 does not see effects of those commands on other rows in the database.
 This behavior makes Read Committed mode unsuitable for commands that
 involve complex search conditions; however, it is just right for simpler
 cases. For example, consider updating bank balances with transactions
 like:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

 If two such transactions concurrently try to change the balance of account
 12345, we clearly want the second transaction to start with the updated
 version of the account's row. Because each command is affecting only a
 predetermined row, letting it see the updated version of the row does
 not create any troublesome inconsistency.

 More complex usage can produce undesirable results in Read Committed
 mode. For example, consider a DELETE command
 operating on data that is being both added and removed from its
 restriction criteria by another command, e.g., assume
 website is a two-row table with
 website.hits equaling 9 and
 10:

BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

 The DELETE will have no effect even though
 there is a website.hits = 10 row before and
 after the UPDATE. This occurs because the
 pre-update row value 9 is skipped, and when the
 UPDATE completes and DELETE
 obtains a lock, the new row value is no longer 10 but
 11, which no longer matches the criteria.

 Because Read Committed mode starts each command with a new snapshot
 that includes all transactions committed up to that instant,
 subsequent commands in the same transaction will see the effects
 of the committed concurrent transaction in any case. The point
 at issue above is whether or not a single command
 sees an absolutely consistent view of the database.

 The partial transaction isolation provided by Read Committed mode
 is adequate for many applications, and this mode is fast and simple
 to use; however, it is not sufficient for all cases. Applications
 that do complex queries and updates might require a more rigorously
 consistent view of the database than Read Committed mode provides.

Repeatable Read Isolation Level

 The Repeatable Read isolation level only sees
 data committed before the transaction began; it never sees either
 uncommitted data or changes committed by concurrent transactions during
 the transaction's execution. (However, each query does see the
 effects of previous updates executed within its own transaction,
 even though they are not yet committed.) This is a stronger
 guarantee than is required by the SQL standard
 for this isolation level, and prevents all of the phenomena described
 in Table 13.1, “Transaction Isolation Levels” except for serialization
 anomalies. As mentioned above, this is
 specifically allowed by the standard, which only describes the
 minimum protections each isolation level must
 provide.

 This level is different from Read Committed in that a query in a
 repeatable read transaction sees a snapshot as of the start of the
 first non-transaction-control statement in the
 transaction, not as of the start
 of the current statement within the transaction. Thus, successive
 SELECT commands within a single
 transaction see the same data, i.e., they do not see changes made by
 other transactions that committed after their own transaction started.

 Applications using this level must be prepared to retry transactions
 due to serialization failures.

 UPDATE, DELETE,
 MERGE, SELECT FOR UPDATE,
 and SELECT FOR SHARE commands
 behave the same as SELECT
 in terms of searching for target rows: they will only find target rows
 that were committed as of the transaction start time. However, such a
 target row might have already been updated (or deleted or locked) by
 another concurrent transaction by the time it is found. In this case, the
 repeatable read transaction will wait for the first updating transaction to commit or
 roll back (if it is still in progress). If the first updater rolls back,
 then its effects are negated and the repeatable read transaction can proceed
 with updating the originally found row. But if the first updater commits
 (and actually updated or deleted the row, not just locked it)
 then the repeatable read transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

 because a repeatable read transaction cannot modify or lock rows changed by
 other transactions after the repeatable read transaction began.

 When an application receives this error message, it should abort
 the current transaction and retry the whole transaction from
 the beginning. The second time through, the transaction will see the
 previously-committed change as part of its initial view of the database,
 so there is no logical conflict in using the new version of the row
 as the starting point for the new transaction's update.

 Note that only updating transactions might need to be retried; read-only
 transactions will never have serialization conflicts.

 The Repeatable Read mode provides a rigorous guarantee that each
 transaction sees a completely stable view of the database. However,
 this view will not necessarily always be consistent with some serial
 (one at a time) execution of concurrent transactions of the same level.
 For example, even a read-only transaction at this level may see a
 control record updated to show that a batch has been completed but
 not see one of the detail records which is logically
 part of the batch because it read an earlier revision of the control
 record. Attempts to enforce business rules by transactions running at
 this isolation level are not likely to work correctly without careful use
 of explicit locks to block conflicting transactions.

 The Repeatable Read isolation level is implemented using a technique
 known in academic database literature and in some other database products
 as Snapshot Isolation. Differences in behavior
 and performance may be observed when compared with systems that use a
 traditional locking technique that reduces concurrency. Some other
 systems may even offer Repeatable Read and Snapshot Isolation as distinct
 isolation levels with different behavior. The permitted phenomena that
 distinguish the two techniques were not formalized by database researchers
 until after the SQL standard was developed, and are outside the scope of
 this manual. For a full treatment, please see
 [berenson95].

Note

 Prior to PostgreSQL™ version 9.1, a request
 for the Serializable transaction isolation level provided exactly the
 same behavior described here. To retain the legacy Serializable
 behavior, Repeatable Read should now be requested.

Serializable Isolation Level

 The Serializable isolation level provides
 the strictest transaction isolation. This level emulates serial
 transaction execution for all committed transactions;
 as if transactions had been executed one after another, serially,
 rather than concurrently. However, like the Repeatable Read level,
 applications using this level must
 be prepared to retry transactions due to serialization failures.
 In fact, this isolation level works exactly the same as Repeatable
 Read except that it also monitors for conditions which could make
 execution of a concurrent set of serializable transactions behave
 in a manner inconsistent with all possible serial (one at a time)
 executions of those transactions. This monitoring does not
 introduce any blocking beyond that present in repeatable read, but
 there is some overhead to the monitoring, and detection of the
 conditions which could cause a
 serialization anomaly will trigger a
 serialization failure.

 As an example,
 consider a table mytab, initially containing:

 class | value
-------+-------
 1 | 10
 1 | 20
 2 | 100
 2 | 200

 Suppose that serializable transaction A computes:

SELECT SUM(value) FROM mytab WHERE class = 1;

 and then inserts the result (30) as the value in a
 new row with class = 2. Concurrently, serializable
 transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

 and obtains the result 300, which it inserts in a new row with
 class = 1. Then both transactions try to commit.
 If either transaction were running at the Repeatable Read isolation level,
 both would be allowed to commit; but since there is no serial order of execution
 consistent with the result, using Serializable transactions will allow one
 transaction to commit and will roll the other back with this message:

ERROR: could not serialize access due to read/write dependencies among transactions

 This is because if A had
 executed before B, B would have computed the sum 330, not 300, and
 similarly the other order would have resulted in a different sum
 computed by A.

 When relying on Serializable transactions to prevent anomalies, it is
 important that any data read from a permanent user table not be
 considered valid until the transaction which read it has successfully
 committed. This is true even for read-only transactions, except that
 data read within a deferrable read-only
 transaction is known to be valid as soon as it is read, because such a
 transaction waits until it can acquire a snapshot guaranteed to be free
 from such problems before starting to read any data. In all other cases
 applications must not depend on results read during a transaction that
 later aborted; instead, they should retry the transaction until it
 succeeds.

 To guarantee true serializability PostgreSQL™
 uses predicate locking, which means that it keeps locks
 which allow it to determine when a write would have had an impact on
 the result of a previous read from a concurrent transaction, had it run
 first. In PostgreSQL™ these locks do not
 cause any blocking and therefore can not play any part in
 causing a deadlock. They are used to identify and flag dependencies
 among concurrent Serializable transactions which in certain combinations
 can lead to serialization anomalies. In contrast, a Read Committed or
 Repeatable Read transaction which wants to ensure data consistency may
 need to take out a lock on an entire table, which could block other
 users attempting to use that table, or it may use SELECT FOR
 UPDATE or SELECT FOR SHARE which not only
 can block other transactions but cause disk access.

 Predicate locks in PostgreSQL™, like in most
 other database systems, are based on data actually accessed by a
 transaction. These will show up in the
 pg_locks
 system view with a mode of SIReadLock. The
 particular locks
 acquired during execution of a query will depend on the plan used by
 the query, and multiple finer-grained locks (e.g., tuple locks) may be
 combined into fewer coarser-grained locks (e.g., page locks) during the
 course of the transaction to prevent exhaustion of the memory used to
 track the locks. A READ ONLY transaction may be able to
 release its SIRead locks before completion, if it detects that no
 conflicts can still occur which could lead to a serialization anomaly.
 In fact, READ ONLY transactions will often be able to
 establish that fact at startup and avoid taking any predicate locks.
 If you explicitly request a SERIALIZABLE READ ONLY DEFERRABLE
 transaction, it will block until it can establish this fact. (This is
 the only case where Serializable transactions block but
 Repeatable Read transactions don't.) On the other hand, SIRead locks
 often need to be kept past transaction commit, until overlapping read
 write transactions complete.

 Consistent use of Serializable transactions can simplify development.
 The guarantee that any set of successfully committed concurrent
 Serializable transactions will have the same effect as if they were run
 one at a time means that if you can demonstrate that a single transaction,
 as written, will do the right thing when run by itself, you can have
 confidence that it will do the right thing in any mix of Serializable
 transactions, even without any information about what those other
 transactions might do, or it will not successfully commit. It is
 important that an environment which uses this technique have a
 generalized way of handling serialization failures (which always return
 with an SQLSTATE value of '40001'), because it will be very hard to
 predict exactly which transactions might contribute to the read/write
 dependencies and need to be rolled back to prevent serialization
 anomalies. The monitoring of read/write dependencies has a cost, as does
 the restart of transactions which are terminated with a serialization
 failure, but balanced against the cost and blocking involved in use of
 explicit locks and SELECT FOR UPDATE or SELECT FOR
 SHARE, Serializable transactions are the best performance choice
 for some environments.

 While PostgreSQL™'s Serializable transaction isolation
 level only allows concurrent transactions to commit if it can prove there
 is a serial order of execution that would produce the same effect, it
 doesn't always prevent errors from being raised that would not occur in
 true serial execution. In particular, it is possible to see unique
 constraint violations caused by conflicts with overlapping Serializable
 transactions even after explicitly checking that the key isn't present
 before attempting to insert it. This can be avoided by making sure
 that all Serializable transactions that insert potentially
 conflicting keys explicitly check if they can do so first. For example,
 imagine an application that asks the user for a new key and then checks
 that it doesn't exist already by trying to select it first, or generates
 a new key by selecting the maximum existing key and adding one. If some
 Serializable transactions insert new keys directly without following this
 protocol, unique constraints violations might be reported even in cases
 where they could not occur in a serial execution of the concurrent
 transactions.

 For optimal performance when relying on Serializable transactions for
 concurrency control, these issues should be considered:

	
 Declare transactions as READ ONLY when possible.

	
 Control the number of active connections, using a connection pool if
 needed. This is always an important performance consideration, but
 it can be particularly important in a busy system using Serializable
 transactions.

	
 Don't put more into a single transaction than needed for integrity
 purposes.

	
 Don't leave connections dangling “idle in transaction”
 longer than necessary. The configuration parameter
 idle_in_transaction_session_timeout may be used to
 automatically disconnect lingering sessions.

	
 Eliminate explicit locks, SELECT FOR UPDATE, and
 SELECT FOR SHARE where no longer needed due to the
 protections automatically provided by Serializable transactions.

	
 When the system is forced to combine multiple page-level predicate
 locks into a single relation-level predicate lock because the predicate
 lock table is short of memory, an increase in the rate of serialization
 failures may occur. You can avoid this by increasing
 max_pred_locks_per_transaction,
 max_pred_locks_per_relation, and/or
 max_pred_locks_per_page.

	
 A sequential scan will always necessitate a relation-level predicate
 lock. This can result in an increased rate of serialization failures.
 It may be helpful to encourage the use of index scans by reducing
 random_page_cost and/or increasing
 cpu_tuple_cost. Be sure to weigh any decrease
 in transaction rollbacks and restarts against any overall change in
 query execution time.

 The Serializable isolation level is implemented using a technique known
 in academic database literature as Serializable Snapshot Isolation, which
 builds on Snapshot Isolation by adding checks for serialization anomalies.
 Some differences in behavior and performance may be observed when compared
 with other systems that use a traditional locking technique. Please see
 [ports12] for detailed information.

Explicit Locking

 PostgreSQL™ provides various lock modes
 to control concurrent access to data in tables. These modes can
 be used for application-controlled locking in situations where
 MVCC does not give the desired behavior. Also,
 most PostgreSQL™ commands automatically
 acquire locks of appropriate modes to ensure that referenced
 tables are not dropped or modified in incompatible ways while the
 command executes. (For example, TRUNCATE cannot safely be
 executed concurrently with other operations on the same table, so it
 obtains an ACCESS EXCLUSIVE lock on the table to
 enforce that.)

 To examine a list of the currently outstanding locks in a database
 server, use the
 pg_locks
 system view. For more information on monitoring the status of the lock
 manager subsystem, refer to Chapter 28, Monitoring Database Activity.

Table-Level Locks

 The list below shows the available lock modes and the contexts in
 which they are used automatically by
 PostgreSQL™. You can also acquire any
 of these locks explicitly with the command LOCK(7).
 Remember that all of these lock modes are table-level locks,
 even if the name contains the word
 “row”; the names of the lock modes are historical.
 To some extent the names reflect the typical usage of each lock
 mode — but the semantics are all the same. The only real difference
 between one lock mode and another is the set of lock modes with
 which each conflicts (see Table 13.2, “Conflicting Lock Modes”).
 Two transactions cannot hold locks of conflicting
 modes on the same table at the same time. (However, a transaction
 never conflicts with itself. For example, it might acquire
 ACCESS EXCLUSIVE lock and later acquire
 ACCESS SHARE lock on the same table.) Non-conflicting
 lock modes can be held concurrently by many transactions. Notice in
 particular that some lock modes are self-conflicting (for example,
 an ACCESS EXCLUSIVE lock cannot be held by more than one
 transaction at a time) while others are not self-conflicting (for example,
 an ACCESS SHARE lock can be held by multiple transactions).

Table-Level Lock Modes
	
 ACCESS SHARE (AccessShareLock)

	
 Conflicts with the ACCESS EXCLUSIVE lock
 mode only.

 The SELECT command acquires a lock of this mode on
 referenced tables. In general, any query that only reads a table
 and does not modify it will acquire this lock mode.

	
 ROW SHARE (RowShareLock)

	
 Conflicts with the EXCLUSIVE and
 ACCESS EXCLUSIVE lock modes.

 The SELECT command acquires a lock of this mode
 on all tables on which one of the FOR UPDATE,
 FOR NO KEY UPDATE,
 FOR SHARE, or
 FOR KEY SHARE options is specified
 (in addition to ACCESS SHARE locks on any other
 tables that are referenced without any explicit
 FOR ... locking option).

	
 ROW EXCLUSIVE (RowExclusiveLock)

	
 Conflicts with the SHARE, SHARE ROW
 EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE lock modes.

 The commands UPDATE,
 DELETE, INSERT, and
 MERGE
 acquire this lock mode on the target table (in addition to
 ACCESS SHARE locks on any other referenced
 tables). In general, this lock mode will be acquired by any
 command that modifies data in a table.

	
 SHARE UPDATE EXCLUSIVE (ShareUpdateExclusiveLock)

	
 Conflicts with the SHARE UPDATE EXCLUSIVE,
 SHARE, SHARE ROW
 EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE lock modes.
 This mode protects a table against
 concurrent schema changes and VACUUM runs.

 Acquired by VACUUM (without FULL),
 ANALYZE, CREATE INDEX CONCURRENTLY,
 CREATE STATISTICS, COMMENT ON,
 REINDEX CONCURRENTLY,
 and certain ALTER INDEX
 and ALTER TABLE variants
 (for full details see the documentation of these commands).

	
 SHARE (ShareLock)

	
 Conflicts with the ROW EXCLUSIVE,
 SHARE UPDATE EXCLUSIVE, SHARE ROW
 EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE lock modes.
 This mode protects a table against concurrent data changes.

 Acquired by CREATE INDEX
 (without CONCURRENTLY).

	
 SHARE ROW EXCLUSIVE (ShareRowExclusiveLock)

	
 Conflicts with the ROW EXCLUSIVE,
 SHARE UPDATE EXCLUSIVE,
 SHARE, SHARE ROW
 EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE lock modes.
 This mode protects a table against concurrent data changes, and
 is self-exclusive so that only one session can hold it at a time.

 Acquired by CREATE TRIGGER and some forms of
 ALTER TABLE.

	
 EXCLUSIVE (ExclusiveLock)

	
 Conflicts with the ROW SHARE, ROW
 EXCLUSIVE, SHARE UPDATE
 EXCLUSIVE, SHARE, SHARE
 ROW EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE lock modes.
 This mode allows only concurrent ACCESS SHARE locks,
 i.e., only reads from the table can proceed in parallel with a
 transaction holding this lock mode.

 Acquired by REFRESH MATERIALIZED VIEW CONCURRENTLY.

	
 ACCESS EXCLUSIVE (AccessExclusiveLock)

	
 Conflicts with locks of all modes (ACCESS
 SHARE, ROW SHARE, ROW
 EXCLUSIVE, SHARE UPDATE
 EXCLUSIVE, SHARE, SHARE
 ROW EXCLUSIVE, EXCLUSIVE, and
 ACCESS EXCLUSIVE).
 This mode guarantees that the
 holder is the only transaction accessing the table in any way.

 Acquired by the DROP TABLE,
 TRUNCATE, REINDEX,
 CLUSTER, VACUUM FULL,
 and REFRESH MATERIALIZED VIEW (without
 CONCURRENTLY)
 commands. Many forms of ALTER INDEX and ALTER TABLE also acquire
 a lock at this level. This is also the default lock mode for
 LOCK TABLE statements that do not specify
 a mode explicitly.

Tip

 Only an ACCESS EXCLUSIVE lock blocks a
 SELECT (without FOR UPDATE/SHARE)
 statement.

 Once acquired, a lock is normally held until the end of the transaction. But if a
 lock is acquired after establishing a savepoint, the lock is released
 immediately if the savepoint is rolled back to. This is consistent with
 the principle that ROLLBACK cancels all effects of the
 commands since the savepoint. The same holds for locks acquired within a
 PL/pgSQL exception block: an error escape from the block
 releases locks acquired within it.

Table 13.2. Conflicting Lock Modes
	Requested Lock Mode	Existing Lock Mode
	ACCESS SHARE	ROW SHARE	ROW EXCL.	SHARE UPDATE EXCL.	SHARE	SHARE ROW EXCL.	EXCL.	ACCESS EXCL.
	ACCESS SHARE	 	 	 	 	 	 	 	X
	ROW SHARE	 	 	 	 	 	 	X	X
	ROW EXCL.	 	 	 	 	X	X	X	X
	SHARE UPDATE EXCL.	 	 	 	X	X	X	X	X
	SHARE	 	 	X	X	 	X	X	X
	SHARE ROW EXCL.	 	 	X	X	X	X	X	X
	EXCL.	 	X	X	X	X	X	X	X
	ACCESS EXCL.	X	X	X	X	X	X	X	X

Row-Level Locks

 In addition to table-level locks, there are row-level locks, which
 are listed as below with the contexts in which they are used
 automatically by PostgreSQL™. See
 Table 13.3, “Conflicting Row-Level Locks” for a complete table of
 row-level lock conflicts. Note that a transaction can hold
 conflicting locks on the same row, even in different subtransactions;
 but other than that, two transactions can never hold conflicting locks
 on the same row. Row-level locks do not affect data querying; they
 block only writers and lockers to the same
 row. Row-level locks are released at transaction end or during
 savepoint rollback, just like table-level locks.

Row-Level Lock Modes
	
 FOR UPDATE

	
 FOR UPDATE causes the rows retrieved by the
 SELECT statement to be locked as though for
 update. This prevents them from being locked, modified or deleted by
 other transactions until the current transaction ends. That is,
 other transactions that attempt UPDATE,
 DELETE,
 SELECT FOR UPDATE,
 SELECT FOR NO KEY UPDATE,
 SELECT FOR SHARE or
 SELECT FOR KEY SHARE
 of these rows will be blocked until the current transaction ends;
 conversely, SELECT FOR UPDATE will wait for a
 concurrent transaction that has run any of those commands on the
 same row,
 and will then lock and return the updated row (or no row, if the
 row was deleted). Within a REPEATABLE READ or
 SERIALIZABLE transaction,
 however, an error will be thrown if a row to be locked has changed
 since the transaction started. For further discussion see
 the section called “Data Consistency Checks at the Application Level”.

 The FOR UPDATE lock mode
 is also acquired by any DELETE on a row, and also by an
 UPDATE that modifies the values of certain columns. Currently,
 the set of columns considered for the UPDATE case are those that
 have a unique index on them that can be used in a foreign key (so partial
 indexes and expressional indexes are not considered), but this may change
 in the future.

	
 FOR NO KEY UPDATE

	
 Behaves similarly to FOR UPDATE, except that the lock
 acquired is weaker: this lock will not block
 SELECT FOR KEY SHARE commands that attempt to acquire
 a lock on the same rows. This lock mode is also acquired by any
 UPDATE that does not acquire a FOR UPDATE lock.

	
 FOR SHARE

	
 Behaves similarly to FOR NO KEY UPDATE, except that it
 acquires a shared lock rather than exclusive lock on each retrieved
 row. A shared lock blocks other transactions from performing
 UPDATE, DELETE,
 SELECT FOR UPDATE or
 SELECT FOR NO KEY UPDATE on these rows, but it does not
 prevent them from performing SELECT FOR SHARE or
 SELECT FOR KEY SHARE.

	
 FOR KEY SHARE

	
 Behaves similarly to FOR SHARE, except that the
 lock is weaker: SELECT FOR UPDATE is blocked, but not
 SELECT FOR NO KEY UPDATE. A key-shared lock blocks
 other transactions from performing DELETE or
 any UPDATE that changes the key values, but not
 other UPDATE, and neither does it prevent
 SELECT FOR NO KEY UPDATE, SELECT FOR SHARE,
 or SELECT FOR KEY SHARE.

 PostgreSQL™ doesn't remember any
 information about modified rows in memory, so there is no limit on
 the number of rows locked at one time. However, locking a row
 might cause a disk write, e.g., SELECT FOR
 UPDATE modifies selected rows to mark them locked, and so
 will result in disk writes.

Table 13.3. Conflicting Row-Level Locks
	Requested Lock Mode	Current Lock Mode
	FOR KEY SHARE	FOR SHARE	FOR NO KEY UPDATE	FOR UPDATE
	FOR KEY SHARE	 	 	 	X
	FOR SHARE	 	 	X	X
	FOR NO KEY UPDATE	 	X	X	X
	FOR UPDATE	X	X	X	X

Page-Level Locks

 In addition to table and row locks, page-level share/exclusive locks are
 used to control read/write access to table pages in the shared buffer
 pool. These locks are released immediately after a row is fetched or
 updated. Application developers normally need not be concerned with
 page-level locks, but they are mentioned here for completeness.

Deadlocks

 The use of explicit locking can increase the likelihood of
 deadlocks, wherein two (or more) transactions each
 hold locks that the other wants. For example, if transaction 1
 acquires an exclusive lock on table A and then tries to acquire
 an exclusive lock on table B, while transaction 2 has already
 exclusive-locked table B and now wants an exclusive lock on table
 A, then neither one can proceed.
 PostgreSQL™ automatically detects
 deadlock situations and resolves them by aborting one of the
 transactions involved, allowing the other(s) to complete.
 (Exactly which transaction will be aborted is difficult to
 predict and should not be relied upon.)

 Note that deadlocks can also occur as the result of row-level
 locks (and thus, they can occur even if explicit locking is not
 used). Consider the case in which two concurrent
 transactions modify a table. The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

 This acquires a row-level lock on the row with the specified
 account number. Then, the second transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

 The first UPDATE statement successfully
 acquires a row-level lock on the specified row, so it succeeds in
 updating that row. However, the second UPDATE
 statement finds that the row it is attempting to update has
 already been locked, so it waits for the transaction that
 acquired the lock to complete. Transaction two is now waiting on
 transaction one to complete before it continues execution. Now,
 transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

 Transaction one attempts to acquire a row-level lock on the
 specified row, but it cannot: transaction two already holds such
 a lock. So it waits for transaction two to complete. Thus,
 transaction one is blocked on transaction two, and transaction
 two is blocked on transaction one: a deadlock
 condition. PostgreSQL™ will detect this
 situation and abort one of the transactions.

 The best defense against deadlocks is generally to avoid them by
 being certain that all applications using a database acquire
 locks on multiple objects in a consistent order. In the example
 above, if both transactions
 had updated the rows in the same order, no deadlock would have
 occurred. One should also ensure that the first lock acquired on
 an object in a transaction is the most restrictive mode that will be
 needed for that object. If it is not feasible to verify this in
 advance, then deadlocks can be handled on-the-fly by retrying
 transactions that abort due to deadlocks.

 So long as no deadlock situation is detected, a transaction seeking
 either a table-level or row-level lock will wait indefinitely for
 conflicting locks to be released. This means it is a bad idea for
 applications to hold transactions open for long periods of time
 (e.g., while waiting for user input).

Advisory Locks

 PostgreSQL™ provides a means for
 creating locks that have application-defined meanings. These are
 called advisory locks, because the system does not
 enforce their use — it is up to the application to use them
 correctly. Advisory locks can be useful for locking strategies
 that are an awkward fit for the MVCC model.
 For example, a common use of advisory locks is to emulate pessimistic
 locking strategies typical of so-called “flat file” data
 management systems.
 While a flag stored in a table could be used for the same purpose,
 advisory locks are faster, avoid table bloat, and are automatically
 cleaned up by the server at the end of the session.

 There are two ways to acquire an advisory lock in
 PostgreSQL™: at session level or at
 transaction level.
 Once acquired at session level, an advisory lock is held until
 explicitly released or the session ends. Unlike standard lock requests,
 session-level advisory lock requests do not honor transaction semantics:
 a lock acquired during a transaction that is later rolled back will still
 be held following the rollback, and likewise an unlock is effective even
 if the calling transaction fails later. A lock can be acquired multiple
 times by its owning process; for each completed lock request there must
 be a corresponding unlock request before the lock is actually released.
 Transaction-level lock requests, on the other hand, behave more like
 regular lock requests: they are automatically released at the end of the
 transaction, and there is no explicit unlock operation. This behavior
 is often more convenient than the session-level behavior for short-term
 usage of an advisory lock.
 Session-level and transaction-level lock requests for the same advisory
 lock identifier will block each other in the expected way.
 If a session already holds a given advisory lock, additional requests by
 it will always succeed, even if other sessions are awaiting the lock; this
 statement is true regardless of whether the existing lock hold and new
 request are at session level or transaction level.

 Like all locks in
 PostgreSQL™, a complete list of advisory locks
 currently held by any session can be found in the pg_locks system
 view.

 Both advisory locks and regular locks are stored in a shared memory
 pool whose size is defined by the configuration variables
 max_locks_per_transaction and
 max_connections.
 Care must be taken not to exhaust this
 memory or the server will be unable to grant any locks at all.
 This imposes an upper limit on the number of advisory locks
 grantable by the server, typically in the tens to hundreds of thousands
 depending on how the server is configured.

 In certain cases using advisory locking methods, especially in queries
 involving explicit ordering and LIMIT clauses, care must be
 taken to control the locks acquired because of the order in which SQL
 expressions are evaluated. For example:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock(q.id) FROM
(
 SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- ok

 In the above queries, the second form is dangerous because the
 LIMIT is not guaranteed to be applied before the locking
 function is executed. This might cause some locks to be acquired
 that the application was not expecting, and hence would fail to release
 (until it ends the session).
 From the point of view of the application, such locks
 would be dangling, although still viewable in
 pg_locks.

 The functions provided to manipulate advisory locks are described in
 the section called “Advisory Lock Functions”.

Data Consistency Checks at the Application Level

 It is very difficult to enforce business rules regarding data integrity
 using Read Committed transactions because the view of the data is
 shifting with each statement, and even a single statement may not
 restrict itself to the statement's snapshot if a write conflict occurs.

 While a Repeatable Read transaction has a stable view of the data
 throughout its execution, there is a subtle issue with using
 MVCC snapshots for data consistency checks, involving
 something known as read/write conflicts.
 If one transaction writes data and a concurrent transaction attempts
 to read the same data (whether before or after the write), it cannot
 see the work of the other transaction. The reader then appears to have
 executed first regardless of which started first or which committed
 first. If that is as far as it goes, there is no problem, but
 if the reader also writes data which is read by a concurrent transaction
 there is now a transaction which appears to have run before either of
 the previously mentioned transactions. If the transaction which appears
 to have executed last actually commits first, it is very easy for a
 cycle to appear in a graph of the order of execution of the transactions.
 When such a cycle appears, integrity checks will not work correctly
 without some help.

 As mentioned in the section called “Serializable Isolation Level”, Serializable
 transactions are just Repeatable Read transactions which add
 nonblocking monitoring for dangerous patterns of read/write conflicts.
 When a pattern is detected which could cause a cycle in the apparent
 order of execution, one of the transactions involved is rolled back to
 break the cycle.

Enforcing Consistency with Serializable Transactions

 If the Serializable transaction isolation level is used for all writes
 and for all reads which need a consistent view of the data, no other
 effort is required to ensure consistency. Software from other
 environments which is written to use serializable transactions to
 ensure consistency should “just work” in this regard in
 PostgreSQL™.

 When using this technique, it will avoid creating an unnecessary burden
 for application programmers if the application software goes through a
 framework which automatically retries transactions which are rolled
 back with a serialization failure. It may be a good idea to set
 default_transaction_isolation to serializable.
 It would also be wise to take some action to ensure that no other
 transaction isolation level is used, either inadvertently or to
 subvert integrity checks, through checks of the transaction isolation
 level in triggers.

 See the section called “Serializable Isolation Level” for performance suggestions.

Warning: Serializable Transactions and Data Replication

 This level of integrity protection using Serializable transactions
 does not yet extend to hot standby mode (the section called “Hot Standby”)
 or logical replicas.
 Because of that, those using hot standby or logical replication
 may want to use Repeatable Read and explicit locking on the primary.

Enforcing Consistency with Explicit Blocking Locks

 When non-serializable writes are possible,
 to ensure the current validity of a row and protect it against
 concurrent updates one must use SELECT FOR UPDATE,
 SELECT FOR SHARE, or an appropriate LOCK
 TABLE statement. (SELECT FOR UPDATE
 and SELECT FOR SHARE lock just the
 returned rows against concurrent updates, while LOCK
 TABLE locks the whole table.) This should be taken into
 account when porting applications to
 PostgreSQL™ from other environments.

 Also of note to those converting from other environments is the fact
 that SELECT FOR UPDATE does not ensure that a
 concurrent transaction will not update or delete a selected row.
 To do that in PostgreSQL™ you must actually
 update the row, even if no values need to be changed.
 SELECT FOR UPDATE temporarily blocks
 other transactions from acquiring the same lock or executing an
 UPDATE or DELETE which would
 affect the locked row, but once the transaction holding this lock
 commits or rolls back, a blocked transaction will proceed with the
 conflicting operation unless an actual UPDATE of
 the row was performed while the lock was held.

 Global validity checks require extra thought under
 non-serializable MVCC.
 For example, a banking application might wish to check that the sum of
 all credits in one table equals the sum of debits in another table,
 when both tables are being actively updated. Comparing the results of two
 successive SELECT sum(...) commands will not work reliably in
 Read Committed mode, since the second query will likely include the results
 of transactions not counted by the first. Doing the two sums in a
 single repeatable read transaction will give an accurate picture of only the
 effects of transactions that committed before the repeatable read transaction
 started — but one might legitimately wonder whether the answer is still
 relevant by the time it is delivered. If the repeatable read transaction
 itself applied some changes before trying to make the consistency check,
 the usefulness of the check becomes even more debatable, since now it
 includes some but not all post-transaction-start changes. In such cases
 a careful person might wish to lock all tables needed for the check,
 in order to get an indisputable picture of current reality. A
 SHARE mode (or higher) lock guarantees that there are no
 uncommitted changes in the locked table, other than those of the current
 transaction.

 Note also that if one is relying on explicit locking to prevent concurrent
 changes, one should either use Read Committed mode, or in Repeatable Read
 mode be careful to obtain
 locks before performing queries. A lock obtained by a
 repeatable read transaction guarantees that no other transactions modifying
 the table are still running, but if the snapshot seen by the
 transaction predates obtaining the lock, it might predate some now-committed
 changes in the table. A repeatable read transaction's snapshot is actually
 frozen at the start of its first query or data-modification command
 (SELECT, INSERT,
 UPDATE, DELETE, or
 MERGE), so it is possible to obtain locks explicitly
 before the snapshot is frozen.

Serialization Failure Handling

 Both Repeatable Read and Serializable isolation levels can produce
 errors that are designed to prevent serialization anomalies. As
 previously stated, applications using these levels must be prepared to
 retry transactions that fail due to serialization errors. Such an
 error's message text will vary according to the precise circumstances,
 but it will always have the SQLSTATE code 40001
 (serialization_failure).

 It may also be advisable to retry deadlock failures.
 These have the SQLSTATE code 40P01
 (deadlock_detected).

 In some cases it is also appropriate to retry unique-key failures,
 which have SQLSTATE code 23505
 (unique_violation), and exclusion constraint
 failures, which have SQLSTATE code 23P01
 (exclusion_violation). For example, if the
 application selects a new value for a primary key column after
 inspecting the currently stored keys, it could get a unique-key
 failure because another application instance selected the same new key
 concurrently. This is effectively a serialization failure, but the
 server will not detect it as such because it cannot “see”
 the connection between the inserted value and the previous reads.
 There are also some corner cases in which the server will issue a
 unique-key or exclusion constraint error even though in principle it
 has enough information to determine that a serialization problem
 is the underlying cause. While it's recommendable to just
 retry serialization_failure errors unconditionally,
 more care is needed when retrying these other error codes, since they
 might represent persistent error conditions rather than transient
 failures.

 It is important to retry the complete transaction, including all logic
 that decides which SQL to issue and/or which values to use.
 Therefore, PostgreSQL™ does not offer an
 automatic retry facility, since it cannot do so with any guarantee of
 correctness.

 Transaction retry does not guarantee that the retried transaction will
 complete; multiple retries may be needed. In cases with very high
 contention, it is possible that completion of a transaction may take
 many attempts. In cases involving a conflicting prepared transaction,
 it may not be possible to make progress until the prepared transaction
 commits or rolls back.

Caveats

 Some DDL commands, currently only TRUNCATE and the
 table-rewriting forms of ALTER TABLE, are not
 MVCC-safe. This means that after the truncation or rewrite commits, the
 table will appear empty to concurrent transactions, if they are using a
 snapshot taken before the DDL command committed. This will only be an
 issue for a transaction that did not access the table in question
 before the DDL command started — any transaction that has done so
 would hold at least an ACCESS SHARE table lock,
 which would block the DDL command until that transaction completes.
 So these commands will not cause any apparent inconsistency in the
 table contents for successive queries on the target table, but they
 could cause visible inconsistency between the contents of the target
 table and other tables in the database.

 Support for the Serializable transaction isolation level has not yet
 been added to hot standby replication targets (described in
 the section called “Hot Standby”). The strictest isolation level currently
 supported in hot standby mode is Repeatable Read. While performing all
 permanent database writes within Serializable transactions on the
 primary will ensure that all standbys will eventually reach a consistent
 state, a Repeatable Read transaction run on the standby can sometimes
 see a transient state that is inconsistent with any serial execution
 of the transactions on the primary.

 Internal access to the system catalogs is not done using the isolation
 level of the current transaction. This means that newly created database
 objects such as tables are visible to concurrent Repeatable Read and
 Serializable transactions, even though the rows they contain are not. In
 contrast, queries that explicitly examine the system catalogs don't see
 rows representing concurrently created database objects, in the higher
 isolation levels.

Locking and Indexes

 Though PostgreSQL™
 provides nonblocking read/write access to table
 data, nonblocking read/write access is not currently offered for every
 index access method implemented
 in PostgreSQL™.
 The various index types are handled as follows:

	
 B-tree, GiST and SP-GiST indexes

	
 Short-term share/exclusive page-level locks are used for
 read/write access. Locks are released immediately after each
 index row is fetched or inserted. These index types provide
 the highest concurrency without deadlock conditions.

	
 Hash indexes

	
 Share/exclusive hash-bucket-level locks are used for read/write
 access. Locks are released after the whole bucket is processed.
 Bucket-level locks provide better concurrency than index-level
 ones, but deadlock is possible since the locks are held longer
 than one index operation.

	
 GIN indexes

	
 Short-term share/exclusive page-level locks are used for
 read/write access. Locks are released immediately after each
 index row is fetched or inserted. But note that insertion of a
 GIN-indexed value usually produces several index key insertions
 per row, so GIN might do substantial work for a single value's
 insertion.

 Currently, B-tree indexes offer the best performance for concurrent
 applications; since they also have more features than hash
 indexes, they are the recommended index type for concurrent
 applications that need to index scalar data. When dealing with
 non-scalar data, B-trees are not useful, and GiST, SP-GiST or GIN
 indexes should be used instead.

Chapter 14. Performance Tips

 Query performance can be affected by many things. Some of these can
 be controlled by the user, while others are fundamental to the underlying
 design of the system. This chapter provides some hints about understanding
 and tuning PostgreSQL™ performance.

Using EXPLAIN

 PostgreSQL™ devises a query
 plan for each query it receives. Choosing the right
 plan to match the query structure and the properties of the data
 is absolutely critical for good performance, so the system includes
 a complex planner that tries to choose good plans.
 You can use the EXPLAIN command
 to see what query plan the planner creates for any query.
 Plan-reading is an art that requires some experience to master,
 but this section attempts to cover the basics.

 Examples in this section are drawn from the regression test database
 after doing a VACUUM ANALYZE, using 9.3 development sources.
 You should be able to get similar results if you try the examples
 yourself, but your estimated costs and row counts might vary slightly
 because ANALYZE's statistics are random samples rather
 than exact, and because costs are inherently somewhat platform-dependent.

 The examples use EXPLAIN's default “text” output
 format, which is compact and convenient for humans to read.
 If you want to feed EXPLAIN's output to a program for further
 analysis, you should use one of its machine-readable output formats
 (XML, JSON, or YAML) instead.

EXPLAIN Basics

 The structure of a query plan is a tree of plan nodes.
 Nodes at the bottom level of the tree are scan nodes: they return raw rows
 from a table. There are different types of scan nodes for different
 table access methods: sequential scans, index scans, and bitmap index
 scans. There are also non-table row sources, such as VALUES
 clauses and set-returning functions in FROM, which have their
 own scan node types.
 If the query requires joining, aggregation, sorting, or other
 operations on the raw rows, then there will be additional nodes
 above the scan nodes to perform these operations. Again,
 there is usually more than one possible way to do these operations,
 so different node types can appear here too. The output
 of EXPLAIN has one line for each node in the plan
 tree, showing the basic node type plus the cost estimates that the planner
 made for the execution of that plan node. Additional lines might appear,
 indented from the node's summary line,
 to show additional properties of the node.
 The very first line (the summary line for the topmost
 node) has the estimated total execution cost for the plan; it is this
 number that the planner seeks to minimize.

 Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

 Since this query has no WHERE clause, it must scan all the
 rows of the table, so the planner has chosen to use a simple sequential
 scan plan. The numbers that are quoted in parentheses are (left
 to right):

	
 Estimated start-up cost. This is the time expended before the output
 phase can begin, e.g., time to do the sorting in a sort node.

	
 Estimated total cost. This is stated on the assumption that the plan
 node is run to completion, i.e., all available rows are retrieved.
 In practice a node's parent node might stop short of reading all
 available rows (see the LIMIT example below).

	
 Estimated number of rows output by this plan node. Again, the node
 is assumed to be run to completion.

	
 Estimated average width of rows output by this plan node (in bytes).

 The costs are measured in arbitrary units determined by the planner's
 cost parameters (see the section called “Planner Cost Constants”).
 Traditional practice is to measure the costs in units of disk page
 fetches; that is, seq_page_cost is conventionally
 set to 1.0 and the other cost parameters are set relative
 to that. The examples in this section are run with the default cost
 parameters.

 It's important to understand that the cost of an upper-level node includes
 the cost of all its child nodes. It's also important to realize that
 the cost only reflects things that the planner cares about.
 In particular, the cost does not consider the time spent transmitting
 result rows to the client, which could be an important
 factor in the real elapsed time; but the planner ignores it because
 it cannot change it by altering the plan. (Every correct plan will
 output the same row set, we trust.)

 The rows value is a little tricky because it is
 not the number of rows processed or scanned by the
 plan node, but rather the number emitted by the node. This is often
 less than the number scanned, as a result of filtering by any
 WHERE-clause conditions that are being applied at the node.
 Ideally the top-level rows estimate will approximate the number of rows
 actually returned, updated, or deleted by the query.

 Returning to our example:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

 These numbers are derived very straightforwardly. If you do:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 you will find that tenk1 has 358 disk
 pages and 10000 rows. The estimated cost is computed as (disk pages read *
 seq_page_cost) + (rows scanned *
 cpu_tuple_cost). By default,
 seq_page_cost is 1.0 and cpu_tuple_cost is 0.01,
 so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

 Now let's modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
 Filter: (unique1 < 7000)

 Notice that the EXPLAIN output shows the WHERE
 clause being applied as a “filter” condition attached to the Seq
 Scan plan node. This means that
 the plan node checks the condition for each row it scans, and outputs
 only the ones that pass the condition.
 The estimate of output rows has been reduced because of the
 WHERE clause.
 However, the scan will still have to visit all 10000 rows, so the cost
 hasn't decreased; in fact it has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU
 time spent checking the WHERE condition.

 The actual number of rows this query would select is 7000, but the rows
 estimate is only approximate. If you try to duplicate this experiment,
 you will probably get a slightly different estimate; moreover, it can
 change after each ANALYZE command, because the
 statistics produced by ANALYZE are taken from a
 randomized sample of the table.

 Now, let's make the condition more restrictive:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

 QUERY PLAN
---​-----------
 Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

 Here the planner has decided to use a two-step plan: the child plan
 node visits an index to find the locations of rows matching the index
 condition, and then the upper plan node actually fetches those rows
 from the table itself. Fetching rows separately is much more
 expensive than reading them sequentially, but because not all the pages
 of the table have to be visited, this is still cheaper than a sequential
 scan. (The reason for using two plan levels is that the upper plan
 node sorts the row locations identified by the index into physical order
 before reading them, to minimize the cost of separate fetches.
 The “bitmap” mentioned in the node names is the mechanism that
 does the sorting.)

 Now let's add another condition to the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

 QUERY PLAN
---​-----------
 Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244)
 Recheck Cond: (unique1 < 100)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

 The added condition stringu1 = 'xxx' reduces the
 output row count estimate, but not the cost because we still have to visit
 the same set of rows. Notice that the stringu1 clause
 cannot be applied as an index condition, since this index is only on
 the unique1 column. Instead it is applied as a filter on
 the rows retrieved by the index. Thus the cost has actually gone up
 slightly to reflect this extra checking.

 In some cases the planner will prefer a “simple” index scan plan:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

 QUERY PLAN
---​----------
 Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1 width=244)
 Index Cond: (unique1 = 42)

 In this type of plan the table rows are fetched in index order, which
 makes them even more expensive to read, but there are so few that the
 extra cost of sorting the row locations is not worth it. You'll most
 often see this plan type for queries that fetch just a single row. It's
 also often used for queries that have an ORDER BY condition
 that matches the index order, because then no extra sorting step is needed
 to satisfy the ORDER BY. In this example, adding
 ORDER BY unique1 would use the same plan because the
 index already implicitly provides the requested ordering.

 The planner may implement an ORDER BY clause in several
 ways. The above example shows that such an ordering clause may be
 implemented implicitly. The planner may also add an explicit
 sort step:

EXPLAIN SELECT * FROM tenk1 ORDER BY unique1;
 QUERY PLAN

 Sort (cost=1109.39..1134.39 rows=10000 width=244)
 Sort Key: unique1
 -> Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

 If a part of the plan guarantees an ordering on a prefix of the
 required sort keys, then the planner may instead decide to use an
 incremental sort step:

EXPLAIN SELECT * FROM tenk1 ORDER BY four, ten LIMIT 100;
 QUERY PLAN
---​-----------------------------------
 Limit (cost=521.06..538.05 rows=100 width=244)
 -> Incremental Sort (cost=521.06..2220.95 rows=10000 width=244)
 Sort Key: four, ten
 Presorted Key: four
 -> Index Scan using index_tenk1_on_four on tenk1 (cost=0.29..1510.08 rows=10000 width=244)

 Compared to regular sorts, sorting incrementally allows returning tuples
 before the entire result set has been sorted, which particularly enables
 optimizations with LIMIT queries. It may also reduce
 memory usage and the likelihood of spilling sorts to disk, but it comes at
 the cost of the increased overhead of splitting the result set into multiple
 sorting batches.

 If there are separate indexes on several of the columns referenced
 in WHERE, the planner might choose to use an AND or OR
 combination of the indexes:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN
---​------------------
 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 Index Cond: (unique2 > 9000)

 But this requires visiting both indexes, so it's not necessarily a win
 compared to using just one index and treating the other condition as
 a filter. If you vary the ranges involved you'll see the plan change
 accordingly.

 Here is an example showing the effects of LIMIT:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN
---​------------------
 Limit (cost=0.29..14.48 rows=2 width=244)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27 rows=10 width=244)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)

 This is the same query as above, but we added a LIMIT so that
 not all the rows need be retrieved, and the planner changed its mind about
 what to do. Notice that the total cost and row count of the Index Scan
 node are shown as if it were run to completion. However, the Limit node
 is expected to stop after retrieving only a fifth of those rows, so its
 total cost is only a fifth as much, and that's the actual estimated cost
 of the query. This plan is preferred over adding a Limit node to the
 previous plan because the Limit could not avoid paying the startup cost
 of the bitmap scan, so the total cost would be something over 25 units
 with that approach.

 Let's try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​-------------------
 Nested Loop (cost=4.65..118.62 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

 In this plan, we have a nested-loop join node with two table scans as
 inputs, or children. The indentation of the node summary lines reflects
 the plan tree structure. The join's first, or “outer”, child
 is a bitmap scan similar to those we saw before. Its cost and row count
 are the same as we'd get from SELECT ... WHERE unique1 < 10
 because we are
 applying the WHERE clause unique1 < 10
 at that node.
 The t1.unique2 = t2.unique2 clause is not relevant yet,
 so it doesn't affect the row count of the outer scan. The nested-loop
 join node will run its second,
 or “inner” child once for each row obtained from the outer child.
 Column values from the current outer row can be plugged into the inner
 scan; here, the t1.unique2 value from the outer row is available,
 so we get a plan and costs similar to what we saw above for a simple
 SELECT ... WHERE t2.unique2 = constant case.
 (The estimated cost is actually a bit lower than what was seen above,
 as a result of caching that's expected to occur during the repeated
 index scans on t2.) The
 costs of the loop node are then set on the basis of the cost of the outer
 scan, plus one repetition of the inner scan for each outer row (10 * 7.91,
 here), plus a little CPU time for join processing.

 In this example the join's output row count is the same as the product
 of the two scans' row counts, but that's not true in all cases because
 there can be additional WHERE clauses that mention both tables
 and so can only be applied at the join point, not to either input scan.
 Here's an example:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

 QUERY PLAN
---​--------------------------
 Nested Loop (cost=4.65..49.46 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10 width=244)
 Index Cond: (unique2 < 10)

 The condition t1.hundred < t2.hundred can't be
 tested in the tenk2_unique2 index, so it's applied at the
 join node. This reduces the estimated output row count of the join node,
 but does not change either input scan.

 Notice that here the planner has chosen to “materialize” the inner
 relation of the join, by putting a Materialize plan node atop it. This
 means that the t2 index scan will be done just once, even
 though the nested-loop join node needs to read that data ten times, once
 for each row from the outer relation. The Materialize node saves the data
 in memory as it's read, and then returns the data from memory on each
 subsequent pass.

 When dealing with outer joins, you might see join plan nodes with both
 “Join Filter” and plain “Filter” conditions attached.
 Join Filter conditions come from the outer join's ON clause,
 so a row that fails the Join Filter condition could still get emitted as
 a null-extended row. But a plain Filter condition is applied after the
 outer-join rules and so acts to remove rows unconditionally. In an inner
 join there is no semantic difference between these types of filters.

 If we change the query's selectivity a bit, we might get a very different
 join plan:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​-----------------------
 Hash Join (cost=230.47..713.98 rows=101 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
 -> Hash (cost=229.20..229.20 rows=101 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

 Here, the planner has chosen to use a hash join, in which rows of one
 table are entered into an in-memory hash table, after which the other
 table is scanned and the hash table is probed for matches to each row.
 Again note how the indentation reflects the plan structure: the bitmap
 scan on tenk1 is the input to the Hash node, which constructs
 the hash table. That's then returned to the Hash Join node, which reads
 rows from its outer child plan and searches the hash table for each one.

 Another possible type of join is a merge join, illustrated here:

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​-----------------------
 Merge Join (cost=198.11..268.19 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244)
 Filter: (unique1 < 100)
 -> Sort (cost=197.83..200.33 rows=1000 width=244)
 Sort Key: t2.unique2
 -> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000 width=244)

 Merge join requires its input data to be sorted on the join keys. In this
 plan the tenk1 data is sorted by using an index scan to visit
 the rows in the correct order, but a sequential scan and sort is preferred
 for onek, because there are many more rows to be visited in
 that table.
 (Sequential-scan-and-sort frequently beats an index scan for sorting many rows,
 because of the nonsequential disk access required by the index scan.)

 One way to look at variant plans is to force the planner to disregard
 whatever strategy it thought was the cheapest, using the enable/disable
 flags described in the section called “Planner Method Configuration”.
 (This is a crude tool, but useful. See
 also the section called “Controlling the Planner with Explicit JOIN Clauses”.)
 For example, if we're unconvinced that sequential-scan-and-sort is the best way to
 deal with table onek in the previous example, we could try

SET enable_sort = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​-----------------------
 Merge Join (cost=0.56..292.65 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244)
 Filter: (unique1 < 100)
 -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79 rows=1000 width=244)

 which shows that the planner thinks that sorting onek by
 index-scanning is about 12% more expensive than sequential-scan-and-sort.
 Of course, the next question is whether it's right about that.
 We can investigate that using EXPLAIN ANALYZE, as discussed
 below.

EXPLAIN ANALYZE

 It is possible to check the accuracy of the planner's estimates
 by using EXPLAIN's ANALYZE option. With this
 option, EXPLAIN actually executes the query, and then displays
 the true row counts and true run time accumulated within each plan node,
 along with the same estimates that a plain EXPLAIN
 shows. For example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​--
 Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual time=0.128..0.377 rows=10 loops=1)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) (actual time=0.057..0.121 rows=10 loops=1)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0) (actual time=0.024..0.024 rows=10 loops=1)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244) (actual time=0.021..0.022 rows=1 loops=10)
 Index Cond: (unique2 = t1.unique2)
 Planning time: 0.181 ms
 Execution time: 0.501 ms

 Note that the “actual time” values are in milliseconds of
 real time, whereas the cost estimates are expressed in
 arbitrary units; so they are unlikely to match up.
 The thing that's usually most important to look for is whether the
 estimated row counts are reasonably close to reality. In this example
 the estimates were all dead-on, but that's quite unusual in practice.

 In some query plans, it is possible for a subplan node to be executed more
 than once. For example, the inner index scan will be executed once per
 outer row in the above nested-loop plan. In such cases, the
 loops value reports the
 total number of executions of the node, and the actual time and rows
 values shown are averages per-execution. This is done to make the numbers
 comparable with the way that the cost estimates are shown. Multiply by
 the loops value to get the total time actually spent in
 the node. In the above example, we spent a total of 0.220 milliseconds
 executing the index scans on tenk2.

 In some cases EXPLAIN ANALYZE shows additional execution
 statistics beyond the plan node execution times and row counts.
 For example, Sort and Hash nodes provide extra information:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

 QUERY PLAN
---​---​------
 Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100 loops=1)
 Sort Key: t1.fivethous
 Sort Method: quicksort Memory: 77kB
 -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427 rows=100 loops=1)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.007..2.583 rows=10000 loops=1)
 -> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659 rows=100 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 28kB
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.194 ms
 Execution time: 8.008 ms

 The Sort node shows the sort method used (in particular, whether the sort
 was in-memory or on-disk) and the amount of memory or disk space needed.
 The Hash node shows the number of hash buckets and batches as well as the
 peak amount of memory used for the hash table. (If the number of batches
 exceeds one, there will also be disk space usage involved, but that is not
 shown.)

 Another type of extra information is the number of rows removed by a
 filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

 QUERY PLAN
---​--------------------------------------
 Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.016..5.107 rows=7000 loops=1)
 Filter: (ten < 7)
 Rows Removed by Filter: 3000
 Planning time: 0.083 ms
 Execution time: 5.905 ms

 These counts can be particularly valuable for filter conditions applied at
 join nodes. The “Rows Removed” line only appears when at least
 one scanned row, or potential join pair in the case of a join node,
 is rejected by the filter condition.

 A case similar to filter conditions occurs with “lossy”
 index scans. For example, consider this search for polygons containing a
 specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN
---​-----------------------------------
 Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.044..0.044 rows=0 loops=1)
 Filter: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Filter: 4
 Planning time: 0.040 ms
 Execution time: 0.083 ms

 The planner thinks (quite correctly) that this sample table is too small
 to bother with an index scan, so we have a plain sequential scan in which
 all the rows got rejected by the filter condition. But if we force an
 index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN
---​---
 Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=32) (actual time=0.062..0.062 rows=0 loops=1)
 Index Cond: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Index Recheck: 1
 Planning time: 0.034 ms
 Execution time: 0.144 ms

 Here we can see that the index returned one candidate row, which was
 then rejected by a recheck of the index condition. This happens because a
 GiST index is “lossy” for polygon containment tests: it actually
 returns the rows with polygons that overlap the target, and then we have
 to do the exact containment test on those rows.

 EXPLAIN has a BUFFERS option that can be used with
 ANALYZE to get even more run time statistics:

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN
---​--
 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) (actual time=0.323..0.342 rows=10 loops=1)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 Buffers: shared hit=15
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual time=0.309..0.309 rows=0 loops=1)
 Buffers: shared hit=7
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Buffers: shared hit=2
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0) (actual time=0.227..0.227 rows=999 loops=1)
 Index Cond: (unique2 > 9000)
 Buffers: shared hit=5
 Planning time: 0.088 ms
 Execution time: 0.423 ms

 The numbers provided by BUFFERS help to identify which parts
 of the query are the most I/O-intensive.

 Keep in mind that because EXPLAIN ANALYZE actually
 runs the query, any side-effects will happen as usual, even though
 whatever results the query might output are discarded in favor of
 printing the EXPLAIN data. If you want to analyze a
 data-modifying query without changing your tables, you can
 roll the command back afterwards, for example:

BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

 QUERY PLAN
---​---
 Update on tenk1 (cost=5.08..230.08 rows=0 width=0) (actual time=3.791..3.792 rows=0 loops=1)
 -> Bitmap Heap Scan on tenk1 (cost=5.08..230.08 rows=102 width=10) (actual time=0.069..0.513 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 Heap Blocks: exact=90
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.05 rows=102 width=0) (actual time=0.036..0.037 rows=300 loops=1)
 Index Cond: (unique1 < 100)
 Planning Time: 0.113 ms
 Execution Time: 3.850 ms

ROLLBACK;

 As seen in this example, when the query is an INSERT,
 UPDATE, DELETE, or
 MERGE command, the actual work of
 applying the table changes is done by a top-level Insert, Update,
 Delete, or Merge plan node. The plan nodes underneath this node perform
 the work of locating the old rows and/or computing the new data.
 So above, we see the same sort of bitmap table scan we've seen already,
 and its output is fed to an Update node that stores the updated rows.
 It's worth noting that although the data-modifying node can take a
 considerable amount of run time (here, it's consuming the lion's share
 of the time), the planner does not currently add anything to the cost
 estimates to account for that work. That's because the work to be done is
 the same for every correct query plan, so it doesn't affect planning
 decisions.

 When an UPDATE, DELETE, or
 MERGE command affects an
 inheritance hierarchy, the output might look like this:

EXPLAIN UPDATE parent SET f2 = f2 + 1 WHERE f1 = 101;
 QUERY PLAN
---​-----------------------------------
 Update on parent (cost=0.00..24.59 rows=0 width=0)
 Update on parent parent_1
 Update on child1 parent_2
 Update on child2 parent_3
 Update on child3 parent_4
 -> Result (cost=0.00..24.59 rows=4 width=14)
 -> Append (cost=0.00..24.54 rows=4 width=14)
 -> Seq Scan on parent parent_1 (cost=0.00..0.00 rows=1 width=14)
 Filter: (f1 = 101)
 -> Index Scan using child1_pkey on child1 parent_2 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child2_pkey on child2 parent_3 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child3_pkey on child3 parent_4 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)

 In this example the Update node needs to consider three child tables as
 well as the originally-mentioned parent table. So there are four input
 scanning subplans, one per table. For clarity, the Update node is
 annotated to show the specific target tables that will be updated, in the
 same order as the corresponding subplans.

 The Planning time shown by EXPLAIN
 ANALYZE is the time it took to generate the query plan from the
 parsed query and optimize it. It does not include parsing or rewriting.

 The Execution time shown by EXPLAIN
 ANALYZE includes executor start-up and shut-down time, as well
 as the time to run any triggers that are fired, but it does not include
 parsing, rewriting, or planning time.
 Time spent executing BEFORE triggers, if any, is included in
 the time for the related Insert, Update, or Delete node; but time
 spent executing AFTER triggers is not counted there because
 AFTER triggers are fired after completion of the whole plan.
 The total time spent in each trigger
 (either BEFORE or AFTER) is also shown separately.
 Note that deferred constraint triggers will not be executed
 until end of transaction and are thus not considered at all by
 EXPLAIN ANALYZE.

Caveats

 There are two significant ways in which run times measured by
 EXPLAIN ANALYZE can deviate from normal execution of
 the same query. First, since no output rows are delivered to the client,
 network transmission costs and I/O conversion costs are not included.
 Second, the measurement overhead added by EXPLAIN
 ANALYZE can be significant, especially on machines with slow
 gettimeofday() operating-system calls. You can use the
 pg_test_timing(1) tool to measure the overhead of timing
 on your system.

 EXPLAIN results should not be extrapolated to situations
 much different from the one you are actually testing; for example,
 results on a toy-sized table cannot be assumed to apply to large tables.
 The planner's cost estimates are not linear and so it might choose
 a different plan for a larger or smaller table. An extreme example
 is that on a table that only occupies one disk page, you'll nearly
 always get a sequential scan plan whether indexes are available or not.
 The planner realizes that it's going to take one disk page read to
 process the table in any case, so there's no value in expending additional
 page reads to look at an index. (We saw this happening in the
 polygon_tbl example above.)

 There are cases in which the actual and estimated values won't match up
 well, but nothing is really wrong. One such case occurs when
 plan node execution is stopped short by a LIMIT or similar
 effect. For example, in the LIMIT query we used before,

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN
---​--
 Limit (cost=0.29..14.71 rows=2 width=244) (actual time=0.177..0.249 rows=2 loops=1)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..72.42 rows=10 width=244) (actual time=0.174..0.244 rows=2 loops=1)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)
 Rows Removed by Filter: 287
 Planning time: 0.096 ms
 Execution time: 0.336 ms

 the estimated cost and row count for the Index Scan node are shown as
 though it were run to completion. But in reality the Limit node stopped
 requesting rows after it got two, so the actual row count is only 2 and
 the run time is less than the cost estimate would suggest. This is not
 an estimation error, only a discrepancy in the way the estimates and true
 values are displayed.

 Merge joins also have measurement artifacts that can confuse the unwary.
 A merge join will stop reading one input if it's exhausted the other input
 and the next key value in the one input is greater than the last key value
 of the other input; in such a case there can be no more matches and so no
 need to scan the rest of the first input. This results in not reading all
 of one child, with results like those mentioned for LIMIT.
 Also, if the outer (first) child contains rows with duplicate key values,
 the inner (second) child is backed up and rescanned for the portion of its
 rows matching that key value. EXPLAIN ANALYZE counts these
 repeated emissions of the same inner rows as if they were real additional
 rows. When there are many outer duplicates, the reported actual row count
 for the inner child plan node can be significantly larger than the number
 of rows that are actually in the inner relation.

 BitmapAnd and BitmapOr nodes always report their actual row counts as zero,
 due to implementation limitations.

 Normally, EXPLAIN will display every plan node
 created by the planner. However, there are cases where the executor
 can determine that certain nodes need not be executed because they
 cannot produce any rows, based on parameter values that were not
 available at planning time. (Currently this can only happen for child
 nodes of an Append or MergeAppend node that is scanning a partitioned
 table.) When this happens, those plan nodes are omitted from
 the EXPLAIN output and a Subplans
 Removed: N annotation appears
 instead.

Statistics Used by the Planner

Single-Column Statistics

 As we saw in the previous section, the query planner needs to estimate
 the number of rows retrieved by a query in order to make good choices
 of query plans. This section provides a quick look at the statistics
 that the system uses for these estimates.

 One component of the statistics is the total number of entries in
 each table and index, as well as the number of disk blocks occupied
 by each table and index. This information is kept in the table
 pg_class,
 in the columns reltuples and
 relpages. We can look at it with
 queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

 relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1 | r | 10000 | 358
 tenk1_hundred | i | 10000 | 30
 tenk1_thous_tenthous | i | 10000 | 30
 tenk1_unique1 | i | 10000 | 30
 tenk1_unique2 | i | 10000 | 30
(5 rows)

 Here we can see that tenk1 contains 10000
 rows, as do its indexes, but the indexes are (unsurprisingly) much
 smaller than the table.

 For efficiency reasons, reltuples
 and relpages are not updated on-the-fly,
 and so they usually contain somewhat out-of-date values.
 They are updated by VACUUM, ANALYZE, and a
 few DDL commands such as CREATE INDEX. A VACUUM
 or ANALYZE operation that does not scan the entire table
 (which is commonly the case) will incrementally update the
 reltuples count on the basis of the part
 of the table it did scan, resulting in an approximate value.
 In any case, the planner
 will scale the values it finds in pg_class
 to match the current physical table size, thus obtaining a closer
 approximation.

 Most queries retrieve only a fraction of the rows in a table, due
 to WHERE clauses that restrict the rows to be
 examined. The planner thus needs to make an estimate of the
 selectivity of WHERE clauses, that is,
 the fraction of rows that match each condition in the
 WHERE clause. The information used for this task is
 stored in the
 pg_statistic
 system catalog. Entries in pg_statistic
 are updated by the ANALYZE and VACUUM
 ANALYZE commands, and are always approximate even when freshly
 updated.

 Rather than look at pg_statistic directly,
 it's better to look at its view
 pg_stats
 when examining the statistics manually. pg_stats
 is designed to be more easily readable. Furthermore,
 pg_stats is readable by all, whereas
 pg_statistic is only readable by a superuser.
 (This prevents unprivileged users from learning something about
 the contents of other people's tables from the statistics. The
 pg_stats view is restricted to show only
 rows about tables that the current user can read.)
 For example, we might do:

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
 name | f | -0.363388 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | Sp Railroad +
 | | | I- 580 +
 | | | I- 680 Ramp
 name | t | -0.284859 | I- 880 Ramp+
 | | | I- 580 Ramp+
 | | | I- 680 Ramp+
 | | | I- 580 +
 | | | State Hwy 13 Ramp
(2 rows)

 Note that two rows are displayed for the same column, one corresponding
 to the complete inheritance hierarchy starting at the
 road table (inherited=t),
 and another one including only the road table itself
 (inherited=f).

 The amount of information stored in pg_statistic
 by ANALYZE, in particular the maximum number of entries in the
 most_common_vals and histogram_bounds
 arrays for each column, can be set on a
 column-by-column basis using the ALTER TABLE SET STATISTICS
 command, or globally by setting the
 default_statistics_target configuration variable.
 The default limit is presently 100 entries. Raising the limit
 might allow more accurate planner estimates to be made, particularly for
 columns with irregular data distributions, at the price of consuming
 more space in pg_statistic and slightly more
 time to compute the estimates. Conversely, a lower limit might be
 sufficient for columns with simple data distributions.

 Further details about the planner's use of statistics can be found in
 Chapter 76, How the Planner Uses Statistics.

Extended Statistics

 It is common to see slow queries running bad execution plans because
 multiple columns used in the query clauses are correlated.
 The planner normally assumes that multiple conditions
 are independent of each other,
 an assumption that does not hold when column values are correlated.
 Regular statistics, because of their per-individual-column nature,
 cannot capture any knowledge about cross-column correlation.
 However, PostgreSQL™ has the ability to compute
 multivariate statistics, which can capture
 such information.

 Because the number of possible column combinations is very large,
 it's impractical to compute multivariate statistics automatically.
 Instead, extended statistics objects, more often
 called just statistics objects, can be created to instruct
 the server to obtain statistics across interesting sets of columns.

 Statistics objects are created using the
 CREATE STATISTICS command.
 Creation of such an object merely creates a catalog entry expressing
 interest in the statistics. Actual data collection is performed
 by ANALYZE (either a manual command, or background
 auto-analyze). The collected values can be examined in the
 pg_statistic_ext_data
 catalog.

 ANALYZE computes extended statistics based on the same
 sample of table rows that it takes for computing regular single-column
 statistics. Since the sample size is increased by increasing the
 statistics target for the table or any of its columns (as described in
 the previous section), a larger statistics target will normally result in
 more accurate extended statistics, as well as more time spent calculating
 them.

 The following subsections describe the kinds of extended statistics
 that are currently supported.

Functional Dependencies

 The simplest kind of extended statistics tracks functional
 dependencies, a concept used in definitions of database normal forms.
 We say that column b is functionally dependent on
 column a if knowledge of the value of
 a is sufficient to determine the value
 of b, that is there are no two rows having the same value
 of a but different values of b.
 In a fully normalized database, functional dependencies should exist
 only on primary keys and superkeys. However, in practice many data sets
 are not fully normalized for various reasons; intentional
 denormalization for performance reasons is a common example.
 Even in a fully normalized database, there may be partial correlation
 between some columns, which can be expressed as partial functional
 dependency.

 The existence of functional dependencies directly affects the accuracy
 of estimates in certain queries. If a query contains conditions on
 both the independent and the dependent column(s), the
 conditions on the dependent columns do not further reduce the result
 size; but without knowledge of the functional dependency, the query
 planner will assume that the conditions are independent, resulting
 in underestimating the result size.

 To inform the planner about functional dependencies, ANALYZE
 can collect measurements of cross-column dependency. Assessing the
 degree of dependency between all sets of columns would be prohibitively
 expensive, so data collection is limited to those groups of columns
 appearing together in a statistics object defined with
 the dependencies option. It is advisable to create
 dependencies statistics only for column groups that are
 strongly correlated, to avoid unnecessary overhead in both
 ANALYZE and later query planning.

 Here is an example of collecting functional-dependency statistics:

CREATE STATISTICS stts (dependencies) ON city, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts';
 stxname | stxkeys | stxddependencies
---------+---------+--
 stts | 1 5 | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

 Here it can be seen that column 1 (zip code) fully determines column
 5 (city) so the coefficient is 1.0, while city only determines zip code
 about 42% of the time, meaning that there are many cities (58%) that are
 represented by more than a single ZIP code.

 When computing the selectivity for a query involving functionally
 dependent columns, the planner adjusts the per-condition selectivity
 estimates using the dependency coefficients so as not to produce
 an underestimate.

Limitations of Functional Dependencies

 Functional dependencies are currently only applied when considering
 simple equality conditions that compare columns to constant values,
 and IN clauses with constant values.
 They are not used to improve estimates for equality conditions
 comparing two columns or comparing a column to an expression, nor for
 range clauses, LIKE or any other type of condition.

 When estimating with functional dependencies, the planner assumes that
 conditions on the involved columns are compatible and hence redundant.
 If they are incompatible, the correct estimate would be zero rows, but
 that possibility is not considered. For example, given a query like

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

 the planner will disregard the city clause as not
 changing the selectivity, which is correct. However, it will make
 the same assumption about

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

 even though there will really be zero rows satisfying this query.
 Functional dependency statistics do not provide enough information
 to conclude that, however.

 In many practical situations, this assumption is usually satisfied;
 for example, there might be a GUI in the application that only allows
 selecting compatible city and ZIP code values to use in a query.
 But if that's not the case, functional dependencies may not be a viable
 option.

Multivariate N-Distinct Counts

 Single-column statistics store the number of distinct values in each
 column. Estimates of the number of distinct values when combining more
 than one column (for example, for GROUP BY a, b) are
 frequently wrong when the planner only has single-column statistical
 data, causing it to select bad plans.

 To improve such estimates, ANALYZE can collect n-distinct
 statistics for groups of columns. As before, it's impractical to do
 this for every possible column grouping, so data is collected only for
 those groups of columns appearing together in a statistics object
 defined with the ndistinct option. Data will be collected
 for each possible combination of two or more columns from the set of
 listed columns.

 Continuing the previous example, the n-distinct counts in a
 table of ZIP codes might look like the following:

CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts2';
-[RECORD 1]--​--
k | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

 This indicates that there are three combinations of columns that
 have 33178 distinct values: ZIP code and state; ZIP code and city;
 and ZIP code, city and state (the fact that they are all equal is
 expected given that ZIP code alone is unique in this table). On the
 other hand, the combination of city and state has only 27435 distinct
 values.

 It's advisable to create ndistinct statistics objects only
 on combinations of columns that are actually used for grouping, and
 for which misestimation of the number of groups is resulting in bad
 plans. Otherwise, the ANALYZE cycles are just wasted.

Multivariate MCV Lists

 Another type of statistic stored for each column are most-common value
 lists. This allows very accurate estimates for individual columns, but
 may result in significant misestimates for queries with conditions on
 multiple columns.

 To improve such estimates, ANALYZE can collect MCV
 lists on combinations of columns. Similarly to functional dependencies
 and n-distinct coefficients, it's impractical to do this for every
 possible column grouping. Even more so in this case, as the MCV list
 (unlike functional dependencies and n-distinct coefficients) does store
 the common column values. So data is collected only for those groups
 of columns appearing together in a statistics object defined with the
 mcv option.

 Continuing the previous example, the MCV list for a table of ZIP codes
 might look like the following (unlike for simpler types of statistics,
 a function is required for inspection of MCV contents):

CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

ANALYZE zipcodes;

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts3';

 index | values | nulls | frequency | base_frequency
-------+------------------------+-------+-----------+----------------
 0 | {Washington, DC} | {f,f} | 0.003467 | 2.7e-05
 1 | {Apo, AE} | {f,f} | 0.003067 | 1.9e-05
 2 | {Houston, TX} | {f,f} | 0.002167 | 0.000133
 3 | {El Paso, TX} | {f,f} | 0.002 | 0.000113
 4 | {New York, NY} | {f,f} | 0.001967 | 0.000114
 5 | {Atlanta, GA} | {f,f} | 0.001633 | 3.3e-05
 6 | {Sacramento, CA} | {f,f} | 0.001433 | 7.8e-05
 7 | {Miami, FL} | {f,f} | 0.0014 | 6e-05
 8 | {Dallas, TX} | {f,f} | 0.001367 | 8.8e-05
 9 | {Chicago, IL} | {f,f} | 0.001333 | 5.1e-05
 ...
(99 rows)

 This indicates that the most common combination of city and state is
 Washington in DC, with actual frequency (in the sample) about 0.35%.
 The base frequency of the combination (as computed from the simple
 per-column frequencies) is only 0.0027%, resulting in two orders of
 magnitude under-estimates.

 It's advisable to create MCV statistics objects only
 on combinations of columns that are actually used in conditions together,
 and for which misestimation of the number of groups is resulting in bad
 plans. Otherwise, the ANALYZE and planning cycles
 are just wasted.

Controlling the Planner with Explicit JOIN Clauses

 It is possible
 to control the query planner to some extent by using the explicit JOIN
 syntax. To see why this matters, we first need some background.

 In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

 the planner is free to join the given tables in any order. For
 example, it could generate a query plan that joins A to B, using
 the WHERE condition a.id = b.id, and then
 joins C to this joined table, using the other WHERE
 condition. Or it could join B to C and then join A to that result.
 Or it could join A to C and then join them with B — but that
 would be inefficient, since the full Cartesian product of A and C
 would have to be formed, there being no applicable condition in the
 WHERE clause to allow optimization of the join. (All
 joins in the PostgreSQL™ executor happen
 between two input tables, so it's necessary to build up the result
 in one or another of these fashions.) The important point is that
 these different join possibilities give semantically equivalent
 results but might have hugely different execution costs. Therefore,
 the planner will explore all of them to try to find the most
 efficient query plan.

 When a query only involves two or three tables, there aren't many join
 orders to worry about. But the number of possible join orders grows
 exponentially as the number of tables expands. Beyond ten or so input
 tables it's no longer practical to do an exhaustive search of all the
 possibilities, and even for six or seven tables planning might take an
 annoyingly long time. When there are too many input tables, the
 PostgreSQL™ planner will switch from exhaustive
 search to a genetic probabilistic search
 through a limited number of possibilities. (The switch-over threshold is
 set by the geqo_threshold run-time
 parameter.)
 The genetic search takes less time, but it won't
 necessarily find the best possible plan.

 When the query involves outer joins, the planner has less freedom
 than it does for plain (inner) joins. For example, consider:

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

 Although this query's restrictions are superficially similar to the
 previous example, the semantics are different because a row must be
 emitted for each row of A that has no matching row in the join of B and C.
 Therefore the planner has no choice of join order here: it must join
 B to C and then join A to that result. Accordingly, this query takes
 less time to plan than the previous query. In other cases, the planner
 might be able to determine that more than one join order is safe.
 For example, given:

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);

 it is valid to join A to either B or C first. Currently, only
 FULL JOIN completely constrains the join order. Most
 practical cases involving LEFT JOIN or RIGHT JOIN
 can be rearranged to some extent.

 Explicit inner join syntax (INNER JOIN, CROSS
 JOIN, or unadorned JOIN) is semantically the same as
 listing the input relations in FROM, so it does not
 constrain the join order.

 Even though most kinds of JOIN don't completely constrain
 the join order, it is possible to instruct the
 PostgreSQL™ query planner to treat all
 JOIN clauses as constraining the join order anyway.
 For example, these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

 But if we tell the planner to honor the JOIN order,
 the second and third take less time to plan than the first. This effect
 is not worth worrying about for only three tables, but it can be a
 lifesaver with many tables.

 To force the planner to follow the join order laid out by explicit
 JOINs,
 set the join_collapse_limit run-time parameter to 1.
 (Other possible values are discussed below.)

 You do not need to constrain the join order completely in order to
 cut search time, because it's OK to use JOIN operators
 within items of a plain FROM list. For example, consider:

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

 With join_collapse_limit = 1, this
 forces the planner to join A to B before joining them to other tables,
 but doesn't constrain its choices otherwise. In this example, the
 number of possible join orders is reduced by a factor of 5.

 Constraining the planner's search in this way is a useful technique
 both for reducing planning time and for directing the planner to a
 good query plan. If the planner chooses a bad join order by default,
 you can force it to choose a better order via JOIN syntax
 — assuming that you know of a better order, that is. Experimentation
 is recommended.

 A closely related issue that affects planning time is collapsing of
 subqueries into their parent query. For example, consider:

SELECT *
FROM x, y,
 (SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

 This situation might arise from use of a view that contains a join;
 the view's SELECT rule will be inserted in place of the view
 reference, yielding a query much like the above. Normally, the planner
 will try to collapse the subquery into the parent, yielding:

SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

 This usually results in a better plan than planning the subquery
 separately. (For example, the outer WHERE conditions might be such that
 joining X to A first eliminates many rows of A, thus avoiding the need to
 form the full logical output of the subquery.) But at the same time,
 we have increased the planning time; here, we have a five-way join
 problem replacing two separate three-way join problems. Because of the
 exponential growth of the number of possibilities, this makes a big
 difference. The planner tries to avoid getting stuck in huge join search
 problems by not collapsing a subquery if more than from_collapse_limit
 FROM items would result in the parent
 query. You can trade off planning time against quality of plan by
 adjusting this run-time parameter up or down.

 from_collapse_limit and join_collapse_limit
 are similarly named because they do almost the same thing: one controls
 when the planner will “flatten out” subqueries, and the
 other controls when it will flatten out explicit joins. Typically
 you would either set join_collapse_limit equal to
 from_collapse_limit (so that explicit joins and subqueries
 act similarly) or set join_collapse_limit to 1 (if you want
 to control join order with explicit joins). But you might set them
 differently if you are trying to fine-tune the trade-off between planning
 time and run time.

Populating a Database

 One might need to insert a large amount of data when first populating
 a database. This section contains some suggestions on how to make
 this process as efficient as possible.

Disable Autocommit

 When using multiple INSERTs, turn off autocommit and just do
 one commit at the end. (In plain
 SQL, this means issuing BEGIN at the start and
 COMMIT at the end. Some client libraries might
 do this behind your back, in which case you need to make sure the
 library does it when you want it done.) If you allow each
 insertion to be committed separately,
 PostgreSQL™ is doing a lot of work for
 each row that is added. An additional benefit of doing all
 insertions in one transaction is that if the insertion of one row
 were to fail then the insertion of all rows inserted up to that
 point would be rolled back, so you won't be stuck with partially
 loaded data.

Use COPY

 Use COPY to load
 all the rows in one command, instead of using a series of
 INSERT commands. The COPY
 command is optimized for loading large numbers of rows; it is less
 flexible than INSERT, but incurs significantly
 less overhead for large data loads. Since COPY
 is a single command, there is no need to disable autocommit if you
 use this method to populate a table.

 If you cannot use COPY, it might help to use PREPARE to create a
 prepared INSERT statement, and then use
 EXECUTE as many times as required. This avoids
 some of the overhead of repeatedly parsing and planning
 INSERT. Different interfaces provide this facility
 in different ways; look for “prepared statements” in the interface
 documentation.

 Note that loading a large number of rows using
 COPY is almost always faster than using
 INSERT, even if PREPARE is used and
 multiple insertions are batched into a single transaction.

 COPY is fastest when used within the same
 transaction as an earlier CREATE TABLE or
 TRUNCATE command. In such cases no WAL
 needs to be written, because in case of an error, the files
 containing the newly loaded data will be removed anyway.
 However, this consideration only applies when
 wal_level is minimal
 as all commands must write WAL otherwise.

Remove Indexes

 If you are loading a freshly created table, the fastest method is to
 create the table, bulk load the table's data using
 COPY, then create any indexes needed for the
 table. Creating an index on pre-existing data is quicker than
 updating it incrementally as each row is loaded.

 If you are adding large amounts of data to an existing table,
 it might be a win to drop the indexes,
 load the table, and then recreate the indexes. Of course, the
 database performance for other users might suffer
 during the time the indexes are missing. One should also think
 twice before dropping a unique index, since the error checking
 afforded by the unique constraint will be lost while the index is
 missing.

Remove Foreign Key Constraints

 Just as with indexes, a foreign key constraint can be checked
 “in bulk” more efficiently than row-by-row. So it might be
 useful to drop foreign key constraints, load data, and re-create
 the constraints. Again, there is a trade-off between data load
 speed and loss of error checking while the constraint is missing.

 What's more, when you load data into a table with existing foreign key
 constraints, each new row requires an entry in the server's list of
 pending trigger events (since it is the firing of a trigger that checks
 the row's foreign key constraint). Loading many millions of rows can
 cause the trigger event queue to overflow available memory, leading to
 intolerable swapping or even outright failure of the command. Therefore
 it may be necessary, not just desirable, to drop and re-apply
 foreign keys when loading large amounts of data. If temporarily removing
 the constraint isn't acceptable, the only other recourse may be to split
 up the load operation into smaller transactions.

Increase maintenance_work_mem

 Temporarily increasing the maintenance_work_mem
 configuration variable when loading large amounts of data can
 lead to improved performance. This will help to speed up CREATE
 INDEX commands and ALTER TABLE ADD FOREIGN KEY commands.
 It won't do much for COPY itself, so this advice is
 only useful when you are using one or both of the above techniques.

Increase max_wal_size

 Temporarily increasing the max_wal_size
 configuration variable can also
 make large data loads faster. This is because loading a large
 amount of data into PostgreSQL™ will
 cause checkpoints to occur more often than the normal checkpoint
 frequency (specified by the checkpoint_timeout
 configuration variable). Whenever a checkpoint occurs, all dirty
 pages must be flushed to disk. By increasing
 max_wal_size temporarily during bulk
 data loads, the number of checkpoints that are required can be
 reduced.

Disable WAL Archival and Streaming Replication

 When loading large amounts of data into an installation that uses
 WAL archiving or streaming replication, it might be faster to take a
 new base backup after the load has completed than to process a large
 amount of incremental WAL data. To prevent incremental WAL logging
 while loading, disable archiving and streaming replication, by setting
 wal_level to minimal,
 archive_mode to off, and
 max_wal_senders to zero.
 But note that changing these settings requires a server restart,
 and makes any base backups taken before unavailable for archive
 recovery and standby server, which may lead to data loss.

 Aside from avoiding the time for the archiver or WAL sender to process the
 WAL data, doing this will actually make certain commands faster, because
 they do not to write WAL at all if wal_level
 is minimal and the current subtransaction (or top-level
 transaction) created or truncated the table or index they change. (They
 can guarantee crash safety more cheaply by doing
 an fsync at the end than by writing WAL.)

Run ANALYZE Afterwards

 Whenever you have significantly altered the distribution of data
 within a table, running ANALYZE is strongly recommended. This
 includes bulk loading large amounts of data into the table. Running
 ANALYZE (or VACUUM ANALYZE)
 ensures that the planner has up-to-date statistics about the
 table. With no statistics or obsolete statistics, the planner might
 make poor decisions during query planning, leading to poor
 performance on any tables with inaccurate or nonexistent
 statistics. Note that if the autovacuum daemon is enabled, it might
 run ANALYZE automatically; see
 the section called “Updating Planner Statistics”
 and the section called “The Autovacuum Daemon” for more information.

Some Notes about pg_dump

 Dump scripts generated by pg_dump automatically apply
 several, but not all, of the above guidelines. To restore a
 pg_dump dump as quickly as possible, you need to
 do a few extra things manually. (Note that these points apply while
 restoring a dump, not while creating it.
 The same points apply whether loading a text dump with
 psql or using pg_restore to load
 from a pg_dump archive file.)

 By default, pg_dump uses COPY, and when
 it is generating a complete schema-and-data dump, it is careful to
 load data before creating indexes and foreign keys. So in this case
 several guidelines are handled automatically. What is left
 for you to do is to:

	
 Set appropriate (i.e., larger than normal) values for
 maintenance_work_mem and
 max_wal_size.

	
 If using WAL archiving or streaming replication, consider disabling
 them during the restore. To do that, set archive_mode
 to off,
 wal_level to minimal, and
 max_wal_senders to zero before loading the dump.
 Afterwards, set them back to the right values and take a fresh
 base backup.

	
 Experiment with the parallel dump and restore modes of both
 pg_dump and pg_restore and find the
 optimal number of concurrent jobs to use. Dumping and restoring in
 parallel by means of the -j option should give you a
 significantly higher performance over the serial mode.

	
 Consider whether the whole dump should be restored as a single
 transaction. To do that, pass the -1 or
 --single-transaction command-line option to
 psql or pg_restore. When using this
 mode, even the smallest of errors will rollback the entire restore,
 possibly discarding many hours of processing. Depending on how
 interrelated the data is, that might seem preferable to manual cleanup,
 or not. COPY commands will run fastest if you use a single
 transaction and have WAL archiving turned off.

	
 If multiple CPUs are available in the database server, consider using
 pg_restore's --jobs option. This
 allows concurrent data loading and index creation.

	
 Run ANALYZE afterwards.

 A data-only dump will still use COPY, but it does not
 drop or recreate indexes, and it does not normally touch foreign
 keys.

 [14]

 So when loading a data-only dump, it is up to you to drop and recreate
 indexes and foreign keys if you wish to use those techniques.
 It's still useful to increase max_wal_size
 while loading the data, but don't bother increasing
 maintenance_work_mem; rather, you'd do that while
 manually recreating indexes and foreign keys afterwards.
 And don't forget to ANALYZE when you're done; see
 the section called “Updating Planner Statistics”
 and the section called “The Autovacuum Daemon” for more information.

[14]
 You can get the effect of disabling foreign keys by using
 the --disable-triggers option — but realize that
 that eliminates, rather than just postpones, foreign key
 validation, and so it is possible to insert bad data if you use it.

Non-Durable Settings

 Durability is a database feature that guarantees the recording of
 committed transactions even if the server crashes or loses
 power. However, durability adds significant database overhead,
 so if your site does not require such a guarantee,
 PostgreSQL™ can be configured to run
 much faster. The following are configuration changes you can make
 to improve performance in such cases. Except as noted below, durability
 is still guaranteed in case of a crash of the database software;
 only an abrupt operating system crash creates a risk of data loss
 or corruption when these settings are used.

	
 Place the database cluster's data directory in a memory-backed
 file system (i.e., RAM disk). This eliminates all
 database disk I/O, but limits data storage to the amount of
 available memory (and perhaps swap).

	
 Turn off fsync; there is no need to flush
 data to disk.

	
 Turn off synchronous_commit; there might be no
 need to force WAL writes to disk on every
 commit. This setting does risk transaction loss (though not data
 corruption) in case of a crash of the database.

	
 Turn off full_page_writes; there is no need
 to guard against partial page writes.

	
 Increase max_wal_size and checkpoint_timeout; this reduces the frequency
 of checkpoints, but increases the storage requirements of
 /pg_wal.

	
 Create unlogged
 tables to avoid WAL writes, though it
 makes the tables non-crash-safe.

Chapter 15. Parallel Query

 PostgreSQL™ can devise query plans that can leverage
 multiple CPUs in order to answer queries faster. This feature is known
 as parallel query. Many queries cannot benefit from parallel query, either
 due to limitations of the current implementation or because there is no
 imaginable query plan that is any faster than the serial query plan.
 However, for queries that can benefit, the speedup from parallel query
 is often very significant. Many queries can run more than twice as fast
 when using parallel query, and some queries can run four times faster or
 even more. Queries that touch a large amount of data but return only a
 few rows to the user will typically benefit most. This chapter explains
 some details of how parallel query works and in which situations it can be
 used so that users who wish to make use of it can understand what to expect.

How Parallel Query Works

 When the optimizer determines that parallel query is the fastest execution
 strategy for a particular query, it will create a query plan that includes
 a Gather or Gather Merge
 node. Here is a simple example:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
 QUERY PLAN
---​------------------
 Gather (cost=1000.00..217018.43 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..216018.33 rows=1 width=97)
 Filter: (filler ~~ '%x%'::text)
(4 rows)

 In all cases, the Gather or
 Gather Merge node will have exactly one
 child plan, which is the portion of the plan that will be executed in
 parallel. If the Gather or Gather Merge node is
 at the very top of the plan tree, then the entire query will execute in
 parallel. If it is somewhere else in the plan tree, then only the portion
 of the plan below it will run in parallel. In the example above, the
 query accesses only one table, so there is only one plan node other than
 the Gather node itself; since that plan node is a child of the
 Gather node, it will run in parallel.

 Using EXPLAIN, you can see the number of
 workers chosen by the planner. When the Gather node is reached
 during query execution, the process that is implementing the user's
 session will request a number of background
 worker processes equal to the number
 of workers chosen by the planner. The number of background workers that
 the planner will consider using is limited to at most
 max_parallel_workers_per_gather. The total number
 of background workers that can exist at any one time is limited by both
 max_worker_processes and
 max_parallel_workers. Therefore, it is possible for a
 parallel query to run with fewer workers than planned, or even with
 no workers at all. The optimal plan may depend on the number of workers
 that are available, so this can result in poor query performance. If this
 occurrence is frequent, consider increasing
 max_worker_processes and max_parallel_workers
 so that more workers can be run simultaneously or alternatively reducing
 max_parallel_workers_per_gather so that the planner
 requests fewer workers.

 Every background worker process that is successfully started for a given
 parallel query will execute the parallel portion of the plan. The leader
 will also execute that portion of the plan, but it has an additional
 responsibility: it must also read all of the tuples generated by the
 workers. When the parallel portion of the plan generates only a small
 number of tuples, the leader will often behave very much like an additional
 worker, speeding up query execution. Conversely, when the parallel portion
 of the plan generates a large number of tuples, the leader may be almost
 entirely occupied with reading the tuples generated by the workers and
 performing any further processing steps that are required by plan nodes
 above the level of the Gather node or
 Gather Merge node. In such cases, the leader will
 do very little of the work of executing the parallel portion of the plan.

 When the node at the top of the parallel portion of the plan is
 Gather Merge rather than Gather, it indicates that
 each process executing the parallel portion of the plan is producing
 tuples in sorted order, and that the leader is performing an
 order-preserving merge. In contrast, Gather reads tuples
 from the workers in whatever order is convenient, destroying any sort
 order that may have existed.

When Can Parallel Query Be Used?

 There are several settings that can cause the query planner not to
 generate a parallel query plan under any circumstances. In order for
 any parallel query plans whatsoever to be generated, the following
 settings must be configured as indicated.

	
 max_parallel_workers_per_gather must be set to a
 value that is greater than zero. This is a special case of the more
 general principle that no more workers should be used than the number
 configured via max_parallel_workers_per_gather.

 In addition, the system must not be running in single-user mode. Since
 the entire database system is running as a single process in this situation,
 no background workers will be available.

 Even when it is in general possible for parallel query plans to be
 generated, the planner will not generate them for a given query
 if any of the following are true:

	
 The query writes any data or locks any database rows. If a query
 contains a data-modifying operation either at the top level or within
 a CTE, no parallel plans for that query will be generated. As an
 exception, the following commands, which create a new table and populate
 it, can use a parallel plan for the underlying SELECT
 part of the query:

	CREATE TABLE ... AS

	SELECT INTO

	CREATE MATERIALIZED VIEW

	REFRESH MATERIALIZED VIEW

	
 The query might be suspended during execution. In any situation in
 which the system thinks that partial or incremental execution might
 occur, no parallel plan is generated. For example, a cursor created
 using DECLARE CURSOR will never use
 a parallel plan. Similarly, a PL/pgSQL loop of the form
 FOR x IN query LOOP .. END LOOP will never use a
 parallel plan, because the parallel query system is unable to verify
 that the code in the loop is safe to execute while parallel query is
 active.

	
 The query uses any function marked PARALLEL UNSAFE.
 Most system-defined functions are PARALLEL SAFE,
 but user-defined functions are marked PARALLEL
 UNSAFE by default. See the discussion of
 the section called “Parallel Safety”.

	
 The query is running inside of another query that is already parallel.
 For example, if a function called by a parallel query issues an SQL
 query itself, that query will never use a parallel plan. This is a
 limitation of the current implementation, but it may not be desirable
 to remove this limitation, since it could result in a single query
 using a very large number of processes.

 Even when a parallel query plan is generated for a particular query, there
 are several circumstances under which it will be impossible to execute
 that plan in parallel at execution time. If this occurs, the leader
 will execute the portion of the plan below the Gather
 node entirely by itself, almost as if the Gather node were
 not present. This will happen if any of the following conditions are met:

	
 No background workers can be obtained because of the limitation that
 the total number of background workers cannot exceed
 max_worker_processes.

	
 No background workers can be obtained because of the limitation that
 the total number of background workers launched for purposes of
 parallel query cannot exceed max_parallel_workers.

	
 The client sends an Execute message with a non-zero fetch count.
 See the discussion of the
 extended query protocol.
 Since libpq currently provides no way to
 send such a message, this can only occur when using a client that
 does not rely on libpq. If this is a frequent
 occurrence, it may be a good idea to set
 max_parallel_workers_per_gather to zero in
 sessions where it is likely, so as to avoid generating query plans
 that may be suboptimal when run serially.

Parallel Plans

 Because each worker executes the parallel portion of the plan to
 completion, it is not possible to simply take an ordinary query plan
 and run it using multiple workers. Each worker would produce a full
 copy of the output result set, so the query would not run any faster
 than normal but would produce incorrect results. Instead, the parallel
 portion of the plan must be what is known internally to the query
 optimizer as a partial plan; that is, it must be constructed
 so that each process that executes the plan will generate only a
 subset of the output rows in such a way that each required output row
 is guaranteed to be generated by exactly one of the cooperating processes.
 Generally, this means that the scan on the driving table of the query
 must be a parallel-aware scan.

Parallel Scans

 The following types of parallel-aware table scans are currently supported.

	
 In a parallel sequential scan, the table's blocks will
 be divided into ranges and shared among the cooperating processes. Each
 worker process will complete the scanning of its given range of blocks before
 requesting an additional range of blocks.

	
 In a parallel bitmap heap scan, one process is chosen
 as the leader. That process performs a scan of one or more indexes
 and builds a bitmap indicating which table blocks need to be visited.
 These blocks are then divided among the cooperating processes as in
 a parallel sequential scan. In other words, the heap scan is performed
 in parallel, but the underlying index scan is not.

	
 In a parallel index scan or parallel index-only
 scan, the cooperating processes take turns reading data from the
 index. Currently, parallel index scans are supported only for
 btree indexes. Each process will claim a single index block and will
 scan and return all tuples referenced by that block; other processes can
 at the same time be returning tuples from a different index block.
 The results of a parallel btree scan are returned in sorted order
 within each worker process.

 Other scan types, such as scans of non-btree indexes, may support
 parallel scans in the future.

Parallel Joins

 Just as in a non-parallel plan, the driving table may be joined to one or
 more other tables using a nested loop, hash join, or merge join. The
 inner side of the join may be any kind of non-parallel plan that is
 otherwise supported by the planner provided that it is safe to run within
 a parallel worker. Depending on the join type, the inner side may also be
 a parallel plan.

	
 In a nested loop join, the inner side is always
 non-parallel. Although it is executed in full, this is efficient if
 the inner side is an index scan, because the outer tuples and thus
 the loops that look up values in the index are divided over the
 cooperating processes.

	
 In a merge join, the inner side is always
 a non-parallel plan and therefore executed in full. This may be
 inefficient, especially if a sort must be performed, because the work
 and resulting data are duplicated in every cooperating process.

	
 In a hash join (without the "parallel" prefix),
 the inner side is executed in full by every cooperating process
 to build identical copies of the hash table. This may be inefficient
 if the hash table is large or the plan is expensive. In a
 parallel hash join, the inner side is a
 parallel hash that divides the work of building
 a shared hash table over the cooperating processes.

Parallel Aggregation

 PostgreSQL™ supports parallel aggregation by aggregating in
 two stages. First, each process participating in the parallel portion of
 the query performs an aggregation step, producing a partial result for
 each group of which that process is aware. This is reflected in the plan
 as a Partial Aggregate node. Second, the partial results are
 transferred to the leader via Gather or Gather
 Merge. Finally, the leader re-aggregates the results across all
 workers in order to produce the final result. This is reflected in the
 plan as a Finalize Aggregate node.

 Because the Finalize Aggregate node runs on the leader
 process, queries that produce a relatively large number of groups in
 comparison to the number of input rows will appear less favorable to the
 query planner. For example, in the worst-case scenario the number of
 groups seen by the Finalize Aggregate node could be as many as
 the number of input rows that were seen by all worker processes in the
 Partial Aggregate stage. For such cases, there is clearly
 going to be no performance benefit to using parallel aggregation. The
 query planner takes this into account during the planning process and is
 unlikely to choose parallel aggregate in this scenario.

 Parallel aggregation is not supported in all situations. Each aggregate
 must be safe for parallelism and must
 have a combine function. If the aggregate has a transition state of type
 internal, it must have serialization and deserialization
 functions. See CREATE AGGREGATE(7) for more details.
 Parallel aggregation is not supported if any aggregate function call
 contains DISTINCT or ORDER BY clause and is also
 not supported for ordered set aggregates or when the query involves
 GROUPING SETS. It can only be used when all joins involved in
 the query are also part of the parallel portion of the plan.

Parallel Append

 Whenever PostgreSQL™ needs to combine rows
 from multiple sources into a single result set, it uses an
 Append or MergeAppend plan node.
 This commonly happens when implementing UNION ALL or
 when scanning a partitioned table. Such nodes can be used in parallel
 plans just as they can in any other plan. However, in a parallel plan,
 the planner may instead use a Parallel Append node.

 When an Append node is used in a parallel plan, each
 process will execute the child plans in the order in which they appear,
 so that all participating processes cooperate to execute the first child
 plan until it is complete and then move to the second plan at around the
 same time. When a Parallel Append is used instead, the
 executor will instead spread out the participating processes as evenly as
 possible across its child plans, so that multiple child plans are executed
 simultaneously. This avoids contention, and also avoids paying the startup
 cost of a child plan in those processes that never execute it.

 Also, unlike a regular Append node, which can only have
 partial children when used within a parallel plan, a Parallel
 Append node can have both partial and non-partial child plans.
 Non-partial children will be scanned by only a single process, since
 scanning them more than once would produce duplicate results. Plans that
 involve appending multiple results sets can therefore achieve
 coarse-grained parallelism even when efficient partial plans are not
 available. For example, consider a query against a partitioned table
 that can only be implemented efficiently by using an index that does
 not support parallel scans. The planner might choose a Parallel
 Append of regular Index Scan plans; each
 individual index scan would have to be executed to completion by a single
 process, but different scans could be performed at the same time by
 different processes.

 enable_parallel_append can be used to disable
 this feature.

Parallel Plan Tips

 If a query that is expected to do so does not produce a parallel plan,
 you can try reducing parallel_setup_cost or
 parallel_tuple_cost. Of course, this plan may turn
 out to be slower than the serial plan that the planner preferred, but
 this will not always be the case. If you don't get a parallel
 plan even with very small values of these settings (e.g., after setting
 them both to zero), there may be some reason why the query planner is
 unable to generate a parallel plan for your query. See
 the section called “When Can Parallel Query Be Used?” and
 the section called “Parallel Safety” for information on why this may be
 the case.

 When executing a parallel plan, you can use EXPLAIN (ANALYZE,
 VERBOSE) to display per-worker statistics for each plan node.
 This may be useful in determining whether the work is being evenly
 distributed between all plan nodes and more generally in understanding the
 performance characteristics of the plan.

Parallel Safety

 The planner classifies operations involved in a query as either
 parallel safe, parallel restricted,
 or parallel unsafe. A parallel safe operation is one that
 does not conflict with the use of parallel query. A parallel restricted
 operation is one that cannot be performed in a parallel worker, but that
 can be performed in the leader while parallel query is in use. Therefore,
 parallel restricted operations can never occur below a Gather
 or Gather Merge node, but can occur elsewhere in a plan that
 contains such a node. A parallel unsafe operation is one that cannot
 be performed while parallel query is in use, not even in the leader.
 When a query contains anything that is parallel unsafe, parallel query
 is completely disabled for that query.

 The following operations are always parallel restricted:

	
 Scans of common table expressions (CTEs).

	
 Scans of temporary tables.

	
 Scans of foreign tables, unless the foreign data wrapper has
 an IsForeignScanParallelSafe API that indicates otherwise.

	
 Plan nodes to which an InitPlan is attached.

	
 Plan nodes that reference a correlated SubPlan.

Parallel Labeling for Functions and Aggregates

 The planner cannot automatically determine whether a user-defined
 function or aggregate is parallel safe, parallel restricted, or parallel
 unsafe, because this would require predicting every operation that the
 function could possibly perform. In general, this is equivalent to the
 Halting Problem and therefore impossible. Even for simple functions
 where it could conceivably be done, we do not try, since this would be expensive
 and error-prone. Instead, all user-defined functions are assumed to
 be parallel unsafe unless otherwise marked. When using
 CREATE FUNCTION(7) or
 ALTER FUNCTION(7), markings can be set by specifying
 PARALLEL SAFE, PARALLEL RESTRICTED, or
 PARALLEL UNSAFE as appropriate. When using
 CREATE AGGREGATE(7), the
 PARALLEL option can be specified with SAFE,
 RESTRICTED, or UNSAFE as the corresponding value.

 Functions and aggregates must be marked PARALLEL UNSAFE if
 they write to the database, access sequences, change the transaction state
 even temporarily (e.g., a PL/pgSQL function that establishes an
 EXCEPTION block to catch errors), or make persistent changes to
 settings. Similarly, functions must be marked PARALLEL
 RESTRICTED if they access temporary tables, client connection state,
 cursors, prepared statements, or miscellaneous backend-local state that
 the system cannot synchronize across workers. For example,
 setseed and random are parallel restricted for
 this last reason.

 In general, if a function is labeled as being safe when it is restricted or
 unsafe, or if it is labeled as being restricted when it is in fact unsafe,
 it may throw errors or produce wrong answers when used in a parallel query.
 C-language functions could in theory exhibit totally undefined behavior if
 mislabeled, since there is no way for the system to protect itself against
 arbitrary C code, but in most likely cases the result will be no worse than
 for any other function. If in doubt, it is probably best to label functions
 as UNSAFE.

 If a function executed within a parallel worker acquires locks that are
 not held by the leader, for example by querying a table not referenced in
 the query, those locks will be released at worker exit, not end of
 transaction. If you write a function that does this, and this behavior
 difference is important to you, mark such functions as
 PARALLEL RESTRICTED
 to ensure that they execute only in the leader.

 Note that the query planner does not consider deferring the evaluation of
 parallel-restricted functions or aggregates involved in the query in
 order to obtain a superior plan. So, for example, if a WHERE
 clause applied to a particular table is parallel restricted, the query
 planner will not consider performing a scan of that table in the parallel
 portion of a plan. In some cases, it would be
 possible (and perhaps even efficient) to include the scan of that table in
 the parallel portion of the query and defer the evaluation of the
 WHERE clause so that it happens above the Gather
 node. However, the planner does not do this.

Part III. Server Administration

 This part covers topics that are of interest to a
 PostgreSQL™ database administrator. This includes
 installation of the software, set up and configuration of the
 server, management of users and databases, and maintenance tasks.
 Anyone who runs a PostgreSQL™ server, even for
 personal use, but especially in production, should be familiar
 with the topics covered in this part.

 The information in this part is arranged approximately in the
 order in which a new user should read it. But the chapters are
 self-contained and can be read individually as desired. The
 information in this part is presented in a narrative fashion in
 topical units. Readers looking for a complete description of a
 particular command should see Part VI, “Reference”.

 The first few chapters are written so they can be understood
 without prerequisite knowledge, so new users who need to set
 up their own server can begin their exploration with this part.
 The rest of this part is about tuning and management; that material
 assumes that the reader is familiar with the general use of
 the PostgreSQL™ database system. Readers are
 encouraged to look at Part I, “Tutorial” and Part II, “The SQL Language” for additional information.

Chapter 16. Installation from Binaries

 PostgreSQL™ is available in the form of binary
 packages for most common operating systems today. When available, this is
 the recommended way to install PostgreSQL for users of the system. Building
 from source (see Chapter 17, Installation from Source Code) is only recommended for
 people developing PostgreSQL™ or extensions.

 For an updated list of platforms providing binary packages, please visit
 the download section on the PostgreSQL™ website at
 https://www.postgresql.org/download/ and follow the
 instructions for the specific platform.

Chapter 17. Installation from Source Code

 This chapter describes the installation of
 PostgreSQL™ using the source code
 distribution. If you are installing a pre-packaged distribution,
 such as an RPM or Debian package, ignore this chapter
 and see Chapter 16, Installation from Binaries instead.

 If you are building PostgreSQL™ for Microsoft
 Windows, read this chapter if you intend to build with MinGW or Cygwin;
 but if you intend to build with Microsoft's Visual
 C++™, see Chapter 18, Installation from Source Code on Windows™ instead.

Requirements

 In general, a modern Unix-compatible platform should be able to run
 PostgreSQL™.
 The platforms that had received specific testing at the
 time of release are described in the section called “Supported Platforms”
 below.

 The following software packages are required for building
 PostgreSQL™:

	

 GNU make version 3.81 or newer is required; other
 make programs or older GNU make versions will not work.
 (GNU make is sometimes installed under
 the name gmake.) To test for GNU
 make enter:

make --version

	

 Alternatively, PostgreSQL™ can be built using
 Meson. This is currently
 experimental and only works when building from a Git checkout (not from
 a distribution tarball). If you choose to use
 Meson, then you don't need
 GNU make, but the other
 requirements below still apply.

 The minimum required version of Meson is 0.54.

	
 You need an ISO/ANSI C compiler (at least
 C99-compliant). Recent
 versions of GCC™ are recommended, but
 PostgreSQL™ is known to build using a wide variety
 of compilers from different vendors.

	
 tar is required to unpack the source
 distribution, in addition to either
 gzip or bzip2.

	

 The GNU Readline™ library is used by
 default. It allows psql (the
 PostgreSQL command line SQL interpreter) to remember each
 command you type, and allows you to use arrow keys to recall and
 edit previous commands. This is very helpful and is strongly
 recommended. If you don't want to use it then you must specify
 the --without-readline option to
 configure. As an alternative, you can often use the
 BSD-licensed libedit library, originally
 developed on NetBSD™. The
 libedit library is
 GNU Readline™-compatible and is used if
 libreadline is not found, or if
 --with-libedit-preferred is used as an
 option to configure. If you are using a package-based
 Linux distribution, be aware that you need both the
 readline and readline-devel packages, if
 those are separate in your distribution.

	

 The zlib™ compression library is
 used by default. If you don't want to use it then you must
 specify the --without-zlib option to
 configure. Using this option disables
 support for compressed archives in pg_dump and
 pg_restore.

	
 The ICU library is used by default. If you don't want to use it then you must specify the --without-icu option to configure. Using this option disables support for ICU collation features (see the section called “Collation Support”).

 ICU support requires the ICU4C™ package to be
 installed. The minimum required version of
 ICU4C™ is currently 4.2.

 By default,
 pkg-config™
 will be used to find the required compilation options. This is
 supported for ICU4C™ version 4.6 and later.
 For older versions, or if pkg-config™ is not
 available, the variables ICU_CFLAGS and
 ICU_LIBS can be specified to
 configure, like in this example:

./configure ... ICU_CFLAGS='-I/some/where/include' ICU_LIBS='-L/some/where/lib -licui18n -licuuc -licudata'

 (If ICU4C™ is in the default search path
 for the compiler, then you still need to specify nonempty strings in
 order to avoid use of pkg-config™, for
 example, ICU_CFLAGS=' '.)

 The following packages are optional. They are not required in the
 default configuration, but they are needed when certain build
 options are enabled, as explained below:

	
 To build the server programming language
 PL/Perl you need a full
 Perl™ installation, including the
 libperl library and the header files.
 The minimum required version is Perl™ 5.14.
 Since PL/Perl will be a shared
 library, the
 libperl library must be a shared library
 also on most platforms. This appears to be the default in
 recent Perl™ versions, but it was not
 in earlier versions, and in any case it is the choice of whomever
 installed Perl at your site. configure will fail
 if building PL/Perl is selected but it cannot
 find a shared libperl. In that case, you will have
 to rebuild and install Perl™ manually to be
 able to build PL/Perl. During the
 configuration process for Perl™, request a
 shared library.

 If you intend to make more than incidental use of
 PL/Perl, you should ensure that the
 Perl™ installation was built with the
 usemultiplicity option enabled (perl -V
 will show whether this is the case).

	
 To build the PL/Python server programming
 language, you need a Python™
 installation with the header files and
 the sysconfig module. The minimum
 required version is Python™ 3.2.

 Since PL/Python will be a shared
 library, the
 libpython library must be a shared library
 also on most platforms. This is not the case in a default
 Python™ installation built from source, but a
 shared library is available in many operating system
 distributions. configure will fail if
 building PL/Python is selected but it cannot
 find a shared libpython. That might mean that you
 either have to install additional packages or rebuild (part of) your
 Python™ installation to provide this shared
 library. When building from source, run Python™'s
 configure with the --enable-shared flag.

	
 To build the PL/Tcl
 procedural language, you of course need a Tcl™
 installation. The minimum required version is
 Tcl™ 8.4.

	
 To enable Native Language Support (NLS), that
 is, the ability to display a program's messages in a language
 other than English, you need an implementation of the
 Gettext API. Some operating
 systems have this built-in (e.g., Linux, NetBSD,
 Solaris), for other systems you
 can download an add-on package from https://www.gnu.org/software/gettext/.
 If you are using the Gettext implementation in
 the GNU C library, then you will additionally
 need the GNU Gettext™ package for some
 utility programs. For any of the other implementations you will
 not need it.

	
 You need OpenSSL™, if you want to support
 encrypted client connections. OpenSSL™ is
 also required for random number generation on platforms that do not
 have /dev/urandom (except Windows). The minimum
 required version is 1.0.1.

	
 You need MIT Kerberos (for GSSAPI),
 OpenLDAP™, and/or PAM,
 if you want to support authentication using those services.

	
 You need LZ4™, if you want to support
 compression of data with that method; see
 default_toast_compression and
 wal_compression.

	
 You need Zstandard™, if you want to support
 compression of data with that method; see
 wal_compression.
 The minimum required version is 1.4.0.

	
 To build the PostgreSQL™ documentation,
 there is a separate set of requirements; see
 the section called “Tool Sets”.

 If you are building from a Git™ tree instead of
 using a released source package, or if you want to do server development,
 you also need the following packages:

	

 Flex and Bison
 are needed to build from a Git checkout, or if you changed the actual
 scanner and parser definition files. If you need them, be sure
 to get Flex 2.5.35 or later and
 Bison 2.3 or later. Other lex
 and yacc programs cannot be used.

	

 Perl 5.14 or later is needed to build from a Git checkout,
 or if you changed the input files for any of the build steps that
 use Perl scripts. If building on Windows you will need
 Perl in any case. Perl is
 also required to run some test suites.

 If you need to get a GNU package, you can find
 it at your local GNU mirror site (see https://www.gnu.org/prep/ftp
 for a list) or at ftp://ftp.gnu.org/gnu/.

Getting the Source

 The PostgreSQL™ source code for released versions
 can be obtained from the download section of our website:
 https://www.postgresql.org/ftp/source/.
 Download the
 postgresql-version.tar.gz
 or postgresql-version.tar.bz2
 file you're interested in, then unpack it:

tar xf postgresql-version.tar.bz2

 This will create a directory
 postgresql-version under
 the current directory with the PostgreSQL™ sources.
 Change into that directory for the rest of the installation procedure.

 Alternatively, you can use the Git version control system; see
 the section called “Getting the Source via Git™” for more information.

Building and Installation with Autoconf and Make

Short Version

./configure
make
su
make install
adduser postgres
mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

 The long version is the rest of this
 section.

Installation Procedure

	Configuration

 The first step of the installation procedure is to configure the
 source tree for your system and choose the options you would like.
 This is done by running the configure script. For a
 default installation simply enter:

./configure

 This script will run a number of tests to determine values for various
 system dependent variables and detect any quirks of your
 operating system, and finally will create several files in the
 build tree to record what it found.

 You can also run configure in a directory outside
 the source tree, and then build there, if you want to keep the build
 directory separate from the original source files. This procedure is
 called a
 VPATH
 build. Here's how:

mkdir build_dir
cd build_dir
/path/to/source/tree/configure [options go here]
make

 The default configuration will build the server and utilities, as
 well as all client applications and interfaces that require only a
 C compiler. All files will be installed under
 /usr/local/pgsql by default.

 You can customize the build and installation process by supplying one
 or more command line options to configure.
 Typically you would customize the install location, or the set of
 optional features that are built. configure
 has a large number of options, which are described in
 the section called “configure Options”.

 Also, configure responds to certain environment
 variables, as described in the section called “configure Environment Variables”.
 These provide additional ways to customize the configuration.

	Build

 To start the build, type either of:

make
make all

 (Remember to use GNU make.)
 The build will take a few minutes depending on your
 hardware.

 If you want to build everything that can be built, including the
 documentation (HTML and man pages), and the additional modules
 (contrib), type instead:

make world

 If you want to build everything that can be built, including the
 additional modules (contrib), but without
 the documentation, type instead:

make world-bin

 If you want to invoke the build from another makefile rather than
 manually, you must unset MAKELEVEL or set it to zero,
 for instance like this:

build-postgresql:
 $(MAKE) -C postgresql MAKELEVEL=0 all

 Failure to do that can lead to strange error messages, typically about
 missing header files.

	Regression Tests

 If you want to test the newly built server before you install it,
 you can run the regression tests at this point. The regression
 tests are a test suite to verify that PostgreSQL™
 runs on your machine in the way the developers expected it
 to. Type:

make check

 (This won't work as root; do it as an unprivileged user.)
 See Chapter 33, Regression Tests for
 detailed information about interpreting the test results. You can
 repeat this test at any later time by issuing the same command.

	Installing the Files
Note

 If you are upgrading an existing system be sure to read
 the section called “Upgrading a PostgreSQL™ Cluster”,
 which has instructions about upgrading a
 cluster.

 To install PostgreSQL™ enter:

make install

 This will install files into the directories that were specified
 in Step 1. Make sure that you have appropriate
 permissions to write into that area. Normally you need to do this
 step as root. Alternatively, you can create the target
 directories in advance and arrange for appropriate permissions to
 be granted.

 To install the documentation (HTML and man pages), enter:

make install-docs

 If you built the world above, type instead:

make install-world

 This also installs the documentation.

 If you built the world without the documentation above, type instead:

make install-world-bin

 You can use make install-strip instead of
 make install to strip the executable files and
 libraries as they are installed. This will save some space. If
 you built with debugging support, stripping will effectively
 remove the debugging support, so it should only be done if
 debugging is no longer needed. install-strip
 tries to do a reasonable job saving space, but it does not have
 perfect knowledge of how to strip every unneeded byte from an
 executable file, so if you want to save all the disk space you
 possibly can, you will have to do manual work.

 The standard installation provides all the header files needed for client
 application development as well as for server-side program
 development, such as custom functions or data types written in C.

Client-only installation:
 If you want to install only the client applications and
 interface libraries, then you can use these commands:

make -C src/bin install
make -C src/include install
make -C src/interfaces install
make -C doc install

 src/bin has a few binaries for server-only use,
 but they are small.

Uninstallation:
 To undo the installation use the command make
 uninstall. However, this will not remove any created directories.

Cleaning:
 After the installation you can free disk space by removing the built
 files from the source tree with the command make
 clean. This will preserve the files made by the configure
 program, so that you can rebuild everything with make
 later on. To reset the source tree to the state in which it was
 distributed, use make distclean. If you are going to
 build for several platforms within the same source tree you must do
 this and re-configure for each platform. (Alternatively, use
 a separate build tree for each platform, so that the source tree
 remains unmodified.)

 If you perform a build and then discover that your configure
 options were wrong, or if you change anything that configure
 investigates (for example, software upgrades), then it's a good
 idea to do make distclean before reconfiguring and
 rebuilding. Without this, your changes in configuration choices
 might not propagate everywhere they need to.

configure Options

 configure's command line options are explained below.
 This list is not exhaustive (use ./configure --help
 to get one that is). The options not covered here are meant for
 advanced use-cases such as cross-compilation, and are documented in
 the standard Autoconf documentation.

Installation Locations

 These options control where make install will put
 the files. The --prefix option is sufficient for
 most cases. If you have special needs, you can customize the
 installation subdirectories with the other options described in this
 section. Beware however that changing the relative locations of the
 different subdirectories may render the installation non-relocatable,
 meaning you won't be able to move it after installation.
 (The man and doc locations are
 not affected by this restriction.) For relocatable installs, you
 might want to use the --disable-rpath option
 described later.

	--prefix=PREFIX
	
 Install all files under the directory PREFIX
 instead of /usr/local/pgsql. The actual
 files will be installed into various subdirectories; no files
 will ever be installed directly into the
 PREFIX directory.

	--exec-prefix=EXEC-PREFIX
	
 You can install architecture-dependent files under a
 different prefix, EXEC-PREFIX, than what
 PREFIX was set to. This can be useful to
 share architecture-independent files between hosts. If you
 omit this, then EXEC-PREFIX is set equal to
 PREFIX and both architecture-dependent and
 independent files will be installed under the same tree,
 which is probably what you want.

	--bindir=DIRECTORY
	
 Specifies the directory for executable programs. The default
 is EXEC-PREFIX/bin, which
 normally means /usr/local/pgsql/bin.

	--sysconfdir=DIRECTORY
	
 Sets the directory for various configuration files,
 PREFIX/etc by default.

	--libdir=DIRECTORY
	
 Sets the location to install libraries and dynamically loadable
 modules. The default is
 EXEC-PREFIX/lib.

	--includedir=DIRECTORY
	
 Sets the directory for installing C and C++ header files. The
 default is PREFIX/include.

	--datarootdir=DIRECTORY
	
 Sets the root directory for various types of read-only data
 files. This only sets the default for some of the following
 options. The default is
 PREFIX/share.

	--datadir=DIRECTORY
	
 Sets the directory for read-only data files used by the
 installed programs. The default is
 DATAROOTDIR. Note that this has
 nothing to do with where your database files will be placed.

	--localedir=DIRECTORY
	
 Sets the directory for installing locale data, in particular
 message translation catalog files. The default is
 DATAROOTDIR/locale.

	--mandir=DIRECTORY
	
 The man pages that come with PostgreSQL™ will be installed under
 this directory, in their respective
 manx subdirectories.
 The default is DATAROOTDIR/man.

	--docdir=DIRECTORY
	
 Sets the root directory for installing documentation files,
 except “man” pages. This only sets the default for
 the following options. The default value for this option is
 DATAROOTDIR/doc/postgresql.

	--htmldir=DIRECTORY
	
 The HTML-formatted documentation for
 PostgreSQL™ will be installed under
 this directory. The default is
 DATAROOTDIR.

Note

 Care has been taken to make it possible to install
 PostgreSQL™ into shared installation locations
 (such as /usr/local/include) without
 interfering with the namespace of the rest of the system. First,
 the string “/postgresql” is
 automatically appended to datadir,
 sysconfdir, and docdir,
 unless the fully expanded directory name already contains the
 string “postgres” or
 “pgsql”. For example, if you choose
 /usr/local as prefix, the documentation will
 be installed in /usr/local/doc/postgresql,
 but if the prefix is /opt/postgres, then it
 will be in /opt/postgres/doc. The public C
 header files of the client interfaces are installed into
 includedir and are namespace-clean. The
 internal header files and the server header files are installed
 into private directories under includedir. See
 the documentation of each interface for information about how to
 access its header files. Finally, a private subdirectory will
 also be created, if appropriate, under libdir
 for dynamically loadable modules.

PostgreSQL™ Features

 The options described in this section enable building of
 various PostgreSQL™ features that are not
 built by default. Most of these are non-default only because they
 require additional software, as described in
 the section called “Requirements”.

	--enable-nls[=LANGUAGES]
	
 Enables Native Language Support (NLS),
 that is, the ability to display a program's messages in a
 language other than English.
 LANGUAGES is an optional space-separated
 list of codes of the languages that you want supported, for
 example --enable-nls='de fr'. (The intersection
 between your list and the set of actually provided
 translations will be computed automatically.) If you do not
 specify a list, then all available translations are
 installed.

 To use this option, you will need an implementation of the
 Gettext API.

	--with-perl
	
 Build the PL/Perl server-side language.

	--with-python
	
 Build the PL/Python server-side language.

	--with-tcl
	
 Build the PL/Tcl server-side language.

	--with-tclconfig=DIRECTORY
	
 Tcl installs the file tclConfig.sh, which
 contains configuration information needed to build modules
 interfacing to Tcl. This file is normally found automatically
 at a well-known location, but if you want to use a different
 version of Tcl you can specify the directory in which to look
 for tclConfig.sh.

	--with-llvm
	
 Build with support for LLVM™ based
 JIT compilation (see Chapter 32, Just-in-Time Compilation (JIT)). This
 requires the LLVM™ library to be installed.
 The minimum required version of LLVM™ is
 currently 3.9.

 llvm-config
 will be used to find the required compilation options.
 llvm-config, and then
 llvm-config-$major-$minor for all supported
 versions, will be searched for in your PATH. If
 that would not yield the desired program,
 use LLVM_CONFIG to specify a path to the
 correct llvm-config. For example

./configure ... --with-llvm LLVM_CONFIG='/path/to/llvm/bin/llvm-config'

 LLVM™ support requires a compatible
 clang compiler (specified, if necessary, using the
 CLANG environment variable), and a working C++
 compiler (specified, if necessary, using the CXX
 environment variable).

	--with-lz4
	
 Build with LZ4™ compression support.

	--with-zstd
	
 Build with Zstandard™ compression support.

	--with-ssl=LIBRARY

	
 Build with support for SSL (encrypted)
 connections. The only LIBRARY
 supported is openssl. This requires the
 OpenSSL™ package to be installed.
 configure will check for the required
 header files and libraries to make sure that your
 OpenSSL™ installation is sufficient
 before proceeding.

	--with-openssl
	
 Obsolete equivalent of --with-ssl=openssl.

	--with-gssapi
	
 Build with support for GSSAPI authentication. MIT Kerberos is required
 to be installed for GSSAPI. On many systems, the GSSAPI system (a part
 of the MIT Kerberos installation) is not installed in a location
 that is searched by default (e.g., /usr/include,
 /usr/lib), so you must use the options
 --with-includes and --with-libraries in
 addition to this option. configure will check
 for the required header files and libraries to make sure that
 your GSSAPI installation is sufficient before proceeding.

	--with-ldap
	
 Build with LDAP
 support for authentication and connection parameter lookup (see
 the section called “LDAP Lookup of Connection Parameters” and
 the section called “LDAP Authentication” for more information). On Unix,
 this requires the OpenLDAP™ package to be
 installed. On Windows, the default WinLDAP™
 library is used. configure will check for the required
 header files and libraries to make sure that your
 OpenLDAP™ installation is sufficient before
 proceeding.

	--with-pam
	
 Build with PAM
 (Pluggable Authentication Modules) support.

	--with-bsd-auth
	
 Build with BSD Authentication support.
 (The BSD Authentication framework is
 currently only available on OpenBSD.)

	--with-systemd
	
 Build with support
 for systemd
 service notifications. This improves integration if the server
 is started under systemd but has no impact
 otherwise; see the section called “Starting the Database Server” for more
 information. libsystemd and the
 associated header files need to be installed to use this option.

	--with-bonjour
	
 Build with support for Bonjour automatic service discovery.
 This requires Bonjour support in your operating system.
 Recommended on macOS.

	--with-uuid=LIBRARY
	
 Build the uuid-ossp module
 (which provides functions to generate UUIDs), using the specified
 UUID library.
 LIBRARY must be one of:

	
 bsd to use the UUID functions found in FreeBSD
 and some other BSD-derived systems

	
 e2fs to use the UUID library created by
 the e2fsprogs project; this library is present in most
 Linux systems and in macOS, and can be obtained for other
 platforms as well

	
 ossp to use the OSSP UUID library

	--with-ossp-uuid
	
 Obsolete equivalent of --with-uuid=ossp.

	--with-libxml
	
 Build with libxml2, enabling SQL/XML support. Libxml2 version 2.6.23 or
 later is required for this feature.

 To detect the required compiler and linker options, PostgreSQL will
 query pkg-config, if that is installed and knows
 about libxml2. Otherwise the program xml2-config,
 which is installed by libxml2, will be used if it is found. Use
 of pkg-config is preferred, because it can deal
 with multi-architecture installations better.

 To use a libxml2 installation that is in an unusual location, you
 can set pkg-config-related environment
 variables (see its documentation), or set the environment variable
 XML2_CONFIG to point to
 the xml2-config program belonging to the libxml2
 installation, or set the variables XML2_CFLAGS
 and XML2_LIBS. (If pkg-config is
 installed, then to override its idea of where libxml2 is you must
 either set XML2_CONFIG or set
 both XML2_CFLAGS and XML2_LIBS to
 nonempty strings.)

	--with-libxslt
	
 Build with libxslt, enabling the
 xml2
 module to perform XSL transformations of XML.
 --with-libxml must be specified as well.

Anti-Features

 The options described in this section allow disabling
 certain PostgreSQL™ features that are built
 by default, but which might need to be turned off if the required
 software or system features are not available. Using these options is
 not recommended unless really necessary.

	--without-icu
	
 Build without support for the
 ICU™
 library, disabling the use of ICU collation features (see the section called “Collation Support”).

	--without-readline
	
 Prevents use of the Readline library
 (and libedit as well). This option disables
 command-line editing and history in
 psql.

	--with-libedit-preferred
	
 Favors the use of the BSD-licensed libedit library
 rather than GPL-licensed Readline. This option
 is significant only if you have both libraries installed; the
 default in that case is to use Readline.

	--without-zlib
	

 Prevents use of the Zlib library.
 This disables
 support for compressed archives in pg_dump
 and pg_restore.

	--disable-spinlocks
	
 Allow the build to succeed even if PostgreSQL™
 has no CPU spinlock support for the platform. The lack of
 spinlock support will result in very poor performance; therefore,
 this option should only be used if the build aborts and
 informs you that the platform lacks spinlock support. If this
 option is required to build PostgreSQL™ on
 your platform, please report the problem to the
 PostgreSQL™ developers.

	--disable-atomics
	
 Disable use of CPU atomic operations. This option does nothing on
 platforms that lack such operations. On platforms that do have
 them, this will result in poor performance. This option is only
 useful for debugging or making performance comparisons.

	--disable-thread-safety
	
 Disable the thread-safety of client libraries. This prevents
 concurrent threads in libpq and
 ECPG programs from safely controlling
 their private connection handles. Use this only on platforms
 with deficient threading support.

Build Process Details

	--with-includes=DIRECTORIES
	
 DIRECTORIES is a colon-separated list of
 directories that will be added to the list the compiler
 searches for header files. If you have optional packages
 (such as GNU Readline) installed in a non-standard
 location,
 you have to use this option and probably also the corresponding
 --with-libraries option.

 Example: --with-includes=/opt/gnu/include:/usr/sup/include.

	--with-libraries=DIRECTORIES
	
 DIRECTORIES is a colon-separated list of
 directories to search for libraries. You will probably have
 to use this option (and the corresponding
 --with-includes option) if you have packages
 installed in non-standard locations.

 Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.

	--with-system-tzdata=DIRECTORY

	
 PostgreSQL™ includes its own time zone database,
 which it requires for date and time operations. This time zone
 database is in fact compatible with the IANA time zone
 database provided by many operating systems such as FreeBSD,
 Linux, and Solaris, so it would be redundant to install it again.
 When this option is used, the system-supplied time zone database
 in DIRECTORY is used instead of the one
 included in the PostgreSQL source distribution.
 DIRECTORY must be specified as an
 absolute path. /usr/share/zoneinfo is a
 likely directory on some operating systems. Note that the
 installation routine will not detect mismatching or erroneous time
 zone data. If you use this option, you are advised to run the
 regression tests to verify that the time zone data you have
 pointed to works correctly with PostgreSQL™.

 This option is mainly aimed at binary package distributors
 who know their target operating system well. The main
 advantage of using this option is that the PostgreSQL package
 won't need to be upgraded whenever any of the many local
 daylight-saving time rules change. Another advantage is that
 PostgreSQL can be cross-compiled more straightforwardly if the
 time zone database files do not need to be built during the
 installation.

	--with-extra-version=STRING
	
 Append STRING to the PostgreSQL version number. You
 can use this, for example, to mark binaries built from unreleased Git
 snapshots or containing custom patches with an extra version string,
 such as a git describe identifier or a
 distribution package release number.

	--disable-rpath
	
 Do not mark PostgreSQL™'s executables
 to indicate that they should search for shared libraries in the
 installation's library directory (see --libdir).
 On most platforms, this marking uses an absolute path to the
 library directory, so that it will be unhelpful if you relocate
 the installation later. However, you will then need to provide
 some other way for the executables to find the shared libraries.
 Typically this requires configuring the operating system's
 dynamic linker to search the library directory; see
 the section called “Shared Libraries” for more detail.

Miscellaneous

 It's fairly common, particularly for test builds, to adjust the
 default port number with --with-pgport.
 The other options in this section are recommended only for advanced
 users.

	--with-pgport=NUMBER
	
 Set NUMBER as the default port number for
 server and clients. The default is 5432. The port can always
 be changed later on, but if you specify it here then both
 server and clients will have the same default compiled in,
 which can be very convenient. Usually the only good reason
 to select a non-default value is if you intend to run multiple
 PostgreSQL™ servers on the same machine.

	--with-krb-srvnam=NAME
	
 The default name of the Kerberos service principal used
 by GSSAPI.
 postgres is the default. There's usually no
 reason to change this unless you are building for a Windows
 environment, in which case it must be set to upper case
 POSTGRES.

	--with-segsize=SEGSIZE
	
 Set the segment size, in gigabytes. Large tables are
 divided into multiple operating-system files, each of size equal
 to the segment size. This avoids problems with file size limits
 that exist on many platforms. The default segment size, 1 gigabyte,
 is safe on all supported platforms. If your operating system has
 “largefile” support (which most do, nowadays), you can use
 a larger segment size. This can be helpful to reduce the number of
 file descriptors consumed when working with very large tables.
 But be careful not to select a value larger than is supported
 by your platform and the file systems you intend to use. Other
 tools you might wish to use, such as tar, could
 also set limits on the usable file size.
 It is recommended, though not absolutely required, that this value
 be a power of 2.
 Note that changing this value breaks on-disk database compatibility,
 meaning you cannot use pg_upgrade to upgrade to
 a build with a different segment size.

	--with-blocksize=BLOCKSIZE
	
 Set the block size, in kilobytes. This is the unit
 of storage and I/O within tables. The default, 8 kilobytes,
 is suitable for most situations; but other values may be useful
 in special cases.
 The value must be a power of 2 between 1 and 32 (kilobytes).
 Note that changing this value breaks on-disk database compatibility,
 meaning you cannot use pg_upgrade to upgrade to
 a build with a different block size.

	--with-wal-blocksize=BLOCKSIZE
	
 Set the WAL block size, in kilobytes. This is the unit
 of storage and I/O within the WAL log. The default, 8 kilobytes,
 is suitable for most situations; but other values may be useful
 in special cases.
 The value must be a power of 2 between 1 and 64 (kilobytes).
 Note that changing this value breaks on-disk database compatibility,
 meaning you cannot use pg_upgrade to upgrade to
 a build with a different WAL block size.

Developer Options

 Most of the options in this section are only of interest for
 developing or debugging PostgreSQL™.
 They are not recommended for production builds, except
 for --enable-debug, which can be useful to enable
 detailed bug reports in the unlucky event that you encounter a bug.
 On platforms supporting DTrace, --enable-dtrace
 may also be reasonable to use in production.

 When building an installation that will be used to develop code inside
 the server, it is recommended to use at least the
 options --enable-debug
 and --enable-cassert.

	--enable-debug
	
 Compiles all programs and libraries with debugging symbols.
 This means that you can run the programs in a debugger
 to analyze problems. This enlarges the size of the installed
 executables considerably, and on non-GCC compilers it usually
 also disables compiler optimization, causing slowdowns. However,
 having the symbols available is extremely helpful for dealing
 with any problems that might arise. Currently, this option is
 recommended for production installations only if you use GCC.
 But you should always have it on if you are doing development work
 or running a beta version.

	--enable-cassert
	
 Enables assertion checks in the server, which test for
 many “cannot happen” conditions. This is invaluable for
 code development purposes, but the tests can slow down the
 server significantly.
 Also, having the tests turned on won't necessarily enhance the
 stability of your server! The assertion checks are not categorized
 for severity, and so what might be a relatively harmless bug will
 still lead to server restarts if it triggers an assertion
 failure. This option is not recommended for production use, but
 you should have it on for development work or when running a beta
 version.

	--enable-tap-tests
	
 Enable tests using the Perl TAP tools. This requires a Perl
 installation and the Perl module IPC::Run.
 See the section called “TAP Tests” for more information.

	--enable-depend
	
 Enables automatic dependency tracking. With this option, the
 makefiles are set up so that all affected object files will
 be rebuilt when any header file is changed. This is useful
 if you are doing development work, but is just wasted overhead
 if you intend only to compile once and install. At present,
 this option only works with GCC.

	--enable-coverage
	
 If using GCC, all programs and libraries are compiled with
 code coverage testing instrumentation. When run, they
 generate files in the build directory with code coverage
 metrics.
 See the section called “Test Coverage Examination”
 for more information. This option is for use only with GCC
 and when doing development work.

	--enable-profiling
	
 If using GCC, all programs and libraries are compiled so they
 can be profiled. On backend exit, a subdirectory will be created
 that contains the gmon.out file containing
 profile data.
 This option is for use only with GCC and when doing development work.

	--enable-dtrace
	

 Compiles PostgreSQL™ with support for the
 dynamic tracing tool DTrace.
 See the section called “Dynamic Tracing”
 for more information.

 To point to the dtrace program, the
 environment variable DTRACE can be set. This
 will often be necessary because dtrace is
 typically installed under /usr/sbin,
 which might not be in your PATH.

 Extra command-line options for the dtrace program
 can be specified in the environment variable
 DTRACEFLAGS. On Solaris,
 to include DTrace support in a 64-bit binary, you must specify
 DTRACEFLAGS="-64". For example,
 using the GCC compiler:

./configure CC='gcc -m64' --enable-dtrace DTRACEFLAGS='-64' ...

 Using Sun's compiler:

./configure CC='/opt/SUNWspro/bin/cc -xtarget=native64' --enable-dtrace DTRACEFLAGS='-64' ...

	--with-segsize-blocks=SEGSIZE_BLOCKS
	
 Specify the relation segment size in blocks. If both
 --with-segsize and this option are specified, this
 option wins.

 This option is only for developers, to test segment related code.

configure Environment Variables

 In addition to the ordinary command-line options described above,
 configure responds to a number of environment
 variables.
 You can specify environment variables on the
 configure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS='-O2 -pipe'

 In this usage an environment variable is little different from a
 command-line option.
 You can also set such variables beforehand:

export CC=/opt/bin/gcc
export CFLAGS='-O2 -pipe'
./configure

 This usage can be convenient because many programs' configuration
 scripts respond to these variables in similar ways.

 The most commonly used of these environment variables are
 CC and CFLAGS.
 If you prefer a C compiler different from the one
 configure picks, you can set the
 variable CC to the program of your choice.
 By default, configure will pick
 gcc if available, else the platform's
 default (usually cc). Similarly, you can override the
 default compiler flags if needed with the CFLAGS variable.

 Here is a list of the significant variables that can be set in
 this manner:

	BISON
	
 Bison program

	CC
	
 C compiler

	CFLAGS
	
 options to pass to the C compiler

	CLANG
	
 path to clang program used to process source code
 for inlining when compiling with --with-llvm

	CPP
	
 C preprocessor

	CPPFLAGS
	
 options to pass to the C preprocessor

	CXX
	
 C++ compiler

	CXXFLAGS
	
 options to pass to the C++ compiler

	DTRACE
	
 location of the dtrace program

	DTRACEFLAGS
	
 options to pass to the dtrace program

	FLEX
	
 Flex program

	LDFLAGS
	
 options to use when linking either executables or shared libraries

	LDFLAGS_EX
	
 additional options for linking executables only

	LDFLAGS_SL
	
 additional options for linking shared libraries only

	LLVM_CONFIG
	
 llvm-config program used to locate the
 LLVM™ installation

	MSGFMT
	
 msgfmt program for native language support

	PERL
	
 Perl interpreter program. This will be used to determine the
 dependencies for building PL/Perl. The default is
 perl.

	PYTHON
	
 Python interpreter program. This will be used to determine the
 dependencies for building PL/Python. If this is not set, the
 following are probed in this order:
 python3 python.

	TCLSH
	
 Tcl interpreter program. This will be used to
 determine the dependencies for building PL/Tcl.
 If this is not set, the following are probed in this
 order: tclsh tcl tclsh8.6 tclsh86 tclsh8.5 tclsh85
 tclsh8.4 tclsh84.

	XML2_CONFIG
	
 xml2-config program used to locate the
 libxml2 installation

 Sometimes it is useful to add compiler flags after-the-fact to the set
 that were chosen by configure. An important example is
 that gcc's -Werror option cannot be included
 in the CFLAGS passed to configure, because
 it will break many of configure's built-in tests. To add
 such flags, include them in the COPT environment variable
 while running make. The contents of COPT
 are added to both the CFLAGS and LDFLAGS
 options set up by configure. For example, you could do

make COPT='-Werror'

 or

export COPT='-Werror'
make

Note

 If using GCC, it is best to build with an optimization level of
 at least -O1, because using no optimization
 (-O0) disables some important compiler warnings (such
 as the use of uninitialized variables). However, non-zero
 optimization levels can complicate debugging because stepping
 through compiled code will usually not match up one-to-one with
 source code lines. If you get confused while trying to debug
 optimized code, recompile the specific files of interest with
 -O0. An easy way to do this is by passing an option
 to make: make PROFILE=-O0 file.o.

 The COPT and PROFILE environment variables are
 actually handled identically by the PostgreSQL™
 makefiles. Which to use is a matter of preference, but a common habit
 among developers is to use PROFILE for one-time flag
 adjustments, while COPT might be kept set all the time.

Building and Installation with Meson

Short Version

meson setup build --prefix=/usr/local/pgsql
cd build
ninja
su
ninja install
adduser postgres
mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

 The long version is the rest of this
 section.

Installation Procedure

	Configuration

 The first step of the installation procedure is to configure the
 build tree for your system and choose the options you would like. To
 create and configure the build directory, you can start with the
 meson setup command.

meson setup build

 The setup command takes a builddir and a srcdir
 argument. If no srcdir is given, Meson will deduce the
 srcdir based on the current directory and the location
 of meson.build. The builddir is mandatory.

 Running meson setup loads the build configuration file and sets up the build directory.
 Additionally, you can also pass several build options to Meson. Some commonly
 used options are mentioned in the subsequent sections. For example:

configure with a different installation prefix
meson setup build --prefix=/home/user/pg-install

configure to generate a debug build
meson setup build --buildtype=debug

configure to build with OpenSSL support
meson setup build -Dssl=openssl

 Setting up the build directory is a one-time step. To reconfigure before a
 new build, you can simply use the meson configure command

meson configure -Dcassert=true

 meson configure's commonly used command-line options
 are explained in the section called “meson setup Options”.

	Build

 By default, Meson™ uses the Ninja build tool. To build
 PostgreSQL™ from source using Meson, you can
 simply use the ninja command in the build directory.

ninja

 Ninja will automatically detect the number of CPUs in your computer and
 parallelize itself accordingly. You can override the number of parallel
 processes used with the command line argument -j.

 It should be noted that after the initial configure step,
 ninja is the only command you ever need to type to
 compile. No matter how you alter your source tree (short of moving it to a
 completely new location), Meson will detect the changes and regenerate
 itself accordingly. This is especially handy if you have multiple build
 directories. Often one of them is used for development (the "debug" build)
 and others only every now and then (such as a "static analysis" build).
 Any configuration can be built just by cd'ing to the corresponding
 directory and running Ninja.

 If you'd like to build with a backend other than ninja, you can use
 configure with the --backend option to select the one you
 want to use and then build using meson compile. To
 learn more about these backends and other arguments you can provide to
 ninja, you can refer to the
 Meson documentation.

	Regression Tests

 If you want to test the newly built server before you install it,
 you can run the regression tests at this point. The regression
 tests are a test suite to verify that PostgreSQL™
 runs on your machine in the way the developers expected it
 to. Type:

meson test

 (This won't work as root; do it as an unprivileged user.)
 See Chapter 33, Regression Tests for
 detailed information about interpreting the test results. You can
 repeat this test at any later time by issuing the same command.

 To run pg_regress and pg_isolation_regress tests against a running
 postgres instance, specify --setup running as an
 argument to meson test.

	Installing the Files
Note

 If you are upgrading an existing system be sure to read
 the section called “Upgrading a PostgreSQL™ Cluster”,
 which has instructions about upgrading a
 cluster.

 Once PostgreSQL is built, you can install it by simply running the
 ninja install command.

ninja install

 This will install files into the directories that were specified
 in Step 1. Make sure that you have appropriate
 permissions to write into that area. You might need to do this
 step as root. Alternatively, you can create the target directories
 in advance and arrange for appropriate permissions to be granted.
 The standard installation provides all the header files needed for client
 application development as well as for server-side program
 development, such as custom functions or data types written in C.

 ninja install should work for most cases, but if you'd
 like to use more options (such as --quiet to suppress
 extra output), you could also use meson install
 instead. You can learn more about meson install
 and its options in the Meson documentation.

Uninstallation:
 To undo the installation, you can use the ninja
 uninstall command.

Cleaning:
 After the installation, you can free disk space by removing the built
 files from the source tree with the ninja clean
 command.

meson setup Options

 meson setup's command-line options are explained below.
 This list is not exhaustive (use meson configure --help
 to get one that is). The options not covered here are meant for advanced
 use-cases, and are documented in the standard Meson
 documentation. These arguments can be used with meson
 setup as well.

Installation Locations

 These options control where ninja install (or meson install) will put
 the files. The --prefix option (example
 the section called “Short Version”) is sufficient for
 most cases. If you have special needs, you can customize the
 installation subdirectories with the other options described in this
 section. Beware however that changing the relative locations of the
 different subdirectories may render the installation non-relocatable,
 meaning you won't be able to move it after installation.
 (The man and doc locations are
 not affected by this restriction.) For relocatable installs, you
 might want to use the -Drpath=false option
 described later.

	--prefix=PREFIX
	
 Install all files under the directory PREFIX
 instead of /usr/local/pgsql (on Unix based systems) or
 current drive letter:/usr/local/pgsql (on Windows).
 The actual files will be installed into various subdirectories; no files
 will ever be installed directly into the
 PREFIX directory.

	--bindir=DIRECTORY
	
 Specifies the directory for executable programs. The default
 is PREFIX/bin.

	--sysconfdir=DIRECTORY
	
 Sets the directory for various configuration files,
 PREFIX/etc by default.

	--libdir=DIRECTORY
	
 Sets the location to install libraries and dynamically loadable
 modules. The default is
 PREFIX/lib.

	--includedir=DIRECTORY
	
 Sets the directory for installing C and C++ header files. The
 default is PREFIX/include.

	--datadir=DIRECTORY
	
 Sets the directory for read-only data files used by the
 installed programs. The default is
 PREFIX/share. Note that this has
 nothing to do with where your database files will be placed.

	--localedir=DIRECTORY
	
 Sets the directory for installing locale data, in particular
 message translation catalog files. The default is
 DATADIR/locale.

	--mandir=DIRECTORY
	
 The man pages that come with PostgreSQL™ will be installed under
 this directory, in their respective
 manx subdirectories.
 The default is DATADIR/man.

Note

 Care has been taken to make it possible to install
 PostgreSQL™ into shared installation locations
 (such as /usr/local/include) without
 interfering with the namespace of the rest of the system. First,
 the string “/postgresql” is
 automatically appended to datadir,
 sysconfdir, and docdir,
 unless the fully expanded directory name already contains the
 string “postgres” or
 “pgsql”. For example, if you choose
 /usr/local as prefix, the documentation will
 be installed in /usr/local/doc/postgresql,
 but if the prefix is /opt/postgres, then it
 will be in /opt/postgres/doc. The public C
 header files of the client interfaces are installed into
 includedir and are namespace-clean. The
 internal header files and the server header files are installed
 into private directories under includedir. See
 the documentation of each interface for information about how to
 access its header files. Finally, a private subdirectory will
 also be created, if appropriate, under libdir
 for dynamically loadable modules.

PostgreSQL™ Features

 The options described in this section enable building of
 various optional PostgreSQL™ features.
 Most of these require additional software, as described in
 the section called “Requirements”, and will be automatically enabled if the
 required software is found. You can change this behavior by manually
 setting these features to enabled to require them
 or disabled to not build with them.

 To specify PostgreSQL-specific options, the name of the option
 must be prefixed by -D.

	-Dnls={ auto | enabled | disabled }
	
 Enables or disables Native Language Support (NLS),
 that is, the ability to display a program's messages in a language
 other than English. Defaults to auto and will be enabled
 automatically if an implementation of the Gettext
 API is found.

	-Dplperl={ auto | enabled | disabled }
	
 Build the PL/Perl server-side language.
 Defaults to auto.

	-Dplpython={ auto | enabled | disabled }
	
 Build the PL/Python server-side language.
 Defaults to auto.

	-Dpltcl={ auto | enabled | disabled }
	
 Build the PL/Tcl server-side language.
 Defaults to auto.

	-Dtcl_version=TCL_VERSION
	
 Specifies the Tcl version to use when building PL/Tcl.

	-Dicu={ auto | enabled | disabled }
	
 Build with support for the
 ICU™
 library, enabling use of ICU collation features (see the section called “Collation Support”). Defaults to auto and requires the
 ICU4C™ package to be installed. The minimum
 required version of ICU4C™ is currently 4.2.

	-Dllvm={ auto | enabled | disabled }
	
 Build with support for LLVM™ based
 JIT compilation (see Chapter 32, Just-in-Time Compilation (JIT)).
 This requires the LLVM™ library to be
 installed. The minimum required version of
 LLVM™ is currently 3.9. Disabled by
 default.

 llvm-config
 will be used to find the required compilation options.
 llvm-config, and then
 llvm-config-$version for all supported versions,
 will be searched for in your PATH. If that would not
 yield the desired program, use LLVM_CONFIG to specify a
 path to the correct llvm-config.

	-Dlz4={ auto | enabled | disabled }
	
 Build with LZ4™ compression support.
 Defaults to auto.

	-Dzstd={ auto | enabled | disabled }
	
 Build with Zstandard™ compression support.
 Defaults to auto.

	-Dssl={ auto | LIBRARY }

	
 Build with support for SSL (encrypted) connections.
 The only LIBRARY supported is
 openssl. This requires the
 OpenSSL™ package to be installed. Building
 with this will check for the required header files and libraries to
 make sure that your OpenSSL™ installation is
 sufficient before proceeding. The default for this option is auto.

	-Dgssapi={ auto | enabled | disabled }
	
 Build with support for GSSAPI authentication. MIT Kerberos is required
 to be installed for GSSAPI. On many systems, the GSSAPI system (a part
 of the MIT Kerberos installation) is not installed in a location
 that is searched by default (e.g., /usr/include,
 /usr/lib). In
 those cases, PostgreSQL will query pkg-config to
 detect the required compiler and linker options. Defaults to auto.
 meson configure will check for the required
 header files and libraries to make sure that your GSSAPI installation
 is sufficient before proceeding.

	-Dldap={ auto | enabled | disabled }
	
 Build with
 LDAP
 support for authentication and connection parameter lookup (see
 the section called “LDAP Lookup of Connection Parameters” and
 the section called “LDAP Authentication” for more information). On Unix,
 this requires the OpenLDAP™ package to be
 installed. On Windows, the default WinLDAP™
 library is used. Defaults to auto. meson
 configure will check for the required header files and
 libraries to make sure that your OpenLDAP™
 installation is sufficient before proceeding.

	-Dpam={ auto | enabled | disabled }
	
 Build with
 PAM
 (Pluggable Authentication Modules) support. Defaults to auto.

	-Dbsd_auth={ auto | enabled | disabled }
	
 Build with BSD Authentication support. (The BSD Authentication
 framework is currently only available on OpenBSD.) Defaults to auto.

	-Dsystemd={ auto | enabled | disabled }
	
 Build with support for
 systemd
 service notifications. This improves integration if the server is
 started under systemd but has no impact
 otherwise; see the section called “Starting the Database Server” for more information. Defaults to
 auto. libsystemd and the associated header
 files need to be installed to use this option.

	-Dbonjour={ auto | enabled | disabled }
	
 Build with support for Bonjour automatic service discovery. Defaults
 to auto and requires Bonjour support in your operating system.
 Recommended on macOS.

	-Duuid=LIBRARY
	
 Build the uuid-ossp module
 (which provides functions to generate UUIDs), using the specified
 UUID library.
 LIBRARY must be one of:

	
 none to not build the uuid module. This is the default.

	
 bsd to use the UUID functions found in FreeBSD,
 and some other BSD-derived systems

	
 e2fs to use the UUID library created by
 the e2fsprogs project; this library is present in most
 Linux systems and in macOS, and can be obtained for other
 platforms as well

	
 ossp to use the OSSP UUID library

	-Dlibxml={ auto | enabled | disabled }
	
 Build with libxml2, enabling SQL/XML support. Defaults to
 auto. Libxml2 version 2.6.23 or later is required for this feature.

 To use a libxml2 installation that is in an unusual location, you
 can set pkg-config-related environment
 variables (see its documentation).

	-Dlibxslt={ auto | enabled | disabled }
	
 Build with libxslt, enabling the
 xml2
 module to perform XSL transformations of XML.
 -Dlibxml must be specified as well. Defaults to
 auto.

Anti-Features

	-Dreadline={ auto | enabled | disabled }
	
 Allows use of the Readline library (and
 libedit as well). This option defaults to
 auto and enables command-line editing and history in
 psql and is strongly recommended.

	-Dlibedit_preferred={ true | false }
	
 Setting this to true favors the use of the BSD-licensed
 libedit library rather than GPL-licensed
 Readline. This option is significant only
 if you have both libraries installed; the default is false, that is to
 use Readline.

	-Dzlib={ auto | enabled | disabled }
	

 Enables use of the Zlib library.
 It defaults to auto and enables
 support for compressed archives in pg_dump,
 pg_restore and pg_basebackup and is recommended.

	-Dspinlocks={ true | false }
	
 This option is set to true by default; setting it to false will
 allow the build to succeed even if PostgreSQL™
 has no CPU spinlock support for the platform. The lack of
 spinlock support will result in very poor performance; therefore,
 this option should only be changed if the build aborts and
 informs you that the platform lacks spinlock support. If setting this
 option to false is required to build PostgreSQL™ on
 your platform, please report the problem to the
 PostgreSQL™ developers.

	-Datomics={ true | false }
	
 This option is set to true by default; setting it to false will
 disable use of CPU atomic operations. The option does nothing on
 platforms that lack such operations. On platforms that do have
 them, disabling atomics will result in poor performance. Changing
 this option is only useful for debugging or making performance comparisons.

Build Process Details

	--auto-features={ auto | enabled | disabled }
	
 Setting this option allows you to override the value of all
 “auto” features (features that are enabled automatically
 if the required software is found). This can be useful when you want
 to disable or enable all the “optional” features at once
 without having to set each of them manually. The default value for
 this parameter is auto.

	--backend=BACKEND
	
 The default backend Meson uses is ninja and that should suffice for
 most use cases. However, if you'd like to fully integrate with Visual
 Studio, you can set the BACKEND to
 vs.

	-Dc_args=OPTIONS
	
 This option can be used to pass extra options to the C compiler.

	-Dc_link_args=OPTIONS
	
 This option can be used to pass extra options to the C linker.

	-Dextra_include_dirs=DIRECTORIES
	
 DIRECTORIES is a comma-separated list of
 directories that will be added to the list the compiler searches for
 header files. If you have optional packages (such as GNU
 Readline) installed in a non-standard
 location, you have to use this option and probably also the
 corresponding -Dextra_lib_dirs option.

 Example: -Dextra_include_dirs=/opt/gnu/include,/usr/sup/include.

	-Dextra_lib_dirs=DIRECTORIES
	
 DIRECTORIES is a comma-separated list of
 directories to search for libraries. You will probably have to use
 this option (and the corresponding
 -Dextra_include_dirs option) if you have packages
 installed in non-standard locations.

 Example: -Dextra_lib_dirs=/opt/gnu/lib,/usr/sup/lib.

	-Dsystem_tzdata=DIRECTORY

	
 PostgreSQL™ includes its own time zone
 database, which it requires for date and time operations. This time
 zone database is in fact compatible with the IANA time zone database
 provided by many operating systems such as FreeBSD, Linux, and
 Solaris, so it would be redundant to install it again. When this
 option is used, the system-supplied time zone database in
 DIRECTORY is used instead of the one
 included in the PostgreSQL source distribution.
 DIRECTORY must be specified as an absolute
 path. /usr/share/zoneinfo is a likely directory
 on some operating systems. Note that the installation routine will
 not detect mismatching or erroneous time zone data. If you use this
 option, you are advised to run the regression tests to verify that the
 time zone data you have pointed to works correctly with
 PostgreSQL™.

 This option is mainly aimed at binary package distributors who know
 their target operating system well. The main advantage of using this
 option is that the PostgreSQL package won't need to be upgraded
 whenever any of the many local daylight-saving time rules change.
 Another advantage is that PostgreSQL can be cross-compiled more
 straightforwardly if the time zone database files do not need to be
 built during the installation.

	-Dextra_version=STRING
	
 Append STRING to the PostgreSQL version
 number. You can use this, for example, to mark binaries built from
 unreleased Git™ snapshots or containing
 custom patches with an extra version string, such as a git
 describe identifier or a distribution package release
 number.

	-Drpath={ true | false }
	
 This option is set to true by default. If set to false,
 do not mark PostgreSQL™'s executables
 to indicate that they should search for shared libraries in the
 installation's library directory (see --libdir).
 On most platforms, this marking uses an absolute path to the
 library directory, so that it will be unhelpful if you relocate
 the installation later. However, you will then need to provide
 some other way for the executables to find the shared libraries.
 Typically this requires configuring the operating system's
 dynamic linker to search the library directory; see
 the section called “Shared Libraries” for more detail.

	-DBINARY_NAME=PATH
	
 If a program required to build PostgreSQL (with or without optional
 flags) is stored at a non-standard path, you can specify it manually
 to meson configure. The complete list of programs
 for which this is supported can be found by running meson
 configure. Example:

meson configure -DBISON=PATH_TO_BISON

Documentation

 See the section called “Tool Sets” for the tools needed for building
 the documentation.

	-Ddocs={ auto | enabled | disabled }
	
 Enables building the documentation in HTML and
 man format. It defaults to auto.

	-Ddocs_pdf={ auto | enabled | disabled }
	
 Enables building the documentation in PDF
 format. It defaults to auto.

	-Ddocs_html_style={ simple | website }
	
 Controls which CSS stylesheet is used. The default
 is simple. If set to website,
 the HTML documentation will reference the stylesheet for postgresql.org.

Miscellaneous

	-Dpgport=NUMBER
	
 Set NUMBER as the default port number for
 server and clients. The default is 5432. The port can always
 be changed later on, but if you specify it here then both
 server and clients will have the same default compiled in,
 which can be very convenient. Usually the only good reason
 to select a non-default value is if you intend to run multiple
 PostgreSQL™ servers on the same machine.

	-Dkrb_srvnam=NAME
	
 The default name of the Kerberos service principal used
 by GSSAPI.
 postgres is the default. There's usually no
 reason to change this unless you are building for a Windows
 environment, in which case it must be set to upper case
 POSTGRES.

	-Dsegsize=SEGSIZE
	
 Set the segment size, in gigabytes. Large tables are
 divided into multiple operating-system files, each of size equal
 to the segment size. This avoids problems with file size limits
 that exist on many platforms. The default segment size, 1 gigabyte,
 is safe on all supported platforms. If your operating system has
 “largefile” support (which most do, nowadays), you can use
 a larger segment size. This can be helpful to reduce the number of
 file descriptors consumed when working with very large tables.
 But be careful not to select a value larger than is supported
 by your platform and the file systems you intend to use. Other
 tools you might wish to use, such as tar, could
 also set limits on the usable file size.
 It is recommended, though not absolutely required, that this value
 be a power of 2.

	-Dblocksize=BLOCKSIZE
	
 Set the block size, in kilobytes. This is the unit
 of storage and I/O within tables. The default, 8 kilobytes,
 is suitable for most situations; but other values may be useful
 in special cases.
 The value must be a power of 2 between 1 and 32 (kilobytes).

	-Dwal_blocksize=BLOCKSIZE
	
 Set the WAL block size, in kilobytes. This is the unit
 of storage and I/O within the WAL log. The default, 8 kilobytes,
 is suitable for most situations; but other values may be useful
 in special cases.
 The value must be a power of 2 between 1 and 64 (kilobytes).

Developer Options

 Most of the options in this section are only of interest for
 developing or debugging PostgreSQL™.
 They are not recommended for production builds, except
 for --debug, which can be useful to enable
 detailed bug reports in the unlucky event that you encounter a bug.
 On platforms supporting DTrace, -Ddtrace
 may also be reasonable to use in production.

 When building an installation that will be used to develop code inside
 the server, it is recommended to use at least the --buildtype=debug
 and -Dcassert options.

	--buildtype=BUILDTYPE
	
 This option can be used to specify the buildtype to use; defaults to
 debugoptimized. If you'd like finer control on the debug
 symbols and optimization levels than what this option provides, you
 can refer to the --debug and
 --optimization flags.

 The following build types are generally used: plain,
 debug, debugoptimized and
 release. More information about them can be found in
 the Meson
 documentation.

	--debug
	
 Compiles all programs and libraries with debugging symbols. This
 means that you can run the programs in a debugger to analyze
 problems. This enlarges the size of the installed executables
 considerably, and on non-GCC compilers it usually also disables
 compiler optimization, causing slowdowns. However, having the symbols
 available is extremely helpful for dealing with any problems that
 might arise. Currently, this option is recommended for production
 installations only if you use GCC. But you should always have it on
 if you are doing development work or running a beta version.

	--optimization=LEVEL
	
 Specify the optimization level. LEVEL can be set to any of {0,g,1,2,3,s}.

	--werror
	
 Setting this option asks the compiler to treat warnings as
 errors. This can be useful for code development.

	-Dcassert={ true | false }
	
 Enables assertion checks in the server, which
 test for many “cannot happen” conditions. This is
 invaluable for code development purposes, but the tests slow down the
 server significantly. Also, having the tests turned on won't
 necessarily enhance the stability of your server! The assertion
 checks are not categorized for severity, and so what might be a
 relatively harmless bug will still lead to server restarts if it
 triggers an assertion failure. This option is not recommended for
 production use, but you should have it on for development work or when
 running a beta version.

	-Dtap_tests={ auto | enabled | disabled }
	
 Enable tests using the Perl TAP tools. Defaults to auto and requires
 a Perl installation and the Perl module IPC::Run.
 See the section called “TAP Tests” for more information.

	-DPG_TEST_EXTRA=TEST_SUITES
	
 Enable test suites which require special software to run. This option
 accepts arguments via a whitespace-separated list. See the section called “Additional Test Suites” for details.

	-Db_coverage={ true | false }
	
 If using GCC, all programs and libraries are compiled with
 code coverage testing instrumentation. When run, they
 generate files in the build directory with code coverage
 metrics.
 See the section called “Test Coverage Examination”
 for more information. This option is for use only with GCC
 and when doing development work.

	-Ddtrace={ auto | enabled | disabled }
	

 Enabling this compiles PostgreSQL™ with support for the
 dynamic tracing tool DTrace.
 See the section called “Dynamic Tracing”
 for more information.

 To point to the dtrace program, the
 DTRACE option can be set. This
 will often be necessary because dtrace is
 typically installed under /usr/sbin,
 which might not be in your PATH.

	-Dsegsize_blocks=SEGSIZE_BLOCKS
	
 Specify the relation segment size in blocks. If both
 -Dsegsize and this option are specified, this option
 wins.

 This option is only for developers, to test segment related code.

Post-Installation Setup

Shared Libraries

 On some systems with shared libraries
 you need to tell the system how to find the newly installed
 shared libraries. The systems on which this is
 not necessary include
 FreeBSD,
 Linux,
 NetBSD, OpenBSD, and
 Solaris.

 The method to set the shared library search path varies between
 platforms, but the most widely-used method is to set the
 environment variable LD_LIBRARY_PATH like so: In Bourne
 shells (sh, ksh, bash, zsh):

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

 or in csh or tcsh:

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

 Replace /usr/local/pgsql/lib with whatever you set
 --libdir to in Step 1.
 You should put these commands into a shell start-up file such as
 /etc/profile or ~/.bash_profile. Some
 good information about the caveats associated with this method can
 be found at http://xahlee.info/UnixResource_dir/_/ldpath.html.

 On some systems it might be preferable to set the environment
 variable LD_RUN_PATH before
 building.

 On Cygwin, put the library
 directory in the PATH or move the
 .dll files into the bin
 directory.

 If in doubt, refer to the manual pages of your system (perhaps
 ld.so or rld). If you later
 get a message like:

psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or directory

 then this step was necessary. Simply take care of it then.

 If you are on Linux and you have root
 access, you can run:

/sbin/ldconfig /usr/local/pgsql/lib

 (or equivalent directory) after installation to enable the
 run-time linker to find the shared libraries faster. Refer to the
 manual page of ldconfig for more information. On
 FreeBSD, NetBSD, and OpenBSD the command is:

/sbin/ldconfig -m /usr/local/pgsql/lib

 instead. Other systems are not known to have an equivalent
 command.

Environment Variables

 If you installed into /usr/local/pgsql or some other
 location that is not searched for programs by default, you should
 add /usr/local/pgsql/bin (or whatever you set
 --bindir to in Step 1)
 into your PATH. Strictly speaking, this is not
 necessary, but it will make the use of PostgreSQL™
 much more convenient.

 To do this, add the following to your shell start-up file, such as
 ~/.bash_profile (or /etc/profile, if you
 want it to affect all users):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

 If you are using csh or tcsh, then use this command:

set path = (/usr/local/pgsql/bin $path)

 To enable your system to find the man
 documentation, you need to add lines like the following to a
 shell start-up file unless you installed into a location that is
 searched by default:

MANPATH=/usr/local/pgsql/share/man:$MANPATH
export MANPATH

 The environment variables PGHOST and PGPORT
 specify to client applications the host and port of the database
 server, overriding the compiled-in defaults. If you are going to
 run client applications remotely then it is convenient if every
 user that plans to use the database sets PGHOST. This
 is not required, however; the settings can be communicated via command
 line options to most client programs.

Supported Platforms

 A platform (that is, a CPU architecture and operating system combination)
 is considered supported by the PostgreSQL™ development
 community if the code contains provisions to work on that platform and
 it has recently been verified to build and pass its regression tests
 on that platform. Currently, most testing of platform compatibility
 is done automatically by test machines in the
 PostgreSQL Build Farm.
 If you are interested in using PostgreSQL™ on a platform
 that is not represented in the build farm, but on which the code works
 or can be made to work, you are strongly encouraged to set up a build
 farm member machine so that continued compatibility can be assured.

 In general, PostgreSQL™ can be expected to work on
 these CPU architectures: x86, PowerPC, S/390, SPARC, ARM, MIPS, RISC-V,
 and PA-RISC, including
 big-endian, little-endian, 32-bit, and 64-bit variants where applicable.
 It is often
 possible to build on an unsupported CPU type by configuring with
 --disable-spinlocks, but performance will be poor.

 PostgreSQL™ can be expected to work on current
 versions of these operating systems: Linux, Windows,
 FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, macOS, AIX, Solaris, and illumos.
 Other Unix-like systems may also work but are not currently
 being tested. In most cases, all CPU architectures supported by
 a given operating system will work. Look in
 the section called “Platform-Specific Notes” below to see if
 there is information
 specific to your operating system, particularly if using an older system.

 If you have installation problems on a platform that is known
 to be supported according to recent build farm results, please report
 it to <pgsql-bugs@lists.postgresql.org>. If you are interested
 in porting PostgreSQL™ to a new platform,
 <pgsql-hackers@lists.postgresql.org> is the appropriate place
 to discuss that.

 Historical versions of PostgreSQL™ or POSTGRES
 also ran on CPU architectures including Alpha, Itanium, M32R, M68K,
 M88K, NS32K, SuperH, and VAX, and operating systems including 4.3BSD, BEOS,
 BSD/OS, DG/UX, Dynix, HP-UX, IRIX, NeXTSTEP, QNX, SCO, SINIX, Sprite, SunOS,
 Tru64 UNIX, and ULTRIX.

Platform-Specific Notes

 This section documents additional platform-specific issues
 regarding the installation and setup of PostgreSQL. Be sure to
 read the installation instructions, and in
 particular the section called “Requirements” as well. Also,
 check Chapter 33, Regression Tests regarding the
 interpretation of regression test results.

 Platforms that are not covered here have no known platform-specific
 installation issues.

AIX

 You can use GCC or the native IBM compiler xlc
 to build PostgreSQL™
 on AIX™.

 AIX™ versions before 7.1 are no longer
 tested nor supported by the PostgreSQL™
 community.

Memory Management

 AIX can be somewhat peculiar with regards to the way it does
 memory management. You can have a server with many multiples of
 gigabytes of RAM free, but still get out of memory or address
 space errors when running applications. One example
 is loading of extensions failing with unusual errors.
 For example, running as the owner of the PostgreSQL installation:

=# CREATE EXTENSION plperl;
ERROR: could not load library "/opt/dbs/pgsql/lib/plperl.so": A memory address is not in the address space for the process.

 Running as a non-owner in the group possessing the PostgreSQL
 installation:

=# CREATE EXTENSION plperl;
ERROR: could not load library "/opt/dbs/pgsql/lib/plperl.so": Bad address

 Another example is out of memory errors in the PostgreSQL server
 logs, with every memory allocation near or greater than 256 MB
 failing.

 The overall cause of all these problems is the default bittedness
 and memory model used by the server process. By default, all
 binaries built on AIX are 32-bit. This does not depend upon
 hardware type or kernel in use. These 32-bit processes are
 limited to 4 GB of memory laid out in 256 MB segments using one
 of a few models. The default allows for less than 256 MB in the
 heap as it shares a single segment with the stack.

 In the case of the plperl example, above,
 check your umask and the permissions of the binaries in your
 PostgreSQL installation. The binaries involved in that example
 were 32-bit and installed as mode 750 instead of 755. Due to the
 permissions being set in this fashion, only the owner or a member
 of the possessing group can load the library. Since it isn't
 world-readable, the loader places the object into the process'
 heap instead of the shared library segments where it would
 otherwise be placed.

 The “ideal” solution for this is to use a 64-bit
 build of PostgreSQL, but that is not always practical, because
 systems with 32-bit processors can build, but not run, 64-bit
 binaries.

 If a 32-bit binary is desired, set LDR_CNTRL to
 MAXDATA=0xn0000000,
 where 1 <= n <= 8, before starting the PostgreSQL server,
 and try different values and postgresql.conf
 settings to find a configuration that works satisfactorily. This
 use of LDR_CNTRL tells AIX that you want the
 server to have MAXDATA bytes set aside for the
 heap, allocated in 256 MB segments. When you find a workable
 configuration,
 ldedit can be used to modify the binaries so
 that they default to using the desired heap size. PostgreSQL can
 also be rebuilt, passing configure
 LDFLAGS="-Wl,-bmaxdata:0xn0000000"
 to achieve the same effect.

 For a 64-bit build, set OBJECT_MODE to 64 and
 pass CC="gcc -maix64"
 and LDFLAGS="-Wl,-bbigtoc"
 to configure. (Options for
 xlc might differ.) If you omit the export of
 OBJECT_MODE, your build may fail with linker errors. When
 OBJECT_MODE is set, it tells AIX's build utilities
 such as ar, as, and ld what
 type of objects to default to handling.

 By default, overcommit of paging space can happen. While we have
 not seen this occur, AIX will kill processes when it runs out of
 memory and the overcommit is accessed. The closest to this that
 we have seen is fork failing because the system decided that
 there was not enough memory for another process. Like many other
 parts of AIX, the paging space allocation method and
 out-of-memory kill is configurable on a system- or process-wide
 basis if this becomes a problem.

Cygwin

 PostgreSQL can be built using Cygwin, a Linux-like environment for
 Windows, but that method is inferior to the native Windows build
 (see Chapter 18, Installation from Source Code on Windows™) and
 running a server under Cygwin is no longer recommended.

 When building from source, proceed according to the Unix-style
 installation procedure (i.e., ./configure;
 make; etc.), noting the following Cygwin-specific
 differences:

	
 Set your path to use the Cygwin bin directory before the
 Windows utilities. This will help prevent problems with
 compilation.

	
 The adduser command is not supported; use
 the appropriate user management application on Windows.
 Otherwise, skip this step.

	
 The su command is not supported; use ssh to
 simulate su on Windows. Otherwise, skip this step.

	
 OpenSSL™ is not supported.

	
 Start cygserver for shared memory support.
 To do this, enter the command /usr/sbin/cygserver
 &. This program needs to be running anytime you
 start the PostgreSQL server or initialize a database cluster
 (initdb). The
 default cygserver configuration may need to
 be changed (e.g., increase SEMMNS) to prevent
 PostgreSQL from failing due to a lack of system resources.

	
 Building might fail on some systems where a locale other than
 C is in use. To fix this, set the locale to C by doing
 export LANG=C.utf8 before building, and then
 setting it back to the previous setting after you have installed
 PostgreSQL.

	
 The parallel regression tests (make check)
 can generate spurious regression test failures due to
 overflowing the listen() backlog queue
 which causes connection refused errors or hangs. You can limit
 the number of connections using the make
 variable MAX_CONNECTIONS thus:

make MAX_CONNECTIONS=5 check

 (On some systems you can have up to about 10 simultaneous
 connections.)

 It is possible to install cygserver and the
 PostgreSQL server as Windows NT services. For information on how
 to do this, please refer to the README
 document included with the PostgreSQL binary package on Cygwin.
 It is installed in the
 directory /usr/share/doc/Cygwin.

macOS

 To build PostgreSQL™ from source
 on macOS™, you will need to install Apple's
 command line developer tools, which can be done by issuing

xcode-select --install

 (note that this will pop up a GUI dialog window for confirmation).
 You may or may not wish to also install Xcode.

 On recent macOS™ releases, it's necessary to
 embed the “sysroot” path in the include switches used to
 find some system header files. This results in the outputs of
 the configure script varying depending on
 which SDK version was used during configure.
 That shouldn't pose any problem in simple scenarios, but if you are
 trying to do something like building an extension on a different machine
 than the server code was built on, you may need to force use of a
 different sysroot path. To do that, set PG_SYSROOT,
 for example

make PG_SYSROOT=/desired/path all

 To find out the appropriate path on your machine, run

xcrun --show-sdk-path

 Note that building an extension using a different sysroot version than
 was used to build the core server is not really recommended; in the
 worst case it could result in hard-to-debug ABI inconsistencies.

 You can also select a non-default sysroot path when configuring, by
 specifying PG_SYSROOT
 to configure:

./configure ... PG_SYSROOT=/desired/path

 This would primarily be useful to cross-compile for some other
 macOS version. There is no guarantee that the resulting executables
 will run on the current host.

 To suppress the -isysroot options altogether, use

./configure ... PG_SYSROOT=none

 (any nonexistent pathname will work). This might be useful if you wish
 to build with a non-Apple compiler, but beware that that case is not
 tested or supported by the PostgreSQL developers.

 macOS™'s “System Integrity
 Protection” (SIP) feature breaks make check,
 because it prevents passing the needed setting
 of DYLD_LIBRARY_PATH down to the executables being
 tested. You can work around that by doing make
 install before make check.
 Most PostgreSQL developers just turn off SIP, though.

MinGW/Native Windows

 PostgreSQL for Windows can be built using MinGW, a Unix-like build
 environment for Microsoft operating systems, or using
 Microsoft's Visual C++™ compiler suite.
 The MinGW build procedure uses the normal build system described in
 this chapter; the Visual C++ build works completely differently
 and is described in Chapter 18, Installation from Source Code on Windows™.

 The native Windows port requires a 32 or 64-bit version of Windows
 2000 or later. Earlier operating systems do
 not have sufficient infrastructure (but Cygwin may be used on
 those). MinGW, the Unix-like build tools, and MSYS, a collection
 of Unix tools required to run shell scripts
 like configure, can be downloaded
 from http://www.mingw.org/. Neither is
 required to run the resulting binaries; they are needed only for
 creating the binaries.

 To build 64 bit binaries using MinGW, install the 64 bit tool set
 from https://mingw-w64.org/, put its bin
 directory in the PATH, and run
 configure with the
 --host=x86_64-w64-mingw32 option.

 After you have everything installed, it is suggested that you
 run psql
 under CMD.EXE, as the MSYS console has
 buffering issues.

Collecting Crash Dumps on Windows

 If PostgreSQL on Windows crashes, it has the ability to generate
 minidumps™ that can be used to track down the cause
 for the crash, similar to core dumps on Unix. These dumps can be
 read using the Windows Debugger Tools™ or using
 Visual Studio™. To enable the generation of dumps
 on Windows, create a subdirectory named crashdumps
 inside the cluster data directory. The dumps will then be written
 into this directory with a unique name based on the identifier of
 the crashing process and the current time of the crash.

Solaris

 PostgreSQL is well-supported on Solaris. The more up to date your
 operating system, the fewer issues you will experience.

Required Tools

 You can build with either GCC or Sun's compiler suite. For
 better code optimization, Sun's compiler is strongly recommended
 on the SPARC architecture. If
 you are using Sun's compiler, be careful not to select
 /usr/ucb/cc;
 use /opt/SUNWspro/bin/cc.

 You can download Sun Studio
 from https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/.
 Many GNU tools are integrated into Solaris 10, or they are
 present on the Solaris companion CD. If you need packages for
 older versions of Solaris, you can find these tools
 at http://www.sunfreeware.com.
 If you prefer
 sources, look
 at https://www.gnu.org/prep/ftp.

configure Complains About a Failed Test Program

 If configure complains about a failed test
 program, this is probably a case of the run-time linker being
 unable to find some library, probably libz, libreadline or some
 other non-standard library such as libssl. To point it to the
 right location, set the LDFLAGS environment
 variable on the configure command line, e.g.,

configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"

 See
 the ld(1)
 man page for more information.

Compiling for Optimal Performance

 On the SPARC architecture, Sun Studio is strongly recommended for
 compilation. Try using the -xO5 optimization
 flag to generate significantly faster binaries. Do not use any
 flags that modify behavior of floating-point operations
 and errno processing (e.g.,
 -fast).

 If you do not have a reason to use 64-bit binaries on SPARC,
 prefer the 32-bit version. The 64-bit operations are slower and
 64-bit binaries are slower than the 32-bit variants. On the
 other hand, 32-bit code on the AMD64 CPU family is not native,
 so 32-bit code is significantly slower on that CPU family.

Using DTrace for Tracing PostgreSQL

 Yes, using DTrace is possible. See the section called “Dynamic Tracing” for
 further information.

 If you see the linking of the postgres executable abort with an
 error message like:

Undefined first referenced
 symbol in file
AbortTransaction utils/probes.o
CommitTransaction utils/probes.o
ld: fatal: Symbol referencing errors. No output written to postgres
collect2: ld returned 1 exit status
make: *** [postgres] Error 1

 your DTrace installation is too old to handle probes in static
 functions. You need Solaris 10u4 or newer to use DTrace.

Chapter 18. Installation from Source Code on Windows™

 It is recommended that most users download the binary distribution for
 Windows, available as a graphical installer package
 from the PostgreSQL™ website at
 https://www.postgresql.org/download/. Building from source
 is only intended for people developing PostgreSQL™
 or extensions.

 There are several different ways of building PostgreSQL on
 Windows™. The simplest way to build with
 Microsoft tools is to install Visual Studio 2022™
 and use the included compiler. It is also possible to build with the full
 Microsoft Visual C++ 2015 to 2022™.
 In some cases that requires the installation of the
 Windows SDK™ in addition to the compiler.

 It is also possible to build PostgreSQL using the GNU compiler tools
 provided by MinGW™, or using
 Cygwin™ for older versions of
 Windows™.

 Building using MinGW™ or
 Cygwin™ uses the normal build system, see
 Chapter 17, Installation from Source Code and the specific notes in
 the section called “MinGW/Native Windows” and the section called “Cygwin”.
 To produce native 64 bit binaries in these environments, use the tools from
 MinGW-w64™. These tools can also be used to
 cross-compile for 32 bit and 64 bit Windows™
 targets on other hosts, such as Linux™ and
 macOS™.
 Cygwin™ is not recommended for running a
 production server, and it should only be used for running on
 older versions of Windows™ where
 the native build does not work. The official
 binaries are built using Visual Studio™.

 Native builds of psql don't support command
 line editing. The Cygwin™ build does support
 command line editing, so it should be used where psql is needed for
 interactive use on Windows™.

Building with Visual C++™ or the
 Microsoft Windows SDK™

 PostgreSQL can be built using the Visual C++ compiler suite from Microsoft.
 These compilers can be either from Visual Studio™,
 Visual Studio Express™ or some versions of the
 Microsoft Windows SDK™. If you do not already have a
 Visual Studio™ environment set up, the easiest
 ways are to use the compilers from
 Visual Studio 2022™ or those in the
 Windows SDK 10™, which are both free downloads
 from Microsoft.

 Both 32-bit and 64-bit builds are possible with the Microsoft Compiler suite.
 32-bit PostgreSQL builds are possible with
 Visual Studio 2015™ to
 Visual Studio 2022™,
 as well as standalone Windows SDK releases 10 and above.
 64-bit PostgreSQL builds are supported with
 Microsoft Windows SDK™ version 10 and above or
 Visual Studio 2015™ and above.

 The tools for building using Visual C++™ or
 Platform SDK™ are in the
 src\tools\msvc directory. When building, make sure
 there are no tools from MinGW™ or
 Cygwin™ present in your system PATH. Also, make
 sure you have all the required Visual C++ tools available in the PATH. In
 Visual Studio™, start the
 Visual Studio Command Prompt.
 If you wish to build a 64-bit version, you must use the 64-bit version of
 the command, and vice versa.
 Starting with Visual Studio 2017™ this can be
 done from the command line using VsDevCmd.bat, see
 -help for the available options and their default values.
 vsvars32.bat is available in
 Visual Studio 2015™ and earlier versions for the
 same purpose.
 From the Visual Studio Command Prompt, you can
 change the targeted CPU architecture, build type, and target OS by using the
 vcvarsall.bat command, e.g.,
 vcvarsall.bat x64 10.0.10240.0 to target Windows 10
 with a 64-bit release build. See -help for the other
 options of vcvarsall.bat. All commands should be run from
 the src\tools\msvc directory.

 Before you build, you can create the file config.pl
 to reflect any configuration options you want to change, or the paths to
 any third party libraries to use. The complete configuration is determined
 by first reading and parsing the file config_default.pl,
 and then apply any changes from config.pl. For example,
 to specify the location of your Python™ installation,
 put the following in config.pl:

$config->{python} = 'c:\python310';

 You only need to specify those parameters that are different from what's in
 config_default.pl.

 If you need to set any other environment variables, create a file called
 buildenv.pl and put the required commands there. For
 example, to add the path for bison when it's not in the PATH, create a file
 containing:

$ENV{PATH}=$ENV{PATH} . ';c:\some\where\bison\bin';

 To pass additional command line arguments to the Visual Studio build
 command (msbuild or vcbuild):

$ENV{MSBFLAGS}="/m";

Requirements

 The following additional products are required to build
 PostgreSQL™. Use the
 config.pl file to specify which directories the libraries
 are available in.

	Microsoft Windows SDK™
	
 If your build environment doesn't ship with a supported version of the
 Microsoft Windows SDK™ it
 is recommended that you upgrade to the latest version (currently
 version 10), available for download from
 https://www.microsoft.com/download.

 You must always include the
 Windows Headers and Libraries part of the SDK.
 If you install a Windows SDK™
 including the Visual C++ Compilers,
 you don't need Visual Studio™ to build.
 Note that as of Version 8.0a the Windows SDK no longer ships with a
 complete command-line build environment.

	Strawberry Perl™
	
 Strawberry Perl is required to run the build generation scripts. MinGW
 or Cygwin Perl will not work. It must also be present in the PATH.
 Binaries can be downloaded from
 https://strawberryperl.com.

 The following additional products are not required to get started,
 but are required to build the complete package. Use the
 config.pl file to specify which directories the libraries
 are available in.

	Magicsplat Tcl™
	
 Required for building PL/Tcl.
 Binaries can be downloaded from
 https://www.magicsplat.com/tcl-installer/index.html.

	Bison™ and
 Flex™
	
 Bison™ and Flex™ are
 required to build from Git, but not required when building from a release
 file. Only Bison™ versions 2.3 and later
 will work. Flex™ must be version 2.5.35 or later.

 Both Bison™ and Flex™
 are included in the msys™ tool suite, available
 from http://www.mingw.org/wiki/MSYS as part of the
 MinGW™ compiler suite.

 You will need to add the directory containing
 flex.exe and bison.exe to the
 PATH environment variable in buildenv.pl unless
 they are already in PATH. In the case of MinGW, the directory is the
 \msys\1.0\bin subdirectory of your MinGW
 installation directory.

Note

 The Bison distribution from GnuWin32 appears to have a bug that
 causes Bison to malfunction when installed in a directory with
 spaces in the name, such as the default location on English
 installations C:\Program Files\GnuWin32.
 Consider installing into C:\GnuWin32 or use the
 NTFS short name path to GnuWin32 in your PATH environment setting
 (e.g., C:\PROGRA~1\GnuWin32).

	Diff™
	
 Diff is required to run the regression tests, and can be downloaded
 from http://gnuwin32.sourceforge.net.

	Gettext™
	
 Gettext is required to build with NLS support, and can be downloaded
 from http://gnuwin32.sourceforge.net. Note that binaries,
 dependencies and developer files are all needed.

	MIT Kerberos™
	
 Required for GSSAPI authentication support. MIT Kerberos can be
 downloaded from
 https://web.mit.edu/Kerberos/dist/index.html.

	libxml2™ and
 libxslt™
	
 Required for XML support. Binaries can be downloaded from
 https://zlatkovic.com/pub/libxml or source from
 http://xmlsoft.org. Note that libxml2 requires iconv,
 which is available from the same download location.

	LZ4™
	
 Required for supporting LZ4™ compression.
 Binaries and source can be downloaded from
 https://github.com/lz4/lz4/releases.

	Zstandard™
	
 Required for supporting Zstandard™ compression.
 Binaries and source can be downloaded from
 https://github.com/facebook/zstd/releases.

	OpenSSL™
	
 Required for SSL support. Binaries can be downloaded from
 https://slproweb.com/products/Win32OpenSSL.html
 or source from https://www.openssl.org.

	ossp-uuid™
	
 Required for UUID-OSSP support (contrib only). Source can be
 downloaded from
 http://www.ossp.org/pkg/lib/uuid/.

	Python™
	
 Required for building PL/Python. Binaries can
 be downloaded from https://www.python.org.

	zlib™
	
 Required for compression support in pg_dump
 and pg_restore. Binaries can be downloaded
 from https://www.zlib.net.

Special Considerations for 64-Bit Windows

 PostgreSQL will only build for the x64 architecture on 64-bit Windows.

 Mixing 32- and 64-bit versions in the same build tree is not supported.
 The build system will automatically detect if it's running in a 32- or
 64-bit environment, and build PostgreSQL accordingly. For this reason, it
 is important to start the correct command prompt before building.

 To use a server-side third party library such as Python™ or
 OpenSSL™, this library must also be
 64-bit. There is no support for loading a 32-bit library in a 64-bit
 server. Several of the third party libraries that PostgreSQL supports may
 only be available in 32-bit versions, in which case they cannot be used with
 64-bit PostgreSQL.

Building

 To build all of PostgreSQL in release configuration (the default), run the
 command:

build

 To build all of PostgreSQL in debug configuration, run the command:

build DEBUG

 To build just a single project, for example psql, run the commands:

build psql
build DEBUG psql

 To change the default build configuration to debug, put the following
 in the buildenv.pl file:

$ENV{CONFIG}="Debug";

 It is also possible to build from inside the Visual Studio GUI. In this
 case, you need to run:

perl mkvcbuild.pl

 from the command prompt, and then open the generated
 pgsql.sln (in the root directory of the source tree)
 in Visual Studio.

Cleaning and Installing

 Most of the time, the automatic dependency tracking in Visual Studio will
 handle changed files. But if there have been large changes, you may need
 to clean the installation. To do this, simply run the
 clean.bat command, which will automatically clean out
 all generated files. You can also run it with the
 dist parameter, in which case it will behave like
 make distclean and remove the flex/bison output files
 as well.

 By default, all files are written into a subdirectory of the
 debug or release directories. To
 install these files using the standard layout, and also generate the files
 required to initialize and use the database, run the command:

install c:\destination\directory

 If you want to install only the client applications and
 interface libraries, then you can use these commands:

install c:\destination\directory client

Running the Regression Tests

 To run the regression tests, make sure you have completed the build of all
 required parts first. Also, make sure that the DLLs required to load all
 parts of the system (such as the Perl and Python DLLs for the procedural
 languages) are present in the system path. If they are not, set it through
 the buildenv.pl file. To run the tests, run one of
 the following commands from the src\tools\msvc
 directory:

vcregress check
vcregress installcheck
vcregress plcheck
vcregress contribcheck
vcregress modulescheck
vcregress ecpgcheck
vcregress isolationcheck
vcregress bincheck
vcregress recoverycheck
vcregress taptest

 To change the schedule used (default is parallel), append it to the
 command line like:

vcregress check serial

 vcregress taptest can be used to run the TAP tests
 of a target directory, like:

vcregress taptest src\bin\initdb\

 For more information about the regression tests, see
 Chapter 33, Regression Tests.

 Running the regression tests on client programs with
 vcregress bincheck, on recovery tests with
 vcregress recoverycheck, or TAP tests specified with
 vcregress taptest requires an additional Perl module
 to be installed:

	IPC::Run™
	
 As of this writing, IPC::Run is not included in the
 ActiveState Perl installation, nor in the ActiveState Perl Package
 Manager (PPM) library. To install, download the
 IPC-Run-<version>.tar.gz source archive from
 CPAN,
 at https://metacpan.org/dist/IPC-Run, and
 uncompress. Edit the buildenv.pl file, and add a PERL5LIB
 variable to point to the lib subdirectory from the
 extracted archive. For example:

$ENV{PERL5LIB}=$ENV{PERL5LIB} . ';c:\IPC-Run-0.94\lib';

 The TAP tests run with vcregress support the
 environment variables PROVE_TESTS, that is expanded
 automatically using the name patterns given, and
 PROVE_FLAGS. These can be set on a Windows terminal,
 before running vcregress:

set PROVE_FLAGS=--timer --jobs 2
set PROVE_TESTS=t/020*.pl t/010*.pl

 It is also possible to set up those parameters in
 buildenv.pl:

$ENV{PROVE_FLAGS}='--timer --jobs 2'
$ENV{PROVE_TESTS}='t/020*.pl t/010*.pl'

 Additionally, the behavior of TAP tests can be controlled by a set of
 environment variables, see the section called “Environment Variables”.

 Some of the TAP tests depend on a set of external commands that would
 optionally trigger tests related to them. Each one of those variables
 can be set or unset in buildenv.pl:

	GZIP_PROGRAM
	
 Path to a gzip command. The default is
 gzip, which will search for a command by that
 name in the configured PATH.

	LZ4
	
 Path to a lz4 command. The default is
 lz4, which will search for a command by that
 name in the configured PATH.

	OPENSSL
	
 Path to an openssl command. The default is
 openssl, which will search for a command by that
 name in the configured PATH.

	TAR
	
 Path to a tar command. The default is
 tar, which will search for a command by that
 name in the configured PATH.

	ZSTD
	
 Path to a zstd command. The default is
 zstd, which will search for a command by that
 name in the configured PATH.

Chapter 19. Server Setup and Operation

 This chapter discusses how to set up and run the database server,
 and its interactions with the operating system.

 The directions in this chapter assume that you are working with
 plain PostgreSQL™ without any additional
 infrastructure, for example a copy that you built from source
 according to the directions in the preceding chapters.
 If you are working with a pre-packaged or vendor-supplied
 version of PostgreSQL™, it is likely that
 the packager has made special provisions for installing and starting
 the database server according to your system's conventions.
 Consult the package-level documentation for details.

The PostgreSQL™ User Account

 As with any server daemon that is accessible to the outside world,
 it is advisable to run PostgreSQL™ under a
 separate user account. This user account should only own the data
 that is managed by the server, and should not be shared with other
 daemons. (For example, using the user nobody is a bad
 idea.) In particular, it is advisable that this user account not own
 the PostgreSQL™ executable files, to ensure
 that a compromised server process could not modify those executables.

 Pre-packaged versions of PostgreSQL™ will
 typically create a suitable user account automatically during
 package installation.

 To add a Unix user account to your system, look for a command
 useradd or adduser. The user
 name postgres is often used, and is assumed
 throughout this book, but you can use another name if you like.

Creating a Database Cluster

 Before you can do anything, you must initialize a database storage
 area on disk. We call this a database cluster.
 (The SQL standard uses the term catalog cluster.) A
 database cluster is a collection of databases that is managed by a
 single instance of a running database server. After initialization, a
 database cluster will contain a database named postgres,
 which is meant as a default database for use by utilities, users and third
 party applications. The database server itself does not require the
 postgres database to exist, but many external utility
 programs assume it exists. There are two more databases created within
 each cluster during initialization, named template1
 and template0. As the names suggest, these will be
 used as templates for subsequently-created databases; they should not be
 used for actual work. (See Chapter 23, Managing Databases for
 information about creating new databases within a cluster.)

 In file system terms, a database cluster is a single directory
 under which all data will be stored. We call this the data
 directory or data area. It is
 completely up to you where you choose to store your data. There is no
 default, although locations such as
 /usr/local/pgsql/data or
 /var/lib/pgsql/data are popular.
 The data directory must be initialized before being used, using the program
 initdb(1)
 which is installed with PostgreSQL™.

 If you are using a pre-packaged version
 of PostgreSQL™, it may well have a specific
 convention for where to place the data directory, and it may also
 provide a script for creating the data directory. In that case you
 should use that script in preference to
 running initdb directly.
 Consult the package-level documentation for details.

 To initialize a database cluster manually,
 run initdb and specify the desired
 file system location of the database cluster with the
 -D option, for example:

$ initdb -D /usr/local/pgsql/data

 Note that you must execute this command while logged into the
 PostgreSQL™ user account, which is
 described in the previous section.

Tip

 As an alternative to the -D option, you can set
 the environment variable PGDATA.

 Alternatively, you can run initdb via
 the pg_ctl(1)
 program like so:

$ pg_ctl -D /usr/local/pgsql/data initdb

 This may be more intuitive if you are
 using pg_ctl for starting and stopping the
 server (see the section called “Starting the Database Server”), so
 that pg_ctl would be the sole command you use
 for managing the database server instance.

 initdb will attempt to create the directory you
 specify if it does not already exist. Of course, this will fail if
 initdb does not have permissions to write in the
 parent directory. It's generally recommendable that the
 PostgreSQL™ user own not just the data
 directory but its parent directory as well, so that this should not
 be a problem. If the desired parent directory doesn't exist either,
 you will need to create it first, using root privileges if the
 grandparent directory isn't writable. So the process might look
 like this:

root# mkdir /usr/local/pgsql
root# chown postgres /usr/local/pgsql
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

 initdb will refuse to run if the data directory
 exists and already contains files; this is to prevent accidentally
 overwriting an existing installation.

 Because the data directory contains all the data stored in the
 database, it is essential that it be secured from unauthorized
 access. initdb therefore revokes access
 permissions from everyone but the
 PostgreSQL™ user, and optionally, group.
 Group access, when enabled, is read-only. This allows an unprivileged
 user in the same group as the cluster owner to take a backup of the
 cluster data or perform other operations that only require read access.

 Note that enabling or disabling group access on an existing cluster requires
 the cluster to be shut down and the appropriate mode to be set on all
 directories and files before restarting
 PostgreSQL™. Otherwise, a mix of modes might
 exist in the data directory. For clusters that allow access only by the
 owner, the appropriate modes are 0700 for directories
 and 0600 for files. For clusters that also allow
 reads by the group, the appropriate modes are 0750
 for directories and 0640 for files.

 However, while the directory contents are secure, the default
 client authentication setup allows any local user to connect to the
 database and even become the database superuser. If you do not
 trust other local users, we recommend you use one of
 initdb's -W, --pwprompt
 or --pwfile options to assign a password to the
 database superuser.
 Also, specify -A scram-sha-256
 so that the default trust authentication
 mode is not used; or modify the generated pg_hba.conf
 file after running initdb, but
 before you start the server for the first time. (Other
 reasonable approaches include using peer authentication
 or file system permissions to restrict connections. See Chapter 21, Client Authentication for more information.)

 initdb also initializes the default
 locale for the database cluster.
 Normally, it will just take the locale settings in the environment
 and apply them to the initialized database. It is possible to
 specify a different locale for the database; more information about
 that can be found in the section called “Locale Support”. The default sort order used
 within the particular database cluster is set by
 initdb, and while you can create new databases using
 different sort order, the order used in the template databases that initdb
 creates cannot be changed without dropping and recreating them.
 There is also a performance impact for using locales
 other than C or POSIX. Therefore, it is
 important to make this choice correctly the first time.

 initdb also sets the default character set encoding
 for the database cluster. Normally this should be chosen to match the
 locale setting. For details see the section called “Character Set Support”.

 Non-C and non-POSIX locales rely on the
 operating system's collation library for character set ordering.
 This controls the ordering of keys stored in indexes. For this reason,
 a cluster cannot switch to an incompatible collation library version,
 either through snapshot restore, binary streaming replication, a
 different operating system, or an operating system upgrade.

Use of Secondary File Systems

 Many installations create their database clusters on file systems
 (volumes) other than the machine's “root” volume. If you
 choose to do this, it is not advisable to try to use the secondary
 volume's topmost directory (mount point) as the data directory.
 Best practice is to create a directory within the mount-point
 directory that is owned by the PostgreSQL™
 user, and then create the data directory within that. This avoids
 permissions problems, particularly for operations such
 as pg_upgrade, and it also ensures clean failures if
 the secondary volume is taken offline.

File Systems

 Generally, any file system with POSIX semantics can be used for
 PostgreSQL. Users prefer different file systems for a variety of reasons,
 including vendor support, performance, and familiarity. Experience
 suggests that, all other things being equal, one should not expect major
 performance or behavior changes merely from switching file systems or
 making minor file system configuration changes.

NFS

 It is possible to use an NFS file system for storing
 the PostgreSQL™ data directory.
 PostgreSQL™ does nothing special for
 NFS file systems, meaning it assumes
 NFS behaves exactly like locally-connected drives.
 PostgreSQL™ does not use any functionality that
 is known to have nonstandard behavior on NFS, such as
 file locking.

 The only firm requirement for using NFS with
 PostgreSQL™ is that the file system is mounted
 using the hard option. With the
 hard option, processes can “hang”
 indefinitely if there are network problems, so this configuration will
 require a careful monitoring setup. The soft option
 will interrupt system calls in case of network problems, but
 PostgreSQL™ will not repeat system calls
 interrupted in this way, so any such interruption will result in an I/O
 error being reported.

 It is not necessary to use the sync mount option. The
 behavior of the async option is sufficient, since
 PostgreSQL™ issues fsync
 calls at appropriate times to flush the write caches. (This is analogous
 to how it works on a local file system.) However, it is strongly
 recommended to use the sync export option on the NFS
 server on systems where it exists (mainly Linux).
 Otherwise, an fsync or equivalent on the NFS client is
 not actually guaranteed to reach permanent storage on the server, which
 could cause corruption similar to running with the parameter fsync off. The defaults of these mount and export
 options differ between vendors and versions, so it is recommended to
 check and perhaps specify them explicitly in any case to avoid any
 ambiguity.

 In some cases, an external storage product can be accessed either via NFS
 or a lower-level protocol such as iSCSI. In the latter case, the storage
 appears as a block device and any available file system can be created on
 it. That approach might relieve the DBA from having to deal with some of
 the idiosyncrasies of NFS, but of course the complexity of managing
 remote storage then happens at other levels.

Starting the Database Server

 Before anyone can access the database, you must start the database
 server. The database server program is called
 postgres.

 If you are using a pre-packaged version
 of PostgreSQL™, it almost certainly includes
 provisions for running the server as a background task according to the
 conventions of your operating system. Using the package's
 infrastructure to start the server will be much less work than figuring
 out how to do this yourself. Consult the package-level documentation
 for details.

 The bare-bones way to start the server manually is just to invoke
 postgres directly, specifying the location of the
 data directory with the -D option, for example:

$ postgres -D /usr/local/pgsql/data

 which will leave the server running in the foreground. This must be
 done while logged into the PostgreSQL™ user
 account. Without -D, the server will try to use
 the data directory named by the environment variable PGDATA.
 If that variable is not provided either, it will fail.

 Normally it is better to start postgres in the
 background. For this, use the usual Unix shell syntax:

$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &

 It is important to store the server's stdout and
 stderr output somewhere, as shown above. It will help
 for auditing purposes and to diagnose problems. (See the section called “Log File Maintenance” for a more thorough discussion of log
 file handling.)

 The postgres program also takes a number of other
 command-line options. For more information, see the
 postgres(1) reference page
 and Chapter 20, Server Configuration below.

 This shell syntax can get tedious quickly. Therefore the wrapper
 program
 pg_ctl(1)
 is provided to simplify some tasks. For example:

pg_ctl start -l logfile

 will start the server in the background and put the output into the
 named log file. The -D option has the same meaning
 here as for postgres. pg_ctl
 is also capable of stopping the server.

 Normally, you will want to start the database server when the
 computer boots.
 Autostart scripts are operating-system-specific.
 There are a few example scripts distributed with
 PostgreSQL™ in the
 contrib/start-scripts directory. Installing one will require
 root privileges.

 Different systems have different conventions for starting up daemons
 at boot time. Many systems have a file
 /etc/rc.local or
 /etc/rc.d/rc.local. Others use init.d or
 rc.d directories. Whatever you do, the server must be
 run by the PostgreSQL™ user account
 and not by root or any other user. Therefore you
 probably should form your commands using
 su postgres -c '...'. For example:

su postgres -c 'pg_ctl start -D /usr/local/pgsql/data -l serverlog'

 Here are a few more operating-system-specific suggestions. (In each
 case be sure to use the proper installation directory and user
 name where we show generic values.)

	
 For FreeBSD™, look at the file
 contrib/start-scripts/freebsd in the
 PostgreSQL™ source distribution.

	
 On OpenBSD™, add the following lines
 to the file /etc/rc.local:

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postgres]; then
 su -l postgres -c '/usr/local/pgsql/bin/pg_ctl start -s -l /var/postgresql/log -D /usr/local/pgsql/data'
 echo -n ' postgresql'
fi

	
 On Linux™ systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data

 to /etc/rc.d/rc.local
 or /etc/rc.local or look at the file
 contrib/start-scripts/linux in the
 PostgreSQL™ source distribution.

 When using systemd, you can use the following
 service unit file (e.g.,
 at /etc/systemd/system/postgresql.service):

[Unit]
Description=PostgreSQL database server
Documentation=man:postgres(1)
After=network-online.target
Wants=network-online.target

[Service]
Type=notify
User=postgres
ExecStart=/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT
TimeoutSec=infinity

[Install]
WantedBy=multi-user.target

 Using Type=notify requires that the server binary was
 built with configure --with-systemd.

 Consider carefully the timeout
 setting. systemd has a default timeout of 90
 seconds as of this writing and will kill a process that does not report
 readiness within that time. But a PostgreSQL™
 server that might have to perform crash recovery at startup could take
 much longer to become ready. The suggested value
 of infinity disables the timeout logic.

	
 On NetBSD™, use either the
 FreeBSD™ or
 Linux™ start scripts, depending on
 preference.

	
 On Solaris™, create a file called
 /etc/init.d/postgresql that contains
 the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data"

 Then, create a symbolic link to it in /etc/rc3.d as
 S99postgresql.

 While the server is running, its
 PID is stored in the file
 postmaster.pid in the data directory. This is
 used to prevent multiple server instances from
 running in the same data directory and can also be used for
 shutting down the server.

Server Start-up Failures

 There are several common reasons the server might fail to
 start. Check the server's log file, or start it by hand (without
 redirecting standard output or standard error) and see what error
 messages appear. Below we explain some of the most common error
 messages in more detail.

LOG: could not bind IPv4 address "127.0.0.1": Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL: could not create any TCP/IP sockets

 This usually means just what it suggests: you tried to start
 another server on the same port where one is already running.
 However, if the kernel error message is not Address
 already in use or some variant of that, there might
 be a different problem. For example, trying to start a server
 on a reserved port number might draw something like:

$ postgres -p 666
LOG: could not bind IPv4 address "127.0.0.1": Permission denied
HINT: Is another postmaster already running on port 666? If not, wait a few seconds and retry.
FATAL: could not create any TCP/IP sockets

 A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

 probably means your kernel's limit on the size of shared memory is
 smaller than the work area PostgreSQL™
 is trying to create (4011376640 bytes in this example).
 This is only likely to happen if you have set shared_memory_type
 to sysv. In that case, you
 can try starting the server with a smaller-than-normal number of
 buffers (shared_buffers), or
 reconfigure your kernel to increase the allowed shared memory
 size. You might also see this message when trying to start multiple
 servers on the same machine, if their total space requested
 exceeds the kernel limit.

 An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

 does not mean you've run out of disk
 space. It means your kernel's limit on the number of System V semaphores is smaller than the number
 PostgreSQL™ wants to create. As above,
 you might be able to work around the problem by starting the
 server with a reduced number of allowed connections
 (max_connections), but you'll eventually want to
 increase the kernel limit.

 Details about configuring System V
 IPC facilities are given in the section called “Shared Memory and Semaphores”.

Client Connection Problems

 Although the error conditions possible on the client side are quite
 varied and application-dependent, a few of them might be directly
 related to how the server was started. Conditions other than
 those shown below should be documented with the respective client
 application.

psql: error: connection to server at "server.joe.com" (123.123.123.123), port 5432 failed: Connection refused
 Is the server running on that host and accepting TCP/IP connections?

 This is the generic “I couldn't find a server to talk
 to” failure. It looks like the above when TCP/IP
 communication is attempted. A common mistake is to forget to
 configure the server to allow TCP/IP connections.

 Alternatively, you might get this when attempting Unix-domain socket
 communication to a local server:

psql: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such file or directory
 Is the server running locally and accepting connections on that socket?

 If the server is indeed running, check that the client's idea of the
 socket path (here /tmp) agrees with the server's
 unix_socket_directories setting.

 A connection failure message always shows the server address or socket
 path name, which is useful in verifying that the client is trying to
 connect to the right place. If there is in fact no server
 listening there, the kernel error message will typically be either
 Connection refused or
 No such file or directory, as
 illustrated. (It is important to realize that
 Connection refused in this context
 does not mean that the server got your
 connection request and rejected it. That case will produce a
 different message, as shown in the section called “Authentication Problems”.) Other error messages
 such as Connection timed out might
 indicate more fundamental problems, like lack of network
 connectivity, or a firewall blocking the connection.

Managing Kernel Resources

 PostgreSQL™ can sometimes exhaust various operating system
 resource limits, especially when multiple copies of the server are running
 on the same system, or in very large installations. This section explains
 the kernel resources used by PostgreSQL™ and the steps you
 can take to resolve problems related to kernel resource consumption.

Shared Memory and Semaphores

 PostgreSQL™ requires the operating system to provide
 inter-process communication (IPC) features, specifically
 shared memory and semaphores. Unix-derived systems typically provide
 “System V” IPC,
 “POSIX” IPC, or both.
 Windows has its own implementation of
 these features and is not discussed here.

 By default, PostgreSQL™ allocates
 a very small amount of System V shared memory, as well as a much larger
 amount of anonymous mmap shared memory.
 Alternatively, a single large System V shared memory region can be used
 (see shared_memory_type).

 In addition a significant number of semaphores, which can be either
 System V or POSIX style, are created at server startup. Currently,
 POSIX semaphores are used on Linux and FreeBSD systems while other
 platforms use System V semaphores.

 System V IPC features are typically constrained by
 system-wide allocation limits.
 When PostgreSQL™ exceeds one of these limits,
 the server will refuse to start and
 should leave an instructive error message describing the problem
 and what to do about it. (See also the section called “Server Start-up Failures”.) The relevant kernel
 parameters are named consistently across different systems; Table 19.1, “System V IPC Parameters” gives an overview. The methods to set
 them, however, vary. Suggestions for some platforms are given below.

Table 19.1. System V IPC Parameters
	Name	Description	Values needed to run one PostgreSQL™ instance
	SHMMAX	Maximum size of shared memory segment (bytes)	at least 1kB, but the default is usually much higher
	SHMMIN	Minimum size of shared memory segment (bytes)	1
	SHMALL	Total amount of shared memory available (bytes or pages)	same as SHMMAX if bytes,
 or ceil(SHMMAX/PAGE_SIZE) if pages,
 plus room for other applications
	SHMSEG	Maximum number of shared memory segments per process	only 1 segment is needed, but the default is much higher
	SHMMNI	Maximum number of shared memory segments system-wide	like SHMSEG plus room for other applications
	SEMMNI	Maximum number of semaphore identifiers (i.e., sets)	at least ceil((max_connections + autovacuum_max_workers + max_wal_senders + max_worker_processes + 6) / 16) plus room for other applications
	SEMMNS	Maximum number of semaphores system-wide	ceil((max_connections + autovacuum_max_workers + max_wal_senders + max_worker_processes + 6) / 16) * 17 plus room for other applications
	SEMMSL	Maximum number of semaphores per set	at least 17
	SEMMAP	Number of entries in semaphore map	see text
	SEMVMX	Maximum value of semaphore	at least 1000 (The default is often 32767; do not change unless necessary)

 PostgreSQL™ requires a few bytes of System V shared memory
 (typically 48 bytes, on 64-bit platforms) for each copy of the server.
 On most modern operating systems, this amount can easily be allocated.
 However, if you are running many copies of the server or you explicitly
 configure the server to use large amounts of System V shared memory (see
 shared_memory_type and dynamic_shared_memory_type), it may be necessary to
 increase SHMALL, which is the total amount of System V shared
 memory system-wide. Note that SHMALL is measured in pages
 rather than bytes on many systems.

 Less likely to cause problems is the minimum size for shared
 memory segments (SHMMIN), which should be at most
 approximately 32 bytes for PostgreSQL™ (it is
 usually just 1). The maximum number of segments system-wide
 (SHMMNI) or per-process (SHMSEG) are unlikely
 to cause a problem unless your system has them set to zero.

 When using System V semaphores,
 PostgreSQL™ uses one semaphore per allowed connection
 (max_connections), allowed autovacuum worker process
 (autovacuum_max_workers), allowed WAL sender process
 (max_wal_senders), and allowed background
 process (max_worker_processes), in sets of 16.
 Each such set will
 also contain a 17th semaphore which contains a “magic
 number”, to detect collision with semaphore sets used by
 other applications. The maximum number of semaphores in the system
 is set by SEMMNS, which consequently must be at least
 as high as max_connections plus
 autovacuum_max_workers plus max_wal_senders,
 plus max_worker_processes, plus one extra for each 16
 allowed connections plus workers (see the formula in Table 19.1, “System V IPC Parameters”). The parameter SEMMNI
 determines the limit on the number of semaphore sets that can
 exist on the system at one time. Hence this parameter must be at
 least ceil((max_connections + autovacuum_max_workers + max_wal_senders + max_worker_processes + 6) / 16).
 Lowering the number
 of allowed connections is a temporary workaround for failures,
 which are usually confusingly worded “No space
 left on device”, from the function semget.

 In some cases it might also be necessary to increase
 SEMMAP to be at least on the order of
 SEMMNS. If the system has this parameter
 (many do not), it defines the size of the semaphore
 resource map, in which each contiguous block of available semaphores
 needs an entry. When a semaphore set is freed it is either added to
 an existing entry that is adjacent to the freed block or it is
 registered under a new map entry. If the map is full, the freed
 semaphores get lost (until reboot). Fragmentation of the semaphore
 space could over time lead to fewer available semaphores than there
 should be.

 Various other settings related to “semaphore undo”, such as
 SEMMNU and SEMUME, do not affect
 PostgreSQL™.

 When using POSIX semaphores, the number of semaphores needed is the
 same as for System V, that is one semaphore per allowed connection
 (max_connections), allowed autovacuum worker process
 (autovacuum_max_workers), allowed WAL sender process
 (max_wal_senders), and allowed background
 process (max_worker_processes).
 On the platforms where this option is preferred, there is no specific
 kernel limit on the number of POSIX semaphores.

	AIX

	
 It should not be necessary to do
 any special configuration for such parameters as
 SHMMAX, as it appears this is configured to
 allow all memory to be used as shared memory. That is the
 sort of configuration commonly used for other databases such
 as DB/2.
 It might, however, be necessary to modify the global
 ulimit information in
 /etc/security/limits, as the default hard
 limits for file sizes (fsize) and numbers of
 files (nofiles) might be too low.

	FreeBSD

	
 The default shared memory settings are usually good enough, unless
 you have set shared_memory_type to sysv.
 System V semaphores are not used on this platform.

 The default IPC settings can be changed using
 the sysctl or
 loader interfaces. The following
 parameters can be set using sysctl:

sysctl kern.ipc.shmall=32768
sysctl kern.ipc.shmmax=134217728

 To make these settings persist over reboots, modify
 /etc/sysctl.conf.

 If you have set shared_memory_type to
 sysv, you might also want to configure your kernel
 to lock System V shared memory into RAM and prevent it from being paged
 out to swap. This can be accomplished using the sysctl
 setting kern.ipc.shm_use_phys.

 If running in a FreeBSD jail, you should set its
 sysvshm parameter to new, so that
 it has its own separate System V shared memory namespace.
 (Before FreeBSD 11.0, it was necessary to enable shared access to
 the host's IPC namespace from jails, and take measures to avoid
 collisions.)

	NetBSD

	
 The default shared memory settings are usually good enough, unless
 you have set shared_memory_type to sysv.
 You will usually want to increase kern.ipc.semmni
 and kern.ipc.semmns,
 as NetBSD's default settings
 for these are uncomfortably small.

 IPC parameters can be adjusted using sysctl,
 for example:

sysctl -w kern.ipc.semmni=100

 To make these settings persist over reboots, modify
 /etc/sysctl.conf.

 If you have set shared_memory_type to
 sysv, you might also want to configure your kernel
 to lock System V shared memory into RAM and prevent it from being paged
 out to swap. This can be accomplished using the sysctl
 setting kern.ipc.shm_use_phys.

	OpenBSD

	
 The default shared memory settings are usually good enough, unless
 you have set shared_memory_type to sysv.
 You will usually want to
 increase kern.seminfo.semmni
 and kern.seminfo.semmns,
 as OpenBSD's default settings
 for these are uncomfortably small.

 IPC parameters can be adjusted using sysctl,
 for example:

sysctl kern.seminfo.semmni=100

 To make these settings persist over reboots, modify
 /etc/sysctl.conf.

	Linux

	
 The default shared memory settings are usually good enough, unless
 you have set shared_memory_type to sysv,
 and even then only on older kernel versions that shipped with low defaults.
 System V semaphores are not used on this platform.

 The shared memory size settings can be changed via the
 sysctl interface. For example, to allow 16 GB:

$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304

 To make these settings persist over reboots, see
 /etc/sysctl.conf.

	macOS

	
 The default shared memory and semaphore settings are usually good enough, unless
 you have set shared_memory_type to sysv.

 The recommended method for configuring shared memory in macOS
 is to create a file named /etc/sysctl.conf,
 containing variable assignments such as:

kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

 Note that in some macOS versions,
 all five shared-memory parameters must be set in
 /etc/sysctl.conf, else the values will be ignored.

 SHMMAX can only be set to a multiple of 4096.

 SHMALL is measured in 4 kB pages on this platform.

 It is possible to change all but SHMMNI on the fly, using
 sysctl. But it's still best to set up your preferred
 values via /etc/sysctl.conf, so that the values will be
 kept across reboots.

	Solaris, illumos
	
 The default shared memory and semaphore settings are usually good enough for most
 PostgreSQL™ applications. Solaris defaults
 to a SHMMAX of one-quarter of system RAM.
 To further adjust this setting, use a project setting associated
 with the postgres user. For example, run the
 following as root:

projadd -c "PostgreSQL DB User" -K "project.max-shm-memory=(privileged,8GB,deny)" -U postgres -G postgres user.postgres

 This command adds the user.postgres project and
 sets the shared memory maximum for the postgres
 user to 8GB, and takes effect the next time that user logs
 in, or when you restart PostgreSQL™ (not reload).
 The above assumes that PostgreSQL™ is run by
 the postgres user in the postgres
 group. No server reboot is required.

 Other recommended kernel setting changes for database servers which will
 have a large number of connections are:

project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

 Additionally, if you are running PostgreSQL™
 inside a zone, you may need to raise the zone resource usage
 limits as well. See "Chapter2: Projects and Tasks" in the
 System Administrator's Guide for more
 information on projects and prctl.

systemd RemoveIPC

 If systemd™ is in use, some care must be taken
 that IPC resources (including shared memory) are not prematurely
 removed by the operating system. This is especially of concern when
 installing PostgreSQL from source. Users of distribution packages of
 PostgreSQL are less likely to be affected, as
 the postgres user is then normally created as a system
 user.

 The setting RemoveIPC
 in logind.conf controls whether IPC objects are
 removed when a user fully logs out. System users are exempt. This
 setting defaults to on in stock systemd™, but
 some operating system distributions default it to off.

 A typical observed effect when this setting is on is that shared memory
 objects used for parallel query execution are removed at apparently random
 times, leading to errors and warnings while attempting to open and remove
 them, like

WARNING: could not remove shared memory segment "/PostgreSQL.1450751626": No such file or directory

 Different types of IPC objects (shared memory vs. semaphores, System V
 vs. POSIX) are treated slightly differently
 by systemd™, so one might observe that some IPC
 resources are not removed in the same way as others. But it is not
 advisable to rely on these subtle differences.

 A “user logging out” might happen as part of a maintenance
 job or manually when an administrator logs in as
 the postgres user or something similar, so it is hard
 to prevent in general.

 What is a “system user” is determined
 at systemd™ compile time from
 the SYS_UID_MAX setting
 in /etc/login.defs.

 Packaging and deployment scripts should be careful to create
 the postgres user as a system user by
 using useradd -r, adduser --system,
 or equivalent.

 Alternatively, if the user account was created incorrectly or cannot be
 changed, it is recommended to set

RemoveIPC=no

 in /etc/systemd/logind.conf or another appropriate
 configuration file.

Caution

 At least one of these two things has to be ensured, or the PostgreSQL
 server will be very unreliable.

Resource Limits

 Unix-like operating systems enforce various kinds of resource limits
 that might interfere with the operation of your
 PostgreSQL™ server. Of particular
 importance are limits on the number of processes per user, the
 number of open files per process, and the amount of memory available
 to each process. Each of these have a “hard” and a
 “soft” limit. The soft limit is what actually counts
 but it can be changed by the user up to the hard limit. The hard
 limit can only be changed by the root user. The system call
 setrlimit is responsible for setting these
 parameters. The shell's built-in command ulimit
 (Bourne shells) or limit (csh) is
 used to control the resource limits from the command line. On
 BSD-derived systems the file /etc/login.conf
 controls the various resource limits set during login. See the
 operating system documentation for details. The relevant
 parameters are maxproc,
 openfiles, and datasize. For
 example:

default:\
...
 :datasize-cur=256M:\
 :maxproc-cur=256:\
 :openfiles-cur=256:\
...

 (-cur is the soft limit. Append
 -max to set the hard limit.)

 Kernels can also have system-wide limits on some resources.

	
 On Linux™ the kernel parameter
 fs.file-max determines the maximum number of open
 files that the kernel will support. It can be changed with
 sysctl -w fs.file-max=N.
 To make the setting persist across reboots, add an assignment
 in /etc/sysctl.conf.
 The maximum limit of files per process is fixed at the time the
 kernel is compiled; see
 /usr/src/linux/Documentation/proc.txt for
 more information.

 The PostgreSQL™ server uses one process
 per connection so you should provide for at least as many processes
 as allowed connections, in addition to what you need for the rest
 of your system. This is usually not a problem but if you run
 several servers on one machine things might get tight.

 The factory default limit on open files is often set to
 “socially friendly” values that allow many users to
 coexist on a machine without using an inappropriate fraction of
 the system resources. If you run many servers on a machine this
 is perhaps what you want, but on dedicated servers you might want to
 raise this limit.

 On the other side of the coin, some systems allow individual
 processes to open large numbers of files; if more than a few
 processes do so then the system-wide limit can easily be exceeded.
 If you find this happening, and you do not want to alter the
 system-wide limit, you can set PostgreSQL™'s max_files_per_process configuration parameter to
 limit the consumption of open files.

 Another kernel limit that may be of concern when supporting large
 numbers of client connections is the maximum socket connection queue
 length. If more than that many connection requests arrive within a very
 short period, some may get rejected before the PostgreSQL™ server can service
 the requests, with those clients receiving unhelpful connection failure
 errors such as “Resource temporarily unavailable” or
 “Connection refused”. The default queue length limit is 128
 on many platforms. To raise it, adjust the appropriate kernel parameter
 via sysctl, then restart the PostgreSQL™ server.
 The parameter is variously named net.core.somaxconn
 on Linux, kern.ipc.soacceptqueue on newer FreeBSD,
 and kern.ipc.somaxconn on macOS and other BSD
 variants.

Linux Memory Overcommit

 The default virtual memory behavior on Linux is not
 optimal for PostgreSQL™. Because of the
 way that the kernel implements memory overcommit, the kernel might
 terminate the PostgreSQL™ postmaster (the
 supervisor server process) if the memory demands of either
 PostgreSQL™ or another process cause the
 system to run out of virtual memory.

 If this happens, you will see a kernel message that looks like
 this (consult your system documentation and configuration on where
 to look for such a message):

Out of Memory: Killed process 12345 (postgres).

 This indicates that the postgres process
 has been terminated due to memory pressure.
 Although existing database connections will continue to function
 normally, no new connections will be accepted. To recover,
 PostgreSQL™ will need to be restarted.

 One way to avoid this problem is to run
 PostgreSQL™ on a machine where you can
 be sure that other processes will not run the machine out of
 memory. If memory is tight, increasing the swap space of the
 operating system can help avoid the problem, because the
 out-of-memory (OOM) killer is invoked only when physical memory and
 swap space are exhausted.

 If PostgreSQL™ itself is the cause of the
 system running out of memory, you can avoid the problem by changing
 your configuration. In some cases, it may help to lower memory-related
 configuration parameters, particularly
 shared_buffers,
 work_mem, and
 hash_mem_multiplier.
 In other cases, the problem may be caused by allowing too many
 connections to the database server itself. In many cases, it may
 be better to reduce
 max_connections
 and instead make use of external connection-pooling software.

 It is possible to modify the
 kernel's behavior so that it will not “overcommit” memory.
 Although this setting will not prevent the OOM killer from being invoked
 altogether, it will lower the chances significantly and will therefore
 lead to more robust system behavior. This is done by selecting strict
 overcommit mode via sysctl:

sysctl -w vm.overcommit_memory=2

 or placing an equivalent entry in /etc/sysctl.conf.
 You might also wish to modify the related setting
 vm.overcommit_ratio. For details see the kernel documentation
 file https://www.kernel.org/doc/Documentation/vm/overcommit-accounting.

 Another approach, which can be used with or without altering
 vm.overcommit_memory, is to set the process-specific
 OOM score adjustment value for the postmaster process to
 -1000, thereby guaranteeing it will not be targeted by the OOM
 killer. The simplest way to do this is to execute

echo -1000 > /proc/self/oom_score_adj

 in the PostgreSQL™ startup script just before
 invoking postgres.
 Note that this action must be done as root, or it will have no effect;
 so a root-owned startup script is the easiest place to do it. If you
 do this, you should also set these environment variables in the startup
 script before invoking postgres:

export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0

 These settings will cause postmaster child processes to run with the
 normal OOM score adjustment of zero, so that the OOM killer can still
 target them at need. You could use some other value for
 PG_OOM_ADJUST_VALUE if you want the child processes to run
 with some other OOM score adjustment. (PG_OOM_ADJUST_VALUE
 can also be omitted, in which case it defaults to zero.) If you do not
 set PG_OOM_ADJUST_FILE, the child processes will run with the
 same OOM score adjustment as the postmaster, which is unwise since the
 whole point is to ensure that the postmaster has a preferential setting.

Linux Huge Pages

 Using huge pages reduces overhead when using large contiguous chunks of
 memory, as PostgreSQL™ does, particularly when
 using large values of shared_buffers. To use this
 feature in PostgreSQL™ you need a kernel
 with CONFIG_HUGETLBFS=y and
 CONFIG_HUGETLB_PAGE=y. You will also have to configure
 the operating system to provide enough huge pages of the desired size.
 The runtime-computed parameter
 shared_memory_size_in_huge_pages reports the number
 of huge pages required. This parameter can be viewed before starting the
 server with a postgres command like:

$ postgres -D $PGDATA -C shared_memory_size_in_huge_pages
3170
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize: 2048 kB
$ ls /sys/kernel/mm/hugepages
hugepages-1048576kB hugepages-2048kB

 In this example the default is 2MB, but you can also explicitly request
 either 2MB or 1GB with huge_page_size to adapt
 the number of pages calculated by
 shared_memory_size_in_huge_pages.

 While we need at least 3170 huge pages in this example,
 a larger setting would be appropriate if other programs on the machine
 also need huge pages.
 We can set this with:

sysctl -w vm.nr_hugepages=3170

 Don't forget to add this setting to /etc/sysctl.conf
 so that it is reapplied after reboots. For non-default huge page sizes,
 we can instead use:

echo 3170 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 It is also possible to provide these settings at boot time using
 kernel parameters such as hugepagesz=2M hugepages=3170.

 Sometimes the kernel is not able to allocate the desired number of huge
 pages immediately due to fragmentation, so it might be necessary
 to repeat the command or to reboot. (Immediately after a reboot, most of
 the machine's memory should be available to convert into huge pages.)
 To verify the huge page allocation situation for a given size, use:

$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 It may also be necessary to give the database server's operating system
 user permission to use huge pages by setting
 vm.hugetlb_shm_group via sysctl, and/or
 give permission to lock memory with ulimit -l.

 The default behavior for huge pages in
 PostgreSQL™ is to use them when possible, with
 the system's default huge page size, and
 to fall back to normal pages on failure. To enforce the use of huge
 pages, you can set huge_pages
 to on in postgresql.conf.
 Note that with this setting PostgreSQL™ will fail to
 start if not enough huge pages are available.

 For a detailed description of the Linux™ huge
 pages feature have a look
 at https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt.

Shutting Down the Server

 There are several ways to shut down the database server.
 Under the hood, they all reduce to sending a signal to the supervisor
 postgres process.

 If you are using a pre-packaged version
 of PostgreSQL™, and you used its provisions
 for starting the server, then you should also use its provisions for
 stopping the server. Consult the package-level documentation for
 details.

 When managing the server directly, you can control the type of shutdown
 by sending different signals to the postgres
 process:

	SIGTERM
	
 This is the Smart Shutdown mode.
 After receiving SIGTERM, the server
 disallows new connections, but lets existing sessions end their
 work normally. It shuts down only after all of the sessions terminate.
 If the server is in recovery when a smart
 shutdown is requested, recovery and streaming replication will be
 stopped only after all regular sessions have terminated.

	SIGINT
	
 This is the Fast Shutdown mode.
 The server disallows new connections and sends all existing
 server processes SIGTERM, which will cause them
 to abort their current transactions and exit promptly. It then
 waits for all server processes to exit and finally shuts down.

	SIGQUIT
	
 This is the Immediate Shutdown mode.
 The server will send SIGQUIT to all child
 processes and wait for them to terminate. If any do not terminate
 within 5 seconds, they will be sent SIGKILL.
 The supervisor server process exits as soon as all child processes have
 exited, without doing normal database shutdown processing.
 This will lead to recovery (by
 replaying the WAL log) upon next start-up. This is recommended
 only in emergencies.

 The pg_ctl(1) program provides a convenient
 interface for sending these signals to shut down the server.
 Alternatively, you can send the signal directly using kill
 on non-Windows systems.
 The PID of the postgres process can be
 found using the ps program, or from the file
 postmaster.pid in the data directory. For
 example, to do a fast shutdown:

$ kill -INT `head -1 /usr/local/pgsql/data/postmaster.pid`

Important

 It is best not to use SIGKILL to shut down the
 server. Doing so will prevent the server from releasing shared memory and
 semaphores. Furthermore, SIGKILL kills
 the postgres process without letting it relay the
 signal to its subprocesses, so it might be necessary to kill the
 individual subprocesses by hand as well.

 To terminate an individual session while allowing other sessions to
 continue, use pg_terminate_backend() (see Table 9.90, “Server Signaling Functions”) or send a
 SIGTERM signal to the child process associated with
 the session.

Upgrading a PostgreSQL™ Cluster

 This section discusses how to upgrade your database data from one
 PostgreSQL™ release to a newer one.

 Current PostgreSQL™ version numbers consist of a
 major and a minor version number. For example, in the version number 10.1,
 the 10 is the major version number and the 1 is the minor version number,
 meaning this would be the first minor release of the major release 10. For
 releases before PostgreSQL™ version 10.0, version
 numbers consist of three numbers, for example, 9.5.3. In those cases, the
 major version consists of the first two digit groups of the version number,
 e.g., 9.5, and the minor version is the third number, e.g., 3, meaning this
 would be the third minor release of the major release 9.5.

 Minor releases never change the internal storage format and are always
 compatible with earlier and later minor releases of the same major version
 number. For example, version 10.1 is compatible with version 10.0 and
 version 10.6. Similarly, for example, 9.5.3 is compatible with 9.5.0,
 9.5.1, and 9.5.6. To update between compatible versions, you simply
 replace the executables while the server is down and restart the server.
 The data directory remains unchanged — minor upgrades are that
 simple.

 For major releases of PostgreSQL™, the
 internal data storage format is subject to change, thus complicating
 upgrades. The traditional method for moving data to a new major version
 is to dump and restore the database, though this can be slow. A
 faster method is pg_upgrade(1). Replication methods are
 also available, as discussed below.
 (If you are using a pre-packaged version
 of PostgreSQL™, it may provide scripts to
 assist with major version upgrades. Consult the package-level
 documentation for details.)

 New major versions also typically introduce some user-visible
 incompatibilities, so application programming changes might be required.
 All user-visible changes are listed in the release notes (Appendix E, Release Notes); pay particular attention to the section
 labeled "Migration". Though you can upgrade from one major version
 to another without upgrading to intervening versions, you should read
 the major release notes of all intervening versions.

 Cautious users will want to test their client applications on the new
 version before switching over fully; therefore, it's often a good idea to
 set up concurrent installations of old and new versions. When
 testing a PostgreSQL™ major upgrade, consider the
 following categories of possible changes:

	Administration
	
 The capabilities available for administrators to monitor and control
 the server often change and improve in each major release.

	SQL
	
 Typically this includes new SQL command capabilities and not changes
 in behavior, unless specifically mentioned in the release notes.

	Library API
	
 Typically libraries like libpq only add new
 functionality, again unless mentioned in the release notes.

	System Catalogs
	
 System catalog changes usually only affect database management tools.

	Server C-language API
	
 This involves changes in the backend function API, which is written
 in the C programming language. Such changes affect code that
 references backend functions deep inside the server.

Upgrading Data via pg_dumpall

 One upgrade method is to dump data from one major version of
 PostgreSQL™ and restore it in another — to do
 this, you must use a logical backup tool like
 pg_dumpall; file system
 level backup methods will not work. (There are checks in place that prevent
 you from using a data directory with an incompatible version of
 PostgreSQL™, so no great harm can be done by
 trying to start the wrong server version on a data directory.)

 It is recommended that you use the pg_dump and
 pg_dumpall programs from the newer
 version of
 PostgreSQL™, to take advantage of enhancements
 that might have been made in these programs. Current releases of the
 dump programs can read data from any server version back to 9.2.

 These instructions assume that your existing installation is under the
 /usr/local/pgsql directory, and that the data area is in
 /usr/local/pgsql/data. Substitute your paths
 appropriately.

	
 If making a backup, make sure that your database is not being updated.
 This does not affect the integrity of the backup, but the changed
 data would of course not be included. If necessary, edit the
 permissions in the file /usr/local/pgsql/data/pg_hba.conf
 (or equivalent) to disallow access from everyone except you.
 See Chapter 21, Client Authentication for additional information on
 access control.

 To back up your database installation, type:

pg_dumpall > outputfile

 To make the backup, you can use the pg_dumpall
 command from the version you are currently running; see the section called “Using pg_dumpall” for more details. For best
 results, however, try to use the pg_dumpall
 command from PostgreSQL™ 16.12,
 since this version contains bug fixes and improvements over older
 versions. While this advice might seem idiosyncratic since you
 haven't installed the new version yet, it is advisable to follow
 it if you plan to install the new version in parallel with the
 old version. In that case you can complete the installation
 normally and transfer the data later. This will also decrease
 the downtime.

	
 Shut down the old server:

pg_ctl stop

 On systems that have PostgreSQL™ started at boot time,
 there is probably a start-up file that will accomplish the same thing. For
 example, on a Red Hat Linux system one
 might find that this works:

/etc/rc.d/init.d/postgresql stop

 See Chapter 19, Server Setup and Operation for details about starting and
 stopping the server.

	
 If restoring from backup, rename or delete the old installation
 directory if it is not version-specific. It is a good idea to
 rename the directory, rather than
 delete it, in case you have trouble and need to revert to it. Keep
 in mind the directory might consume significant disk space. To rename
 the directory, use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

 (Be sure to move the directory as a single unit so relative paths
 remain unchanged.)

	
 Install the new version of PostgreSQL™ as
 outlined in Chapter 17, Installation from Source Code.

	
 Create a new database cluster if needed. Remember that you must
 execute these commands while logged in to the special database user
 account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

	
 Restore your previous pg_hba.conf and any
 postgresql.conf modifications.

	
 Start the database server, again using the special database user
 account:

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

	
 Finally, restore your data from backup with:

/usr/local/pgsql/bin/psql -d postgres -f outputfile

 using the new psql.

 The least downtime can be achieved by installing the new server in
 a different directory and running both the old and the new servers
 in parallel, on different ports. Then you can use something like:

pg_dumpall -p 5432 | psql -d postgres -p 5433

 to transfer your data.

Upgrading Data via pg_upgrade

 The pg_upgrade(1) module allows an installation to
 be migrated in-place from one major PostgreSQL™
 version to another. Upgrades can be performed in minutes,
 particularly with --link mode. It requires steps similar to
 pg_dumpall above, e.g., starting/stopping the server,
 running initdb. The pg_upgrade documentation outlines the necessary steps.

Upgrading Data via Replication

 It is also possible to use logical replication methods to create a standby
 server with the updated version of PostgreSQL™.
 This is possible because logical replication supports
 replication between different major versions of
 PostgreSQL™. The standby can be on the same computer or
 a different computer. Once it has synced up with the primary server
 (running the older version of PostgreSQL™), you can
 switch primaries and make the standby the primary and shut down the older
 database instance. Such a switch-over results in only several seconds
 of downtime for an upgrade.

 This method of upgrading can be performed using the built-in logical
 replication facilities as well as using external logical replication
 systems such as pglogical™,
 Slony™, Londiste™, and
 Bucardo™.

Preventing Server Spoofing

 While the server is running, it is not possible for a malicious user
 to take the place of the normal database server. However, when the
 server is down, it is possible for a local user to spoof the normal
 server by starting their own server. The spoof server could read
 passwords and queries sent by clients, but could not return any data
 because the PGDATA directory would still be secure because
 of directory permissions. Spoofing is possible because any user can
 start a database server; a client cannot identify an invalid server
 unless it is specially configured.

 One way to prevent spoofing of local
 connections is to use a Unix domain socket directory (unix_socket_directories) that has write permission only
 for a trusted local user. This prevents a malicious user from creating
 their own socket file in that directory. If you are concerned that
 some applications might still reference /tmp for the
 socket file and hence be vulnerable to spoofing, during operating system
 startup create a symbolic link /tmp/.s.PGSQL.5432 that points
 to the relocated socket file. You also might need to modify your
 /tmp cleanup script to prevent removal of the symbolic link.

 Another option for local connections is for clients to use
 requirepeer
 to specify the required owner of the server process connected to
 the socket.

 To prevent spoofing on TCP connections, either use
 SSL certificates and make sure that clients check the server's certificate,
 or use GSSAPI encryption (or both, if they're on separate connections).

 To prevent spoofing with SSL, the server
 must be configured to accept only hostssl connections (the section called “The pg_hba.conf File”) and have SSL key and certificate files
 (the section called “Secure TCP/IP Connections with SSL”). The TCP client must connect using
 sslmode=verify-ca or
 verify-full and have the appropriate root certificate
 file installed (the section called “Client Verification of Server Certificates”). Alternatively the
 system CA pool, as defined
 by the SSL implementation, can be used using sslrootcert=system; in
 this case, sslmode=verify-full is forced for safety, since
 it is generally trivial to obtain certificates which are signed by a public
 CA.

 To prevent server spoofing from occurring when using
 scram-sha-256 password authentication
 over a network, you should ensure that you connect to the server using SSL
 and with one of the anti-spoofing methods described in the previous
 paragraph. Additionally, the SCRAM implementation in
 libpq cannot protect the entire authentication
 exchange, but using the channel_binding=require connection
 parameter provides a mitigation against server spoofing. An attacker that
 uses a rogue server to intercept a SCRAM exchange can use offline analysis to
 potentially determine the hashed password from the client.

 To prevent spoofing with GSSAPI, the server must be configured to accept
 only hostgssenc connections
 (the section called “The pg_hba.conf File”) and use gss
 authentication with them. The TCP client must connect
 using gssencmode=require.

Encryption Options

 PostgreSQL™ offers encryption at several
 levels, and provides flexibility in protecting data from disclosure
 due to database server theft, unscrupulous administrators, and
 insecure networks. Encryption might also be required to secure
 sensitive data such as medical records or financial transactions.

	Password Encryption
	
 Database user passwords are stored as hashes (determined by the setting
 password_encryption), so the administrator cannot
 determine the actual password assigned to the user. If SCRAM or MD5
 encryption is used for client authentication, the unencrypted password is
 never even temporarily present on the server because the client encrypts
 it before being sent across the network. SCRAM is preferred, because it
 is an Internet standard and is more secure than the PostgreSQL-specific
 MD5 authentication protocol.

	Encryption For Specific Columns
	
 The pgcrypto module allows certain fields to be
 stored encrypted.
 This is useful if only some of the data is sensitive.
 The client supplies the decryption key and the data is decrypted
 on the server and then sent to the client.

 The decrypted data and the decryption key are present on the
 server for a brief time while it is being decrypted and
 communicated between the client and server. This presents a brief
 moment where the data and keys can be intercepted by someone with
 complete access to the database server, such as the system
 administrator.

	Data Partition Encryption
	
 Storage encryption can be performed at the file system level or the
 block level. Linux file system encryption options include eCryptfs
 and EncFS, while FreeBSD uses PEFS. Block level or full disk
 encryption options include dm-crypt + LUKS on Linux and GEOM
 modules geli and gbde on FreeBSD. Many other operating systems
 support this functionality, including Windows.

 This mechanism prevents unencrypted data from being read from the
 drives if the drives or the entire computer is stolen. This does
 not protect against attacks while the file system is mounted,
 because when mounted, the operating system provides an unencrypted
 view of the data. However, to mount the file system, you need some
 way for the encryption key to be passed to the operating system,
 and sometimes the key is stored somewhere on the host that mounts
 the disk.

	Encrypting Data Across A Network
	
 SSL connections encrypt all data sent across the network: the
 password, the queries, and the data returned. The
 pg_hba.conf file allows administrators to specify
 which hosts can use non-encrypted connections (host)
 and which require SSL-encrypted connections
 (hostssl). Also, clients can specify that they
 connect to servers only via SSL.

 GSSAPI-encrypted connections encrypt all data sent across the network,
 including queries and data returned. (No password is sent across the
 network.) The pg_hba.conf file allows
 administrators to specify which hosts can use non-encrypted connections
 (host) and which require GSSAPI-encrypted connections
 (hostgssenc). Also, clients can specify that they
 connect to servers only on GSSAPI-encrypted connections
 (gssencmode=require).

 Stunnel or
 SSH can also be used to encrypt
 transmissions.

	SSL Host Authentication
	
 It is possible for both the client and server to provide SSL
 certificates to each other. It takes some extra configuration
 on each side, but this provides stronger verification of identity
 than the mere use of passwords. It prevents a computer from
 pretending to be the server just long enough to read the password
 sent by the client. It also helps prevent “man in the middle”
 attacks where a computer between the client and server pretends to
 be the server and reads and passes all data between the client and
 server.

	Client-Side Encryption
	
 If the system administrator for the server's machine cannot be trusted,
 it is necessary
 for the client to encrypt the data; this way, unencrypted data
 never appears on the database server. Data is encrypted on the
 client before being sent to the server, and database results have
 to be decrypted on the client before being used.

Secure TCP/IP Connections with SSL

 PostgreSQL™ has native support for using
 SSL connections to encrypt client/server communications
 for increased security. This requires that
 OpenSSL™ is installed on both client and
 server systems and that support in PostgreSQL™ is
 enabled at build time (see Chapter 17, Installation from Source Code).

 The terms SSL and TLS are often used
 interchangeably to mean a secure encrypted connection using a
 TLS protocol. SSL protocols are the
 precursors to TLS protocols, and the term
 SSL is still used for encrypted connections even though
 SSL protocols are no longer supported.
 SSL is used interchangeably with TLS
 in PostgreSQL™.

Basic Setup

 With SSL support compiled in, the
 PostgreSQL™ server can be started with
 support for encrypted connections using TLS protocols
 enabled by setting the parameter
 ssl to on in
 postgresql.conf. The server will listen for both normal
 and SSL connections on the same TCP port, and will negotiate
 with any connecting client on whether to use SSL. By
 default, this is at the client's option; see the section called “The pg_hba.conf File” about how to set up the server to require
 use of SSL for some or all connections.

 To start in SSL mode, files containing the server certificate
 and private key must exist. By default, these files are expected to be
 named server.crt and server.key, respectively, in
 the server's data directory, but other names and locations can be specified
 using the configuration parameters ssl_cert_file
 and ssl_key_file.

 On Unix systems, the permissions on server.key must
 disallow any access to world or group; achieve this by the command
 chmod 0600 server.key. Alternatively, the file can be
 owned by root and have group read access (that is, 0640
 permissions). That setup is intended for installations where certificate
 and key files are managed by the operating system. The user under which
 the PostgreSQL™ server runs should then be made a
 member of the group that has access to those certificate and key files.

 If the data directory allows group read access then certificate files may
 need to be located outside of the data directory in order to conform to the
 security requirements outlined above. Generally, group access is enabled
 to allow an unprivileged user to backup the database, and in that case the
 backup software will not be able to read the certificate files and will
 likely error.

 If the private key is protected with a passphrase, the
 server will prompt for the passphrase and will not start until it has
 been entered.
 Using a passphrase by default disables the ability to change the server's
 SSL configuration without a server restart, but see ssl_passphrase_command_supports_reload.
 Furthermore, passphrase-protected private keys cannot be used at all
 on Windows.

 The first certificate in server.crt must be the
 server's certificate because it must match the server's private key.
 The certificates of “intermediate” certificate authorities
 can also be appended to the file. Doing this avoids the necessity of
 storing intermediate certificates on clients, assuming the root and
 intermediate certificates were created with v3_ca
 extensions. (This sets the certificate's basic constraint of
 CA to true.)
 This allows easier expiration of intermediate certificates.

 It is not necessary to add the root certificate to
 server.crt. Instead, clients must have the root
 certificate of the server's certificate chain.

OpenSSL Configuration

 PostgreSQL™ reads the system-wide
 OpenSSL™ configuration file. By default, this
 file is named openssl.cnf and is located in the
 directory reported by openssl version -d.
 This default can be overridden by setting environment variable
 OPENSSL_CONF to the name of the desired configuration file.

 OpenSSL™ supports a wide range of ciphers
 and authentication algorithms, of varying strength. While a list of
 ciphers can be specified in the OpenSSL™
 configuration file, you can specify ciphers specifically for use by
 the database server by modifying ssl_ciphers in
 postgresql.conf.

Note

 It is possible to have authentication without encryption overhead by
 using NULL-SHA or NULL-MD5 ciphers. However,
 a man-in-the-middle could read and pass communications between client
 and server. Also, encryption overhead is minimal compared to the
 overhead of authentication. For these reasons NULL ciphers are not
 recommended.

Using Client Certificates

 To require the client to supply a trusted certificate,
 place certificates of the root certificate authorities
 (CAs) you trust in a file in the data
 directory, set the parameter ssl_ca_file in
 postgresql.conf to the new file name, and add the
 authentication option clientcert=verify-ca or
 clientcert=verify-full to the appropriate
 hostssl line(s) in pg_hba.conf.
 A certificate will then be requested from the client during SSL
 connection startup. (See the section called “SSL Support” for a description
 of how to set up certificates on the client.)

 For a hostssl entry with
 clientcert=verify-ca, the server will verify
 that the client's certificate is signed by one of the trusted
 certificate authorities. If clientcert=verify-full
 is specified, the server will not only verify the certificate
 chain, but it will also check whether the username or its mapping
 matches the cn (Common Name) of the provided certificate.
 Note that certificate chain validation is always ensured when the
 cert authentication method is used
 (see the section called “Certificate Authentication”).

 Intermediate certificates that chain up to existing root certificates
 can also appear in the ssl_ca_file file if
 you wish to avoid storing them on clients (assuming the root and
 intermediate certificates were created with v3_ca
 extensions). Certificate Revocation List (CRL) entries are also
 checked if the parameter ssl_crl_file or
 ssl_crl_dir is set.

 The clientcert authentication option is available for
 all authentication methods, but only in pg_hba.conf lines
 specified as hostssl. When clientcert is
 not specified, the server verifies the client certificate against its CA
 file only if a client certificate is presented and the CA is configured.

 There are two approaches to enforce that users provide a certificate during login.

 The first approach makes use of the cert authentication
 method for hostssl entries in pg_hba.conf,
 such that the certificate itself is used for authentication while also
 providing ssl connection security. See the section called “Certificate Authentication” for details.
 (It is not necessary to specify any clientcert options
 explicitly when using the cert authentication method.)
 In this case, the cn (Common Name) provided in
 the certificate is checked against the user name or an applicable mapping.

 The second approach combines any authentication method for hostssl
 entries with the verification of client certificates by setting the
 clientcert authentication option to verify-ca
 or verify-full. The former option only enforces that
 the certificate is valid, while the latter also ensures that the
 cn (Common Name) in the certificate matches
 the user name or an applicable mapping.

SSL Server File Usage

 Table 19.2, “SSL Server File Usage” summarizes the files that are
 relevant to the SSL setup on the server. (The shown file names are default
 names. The locally configured names could be different.)

Table 19.2. SSL Server File Usage
	File	Contents	Effect
	ssl_cert_file ($PGDATA/server.crt)	server certificate	sent to client to indicate server's identity
	ssl_key_file ($PGDATA/server.key)	server private key	proves server certificate was sent by the owner; does not indicate
 certificate owner is trustworthy
	ssl_ca_file	trusted certificate authorities	checks that client certificate is
 signed by a trusted certificate authority
	ssl_crl_file	certificates revoked by certificate authorities	client certificate must not be on this list

 The server reads these files at server start and whenever the server
 configuration is reloaded. On Windows
 systems, they are also re-read whenever a new backend process is spawned
 for a new client connection.

 If an error in these files is detected at server start, the server will
 refuse to start. But if an error is detected during a configuration
 reload, the files are ignored and the old SSL configuration continues to
 be used. On Windows systems, if an error in
 these files is detected at backend start, that backend will be unable to
 establish an SSL connection. In all these cases, the error condition is
 reported in the server log.

Creating Certificates

 To create a simple self-signed certificate for the server, valid for 365
 days, use the following OpenSSL™ command,
 replacing dbhost.yourdomain.com with the
 server's host name:

openssl req -new -x509 -days 365 -nodes -text -out server.crt \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"

 Then do:

chmod og-rwx server.key

 because the server will reject the file if its permissions are more
 liberal than this.
 For more details on how to create your server private key and
 certificate, refer to the OpenSSL™ documentation.

 While a self-signed certificate can be used for testing, a certificate
 signed by a certificate authority (CA) (usually an
 enterprise-wide root CA) should be used in production.

 To create a server certificate whose identity can be validated
 by clients, first create a certificate signing request
 (CSR) and a public/private key file:

openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key

 Then, sign the request with the key to create a root certificate
 authority (using the default OpenSSL™
 configuration file location on Linux™):

openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

 Finally, create a server certificate signed by the new root certificate
 authority:

openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key

openssl x509 -req -in server.csr -text -days 365 \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out server.crt

 server.crt and server.key
 should be stored on the server, and root.crt should
 be stored on the client so the client can verify that the server's leaf
 certificate was signed by its trusted root certificate.
 root.key should be stored offline for use in
 creating future certificates.

 It is also possible to create a chain of trust that includes
 intermediate certificates:

root
openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key
openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

intermediate
openssl req -new -nodes -text -out intermediate.csr \
 -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com"
chmod og-rwx intermediate.key
openssl x509 -req -in intermediate.csr -text -days 1825 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out intermediate.crt

leaf
openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
 -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \
 -out server.crt

 server.crt and
 intermediate.crt should be concatenated
 into a certificate file bundle and stored on the server.
 server.key should also be stored on the server.
 root.crt should be stored on the client so
 the client can verify that the server's leaf certificate was signed
 by a chain of certificates linked to its trusted root certificate.
 root.key and intermediate.key
 should be stored offline for use in creating future certificates.

Secure TCP/IP Connections with GSSAPI Encryption

 PostgreSQL™ also has native support for
 using GSSAPI to encrypt client/server communications for
 increased security. Support requires that a GSSAPI
 implementation (such as MIT Kerberos) is installed on both client and server
 systems, and that support in PostgreSQL™ is
 enabled at build time (see Chapter 17, Installation from Source Code).

Basic Setup

 The PostgreSQL™ server will listen for both
 normal and GSSAPI-encrypted connections on the same TCP
 port, and will negotiate with any connecting client whether to
 use GSSAPI for encryption (and for authentication). By
 default, this decision is up to the client (which means it can be
 downgraded by an attacker); see the section called “The pg_hba.conf File” about
 setting up the server to require the use of GSSAPI for
 some or all connections.

 When using GSSAPI for encryption, it is common to
 use GSSAPI for authentication as well, since the
 underlying mechanism will determine both client and server identities
 (according to the GSSAPI implementation) in any
 case. But this is not required;
 another PostgreSQL™ authentication method
 can be chosen to perform additional verification.

 Other than configuration of the negotiation
 behavior, GSSAPI encryption requires no setup beyond
 that which is necessary for GSSAPI authentication. (For more information
 on configuring that, see the section called “GSSAPI Authentication”.)

Secure TCP/IP Connections with SSH Tunnels

 It is possible to use SSH to encrypt the network
 connection between clients and a
 PostgreSQL™ server. Done properly, this
 provides an adequately secure network connection, even for non-SSL-capable
 clients.

 First make sure that an SSH server is
 running properly on the same machine as the
 PostgreSQL™ server and that you can log in using
 ssh as some user; you then can establish a
 secure tunnel to the remote server. A secure tunnel listens on a
 local port and forwards all traffic to a port on the remote machine.
 Traffic sent to the remote port can arrive on its
 localhost address, or different bind
 address if desired; it does not appear as coming from your
 local machine. This command creates a secure tunnel from the client
 machine to the remote machine foo.com:

ssh -L 63333:localhost:5432 joe@foo.com

 The first number in the -L argument, 63333, is the
 local port number of the tunnel; it can be any unused port. (IANA
 reserves ports 49152 through 65535 for private use.) The name or IP
 address after this is the remote bind address you are connecting to,
 i.e., localhost, which is the default. The second
 number, 5432, is the remote end of the tunnel, e.g., the port number
 your database server is using. In order to connect to the database
 server using this tunnel, you connect to port 63333 on the local
 machine:

psql -h localhost -p 63333 postgres

 To the database server it will then look as though you are
 user joe on host foo.com
 connecting to the localhost bind address, and it
 will use whatever authentication procedure was configured for
 connections by that user to that bind address. Note that the server will not
 think the connection is SSL-encrypted, since in fact it is not
 encrypted between the
 SSH server and the
 PostgreSQL™ server. This should not pose any
 extra security risk because they are on the same machine.

 In order for the
 tunnel setup to succeed you must be allowed to connect via
 ssh as joe@foo.com, just
 as if you had attempted to use ssh to create a
 terminal session.

 You could also have set up port forwarding as

ssh -L 63333:foo.com:5432 joe@foo.com

 but then the database server will see the connection as coming in
 on its foo.com bind address, which is not opened by
 the default setting listen_addresses =
 'localhost'. This is usually not what you want.

 If you have to “hop” to the database server via some
 login host, one possible setup could look like this:

ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

 Note that this way the connection
 from shell.foo.com
 to db.foo.com will not be encrypted by the SSH
 tunnel.
 SSH offers quite a few configuration possibilities when the network
 is restricted in various ways. Please refer to the SSH
 documentation for details.

Tip

 Several other applications exist that can provide secure tunnels using
 a procedure similar in concept to the one just described.

Registering Event Log on Windows

 To register a Windows
 event log library with the operating system,
 issue this command:

regsvr32 pgsql_library_directory/pgevent.dll

 This creates registry entries used by the event viewer, under the default
 event source named PostgreSQL.

 To specify a different event source name (see
 event_source), use the /n
 and /i options:

regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll

 To unregister the event log library from
 the operating system, issue this command:

regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll

Note

 To enable event logging in the database server, modify
 log_destination to include
 eventlog in postgresql.conf.

Chapter 20. Server Configuration

 There are many configuration parameters that affect the behavior of
 the database system. In the first section of this chapter we
 describe how to interact with configuration parameters. The subsequent sections
 discuss each parameter in detail.

Setting Parameters

Parameter Names and Values

 All parameter names are case-insensitive. Every parameter takes a
 value of one of five types: boolean, string, integer, floating point,
 or enumerated (enum). The type determines the syntax for setting the
 parameter:

	
 Boolean:
 Values can be written as
 on,
 off,
 true,
 false,
 yes,
 no,
 1,
 0
 (all case-insensitive) or any unambiguous prefix of one of these.

	
 String:
 In general, enclose the value in single quotes, doubling any single
 quotes within the value. Quotes can usually be omitted if the value
 is a simple number or identifier, however.
 (Values that match an SQL keyword require quoting in some contexts.)

	
 Numeric (integer and floating point):
 Numeric parameters can be specified in the customary integer and
 floating-point formats; fractional values are rounded to the nearest
 integer if the parameter is of integer type. Integer parameters
 additionally accept hexadecimal input (beginning
 with 0x) and octal input (beginning
 with 0), but these formats cannot have a fraction.
 Do not use thousands separators.
 Quotes are not required, except for hexadecimal input.

	
 Numeric with Unit:
 Some numeric parameters have an implicit unit, because they describe
 quantities of memory or time. The unit might be bytes, kilobytes, blocks
 (typically eight kilobytes), milliseconds, seconds, or minutes.
 An unadorned numeric value for one of these settings will use the
 setting's default unit, which can be learned from
 pg_settings.unit.
 For convenience, settings can be given with a unit specified explicitly,
 for example '120 ms' for a time value, and they will be
 converted to whatever the parameter's actual unit is. Note that the
 value must be written as a string (with quotes) to use this feature.
 The unit name is case-sensitive, and there can be whitespace between
 the numeric value and the unit.

	
 Valid memory units are B (bytes),
 kB (kilobytes),
 MB (megabytes), GB
 (gigabytes), and TB (terabytes).
 The multiplier for memory units is 1024, not 1000.

	
 Valid time units are
 us (microseconds),
 ms (milliseconds),
 s (seconds), min (minutes),
 h (hours), and d (days).

 If a fractional value is specified with a unit, it will be rounded
 to a multiple of the next smaller unit if there is one.
 For example, 30.1 GB will be converted
 to 30822 MB not 32319628902 B.
 If the parameter is of integer type, a final rounding to integer
 occurs after any unit conversion.

	
 Enumerated:
 Enumerated-type parameters are written in the same way as string
 parameters, but are restricted to have one of a limited set of
 values. The values allowable for such a parameter can be found from
 pg_settings.enumvals.
 Enum parameter values are case-insensitive.

Parameter Interaction via the Configuration File

 The most fundamental way to set these parameters is to edit the file
 postgresql.conf,
 which is normally kept in the data directory. A default copy is
 installed when the database cluster directory is initialized.
 An example of what this file might look like is:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

 One parameter is specified per line. The equal sign between name and
 value is optional. Whitespace is insignificant (except within a quoted
 parameter value) and blank lines are
 ignored. Hash marks (#) designate the remainder
 of the line as a comment. Parameter values that are not simple
 identifiers or numbers must be single-quoted. To embed a single
 quote in a parameter value, write either two quotes (preferred)
 or backslash-quote.
 If the file contains multiple entries for the same parameter,
 all but the last one are ignored.

 Parameters set in this way provide default values for the cluster.
 The settings seen by active sessions will be these values unless they
 are overridden. The following sections describe ways in which the
 administrator or user can override these defaults.

 The configuration file is reread whenever the main server process
 receives a SIGHUP signal; this signal is most easily
 sent by running pg_ctl reload from the command line or by
 calling the SQL function pg_reload_conf(). The main
 server process also propagates this signal to all currently running
 server processes, so that existing sessions also adopt the new values
 (this will happen after they complete any currently-executing client
 command). Alternatively, you can
 send the signal to a single server process directly. Some parameters
 can only be set at server start; any changes to their entries in the
 configuration file will be ignored until the server is restarted.
 Invalid parameter settings in the configuration file are likewise
 ignored (but logged) during SIGHUP processing.

 In addition to postgresql.conf,
 a PostgreSQL™ data directory contains a file
 postgresql.auto.conf,
 which has the same format as postgresql.conf but
 is intended to be edited automatically, not manually. This file holds
 settings provided through the ALTER SYSTEM command.
 This file is read whenever postgresql.conf is,
 and its settings take effect in the same way. Settings
 in postgresql.auto.conf override those
 in postgresql.conf.

 External tools may also
 modify postgresql.auto.conf. It is not
 recommended to do this while the server is running, since a
 concurrent ALTER SYSTEM command could overwrite
 such changes. Such tools might simply append new settings to the end,
 or they might choose to remove duplicate settings and/or comments
 (as ALTER SYSTEM will).

 The system view
 pg_file_settings
 can be helpful for pre-testing changes to the configuration files, or for
 diagnosing problems if a SIGHUP signal did not have the
 desired effects.

Parameter Interaction via SQL

 PostgreSQL™ provides three SQL
 commands to establish configuration defaults.
 The already-mentioned ALTER SYSTEM command
 provides an SQL-accessible means of changing global defaults; it is
 functionally equivalent to editing postgresql.conf.
 In addition, there are two commands that allow setting of defaults
 on a per-database or per-role basis:

	
 The ALTER DATABASE command allows global
 settings to be overridden on a per-database basis.

	
 The ALTER ROLE command allows both global and
 per-database settings to be overridden with user-specific values.

 Values set with ALTER DATABASE and ALTER ROLE
 are applied only when starting a fresh database session. They
 override values obtained from the configuration files or server
 command line, and constitute defaults for the rest of the session.
 Note that some settings cannot be changed after server start, and
 so cannot be set with these commands (or the ones listed below).

 Once a client is connected to the database, PostgreSQL™
 provides two additional SQL commands (and equivalent functions) to
 interact with session-local configuration settings:

	
 The SHOW command allows inspection of the
 current value of any parameter. The corresponding SQL function is
 current_setting(setting_name text)
 (see the section called “Configuration Settings Functions”).

	
 The SET command allows modification of the
 current value of those parameters that can be set locally to a
 session; it has no effect on other sessions.
 Many parameters can be set this way by any user, but some can
 only be set by superusers and users who have been
 granted SET privilege on that parameter.
 The corresponding SQL function is
 set_config(setting_name, new_value, is_local)
 (see the section called “Configuration Settings Functions”).

 In addition, the system view pg_settings can be
 used to view and change session-local values:

	
 Querying this view is similar to using SHOW ALL but
 provides more detail. It is also more flexible, since it's possible
 to specify filter conditions or join against other relations.

	
 Using UPDATE on this view, specifically
 updating the setting column, is the equivalent
 of issuing SET commands. For example, the equivalent of

SET configuration_parameter TO DEFAULT;

 is:

UPDATE pg_settings SET setting = reset_val WHERE name = 'configuration_parameter';

Parameter Interaction via the Shell

 In addition to setting global defaults or attaching
 overrides at the database or role level, you can pass settings to
 PostgreSQL™ via shell facilities.
 Both the server and libpq client library
 accept parameter values via the shell.

	
 During server startup, parameter settings can be
 passed to the postgres command via the
 -c command-line parameter. For example,

postgres -c log_connections=yes -c log_destination='syslog'

 Settings provided in this way override those set via
 postgresql.conf or ALTER SYSTEM,
 so they cannot be changed globally without restarting the server.

	
 When starting a client session via libpq,
 parameter settings can be
 specified using the PGOPTIONS environment variable.
 Settings established in this way constitute defaults for the life
 of the session, but do not affect other sessions.
 For historical reasons, the format of PGOPTIONS is
 similar to that used when launching the postgres
 command; specifically, the -c flag must be specified.
 For example,

env PGOPTIONS="-c geqo=off -c statement_timeout=5min" psql

 Other clients and libraries might provide their own mechanisms,
 via the shell or otherwise, that allow the user to alter session
 settings without direct use of SQL commands.

Managing Configuration File Contents

 PostgreSQL™ provides several features for breaking
 down complex postgresql.conf files into sub-files.
 These features are especially useful when managing multiple servers
 with related, but not identical, configurations.

 In addition to individual parameter settings,
 the postgresql.conf file can contain include
 directives, which specify another file to read and process as if
 it were inserted into the configuration file at this point. This
 feature allows a configuration file to be divided into physically
 separate parts. Include directives simply look like:

include 'filename'

 If the file name is not an absolute path, it is taken as relative to
 the directory containing the referencing configuration file.
 Inclusions can be nested.

 There is also an include_if_exists directive, which acts
 the same as the include directive, except
 when the referenced file does not exist or cannot be read. A regular
 include will consider this an error condition, but
 include_if_exists merely logs a message and continues
 processing the referencing configuration file.

 The postgresql.conf file can also contain
 include_dir directives, which specify an entire
 directory of configuration files to include. These look like

include_dir 'directory'

 Non-absolute directory names are taken as relative to the directory
 containing the referencing configuration file. Within the specified
 directory, only non-directory files whose names end with the
 suffix .conf will be included. File names that
 start with the . character are also ignored, to
 prevent mistakes since such files are hidden on some platforms. Multiple
 files within an include directory are processed in file name order
 (according to C locale rules, i.e., numbers before letters, and
 uppercase letters before lowercase ones).

 Include files or directories can be used to logically separate portions
 of the database configuration, rather than having a single large
 postgresql.conf file. Consider a company that has two
 database servers, each with a different amount of memory. There are
 likely elements of the configuration both will share, for things such
 as logging. But memory-related parameters on the server will vary
 between the two. And there might be server specific customizations,
 too. One way to manage this situation is to break the custom
 configuration changes for your site into three files. You could add
 this to the end of your postgresql.conf file to include
 them:

include 'shared.conf'
include 'memory.conf'
include 'server.conf'

 All systems would have the same shared.conf. Each
 server with a particular amount of memory could share the
 same memory.conf; you might have one for all servers
 with 8GB of RAM, another for those having 16GB. And
 finally server.conf could have truly server-specific
 configuration information in it.

 Another possibility is to create a configuration file directory and
 put this information into files there. For example, a conf.d
 directory could be referenced at the end of postgresql.conf:

include_dir 'conf.d'

 Then you could name the files in the conf.d directory
 like this:

00shared.conf
01memory.conf
02server.conf

 This naming convention establishes a clear order in which these
 files will be loaded. This is important because only the last
 setting encountered for a particular parameter while the server is
 reading configuration files will be used. In this example,
 something set in conf.d/02server.conf would override a
 value set in conf.d/01memory.conf.

 You might instead use this approach to naming the files
 descriptively:

00shared.conf
01memory-8GB.conf
02server-foo.conf

 This sort of arrangement gives a unique name for each configuration file
 variation. This can help eliminate ambiguity when several servers have
 their configurations all stored in one place, such as in a version
 control repository. (Storing database configuration files under version
 control is another good practice to consider.)

File Locations

 In addition to the postgresql.conf file
 already mentioned, PostgreSQL™ uses
 two other manually-edited configuration files, which control
 client authentication (their use is discussed in Chapter 21, Client Authentication). By default, all three
 configuration files are stored in the database cluster's data
 directory. The parameters described in this section allow the
 configuration files to be placed elsewhere. (Doing so can ease
 administration. In particular it is often easier to ensure that
 the configuration files are properly backed-up when they are
 kept separate.)

	data_directory (string)

	
 Specifies the directory to use for data storage.
 This parameter can only be set at server start.

	config_file (string)

	
 Specifies the main server configuration file
 (customarily called postgresql.conf).
 This parameter can only be set on the postgres command line.

	hba_file (string)

	
 Specifies the configuration file for host-based authentication
 (customarily called pg_hba.conf).
 This parameter can only be set at server start.

	ident_file (string)

	
 Specifies the configuration file for user name mapping
 (customarily called pg_ident.conf).
 This parameter can only be set at server start.
 See also the section called “User Name Maps”.

	external_pid_file (string)

	
 Specifies the name of an additional process-ID (PID) file that the
 server should create for use by server administration programs.
 This parameter can only be set at server start.

 In a default installation, none of the above parameters are set
 explicitly. Instead, the
 data directory is specified by the -D command-line
 option or the PGDATA environment variable, and the
 configuration files are all found within the data directory.

 If you wish to keep the configuration files elsewhere than the
 data directory, the postgres -D
 command-line option or PGDATA environment variable
 must point to the directory containing the configuration files,
 and the data_directory parameter must be set in
 postgresql.conf (or on the command line) to show
 where the data directory is actually located. Notice that
 data_directory overrides -D and
 PGDATA for the location
 of the data directory, but not for the location of the configuration
 files.

 If you wish, you can specify the configuration file names and locations
 individually using the parameters config_file,
 hba_file and/or ident_file.
 config_file can only be specified on the
 postgres command line, but the others can be
 set within the main configuration file. If all three parameters plus
 data_directory are explicitly set, then it is not necessary
 to specify -D or PGDATA.

 When setting any of these parameters, a relative path will be interpreted
 with respect to the directory in which postgres
 is started.

Connections and Authentication

Connection Settings

	listen_addresses (string)

	
 Specifies the TCP/IP address(es) on which the server is
 to listen for connections from client applications.
 The value takes the form of a comma-separated list of host names
 and/or numeric IP addresses. The special entry *
 corresponds to all available IP interfaces. The entry
 0.0.0.0 allows listening for all IPv4 addresses and
 :: allows listening for all IPv6 addresses.
 If the list is empty, the server does not listen on any IP interface
 at all, in which case only Unix-domain sockets can be used to connect
 to it. If the list is not empty, the server will start if it
 can listen on at least one TCP/IP address. A warning will be
 emitted for any TCP/IP address which cannot be opened.
 The default value is localhost,
 which allows only local TCP/IP “loopback” connections to be
 made.

 While client authentication (Chapter 21, Client Authentication) allows fine-grained control
 over who can access the server, listen_addresses
 controls which interfaces accept connection attempts, which
 can help prevent repeated malicious connection requests on
 insecure network interfaces. This parameter can only be set
 at server start.

	port (integer)

	
 The TCP port the server listens on; 5432 by default. Note that the
 same port number is used for all IP addresses the server listens on.
 This parameter can only be set at server start.

	max_connections (integer)

	
 Determines the maximum number of concurrent connections to the
 database server. The default is typically 100 connections, but
 might be less if your kernel settings will not support it (as
 determined during initdb). This parameter can
 only be set at server start.

 When running a standby server, you must set this parameter to the
 same or higher value than on the primary server. Otherwise, queries
 will not be allowed in the standby server.

	reserved_connections (integer)

	
 Determines the number of connection “slots” that are
 reserved for connections by roles with privileges of the
 pg_use_reserved_connections
 role. Whenever the number of free connection slots is greater than
 superuser_reserved_connections but less than or
 equal to the sum of superuser_reserved_connections
 and reserved_connections, new connections will be
 accepted only for superusers and roles with privileges of
 pg_use_reserved_connections. If
 superuser_reserved_connections or fewer connection
 slots are available, new connections will be accepted only for
 superusers.

 The default value is zero connections. The value must be less than
 max_connections minus
 superuser_reserved_connections. This parameter can
 only be set at server start.

	superuser_reserved_connections
 (integer)

	
 Determines the number of connection “slots” that
 are reserved for connections by PostgreSQL™
 superusers. At most max_connections
 connections can ever be active simultaneously. Whenever the
 number of active concurrent connections is at least
 max_connections minus
 superuser_reserved_connections, new
 connections will be accepted only for superusers. The connection slots
 reserved by this parameter are intended as final reserve for emergency
 use after the slots reserved by
 reserved_connections have been exhausted.

 The default value is three connections. The value must be less
 than max_connections minus
 reserved_connections.
 This parameter can only be set at server start.

	unix_socket_directories (string)

	
 Specifies the directory of the Unix-domain socket(s) on which the
 server is to listen for connections from client applications.
 Multiple sockets can be created by listing multiple directories
 separated by commas. Whitespace between entries is
 ignored; surround a directory name with double quotes if you need
 to include whitespace or commas in the name.
 An empty value
 specifies not listening on any Unix-domain sockets, in which case
 only TCP/IP sockets can be used to connect to the server.

 A value that starts with @ specifies that a
 Unix-domain socket in the abstract namespace should be created
 (currently supported on Linux only). In that case, this value
 does not specify a “directory” but a prefix from which
 the actual socket name is computed in the same manner as for the
 file-system namespace. While the abstract socket name prefix can be
 chosen freely, since it is not a file-system location, the convention
 is to nonetheless use file-system-like values such as
 @/tmp.

 The default value is normally
 /tmp, but that can be changed at build time.
 On Windows, the default is empty, which means no Unix-domain socket is
 created by default.
 This parameter can only be set at server start.

 In addition to the socket file itself, which is named
 .s.PGSQL.nnnn where
 nnnn is the server's port number, an ordinary file
 named .s.PGSQL.nnnn.lock will be
 created in each of the unix_socket_directories directories.
 Neither file should ever be removed manually.
 For sockets in the abstract namespace, no lock file is created.

	unix_socket_group (string)

	
 Sets the owning group of the Unix-domain socket(s). (The owning
 user of the sockets is always the user that starts the
 server.) In combination with the parameter
 unix_socket_permissions this can be used as
 an additional access control mechanism for Unix-domain connections.
 By default this is the empty string, which uses the default
 group of the server user. This parameter can only be set at
 server start.

 This parameter is not supported on Windows. Any setting will be
 ignored. Also, sockets in the abstract namespace have no file owner,
 so this setting is also ignored in that case.

	unix_socket_permissions (integer)

	
 Sets the access permissions of the Unix-domain socket(s). Unix-domain
 sockets use the usual Unix file system permission set.
 The parameter value is expected to be a numeric mode
 specified in the format accepted by the
 chmod and umask
 system calls. (To use the customary octal format the number
 must start with a 0 (zero).)

 The default permissions are 0777, meaning
 anyone can connect. Reasonable alternatives are
 0770 (only user and group, see also
 unix_socket_group) and 0700
 (only user). (Note that for a Unix-domain socket, only write
 permission matters, so there is no point in setting or revoking
 read or execute permissions.)

 This access control mechanism is independent of the one
 described in Chapter 21, Client Authentication.

 This parameter can only be set at server start.

 This parameter is irrelevant on systems, notably Solaris as of Solaris
 10, that ignore socket permissions entirely. There, one can achieve a
 similar effect by pointing unix_socket_directories to a
 directory having search permission limited to the desired audience.

 Sockets in the abstract namespace have no file permissions, so this
 setting is also ignored in that case.

	bonjour (boolean)

	
 Enables advertising the server's existence via
 Bonjour™. The default is off.
 This parameter can only be set at server start.

	bonjour_name (string)

	
 Specifies the Bonjour™ service
 name. The computer name is used if this parameter is set to the
 empty string '' (which is the default). This parameter is
 ignored if the server was not compiled with
 Bonjour™ support.
 This parameter can only be set at server start.

TCP Settings

	tcp_keepalives_idle (integer)

	
 Specifies the amount of time with no network activity after which
 the operating system should send a TCP keepalive message to the client.
 If this value is specified without units, it is taken as seconds.
 A value of 0 (the default) selects the operating system's default.
 On Windows, setting a value of 0 will set this parameter to 2 hours,
 since Windows does not provide a way to read the system default value.
 This parameter is supported only on systems that support
 TCP_KEEPIDLE or an equivalent socket option, and on
 Windows; on other systems, it must be zero.
 In sessions connected via a Unix-domain socket, this parameter is
 ignored and always reads as zero.

	tcp_keepalives_interval (integer)

	
 Specifies the amount of time after which a TCP keepalive message
 that has not been acknowledged by the client should be retransmitted.
 If this value is specified without units, it is taken as seconds.
 A value of 0 (the default) selects the operating system's default.
 On Windows, setting a value of 0 will set this parameter to 1 second,
 since Windows does not provide a way to read the system default value.
 This parameter is supported only on systems that support
 TCP_KEEPINTVL or an equivalent socket option, and on
 Windows; on other systems, it must be zero.
 In sessions connected via a Unix-domain socket, this parameter is
 ignored and always reads as zero.

	tcp_keepalives_count (integer)

	
 Specifies the number of TCP keepalive messages that can be lost before
 the server's connection to the client is considered dead.
 A value of 0 (the default) selects the operating system's default.
 This parameter is supported only on systems that support
 TCP_KEEPCNT or an equivalent socket option (which does not include Windows);
 on other systems, it must be zero.
 In sessions connected via a Unix-domain socket, this parameter is
 ignored and always reads as zero.

	tcp_user_timeout (integer)

	
 Specifies the amount of time that transmitted data may
 remain unacknowledged before the TCP connection is forcibly closed.
 If this value is specified without units, it is taken as milliseconds.
 A value of 0 (the default) selects the operating system's default.
 This parameter is supported only on systems that support
 TCP_USER_TIMEOUT (which does not include Windows); on other systems, it must be zero.
 In sessions connected via a Unix-domain socket, this parameter is
 ignored and always reads as zero.

	client_connection_check_interval (integer)

	
 Sets the time interval between optional checks that the client is still
 connected, while running queries. The check is performed by polling
 the socket, and allows long running queries to be aborted sooner if
 the kernel reports that the connection is closed.

 This option relies on kernel events exposed by Linux, macOS, illumos
 and the BSD family of operating systems, and is not currently available
 on other systems.

 If the value is specified without units, it is taken as milliseconds.
 The default value is 0, which disables connection
 checks. Without connection checks, the server will detect the loss of
 the connection only at the next interaction with the socket, when it
 waits for, receives or sends data.

 For the kernel itself to detect lost TCP connections reliably and within
 a known timeframe in all scenarios including network failure, it may
 also be necessary to adjust the TCP keepalive settings of the operating
 system, or the tcp_keepalives_idle,
 tcp_keepalives_interval and
 tcp_keepalives_count settings of
 PostgreSQL™.

Authentication

	authentication_timeout (integer)

	
 Maximum amount of time allowed to complete client authentication. If a
 would-be client has not completed the authentication protocol in
 this much time, the server closes the connection. This prevents
 hung clients from occupying a connection indefinitely.
 If this value is specified without units, it is taken as seconds.
 The default is one minute (1m).
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	password_encryption (enum)

	
 When a password is specified in CREATE ROLE(7) or
 ALTER ROLE(7), this parameter determines the
 algorithm to use to encrypt the password. Possible values are
 scram-sha-256, which will encrypt the password with
 SCRAM-SHA-256, and md5, which stores the password
 as an MD5 hash. The default is scram-sha-256.

 Note that older clients might lack support for the SCRAM authentication
 mechanism, and hence not work with passwords encrypted with
 SCRAM-SHA-256. See the section called “Password Authentication” for more details.

	scram_iterations (integer)

	
 The number of computational iterations to be performed when encrypting
 a password using SCRAM-SHA-256. The default is 4096.
 A higher number of iterations provides additional protection against
 brute-force attacks on stored passwords, but makes authentication
 slower. Changing the value has no effect on existing passwords
 encrypted with SCRAM-SHA-256 as the iteration count is fixed at the
 time of encryption. In order to make use of a changed value, a new
 password must be set.

	krb_server_keyfile (string)

	
 Sets the location of the server's Kerberos key file. The default is
 FILE:/usr/local/pgsql/etc/krb5.keytab
 (where the directory part is whatever was specified
 as sysconfdir at build time; use
 pg_config --sysconfdir to determine that).
 If this parameter is set to an empty string, it is ignored and a
 system-dependent default is used.
 This parameter can only be set in the
 postgresql.conf file or on the server command line.
 See the section called “GSSAPI Authentication” for more information.

	krb_caseins_users (boolean)

	
 Sets whether GSSAPI user names should be treated
 case-insensitively.
 The default is off (case sensitive). This parameter can only be
 set in the postgresql.conf file or on the server command line.

	gss_accept_delegation (boolean)

	
 Sets whether GSSAPI delegation should be accepted from the client.
 The default is off meaning credentials from the client will
 not be accepted. Changing this to on will make the server
 accept credentials delegated to it from the client. This parameter can only be
 set in the postgresql.conf file or on the server command line.

	db_user_namespace (boolean)

	
 This parameter enables per-database user names. It is off by default.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 If this is on, you should create users as username@dbname.
 When username is passed by a connecting client,
 @ and the database name are appended to the user
 name and that database-specific user name is looked up by the
 server. Note that when you create users with names containing
 @ within the SQL environment, you will need to
 quote the user name.

 With this parameter enabled, you can still create ordinary global
 users. Simply append @ when specifying the user
 name in the client, e.g., joe@. The @
 will be stripped off before the user name is looked up by the
 server.

 db_user_namespace causes the client's and
 server's user name representation to differ.
 Authentication checks are always done with the server's user name
 so authentication methods must be configured for the
 server's user name, not the client's. Because
 md5 uses the user name as salt on both the
 client and server, md5 cannot be used with
 db_user_namespace.

Note

 This feature is intended as a temporary measure until a
 complete solution is found. At that time, this option will
 be removed.

SSL

 See the section called “Secure TCP/IP Connections with SSL” for more information about setting up
 SSL. The configuration parameters for controlling
 transfer encryption using TLS protocols are named
 ssl for historic reasons, even though support for
 the SSL protocol has been deprecated.
 SSL is in this context used interchangeably with
 TLS.

	ssl (boolean)

	
 Enables SSL connections.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is off.

	ssl_ca_file (string)

	
 Specifies the name of the file containing the SSL server certificate
 authority (CA).
 Relative paths are relative to the data directory.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is empty, meaning no CA file is loaded,
 and client certificate verification is not performed.

	ssl_cert_file (string)

	
 Specifies the name of the file containing the SSL server certificate.
 Relative paths are relative to the data directory.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is server.crt.

	ssl_crl_file (string)

	
 Specifies the name of the file containing the SSL client certificate
 revocation list (CRL).
 Relative paths are relative to the data directory.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is empty, meaning no CRL file is loaded (unless
 ssl_crl_dir is set).

	ssl_crl_dir (string)

	
 Specifies the name of the directory containing the SSL client
 certificate revocation list (CRL). Relative paths are relative to the
 data directory. This parameter can only be set in
 the postgresql.conf file or on the server command
 line. The default is empty, meaning no CRLs are used (unless
 ssl_crl_file is set).

 The directory needs to be prepared with the
 OpenSSL™ command
 openssl rehash or c_rehash. See
 its documentation for details.

 When using this setting, CRLs in the specified directory are loaded
 on-demand at connection time. New CRLs can be added to the directory
 and will be used immediately. This is unlike ssl_crl_file, which causes the CRL in the file to be
 loaded at server start time or when the configuration is reloaded.
 Both settings can be used together.

	ssl_key_file (string)

	
 Specifies the name of the file containing the SSL server private key.
 Relative paths are relative to the data directory.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is server.key.

	ssl_ciphers (string)

	
 Specifies a list of SSL cipher suites that are
 allowed to be used by SSL connections. See the
 ciphers
 manual page in the OpenSSL™ package for the
 syntax of this setting and a list of supported values. Only
 connections using TLS version 1.2 and lower are affected. There is
 currently no setting that controls the cipher choices used by TLS
 version 1.3 connections. The default value is
 HIGH:MEDIUM:+3DES:!aNULL. The default is usually a
 reasonable choice unless you have specific security requirements.

 This parameter can only be set in the
 postgresql.conf file or on the server command
 line.

 Explanation of the default value:

	HIGH
	
 Cipher suites that use ciphers from HIGH group (e.g.,
 AES, Camellia, 3DES)

	MEDIUM
	
 Cipher suites that use ciphers from MEDIUM group
 (e.g., RC4, SEED)

	+3DES
	
 The OpenSSL™ default order for
 HIGH is problematic because it orders 3DES
 higher than AES128. This is wrong because 3DES offers less
 security than AES128, and it is also much slower.
 +3DES reorders it after all other
 HIGH and MEDIUM ciphers.

	!aNULL
	
 Disables anonymous cipher suites that do no authentication. Such
 cipher suites are vulnerable to MITM attacks and
 therefore should not be used.

 Available cipher suite details will vary across
 OpenSSL™ versions. Use the command
 openssl ciphers -v 'HIGH:MEDIUM:+3DES:!aNULL' to
 see actual details for the currently installed
 OpenSSL™ version. Note that this list is
 filtered at run time based on the server key type.

	ssl_prefer_server_ciphers (boolean)

	
 Specifies whether to use the server's SSL cipher preferences, rather
 than the client's.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is on.

 PostgreSQL™ versions before 9.4 do not have
 this setting and always use the client's preferences. This setting is
 mainly for backward compatibility with those versions. Using the
 server's preferences is usually better because it is more likely that
 the server is appropriately configured.

	ssl_ecdh_curve (string)

	
 Specifies the name of the curve to use in ECDH key
 exchange. It needs to be supported by all clients that connect.
 It does not need to be the same curve used by the server's Elliptic
 Curve key.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is prime256v1.

 OpenSSL™ names for the most common curves
 are:
 prime256v1 (NIST P-256),
 secp384r1 (NIST P-384),
 secp521r1 (NIST P-521).
 The full list of available curves can be shown with the command
 openssl ecparam -list_curves. Not all of them
 are usable in TLS though.

	ssl_min_protocol_version (enum)

	
 Sets the minimum SSL/TLS protocol version to use. Valid values are
 currently: TLSv1, TLSv1.1,
 TLSv1.2, TLSv1.3. Older
 versions of the OpenSSL™ library do not
 support all values; an error will be raised if an unsupported setting
 is chosen. Protocol versions before TLS 1.0, namely SSL version 2 and
 3, are always disabled.

 The default is TLSv1.2, which satisfies industry
 best practices as of this writing.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	ssl_max_protocol_version (enum)

	
 Sets the maximum SSL/TLS protocol version to use. Valid values are as
 for ssl_min_protocol_version, with addition of
 an empty string, which allows any protocol version. The default is to
 allow any version. Setting the maximum protocol version is mainly
 useful for testing or if some component has issues working with a
 newer protocol.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	ssl_dh_params_file (string)

	
 Specifies the name of the file containing Diffie-Hellman parameters
 used for so-called ephemeral DH family of SSL ciphers. The default is
 empty, in which case compiled-in default DH parameters used. Using
 custom DH parameters reduces the exposure if an attacker manages to
 crack the well-known compiled-in DH parameters. You can create your own
 DH parameters file with the command
 openssl dhparam -out dhparams.pem 2048.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	ssl_passphrase_command (string)

	
 Sets an external command to be invoked when a passphrase for
 decrypting an SSL file such as a private key needs to be obtained. By
 default, this parameter is empty, which means the built-in prompting
 mechanism is used.

 The command must print the passphrase to the standard output and exit
 with code 0. In the parameter value, %p is
 replaced by a prompt string. (Write %% for a
 literal %.) Note that the prompt string will
 probably contain whitespace, so be sure to quote adequately. A single
 newline is stripped from the end of the output if present.

 The command does not actually have to prompt the user for a
 passphrase. It can read it from a file, obtain it from a keychain
 facility, or similar. It is up to the user to make sure the chosen
 mechanism is adequately secure.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	ssl_passphrase_command_supports_reload (boolean)

	
 This parameter determines whether the passphrase command set by
 ssl_passphrase_command will also be called during a
 configuration reload if a key file needs a passphrase. If this
 parameter is off (the default), then
 ssl_passphrase_command will be ignored during a
 reload and the SSL configuration will not be reloaded if a passphrase
 is needed. That setting is appropriate for a command that requires a
 TTY for prompting, which might not be available when the server is
 running. Setting this parameter to on might be appropriate if the
 passphrase is obtained from a file, for example.

 This parameter must be set to on when running on
 Windows since all connections
 will perform a configuration reload due to the different process model
 of that platform.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Resource Consumption

Memory

	shared_buffers (integer)

	
 Sets the amount of memory the database server uses for shared
 memory buffers. The default is typically 128 megabytes
 (128MB), but might be less if your kernel settings will
 not support it (as determined during initdb).
 This setting must be at least 128 kilobytes. However,
 settings significantly higher than the minimum are usually needed
 for good performance.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 (Non-default values of BLCKSZ change the minimum
 value.)
 This parameter can only be set at server start.

 If you have a dedicated database server with 1GB or more of RAM, a
 reasonable starting value for shared_buffers is 25%
 of the memory in your system. There are some workloads where even
 larger settings for shared_buffers are effective, but
 because PostgreSQL™ also relies on the
 operating system cache, it is unlikely that an allocation of more than
 40% of RAM to shared_buffers will work better than a
 smaller amount. Larger settings for shared_buffers
 usually require a corresponding increase in
 max_wal_size, in order to spread out the
 process of writing large quantities of new or changed data over a
 longer period of time.

 On systems with less than 1GB of RAM, a smaller percentage of RAM is
 appropriate, so as to leave adequate space for the operating system.

	huge_pages (enum)

	
 Controls whether huge pages are requested for the main shared memory
 area. Valid values are try (the default),
 on, and off.
 This parameter can only be set at server start. With
 huge_pages set to try, the
 server will try to request huge pages, but fall back to the default if
 that fails. With on, failure to request huge pages
 will prevent the server from starting up. With off,
 huge pages will not be requested.

 At present, this setting is supported only on Linux and Windows. The
 setting is ignored on other systems when set to
 try. On Linux, it is only supported when
 shared_memory_type is set to mmap
 (the default).

 The use of huge pages results in smaller page tables and less CPU time
 spent on memory management, increasing performance. For more details about
 using huge pages on Linux, see the section called “Linux Huge Pages”.

 Huge pages are known as large pages on Windows. To use them, you need to
 assign the user right “Lock pages in memory” to the Windows user account
 that runs PostgreSQL™.
 You can use Windows Group Policy tool (gpedit.msc) to assign the user right
 “Lock pages in memory”.
 To start the database server on the command prompt as a standalone process,
 not as a Windows service, the command prompt must be run as an administrator or
 User Access Control (UAC) must be disabled. When the UAC is enabled, the normal
 command prompt revokes the user right “Lock pages in memory” when started.

 Note that this setting only affects the main shared memory area.
 Operating systems such as Linux, FreeBSD, and Illumos can also use
 huge pages (also known as “super” pages or
 “large” pages) automatically for normal memory
 allocation, without an explicit request from
 PostgreSQL™. On Linux, this is called
 “transparent huge pages” (THP). That feature has been known to
 cause performance degradation with
 PostgreSQL™ for some users on some Linux
 versions, so its use is currently discouraged (unlike explicit use of
 huge_pages).

	huge_page_size (integer)

	
 Controls the size of huge pages, when they are enabled with
 huge_pages.
 The default is zero (0).
 When set to 0, the default huge page size on the
 system will be used. This parameter can only be set at server start.

 Some commonly available page sizes on modern 64 bit server architectures include:
 2MB and 1GB (Intel and AMD), 16MB and
 16GB (IBM POWER), and 64kB, 2MB,
 32MB and 1GB (ARM). For more information
 about usage and support, see the section called “Linux Huge Pages”.

 Non-default settings are currently supported only on Linux.

	temp_buffers (integer)

	
 Sets the maximum amount of memory used for temporary buffers within
 each database session. These are session-local buffers used only
 for access to temporary tables.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The default is eight megabytes (8MB).
 (If BLCKSZ is not 8kB, the default value scales
 proportionally to it.)
 This setting can be changed within individual
 sessions, but only before the first use of temporary tables
 within the session; subsequent attempts to change the value will
 have no effect on that session.

 A session will allocate temporary buffers as needed up to the limit
 given by temp_buffers. The cost of setting a large
 value in sessions that do not actually need many temporary
 buffers is only a buffer descriptor, or about 64 bytes, per
 increment in temp_buffers. However if a buffer is
 actually used an additional 8192 bytes will be consumed for it
 (or in general, BLCKSZ bytes).

	max_prepared_transactions (integer)

	
 Sets the maximum number of transactions that can be in the
 “prepared” state simultaneously (see PREPARE TRANSACTION(7)).
 Setting this parameter to zero (which is the default)
 disables the prepared-transaction feature.
 This parameter can only be set at server start.

 If you are not planning to use prepared transactions, this parameter
 should be set to zero to prevent accidental creation of prepared
 transactions. If you are using prepared transactions, you will
 probably want max_prepared_transactions to be at
 least as large as max_connections, so that every
 session can have a prepared transaction pending.

 When running a standby server, you must set this parameter to the
 same or higher value than on the primary server. Otherwise, queries
 will not be allowed in the standby server.

	work_mem (integer)

	
 Sets the base maximum amount of memory to be used by a query operation
 (such as a sort or hash table) before writing to temporary disk files.
 If this value is specified without units, it is taken as kilobytes.
 The default value is four megabytes (4MB).
 Note that a complex query might perform several sort and hash
 operations at the same time, with each operation generally being
 allowed to use as much memory as this value specifies before
 it starts
 to write data into temporary files. Also, several running
 sessions could be doing such operations concurrently.
 Therefore, the total memory used could be many times the value
 of work_mem; it is necessary to keep this
 fact in mind when choosing the value. Sort operations are used
 for ORDER BY, DISTINCT,
 and merge joins.
 Hash tables are used in hash joins, hash-based aggregation, memoize
 nodes and hash-based processing of IN subqueries.

 Hash-based operations are generally more sensitive to memory
 availability than equivalent sort-based operations. The
 memory limit for a hash table is computed by multiplying
 work_mem by
 hash_mem_multiplier. This makes it
 possible for hash-based operations to use an amount of memory
 that exceeds the usual work_mem base
 amount.

	hash_mem_multiplier (floating point)

	
 Used to compute the maximum amount of memory that hash-based
 operations can use. The final limit is determined by
 multiplying work_mem by
 hash_mem_multiplier. The default value is
 2.0, which makes hash-based operations use twice the usual
 work_mem base amount.

 Consider increasing hash_mem_multiplier in
 environments where spilling by query operations is a regular
 occurrence, especially when simply increasing
 work_mem results in memory pressure (memory
 pressure typically takes the form of intermittent out of
 memory errors). The default setting of 2.0 is often effective with
 mixed workloads. Higher settings in the range of 2.0 - 8.0 or
 more may be effective in environments where
 work_mem has already been increased to 40MB
 or more.

	maintenance_work_mem (integer)

	
 Specifies the maximum amount of memory to be used by maintenance
 operations, such as VACUUM, CREATE
 INDEX, and ALTER TABLE ADD FOREIGN KEY.
 If this value is specified without units, it is taken as kilobytes.
 It defaults
 to 64 megabytes (64MB). Since only one of these
 operations can be executed at a time by a database session, and
 an installation normally doesn't have many of them running
 concurrently, it's safe to set this value significantly larger
 than work_mem. Larger settings might improve
 performance for vacuuming and for restoring database dumps.

 Note that when autovacuum runs, up to
 autovacuum_max_workers times this memory
 may be allocated, so be careful not to set the default value
 too high. It may be useful to control for this by separately
 setting autovacuum_work_mem.

 Note that for the collection of dead tuple identifiers,
 VACUUM is only able to utilize up to a maximum of
 1GB of memory.

	autovacuum_work_mem (integer)

	
 Specifies the maximum amount of memory to be used by each
 autovacuum worker process.
 If this value is specified without units, it is taken as kilobytes.
 It defaults to -1, indicating that
 the value of maintenance_work_mem should
 be used instead. The setting has no effect on the behavior of
 VACUUM when run in other contexts.
 This parameter can only be set in the
 postgresql.conf file or on the server command
 line.

 For the collection of dead tuple identifiers, autovacuum is only able
 to utilize up to a maximum of 1GB of memory, so
 setting autovacuum_work_mem to a value higher than
 that has no effect on the number of dead tuples that autovacuum can
 collect while scanning a table.

	
 vacuum_buffer_usage_limit (integer)

	
 Specifies the size of the
 Buffer Access Strategy
 used by the VACUUM and ANALYZE
 commands. A setting of 0 will allow the operation
 to use any number of shared_buffers. Otherwise
 valid sizes range from 128 kB to
 16 GB. If the specified size would exceed 1/8 the
 size of shared_buffers, the size is silently capped
 to that value. The default value is 256 kB. If
 this value is specified without units, it is taken as kilobytes. This
 parameter can be set at any time. It can be overridden for
 VACUUM(7) and ANALYZE(7)
 when passing the BUFFER_USAGE_LIMIT option. Higher
 settings can allow VACUUM and
 ANALYZE to run more quickly, but having too large a
 setting may cause too many other useful pages to be evicted from
 shared buffers.

	logical_decoding_work_mem (integer)

	
 Specifies the maximum amount of memory to be used by logical decoding,
 before some of the decoded changes are written to local disk. This
 limits the amount of memory used by logical streaming replication
 connections. It defaults to 64 megabytes (64MB).
 Since each replication connection only uses a single buffer of this size,
 and an installation normally doesn't have many such connections
 concurrently (as limited by max_wal_senders), it's
 safe to set this value significantly higher than work_mem,
 reducing the amount of decoded changes written to disk.

	max_stack_depth (integer)

	
 Specifies the maximum safe depth of the server's execution stack.
 The ideal setting for this parameter is the actual stack size limit
 enforced by the kernel (as set by ulimit -s or local
 equivalent), less a safety margin of a megabyte or so. The safety
 margin is needed because the stack depth is not checked in every
 routine in the server, but only in key potentially-recursive routines.
 If this value is specified without units, it is taken as kilobytes.
 The default setting is two megabytes (2MB), which
 is conservatively small and unlikely to risk crashes. However,
 it might be too small to allow execution of complex functions.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 Setting max_stack_depth higher than
 the actual kernel limit will mean that a runaway recursive function
 can crash an individual backend process. On platforms where
 PostgreSQL™ can determine the kernel limit,
 the server will not allow this variable to be set to an unsafe
 value. However, not all platforms provide the information,
 so caution is recommended in selecting a value.

	shared_memory_type (enum)

	
 Specifies the shared memory implementation that the server
 should use for the main shared memory region that holds
 PostgreSQL™'s shared buffers and other
 shared data. Possible values are mmap (for
 anonymous shared memory allocated using mmap),
 sysv (for System V shared memory allocated via
 shmget) and windows (for Windows
 shared memory). Not all values are supported on all platforms; the
 first supported option is the default for that platform. The use of
 the sysv option, which is not the default on any
 platform, is generally discouraged because it typically requires
 non-default kernel settings to allow for large allocations (see the section called “Shared Memory and Semaphores”).
 This parameter can only be set at server start.

	dynamic_shared_memory_type (enum)

	
 Specifies the dynamic shared memory implementation that the server
 should use. Possible values are posix (for POSIX shared
 memory allocated using shm_open), sysv
 (for System V shared memory allocated via shmget),
 windows (for Windows shared memory),
 and mmap (to simulate shared memory using
 memory-mapped files stored in the data directory).
 Not all values are supported on all platforms; the first supported
 option is usually the default for that platform. The use of the
 mmap option, which is not the default on any platform,
 is generally discouraged because the operating system may write
 modified pages back to disk repeatedly, increasing system I/O load;
 however, it may be useful for debugging, when the
 pg_dynshmem directory is stored on a RAM disk, or when
 other shared memory facilities are not available.
 This parameter can only be set at server start.

	min_dynamic_shared_memory (integer)

	
 Specifies the amount of memory that should be allocated at server
 startup for use by parallel queries. When this memory region is
 insufficient or exhausted by concurrent queries, new parallel queries
 try to allocate extra shared memory temporarily from the operating
 system using the method configured with
 dynamic_shared_memory_type, which may be slower due
 to memory management overheads. Memory that is allocated at startup
 with min_dynamic_shared_memory is affected by
 the huge_pages setting on operating systems where
 that is supported, and may be more likely to benefit from larger pages
 on operating systems where that is managed automatically.
 The default value is 0 (none). This parameter can
 only be set at server start.

Disk

	temp_file_limit (integer)

	
 Specifies the maximum amount of disk space that a process can use
 for temporary files, such as sort and hash temporary files, or the
 storage file for a held cursor. A transaction attempting to exceed
 this limit will be canceled.
 If this value is specified without units, it is taken as kilobytes.
 -1 (the default) means no limit.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 This setting constrains the total space used at any instant by all
 temporary files used by a given PostgreSQL™ process.
 It should be noted that disk space used for explicit temporary
 tables, as opposed to temporary files used behind-the-scenes in query
 execution, does not count against this limit.

	file_extend_method (enum)

	
 Specifies the method used to extend data files during bulk operations
 such as COPY. The first available option is used as
 the default, depending on the operating system:

	
 posix_fallocate (Unix) uses the standard POSIX
 interface for allocating disk space, but is missing on some systems.
 If it is present but the underlying file system doesn't support it,
 this option silently falls back to write_zeros.
 Current versions of BTRFS are known to disable compression when
 this option is used.
 This is the default on systems that have the function.

	
 write_zeros extends files by writing out blocks
 of zero bytes. This is the default on systems that don't have the
 function posix_fallocate.

 The write_zeros method is always used when data
 files are extended by 8 blocks or fewer.

Kernel Resource Usage

	max_files_per_process (integer)

	
 Sets the maximum number of simultaneously open files allowed to each
 server subprocess. The default is one thousand files. If the kernel is enforcing
 a safe per-process limit, you don't need to worry about this setting.
 But on some platforms (notably, most BSD systems), the kernel will
 allow individual processes to open many more files than the system
 can actually support if many processes all try to open
 that many files. If you find yourself seeing “Too many open
 files” failures, try reducing this setting.
 This parameter can only be set at server start.

Cost-based Vacuum Delay

 During the execution of VACUUM(7)
 and ANALYZE(7)
 commands, the system maintains an
 internal counter that keeps track of the estimated cost of the
 various I/O operations that are performed. When the accumulated
 cost reaches a limit (specified by
 vacuum_cost_limit), the process performing
 the operation will sleep for a short period of time, as specified by
 vacuum_cost_delay. Then it will reset the
 counter and continue execution.

 The intent of this feature is to allow administrators to reduce
 the I/O impact of these commands on concurrent database
 activity. There are many situations where it is not
 important that maintenance commands like
 VACUUM and ANALYZE finish
 quickly; however, it is usually very important that these
 commands do not significantly interfere with the ability of the
 system to perform other database operations. Cost-based vacuum
 delay provides a way for administrators to achieve this.

 This feature is disabled by default for manually issued
 VACUUM commands. To enable it, set the
 vacuum_cost_delay variable to a nonzero
 value.

	vacuum_cost_delay (floating point)

	
 The amount of time that the process will sleep
 when the cost limit has been exceeded.
 If this value is specified without units, it is taken as milliseconds.
 The default value is zero, which disables the cost-based vacuum
 delay feature. Positive values enable cost-based vacuuming.

 When using cost-based vacuuming, appropriate values for
 vacuum_cost_delay are usually quite small, perhaps
 less than 1 millisecond. While vacuum_cost_delay
 can be set to fractional-millisecond values, such delays may not be
 measured accurately on older platforms. On such platforms,
 increasing VACUUM's throttled resource consumption
 above what you get at 1ms will require changing the other vacuum cost
 parameters. You should, nonetheless,
 keep vacuum_cost_delay as small as your platform
 will consistently measure; large delays are not helpful.

	vacuum_cost_page_hit (integer)

	
 The estimated cost for vacuuming a buffer found in the shared buffer
 cache. It represents the cost to lock the buffer pool, lookup
 the shared hash table and scan the content of the page. The
 default value is one.

	vacuum_cost_page_miss (integer)

	
 The estimated cost for vacuuming a buffer that has to be read from
 disk. This represents the effort to lock the buffer pool,
 lookup the shared hash table, read the desired block in from
 the disk and scan its content. The default value is 2.

	vacuum_cost_page_dirty (integer)

	
 The estimated cost charged when vacuum modifies a block that was
 previously clean. It represents the extra I/O required to
 flush the dirty block out to disk again. The default value is
 20.

	vacuum_cost_limit (integer)

	
 The accumulated cost that will cause the vacuuming process to sleep.
 The default value is 200.

Note

 There are certain operations that hold critical locks and should
 therefore complete as quickly as possible. Cost-based vacuum
 delays do not occur during such operations. Therefore it is
 possible that the cost accumulates far higher than the specified
 limit. To avoid uselessly long delays in such cases, the actual
 delay is calculated as vacuum_cost_delay *
 accumulated_balance /
 vacuum_cost_limit with a maximum of
 vacuum_cost_delay * 4.

Background Writer

 There is a separate server
 process called the background writer, whose function
 is to issue writes of “dirty” (new or modified) shared
 buffers. When the number of clean shared buffers appears to be
 insufficient, the background writer writes some dirty buffers to the
 file system and marks them as clean. This reduces the likelihood
 that server processes handling user queries will be unable to find
 clean buffers and have to write dirty buffers themselves.
 However, the background writer does cause a net overall
 increase in I/O load, because while a repeatedly-dirtied page might
 otherwise be written only once per checkpoint interval, the
 background writer might write it several times as it is dirtied
 in the same interval. The parameters discussed in this subsection
 can be used to tune the behavior for local needs.

	bgwriter_delay (integer)

	
 Specifies the delay between activity rounds for the
 background writer. In each round the writer issues writes
 for some number of dirty buffers (controllable by the
 following parameters). It then sleeps for
 the length of bgwriter_delay, and repeats.
 When there are no dirty buffers in the
 buffer pool, though, it goes into a longer sleep regardless of
 bgwriter_delay.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 200
 milliseconds (200ms). Note that on many systems, the
 effective resolution of sleep delays is 10 milliseconds; setting
 bgwriter_delay to a value that is not a multiple of 10
 might have the same results as setting it to the next higher multiple
 of 10. This parameter can only be set in the
 postgresql.conf file or on the server command line.

	bgwriter_lru_maxpages (integer)

	
 In each round, no more than this many buffers will be written
 by the background writer. Setting this to zero disables
 background writing. (Note that checkpoints, which are managed by
 a separate, dedicated auxiliary process, are unaffected.)
 The default value is 100 buffers.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	bgwriter_lru_multiplier (floating point)

	
 The number of dirty buffers written in each round is based on the
 number of new buffers that have been needed by server processes
 during recent rounds. The average recent need is multiplied by
 bgwriter_lru_multiplier to arrive at an estimate of the
 number of buffers that will be needed during the next round. Dirty
 buffers are written until there are that many clean, reusable buffers
 available. (However, no more than bgwriter_lru_maxpages
 buffers will be written per round.)
 Thus, a setting of 1.0 represents a “just in time” policy
 of writing exactly the number of buffers predicted to be needed.
 Larger values provide some cushion against spikes in demand,
 while smaller values intentionally leave writes to be done by
 server processes.
 The default is 2.0.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	bgwriter_flush_after (integer)

	
 Whenever more than this amount of data has
 been written by the background writer, attempt to force the OS to issue these
 writes to the underlying storage. Doing so will limit the amount of
 dirty data in the kernel's page cache, reducing the likelihood of
 stalls when an fsync is issued at the end of a checkpoint, or when
 the OS writes data back in larger batches in the background. Often
 that will result in greatly reduced transaction latency, but there
 also are some cases, especially with workloads that are bigger than
 shared_buffers, but smaller than the OS's page
 cache, where performance might degrade. This setting may have no
 effect on some platforms.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The valid range is between
 0, which disables forced writeback, and
 2MB. The default is 512kB on Linux,
 0 elsewhere. (If BLCKSZ is not 8kB,
 the default and maximum values scale proportionally to it.)
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 Smaller values of bgwriter_lru_maxpages and
 bgwriter_lru_multiplier reduce the extra I/O load
 caused by the background writer, but make it more likely that server
 processes will have to issue writes for themselves, delaying interactive
 queries.

Asynchronous Behavior

	backend_flush_after (integer)

	
 Whenever more than this amount of data has
 been written by a single backend, attempt to force the OS to issue
 these writes to the underlying storage. Doing so will limit the
 amount of dirty data in the kernel's page cache, reducing the
 likelihood of stalls when an fsync is issued at the end of a
 checkpoint, or when the OS writes data back in larger batches in the
 background. Often that will result in greatly reduced transaction
 latency, but there also are some cases, especially with workloads
 that are bigger than shared_buffers, but smaller
 than the OS's page cache, where performance might degrade. This
 setting may have no effect on some platforms.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The valid range is
 between 0, which disables forced writeback,
 and 2MB. The default is 0, i.e., no
 forced writeback. (If BLCKSZ is not 8kB,
 the maximum value scales proportionally to it.)

	effective_io_concurrency (integer)

	
 Sets the number of concurrent disk I/O operations that
 PostgreSQL™ expects can be executed
 simultaneously. Raising this value will increase the number of I/O
 operations that any individual PostgreSQL™ session
 attempts to initiate in parallel. The allowed range is 1 to 1000,
 or zero to disable issuance of asynchronous I/O requests. Currently,
 this setting only affects bitmap heap scans.

 For magnetic drives, a good starting point for this setting is the
 number of separate
 drives comprising a RAID 0 stripe or RAID 1 mirror being used for the
 database. (For RAID 5 the parity drive should not be counted.)
 However, if the database is often busy with multiple queries issued in
 concurrent sessions, lower values may be sufficient to keep the disk
 array busy. A value higher than needed to keep the disks busy will
 only result in extra CPU overhead.
 SSDs and other memory-based storage can often process many
 concurrent requests, so the best value might be in the hundreds.

 Asynchronous I/O depends on an effective posix_fadvise
 function, which some operating systems lack. If the function is not
 present then setting this parameter to anything but zero will result
 in an error. On some operating systems (e.g., Solaris), the function
 is present but does not actually do anything.

 The default is 1 on supported systems, otherwise 0. This value can
 be overridden for tables in a particular tablespace by setting the
 tablespace parameter of the same name (see
 ALTER TABLESPACE(7)).

	maintenance_io_concurrency (integer)

	
 Similar to effective_io_concurrency, but used
 for maintenance work that is done on behalf of many client sessions.

 The default is 10 on supported systems, otherwise 0. This value can
 be overridden for tables in a particular tablespace by setting the
 tablespace parameter of the same name (see
 ALTER TABLESPACE(7)).

	max_worker_processes (integer)

	
 Sets the maximum number of background processes that the system
 can support. This parameter can only be set at server start. The
 default is 8.

 When running a standby server, you must set this parameter to the
 same or higher value than on the primary server. Otherwise, queries
 will not be allowed in the standby server.

 When changing this value, consider also adjusting
 max_parallel_workers,
 max_parallel_maintenance_workers, and
 max_parallel_workers_per_gather.

	max_parallel_workers_per_gather (integer)

	
 Sets the maximum number of workers that can be started by a single
 Gather or Gather Merge node.
 Parallel workers are taken from the pool of processes established by
 max_worker_processes, limited by
 max_parallel_workers. Note that the requested
 number of workers may not actually be available at run time. If this
 occurs, the plan will run with fewer workers than expected, which may
 be inefficient. The default value is 2. Setting this value to 0
 disables parallel query execution.

 Note that parallel queries may consume very substantially more
 resources than non-parallel queries, because each worker process is
 a completely separate process which has roughly the same impact on the
 system as an additional user session. This should be taken into
 account when choosing a value for this setting, as well as when
 configuring other settings that control resource utilization, such
 as work_mem. Resource limits such as
 work_mem are applied individually to each worker,
 which means the total utilization may be much higher across all
 processes than it would normally be for any single process.
 For example, a parallel query using 4 workers may use up to 5 times
 as much CPU time, memory, I/O bandwidth, and so forth as a query which
 uses no workers at all.

 For more information on parallel query, see
 Chapter 15, Parallel Query.

	max_parallel_maintenance_workers (integer)

	
 Sets the maximum number of parallel workers that can be
 started by a single utility command. Currently, the parallel
 utility commands that support the use of parallel workers are
 CREATE INDEX only when building a B-tree index,
 and VACUUM without FULL
 option. Parallel workers are taken from the pool of processes
 established by max_worker_processes, limited
 by max_parallel_workers. Note that the requested
 number of workers may not actually be available at run time.
 If this occurs, the utility operation will run with fewer
 workers than expected. The default value is 2. Setting this
 value to 0 disables the use of parallel workers by utility
 commands.

 Note that parallel utility commands should not consume
 substantially more memory than equivalent non-parallel
 operations. This strategy differs from that of parallel
 query, where resource limits generally apply per worker
 process. Parallel utility commands treat the resource limit
 maintenance_work_mem as a limit to be applied to
 the entire utility command, regardless of the number of
 parallel worker processes. However, parallel utility
 commands may still consume substantially more CPU resources
 and I/O bandwidth.

	max_parallel_workers (integer)

	
 Sets the maximum number of workers that the system can support for
 parallel operations. The default value is 8. When increasing or
 decreasing this value, consider also adjusting
 max_parallel_maintenance_workers and
 max_parallel_workers_per_gather.
 Also, note that a setting for this value which is higher than
 max_worker_processes will have no effect,
 since parallel workers are taken from the pool of worker processes
 established by that setting.

	
 parallel_leader_participation (boolean)

	
 Allows the leader process to execute the query plan under
 Gather and Gather Merge nodes
 instead of waiting for worker processes. The default is
 on. Setting this value to off
 reduces the likelihood that workers will become blocked because the
 leader is not reading tuples fast enough, but requires the leader
 process to wait for worker processes to start up before the first
 tuples can be produced. The degree to which the leader can help or
 hinder performance depends on the plan type, number of workers and
 query duration.

	old_snapshot_threshold (integer)

	
 Sets the minimum amount of time that a query snapshot can be used
 without risk of a “snapshot too old” error occurring
 when using the snapshot. Data that has been dead for longer than
 this threshold is allowed to be vacuumed away. This can help
 prevent bloat in the face of snapshots which remain in use for a
 long time. To prevent incorrect results due to cleanup of data which
 would otherwise be visible to the snapshot, an error is generated
 when the snapshot is older than this threshold and the snapshot is
 used to read a page which has been modified since the snapshot was
 built.

 If this value is specified without units, it is taken as minutes.
 A value of -1 (the default) disables this feature,
 effectively setting the snapshot age limit to infinity.
 This parameter can only be set at server start.

 Useful values for production work probably range from a small number
 of hours to a few days. Small values (such as 0 or
 1min) are only allowed because they may sometimes be
 useful for testing. While a setting as high as 60d is
 allowed, please note that in many workloads extreme bloat or
 transaction ID wraparound may occur in much shorter time frames.

 When this feature is enabled, freed space at the end of a relation
 cannot be released to the operating system, since that could remove
 information needed to detect the “snapshot too old”
 condition. All space allocated to a relation remains associated with
 that relation for reuse only within that relation unless explicitly
 freed (for example, with VACUUM FULL).

 This setting does not attempt to guarantee that an error will be
 generated under any particular circumstances. In fact, if the
 correct results can be generated from (for example) a cursor which
 has materialized a result set, no error will be generated even if the
 underlying rows in the referenced table have been vacuumed away.
 Some tables cannot safely be vacuumed early, and so will not be
 affected by this setting, such as system catalogs. For such tables
 this setting will neither reduce bloat nor create a possibility
 of a “snapshot too old” error on scanning.

Write Ahead Log

 For additional information on tuning these settings,
 see the section called “WAL Configuration”.

Settings

	wal_level (enum)

	
 wal_level determines how much information is written to
 the WAL. The default value is replica, which writes enough
 data to support WAL archiving and replication, including running
 read-only queries on a standby server. minimal removes all
 logging except the information required to recover from a crash or
 immediate shutdown. Finally,
 logical adds information necessary to support logical
 decoding. Each level includes the information logged at all lower
 levels. This parameter can only be set at server start.

 The minimal level generates the least WAL
 volume. It logs no row information for permanent relations
 in transactions that create or
 rewrite them. This can make operations much faster (see
 the section called “Disable WAL Archival and Streaming Replication”). Operations that initiate this
 optimization include:

	ALTER ... SET TABLESPACE
	CLUSTER
	CREATE TABLE
	REFRESH MATERIALIZED VIEW
 (without CONCURRENTLY)
	REINDEX
	TRUNCATE

 However, minimal WAL does not contain sufficient information for
 point-in-time recovery, so replica or
 higher must be used to enable continuous archiving
 (archive_mode) and streaming binary replication.
 In fact, the server will not even start in this mode if
 max_wal_senders is non-zero.
 Note that changing wal_level to
 minimal makes previous base backups unusable
 for point-in-time recovery and standby servers.

 In logical level, the same information is logged as
 with replica, plus information needed to
 extract logical change sets from the WAL. Using a level of
 logical will increase the WAL volume, particularly if many
 tables are configured for REPLICA IDENTITY FULL and
 many UPDATE and DELETE statements are
 executed.

 In releases prior to 9.6, this parameter also allowed the
 values archive and hot_standby.
 These are still accepted but mapped to replica.

	fsync (boolean)

	
 If this parameter is on, the PostgreSQL™ server
 will try to make sure that updates are physically written to
 disk, by issuing fsync() system calls or various
 equivalent methods (see wal_sync_method).
 This ensures that the database cluster can recover to a
 consistent state after an operating system or hardware crash.

 While turning off fsync is often a performance
 benefit, this can result in unrecoverable data corruption in
 the event of a power failure or system crash. Thus it
 is only advisable to turn off fsync if
 you can easily recreate your entire database from external
 data.

 Examples of safe circumstances for turning off
 fsync include the initial loading of a new
 database cluster from a backup file, using a database cluster
 for processing a batch of data after which the database
 will be thrown away and recreated,
 or for a read-only database clone which
 gets recreated frequently and is not used for failover. High
 quality hardware alone is not a sufficient justification for
 turning off fsync.

 For reliable recovery when changing fsync
 off to on, it is necessary to force all modified buffers in the
 kernel to durable storage. This can be done while the cluster
 is shutdown or while fsync is on by running initdb
 --sync-only, running sync, unmounting the
 file system, or rebooting the server.

 In many situations, turning off synchronous_commit
 for noncritical transactions can provide much of the potential
 performance benefit of turning off fsync, without
 the attendant risks of data corruption.

 fsync can only be set in the postgresql.conf
 file or on the server command line.
 If you turn this parameter off, also consider turning off
 full_page_writes.

	synchronous_commit (enum)

	
 Specifies how much WAL processing must complete before
 the database server returns a “success”
 indication to the client. Valid values are
 remote_apply, on
 (the default), remote_write,
 local, and off.

 If synchronous_standby_names is empty,
 the only meaningful settings are on and
 off; remote_apply,
 remote_write and local
 all provide the same local synchronization level
 as on. The local behavior of all
 non-off modes is to wait for local flush of WAL
 to disk. In off mode, there is no waiting,
 so there can be a delay between when success is reported to the
 client and when the transaction is later guaranteed to be safe
 against a server crash. (The maximum
 delay is three times wal_writer_delay.) Unlike
 fsync, setting this parameter to off
 does not create any risk of database inconsistency: an operating
 system or database crash might
 result in some recent allegedly-committed transactions being lost, but
 the database state will be just the same as if those transactions had
 been aborted cleanly. So, turning synchronous_commit off
 can be a useful alternative when performance is more important than
 exact certainty about the durability of a transaction. For more
 discussion see the section called “Asynchronous Commit”.

 If synchronous_standby_names is non-empty,
 synchronous_commit also controls whether
 transaction commits will wait for their WAL records to be
 processed on the standby server(s).

 When set to remote_apply, commits will wait
 until replies from the current synchronous standby(s) indicate they
 have received the commit record of the transaction and applied
 it, so that it has become visible to queries on the standby(s),
 and also written to durable storage on the standbys. This will
 cause much larger commit delays than previous settings since
 it waits for WAL replay. When set to on,
 commits wait until replies
 from the current synchronous standby(s) indicate they have received
 the commit record of the transaction and flushed it to durable storage. This
 ensures the transaction will not be lost unless both the primary and
 all synchronous standbys suffer corruption of their database storage.
 When set to remote_write, commits will wait until replies
 from the current synchronous standby(s) indicate they have
 received the commit record of the transaction and written it to
 their file systems. This setting ensures data preservation if a standby instance of
 PostgreSQL™ crashes, but not if the standby
 suffers an operating-system-level crash because the data has not
 necessarily reached durable storage on the standby.
 The setting local causes commits to wait for
 local flush to disk, but not for replication. This is usually not
 desirable when synchronous replication is in use, but is provided for
 completeness.

 This parameter can be changed at any time; the behavior for any
 one transaction is determined by the setting in effect when it
 commits. It is therefore possible, and useful, to have some
 transactions commit synchronously and others asynchronously.
 For example, to make a single multistatement transaction commit
 asynchronously when the default is the opposite, issue SET
 LOCAL synchronous_commit TO OFF within the transaction.

 Table 20.1, “synchronous_commit Modes” summarizes the
 capabilities of the synchronous_commit settings.

Table 20.1. synchronous_commit Modes
	synchronous_commit setting	local durable commit	standby durable commit after PG crash	standby durable commit after OS crash	standby query consistency
	remote_apply	•	•	•	•
	on	•	•	•	
	remote_write	•	•	 	
	local	•	 	 	
	off	 	 	 	

	wal_sync_method (enum)

	
 Method used for forcing WAL updates out to disk.
 If fsync is off then this setting is irrelevant,
 since WAL file updates will not be forced out at all.
 Possible values are:

	
 open_datasync (write WAL files with open() option O_DSYNC)

	
 fdatasync (call fdatasync() at each commit)

	
 fsync (call fsync() at each commit)

	
 fsync_writethrough (call fsync() at each commit, forcing write-through of any disk write cache)

	
 open_sync (write WAL files with open() option O_SYNC)

 Not all of these choices are available on all platforms.
 The default is the first method in the above list that is supported
 by the platform, except that fdatasync is the default on
 Linux and FreeBSD. The default is not necessarily ideal; it might be
 necessary to change this setting or other aspects of your system
 configuration in order to create a crash-safe configuration or
 achieve optimal performance.
 These aspects are discussed in the section called “Reliability”.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	full_page_writes (boolean)

	
 When this parameter is on, the PostgreSQL™ server
 writes the entire content of each disk page to WAL during the
 first modification of that page after a checkpoint.
 This is needed because
 a page write that is in process during an operating system crash might
 be only partially completed, leading to an on-disk page
 that contains a mix of old and new data. The row-level change data
 normally stored in WAL will not be enough to completely restore
 such a page during post-crash recovery. Storing the full page image
 guarantees that the page can be correctly restored, but at the price
 of increasing the amount of data that must be written to WAL.
 (Because WAL replay always starts from a checkpoint, it is sufficient
 to do this during the first change of each page after a checkpoint.
 Therefore, one way to reduce the cost of full-page writes is to
 increase the checkpoint interval parameters.)

 Turning this parameter off speeds normal operation, but
 might lead to either unrecoverable data corruption, or silent
 data corruption, after a system failure. The risks are similar to turning off
 fsync, though smaller, and it should be turned off
 only based on the same circumstances recommended for that parameter.

 Turning off this parameter does not affect use of
 WAL archiving for point-in-time recovery (PITR)
 (see the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”).

 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is on.

	wal_log_hints (boolean)

	
 When this parameter is on, the PostgreSQL™
 server writes the entire content of each disk page to WAL during the
 first modification of that page after a checkpoint, even for
 non-critical modifications of so-called hint bits.

 If data checksums are enabled, hint bit updates are always WAL-logged
 and this setting is ignored. You can use this setting to test how much
 extra WAL-logging would occur if your database had data checksums
 enabled.

 This parameter can only be set at server start. The default value is off.

	wal_compression (enum)

	
 This parameter enables compression of WAL using the specified
 compression method.
 When enabled, the PostgreSQL™
 server compresses full page images written to WAL (e.g. when
 full_page_writes is on, during a base backup,
 etc.).
 A compressed page image will be decompressed during WAL replay.
 The supported methods are pglz,
 lz4 (if PostgreSQL™
 was compiled with --with-lz4) and
 zstd (if PostgreSQL™
 was compiled with --with-zstd).
 The default value is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 Enabling compression can reduce the WAL volume without
 increasing the risk of unrecoverable data corruption,
 but at the cost of some extra CPU spent on the compression during
 WAL logging and on the decompression during WAL replay.

	wal_init_zero (boolean)

	
 If set to on (the default), this option causes new
 WAL files to be filled with zeroes. On some file systems, this ensures
 that space is allocated before we need to write WAL records. However,
 Copy-On-Write (COW) file systems may not benefit
 from this technique, so the option is given to skip the unnecessary
 work. If set to off, only the final byte is written
 when the file is created so that it has the expected size.

	wal_recycle (boolean)

	
 If set to on (the default), this option causes WAL
 files to be recycled by renaming them, avoiding the need to create new
 ones. On COW file systems, it may be faster to create new ones, so the
 option is given to disable this behavior.

	wal_buffers (integer)

	
 The amount of shared memory used for WAL data that has not yet been
 written to disk. The default setting of -1 selects a size equal to
 1/32nd (about 3%) of shared_buffers, but not less
 than 64kB nor more than the size of one WAL
 segment, typically 16MB. This value can be set
 manually if the automatic choice is too large or too small,
 but any positive value less than 32kB will be
 treated as 32kB.
 If this value is specified without units, it is taken as WAL blocks,
 that is XLOG_BLCKSZ bytes, typically 8kB.
 This parameter can only be set at server start.

 The contents of the WAL buffers are written out to disk at every
 transaction commit, so extremely large values are unlikely to
 provide a significant benefit. However, setting this value to at
 least a few megabytes can improve write performance on a busy
 server where many clients are committing at once. The auto-tuning
 selected by the default setting of -1 should give reasonable
 results in most cases.

	wal_writer_delay (integer)

	
 Specifies how often the WAL writer flushes WAL, in time terms.
 After flushing WAL the writer sleeps for the length of time given
 by wal_writer_delay, unless woken up sooner
 by an asynchronously committing transaction. If the last flush
 happened less than wal_writer_delay ago and less
 than wal_writer_flush_after worth of WAL has been
 produced since, then WAL is only written to the operating system, not
 flushed to disk.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 200 milliseconds (200ms). Note that
 on many systems, the effective resolution of sleep delays is 10
 milliseconds; setting wal_writer_delay to a value that is
 not a multiple of 10 might have the same results as setting it to the
 next higher multiple of 10. This parameter can only be set in the
 postgresql.conf file or on the server command line.

	wal_writer_flush_after (integer)

	
 Specifies how often the WAL writer flushes WAL, in volume terms.
 If the last flush happened less
 than wal_writer_delay ago and less
 than wal_writer_flush_after worth of WAL has been
 produced since, then WAL is only written to the operating system, not
 flushed to disk. If wal_writer_flush_after is set
 to 0 then WAL data is always flushed immediately.
 If this value is specified without units, it is taken as WAL blocks,
 that is XLOG_BLCKSZ bytes, typically 8kB.
 The default is 1MB.
 This parameter can only be set in the
 postgresql.conf file or on the server command line.

	wal_skip_threshold (integer)

	
 When wal_level is minimal and a
 transaction commits after creating or rewriting a permanent relation,
 this setting determines how to persist the new data. If the data is
 smaller than this setting, write it to the WAL log; otherwise, use an
 fsync of affected files. Depending on the properties of your storage,
 raising or lowering this value might help if such commits are slowing
 concurrent transactions. If this value is specified without units, it
 is taken as kilobytes. The default is two megabytes
 (2MB).

	commit_delay (integer)

	
 Setting commit_delay adds a time delay
 before a WAL flush is initiated. This can improve
 group commit throughput by allowing a larger number of transactions
 to commit via a single WAL flush, if system load is high enough
 that additional transactions become ready to commit within the
 given interval. However, it also increases latency by up to the
 commit_delay for each WAL
 flush. Because the delay is just wasted if no other transactions
 become ready to commit, a delay is only performed if at least
 commit_siblings other transactions are active
 when a flush is about to be initiated. Also, no delays are
 performed if fsync is disabled.
 If this value is specified without units, it is taken as microseconds.
 The default commit_delay is zero (no delay).
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 In PostgreSQL™ releases prior to 9.3,
 commit_delay behaved differently and was much
 less effective: it affected only commits, rather than all WAL flushes,
 and waited for the entire configured delay even if the WAL flush
 was completed sooner. Beginning in PostgreSQL™ 9.3,
 the first process that becomes ready to flush waits for the configured
 interval, while subsequent processes wait only until the leader
 completes the flush operation.

	commit_siblings (integer)

	
 Minimum number of concurrent open transactions to require
 before performing the commit_delay delay. A larger
 value makes it more probable that at least one other
 transaction will become ready to commit during the delay
 interval. The default is five transactions.

Checkpoints

	checkpoint_timeout (integer)

	
 Maximum time between automatic WAL checkpoints.
 If this value is specified without units, it is taken as seconds.
 The valid range is between 30 seconds and one day.
 The default is five minutes (5min).
 Increasing this parameter can increase the amount of time needed
 for crash recovery.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	checkpoint_completion_target (floating point)

	
 Specifies the target of checkpoint completion, as a fraction of
 total time between checkpoints. The default is 0.9, which spreads the
 checkpoint across almost all of the available interval, providing fairly
 consistent I/O load while also leaving some time for checkpoint
 completion overhead. Reducing this parameter is not recommended because
 it causes the checkpoint to complete faster. This results in a higher
 rate of I/O during the checkpoint followed by a period of less I/O between
 the checkpoint completion and the next scheduled checkpoint. This
 parameter can only be set in the postgresql.conf file
 or on the server command line.

	checkpoint_flush_after (integer)

	
 Whenever more than this amount of data has been
 written while performing a checkpoint, attempt to force the
 OS to issue these writes to the underlying storage. Doing so will
 limit the amount of dirty data in the kernel's page cache, reducing
 the likelihood of stalls when an fsync is issued at the end of the
 checkpoint, or when the OS writes data back in larger batches in the
 background. Often that will result in greatly reduced transaction
 latency, but there also are some cases, especially with workloads
 that are bigger than shared_buffers, but smaller
 than the OS's page cache, where performance might degrade. This
 setting may have no effect on some platforms.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The valid range is
 between 0, which disables forced writeback,
 and 2MB. The default is 256kB on
 Linux, 0 elsewhere. (If BLCKSZ is not
 8kB, the default and maximum values scale proportionally to it.)
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	checkpoint_warning (integer)

	
 Write a message to the server log if checkpoints caused by
 the filling of WAL segment files happen closer together
 than this amount of time (which suggests that
 max_wal_size ought to be raised).
 If this value is specified without units, it is taken as seconds.
 The default is 30 seconds (30s).
 Zero disables the warning.
 No warnings will be generated if checkpoint_timeout
 is less than checkpoint_warning.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	max_wal_size (integer)

	
 Maximum size to let the WAL grow during automatic
 checkpoints. This is a soft limit; WAL size can exceed
 max_wal_size under special circumstances, such as
 heavy load, a failing archive_command or archive_library, or a high
 wal_keep_size setting.
 If this value is specified without units, it is taken as megabytes.
 The default is 1 GB.
 Increasing this parameter can increase the amount of time needed for
 crash recovery.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	min_wal_size (integer)

	
 As long as WAL disk usage stays below this setting, old WAL files are
 always recycled for future use at a checkpoint, rather than removed.
 This can be used to ensure that enough WAL space is reserved to
 handle spikes in WAL usage, for example when running large batch
 jobs.
 If this value is specified without units, it is taken as megabytes.
 The default is 80 MB.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Archiving

	archive_mode (enum)

	
 When archive_mode is enabled, completed WAL segments
 are sent to archive storage by setting
 archive_command or
 archive_library. In addition to off,
 to disable, there are two modes: on, and
 always. During normal operation, there is no
 difference between the two modes, but when set to always
 the WAL archiver is enabled also during archive recovery or standby
 mode. In always mode, all files restored from the archive
 or streamed with streaming replication will be archived (again). See
 the section called “Continuous Archiving in Standby” for details.

 archive_mode is a separate setting from
 archive_command and
 archive_library so that
 archive_command and
 archive_library can be changed without leaving
 archiving mode.
 This parameter can only be set at server start.
 archive_mode cannot be enabled when
 wal_level is set to minimal.

	archive_command (string)

	
 The local shell command to execute to archive a completed WAL file
 segment. Any %p in the string is
 replaced by the path name of the file to archive, and any
 %f is replaced by only the file name.
 (The path name is relative to the working directory of the server,
 i.e., the cluster's data directory.)
 Use %% to embed an actual % character in the
 command. It is important for the command to return a zero
 exit status only if it succeeds. For more information see
 the section called “Setting Up WAL Archiving”.

 This parameter can only be set in the postgresql.conf
 file or on the server command line. It is only used if
 archive_mode was enabled at server start and
 archive_library is set to an empty string. If both
 archive_command and archive_library
 are set, an error will be raised.
 If archive_command is an empty string (the default) while
 archive_mode is enabled (and archive_library
 is set to an empty string), WAL archiving is temporarily
 disabled, but the server continues to accumulate WAL segment files in
 the expectation that a command will soon be provided. Setting
 archive_command to a command that does nothing but
 return true, e.g., /bin/true (REM on
 Windows), effectively disables
 archiving, but also breaks the chain of WAL files needed for
 archive recovery, so it should only be used in unusual circumstances.

	archive_library (string)

	
 The library to use for archiving completed WAL file segments. If set to
 an empty string (the default), archiving via shell is enabled, and
 archive_command is used. If both
 archive_command and archive_library
 are set, an error will be raised. Otherwise, the specified
 shared library is used for archiving. The WAL archiver process is
 restarted by the postmaster when this parameter changes. For more
 information, see the section called “Setting Up WAL Archiving” and
 Chapter 51, Archive Modules.

 This parameter can only be set in the
 postgresql.conf file or on the server command line.

	archive_timeout (integer)

	
 The archive_command or archive_library is only invoked for
 completed WAL segments. Hence, if your server generates little WAL
 traffic (or has slack periods where it does so), there could be a
 long delay between the completion of a transaction and its safe
 recording in archive storage. To limit how old unarchived
 data can be, you can set archive_timeout to force the
 server to switch to a new WAL segment file periodically. When this
 parameter is greater than zero, the server will switch to a new
 segment file whenever this amount of time has elapsed since the last
 segment file switch, and there has been any database activity,
 including a single checkpoint (checkpoints are skipped if there is
 no database activity). Note that archived files that are closed
 early due to a forced switch are still the same length as completely
 full files. Therefore, it is unwise to use a very short
 archive_timeout — it will bloat your archive
 storage. archive_timeout settings of a minute or so are
 usually reasonable. You should consider using streaming replication,
 instead of archiving, if you want data to be copied off the primary
 server more quickly than that.
 If this value is specified without units, it is taken as seconds.
 This parameter can only be set in the
 postgresql.conf file or on the server command line.

Recovery

 This section describes the settings that apply to recovery in general,
 affecting crash recovery, streaming replication and archive-based
 replication.

	recovery_prefetch (enum)

	
 Whether to try to prefetch blocks that are referenced in the WAL that
 are not yet in the buffer pool, during recovery. Valid values are
 off, on and
 try (the default). The setting
 try enables
 prefetching only if the operating system provides the
 posix_fadvise function, which is currently used
 to implement prefetching. Note that some operating systems provide the
 function, but it doesn't do anything.

 Prefetching blocks that will soon be needed can reduce I/O wait times
 during recovery with some workloads.
 See also the wal_decode_buffer_size and
 maintenance_io_concurrency settings, which limit
 prefetching activity.

	wal_decode_buffer_size (integer)

	
 A limit on how far ahead the server can look in the WAL, to find
 blocks to prefetch. If this value is specified without units, it is
 taken as bytes.
 The default is 512kB.
 This parameter can only be set at server start.

Archive Recovery

 This section describes the settings that apply only for the duration of
 the recovery. They must be reset for any subsequent recovery you wish to
 perform.

 “Recovery” covers using the server as a standby or for
 executing a targeted recovery. Typically, standby mode would be used to
 provide high availability and/or read scalability, whereas a targeted
 recovery is used to recover from data loss.

 To start the server in standby mode, create a file called
 standby.signal
 in the data directory. The server will enter recovery and will not stop
 recovery when the end of archived WAL is reached, but will keep trying to
 continue recovery by connecting to the sending server as specified by the
 primary_conninfo setting and/or by fetching new WAL
 segments using restore_command. For this mode, the
 parameters from this section and the section called “Standby Servers” are of interest.
 Parameters from the section called “Recovery Target” will
 also be applied but are typically not useful in this mode.

 To start the server in targeted recovery mode, create a file called
 recovery.signal
 in the data directory. If both standby.signal and
 recovery.signal files are created, standby mode
 takes precedence. Targeted recovery mode ends when the archived WAL is
 fully replayed, or when recovery_target is reached.
 In this mode, the parameters from both this section and the section called “Recovery Target” will be used.

	restore_command (string)

	
 The local shell command to execute to retrieve an archived segment of
 the WAL file series. This parameter is required for archive recovery,
 but optional for streaming replication.
 Any %f in the string is
 replaced by the name of the file to retrieve from the archive,
 and any %p is replaced by the copy destination path name
 on the server.
 (The path name is relative to the current working directory,
 i.e., the cluster's data directory.)
 Any %r is replaced by the name of the file containing the
 last valid restart point. That is the earliest file that must be kept
 to allow a restore to be restartable, so this information can be used
 to truncate the archive to just the minimum required to support
 restarting from the current restore. %r is typically only
 used by warm-standby configurations
 (see the section called “Log-Shipping Standby Servers”).
 Write %% to embed an actual % character.

 It is important for the command to return a zero exit status
 only if it succeeds. The command will be asked for file
 names that are not present in the archive; it must return nonzero
 when so asked. Examples:

restore_command = 'cp /mnt/server/archivedir/%f "%p"'
restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"' # Windows

 An exception is that if the command was terminated by a signal (other
 than SIGTERM, which is used as part of a
 database server shutdown) or an error by the shell (such as command
 not found), then recovery will abort and the server will not start up.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	archive_cleanup_command (string)

	
 This optional parameter specifies a shell command that will be executed
 at every restartpoint. The purpose of
 archive_cleanup_command is to provide a mechanism for
 cleaning up old archived WAL files that are no longer needed by the
 standby server.
 Any %r is replaced by the name of the file containing the
 last valid restart point.
 That is the earliest file that must be kept to allow a
 restore to be restartable, and so all files earlier than %r
 may be safely removed.
 This information can be used to truncate the archive to just the
 minimum required to support restart from the current restore.
 The pg_archivecleanup(1) module
 is often used in archive_cleanup_command for
 single-standby configurations, for example:

archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir %r'

 Note however that if multiple standby servers are restoring from the
 same archive directory, you will need to ensure that you do not delete
 WAL files until they are no longer needed by any of the servers.
 archive_cleanup_command would typically be used in a
 warm-standby configuration (see the section called “Log-Shipping Standby Servers”).
 Write %% to embed an actual % character in the
 command.

 If the command returns a nonzero exit status then a warning log
 message will be written. An exception is that if the command was
 terminated by a signal or an error by the shell (such as command not
 found), a fatal error will be raised.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	recovery_end_command (string)

	
 This parameter specifies a shell command that will be executed once only
 at the end of recovery. This parameter is optional. The purpose of the
 recovery_end_command is to provide a mechanism for cleanup
 following replication or recovery.
 Any %r is replaced by the name of the file containing the
 last valid restart point, like in archive_cleanup_command.

 If the command returns a nonzero exit status then a warning log
 message will be written and the database will proceed to start up
 anyway. An exception is that if the command was terminated by a
 signal or an error by the shell (such as command not found), the
 database will not proceed with startup.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Recovery Target

 By default, recovery will recover to the end of the WAL log. The
 following parameters can be used to specify an earlier stopping point.
 At most one of recovery_target,
 recovery_target_lsn, recovery_target_name,
 recovery_target_time, or recovery_target_xid
 can be used; if more than one of these is specified in the configuration
 file, an error will be raised.
 These parameters can only be set at server start.

	recovery_target = 'immediate'

	
 This parameter specifies that recovery should end as soon as a
 consistent state is reached, i.e., as early as possible. When restoring
 from an online backup, this means the point where taking the backup
 ended.

 Technically, this is a string parameter, but 'immediate'
 is currently the only allowed value.

	recovery_target_name (string)

	
 This parameter specifies the named restore point (created with
 pg_create_restore_point()) to which recovery will proceed.

	recovery_target_time (timestamp)

	
 This parameter specifies the time stamp up to which recovery
 will proceed.
 The precise stopping point is also influenced by
 recovery_target_inclusive.

 The value of this parameter is a time stamp in the same format
 accepted by the timestamp with time zone data type,
 except that you cannot use a time zone abbreviation (unless the
 timezone_abbreviations variable has been set
 earlier in the configuration file). Preferred style is to use a
 numeric offset from UTC, or you can write a full time zone name,
 e.g., Europe/Helsinki not EEST.

	recovery_target_xid (string)

	
 This parameter specifies the transaction ID up to which recovery
 will proceed. Keep in mind
 that while transaction IDs are assigned sequentially at transaction
 start, transactions can complete in a different numeric order.
 The transactions that will be recovered are those that committed
 before (and optionally including) the specified one.
 The precise stopping point is also influenced by
 recovery_target_inclusive.

	recovery_target_lsn (pg_lsn)

	
 This parameter specifies the LSN of the write-ahead log location up
 to which recovery will proceed. The precise stopping point is also
 influenced by recovery_target_inclusive. This
 parameter is parsed using the system data type
 pg_lsn.

 The following options further specify the recovery target, and affect
 what happens when the target is reached:

	recovery_target_inclusive (boolean)

	
 Specifies whether to stop just after the specified recovery target
 (on), or just before the recovery target
 (off).
 Applies when recovery_target_lsn,
 recovery_target_time, or
 recovery_target_xid is specified.
 This setting controls whether transactions
 having exactly the target WAL location (LSN), commit time, or transaction ID, respectively, will
 be included in the recovery. Default is on.

	recovery_target_timeline (string)

	
 Specifies recovering into a particular timeline. The value can be a
 numeric timeline ID or a special value. The value
 current recovers along the same timeline that was
 current when the base backup was taken. The
 value latest recovers
 to the latest timeline found in the archive, which is useful in
 a standby server. latest is the default.

 To specify a timeline ID in hexadecimal (for example, if extracted
 from a WAL file name or history file), prefix it with a
 0x. For instance, if the WAL file name is
 00000011000000A10000004F, then the timeline ID is
 0x11 (or 17 decimal).

 You usually only need to set this parameter
 in complex re-recovery situations, where you need to return to
 a state that itself was reached after a point-in-time recovery.
 See the section called “Timelines” for discussion.

	recovery_target_action (enum)

	
 Specifies what action the server should take once the recovery target is
 reached. The default is pause, which means recovery will
 be paused. promote means the recovery process will finish
 and the server will start to accept connections.
 Finally shutdown will stop the server after reaching the
 recovery target.

 The intended use of the pause setting is to allow queries
 to be executed against the database to check if this recovery target
 is the most desirable point for recovery.
 The paused state can be resumed by
 using pg_wal_replay_resume() (see
 Table 9.93, “Recovery Control Functions”), which then
 causes recovery to end. If this recovery target is not the
 desired stopping point, then shut down the server, change the
 recovery target settings to a later target and restart to
 continue recovery.

 The shutdown setting is useful to have the instance ready
 at the exact replay point desired. The instance will still be able to
 replay more WAL records (and in fact will have to replay WAL records
 since the last checkpoint next time it is started).

 Note that because recovery.signal will not be
 removed when recovery_target_action is set to shutdown,
 any subsequent start will end with immediate shutdown unless the
 configuration is changed or the recovery.signal
 file is removed manually.

 This setting has no effect if no recovery target is set.
 If hot_standby is not enabled, a setting of
 pause will act the same as shutdown.
 If the recovery target is reached while a promotion is ongoing,
 a setting of pause will act the same as
 promote.

 In any case, if a recovery target is configured but the archive
 recovery ends before the target is reached, the server will shut down
 with a fatal error.

Replication

 These settings control the behavior of the built-in
 streaming replication feature (see
 the section called “Streaming Replication”), and the built-in
 logical replication feature (see
 Chapter 31, Logical Replication).

 For streaming replication, servers will be either a
 primary or a standby server. Primaries can send data, while standbys
 are always receivers of replicated data. When cascading replication
 (see the section called “Cascading Replication”) is used, standby servers
 can also be senders, as well as receivers.
 Parameters are mainly for sending and standby servers, though some
 parameters have meaning only on the primary server. Settings may vary
 across the cluster without problems if that is required.

 For logical replication, publishers
 (servers that do CREATE PUBLICATION)
 replicate data to subscribers
 (servers that do CREATE SUBSCRIPTION).
 Servers can also be publishers and subscribers at the same time. Note,
 the following sections refer to publishers as "senders". For more details
 about logical replication configuration settings refer to
 the section called “Configuration Settings”.

Sending Servers

 These parameters can be set on any server that is
 to send replication data to one or more standby servers.
 The primary is always a sending server, so these parameters must
 always be set on the primary.
 The role and meaning of these parameters does not change after a
 standby becomes the primary.

	max_wal_senders (integer)

	
 Specifies the maximum number of concurrent connections from standby
 servers or streaming base backup clients (i.e., the maximum number of
 simultaneously running WAL sender processes). The default is
 10. The value 0 means
 replication is disabled. Abrupt disconnection of a streaming client might
 leave an orphaned connection slot behind until a timeout is reached,
 so this parameter should be set slightly higher than the maximum
 number of expected clients so disconnected clients can immediately
 reconnect. This parameter can only be set at server start. Also,
 wal_level must be set to
 replica or higher to allow connections from standby
 servers.

 When running a standby server, you must set this parameter to the
 same or higher value than on the primary server. Otherwise, queries
 will not be allowed in the standby server.

	max_replication_slots (integer)

	
 Specifies the maximum number of replication slots
 (see the section called “Replication Slots”) that the server
 can support. The default is 10. This parameter can only be set at
 server start.
 Setting it to a lower value than the number of currently
 existing replication slots will prevent the server from starting.
 Also, wal_level must be set
 to replica or higher to allow replication slots to
 be used.

 Note that this parameter also applies on the subscriber side, but with
 a different meaning.

	wal_keep_size (integer)

	
 Specifies the minimum size of past WAL files kept in the
 pg_wal
 directory, in case a standby server needs to fetch them for streaming
 replication. If a standby
 server connected to the sending server falls behind by more than
 wal_keep_size megabytes, the sending server might
 remove a WAL segment still needed by the standby, in which case the
 replication connection will be terminated. Downstream connections
 will also eventually fail as a result. (However, the standby
 server can recover by fetching the segment from archive, if WAL
 archiving is in use.)

 This sets only the minimum size of segments retained in
 pg_wal; the system might need to retain more segments
 for WAL archival or to recover from a checkpoint. If
 wal_keep_size is zero (the default), the system
 doesn't keep any extra segments for standby purposes, so the number
 of old WAL segments available to standby servers is a function of
 the location of the previous checkpoint and status of WAL
 archiving.
 If this value is specified without units, it is taken as megabytes.
 This parameter can only be set in the
 postgresql.conf file or on the server command line.

	max_slot_wal_keep_size (integer)

	
 Specify the maximum size of WAL files
 that replication
 slots are allowed to retain in the pg_wal
 directory at checkpoint time.
 If max_slot_wal_keep_size is -1 (the default),
 replication slots may retain an unlimited amount of WAL files. Otherwise, if
 restart_lsn of a replication slot falls behind the current LSN by more
 than the given size, the standby using the slot may no longer be able
 to continue replication due to removal of required WAL files. You
 can see the WAL availability of replication slots
 in pg_replication_slots.
 If this value is specified without units, it is taken as megabytes.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	wal_sender_timeout (integer)

	
 Terminate replication connections that are inactive for longer
 than this amount of time. This is useful for
 the sending server to detect a standby crash or network outage.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 60 seconds.
 A value of zero disables the timeout mechanism.

 With a cluster distributed across multiple geographic
 locations, using different values per location brings more flexibility
 in the cluster management. A smaller value is useful for faster
 failure detection with a standby having a low-latency network
 connection, and a larger value helps in judging better the health
 of a standby if located on a remote location, with a high-latency
 network connection.

	track_commit_timestamp (boolean)

	
 Record commit time of transactions.
 This parameter can only be set at server start.
 The default value is off.

Primary Server

 These parameters can be set on the primary server that is
 to send replication data to one or more standby servers.
 Note that in addition to these parameters,
 wal_level must be set appropriately on the primary
 server, and optionally WAL archiving can be enabled as
 well (see the section called “Archiving”).
 The values of these parameters on standby servers are irrelevant,
 although you may wish to set them there in preparation for the
 possibility of a standby becoming the primary.

	synchronous_standby_names (string)

	
 Specifies a list of standby servers that can support
 synchronous replication, as described in
 the section called “Synchronous Replication”.
 There will be one or more active synchronous standbys;
 transactions waiting for commit will be allowed to proceed after
 these standby servers confirm receipt of their data.
 The synchronous standbys will be those whose names appear
 in this list, and
 that are both currently connected and streaming data in real-time
 (as shown by a state of streaming in the

 pg_stat_replication view).
 Specifying more than one synchronous standby can allow for very high
 availability and protection against data loss.

 The name of a standby server for this purpose is the
 application_name setting of the standby, as set in the
 standby's connection information. In case of a physical replication
 standby, this should be set in the primary_conninfo
 setting; the default is the setting of cluster_name
 if set, else walreceiver.
 For logical replication, this can be set in the connection
 information of the subscription, and it defaults to the
 subscription name. For other replication stream consumers,
 consult their documentation.

 This parameter specifies a list of standby servers using
 either of the following syntaxes:

[FIRST] num_sync (standby_name [, ...])
ANY num_sync (standby_name [, ...])
standby_name [, ...]

 where num_sync is
 the number of synchronous standbys that transactions need to
 wait for replies from,
 and standby_name
 is the name of a standby server.
 FIRST and ANY specify the method to choose
 synchronous standbys from the listed servers.

 The keyword FIRST, coupled with
 num_sync, specifies a
 priority-based synchronous replication and makes transaction commits
 wait until their WAL records are replicated to
 num_sync synchronous
 standbys chosen based on their priorities. For example, a setting of
 FIRST 3 (s1, s2, s3, s4) will cause each commit to wait for
 replies from three higher-priority standbys chosen from standby servers
 s1, s2, s3 and s4.
 The standbys whose names appear earlier in the list are given higher
 priority and will be considered as synchronous. Other standby servers
 appearing later in this list represent potential synchronous standbys.
 If any of the current synchronous standbys disconnects for whatever
 reason, it will be replaced immediately with the next-highest-priority
 standby. The keyword FIRST is optional.

 The keyword ANY, coupled with
 num_sync, specifies a
 quorum-based synchronous replication and makes transaction commits
 wait until their WAL records are replicated to at least
 num_sync listed standbys.
 For example, a setting of ANY 3 (s1, s2, s3, s4) will cause
 each commit to proceed as soon as at least any three standbys of
 s1, s2, s3 and s4
 reply.

 FIRST and ANY are case-insensitive. If these
 keywords are used as the name of a standby server,
 its standby_name must
 be double-quoted.

 The third syntax was used before PostgreSQL™
 version 9.6 and is still supported. It's the same as the first syntax
 with FIRST and
 num_sync equal to 1.
 For example, FIRST 1 (s1, s2) and s1, s2 have
 the same meaning: either s1 or s2 is chosen
 as a synchronous standby.

 The special entry * matches any standby name.

 There is no mechanism to enforce uniqueness of standby names. In case
 of duplicates one of the matching standbys will be considered as
 higher priority, though exactly which one is indeterminate.

Note

 Each standby_name
 should have the form of a valid SQL identifier, unless it
 is *. You can use double-quoting if necessary. But note
 that standby_names are
 compared to standby application names case-insensitively, whether
 double-quoted or not.

 If no synchronous standby names are specified here, then synchronous
 replication is not enabled and transaction commits will not wait for
 replication. This is the default configuration. Even when
 synchronous replication is enabled, individual transactions can be
 configured not to wait for replication by setting the
 synchronous_commit parameter to
 local or off.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Standby Servers

 These settings control the behavior of a
 standby server
 that is
 to receive replication data. Their values on the primary server
 are irrelevant.

	primary_conninfo (string)

	
 Specifies a connection string to be used for the standby server
 to connect with a sending server. This string is in the format
 described in the section called “Connection Strings”. If any option is
 unspecified in this string, then the corresponding environment
 variable (see the section called “Environment Variables”) is checked. If the
 environment variable is not set either, then
 defaults are used.

 The connection string should specify the host name (or address)
 of the sending server, as well as the port number if it is not
 the same as the standby server's default.
 Also specify a user name corresponding to a suitably-privileged role
 on the sending server (see
 the section called “Authentication”).
 A password needs to be provided too, if the sender demands password
 authentication. It can be provided in the
 primary_conninfo string, or in a separate
 ~/.pgpass file on the standby server (use
 replication as the database name).
 Do not specify a database name in the
 primary_conninfo string.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 If this parameter is changed while the WAL receiver process is
 running, that process is signaled to shut down and expected to
 restart with the new setting (except if primary_conninfo
 is an empty string).
 This setting has no effect if the server is not in standby mode.

	primary_slot_name (string)

	
 Optionally specifies an existing replication slot to be used when
 connecting to the sending server via streaming replication to control
 resource removal on the upstream node
 (see the section called “Replication Slots”).
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 If this parameter is changed while the WAL receiver process is running,
 that process is signaled to shut down and expected to restart with the
 new setting.
 This setting has no effect if primary_conninfo is not
 set or the server is not in standby mode.

	hot_standby (boolean)

	
 Specifies whether or not you can connect and run queries during
 recovery, as described in the section called “Hot Standby”.
 The default value is on.
 This parameter can only be set at server start. It only has effect
 during archive recovery or in standby mode.

	max_standby_archive_delay (integer)

	
 When hot standby is active, this parameter determines how long the
 standby server should wait before canceling standby queries that
 conflict with about-to-be-applied WAL entries, as described in
 the section called “Handling Query Conflicts”.
 max_standby_archive_delay applies when WAL data is
 being read from WAL archive (and is therefore not current).
 If this value is specified without units, it is taken as milliseconds.
 The default is 30 seconds.
 A value of -1 allows the standby to wait forever for conflicting
 queries to complete.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 Note that max_standby_archive_delay is not the same as the
 maximum length of time a query can run before cancellation; rather it
 is the maximum total time allowed to apply any one WAL segment's data.
 Thus, if one query has resulted in significant delay earlier in the
 WAL segment, subsequent conflicting queries will have much less grace
 time.

	max_standby_streaming_delay (integer)

	
 When hot standby is active, this parameter determines how long the
 standby server should wait before canceling standby queries that
 conflict with about-to-be-applied WAL entries, as described in
 the section called “Handling Query Conflicts”.
 max_standby_streaming_delay applies when WAL data is
 being received via streaming replication.
 If this value is specified without units, it is taken as milliseconds.
 The default is 30 seconds.
 A value of -1 allows the standby to wait forever for conflicting
 queries to complete.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 Note that max_standby_streaming_delay is not the same as
 the maximum length of time a query can run before cancellation; rather
 it is the maximum total time allowed to apply WAL data once it has
 been received from the primary server. Thus, if one query has
 resulted in significant delay, subsequent conflicting queries will
 have much less grace time until the standby server has caught up
 again.

	wal_receiver_create_temp_slot (boolean)

	
 Specifies whether the WAL receiver process should create a temporary replication
 slot on the remote instance when no permanent replication slot to use
 has been configured (using primary_slot_name).
 The default is off. This parameter can only be set in the
 postgresql.conf file or on the server command line.
 If this parameter is changed while the WAL receiver process is running,
 that process is signaled to shut down and expected to restart with
 the new setting.

	wal_receiver_status_interval (integer)

	
 Specifies the minimum frequency for the WAL receiver
 process on the standby to send information about replication progress
 to the primary or upstream standby, where it can be seen using the

 pg_stat_replication
 view. The standby will report
 the last write-ahead log location it has written, the last position it
 has flushed to disk, and the last position it has applied.
 This parameter's value is the maximum amount of time between reports.
 Updates are sent each time the write or flush positions change, or as
 often as specified by this parameter if set to a non-zero value.
 There are additional cases where updates are sent while ignoring this
 parameter; for example, when processing of the existing WAL completes
 or when synchronous_commit is set to
 remote_apply.
 Thus, the apply position may lag slightly behind the true position.
 If this value is specified without units, it is taken as seconds.
 The default value is 10 seconds. This parameter can only be set in
 the postgresql.conf file or on the server
 command line.

	hot_standby_feedback (boolean)

	
 Specifies whether or not a hot standby will send feedback to the primary
 or upstream standby
 about queries currently executing on the standby. This parameter can
 be used to eliminate query cancels caused by cleanup records, but
 can cause database bloat on the primary for some workloads.
 Feedback messages will not be sent more frequently than once per
 wal_receiver_status_interval. The default value is
 off. This parameter can only be set in the
 postgresql.conf file or on the server command line.

 If cascaded replication is in use the feedback is passed upstream
 until it eventually reaches the primary. Standbys make no other use
 of feedback they receive other than to pass upstream.

 This setting does not override the behavior of
 old_snapshot_threshold on the primary; a snapshot on the
 standby which exceeds the primary's age threshold can become invalid,
 resulting in cancellation of transactions on the standby. This is
 because old_snapshot_threshold is intended to provide an
 absolute limit on the time which dead rows can contribute to bloat,
 which would otherwise be violated because of the configuration of a
 standby.

	wal_receiver_timeout (integer)

	
 Terminate replication connections that are inactive for longer
 than this amount of time. This is useful for
 the receiving standby server to detect a primary node crash or network
 outage.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 60 seconds.
 A value of zero disables the timeout mechanism.
 This parameter can only be set in
 the postgresql.conf file or on the server
 command line.

	wal_retrieve_retry_interval (integer)

	
 Specifies how long the standby server should wait when WAL data is not
 available from any sources (streaming replication,
 local pg_wal or WAL archive) before trying
 again to retrieve WAL data.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 5 seconds.
 This parameter can only be set in
 the postgresql.conf file or on the server
 command line.

 This parameter is useful in configurations where a node in recovery
 needs to control the amount of time to wait for new WAL data to be
 available. For example, in archive recovery, it is possible to
 make the recovery more responsive in the detection of a new WAL
 file by reducing the value of this parameter. On a system with
 low WAL activity, increasing it reduces the amount of requests necessary
 to access WAL archives, something useful for example in cloud
 environments where the number of times an infrastructure is accessed
 is taken into account.

 In logical replication, this parameter also limits how often a failing
 replication apply worker will be respawned.

	recovery_min_apply_delay (integer)

	
 By default, a standby server restores WAL records from the
 sending server as soon as possible. It may be useful to have a time-delayed
 copy of the data, offering opportunities to correct data loss errors.
 This parameter allows you to delay recovery by a specified amount
 of time. For example, if
 you set this parameter to 5min, the standby will
 replay each transaction commit only when the system time on the standby
 is at least five minutes past the commit time reported by the primary.
 If this value is specified without units, it is taken as milliseconds.
 The default is zero, adding no delay.

 It is possible that the replication delay between servers exceeds the
 value of this parameter, in which case no delay is added.
 Note that the delay is calculated between the WAL time stamp as written
 on primary and the current time on the standby. Delays in transfer
 because of network lag or cascading replication configurations
 may reduce the actual wait time significantly. If the system
 clocks on primary and standby are not synchronized, this may lead to
 recovery applying records earlier than expected; but that is not a
 major issue because useful settings of this parameter are much larger
 than typical time deviations between servers.

 The delay occurs only on WAL records for transaction commits.
 Other records are replayed as quickly as possible, which
 is not a problem because MVCC visibility rules ensure their effects
 are not visible until the corresponding commit record is applied.

 The delay occurs once the database in recovery has reached a consistent
 state, until the standby is promoted or triggered. After that the standby
 will end recovery without further waiting.

 WAL records must be kept on the standby until they are ready to be
 applied. Therefore, longer delays will result in a greater accumulation
 of WAL files, increasing disk space requirements for the standby's
 pg_wal directory.

 This parameter is intended for use with streaming replication deployments;
 however, if the parameter is specified it will be honored in all cases
 except crash recovery.

 hot_standby_feedback will be delayed by use of this feature
 which could lead to bloat on the primary; use both together with care.

Warning

 Synchronous replication is affected by this setting when synchronous_commit
 is set to remote_apply; every COMMIT
 will need to wait to be applied.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Subscribers

 These settings control the behavior of a logical replication subscriber.
 Their values on the publisher are irrelevant.
 See the section called “Configuration Settings” for more details.

	max_replication_slots (integer)

	
 Specifies how many replication origins (see
 Chapter 50, Replication Progress Tracking) can be tracked simultaneously,
 effectively limiting how many logical replication subscriptions can
 be created on the server. Setting it to a lower value than the current
 number of tracked replication origins (reflected in
 pg_replication_origin_status)
 will prevent the server from starting.
 max_replication_slots must be set to at least the
 number of subscriptions that will be added to the subscriber, plus some
 reserve for table synchronization.

 Note that this parameter also applies on a sending server, but with
 a different meaning.

	max_logical_replication_workers (integer)

	
 Specifies maximum number of logical replication workers. This includes
 leader apply workers, parallel apply workers, and table synchronization
 workers.

 Logical replication workers are taken from the pool defined by
 max_worker_processes.

 The default value is 4. This parameter can only be set at server
 start.

	max_sync_workers_per_subscription (integer)

	
 Maximum number of synchronization workers per subscription. This
 parameter controls the amount of parallelism of the initial data copy
 during the subscription initialization or when new tables are added.

 Currently, there can be only one synchronization worker per table.

 The synchronization workers are taken from the pool defined by
 max_logical_replication_workers.

 The default value is 2. This parameter can only be set in the
 postgresql.conf file or on the server command
 line.

	max_parallel_apply_workers_per_subscription (integer)

	
 Maximum number of parallel apply workers per subscription. This
 parameter controls the amount of parallelism for streaming of
 in-progress transactions with subscription parameter
 streaming = parallel.

 The parallel apply workers are taken from the pool defined by
 max_logical_replication_workers.

 The default value is 2. This parameter can only be set in the
 postgresql.conf file or on the server command
 line.

Query Planning

Planner Method Configuration

 These configuration parameters provide a crude method of
 influencing the query plans chosen by the query optimizer. If
 the default plan chosen by the optimizer for a particular query
 is not optimal, a temporary solution is to use one
 of these configuration parameters to force the optimizer to
 choose a different plan.
 Better ways to improve the quality of the
 plans chosen by the optimizer include adjusting the planner cost
 constants (see the section called “Planner Cost Constants”),
 running ANALYZE manually, increasing
 the value of the default_statistics_target configuration parameter,
 and increasing the amount of statistics collected for
 specific columns using ALTER TABLE SET
 STATISTICS.

	enable_async_append (boolean)

	
 Enables or disables the query planner's use of async-aware
 append plan types. The default is on.

	enable_bitmapscan (boolean)

	
 Enables or disables the query planner's use of bitmap-scan plan
 types. The default is on.

	enable_gathermerge (boolean)

	
 Enables or disables the query planner's use of gather
 merge plan types. The default is on.

	enable_hashagg (boolean)

	
 Enables or disables the query planner's use of hashed
 aggregation plan types. The default is on.

	enable_hashjoin (boolean)

	
 Enables or disables the query planner's use of hash-join plan
 types. The default is on.

	enable_incremental_sort (boolean)

	
 Enables or disables the query planner's use of incremental sort steps.
 The default is on.

	enable_indexscan (boolean)

	
 Enables or disables the query planner's use of index-scan and
 index-only-scan plan types. The default is on.
 Also see enable_indexonlyscan.

	enable_indexonlyscan (boolean)

	
 Enables or disables the query planner's use of index-only-scan plan
 types (see the section called “Index-Only Scans and Covering Indexes”).
 The default is on. The
 enable_indexscan setting must also be
 enabled to have the query planner consider index-only-scans.

	enable_material (boolean)

	
 Enables or disables the query planner's use of materialization.
 It is impossible to suppress materialization entirely,
 but turning this variable off prevents the planner from inserting
 materialize nodes except in cases where it is required for correctness.
 The default is on.

	enable_memoize (boolean)

	
 Enables or disables the query planner's use of memoize plans for
 caching results from parameterized scans inside nested-loop joins.
 This plan type allows scans to the underlying plans to be skipped when
 the results for the current parameters are already in the cache. Less
 commonly looked up results may be evicted from the cache when more
 space is required for new entries. The default is
 on.

	enable_mergejoin (boolean)

	
 Enables or disables the query planner's use of merge-join plan
 types. The default is on.

	enable_nestloop (boolean)

	
 Enables or disables the query planner's use of nested-loop join
 plans. It is impossible to suppress nested-loop joins entirely,
 but turning this variable off discourages the planner from using
 one if there are other methods available. The default is
 on.

	enable_parallel_append (boolean)

	
 Enables or disables the query planner's use of parallel-aware
 append plan types. The default is on.

	enable_parallel_hash (boolean)

	
 Enables or disables the query planner's use of hash-join plan
 types with parallel hash. Has no effect if hash-join plans are not
 also enabled. The default is on.

	enable_partition_pruning (boolean)

	
 Enables or disables the query planner's ability to eliminate a
 partitioned table's partitions from query plans. This also controls
 the planner's ability to generate query plans which allow the query
 executor to remove (ignore) partitions during query execution. The
 default is on.
 See the section called “Partition Pruning” for details.

	enable_partitionwise_join (boolean)

	
 Enables or disables the query planner's use of partitionwise join,
 which allows a join between partitioned tables to be performed by
 joining the matching partitions. Partitionwise join currently applies
 only when the join conditions include all the partition keys, which
 must be of the same data type and have one-to-one matching sets of
 child partitions. With this setting enabled, the number of nodes
 whose memory usage is restricted by work_mem
 appearing in the final plan can increase linearly according to the
 number of partitions being scanned. This can result in a large
 increase in overall memory consumption during the execution of the
 query. Query planning also becomes significantly more expensive in
 terms of memory and CPU. The default value is off.

	enable_partitionwise_aggregate (boolean)

	
 Enables or disables the query planner's use of partitionwise grouping
 or aggregation, which allows grouping or aggregation on partitioned
 tables to be performed separately for each partition. If the
 GROUP BY clause does not include the partition
 keys, only partial aggregation can be performed on a per-partition
 basis, and finalization must be performed later. With this setting
 enabled, the number of nodes whose memory usage is restricted by
 work_mem appearing in the final plan can increase
 linearly according to the number of partitions being scanned. This
 can result in a large increase in overall memory consumption during
 the execution of the query. Query planning also becomes significantly
 more expensive in terms of memory and CPU. The default value is
 off.

	enable_presorted_aggregate (boolean)

	
 Controls if the query planner will produce a plan which will provide
 rows which are presorted in the order required for the query's
 ORDER BY / DISTINCT aggregate
 functions. When disabled, the query planner will produce a plan which
 will always require the executor to perform a sort before performing
 aggregation of each aggregate function containing an
 ORDER BY or DISTINCT clause.
 When enabled, the planner will try to produce a more efficient plan
 which provides input to the aggregate functions which is presorted in
 the order they require for aggregation. The default value is
 on.

	enable_seqscan (boolean)

	
 Enables or disables the query planner's use of sequential scan
 plan types. It is impossible to suppress sequential scans
 entirely, but turning this variable off discourages the planner
 from using one if there are other methods available. The
 default is on.

	enable_sort (boolean)

	
 Enables or disables the query planner's use of explicit sort
 steps. It is impossible to suppress explicit sorts entirely,
 but turning this variable off discourages the planner from
 using one if there are other methods available. The default
 is on.

	enable_tidscan (boolean)

	
 Enables or disables the query planner's use of TID
 scan plan types. The default is on.

Planner Cost Constants

 The cost variables described in this section are measured
 on an arbitrary scale. Only their relative values matter, hence
 scaling them all up or down by the same factor will result in no change
 in the planner's choices. By default, these cost variables are based on
 the cost of sequential page fetches; that is,
 seq_page_cost is conventionally set to 1.0
 and the other cost variables are set with reference to that. But
 you can use a different scale if you prefer, such as actual execution
 times in milliseconds on a particular machine.

Note

 Unfortunately, there is no well-defined method for determining ideal
 values for the cost variables. They are best treated as averages over
 the entire mix of queries that a particular installation will receive. This
 means that changing them on the basis of just a few experiments is very
 risky.

	seq_page_cost (floating point)

	
 Sets the planner's estimate of the cost of a disk page fetch
 that is part of a series of sequential fetches. The default is 1.0.
 This value can be overridden for tables and indexes in a particular
 tablespace by setting the tablespace parameter of the same name
 (see ALTER TABLESPACE(7)).

	random_page_cost (floating point)

	
 Sets the planner's estimate of the cost of a
 non-sequentially-fetched disk page. The default is 4.0.
 This value can be overridden for tables and indexes in a particular
 tablespace by setting the tablespace parameter of the same name
 (see ALTER TABLESPACE(7)).

 Reducing this value relative to seq_page_cost
 will cause the system to prefer index scans; raising it will
 make index scans look relatively more expensive. You can raise
 or lower both values together to change the importance of disk I/O
 costs relative to CPU costs, which are described by the following
 parameters.

 Random access to durable storage is normally much more expensive
 than four times sequential access. However, a lower default is
 used (4.0) because the majority of random accesses to storage,
 such as indexed reads, are assumed to be in cache. Also, the
 latency of network-attached storage tends to reduce the relative
 overhead of random access.

 If you believe caching is less frequent than the default
 value reflects, and network latency is minimal, you can increase
 random_page_cost to better reflect the true cost of random storage
 reads. Storage that has a higher random read cost relative to
 sequential, like magnetic disks, might also be better modeled with
 a higher value for random_page_cost. Correspondingly, if your data
 is likely to be completely in cache, such as when the database
 is smaller than the total server memory, or network latency is
 high, decreasing random_page_cost might be appropriate.

Tip

 Although the system will let you set random_page_cost to
 less than seq_page_cost, it is not physically sensible
 to do so. However, setting them equal makes sense if the database
 is entirely cached in RAM, since in that case there is no penalty
 for touching pages out of sequence. Also, in a heavily-cached
 database you should lower both values relative to the CPU parameters,
 since the cost of fetching a page already in RAM is much smaller
 than it would normally be.

	cpu_tuple_cost (floating point)

	
 Sets the planner's estimate of the cost of processing
 each row during a query.
 The default is 0.01.

	cpu_index_tuple_cost (floating point)

	
 Sets the planner's estimate of the cost of processing
 each index entry during an index scan.
 The default is 0.005.

	cpu_operator_cost (floating point)

	
 Sets the planner's estimate of the cost of processing each
 operator or function executed during a query.
 The default is 0.0025.

	parallel_setup_cost (floating point)

	
 Sets the planner's estimate of the cost of launching parallel worker
 processes.
 The default is 1000.

	parallel_tuple_cost (floating point)

	
 Sets the planner's estimate of the cost of transferring one tuple
 from a parallel worker process to another process.
 The default is 0.1.

	min_parallel_table_scan_size (integer)

	
 Sets the minimum amount of table data that must be scanned in order
 for a parallel scan to be considered. For a parallel sequential scan,
 the amount of table data scanned is always equal to the size of the
 table, but when indexes are used the amount of table data
 scanned will normally be less.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The default is 8 megabytes (8MB).

	min_parallel_index_scan_size (integer)

	
 Sets the minimum amount of index data that must be scanned in order
 for a parallel scan to be considered. Note that a parallel index scan
 typically won't touch the entire index; it is the number of pages
 which the planner believes will actually be touched by the scan which
 is relevant. This parameter is also used to decide whether a
 particular index can participate in a parallel vacuum. See
 VACUUM(7).
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The default is 512 kilobytes (512kB).

	effective_cache_size (integer)

	
 Sets the planner's assumption about the effective size of the
 disk cache that is available to a single query. This is
 factored into estimates of the cost of using an index; a
 higher value makes it more likely index scans will be used, a
 lower value makes it more likely sequential scans will be
 used. When setting this parameter you should consider both
 PostgreSQL™'s shared buffers and the
 portion of the kernel's disk cache that will be used for
 PostgreSQL™ data files, though some
 data might exist in both places. Also, take
 into account the expected number of concurrent queries on different
 tables, since they will have to share the available
 space. This parameter has no effect on the size of shared
 memory allocated by PostgreSQL™, nor
 does it reserve kernel disk cache; it is used only for estimation
 purposes. The system also does not assume data remains in
 the disk cache between queries.
 If this value is specified without units, it is taken as blocks,
 that is BLCKSZ bytes, typically 8kB.
 The default is 4 gigabytes (4GB).
 (If BLCKSZ is not 8kB, the default value scales
 proportionally to it.)

	jit_above_cost (floating point)

	
 Sets the query cost above which JIT compilation is activated, if
 enabled (see Chapter 32, Just-in-Time Compilation (JIT)).
 Performing JIT costs planning time but can
 accelerate query execution.
 Setting this to -1 disables JIT compilation.
 The default is 100000.

	jit_inline_above_cost (floating point)

	
 Sets the query cost above which JIT compilation attempts to inline
 functions and operators. Inlining adds planning time, but can
 improve execution speed. It is not meaningful to set this to less
 than jit_above_cost.
 Setting this to -1 disables inlining.
 The default is 500000.

	jit_optimize_above_cost (floating point)

	
 Sets the query cost above which JIT compilation applies expensive
 optimizations. Such optimization adds planning time, but can improve
 execution speed. It is not meaningful to set this to less
 than jit_above_cost, and it is unlikely to be
 beneficial to set it to more
 than jit_inline_above_cost.
 Setting this to -1 disables expensive optimizations.
 The default is 500000.

Genetic Query Optimizer

 The genetic query optimizer (GEQO) is an algorithm that does query
 planning using heuristic searching. This reduces planning time for
 complex queries (those joining many relations), at the cost of producing
 plans that are sometimes inferior to those found by the normal
 exhaustive-search algorithm.
 For more information see Chapter 62, Genetic Query Optimizer.

	geqo (boolean)

	
 Enables or disables genetic query optimization.
 This is on by default. It is usually best not to turn it off in
 production; the geqo_threshold variable provides
 more granular control of GEQO.

	geqo_threshold (integer)

	
 Use genetic query optimization to plan queries with at least
 this many FROM items involved. (Note that a
 FULL OUTER JOIN construct counts as only one FROM
 item.) The default is 12. For simpler queries it is usually best
 to use the regular, exhaustive-search planner, but for queries with
 many tables the exhaustive search takes too long, often
 longer than the penalty of executing a suboptimal plan. Thus,
 a threshold on the size of the query is a convenient way to manage
 use of GEQO.

	geqo_effort (integer)

	
 Controls the trade-off between planning time and query plan
 quality in GEQO. This variable must be an integer in the
 range from 1 to 10. The default value is five. Larger values
 increase the time spent doing query planning, but also
 increase the likelihood that an efficient query plan will be
 chosen.

 geqo_effort doesn't actually do anything
 directly; it is only used to compute the default values for
 the other variables that influence GEQO behavior (described
 below). If you prefer, you can set the other parameters by
 hand instead.

	geqo_pool_size (integer)

	
 Controls the pool size used by GEQO, that is the
 number of individuals in the genetic population. It must be
 at least two, and useful values are typically 100 to 1000. If
 it is set to zero (the default setting) then a suitable
 value is chosen based on geqo_effort and
 the number of tables in the query.

	geqo_generations (integer)

	
 Controls the number of generations used by GEQO, that is
 the number of iterations of the algorithm. It must
 be at least one, and useful values are in the same range as
 the pool size. If it is set to zero (the default setting)
 then a suitable value is chosen based on
 geqo_pool_size.

	geqo_selection_bias (floating point)

	
 Controls the selection bias used by GEQO. The selection bias
 is the selective pressure within the population. Values can be
 from 1.50 to 2.00; the latter is the default.

	geqo_seed (floating point)

	
 Controls the initial value of the random number generator used
 by GEQO to select random paths through the join order search space.
 The value can range from zero (the default) to one. Varying the
 value changes the set of join paths explored, and may result in a
 better or worse best path being found.

Other Planner Options

	default_statistics_target (integer)

	
 Sets the default statistics target for table columns without
 a column-specific target set via ALTER TABLE
 SET STATISTICS. Larger values increase the time needed to
 do ANALYZE, but might improve the quality of the
 planner's estimates. The default is 100. For more information
 on the use of statistics by the PostgreSQL™
 query planner, refer to the section called “Statistics Used by the Planner”.

	constraint_exclusion (enum)

	
 Controls the query planner's use of table constraints to
 optimize queries.
 The allowed values of constraint_exclusion are
 on (examine constraints for all tables),
 off (never examine constraints), and
 partition (examine constraints only for inheritance
 child tables and UNION ALL subqueries).
 partition is the default setting.
 It is often used with traditional inheritance trees to improve
 performance.

 When this parameter allows it for a particular table, the planner
 compares query conditions with the table's CHECK
 constraints, and omits scanning tables for which the conditions
 contradict the constraints. For example:

CREATE TABLE parent(key integer, ...);
CREATE TABLE child1000(check (key between 1000 and 1999)) INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999)) INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;

 With constraint exclusion enabled, this SELECT
 will not scan child1000 at all, improving performance.

 Currently, constraint exclusion is enabled by default
 only for cases that are often used to implement table partitioning via
 inheritance trees. Turning it on for all tables imposes extra
 planning overhead that is quite noticeable on simple queries, and most
 often will yield no benefit for simple queries. If you have no
 tables that are partitioned using traditional inheritance, you might
 prefer to turn it off entirely. (Note that the equivalent feature for
 partitioned tables is controlled by a separate parameter,
 enable_partition_pruning.)

 Refer to the section called “Partitioning and Constraint Exclusion” for
 more information on using constraint exclusion to implement
 partitioning.

	cursor_tuple_fraction (floating point)

	
 Sets the planner's estimate of the fraction of a cursor's rows that
 will be retrieved. The default is 0.1. Smaller values of this
 setting bias the planner towards using “fast start” plans
 for cursors, which will retrieve the first few rows quickly while
 perhaps taking a long time to fetch all rows. Larger values
 put more emphasis on the total estimated time. At the maximum
 setting of 1.0, cursors are planned exactly like regular queries,
 considering only the total estimated time and not how soon the
 first rows might be delivered.

	from_collapse_limit (integer)

	
 The planner will merge sub-queries into upper queries if the
 resulting FROM list would have no more than
 this many items. Smaller values reduce planning time but might
 yield inferior query plans. The default is eight.
 For more information see the section called “Controlling the Planner with Explicit JOIN Clauses”.

 Setting this value to geqo_threshold or more
 may trigger use of the GEQO planner, resulting in non-optimal
 plans. See the section called “Genetic Query Optimizer”.

	jit (boolean)

	
 Determines whether JIT compilation may be used by
 PostgreSQL™, if available (see Chapter 32, Just-in-Time Compilation (JIT)).
 The default is on.

	join_collapse_limit (integer)

	
 The planner will rewrite explicit JOIN
 constructs (except FULL JOINs) into lists of
 FROM items whenever a list of no more than this many items
 would result. Smaller values reduce planning time but might
 yield inferior query plans.

 By default, this variable is set the same as
 from_collapse_limit, which is appropriate
 for most uses. Setting it to 1 prevents any reordering of
 explicit JOINs. Thus, the explicit join order
 specified in the query will be the actual order in which the
 relations are joined. Because the query planner does not always choose
 the optimal join order, advanced users can elect to
 temporarily set this variable to 1, and then specify the join
 order they desire explicitly.
 For more information see the section called “Controlling the Planner with Explicit JOIN Clauses”.

 Setting this value to geqo_threshold or more
 may trigger use of the GEQO planner, resulting in non-optimal
 plans. See the section called “Genetic Query Optimizer”.

	plan_cache_mode (enum)

	
 Prepared statements (either explicitly prepared or implicitly
 generated, for example by PL/pgSQL) can be executed using custom or
 generic plans. Custom plans are made afresh for each execution
 using its specific set of parameter values, while generic plans do
 not rely on the parameter values and can be re-used across
 executions. Thus, use of a generic plan saves planning time, but if
 the ideal plan depends strongly on the parameter values then a
 generic plan may be inefficient. The choice between these options
 is normally made automatically, but it can be overridden
 with plan_cache_mode.
 The allowed values are auto (the default),
 force_custom_plan and
 force_generic_plan.
 This setting is considered when a cached plan is to be executed,
 not when it is prepared.
 For more information see PREPARE(7).

	recursive_worktable_factor (floating point)

	
 Sets the planner's estimate of the average size of the working
 table of a recursive
 query, as a multiple of the estimated size of the initial
 non-recursive term of the query. This helps the planner choose
 the most appropriate method for joining the working table to the
 query's other tables.
 The default value is 10.0. A smaller value
 such as 1.0 can be helpful when the recursion
 has low “fan-out” from one step to the next, as for
 example in shortest-path queries. Graph analytics queries may
 benefit from larger-than-default values.

Error Reporting and Logging

Where to Log

	log_destination (string)

	
 PostgreSQL™ supports several methods
 for logging server messages, including
 stderr, csvlog,
 jsonlog, and
 syslog. On Windows,
 eventlog is also supported. Set this
 parameter to a list of desired log destinations separated by
 commas. The default is to log to stderr
 only.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 If csvlog is included in log_destination,
 log entries are output in “comma separated
 value” (CSV) format, which is convenient for
 loading logs into programs.
 See the section called “Using CSV-Format Log Output” for details.
 logging_collector must be enabled to generate
 CSV-format log output.

 If jsonlog is included in
 log_destination, log entries are output in
 JSON format, which is convenient for loading logs
 into programs.
 See the section called “Using JSON-Format Log Output” for details.
 logging_collector must be enabled to generate
 JSON-format log output.

 When either stderr,
 csvlog or jsonlog are
 included, the file current_logfiles is created to
 record the location of the log file(s) currently in use by the logging
 collector and the associated logging destination. This provides a
 convenient way to find the logs currently in use by the instance. Here
 is an example of this file's content:

stderr log/postgresql.log
csvlog log/postgresql.csv
jsonlog log/postgresql.json

 current_logfiles is recreated when a new log file
 is created as an effect of rotation, and
 when log_destination is reloaded. It is removed when
 none of stderr,
 csvlog or jsonlog are
 included in log_destination, and when the logging
 collector is disabled.

Note

 On most Unix systems, you will need to alter the configuration of
 your system's syslog daemon in order
 to make use of the syslog option for
 log_destination. PostgreSQL™
 can log to syslog facilities
 LOCAL0 through LOCAL7 (see syslog_facility), but the default
 syslog configuration on most platforms
 will discard all such messages. You will need to add something like:

local0.* /var/log/postgresql

 to the syslog daemon's configuration file
 to make it work.

 On Windows, when you use the eventlog
 option for log_destination, you should
 register an event source and its library with the operating
 system so that the Windows Event Viewer can display event
 log messages cleanly.
 See the section called “Registering Event Log on Windows” for details.

	logging_collector (boolean)

	
 This parameter enables the logging collector, which
 is a background process that captures log messages
 sent to stderr and redirects them into log files.
 This approach is often more useful than
 logging to syslog, since some types of messages
 might not appear in syslog output. (One common
 example is dynamic-linker failure messages; another is error messages
 produced by scripts such as archive_command.)
 This parameter can only be set at server start.

Note

 It is possible to log to stderr without using the
 logging collector; the log messages will just go to wherever the
 server's stderr is directed. However, that method is
 only suitable for low log volumes, since it provides no convenient
 way to rotate log files. Also, on some platforms not using the
 logging collector can result in lost or garbled log output, because
 multiple processes writing concurrently to the same log file can
 overwrite each other's output.

Note

 The logging collector is designed to never lose messages. This means
 that in case of extremely high load, server processes could be
 blocked while trying to send additional log messages when the
 collector has fallen behind. In contrast, syslog
 prefers to drop messages if it cannot write them, which means it
 may fail to log some messages in such cases but it will not block
 the rest of the system.

	log_directory (string)

	
 When logging_collector is enabled,
 this parameter determines the directory in which log files will be created.
 It can be specified as an absolute path, or relative to the
 cluster data directory.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.
 The default is log.

	log_filename (string)

	
 When logging_collector is enabled,
 this parameter sets the file names of the created log files. The value
 is treated as a strftime pattern,
 so %-escapes can be used to specify time-varying
 file names. (Note that if there are
 any time-zone-dependent %-escapes, the computation
 is done in the zone specified
 by log_timezone.)
 The supported %-escapes are similar to those
 listed in the Open Group's strftime
 specification.
 Note that the system's strftime is not used
 directly, so platform-specific (nonstandard) extensions do not work.
 The default is postgresql-%Y-%m-%d_%H%M%S.log.

 If you specify a file name without escapes, you should plan to
 use a log rotation utility to avoid eventually filling the
 entire disk. In releases prior to 8.4, if
 no % escapes were
 present, PostgreSQL™ would append
 the epoch of the new log file's creation time, but this is no
 longer the case.

 If CSV-format output is enabled in log_destination,
 .csv will be appended to the timestamped
 log file name to create the file name for CSV-format output.
 (If log_filename ends in .log, the suffix is
 replaced instead.)

 If JSON-format output is enabled in log_destination,
 .json will be appended to the timestamped
 log file name to create the file name for JSON-format output.
 (If log_filename ends in .log, the suffix is
 replaced instead.)

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	log_file_mode (integer)

	
 On Unix systems this parameter sets the permissions for log files
 when logging_collector is enabled. (On Microsoft
 Windows this parameter is ignored.)
 The parameter value is expected to be a numeric mode
 specified in the format accepted by the
 chmod and umask
 system calls. (To use the customary octal format the number
 must start with a 0 (zero).)

 The default permissions are 0600, meaning only the
 server owner can read or write the log files. The other commonly
 useful setting is 0640, allowing members of the owner's
 group to read the files. Note however that to make use of such a
 setting, you'll need to alter log_directory to
 store the files somewhere outside the cluster data directory. In
 any case, it's unwise to make the log files world-readable, since
 they might contain sensitive data.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	log_rotation_age (integer)

	
 When logging_collector is enabled,
 this parameter determines the maximum amount of time to use an
 individual log file, after which a new log file will be created.
 If this value is specified without units, it is taken as minutes.
 The default is 24 hours.
 Set to zero to disable time-based creation of new log files.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	log_rotation_size (integer)

	
 When logging_collector is enabled,
 this parameter determines the maximum size of an individual log file.
 After this amount of data has been emitted into a log file,
 a new log file will be created.
 If this value is specified without units, it is taken as kilobytes.
 The default is 10 megabytes.
 Set to zero to disable size-based creation of new log files.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	log_truncate_on_rotation (boolean)

	
 When logging_collector is enabled,
 this parameter will cause PostgreSQL™ to truncate (overwrite),
 rather than append to, any existing log file of the same name.
 However, truncation will occur only when a new file is being opened
 due to time-based rotation, not during server startup or size-based
 rotation. When off, pre-existing files will be appended to in
 all cases. For example, using this setting in combination with
 a log_filename like postgresql-%H.log
 would result in generating twenty-four hourly log files and then
 cyclically overwriting them.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 Example: To keep 7 days of logs, one log file per day named
 server_log.Mon, server_log.Tue,
 etc., and automatically overwrite last week's log with this week's log,
 set log_filename to server_log.%a,
 log_truncate_on_rotation to on, and
 log_rotation_age to 1440.

 Example: To keep 24 hours of logs, one log file per hour, but
 also rotate sooner if the log file size exceeds 1GB, set
 log_filename to server_log.%H%M,
 log_truncate_on_rotation to on,
 log_rotation_age to 60, and
 log_rotation_size to 1000000.
 Including %M in log_filename allows
 any size-driven rotations that might occur to select a file name
 different from the hour's initial file name.

	syslog_facility (enum)

	
 When logging to syslog is enabled, this parameter
 determines the syslog
 “facility” to be used. You can choose
 from LOCAL0, LOCAL1,
 LOCAL2, LOCAL3, LOCAL4,
 LOCAL5, LOCAL6, LOCAL7;
 the default is LOCAL0. See also the
 documentation of your system's
 syslog daemon.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	syslog_ident (string)

	
 When logging to syslog is enabled, this parameter
 determines the program name used to identify
 PostgreSQL™ messages in
 syslog logs. The default is
 postgres.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	syslog_sequence_numbers (boolean)

	
 When logging to syslog and this is on (the
 default), then each message will be prefixed by an increasing
 sequence number (such as [2]). This circumvents
 the “--- last message repeated N times ---” suppression
 that many syslog implementations perform by default. In more modern
 syslog implementations, repeated message suppression can be configured
 (for example, $RepeatedMsgReduction
 in rsyslog™), so this might not be
 necessary. Also, you could turn this off if you actually want to
 suppress repeated messages.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	syslog_split_messages (boolean)

	
 When logging to syslog is enabled, this parameter
 determines how messages are delivered to syslog. When on (the
 default), messages are split by lines, and long lines are split so
 that they will fit into 1024 bytes, which is a typical size limit for
 traditional syslog implementations. When off, PostgreSQL server log
 messages are delivered to the syslog service as is, and it is up to
 the syslog service to cope with the potentially bulky messages.

 If syslog is ultimately logging to a text file, then the effect will
 be the same either way, and it is best to leave the setting on, since
 most syslog implementations either cannot handle large messages or
 would need to be specially configured to handle them. But if syslog
 is ultimately writing into some other medium, it might be necessary or
 more useful to keep messages logically together.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	event_source (string)

	
 When logging to event log is enabled, this parameter
 determines the program name used to identify
 PostgreSQL™ messages in
 the log. The default is PostgreSQL.
 This parameter can only be set at server start.

When to Log

	log_min_messages (enum)

	
 Controls which message
 levels are written to the server log.
 Valid values are DEBUG5, DEBUG4,
 DEBUG3, DEBUG2, DEBUG1,
 INFO, NOTICE, WARNING,
 ERROR, LOG, FATAL, and
 PANIC. Each level includes all the levels that
 follow it. The later the level, the fewer messages are sent
 to the log. The default is WARNING. Note that
 LOG has a different rank here than in
 client_min_messages.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_min_error_statement (enum)

	
 Controls which SQL statements that cause an error
 condition are recorded in the server log. The current
 SQL statement is included in the log entry for any message of
 the specified
 severity
 or higher.
 Valid values are DEBUG5,
 DEBUG4, DEBUG3,
 DEBUG2, DEBUG1,
 INFO, NOTICE,
 WARNING, ERROR,
 LOG,
 FATAL, and PANIC.
 The default is ERROR, which means statements
 causing errors, log messages, fatal errors, or panics will be logged.
 To effectively turn off logging of failing statements,
 set this parameter to PANIC.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_min_duration_statement (integer)

	
 Causes the duration of each completed statement to be logged
 if the statement ran for at least the specified amount of time.
 For example, if you set it to 250ms
 then all SQL statements that run 250ms or longer will be
 logged. Enabling this parameter can be helpful in tracking down
 unoptimized queries in your applications.
 If this value is specified without units, it is taken as milliseconds.
 Setting this to zero prints all statement durations.
 -1 (the default) disables logging statement
 durations.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 This overrides log_min_duration_sample,
 meaning that queries with duration exceeding this setting are not
 subject to sampling and are always logged.

 For clients using extended query protocol, durations of the Parse,
 Bind, and Execute steps are logged independently.

Note

 When using this option together with
 log_statement,
 the text of statements that are logged because of
 log_statement will not be repeated in the
 duration log message.
 If you are not using syslog, it is recommended
 that you log the PID or session ID using
 log_line_prefix
 so that you can link the statement message to the later
 duration message using the process ID or session ID.

	log_min_duration_sample (integer)

	
 Allows sampling the duration of completed statements that ran for
 at least the specified amount of time. This produces the same
 kind of log entries as
 log_min_duration_statement, but only for a
 subset of the executed statements, with sample rate controlled by
 log_statement_sample_rate.
 For example, if you set it to 100ms then all
 SQL statements that run 100ms or longer will be considered for
 sampling. Enabling this parameter can be helpful when the
 traffic is too high to log all queries.
 If this value is specified without units, it is taken as milliseconds.
 Setting this to zero samples all statement durations.
 -1 (the default) disables sampling statement
 durations.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 This setting has lower priority
 than log_min_duration_statement, meaning that
 statements with durations
 exceeding log_min_duration_statement are not
 subject to sampling and are always logged.

 Other notes for log_min_duration_statement
 apply also to this setting.

	log_statement_sample_rate (floating point)

	
 Determines the fraction of statements with duration exceeding
 log_min_duration_sample that will be logged.
 Sampling is stochastic, for example 0.5 means
 there is statistically one chance in two that any given statement
 will be logged.
 The default is 1.0, meaning to log all sampled
 statements.
 Setting this to zero disables sampled statement-duration logging,
 the same as setting
 log_min_duration_sample to
 -1.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_transaction_sample_rate (floating point)

	
 Sets the fraction of transactions whose statements are all logged,
 in addition to statements logged for other reasons. It applies to
 each new transaction regardless of its statements' durations.
 Sampling is stochastic, for example 0.1 means
 there is statistically one chance in ten that any given transaction
 will be logged.
 log_transaction_sample_rate can be helpful to
 construct a sample of transactions.
 The default is 0, meaning not to log
 statements from any additional transactions. Setting this
 to 1 logs all statements of all transactions.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

Note

 Like all statement-logging options, this option can add significant
 overhead.

	log_startup_progress_interval (integer)

	
 Sets the amount of time after which the startup process will log
 a message about a long-running operation that is still in progress,
 as well as the interval between further progress messages for that
 operation. The default is 10 seconds. A setting of 0
 disables the feature. If this value is specified without units,
 it is taken as milliseconds. This setting is applied separately to
 each operation.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 For example, if syncing the data directory takes 25 seconds and
 thereafter resetting unlogged relations takes 8 seconds, and if this
 setting has the default value of 10 seconds, then a messages will be
 logged for syncing the data directory after it has been in progress
 for 10 seconds and again after it has been in progress for 20 seconds,
 but nothing will be logged for resetting unlogged relations.

 Table 20.2, “Message Severity Levels” explains the message
 severity levels used by PostgreSQL™. If logging output
 is sent to syslog or Windows'
 eventlog, the severity levels are translated
 as shown in the table.

Table 20.2. Message Severity Levels
	Severity	Usage	syslog	eventlog
	DEBUG1 .. DEBUG5	Provides successively-more-detailed information for use by
 developers.	DEBUG	INFORMATION
	INFO	Provides information implicitly requested by the user,
 e.g., output from VACUUM VERBOSE.	INFO	INFORMATION
	NOTICE	Provides information that might be helpful to users, e.g.,
 notice of truncation of long identifiers.	NOTICE	INFORMATION
	WARNING	Provides warnings of likely problems, e.g., COMMIT
 outside a transaction block.	NOTICE	WARNING
	ERROR	Reports an error that caused the current command to
 abort.	WARNING	ERROR
	LOG	Reports information of interest to administrators, e.g.,
 checkpoint activity.	INFO	INFORMATION
	FATAL	Reports an error that caused the current session to
 abort.	ERR	ERROR
	PANIC	Reports an error that caused all database sessions to abort.	CRIT	ERROR

What to Log

Note

 What you choose to log can have security implications; see
 the section called “Log File Maintenance”.

	application_name (string)

	
 The application_name can be any string of less than
 NAMEDATALEN characters (64 characters in a standard build).
 It is typically set by an application upon connection to the server.
 The name will be displayed in the pg_stat_activity view
 and included in CSV log entries. It can also be included in regular
 log entries via the log_line_prefix parameter.
 Only printable ASCII characters may be used in the
 application_name value.
 Other characters are replaced with C-style hexadecimal escapes.

	debug_print_parse (boolean)

 , debug_print_rewritten (boolean)

 , debug_print_plan (boolean)

	
 These parameters enable various debugging output to be emitted.
 When set, they print the resulting parse tree, the query rewriter
 output, or the execution plan for each executed query.
 These messages are emitted at LOG message level, so by
 default they will appear in the server log but will not be sent to the
 client. You can change that by adjusting
 client_min_messages and/or
 log_min_messages.
 These parameters are off by default.

	debug_pretty_print (boolean)

	
 When set, debug_pretty_print indents the messages
 produced by debug_print_parse,
 debug_print_rewritten, or
 debug_print_plan. This results in more readable
 but much longer output than the “compact” format used when
 it is off. It is on by default.

	log_autovacuum_min_duration (integer)

	
 Causes each action executed by autovacuum to be logged if it ran for at
 least the specified amount of time. Setting this to zero logs
 all autovacuum actions. -1 disables logging autovacuum
 actions. If this value is specified without units, it is taken as milliseconds.
 For example, if you set this to
 250ms then all automatic vacuums and analyzes that run
 250ms or longer will be logged. In addition, when this parameter is
 set to any value other than -1, a message will be
 logged if an autovacuum action is skipped due to a conflicting lock or a
 concurrently dropped relation. The default is 10min.
 Enabling this parameter can be helpful in tracking autovacuum activity.
 This parameter can only be set in the postgresql.conf
 file or on the server command line; but the setting can be overridden for
 individual tables by changing table storage parameters.

	log_checkpoints (boolean)

	
 Causes checkpoints and restartpoints to be logged in the server log.
 Some statistics are included in the log messages, including the number
 of buffers written and the time spent writing them.
 This parameter can only be set in the postgresql.conf
 file or on the server command line. The default is on.

	log_connections (boolean)

	
 Causes each attempted connection to the server to be logged,
 as well as successful completion of both client authentication (if
 necessary) and authorization.
 Only superusers and users with the appropriate SET
 privilege can change this parameter at session start,
 and it cannot be changed at all within a session.
 The default is off.

Note

 Some client programs, like psql, attempt
 to connect twice while determining if a password is required, so
 duplicate “connection received” messages do not
 necessarily indicate a problem.

	log_disconnections (boolean)

	
 Causes session terminations to be logged. The log output
 provides information similar to log_connections,
 plus the duration of the session.
 Only superusers and users with the appropriate SET
 privilege can change this parameter at session start,
 and it cannot be changed at all within a session.
 The default is off.

	log_duration (boolean)

	
 Causes the duration of every completed statement to be logged.
 The default is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 For clients using extended query protocol, durations of the Parse,
 Bind, and Execute steps are logged independently.

Note

 The difference between enabling log_duration and setting
 log_min_duration_statement to zero is that
 exceeding log_min_duration_statement forces the text of
 the query to be logged, but this option doesn't. Thus, if
 log_duration is on and
 log_min_duration_statement has a positive value, all
 durations are logged but the query text is included only for
 statements exceeding the threshold. This behavior can be useful for
 gathering statistics in high-load installations.

	log_error_verbosity (enum)

	
 Controls the amount of detail written in the server log for each
 message that is logged. Valid values are TERSE,
 DEFAULT, and VERBOSE, each adding more
 fields to displayed messages. TERSE excludes
 the logging of DETAIL, HINT,
 QUERY, and CONTEXT error information.
 VERBOSE output includes the SQLSTATE error
 code (see also Appendix A, PostgreSQL™ Error Codes) and the source code file name, function name,
 and line number that generated the error.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_hostname (boolean)

	
 By default, connection log messages only show the IP address of the
 connecting host. Turning this parameter on causes logging of the
 host name as well. Note that depending on your host name resolution
 setup this might impose a non-negligible performance penalty.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	log_line_prefix (string)

	
 This is a printf-style string that is output at the
 beginning of each log line.
 % characters begin “escape sequences”
 that are replaced with status information as outlined below.
 Unrecognized escapes are ignored. Other
 characters are copied straight to the log line. Some escapes are
 only recognized by session processes, and will be treated as empty by
 background processes such as the main server process. Status
 information may be aligned either left or right by specifying a
 numeric literal after the % and before the option. A negative
 value will cause the status information to be padded on the
 right with spaces to give it a minimum width, whereas a positive
 value will pad on the left. Padding can be useful to aid human
 readability in log files.

 This parameter can only be set in the postgresql.conf
 file or on the server command line. The default is
 '%m [%p] ' which logs a time stamp and the process ID.

	Escape	Effect	Session only
	%a	Application name	yes
	%u	User name	yes
	%d	Database name	yes
	%r	Remote host name or IP address, and remote port	yes
	%h	Remote host name or IP address	yes
	%b	Backend type	no
	%p	Process ID	no
	%P	Process ID of the parallel group leader, if this process
 is a parallel query worker	no
	%t	Time stamp without milliseconds	no
	%m	Time stamp with milliseconds	no
	%n	Time stamp with milliseconds (as a Unix epoch)	no
	%i	Command tag: type of session's current command	yes
	%e	SQLSTATE error code	no
	%c	Session ID: see below	no
	%l	Number of the log line for each session or process, starting at 1	no
	%s	Process start time stamp	no
	%v	Virtual transaction ID (backendID/localXID); see
 the section called “Transactions and Identifiers”	no
	%x	Transaction ID (0 if none is assigned); see
 the section called “Transactions and Identifiers”	no
	%q	Produces no output, but tells non-session
 processes to stop at this point in the string; ignored by
 session processes	no
	%Q	Query identifier of the current query. Query
 identifiers are not computed by default, so this field
 will be zero unless compute_query_id
 parameter is enabled or a third-party module that computes
 query identifiers is configured.	yes
	%%	Literal %	no

 The backend type corresponds to the column
 backend_type in the view

 pg_stat_activity,
 but additional types can appear
 in the log that don't show in that view.

 The %c escape prints a quasi-unique session identifier,
 consisting of two 4-byte hexadecimal numbers (without leading zeros)
 separated by a dot. The numbers are the process start time and the
 process ID, so %c can also be used as a space saving way
 of printing those items. For example, to generate the session
 identifier from pg_stat_activity, use this query:

SELECT to_hex(trunc(EXTRACT(EPOCH FROM backend_start))::integer) || '.' ||
 to_hex(pid)
FROM pg_stat_activity;

Tip

 If you set a nonempty value for log_line_prefix,
 you should usually make its last character be a space, to provide
 visual separation from the rest of the log line. A punctuation
 character can be used too.

Tip

 Syslog produces its own
 time stamp and process ID information, so you probably do not want to
 include those escapes if you are logging to syslog.

Tip

 The %q escape is useful when including information that is
 only available in session (backend) context like user or database
 name. For example:

log_line_prefix = '%m [%p] %q%u@%d/%a '

Note

 The %Q escape always reports a zero identifier
 for lines output by log_statement because
 log_statement generates output before an
 identifier can be calculated, including invalid statements for
 which an identifier cannot be calculated.

	log_lock_waits (boolean)

	
 Controls whether a log message is produced when a session waits
 longer than deadlock_timeout to acquire a
 lock. This is useful in determining if lock waits are causing
 poor performance. The default is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_recovery_conflict_waits (boolean)

	
 Controls whether a log message is produced when the startup process
 waits longer than deadlock_timeout
 for recovery conflicts. This is useful in determining if recovery
 conflicts prevent the recovery from applying WAL.

 The default is off. This parameter can only be set
 in the postgresql.conf file or on the server
 command line.

	log_parameter_max_length (integer)

	
 If greater than zero, each bind parameter value logged with a
 non-error statement-logging message is trimmed to this many bytes.
 Zero disables logging of bind parameters for non-error statement logs.
 -1 (the default) allows bind parameters to be
 logged in full.
 If this value is specified without units, it is taken as bytes.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 This setting only affects log messages printed as a result of
 log_statement,
 log_duration, and related settings. Non-zero
 values of this setting add some overhead, particularly if parameters
 are sent in binary form, since then conversion to text is required.

	log_parameter_max_length_on_error (integer)

	
 If greater than zero, each bind parameter value reported in error
 messages is trimmed to this many bytes.
 Zero (the default) disables including bind parameters in error
 messages.
 -1 allows bind parameters to be printed in full.
 If this value is specified without units, it is taken as bytes.

 Non-zero values of this setting add overhead, as
 PostgreSQL™ will need to store textual
 representations of parameter values in memory at the start of each
 statement, whether or not an error eventually occurs. The overhead
 is greater when bind parameters are sent in binary form than when
 they are sent as text, since the former case requires data
 conversion while the latter only requires copying the string.

	log_statement (enum)

	
 Controls which SQL statements are logged. Valid values are
 none (off), ddl, mod, and
 all (all statements). ddl logs all data definition
 statements, such as CREATE, ALTER, and
 DROP statements. mod logs all
 ddl statements, plus data-modifying statements
 such as INSERT,
 UPDATE, DELETE, TRUNCATE,
 and COPY FROM.
 PREPARE, EXECUTE, and
 EXPLAIN ANALYZE statements are also logged if their
 contained command is of an appropriate type. For clients using
 extended query protocol, logging occurs when an Execute message
 is received, and values of the Bind parameters are included
 (with any embedded single-quote marks doubled).

 The default is none.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

Note

 Statements that contain simple syntax errors are not logged
 even by the log_statement = all setting,
 because the log message is emitted only after basic parsing has
 been done to determine the statement type. In the case of extended
 query protocol, this setting likewise does not log statements that
 fail before the Execute phase (i.e., during parse analysis or
 planning). Set log_min_error_statement to
 ERROR (or lower) to log such statements.

 Logged statements might reveal sensitive data and even contain
 plaintext passwords.

	log_replication_commands (boolean)

	
 Causes each replication command to be logged in the server log.
 See the section called “Streaming Replication Protocol” for more information about
 replication command. The default value is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_temp_files (integer)

	
 Controls logging of temporary file names and sizes.
 Temporary files can be
 created for sorts, hashes, and temporary query results.
 If enabled by this setting, a log entry is emitted for each
 temporary file, with the file size specified in bytes, when it is deleted.
 A value of zero logs all temporary file information, while positive
 values log only files whose size is greater than or equal to
 the specified amount of data.
 If this value is specified without units, it is taken as kilobytes.
 The default setting is -1, which disables such logging.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	log_timezone (string)

	
 Sets the time zone used for timestamps written in the server log.
 Unlike TimeZone, this value is cluster-wide,
 so that all sessions will report timestamps consistently.
 The built-in default is GMT, but that is typically
 overridden in postgresql.conf; initdb
 will install a setting there corresponding to its system environment.
 See the section called “Time Zones” for more information.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

Using CSV-Format Log Output

 Including csvlog in the log_destination list
 provides a convenient way to import log files into a database table.
 This option emits log lines in comma-separated-values
 (CSV) format,
 with these columns:
 time stamp with milliseconds,
 user name,
 database name,
 process ID,
 client host:port number,
 session ID,
 per-session line number,
 command tag,
 session start time,
 virtual transaction ID,
 regular transaction ID,
 error severity,
 SQLSTATE code,
 error message,
 error message detail,
 hint,
 internal query that led to the error (if any),
 character count of the error position therein,
 error context,
 user query that led to the error (if any and enabled by
 log_min_error_statement),
 character count of the error position therein,
 location of the error in the PostgreSQL source code
 (if log_error_verbosity is set to verbose),
 application name, backend type, process ID of parallel group leader,
 and query id.
 Here is a sample table definition for storing CSV-format log output:

CREATE TABLE postgres_log
(
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text,
 leader_pid integer,
 query_id bigint,
 PRIMARY KEY (session_id, session_line_num)
);

 To import a log file into this table, use the COPY FROM
 command:

COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;

 It is also possible to access the file as a foreign table, using
 the supplied file_fdw module.

 There are a few things you need to do to simplify importing CSV log
 files:

	
 Set log_filename and
 log_rotation_age to provide a consistent,
 predictable naming scheme for your log files. This lets you
 predict what the file name will be and know when an individual log
 file is complete and therefore ready to be imported.

	
 Set log_rotation_size to 0 to disable
 size-based log rotation, as it makes the log file name difficult
 to predict.

	
 Set log_truncate_on_rotation to on so
 that old log data isn't mixed with the new in the same file.

	
 The table definition above includes a primary key specification.
 This is useful to protect against accidentally importing the same
 information twice. The COPY command commits all of the
 data it imports at one time, so any error will cause the entire
 import to fail. If you import a partial log file and later import
 the file again when it is complete, the primary key violation will
 cause the import to fail. Wait until the log is complete and
 closed before importing. This procedure will also protect against
 accidentally importing a partial line that hasn't been completely
 written, which would also cause COPY to fail.

Using JSON-Format Log Output

 Including jsonlog in the
 log_destination list provides a convenient way to
 import log files into many different programs. This option emits log
 lines in JSON format.

 String fields with null values are excluded from output.
 Additional fields may be added in the future. User applications that
 process jsonlog output should ignore unknown fields.

 Each log line is serialized as a JSON object with the set of keys and
 their associated values shown in Table 20.3, “Keys and Values of JSON Log Entries”.

Table 20.3. Keys and Values of JSON Log Entries
	Key name	Type	Description
	timestamp	string	Time stamp with milliseconds
	user	string	User name
	dbname	string	Database name
	pid	number	Process ID
	remote_host	string	Client host
	remote_port	number	Client port
	session_id	string	Session ID
	line_num	number	Per-session line number
	ps	string	Current ps display
	session_start	string	Session start time
	vxid	string	Virtual transaction ID
	txid	string	Regular transaction ID
	error_severity	string	Error severity
	state_code	string	SQLSTATE code
	message	string	Error message
	detail	string	Error message detail
	hint	string	Error message hint
	internal_query	string	Internal query that led to the error
	internal_position	number	Cursor index into internal query
	context	string	Error context
	statement	string	Client-supplied query string
	cursor_position	number	Cursor index into query string
	func_name	string	Error location function name
	file_name	string	File name of error location
	file_line_num	number	File line number of the error location
	application_name	string	Client application name
	backend_type	string	Type of backend
	leader_pid	number	Process ID of leader for active parallel workers
	query_id	number	Query ID

Process Title

 These settings control how process titles of server processes are
 modified. Process titles are typically viewed using programs like
 ps or, on Windows, Process Explorer.
 See the section called “Standard Unix Tools” for details.

	cluster_name (string)

	
 Sets a name that identifies this database cluster (instance) for
 various purposes. The cluster name appears in the process title for
 all server processes in this cluster. Moreover, it is the default
 application name for a standby connection (see synchronous_standby_names).

 The name can be any string of less
 than NAMEDATALEN characters (64 characters in a standard
 build). Only printable ASCII characters may be used in the
 cluster_name value.
 Other characters are replaced with C-style hexadecimal escapes.
 No name is shown if this parameter is set to the empty string
 '' (which is the default).
 This parameter can only be set at server start.

	update_process_title (boolean)

	
 Enables updating of the process title every time a new SQL command
 is received by the server.
 This setting defaults to on on most platforms, but it
 defaults to off on Windows due to that platform's larger
 overhead for updating the process title.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

Run-time Statistics

Cumulative Query and Index Statistics

 These parameters control the server-wide cumulative statistics system.
 When enabled, the data that is collected can be accessed via the
 pg_stat and pg_statio
 family of system views. Refer to Chapter 28, Monitoring Database Activity for more
 information.

	track_activities (boolean)

	
 Enables the collection of information on the currently
 executing command of each session, along with its identifier and the
 time when that command began execution. This parameter is on by
 default. Note that even when enabled, this information is only
 visible to superusers, roles with privileges of the
 pg_read_all_stats role and the user owning the
 sessions being reported on (including sessions belonging to a role they
 have the privileges of), so it should not represent a security risk.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	track_activity_query_size (integer)

	
 Specifies the amount of memory reserved to store the text of the
 currently executing command for each active session, for the
 pg_stat_activity.query field.
 If this value is specified without units, it is taken as bytes.
 The default value is 1024 bytes.
 This parameter can only be set at server start.

	track_counts (boolean)

	
 Enables collection of statistics on database activity.
 This parameter is on by default, because the autovacuum
 daemon needs the collected information.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	track_io_timing (boolean)

	
 Enables timing of database I/O calls. This parameter is off by
 default, as it will repeatedly query the operating system for
 the current time, which may cause significant overhead on some
 platforms. You can use the pg_test_timing(1) tool to
 measure the overhead of timing on your system.
 I/O timing information is
 displayed in
 pg_stat_database,

 pg_stat_io, in the output of
 EXPLAIN(7) when the BUFFERS option
 is used, in the output of VACUUM(7) when
 the VERBOSE option is used, by autovacuum
 for auto-vacuums and auto-analyzes, when log_autovacuum_min_duration is set and by
 pg_stat_statements.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	track_wal_io_timing (boolean)

	
 Enables timing of WAL I/O calls. This parameter is off by default,
 as it will repeatedly query the operating system for the current time,
 which may cause significant overhead on some platforms.
 You can use the pg_test_timing tool to
 measure the overhead of timing on your system.
 I/O timing information is
 displayed in
 pg_stat_wal.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	track_functions (enum)

	
 Enables tracking of function call counts and time used. Specify
 pl to track only procedural-language functions,
 all to also track SQL and C language functions.
 The default is none, which disables function
 statistics tracking.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

Note

 SQL-language functions that are simple enough to be “inlined”
 into the calling query will not be tracked, regardless of this
 setting.

	stats_fetch_consistency (enum)

	
 Determines the behavior when cumulative statistics are accessed
 multiple times within a transaction. When set to
 none, each access re-fetches counters from shared
 memory. When set to cache, the first access to
 statistics for an object caches those statistics until the end of the
 transaction unless pg_stat_clear_snapshot() is
 called. When set to snapshot, the first statistics
 access caches all statistics accessible in the current database, until
 the end of the transaction unless
 pg_stat_clear_snapshot() is called. Changing this
 parameter in a transaction discards the statistics snapshot.
 The default is cache.

Note

 none is most suitable for monitoring systems. If
 values are only accessed once, it is the most
 efficient. cache ensures repeat accesses yield the
 same values, which is important for queries involving
 e.g. self-joins. snapshot can be useful when
 interactively inspecting statistics, but has higher overhead,
 particularly if many database objects exist.

Statistics Monitoring

	compute_query_id (enum)

	
 Enables in-core computation of a query identifier.
 Query identifiers can be displayed in the pg_stat_activity
 view, using EXPLAIN, or emitted in the log if
 configured via the log_line_prefix parameter.
 The pg_stat_statements extension also requires a query
 identifier to be computed. Note that an external module can
 alternatively be used if the in-core query identifier computation
 method is not acceptable. In this case, in-core computation
 must be always disabled.
 Valid values are off (always disabled),
 on (always enabled), auto,
 which lets modules such as pg_stat_statements
 automatically enable it, and regress which
 has the same effect as auto, except that the
 query identifier is not shown in the EXPLAIN output
 in order to facilitate automated regression testing.
 The default is auto.

Note

 To ensure that only one query identifier is calculated and
 displayed, extensions that calculate query identifiers should
 throw an error if a query identifier has already been computed.

	log_statement_stats (boolean)

 , log_parser_stats (boolean)

 , log_planner_stats (boolean)

 , log_executor_stats (boolean)

	
 For each query, output performance statistics of the respective
 module to the server log. This is a crude profiling
 instrument, similar to the Unix getrusage() operating
 system facility. log_statement_stats reports total
 statement statistics, while the others report per-module statistics.
 log_statement_stats cannot be enabled together with
 any of the per-module options. All of these options are disabled by
 default.
 Only superusers and users with the appropriate SET
 privilege can change these settings.

Automatic Vacuuming

 These settings control the behavior of the autovacuum
 feature. Refer to the section called “The Autovacuum Daemon” for more information.
 Note that many of these settings can be overridden on a per-table
 basis; see Storage Parameters.

	autovacuum (boolean)

	
 Controls whether the server should run the
 autovacuum launcher daemon. This is on by default; however,
 track_counts must also be enabled for
 autovacuum to work.
 This parameter can only be set in the postgresql.conf
 file or on the server command line; however, autovacuuming can be
 disabled for individual tables by changing table storage parameters.

 Note that even when this parameter is disabled, the system
 will launch autovacuum processes if necessary to
 prevent transaction ID wraparound. See the section called “Preventing Transaction ID Wraparound Failures” for more information.

	autovacuum_max_workers (integer)

	
 Specifies the maximum number of autovacuum processes (other than the
 autovacuum launcher) that may be running at any one time. The default
 is three. This parameter can only be set at server start.

	autovacuum_naptime (integer)

	
 Specifies the minimum delay between autovacuum runs on any given
 database. In each round the daemon examines the
 database and issues VACUUM and ANALYZE commands
 as needed for tables in that database.
 If this value is specified without units, it is taken as seconds.
 The default is one minute (1min).
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	autovacuum_vacuum_threshold (integer)

	
 Specifies the minimum number of updated or deleted tuples needed
 to trigger a VACUUM in any one table.
 The default is 50 tuples.
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_vacuum_insert_threshold (integer)

	
 Specifies the number of inserted tuples needed to trigger a
 VACUUM in any one table.
 The default is 1000 tuples. If -1 is specified, autovacuum will not
 trigger a VACUUM operation on any tables based on
 the number of inserts.
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_analyze_threshold (integer)

	
 Specifies the minimum number of inserted, updated or deleted tuples
 needed to trigger an ANALYZE in any one table.
 The default is 50 tuples.
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_vacuum_scale_factor (floating point)

	
 Specifies a fraction of the table size to add to
 autovacuum_vacuum_threshold
 when deciding whether to trigger a VACUUM.
 The default is 0.2 (20% of table size).
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_vacuum_insert_scale_factor (floating point)

	
 Specifies a fraction of the table size to add to
 autovacuum_vacuum_insert_threshold
 when deciding whether to trigger a VACUUM.
 The default is 0.2 (20% of table size).
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_analyze_scale_factor (floating point)

	
 Specifies a fraction of the table size to add to
 autovacuum_analyze_threshold
 when deciding whether to trigger an ANALYZE.
 The default is 0.1 (10% of table size).
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_freeze_max_age (integer)

	
 Specifies the maximum age (in transactions) that a table's
 pg_class.relfrozenxid field can
 attain before a VACUUM operation is forced
 to prevent transaction ID wraparound within the table.
 Note that the system will launch autovacuum processes to
 prevent wraparound even when autovacuum is otherwise disabled.

 Vacuum also allows removal of old files from the
 pg_xact subdirectory, which is why the default
 is a relatively low 200 million transactions.
 This parameter can only be set at server start, but the setting
 can be reduced for individual tables by
 changing table storage parameters.
 For more information see the section called “Preventing Transaction ID Wraparound Failures”.

	autovacuum_multixact_freeze_max_age (integer)

	
 Specifies the maximum age (in multixacts) that a table's
 pg_class.relminmxid field can
 attain before a VACUUM operation is forced to
 prevent multixact ID wraparound within the table.
 Note that the system will launch autovacuum processes to
 prevent wraparound even when autovacuum is otherwise disabled.

 Vacuuming multixacts also allows removal of old files from the
 pg_multixact/members and pg_multixact/offsets
 subdirectories, which is why the default is a relatively low
 400 million multixacts.
 This parameter can only be set at server start, but the setting can
 be reduced for individual tables by changing table storage parameters.
 For more information see the section called “Multixacts and Wraparound”.

	autovacuum_vacuum_cost_delay (floating point)

	
 Specifies the cost delay value that will be used in automatic
 VACUUM operations. If -1 is specified, the regular
 vacuum_cost_delay value will be used.
 If this value is specified without units, it is taken as milliseconds.
 The default value is 2 milliseconds.
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

	autovacuum_vacuum_cost_limit (integer)

	
 Specifies the cost limit value that will be used in automatic
 VACUUM operations. If -1 is specified (which is the
 default), the regular
 vacuum_cost_limit value will be used. Note that
 the value is distributed proportionally among the running autovacuum
 workers, if there is more than one, so that the sum of the limits for
 each worker does not exceed the value of this variable.
 This parameter can only be set in the postgresql.conf
 file or on the server command line;
 but the setting can be overridden for individual tables by
 changing table storage parameters.

Client Connection Defaults

Statement Behavior

	client_min_messages (enum)

	
 Controls which
 message levels
 are sent to the client.
 Valid values are DEBUG5,
 DEBUG4, DEBUG3, DEBUG2,
 DEBUG1, LOG, NOTICE,
 WARNING, and ERROR.
 Each level includes all the levels that follow it. The later the level,
 the fewer messages are sent. The default is
 NOTICE. Note that LOG has a different
 rank here than in log_min_messages.

 INFO level messages are always sent to the client.

	search_path (string)

	
 This variable specifies the order in which schemas are searched
 when an object (table, data type, function, etc.) is referenced by a
 simple name with no schema specified. When there are objects of
 identical names in different schemas, the one found first
 in the search path is used. An object that is not in any of the
 schemas in the search path can only be referenced by specifying
 its containing schema with a qualified (dotted) name.

 The value for search_path must be a comma-separated
 list of schema names. Any name that is not an existing schema, or is
 a schema for which the user does not have USAGE
 permission, is silently ignored.

 If one of the list items is the special name
 $user, then the schema having the name returned by
 CURRENT_USER is substituted, if there is such a schema
 and the user has USAGE permission for it.
 (If not, $user is ignored.)

 The system catalog schema, pg_catalog, is always
 searched, whether it is mentioned in the path or not. If it is
 mentioned in the path then it will be searched in the specified
 order. If pg_catalog is not in the path then it will
 be searched before searching any of the path items.

 Likewise, the current session's temporary-table schema,
 pg_temp_nnn, is always searched if it
 exists. It can be explicitly listed in the path by using the
 alias pg_temp. If it is not listed in the path then
 it is searched first (even before pg_catalog). However,
 the temporary schema is only searched for relation (table, view,
 sequence, etc.) and data type names. It is never searched for
 function or operator names.

 When objects are created without specifying a particular target
 schema, they will be placed in the first valid schema named in
 search_path. An error is reported if the search
 path is empty.

 The default value for this parameter is
 "$user", public.
 This setting supports shared use of a database (where no users
 have private schemas, and all share use of public),
 private per-user schemas, and combinations of these. Other
 effects can be obtained by altering the default search path
 setting, either globally or per-user.

 For more information on schema handling, see
 the section called “Schemas”. In particular, the default
 configuration is suitable only when the database has a single user or
 a few mutually-trusting users.

 The current effective value of the search path can be examined
 via the SQL function
 current_schemas
 (see the section called “System Information Functions and Operators”).
 This is not quite the same as
 examining the value of search_path, since
 current_schemas shows how the items
 appearing in search_path were resolved.

	row_security (boolean)

	
 This variable controls whether to raise an error in lieu of applying a
 row security policy. When set to on, policies apply
 normally. When set to off, queries fail which would
 otherwise apply at least one policy. The default is on.
 Change to off where limited row visibility could cause
 incorrect results; for example, pg_dump makes that
 change by default. This variable has no effect on roles which bypass
 every row security policy, to wit, superusers and roles with
 the BYPASSRLS attribute.

 For more information on row security policies,
 see CREATE POLICY(7).

	default_table_access_method (string)

	
 This parameter specifies the default table access method to use when
 creating tables or materialized views if the CREATE
 command does not explicitly specify an access method, or when
 SELECT ... INTO is used, which does not allow
 specifying a table access method. The default is heap.

	default_tablespace (string)

	
 This variable specifies the default tablespace in which to create
 objects (tables and indexes) when a CREATE command does
 not explicitly specify a tablespace.

 The value is either the name of a tablespace, or an empty string
 to specify using the default tablespace of the current database.
 If the value does not match the name of any existing tablespace,
 PostgreSQL™ will automatically use the default
 tablespace of the current database. If a nondefault tablespace
 is specified, the user must have CREATE privilege
 for it, or creation attempts will fail.

 This variable is not used for temporary tables; for them,
 temp_tablespaces is consulted instead.

 This variable is also not used when creating databases.
 By default, a new database inherits its tablespace setting from
 the template database it is copied from.

 If this parameter is set to a value other than the empty string
 when a partitioned table is created, the partitioned table's
 tablespace will be set to that value, which will be used as
 the default tablespace for partitions created in the future,
 even if default_tablespace has changed since then.

 For more information on tablespaces,
 see the section called “Tablespaces”.

	default_toast_compression (enum)

	
 This variable sets the default
 TOAST
 compression method for values of compressible columns.
 (This can be overridden for individual columns by setting
 the COMPRESSION column option in
 CREATE TABLE or
 ALTER TABLE.)
 The supported compression methods are pglz and
 (if PostgreSQL™ was compiled with
 --with-lz4) lz4.
 The default is pglz.

	temp_tablespaces (string)

	
 This variable specifies tablespaces in which to create temporary
 objects (temp tables and indexes on temp tables) when a
 CREATE command does not explicitly specify a tablespace.
 Temporary files for purposes such as sorting large data sets
 are also created in these tablespaces.

 The value is a list of names of tablespaces. When there is more than
 one name in the list, PostgreSQL™ chooses a random
 member of the list each time a temporary object is to be created;
 except that within a transaction, successively created temporary
 objects are placed in successive tablespaces from the list.
 If the selected element of the list is an empty string,
 PostgreSQL™ will automatically use the default
 tablespace of the current database instead.

 When temp_tablespaces is set interactively, specifying a
 nonexistent tablespace is an error, as is specifying a tablespace for
 which the user does not have CREATE privilege. However,
 when using a previously set value, nonexistent tablespaces are
 ignored, as are tablespaces for which the user lacks
 CREATE privilege. In particular, this rule applies when
 using a value set in postgresql.conf.

 The default value is an empty string, which results in all temporary
 objects being created in the default tablespace of the current
 database.

 See also default_tablespace.

	check_function_bodies (boolean)

	
 This parameter is normally on. When set to off, it
 disables validation of the routine body string during CREATE FUNCTION(7) and CREATE PROCEDURE(7). Disabling validation avoids side
 effects of the validation process, in particular preventing false
 positives due to problems such as forward references.
 Set this parameter
 to off before loading functions on behalf of other
 users; pg_dump does so automatically.

	default_transaction_isolation (enum)

	
 Each SQL transaction has an isolation level, which can be
 either “read uncommitted”, “read
 committed”, “repeatable read”, or
 “serializable”. This parameter controls the
 default isolation level of each new transaction. The default
 is “read committed”.

 Consult Chapter 13, Concurrency Control and SET TRANSACTION(7) for more information.

	default_transaction_read_only (boolean)

	
 A read-only SQL transaction cannot alter non-temporary tables.
 This parameter controls the default read-only status of each new
 transaction. The default is off (read/write).

 Consult SET TRANSACTION(7) for more information.

	default_transaction_deferrable (boolean)

	
 When running at the serializable isolation level,
 a deferrable read-only SQL transaction may be delayed before
 it is allowed to proceed. However, once it begins executing
 it does not incur any of the overhead required to ensure
 serializability; so serialization code will have no reason to
 force it to abort because of concurrent updates, making this
 option suitable for long-running read-only transactions.

 This parameter controls the default deferrable status of each
 new transaction. It currently has no effect on read-write
 transactions or those operating at isolation levels lower
 than serializable. The default is off.

 Consult SET TRANSACTION(7) for more information.

	transaction_isolation (enum)

	
 This parameter reflects the current transaction's isolation level.
 At the beginning of each transaction, it is set to the current value
 of default_transaction_isolation.
 Any subsequent attempt to change it is equivalent to a SET TRANSACTION(7) command.

	transaction_read_only (boolean)

	
 This parameter reflects the current transaction's read-only status.
 At the beginning of each transaction, it is set to the current value
 of default_transaction_read_only.
 Any subsequent attempt to change it is equivalent to a SET TRANSACTION(7) command.

	transaction_deferrable (boolean)

	
 This parameter reflects the current transaction's deferrability status.
 At the beginning of each transaction, it is set to the current value
 of default_transaction_deferrable.
 Any subsequent attempt to change it is equivalent to a SET TRANSACTION(7) command.

	session_replication_role (enum)

	
 Controls firing of replication-related triggers and rules for the
 current session.
 Possible values are origin (the default),
 replica and local.
 Setting this parameter results in discarding any previously cached
 query plans.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 The intended use of this setting is that logical replication systems
 set it to replica when they are applying replicated
 changes. The effect of that will be that triggers and rules (that
 have not been altered from their default configuration) will not fire
 on the replica. See the ALTER TABLE clauses
 ENABLE TRIGGER and ENABLE RULE
 for more information.

 PostgreSQL treats the settings origin and
 local the same internally. Third-party replication
 systems may use these two values for their internal purposes, for
 example using local to designate a session whose
 changes should not be replicated.

 Since foreign keys are implemented as triggers, setting this parameter
 to replica also disables all foreign key checks,
 which can leave data in an inconsistent state if improperly used.

	statement_timeout (integer)

	
 Abort any statement that takes more than the specified amount of time.
 If log_min_error_statement is set
 to ERROR or lower, the statement that timed out
 will also be logged.
 If this value is specified without units, it is taken as milliseconds.
 A value of zero (the default) disables the timeout.

 The timeout is measured from the time a command arrives at the
 server until it is completed by the server. If multiple SQL
 statements appear in a single simple-Query message, the timeout
 is applied to each statement separately.
 (PostgreSQL™ versions before 13 usually
 treated the timeout as applying to the whole query string.)
 In extended query protocol, the timeout starts running when any
 query-related message (Parse, Bind, Execute, Describe) arrives, and
 it is canceled by completion of an Execute or Sync message.

 Setting statement_timeout in
 postgresql.conf is not recommended because it would
 affect all sessions.

	lock_timeout (integer)

	
 Abort any statement that waits longer than the specified amount of
 time while attempting to acquire a lock on a table, index,
 row, or other database object. The time limit applies separately to
 each lock acquisition attempt. The limit applies both to explicit
 locking requests (such as LOCK TABLE, or SELECT
 FOR UPDATE without NOWAIT) and to implicitly-acquired
 locks.
 If this value is specified without units, it is taken as milliseconds.
 A value of zero (the default) disables the timeout.

 Unlike statement_timeout, this timeout can only occur
 while waiting for locks. Note that if statement_timeout
 is nonzero, it is rather pointless to set lock_timeout to
 the same or larger value, since the statement timeout would always
 trigger first. If log_min_error_statement is set to
 ERROR or lower, the statement that timed out will be
 logged.

 Setting lock_timeout in
 postgresql.conf is not recommended because it would
 affect all sessions.

	idle_in_transaction_session_timeout (integer)

	
 Terminate any session that has been idle (that is, waiting for a
 client query) within an open transaction for longer than the
 specified amount of time.
 If this value is specified without units, it is taken as milliseconds.
 A value of zero (the default) disables the timeout.

 This option can be used to ensure that idle sessions do not hold
 locks for an unreasonable amount of time. Even when no significant
 locks are held, an open transaction prevents vacuuming away
 recently-dead tuples that may be visible only to this transaction;
 so remaining idle for a long time can contribute to table bloat.
 See the section called “Routine Vacuuming” for more details.

	idle_session_timeout (integer)

	
 Terminate any session that has been idle (that is, waiting for a
 client query), but not within an open transaction, for longer than
 the specified amount of time.
 If this value is specified without units, it is taken as milliseconds.
 A value of zero (the default) disables the timeout.

 Unlike the case with an open transaction, an idle session without a
 transaction imposes no large costs on the server, so there is less
 need to enable this timeout
 than idle_in_transaction_session_timeout.

 Be wary of enforcing this timeout on connections made through
 connection-pooling software or other middleware, as such a layer
 may not react well to unexpected connection closure. It may be
 helpful to enable this timeout only for interactive sessions,
 perhaps by applying it only to particular users.

	vacuum_freeze_table_age (integer)

	
 VACUUM performs an aggressive scan if the table's
 pg_class.relfrozenxid field has reached
 the age specified by this setting. An aggressive scan differs from
 a regular VACUUM in that it visits every page that might
 contain unfrozen XIDs or MXIDs, not just those that might contain dead
 tuples. The default is 150 million transactions. Although users can
 set this value anywhere from zero to two billion, VACUUM
 will silently limit the effective value to 95% of
 autovacuum_freeze_max_age, so that a
 periodic manual VACUUM has a chance to run before an
 anti-wraparound autovacuum is launched for the table. For more
 information see
 the section called “Preventing Transaction ID Wraparound Failures”.

	vacuum_freeze_min_age (integer)

	
 Specifies the cutoff age (in transactions) that
 VACUUM should use to decide whether to
 trigger freezing of pages that have an older XID.
 The default is 50 million transactions. Although
 users can set this value anywhere from zero to one billion,
 VACUUM will silently limit the effective value to half
 the value of autovacuum_freeze_max_age, so
 that there is not an unreasonably short time between forced
 autovacuums. For more information see the section called “Preventing Transaction ID Wraparound Failures”.

	vacuum_failsafe_age (integer)

	
 Specifies the maximum age (in transactions) that a table's
 pg_class.relfrozenxid
 field can attain before VACUUM takes
 extraordinary measures to avoid system-wide transaction ID
 wraparound failure. This is VACUUM's
 strategy of last resort. The failsafe typically triggers
 when an autovacuum to prevent transaction ID wraparound has
 already been running for some time, though it's possible for
 the failsafe to trigger during any VACUUM.

 When the failsafe is triggered, any cost-based delay that is
 in effect will no longer be applied, further non-essential
 maintenance tasks (such as index vacuuming) are bypassed, and any
 Buffer Access Strategy
 in use will be disabled resulting in VACUUM being
 free to make use of all of
 shared buffers.

 The default is 1.6 billion transactions. Although users can
 set this value anywhere from zero to 2.1 billion,
 VACUUM will silently adjust the effective
 value to no less than 105% of autovacuum_freeze_max_age.

	vacuum_multixact_freeze_table_age (integer)

	
 VACUUM performs an aggressive scan if the table's
 pg_class.relminmxid field has reached
 the age specified by this setting. An aggressive scan differs from
 a regular VACUUM in that it visits every page that might
 contain unfrozen XIDs or MXIDs, not just those that might contain dead
 tuples. The default is 150 million multixacts.
 Although users can set this value anywhere from zero to two billion,
 VACUUM will silently limit the effective value to 95% of
 autovacuum_multixact_freeze_max_age, so that a
 periodic manual VACUUM has a chance to run before an
 anti-wraparound is launched for the table.
 For more information see the section called “Multixacts and Wraparound”.

	vacuum_multixact_freeze_min_age (integer)

	
 Specifies the cutoff age (in multixacts) that VACUUM
 should use to decide whether to trigger freezing of pages with
 an older multixact ID. The default is 5 million multixacts.
 Although users can set this value anywhere from zero to one billion,
 VACUUM will silently limit the effective value to half
 the value of autovacuum_multixact_freeze_max_age,
 so that there is not an unreasonably short time between forced
 autovacuums.
 For more information see the section called “Multixacts and Wraparound”.

	vacuum_multixact_failsafe_age (integer)

	
 Specifies the maximum age (in multixacts) that a table's
 pg_class.relminmxid
 field can attain before VACUUM takes
 extraordinary measures to avoid system-wide multixact ID
 wraparound failure. This is VACUUM's
 strategy of last resort. The failsafe typically triggers when
 an autovacuum to prevent transaction ID wraparound has already
 been running for some time, though it's possible for the
 failsafe to trigger during any VACUUM.

 When the failsafe is triggered, any cost-based delay that is
 in effect will no longer be applied, and further non-essential
 maintenance tasks (such as index vacuuming) are bypassed.

 The default is 1.6 billion multixacts. Although users can set
 this value anywhere from zero to 2.1 billion,
 VACUUM will silently adjust the effective
 value to no less than 105% of autovacuum_multixact_freeze_max_age.

	bytea_output (enum)

	
 Sets the output format for values of type bytea.
 Valid values are hex (the default)
 and escape (the traditional PostgreSQL
 format). See the section called “Binary Data Types” for more
 information. The bytea type always
 accepts both formats on input, regardless of this setting.

	xmlbinary (enum)

	
 Sets how binary values are to be encoded in XML. This applies
 for example when bytea values are converted to
 XML by the functions xmlelement or
 xmlforest. Possible values are
 base64 and hex, which
 are both defined in the XML Schema standard. The default is
 base64. For further information about
 XML-related functions, see the section called “XML Functions”.

 The actual choice here is mostly a matter of taste,
 constrained only by possible restrictions in client
 applications. Both methods support all possible values,
 although the hex encoding will be somewhat larger than the
 base64 encoding.

	xmloption (enum)

	
 Sets whether DOCUMENT or
 CONTENT is implicit when converting between
 XML and character string values. See the section called “XML Type” for a description of this. Valid
 values are DOCUMENT and
 CONTENT. The default is
 CONTENT.

 According to the SQL standard, the command to set this option is

SET XML OPTION { DOCUMENT | CONTENT };

 This syntax is also available in PostgreSQL.

	gin_pending_list_limit (integer)

	
 Sets the maximum size of a GIN index's pending list, which is used
 when fastupdate is enabled. If the list grows
 larger than this maximum size, it is cleaned up by moving
 the entries in it to the index's main GIN data structure in bulk.
 If this value is specified without units, it is taken as kilobytes.
 The default is four megabytes (4MB). This setting
 can be overridden for individual GIN indexes by changing
 index storage parameters.
 See the section called “GIN Fast Update Technique” and the section called “GIN Tips and Tricks”
 for more information.

	createrole_self_grant (string)

	
 If a user who has CREATEROLE but not
 SUPERUSER creates a role, and if this
 is set to a non-empty value, the newly-created role will be granted
 to the creating user with the options specified. The value must be
 set, inherit, or a
 comma-separated list of these. The default value is an empty string,
 which disables the feature.

 The purpose of this option is to allow a CREATEROLE
 user who is not a superuser to automatically inherit, or automatically
 gain the ability to SET ROLE to, any created users.
 Since a CREATEROLE user is always implicitly granted
 ADMIN OPTION on created roles, that user could
 always execute a GRANT statement that would achieve
 the same effect as this setting. However, it can be convenient for
 usability reasons if the grant happens automatically. A superuser
 automatically inherits the privileges of every role and can always
 SET ROLE to any role, and this setting can be used
 to produce a similar behavior for CREATEROLE users
 for users which they create.

	restrict_nonsystem_relation_kind (string)

	
 Set relation kinds for which access to non-system relations is prohibited.
 The value takes the form of a comma-separated list of relation kinds.
 Currently, the supported relation kinds are view and
 foreign-table.

Locale and Formatting

	DateStyle (string)

	
 Sets the display format for date and time values, as well as the
 rules for interpreting ambiguous date input values. For
 historical reasons, this variable contains two independent
 components: the output format specification (ISO,
 Postgres, SQL, or German)
 and the input/output specification for year/month/day ordering
 (DMY, MDY, or YMD). These
 can be set separately or together. The keywords Euro
 and European are synonyms for DMY; the
 keywords US, NonEuro, and
 NonEuropean are synonyms for MDY. See
 the section called “Date/Time Types” for more information. The
 built-in default is ISO, MDY, but
 initdb will initialize the
 configuration file with a setting that corresponds to the
 behavior of the chosen lc_time locale.

	IntervalStyle (enum)

	
 Sets the display format for interval values.
 The value sql_standard will produce
 output matching SQL standard interval literals.
 The value postgres (which is the default) will produce
 output matching PostgreSQL™ releases prior to 8.4
 when the DateStyle
 parameter was set to ISO.
 The value postgres_verbose will produce output
 matching PostgreSQL™ releases prior to 8.4
 when the DateStyle
 parameter was set to non-ISO output.
 The value iso_8601 will produce output matching the time
 interval “format with designators” defined in section
 4.4.3.2 of ISO 8601.

 The IntervalStyle parameter also affects the
 interpretation of ambiguous interval input. See
 the section called “Interval Input” for more information.

	TimeZone (string)

	
 Sets the time zone for displaying and interpreting time stamps.
 The built-in default is GMT, but that is typically
 overridden in postgresql.conf; initdb
 will install a setting there corresponding to its system environment.
 See the section called “Time Zones” for more information.

	timezone_abbreviations (string)

	
 Sets the collection of time zone abbreviations that will be accepted
 by the server for datetime input. The default is 'Default',
 which is a collection that works in most of the world; there are
 also 'Australia' and 'India',
 and other collections can be defined for a particular installation.
 See the section called “Date/Time Configuration Files” for more information.

	extra_float_digits (integer)

	
 This parameter adjusts the number of digits used for textual output of
 floating-point values, including float4, float8,
 and geometric data types.

 If the value is 1 (the default) or above, float values are output in
 shortest-precise format; see the section called “Floating-Point Types”. The
 actual number of digits generated depends only on the value being
 output, not on the value of this parameter. At most 17 digits are
 required for float8 values, and 9 for float4
 values. This format is both fast and precise, preserving the original
 binary float value exactly when correctly read. For historical
 compatibility, values up to 3 are permitted.

 If the value is zero or negative, then the output is rounded to a
 given decimal precision. The precision used is the standard number of
 digits for the type (FLT_DIG
 or DBL_DIG as appropriate) reduced according to the
 value of this parameter. (For example, specifying -1 will cause
 float4 values to be output rounded to 5 significant
 digits, and float8 values
 rounded to 14 digits.) This format is slower and does not preserve all
 the bits of the binary float value, but may be more human-readable.

Note

 The meaning of this parameter, and its default value, changed
 in PostgreSQL™ 12;
 see the section called “Floating-Point Types” for further discussion.

	client_encoding (string)

	
 Sets the client-side encoding (character set).
 The default is to use the database encoding.
 The character sets supported by the PostgreSQL™
 server are described in the section called “Supported Character Sets”.

	lc_messages (string)

	
 Sets the language in which messages are displayed. Acceptable
 values are system-dependent; see the section called “Locale Support” for
 more information. If this variable is set to the empty string
 (which is the default) then the value is inherited from the
 execution environment of the server in a system-dependent way.

 On some systems, this locale category does not exist. Setting
 this variable will still work, but there will be no effect.
 Also, there is a chance that no translated messages for the
 desired language exist. In that case you will continue to see
 the English messages.

 Only superusers and users with the appropriate SET
 privilege can change this setting.

	lc_monetary (string)

	
 Sets the locale to use for formatting monetary amounts, for
 example with the to_char family of
 functions. Acceptable values are system-dependent; see the section called “Locale Support” for more information. If this variable is
 set to the empty string (which is the default) then the value
 is inherited from the execution environment of the server in a
 system-dependent way.

	lc_numeric (string)

	
 Sets the locale to use for formatting numbers, for example
 with the to_char family of
 functions. Acceptable values are system-dependent; see the section called “Locale Support” for more information. If this variable is
 set to the empty string (which is the default) then the value
 is inherited from the execution environment of the server in a
 system-dependent way.

	lc_time (string)

	
 Sets the locale to use for formatting dates and times, for example
 with the to_char family of
 functions. Acceptable values are system-dependent; see the section called “Locale Support” for more information. If this variable is
 set to the empty string (which is the default) then the value
 is inherited from the execution environment of the server in a
 system-dependent way.

	icu_validation_level (enum)

	
 When ICU locale validation problems are encountered, controls which
 message level is
 used to report the problem. Valid values are
 DISABLED, DEBUG5,
 DEBUG4, DEBUG3,
 DEBUG2, DEBUG1,
 INFO, NOTICE,
 WARNING, ERROR, and
 LOG.

 If set to DISABLED, does not report validation
 problems at all. Otherwise reports problems at the given message
 level. The default is WARNING.

	default_text_search_config (string)

	
 Selects the text search configuration that is used by those variants
 of the text search functions that do not have an explicit argument
 specifying the configuration.
 See Chapter 12, Full Text Search for further information.
 The built-in default is pg_catalog.simple, but
 initdb will initialize the
 configuration file with a setting that corresponds to the
 chosen lc_ctype locale, if a configuration
 matching that locale can be identified.

Shared Library Preloading

 Several settings are available for preloading shared libraries into the
 server, in order to load additional functionality or achieve performance
 benefits. For example, a setting of
 '$libdir/mylib' would cause
 mylib.so (or on some platforms,
 mylib.sl) to be preloaded from the installation's standard
 library directory. The differences between the settings are when they
 take effect and what privileges are required to change them.

 PostgreSQL™ procedural language libraries can
 be preloaded in this way, typically by using the
 syntax '$libdir/plXXX' where
 XXX is pgsql, perl,
 tcl, or python.

 Only shared libraries specifically intended to be used with PostgreSQL
 can be loaded this way. Every PostgreSQL-supported library has
 a “magic block” that is checked to guarantee compatibility. For
 this reason, non-PostgreSQL libraries cannot be loaded in this way. You
 might be able to use operating-system facilities such
 as LD_PRELOAD for that.

 In general, refer to the documentation of a specific module for the
 recommended way to load that module.

	local_preload_libraries (string)

	
 This variable specifies one or more shared libraries that are to be
 preloaded at connection start.
 It contains a comma-separated list of library names, where each name
 is interpreted as for the LOAD command.
 Whitespace between entries is ignored; surround a library name with
 double quotes if you need to include whitespace or commas in the name.
 The parameter value only takes effect at the start of the connection.
 Subsequent changes have no effect. If a specified library is not
 found, the connection attempt will fail.

 This option can be set by any user. Because of that, the libraries
 that can be loaded are restricted to those appearing in the
 plugins subdirectory of the installation's
 standard library directory. (It is the database administrator's
 responsibility to ensure that only “safe” libraries
 are installed there.) Entries in local_preload_libraries
 can specify this directory explicitly, for example
 $libdir/plugins/mylib, or just specify
 the library name — mylib would have
 the same effect as $libdir/plugins/mylib.

 The intent of this feature is to allow unprivileged users to load
 debugging or performance-measurement libraries into specific sessions
 without requiring an explicit LOAD command. To that end,
 it would be typical to set this parameter using
 the PGOPTIONS environment variable on the client or by
 using
 ALTER ROLE SET.

 However, unless a module is specifically designed to be used in this way by
 non-superusers, this is usually not the right setting to use. Look
 at session_preload_libraries instead.

	session_preload_libraries (string)

	
 This variable specifies one or more shared libraries that are to be
 preloaded at connection start.
 It contains a comma-separated list of library names, where each name
 is interpreted as for the LOAD command.
 Whitespace between entries is ignored; surround a library name with
 double quotes if you need to include whitespace or commas in the name.
 The parameter value only takes effect at the start of the connection.
 Subsequent changes have no effect. If a specified library is not
 found, the connection attempt will fail.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 The intent of this feature is to allow debugging or
 performance-measurement libraries to be loaded into specific sessions
 without an explicit
 LOAD command being given. For
 example, auto_explain could be enabled for all
 sessions under a given user name by setting this parameter
 with ALTER ROLE SET. Also, this parameter can be changed
 without restarting the server (but changes only take effect when a new
 session is started), so it is easier to add new modules this way, even
 if they should apply to all sessions.

 Unlike shared_preload_libraries, there is no large
 performance advantage to loading a library at session start rather than
 when it is first used. There is some advantage, however, when
 connection pooling is used.

	shared_preload_libraries (string)

	
 This variable specifies one or more shared libraries to be preloaded at
 server start.
 It contains a comma-separated list of library names, where each name
 is interpreted as for the LOAD command.
 Whitespace between entries is ignored; surround a library name with
 double quotes if you need to include whitespace or commas in the name.
 This parameter can only be set at server start. If a specified
 library is not found, the server will fail to start.

 Some libraries need to perform certain operations that can only take
 place at postmaster start, such as allocating shared memory, reserving
 light-weight locks, or starting background workers. Those libraries
 must be loaded at server start through this parameter. See the
 documentation of each library for details.

 Other libraries can also be preloaded. By preloading a shared library,
 the library startup time is avoided when the library is first used.
 However, the time to start each new server process might increase
 slightly, even if that process never uses the library. So this
 parameter is recommended only for libraries that will be used in most
 sessions. Also, changing this parameter requires a server restart, so
 this is not the right setting to use for short-term debugging tasks,
 say. Use session_preload_libraries for that
 instead.

Note

 On Windows hosts, preloading a library at server start will not reduce
 the time required to start each new server process; each server process
 will re-load all preload libraries. However, shared_preload_libraries
 is still useful on Windows hosts for libraries that need to
 perform operations at postmaster start time.

	jit_provider (string)

	
 This variable is the name of the JIT provider library to be used
 (see the section called “Pluggable JIT Providers”).
 The default is llvmjit.
 This parameter can only be set at server start.

 If set to a non-existent library, JIT will not be
 available, but no error will be raised. This allows JIT support to be
 installed separately from the main
 PostgreSQL™ package.

Other Defaults

	dynamic_library_path (string)

	
 If a dynamically loadable module needs to be opened and the
 file name specified in the CREATE FUNCTION or
 LOAD command
 does not have a directory component (i.e., the
 name does not contain a slash), the system will search this
 path for the required file.

 The value for dynamic_library_path must be a
 list of absolute directory paths separated by colons (or semi-colons
 on Windows). If a list element starts
 with the special string $libdir, the
 compiled-in PostgreSQL™ package
 library directory is substituted for $libdir; this
 is where the modules provided by the standard
 PostgreSQL™ distribution are installed.
 (Use pg_config --pkglibdir to find out the name of
 this directory.) For example:

dynamic_library_path = '/usr/local/lib/postgresql:/home/my_project/lib:$libdir'

 or, in a Windows environment:

dynamic_library_path = 'C:\tools\postgresql;H:\my_project\lib;$libdir'

 The default value for this parameter is
 '$libdir'. If the value is set to an empty
 string, the automatic path search is turned off.

 This parameter can be changed at run time by superusers and users
 with the appropriate SET privilege, but a
 setting done that way will only persist until the end of the
 client connection, so this method should be reserved for
 development purposes. The recommended way to set this parameter
 is in the postgresql.conf configuration
 file.

	gin_fuzzy_search_limit (integer)

	
 Soft upper limit of the size of the set returned by GIN index scans. For more
 information see the section called “GIN Tips and Tricks”.

Lock Management

	deadlock_timeout (integer)

	
 This is the amount of time to wait on a lock
 before checking to see if there is a deadlock condition. The
 check for deadlock is relatively expensive, so the server doesn't run
 it every time it waits for a lock. We optimistically assume
 that deadlocks are not common in production applications and
 just wait on the lock for a while before checking for a
 deadlock. Increasing this value reduces the amount of time
 wasted in needless deadlock checks, but slows down reporting of
 real deadlock errors.
 If this value is specified without units, it is taken as milliseconds.
 The default is one second (1s),
 which is probably about the smallest value you would want in
 practice. On a heavily loaded server you might want to raise it.
 Ideally the setting should exceed your typical transaction time,
 so as to improve the odds that a lock will be released before
 the waiter decides to check for deadlock.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 When log_lock_waits is set,
 this parameter also determines the amount of time to wait before
 a log message is issued about the lock wait. If you are trying
 to investigate locking delays you might want to set a shorter than
 normal deadlock_timeout.

	max_locks_per_transaction (integer)

	
 The shared lock table has space for
 max_locks_per_transaction objects
 (e.g., tables) per server process or prepared transaction;
 hence, no more than this many distinct objects can be locked at
 any one time. This parameter limits the average number of object
 locks used by each transaction; individual transactions
 can lock more objects as long as the locks of all transactions
 fit in the lock table. This is not the number of
 rows that can be locked; that value is unlimited. The default,
 64, has historically proven sufficient, but you might need to
 raise this value if you have queries that touch many different
 tables in a single transaction, e.g., query of a parent table with
 many children. This parameter can only be set at server start.

 When running a standby server, you must set this parameter to have the
 same or higher value as on the primary server. Otherwise, queries
 will not be allowed in the standby server.

	max_pred_locks_per_transaction (integer)

	
 The shared predicate lock table has space for
 max_pred_locks_per_transaction objects
 (e.g., tables) per server process or prepared transaction;
 hence, no more than this many distinct objects can be locked at
 any one time. This parameter limits the average number of object
 locks used by each transaction; individual transactions
 can lock more objects as long as the locks of all transactions
 fit in the lock table. This is not the number of
 rows that can be locked; that value is unlimited. The default,
 64, has historically proven sufficient, but you might need to
 raise this value if you have clients that touch many different
 tables in a single serializable transaction. This parameter can
 only be set at server start.

	max_pred_locks_per_relation (integer)

	
 This controls how many pages or tuples of a single relation can be
 predicate-locked before the lock is promoted to covering the whole
 relation. Values greater than or equal to zero mean an absolute
 limit, while negative values
 mean max_pred_locks_per_transaction divided by
 the absolute value of this setting. The default is -2, which keeps
 the behavior from previous versions of PostgreSQL™.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	max_pred_locks_per_page (integer)

	
 This controls how many rows on a single page can be predicate-locked
 before the lock is promoted to covering the whole page. The default
 is 2. This parameter can only be set in
 the postgresql.conf file or on the server command line.

Version and Platform Compatibility

Previous PostgreSQL Versions

	array_nulls (boolean)

	
 This controls whether the array input parser recognizes
 unquoted NULL as specifying a null array element.
 By default, this is on, allowing array values containing
 null values to be entered. However, PostgreSQL™ versions
 before 8.2 did not support null values in arrays, and therefore would
 treat NULL as specifying a normal array element with
 the string value “NULL”. For backward compatibility with
 applications that require the old behavior, this variable can be
 turned off.

 Note that it is possible to create array values containing null values
 even when this variable is off.

	backslash_quote (enum)

	
 This controls whether a quote mark can be represented by
 \' in a string literal. The preferred, SQL-standard way
 to represent a quote mark is by doubling it ('') but
 PostgreSQL™ has historically also accepted
 \'. However, use of \' creates security risks
 because in some client character set encodings, there are multibyte
 characters in which the last byte is numerically equivalent to ASCII
 \. If client-side code does escaping incorrectly then an
 SQL-injection attack is possible. This risk can be prevented by
 making the server reject queries in which a quote mark appears to be
 escaped by a backslash.
 The allowed values of backslash_quote are
 on (allow \' always),
 off (reject always), and
 safe_encoding (allow only if client encoding does not
 allow ASCII \ within a multibyte character).
 safe_encoding is the default setting.

 Note that in a standard-conforming string literal, \ just
 means \ anyway. This parameter only affects the handling of
 non-standard-conforming literals, including
 escape string syntax (E'...').

	escape_string_warning (boolean)

	
 When on, a warning is issued if a backslash (\)
 appears in an ordinary string literal ('...'
 syntax) and standard_conforming_strings is off.
 The default is on.

 Applications that wish to use backslash as escape should be
 modified to use escape string syntax (E'...'),
 because the default behavior of ordinary strings is now to treat
 backslash as an ordinary character, per SQL standard. This variable
 can be enabled to help locate code that needs to be changed.

	lo_compat_privileges (boolean)

	
 In PostgreSQL™ releases prior to 9.0, large objects
 did not have access privileges and were, therefore, always readable
 and writable by all users. Setting this variable to on
 disables the new privilege checks, for compatibility with prior
 releases. The default is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

 Setting this variable does not disable all security checks related to
 large objects — only those for which the default behavior has
 changed in PostgreSQL™ 9.0.

	quote_all_identifiers (boolean)

	
 When the database generates SQL, force all identifiers to be quoted,
 even if they are not (currently) keywords. This will affect the
 output of EXPLAIN as well as the results of functions
 like pg_get_viewdef. See also the
 --quote-all-identifiers option of
 pg_dump(1) and pg_dumpall(1).

	standard_conforming_strings (boolean)

	
 This controls whether ordinary string literals
 ('...') treat backslashes literally, as specified in
 the SQL standard.
 Beginning in PostgreSQL™ 9.1, the default is
 on (prior releases defaulted to off).
 Applications can check this
 parameter to determine how string literals will be processed.
 The presence of this parameter can also be taken as an indication
 that the escape string syntax (E'...') is supported.
 Escape string syntax (the section called “String Constants with C-Style Escapes”)
 should be used if an application desires
 backslashes to be treated as escape characters.

	synchronize_seqscans (boolean)

	
 This allows sequential scans of large tables to synchronize with each
 other, so that concurrent scans read the same block at about the
 same time and hence share the I/O workload. When this is enabled,
 a scan might start in the middle of the table and then “wrap
 around” the end to cover all rows, so as to synchronize with the
 activity of scans already in progress. This can result in
 unpredictable changes in the row ordering returned by queries that
 have no ORDER BY clause. Setting this parameter to
 off ensures the pre-8.3 behavior in which a sequential
 scan always starts from the beginning of the table. The default
 is on.

Platform and Client Compatibility

	transform_null_equals (boolean)

	
 When on, expressions of the form expr =
 NULL (or NULL =
 expr) are treated as
 expr IS NULL, that is, they
 return true if expr evaluates to the null value,
 and false otherwise. The correct SQL-spec-compliant behavior of
 expr = NULL is to always
 return null (unknown). Therefore this parameter defaults to
 off.

 However, filtered forms in Microsoft
 Access™ generate queries that appear to use
 expr = NULL to test for
 null values, so if you use that interface to access the database you
 might want to turn this option on. Since expressions of the
 form expr = NULL always
 return the null value (using the SQL standard interpretation), they are not
 very useful and do not appear often in normal applications so
 this option does little harm in practice. But new users are
 frequently confused about the semantics of expressions
 involving null values, so this option is off by default.

 Note that this option only affects the exact form = NULL,
 not other comparison operators or other expressions
 that are computationally equivalent to some expression
 involving the equals operator (such as IN).
 Thus, this option is not a general fix for bad programming.

 Refer to the section called “Comparison Functions and Operators” for related information.

Error Handling

	exit_on_error (boolean)

	
 If on, any error will terminate the current session. By default,
 this is set to off, so that only FATAL errors will terminate the
 session.

	restart_after_crash (boolean)

	
 When set to on, which is the default, PostgreSQL™
 will automatically reinitialize after a backend crash. Leaving this
 value set to on is normally the best way to maximize the availability
 of the database. However, in some circumstances, such as when
 PostgreSQL™ is being invoked by clusterware, it may be
 useful to disable the restart so that the clusterware can gain
 control and take any actions it deems appropriate.

 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	data_sync_retry (boolean)

	
 When set to off, which is the default, PostgreSQL™
 will raise a PANIC-level error on failure to flush modified data files
 to the file system. This causes the database server to crash. This
 parameter can only be set at server start.

 On some operating systems, the status of data in the kernel's page
 cache is unknown after a write-back failure. In some cases it might
 have been entirely forgotten, making it unsafe to retry; the second
 attempt may be reported as successful, when in fact the data has been
 lost. In these circumstances, the only way to avoid data loss is to
 recover from the WAL after any failure is reported, preferably
 after investigating the root cause of the failure and replacing any
 faulty hardware.

 If set to on, PostgreSQL™ will instead
 report an error but continue to run so that the data flushing
 operation can be retried in a later checkpoint. Only set it to on
 after investigating the operating system's treatment of buffered data
 in case of write-back failure.

	recovery_init_sync_method (enum)

	
 When set to fsync, which is the default,
 PostgreSQL™ will recursively open and
 synchronize all files in the data directory before crash recovery
 begins. The search for files will follow symbolic links for the WAL
 directory and each configured tablespace (but not any other symbolic
 links). This is intended to make sure that all WAL and data files are
 durably stored on disk before replaying changes. This applies whenever
 starting a database cluster that did not shut down cleanly, including
 copies created with pg_basebackup.

 On Linux, syncfs may be used instead, to ask the
 operating system to synchronize the whole file systems that contain the
 data directory, the WAL files and each tablespace (but not any other
 file systems that may be reachable through symbolic links). This may
 be a lot faster than the fsync setting, because it
 doesn't need to open each file one by one. On the other hand, it may
 be slower if a file system is shared by other applications that
 modify a lot of files, since those files will also be written to disk.
 Furthermore, on versions of Linux before 5.8, I/O errors encountered
 while writing data to disk may not be reported to
 PostgreSQL™, and relevant error messages may
 appear only in kernel logs.

 This parameter can only be set in the
 postgresql.conf file or on the server command line.

Preset Options

 The following “parameters” are read-only.
 As such, they have been excluded from the sample
 postgresql.conf file. These options report
 various aspects of PostgreSQL™ behavior
 that might be of interest to certain applications, particularly
 administrative front-ends.
 Most of them are determined when PostgreSQL™
 is compiled or when it is installed.

	block_size (integer)

	
 Reports the size of a disk block. It is determined by the value
 of BLCKSZ when building the server. The default
 value is 8192 bytes. The meaning of some configuration
 variables (such as shared_buffers) is
 influenced by block_size. See the section called “Resource Consumption” for information.

	data_checksums (boolean)

	
 Reports whether data checksums are enabled for this cluster.
 See data checksums for more information.

	data_directory_mode (integer)

	
 On Unix systems this parameter reports the permissions the data
 directory (defined by data_directory)
 had at server startup.
 (On Microsoft Windows this parameter will always display
 0700.) See
 group access for more information.

	debug_assertions (boolean)

	
 Reports whether PostgreSQL™ has been built
 with assertions enabled. That is the case if the
 macro USE_ASSERT_CHECKING is defined
 when PostgreSQL™ is built (accomplished
 e.g., by the configure option
 --enable-cassert). By
 default PostgreSQL™ is built without
 assertions.

	integer_datetimes (boolean)

	
 Reports whether PostgreSQL™ was built with support for
 64-bit-integer dates and times. As of PostgreSQL™ 10,
 this is always on.

	in_hot_standby (boolean)

	
 Reports whether the server is currently in hot standby mode. When
 this is on, all transactions are forced to be
 read-only. Within a session, this can change only if the server is
 promoted to be primary. See the section called “Hot Standby” for more
 information.

	max_function_args (integer)

	
 Reports the maximum number of function arguments. It is determined by
 the value of FUNC_MAX_ARGS when building the server. The
 default value is 100 arguments.

	max_identifier_length (integer)

	
 Reports the maximum identifier length. It is determined as one
 less than the value of NAMEDATALEN when building
 the server. The default value of NAMEDATALEN is
 64; therefore the default
 max_identifier_length is 63 bytes, which
 can be less than 63 characters when using multibyte encodings.

	max_index_keys (integer)

	
 Reports the maximum number of index keys. It is determined by
 the value of INDEX_MAX_KEYS when building the server. The
 default value is 32 keys.

	segment_size (integer)

	
 Reports the number of blocks (pages) that can be stored within a file
 segment. It is determined by the value of RELSEG_SIZE
 when building the server. The maximum size of a segment file in bytes
 is equal to segment_size multiplied by
 block_size; by default this is 1GB.

	server_encoding (string)

	
 Reports the database encoding (character set).
 It is determined when the database is created. Ordinarily,
 clients need only be concerned with the value of client_encoding.

	server_version (string)

	
 Reports the version number of the server. It is determined by the
 value of PG_VERSION when building the server.

	server_version_num (integer)

	
 Reports the version number of the server as an integer. It is determined
 by the value of PG_VERSION_NUM when building the server.

	shared_memory_size (integer)

	
 Reports the size of the main shared memory area, rounded up to the
 nearest megabyte.

	shared_memory_size_in_huge_pages (integer)

	
 Reports the number of huge pages that are needed for the main shared
 memory area based on the specified huge_page_size.
 If huge pages are not supported, this will be -1.

 This setting is supported only on Linux™. It
 is always set to -1 on other platforms. For more
 details about using huge pages on Linux™, see
 the section called “Linux Huge Pages”.

	ssl_library (string)

	
 Reports the name of the SSL library that this
 PostgreSQL™ server was built with (even if
 SSL is not currently configured or in use on this instance), for
 example OpenSSL, or an empty string if none.

	wal_block_size (integer)

	
 Reports the size of a WAL disk block. It is determined by the value
 of XLOG_BLCKSZ when building the server. The default value
 is 8192 bytes.

	wal_segment_size (integer)

	
 Reports the size of write ahead log segments. The default value is
 16MB. See the section called “WAL Configuration” for more information.

Customized Options

 This feature was designed to allow parameters not normally known to
 PostgreSQL™ to be added by add-on modules
 (such as procedural languages). This allows extension modules to be
 configured in the standard ways.

 Custom options have two-part names: an extension name, then a dot, then
 the parameter name proper, much like qualified names in SQL. An example
 is plpgsql.variable_conflict.

 Because custom options may need to be set in processes that have not
 loaded the relevant extension module, PostgreSQL™
 will accept a setting for any two-part parameter name. Such variables
 are treated as placeholders and have no function until the module that
 defines them is loaded. When an extension module is loaded, it will add
 its variable definitions and convert any placeholder values according to
 those definitions. If there are any unrecognized placeholders
 that begin with its extension name, warnings are issued and those
 placeholders are removed.

Developer Options

 The following parameters are intended for developer testing, and
 should never be used on a production database. However, some of
 them can be used to assist with the recovery of severely damaged
 databases. As such, they have been excluded from the sample
 postgresql.conf file. Note that many of these
 parameters require special source compilation flags to work at all.

	allow_in_place_tablespaces (boolean)

	
 Allows tablespaces to be created as directories inside
 pg_tblspc, when an empty location string
 is provided to the CREATE TABLESPACE command. This
 is intended to allow testing replication scenarios where primary and
 standby servers are running on the same machine. Such directories
 are likely to confuse backup tools that expect to find only symbolic
 links in that location.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	allow_system_table_mods (boolean)

	
 Allows modification of the structure of system tables as well as
 certain other risky actions on system tables. This is otherwise not
 allowed even for superusers. Ill-advised use of this setting can
 cause irretrievable data loss or seriously corrupt the database
 system.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	backtrace_functions (string)

	
 This parameter contains a comma-separated list of C function names.
 If an error is raised and the name of the internal C function where
 the error happens matches a value in the list, then a backtrace is
 written to the server log together with the error message. This can
 be used to debug specific areas of the source code.

 Backtrace support is not available on all platforms, and the quality
 of the backtraces depends on compilation options.

 Only superusers and users with the appropriate SET
 privilege can change this setting.

	debug_discard_caches (integer)

	
 When set to 1, each system catalog cache entry is
 invalidated at the first possible opportunity, whether or not
 anything that would render it invalid really occurred. Caching of
 system catalogs is effectively disabled as a result, so the server
 will run extremely slowly. Higher values run the cache invalidation
 recursively, which is even slower and only useful for testing
 the caching logic itself. The default value of 0
 selects normal catalog caching behavior.

 This parameter can be very helpful when trying to trigger
 hard-to-reproduce bugs involving concurrent catalog changes, but it
 is otherwise rarely needed. See the source code files
 inval.c and
 pg_config_manual.h for details.

 This parameter is supported when
 DISCARD_CACHES_ENABLED was defined at compile time
 (which happens automatically when using the
 configure option
 --enable-cassert). In production builds, its value
 will always be 0 and attempts to set it to another
 value will raise an error.

	debug_io_direct (string)

	
 Ask the kernel to minimize caching effects for relation data and WAL
 files using O_DIRECT (most Unix-like systems),
 F_NOCACHE (macOS) or
 FILE_FLAG_NO_BUFFERING (Windows).

 May be set to an empty string (the default) to disable use of direct
 I/O, or a comma-separated list of operations that should use direct I/O.
 The valid options are data for
 main data files, wal for WAL files, and
 wal_init for WAL files when being initially
 allocated.
 This parameter can only be set at server start.

 Some operating systems and file systems do not support direct I/O, so
 non-default settings may be rejected at startup or cause errors.

 Currently this feature reduces performance, and is intended for
 developer testing only.

	debug_parallel_query (enum)

	
 Allows the use of parallel queries for testing purposes even in cases
 where no performance benefit is expected.
 The allowed values of debug_parallel_query are
 off (use parallel mode only when it is expected to improve
 performance), on (force parallel query for all queries
 for which it is thought to be safe), and regress (like
 on, but with additional behavior changes as explained
 below).

 More specifically, setting this value to on will add
 a Gather node to the top of any query plan for which this
 appears to be safe, so that the query runs inside of a parallel worker.
 Even when a parallel worker is not available or cannot be used,
 operations such as starting a subtransaction that would be prohibited
 in a parallel query context will be prohibited unless the planner
 believes that this will cause the query to fail. If failures or
 unexpected results occur when this option is set, some functions used
 by the query may need to be marked PARALLEL UNSAFE
 (or, possibly, PARALLEL RESTRICTED).

 Setting this value to regress has all of the same effects
 as setting it to on plus some additional effects that are
 intended to facilitate automated regression testing. Normally,
 messages from a parallel worker include a context line indicating that,
 but a setting of regress suppresses this line so that the
 output is the same as in non-parallel execution. Also,
 the Gather nodes added to plans by this setting are hidden
 in EXPLAIN output so that the output matches what
 would be obtained if this setting were turned off.

	ignore_system_indexes (boolean)

	
 Ignore system indexes when reading system tables (but still
 update the indexes when modifying the tables). This is useful
 when recovering from damaged system indexes.
 This parameter cannot be changed after session start.

	post_auth_delay (integer)

	
 The amount of time to delay when a new
 server process is started, after it conducts the
 authentication procedure. This is intended to give developers an
 opportunity to attach to the server process with a debugger.
 If this value is specified without units, it is taken as seconds.
 A value of zero (the default) disables the delay.
 This parameter cannot be changed after session start.

	pre_auth_delay (integer)

	
 The amount of time to delay just after a
 new server process is forked, before it conducts the
 authentication procedure. This is intended to give developers an
 opportunity to attach to the server process with a debugger to
 trace down misbehavior in authentication.
 If this value is specified without units, it is taken as seconds.
 A value of zero (the default) disables the delay.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	trace_notify (boolean)

	
 Generates a great amount of debugging output for the
 LISTEN and NOTIFY
 commands. client_min_messages or
 log_min_messages must be
 DEBUG1 or lower to send this output to the
 client or server logs, respectively.

	trace_recovery_messages (enum)

	
 Enables logging of recovery-related debugging output that otherwise
 would not be logged. This parameter allows the user to override the
 normal setting of log_min_messages, but only for
 specific messages. This is intended for use in debugging hot standby.
 Valid values are DEBUG5, DEBUG4,
 DEBUG3, DEBUG2, DEBUG1, and
 LOG. The default, LOG, does not affect
 logging decisions at all. The other values cause recovery-related
 debug messages of that priority or higher to be logged as though they
 had LOG priority; for common settings of
 log_min_messages this results in unconditionally sending
 them to the server log.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

	trace_sort (boolean)

	
 If on, emit information about resource usage during sort operations.
 This parameter is only available if the TRACE_SORT macro
 was defined when PostgreSQL™ was compiled.
 (However, TRACE_SORT is currently defined by default.)

	trace_locks (boolean)

	
 If on, emit information about lock usage. Information dumped
 includes the type of lock operation, the type of lock and the unique
 identifier of the object being locked or unlocked. Also included
 are bit masks for the lock types already granted on this object as
 well as for the lock types awaited on this object. For each lock
 type a count of the number of granted locks and waiting locks is
 also dumped as well as the totals. An example of the log file output
 is shown here:

LOG: LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
 wait(0) type(AccessShareLock)
LOG: UnGrantLock: updated: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: CleanUpLock: deleting: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(INVALID)

 Details of the structure being dumped may be found in
 src/include/storage/lock.h.

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	trace_lwlocks (boolean)

	
 If on, emit information about lightweight lock usage. Lightweight
 locks are intended primarily to provide mutual exclusion of access
 to shared-memory data structures.

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	trace_userlocks (boolean)

	
 If on, emit information about user lock usage. Output is the same
 as for trace_locks, only for advisory locks.

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	trace_lock_oidmin (integer)

	
 If set, do not trace locks for tables below this OID (used to avoid
 output on system tables).

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	trace_lock_table (integer)

	
 Unconditionally trace locks on this table (OID).

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	debug_deadlocks (boolean)

	
 If set, dumps information about all current locks when a
 deadlock timeout occurs.

 This parameter is only available if the LOCK_DEBUG
 macro was defined when PostgreSQL™ was
 compiled.

	log_btree_build_stats (boolean)

	
 If set, logs system resource usage statistics (memory and CPU) on
 various B-tree operations.

 This parameter is only available if the BTREE_BUILD_STATS
 macro was defined when PostgreSQL™ was
 compiled.

	wal_consistency_checking (string)

	
 This parameter is intended to be used to check for bugs in the WAL
 redo routines. When enabled, full-page images of any buffers modified
 in conjunction with the WAL record are added to the record.
 If the record is subsequently replayed, the system will first apply
 each record and then test whether the buffers modified by the record
 match the stored images. In certain cases (such as hint bits), minor
 variations are acceptable, and will be ignored. Any unexpected
 differences will result in a fatal error, terminating recovery.

 The default value of this setting is the empty string, which disables
 the feature. It can be set to all to check all
 records, or to a comma-separated list of resource managers to check
 only records originating from those resource managers. Currently,
 the supported resource managers are heap,
 heap2, btree, hash,
 gin, gist, sequence,
 spgist, brin, and generic.
 Extensions may define additional resource managers. Only superusers and users with
 the appropriate SET privilege can change this setting.

	wal_debug (boolean)

	
 If on, emit WAL-related debugging output. This parameter is
 only available if the WAL_DEBUG macro was
 defined when PostgreSQL™ was
 compiled.

	ignore_checksum_failure (boolean)

	
 Only has effect if data checksums are enabled.

 Detection of a checksum failure during a read normally causes
 PostgreSQL™ to report an error, aborting the current
 transaction. Setting ignore_checksum_failure to on causes
 the system to ignore the failure (but still report a warning), and
 continue processing. This behavior may cause crashes, propagate
 or hide corruption, or other serious problems. However, it may allow
 you to get past the error and retrieve undamaged tuples that might still be
 present in the table if the block header is still sane. If the header is
 corrupt an error will be reported even if this option is enabled. The
 default setting is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	zero_damaged_pages (boolean)

	
 Detection of a damaged page header normally causes
 PostgreSQL™ to report an error, aborting the current
 transaction. Setting zero_damaged_pages to on causes
 the system to instead report a warning, zero out the damaged
 page in memory, and continue processing. This behavior will destroy data,
 namely all the rows on the damaged page. However, it does allow you to get
 past the error and retrieve rows from any undamaged pages that might
 be present in the table. It is useful for recovering data if
 corruption has occurred due to a hardware or software error. You should
 generally not set this on until you have given up hope of recovering
 data from the damaged pages of a table. Zeroed-out pages are not
 forced to disk so it is recommended to recreate the table or
 the index before turning this parameter off again. The
 default setting is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	ignore_invalid_pages (boolean)

	
 If set to off (the default), detection of
 WAL records having references to invalid pages during
 recovery causes PostgreSQL™ to
 raise a PANIC-level error, aborting the recovery. Setting
 ignore_invalid_pages to on
 causes the system to ignore invalid page references in WAL records
 (but still report a warning), and continue the recovery.
 This behavior may cause crashes, data loss,
 propagate or hide corruption, or other serious problems.
 However, it may allow you to get past the PANIC-level error,
 to finish the recovery, and to cause the server to start up.
 The parameter can only be set at server start. It only has effect
 during recovery or in standby mode.

	jit_debugging_support (boolean)

	
 If LLVM has the required functionality, register generated functions
 with GDB™. This makes debugging easier.
 The default setting is off.
 This parameter can only be set at server start.

	jit_dump_bitcode (boolean)

	
 Writes the generated LLVM™ IR out to the
 file system, inside data_directory. This is only
 useful for working on the internals of the JIT implementation.
 The default setting is off.
 Only superusers and users with the appropriate SET
 privilege can change this setting.

	jit_expressions (boolean)

	
 Determines whether expressions are JIT compiled, when JIT compilation
 is activated (see the section called “When to JIT?”). The default is
 on.

	jit_profiling_support (boolean)

	
 If LLVM has the required functionality, emit the data needed to allow
 perf™ to profile functions generated by JIT.
 This writes out files to ~/.debug/jit/; the
 user is responsible for performing cleanup when desired.
 The default setting is off.
 This parameter can only be set at server start.

	jit_tuple_deforming (boolean)

	
 Determines whether tuple deforming is JIT compiled, when JIT
 compilation is activated (see the section called “When to JIT?”).
 The default is on.

	remove_temp_files_after_crash (boolean)

	
 When set to on, which is the default,
 PostgreSQL™ will automatically remove
 temporary files after a backend crash. If disabled, the files will be
 retained and may be used for debugging, for example. Repeated crashes
 may however result in accumulation of useless files. This parameter
 can only be set in the postgresql.conf file or on
 the server command line.

	send_abort_for_crash (boolean)

	
 By default, after a backend crash the postmaster will stop remaining
 child processes by sending them SIGQUIT
 signals, which permits them to exit more-or-less gracefully. When
 this option is set to on,
 SIGABRT is sent instead. That normally
 results in production of a core dump file for each such child
 process.
 This can be handy for investigating the states of other processes
 after a crash. It can also consume lots of disk space in the event
 of repeated crashes, so do not enable this on systems you are not
 monitoring carefully.
 Beware that no support exists for cleaning up the core file(s)
 automatically.
 This parameter can only be set in
 the postgresql.conf file or on the server
 command line.

	send_abort_for_kill (boolean)

	
 By default, after attempting to stop a child process with
 SIGQUIT, the postmaster will wait five
 seconds and then send SIGKILL to force
 immediate termination. When this option is set
 to on, SIGABRT is sent
 instead of SIGKILL. That normally results
 in production of a core dump file for each such child process.
 This can be handy for investigating the states
 of “stuck” child processes. It can also consume lots
 of disk space in the event of repeated crashes, so do not enable
 this on systems you are not monitoring carefully.
 Beware that no support exists for cleaning up the core file(s)
 automatically.
 This parameter can only be set in
 the postgresql.conf file or on the server
 command line.

	debug_logical_replication_streaming (enum)

	
 The allowed values are buffered and
 immediate. The default is buffered.
 This parameter is intended to be used to test logical decoding and
 replication of large transactions. The effect of
 debug_logical_replication_streaming is different for the
 publisher and subscriber:

 On the publisher side, debug_logical_replication_streaming
 allows streaming or serializing changes immediately in logical decoding.
 When set to immediate, stream each change if the
 streaming
 option of
 CREATE SUBSCRIPTION
 is enabled, otherwise, serialize each change. When set to
 buffered, the decoding will stream or serialize
 changes when logical_decoding_work_mem is reached.

 On the subscriber side, if the streaming option is set to
 parallel, debug_logical_replication_streaming
 can be used to direct the leader apply worker to send changes to the
 shared memory queue or to serialize all changes to the file. When set to
 buffered, the leader sends changes to parallel apply
 workers via a shared memory queue. When set to
 immediate, the leader serializes all changes to files
 and notifies the parallel apply workers to read and apply them at the
 end of the transaction.

Short Options

 For convenience there are also single letter command-line option
 switches available for some parameters. They are described in
 Table 20.4, “Short Option Key”. Some of these
 options exist for historical reasons, and their presence as a
 single-letter option does not necessarily indicate an endorsement
 to use the option heavily.

Table 20.4. Short Option Key
	Short Option	Equivalent
	-B x	shared_buffers = x
	-d x	log_min_messages = DEBUGx
	-e	datestyle = euro
	
 -fb, -fh, -fi,
 -fm, -fn, -fo,
 -fs, -ft
 	
 enable_bitmapscan = off,
 enable_hashjoin = off,
 enable_indexscan = off,
 enable_mergejoin = off,
 enable_nestloop = off,
 enable_indexonlyscan = off,
 enable_seqscan = off,
 enable_tidscan = off

	-F	fsync = off
	-h x	listen_addresses = x
	-i	listen_addresses = '*'
	-k x	unix_socket_directories = x
	-l	ssl = on
	-N x	max_connections = x
	-O	allow_system_table_mods = on
	-p x	port = x
	-P	ignore_system_indexes = on
	-s	log_statement_stats = on
	-S x	work_mem = x
	-tpa, -tpl, -te	log_parser_stats = on,
 log_planner_stats = on,
 log_executor_stats = on
	-W x	post_auth_delay = x

Chapter 21. Client Authentication

 When a client application connects to the database server, it
 specifies which PostgreSQL™ database user name it
 wants to connect as, much the same way one logs into a Unix computer
 as a particular user. Within the SQL environment the active database
 user name determines access privileges to database objects — see
 Chapter 22, Database Roles for more information. Therefore, it is
 essential to restrict which database users can connect.

Note

 As explained in Chapter 22, Database Roles,
 PostgreSQL™ actually does privilege
 management in terms of “roles”. In this chapter, we
 consistently use database user to mean “role with the
 LOGIN privilege”.

 Authentication is the process by which the
 database server establishes the identity of the client, and by
 extension determines whether the client application (or the user
 who runs the client application) is permitted to connect with the
 database user name that was requested.

 PostgreSQL™ offers a number of different
 client authentication methods. The method used to authenticate a
 particular client connection can be selected on the basis of
 (client) host address, database, and user.

 PostgreSQL™ database user names are logically
 separate from user names of the operating system in which the server
 runs. If all the users of a particular server also have accounts on
 the server's machine, it makes sense to assign database user names
 that match their operating system user names. However, a server that
 accepts remote connections might have many database users who have no local
 operating system
 account, and in such cases there need be no connection between
 database user names and OS user names.

The pg_hba.conf File

 Client authentication is controlled by a configuration file,
 which traditionally is named
 pg_hba.conf and is stored in the database
 cluster's data directory.
 (HBA stands for host-based authentication.) A default
 pg_hba.conf file is installed when the data
 directory is initialized by initdb(1). It is
 possible to place the authentication configuration file elsewhere,
 however; see the hba_file configuration parameter.

 The general format of the pg_hba.conf file is
 a set of records, one per line. Blank lines are ignored, as is any
 text after the # comment character.
 A record can be continued onto the next line by ending the line with
 a backslash. (Backslashes are not special except at the end of a line.)
 A record is made
 up of a number of fields which are separated by spaces and/or tabs.
 Fields can contain white space if the field value is double-quoted.
 Quoting one of the keywords in a database, user, or address field (e.g.,
 all or replication) makes the word lose its special
 meaning, and just match a database, user, or host with that name.
 Backslash line continuation applies even within quoted text or comments.

 Each authentication record specifies a connection type, a client IP address
 range (if relevant for the connection type), a database name, a user name,
 and the authentication method to be used for connections matching
 these parameters. The first record with a matching connection type,
 client address, requested database, and user name is used to perform
 authentication. There is no “fall-through” or
 “backup”: if one record is chosen and the authentication
 fails, subsequent records are not considered. If no record matches,
 access is denied.

 Each record can be an include directive or an authentication record.
 Include directives specify files that can be included, that contain
 additional records. The records will be inserted in place of the
 include directives. Include directives only contain two fields:
 include, include_if_exists or
 include_dir directive and the file or directory to be
 included. The file or directory can be a relative or absolute path, and can
 be double-quoted. For the include_dir form, all files
 not starting with a . and ending with
 .conf will be included. Multiple files within an include
 directory are processed in file name order (according to C locale rules,
 i.e., numbers before letters, and uppercase letters before lowercase ones).

 A record can have several formats:

local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]
hostnossl database user address auth-method [auth-options]
hostgssenc database user address auth-method [auth-options]
hostnogssenc database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-options]
hostssl database user IP-address IP-mask auth-method [auth-options]
hostnossl database user IP-address IP-mask auth-method [auth-options]
hostgssenc database user IP-address IP-mask auth-method [auth-options]
hostnogssenc database user IP-address IP-mask auth-method [auth-options]
include file
include_if_exists file
include_dir directory

 The meaning of the fields is as follows:

	local
	
 This record matches connection attempts using Unix-domain
 sockets. Without a record of this type, Unix-domain socket
 connections are disallowed.

	host
	
 This record matches connection attempts made using TCP/IP.
 host records match
 SSL or non-SSL connection
 attempts as well as GSSAPI encrypted or
 non-GSSAPI encrypted connection attempts.

Note

 Remote TCP/IP connections will not be possible unless
 the server is started with an appropriate value for the
 listen_addresses configuration parameter,
 since the default behavior is to listen for TCP/IP connections
 only on the local loopback address localhost.

	hostssl
	
 This record matches connection attempts made using TCP/IP,
 but only when the connection is made with SSL
 encryption.

 To make use of this option the server must be built with
 SSL support. Furthermore,
 SSL must be enabled
 by setting the ssl configuration parameter (see
 the section called “Secure TCP/IP Connections with SSL” for more information).
 Otherwise, the hostssl record is ignored except for
 logging a warning that it cannot match any connections.

	hostnossl
	
 This record type has the opposite behavior of hostssl;
 it only matches connection attempts made over
 TCP/IP that do not use SSL.

	hostgssenc
	
 This record matches connection attempts made using TCP/IP,
 but only when the connection is made with GSSAPI
 encryption.

 To make use of this option the server must be built with
 GSSAPI support. Otherwise,
 the hostgssenc record is ignored except for logging
 a warning that it cannot match any connections.

	hostnogssenc
	
 This record type has the opposite behavior of hostgssenc;
 it only matches connection attempts made over
 TCP/IP that do not use GSSAPI encryption.

	database
	
 Specifies which database name(s) this record matches. The value
 all specifies that it matches all databases.
 The value sameuser specifies that the record
 matches if the requested database has the same name as the
 requested user. The value samerole specifies that
 the requested user must be a member of the role with the same
 name as the requested database. (samegroup is an
 obsolete but still accepted spelling of samerole.)
 Superusers are not considered to be members of a role for the
 purposes of samerole unless they are explicitly
 members of the role, directly or indirectly, and not just by
 virtue of being a superuser.
 The value replication specifies that the record
 matches if a physical replication connection is requested, however, it
 doesn't match with logical replication connections. Note that physical
 replication connections do not specify any particular database whereas
 logical replication connections do specify it.
 Otherwise, this is the name of a specific
 PostgreSQL™ database or a regular expression.
 Multiple database names and/or regular expressions can be supplied by
 separating them with commas.

 If the database name starts with a slash (/), the
 remainder of the name is treated as a regular expression.
 (See the section called “Regular Expression Details” for details of
 PostgreSQL™'s regular expression syntax.)

 A separate file containing database names and/or regular expressions
 can be specified by preceding the file name with @.

	user
	
 Specifies which database user name(s) this record
 matches. The value all specifies that it
 matches all users. Otherwise, this is either the name of a specific
 database user, a regular expression (when starting with a slash
 (/), or a group name preceded by +.
 (Recall that there is no real distinction between users and groups
 in PostgreSQL™; a + mark really means
 “match any of the roles that are directly or indirectly members
 of this role”, while a name without a + mark matches
 only that specific role.) For this purpose, a superuser is only
 considered to be a member of a role if they are explicitly a member
 of the role, directly or indirectly, and not just by virtue of
 being a superuser.
 Multiple user names and/or regular expressions can be supplied by
 separating them with commas.

 If the user name starts with a slash (/), the
 remainder of the name is treated as a regular expression.
 (See the section called “Regular Expression Details” for details of
 PostgreSQL™'s regular expression syntax.)

 A separate file containing user names and/or regular expressions can
 be specified by preceding the file name with @.

	address
	
 Specifies the client machine address(es) that this record
 matches. This field can contain either a host name, an IP
 address range, or one of the special key words mentioned below.

 An IP address range is specified using standard numeric notation
 for the range's starting address, then a slash (/)
 and a CIDR mask length. The mask
 length indicates the number of high-order bits of the client
 IP address that must match. Bits to the right of this should
 be zero in the given IP address.
 There must not be any white space between the IP address, the
 /, and the CIDR mask length.

 Typical examples of an IPv4 address range specified this way are
 172.20.143.89/32 for a single host, or
 172.20.143.0/24 for a small network, or
 10.6.0.0/16 for a larger one.
 An IPv6 address range might look like ::1/128
 for a single host (in this case the IPv6 loopback address) or
 fe80::7a31:c1ff:0000:0000/96 for a small
 network.
 0.0.0.0/0 represents all
 IPv4 addresses, and ::0/0 represents
 all IPv6 addresses.
 To specify a single host, use a mask length of 32 for IPv4 or
 128 for IPv6. In a network address, do not omit trailing zeroes.

 An entry given in IPv4 format will match only IPv4 connections,
 and an entry given in IPv6 format will match only IPv6 connections,
 even if the represented address is in the IPv4-in-IPv6 range.

 You can also write all to match any IP address,
 samehost to match any of the server's own IP
 addresses, or samenet to match any address in any
 subnet that the server is directly connected to.

 If a host name is specified (anything that is not an IP address
 range or a special key word is treated as a host name),
 that name is compared with the result of a reverse name
 resolution of the client's IP address (e.g., reverse DNS
 lookup, if DNS is used). Host name comparisons are case
 insensitive. If there is a match, then a forward name
 resolution (e.g., forward DNS lookup) is performed on the host
 name to check whether any of the addresses it resolves to are
 equal to the client's IP address. If both directions match,
 then the entry is considered to match. (The host name that is
 used in pg_hba.conf should be the one that
 address-to-name resolution of the client's IP address returns,
 otherwise the line won't be matched. Some host name databases
 allow associating an IP address with multiple host names, but
 the operating system will only return one host name when asked
 to resolve an IP address.)

 A host name specification that starts with a dot
 (.) matches a suffix of the actual host
 name. So .example.com would match
 foo.example.com (but not just
 example.com).

 When host names are specified
 in pg_hba.conf, you should make sure that
 name resolution is reasonably fast. It can be of advantage to
 set up a local name resolution cache such
 as nscd. Also, you may wish to enable the
 configuration parameter log_hostname to see
 the client's host name instead of the IP address in the log.

 These fields do not apply to local records.

Note

 Users sometimes wonder why host names are handled
 in this seemingly complicated way, with two name resolutions
 including a reverse lookup of the client's IP address. This
 complicates use of the feature in case the client's reverse DNS
 entry is not set up or yields some undesirable host name.
 It is done primarily for efficiency: this way, a connection attempt
 requires at most two resolver lookups, one reverse and one forward.
 If there is a resolver problem with some address, it becomes only
 that client's problem. A hypothetical alternative
 implementation that only did forward lookups would have to
 resolve every host name mentioned in
 pg_hba.conf during every connection attempt.
 That could be quite slow if many names are listed.
 And if there is a resolver problem with one of the host names,
 it becomes everyone's problem.

 Also, a reverse lookup is necessary to implement the suffix
 matching feature, because the actual client host name needs to
 be known in order to match it against the pattern.

 Note that this behavior is consistent with other popular
 implementations of host name-based access control, such as the
 Apache HTTP Server and TCP Wrappers.

	IP-address, IP-mask
	
 These two fields can be used as an alternative to the
 IP-address/mask-length
 notation. Instead of
 specifying the mask length, the actual mask is specified in a
 separate column. For example, 255.0.0.0 represents an IPv4
 CIDR mask length of 8, and 255.255.255.255 represents a
 CIDR mask length of 32.

 These fields do not apply to local records.

	auth-method
	
 Specifies the authentication method to use when a connection matches
 this record. The possible choices are summarized here; details
 are in the section called “Authentication Methods”. All the options
 are lower case and treated case sensitively, so even acronyms like
 ldap must be specified as lower case.

	trust
	
 Allow the connection unconditionally. This method
 allows anyone that can connect to the
 PostgreSQL™ database server to login as
 any PostgreSQL™ user they wish,
 without the need for a password or any other authentication. See the section called “Trust Authentication” for details.

	reject
	
 Reject the connection unconditionally. This is useful for
 “filtering out” certain hosts from a group, for example a
 reject line could block a specific host from connecting,
 while a later line allows the remaining hosts in a specific
 network to connect.

	scram-sha-256
	
 Perform SCRAM-SHA-256 authentication to verify the user's
 password. See the section called “Password Authentication” for details.

	md5
	
 Perform SCRAM-SHA-256 or MD5 authentication to verify the
 user's password. See the section called “Password Authentication”
 for details.

	password
	
 Require the client to supply an unencrypted password for
 authentication.
 Since the password is sent in clear text over the
 network, this should not be used on untrusted networks.
 See the section called “Password Authentication” for details.

	gss
	
 Use GSSAPI to authenticate the user. This is only
 available for TCP/IP connections. See the section called “GSSAPI Authentication” for details. It can be used in conjunction
 with GSSAPI encryption.

	sspi
	
 Use SSPI to authenticate the user. This is only
 available on Windows. See the section called “SSPI Authentication” for details.

	ident
	
 Obtain the operating system user name of the client
 by contacting the ident server on the client
 and check if it matches the requested database user name.
 Ident authentication can only be used on TCP/IP
 connections. When specified for local connections, peer
 authentication will be used instead.
 See the section called “Ident Authentication” for details.

	peer
	
 Obtain the client's operating system user name from the operating
 system and check if it matches the requested database user name.
 This is only available for local connections.
 See the section called “Peer Authentication” for details.

	ldap
	
 Authenticate using an LDAP server. See the section called “LDAP Authentication” for details.

	radius
	
 Authenticate using a RADIUS server. See the section called “RADIUS Authentication” for details.

	cert
	
 Authenticate using SSL client certificates. See
 the section called “Certificate Authentication” for details.

	pam
	
 Authenticate using the Pluggable Authentication Modules
 (PAM) service provided by the operating system. See the section called “PAM Authentication” for details.

	bsd
	
 Authenticate using the BSD Authentication service provided by the
 operating system. See the section called “BSD Authentication” for details.

	auth-options
	
 After the auth-method field, there can be field(s) of
 the form name=value that
 specify options for the authentication method. Details about which
 options are available for which authentication methods appear below.

 In addition to the method-specific options listed below, there is a
 method-independent authentication option clientcert, which
 can be specified in any hostssl record.
 This option can be set to verify-ca or
 verify-full. Both options require the client
 to present a valid (trusted) SSL certificate, while
 verify-full additionally enforces that the
 cn (Common Name) in the certificate matches
 the username or an applicable mapping.
 This behavior is similar to the cert authentication
 method (see the section called “Certificate Authentication”) but enables pairing
 the verification of client certificates with any authentication
 method that supports hostssl entries.

 On any record using client certificate authentication (i.e. one
 using the cert authentication method or one
 using the clientcert option), you can specify
 which part of the client certificate credentials to match using
 the clientname option. This option can have one
 of two values. If you specify clientname=CN, which
 is the default, the username is matched against the certificate's
 Common Name (CN). If instead you specify
 clientname=DN the username is matched against the
 entire Distinguished Name (DN) of the certificate.
 This option is probably best used in conjunction with a username map.
 The comparison is done with the DN in
 RFC 2253
 format. To see the DN of a client certificate
 in this format, do

openssl x509 -in myclient.crt -noout -subject -nameopt RFC2253 | sed "s/^subject=//"

 Care needs to be taken when using this option, especially when using
 regular expression matching against the DN.

	include
	
 This line will be replaced by the contents of the given file.

	include_if_exists
	
 This line will be replaced by the content of the given file if the
 file exists. Otherwise, a message is logged to indicate that the file
 has been skipped.

	include_dir
	
 This line will be replaced by the contents of all the files found in
 the directory, if they don't start with a . and end
 with .conf, processed in file name order (according
 to C locale rules, i.e., numbers before letters, and uppercase letters
 before lowercase ones).

 Files included by @ constructs are read as lists of names,
 which can be separated by either whitespace or commas. Comments are
 introduced by #, just as in
 pg_hba.conf, and nested @ constructs are
 allowed. Unless the file name following @ is an absolute
 path, it is taken to be relative to the directory containing the
 referencing file.

 Since the pg_hba.conf records are examined
 sequentially for each connection attempt, the order of the records is
 significant. Typically, earlier records will have tight connection
 match parameters and weaker authentication methods, while later
 records will have looser match parameters and stronger authentication
 methods. For example, one might wish to use trust
 authentication for local TCP/IP connections but require a password for
 remote TCP/IP connections. In this case a record specifying
 trust authentication for connections from 127.0.0.1 would
 appear before a record specifying password authentication for a wider
 range of allowed client IP addresses.

 The pg_hba.conf file is read on start-up and when
 the main server process receives a
 SIGHUP
 signal. If you edit the file on an
 active system, you will need to signal the postmaster
 (using pg_ctl reload, calling the SQL function
 pg_reload_conf(), or using kill
 -HUP) to make it re-read the file.

Note

 The preceding statement is not true on Microsoft Windows: there, any
 changes in the pg_hba.conf file are immediately
 applied by subsequent new connections.

 The system view
 pg_hba_file_rules
 can be helpful for pre-testing changes to the pg_hba.conf
 file, or for diagnosing problems if loading of the file did not have the
 desired effects. Rows in the view with
 non-null error fields indicate problems in the
 corresponding lines of the file.

Tip

 To connect to a particular database, a user must not only pass the
 pg_hba.conf checks, but must have the
 CONNECT privilege for the database. If you wish to
 restrict which users can connect to which databases, it's usually
 easier to control this by granting/revoking CONNECT privilege
 than to put the rules in pg_hba.conf entries.

 Some examples of pg_hba.conf entries are shown in
 Example 21.1, “Example pg_hba.conf Entries”. See the next section for details on the
 different authentication methods.

Example 21.1. Example pg_hba.conf Entries

Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the previous line, but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same over IPv6.
#
TYPE DATABASE USER ADDRESS METHOD
host all all ::1/128 trust

The same using a host name (would typically cover both IPv4 and IPv6).
#
TYPE DATABASE USER ADDRESS METHOD
host all all localhost trust

The same using a regular expression for DATABASE, that allows connection
to any databases with a name beginning with "db" and finishing with a
number using two to four digits (like "db1234" or "db12").
#
TYPE DATABASE USER ADDRESS METHOD
host "/^db\d{2,4}$" all localhost trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "postgres" as the same user name that ident reports for
the connection (typically the operating system user name).
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.93.0/24 ident

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram-sha-256

Allow any user from hosts in the example.com domain to connect to
any database if the user's password is correctly supplied.
#
Require SCRAM authentication for most users, but make an exception
for user 'mike', who uses an older client that doesn't support SCRAM
authentication.
#
TYPE DATABASE USER ADDRESS METHOD
host all mike .example.com md5
host all all .example.com scram-sha-256

In the absence of preceding "host" lines, these three lines will
reject all connections from 192.168.54.1 (since that entry will be
matched first), but allow GSSAPI-encrypted connections from anywhere else
on the Internet. The zero mask causes no bits of the host IP address to
be considered, so it matches any host. Unencrypted GSSAPI connections
(which "fall through" to the third line since "hostgssenc" only matches
encrypted GSSAPI connections) are allowed, but only from 192.168.12.10.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.54.1/32 reject
hostgssenc all all 0.0.0.0/0 gss
host all all 192.168.12.10/32 gss

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as PostgreSQL user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.0.0/16 ident map=omicron

If these are the only four lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their database user name) except for users whose
name end with "helpdesk", administrators and members of role "support",
who can connect to all databases. The file $PGDATA/admins contains a
list of names of administrators. Passwords are required in all cases.
#
TYPE DATABASE USER ADDRESS METHOD
local sameuser all md5
local all /^.*helpdesk$ md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names:
local db1,db2,@demodbs all md5

User Name Maps

 When using an external authentication system such as Ident or GSSAPI,
 the name of the operating system user that initiated the connection
 might not be the same as the database user (role) that is to be used.
 In this case, a user name map can be applied to map the operating system
 user name to a database user. To use user name mapping, specify
 map=map-name
 in the options field in pg_hba.conf. This option is
 supported for all authentication methods that receive external user names.
 Since different mappings might be needed for different connections,
 the name of the map to be used is specified in the
 map-name parameter in pg_hba.conf
 to indicate which map to use for each individual connection.

 User name maps are defined in the ident map file, which by default is named
 pg_ident.conf
 and is stored in the
 cluster's data directory. (It is possible to place the map file
 elsewhere, however; see the ident_file
 configuration parameter.)
 The ident map file contains lines of the general forms:

map-name system-username database-username
include file
include_if_exists file
include_dir directory

 Comments, whitespace and line continuations are handled in the same way as in
 pg_hba.conf. The
 map-name is an arbitrary name that will be used to
 refer to this mapping in pg_hba.conf. The other
 two fields specify an operating system user name and a matching
 database user name. The same map-name can be
 used repeatedly to specify multiple user-mappings within a single map.

 As for pg_hba.conf, the lines in this file can
 be include directives, following the same rules.

 There is no restriction regarding how many database users a given
 operating system user can correspond to, nor vice versa. Thus, entries
 in a map should be thought of as meaning “this operating system
 user is allowed to connect as this database user”, rather than
 implying that they are equivalent. The connection will be allowed if
 there is any map entry that pairs the user name obtained from the
 external authentication system with the database user name that the
 user has requested to connect as. The value all
 can be used as the database-username to specify
 that if the system-username matches, then this
 user is allowed to log in as any of the existing database users. Quoting
 all makes the keyword lose its special meaning.

 If the database-username begins with a
 + character, then the operating system user can login as
 any user belonging to that role, similarly to how user names beginning with
 + are treated in pg_hba.conf.
 Thus, a + mark means “match any of the roles that
 are directly or indirectly members of this role”, while a name
 without a + mark matches only that specific role. Quoting
 a username starting with a + makes the
 + lose its special meaning.

 If the system-username field starts with a slash (/),
 the remainder of the field is treated as a regular expression.
 (See the section called “Regular Expression Details” for details of
 PostgreSQL™'s regular expression syntax.) The regular
 expression can include a single capture, or parenthesized subexpression.
 The portion of the system user name that matched the capture can then
 be referenced in the database-username
 field as \1 (backslash-one). This allows the mapping of
 multiple user names in a single line, which is particularly useful for
 simple syntax substitutions. For example, these entries

mymap /^(.*)@mydomain\.com$ \1
mymap /^(.*)@otherdomain\.com$ guest

 will remove the domain part for users with system user names that end with
 @mydomain.com, and allow any user whose system name ends with
 @otherdomain.com to log in as guest.
 Quoting a database-username containing
 \1 does not make
 \1 lose its special meaning.

 If the database-username field starts with
 a slash (/), the remainder of the field is treated
 as a regular expression.
 When the database-username field is a regular
 expression, it is not possible to use \1 within it to
 refer to a capture from the system-username
 field.

Tip

 Keep in mind that by default, a regular expression can match just part of
 a string. It's usually wise to use ^ and $, as
 shown in the above example, to force the match to be to the entire
 system user name.

 The pg_ident.conf file is read on start-up and
 when the main server process receives a
 SIGHUP
 signal. If you edit the file on an
 active system, you will need to signal the postmaster
 (using pg_ctl reload, calling the SQL function
 pg_reload_conf(), or using kill
 -HUP) to make it re-read the file.

 The system view
 pg_ident_file_mappings
 can be helpful for pre-testing changes to the
 pg_ident.conf file, or for diagnosing problems if
 loading of the file did not have the desired effects. Rows in the view with
 non-null error fields indicate problems in the
 corresponding lines of the file.

 A pg_ident.conf file that could be used in
 conjunction with the pg_hba.conf file in Example 21.1, “Example pg_hba.conf Entries” is shown in Example 21.2, “An Example pg_ident.conf File”. In this example, anyone
 logged in to a machine on the 192.168 network that does not have the
 operating system user name bryanh, ann, or
 robert would not be granted access. Unix user
 robert would only be allowed access when he tries to
 connect as PostgreSQL™ user bob, not
 as robert or anyone else. ann would
 only be allowed to connect as ann. User
 bryanh would be allowed to connect as either
 bryanh or as guest1.

Example 21.2. An Example pg_ident.conf File

MAPNAME SYSTEM-USERNAME PG-USERNAME

omicron bryanh bryanh
omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

Authentication Methods

 PostgreSQL™ provides various methods for
 authenticating users:

	
 Trust authentication, which
 simply trusts that users are who they say they are.

	
 Password authentication, which
 requires that users send a password.

	
 GSSAPI authentication, which
 relies on a GSSAPI-compatible security library. Typically this is
 used to access an authentication server such as a Kerberos or
 Microsoft Active Directory server.

	
 SSPI authentication, which
 uses a Windows-specific protocol similar to GSSAPI.

	
 Ident authentication, which
 relies on an “Identification Protocol”
 (RFC 1413)
 service on the client's machine. (On local Unix-socket connections,
 this is treated as peer authentication.)

	
 Peer authentication, which
 relies on operating system facilities to identify the process at the
 other end of a local connection. This is not supported for remote
 connections.

	
 LDAP authentication, which
 relies on an LDAP authentication server.

	
 RADIUS authentication, which
 relies on a RADIUS authentication server.

	
 Certificate authentication, which
 requires an SSL connection and authenticates users by checking the
 SSL certificate they send.

	
 PAM authentication, which
 relies on a PAM (Pluggable Authentication Modules) library.

	
 BSD authentication, which
 relies on the BSD Authentication framework (currently available
 only on OpenBSD).

 Peer authentication is usually recommendable for local connections,
 though trust authentication might be sufficient in some circumstances.
 Password authentication is the easiest choice for remote connections.
 All the other options require some kind of external security
 infrastructure (usually an authentication server or a certificate
 authority for issuing SSL certificates), or are platform-specific.

 The following sections describe each of these authentication methods
 in more detail.

Trust Authentication

 When trust authentication is specified,
 PostgreSQL™ assumes that anyone who can
 connect to the server is authorized to access the database with
 whatever database user name they specify (even superuser names).
 Of course, restrictions made in the database and
 user columns still apply.
 This method should only be used when there is adequate
 operating-system-level protection on connections to the server.

 trust authentication is appropriate and very
 convenient for local connections on a single-user workstation. It
 is usually not appropriate by itself on a multiuser
 machine. However, you might be able to use trust even
 on a multiuser machine, if you restrict access to the server's
 Unix-domain socket file using file-system permissions. To do this, set the
 unix_socket_permissions (and possibly
 unix_socket_group) configuration parameters as
 described in the section called “Connections and Authentication”. Or you
 could set the unix_socket_directories
 configuration parameter to place the socket file in a suitably
 restricted directory.

 Setting file-system permissions only helps for Unix-socket connections.
 Local TCP/IP connections are not restricted by file-system permissions.
 Therefore, if you want to use file-system permissions for local security,
 remove the host ... 127.0.0.1 ... line from
 pg_hba.conf, or change it to a
 non-trust authentication method.

 trust authentication is only suitable for TCP/IP connections
 if you trust every user on every machine that is allowed to connect
 to the server by the pg_hba.conf lines that specify
 trust. It is seldom reasonable to use trust
 for any TCP/IP connections other than those from localhost (127.0.0.1).

Password Authentication

 There are several password-based authentication methods. These methods
 operate similarly but differ in how the users' passwords are stored on the
 server and how the password provided by a client is sent across the
 connection.

	scram-sha-256
	
 The method scram-sha-256 performs SCRAM-SHA-256
 authentication, as described in
 RFC 7677. It
 is a challenge-response scheme that prevents password sniffing on
 untrusted connections and supports storing passwords on the server in a
 cryptographically hashed form that is thought to be secure.

 This is the most secure of the currently provided methods, but it is
 not supported by older client libraries.

	md5
	
 The method md5 uses a custom less secure challenge-response
 mechanism. It prevents password sniffing and avoids storing passwords
 on the server in plain text but provides no protection if an attacker
 manages to steal the password hash from the server. Also, the MD5 hash
 algorithm is nowadays no longer considered secure against determined
 attacks.

 The md5 method cannot be used with
 the db_user_namespace feature.

 To ease transition from the md5 method to the newer
 SCRAM method, if md5 is specified as a method
 in pg_hba.conf but the user's password on the
 server is encrypted for SCRAM (see below), then SCRAM-based
 authentication will automatically be chosen instead.

	password
	
 The method password sends the password in clear-text and is
 therefore vulnerable to password “sniffing” attacks. It should
 always be avoided if possible. If the connection is protected by SSL
 encryption then password can be used safely, though.
 (Though SSL certificate authentication might be a better choice if one
 is depending on using SSL).

 PostgreSQL™ database passwords are
 separate from operating system user passwords. The password for
 each database user is stored in the pg_authid system
 catalog. Passwords can be managed with the SQL commands
 CREATE ROLE(7) and
 ALTER ROLE(7),
 e.g., CREATE ROLE foo WITH LOGIN PASSWORD 'secret',
 or the psql
 command \password.
 If no password has been set up for a user, the stored password
 is null and password authentication will always fail for that user.

 The availability of the different password-based authentication methods
 depends on how a user's password on the server is encrypted (or hashed,
 more accurately). This is controlled by the configuration
 parameter password_encryption at the time the
 password is set. If a password was encrypted using
 the scram-sha-256 setting, then it can be used for the
 authentication methods scram-sha-256
 and password (but password transmission will be in
 plain text in the latter case). The authentication method
 specification md5 will automatically switch to using
 the scram-sha-256 method in this case, as explained
 above, so it will also work. If a password was encrypted using
 the md5 setting, then it can be used only for
 the md5 and password authentication
 method specifications (again, with the password transmitted in plain text
 in the latter case). (Previous PostgreSQL releases supported storing the
 password on the server in plain text. This is no longer possible.) To
 check the currently stored password hashes, see the system
 catalog pg_authid.

 To upgrade an existing installation from md5
 to scram-sha-256, after having ensured that all client
 libraries in use are new enough to support SCRAM,
 set password_encryption = 'scram-sha-256'
 in postgresql.conf, make all users set new passwords,
 and change the authentication method specifications
 in pg_hba.conf to scram-sha-256.

GSSAPI Authentication

 GSSAPI™ is an industry-standard protocol
 for secure authentication defined in
 RFC 2743.
 PostgreSQL™
 supports GSSAPI™ for authentication,
 communications encryption, or both.
 GSSAPI™ provides automatic authentication
 (single sign-on) for systems that support it. The authentication itself is
 secure. If GSSAPI™ encryption
 or SSL encryption is
 used, the data sent along the database connection will be encrypted;
 otherwise, it will not.

 GSSAPI support has to be enabled when PostgreSQL™ is built;
 see Chapter 17, Installation from Source Code for more information.

 When GSSAPI™ uses
 Kerberos™, it uses a standard service
 principal (authentication identity) name in the format
 servicename/hostname@realm.
 The principal name used by a particular installation is not encoded in
 the PostgreSQL™ server in any way; rather it
 is specified in the keytab file that the server
 reads to determine its identity. If multiple principals are listed in
 the keytab file, the server will accept any one of them.
 The server's realm name is the preferred realm specified in the Kerberos
 configuration file(s) accessible to the server.

 When connecting, the client must know the principal name of the server
 it intends to connect to. The servicename
 part of the principal is ordinarily postgres,
 but another value can be selected via libpq's
 krbsrvname connection parameter.
 The hostname part is the fully qualified
 host name that libpq is told to connect to.
 The realm name is the preferred realm specified in the Kerberos
 configuration file(s) accessible to the client.

 The client will also have a principal name for its own identity
 (and it must have a valid ticket for this principal). To
 use GSSAPI™ for authentication, the client
 principal must be associated with
 a PostgreSQL™ database user name.
 The pg_ident.conf configuration file can be used
 to map principals to user names; for example,
 pgusername@realm could be mapped to just pgusername.
 Alternatively, you can use the full username@realm principal as
 the role name in PostgreSQL™ without any mapping.

 PostgreSQL™ also supports mapping
 client principals to user names by just stripping the realm from
 the principal. This method is supported for backwards compatibility and is
 strongly discouraged as it is then impossible to distinguish different users
 with the same user name but coming from different realms. To enable this,
 set include_realm to 0. For simple single-realm
 installations, doing that combined with setting the
 krb_realm parameter (which checks that the principal's realm
 matches exactly what is in the krb_realm parameter)
 is still secure; but this is a
 less capable approach compared to specifying an explicit mapping in
 pg_ident.conf.

 The location of the server's keytab file is specified by the krb_server_keyfile configuration parameter.
 For security reasons, it is recommended to use a separate keytab
 just for the PostgreSQL™ server rather
 than allowing the server to read the system keytab file.
 Make sure that your server keytab file is readable (and preferably
 only readable, not writable) by the PostgreSQL™
 server account. (See also the section called “The PostgreSQL™ User Account”.)

 The keytab file is generated using the Kerberos software; see the
 Kerberos documentation for details. The following example shows
 doing this using the kadmin tool of
 MIT Kerberos:

kadmin% addprinc -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

 The following authentication options are supported for
 the GSSAPI™ authentication method:

	include_realm
	
 If set to 0, the realm name from the authenticated user principal is
 stripped off before being passed through the user name mapping
 (the section called “User Name Maps”). This is discouraged and is
 primarily available for backwards compatibility, as it is not secure
 in multi-realm environments unless krb_realm is
 also used. It is recommended to
 leave include_realm set to the default (1) and to
 provide an explicit mapping in pg_ident.conf to convert
 principal names to PostgreSQL™ user names.

	map
	
 Allows mapping from client principals to database user names. See
 the section called “User Name Maps” for details. For a GSSAPI/Kerberos
 principal, such as username@EXAMPLE.COM (or, less
 commonly, username/hostbased@EXAMPLE.COM), the
 user name used for mapping is
 username@EXAMPLE.COM (or
 username/hostbased@EXAMPLE.COM, respectively),
 unless include_realm has been set to 0, in which case
 username (or username/hostbased)
 is what is seen as the system user name when mapping.

	krb_realm
	
 Sets the realm to match user principal names against. If this parameter
 is set, only users of that realm will be accepted. If it is not set,
 users of any realm can connect, subject to whatever user name mapping
 is done.

 In addition to these settings, which can be different for
 different pg_hba.conf entries, there is the
 server-wide krb_caseins_users configuration
 parameter. If that is set to true, client principals are matched to
 user map entries case-insensitively. krb_realm, if
 set, is also matched case-insensitively.

SSPI Authentication

 SSPI™ is a Windows™
 technology for secure authentication with single sign-on.
 PostgreSQL™ will use SSPI in
 negotiate mode, which will use
 Kerberos™ when possible and automatically
 fall back to NTLM™ in other cases.
 SSPI™ and GSSAPI™
 interoperate as clients and servers, e.g., an
 SSPI™ client can authenticate to an
 GSSAPI™ server. It is recommended to use
 SSPI™ on Windows clients and servers and
 GSSAPI™ on non-Windows platforms.

 When using Kerberos™ authentication,
 SSPI™ works the same way
 GSSAPI™ does; see the section called “GSSAPI Authentication”
 for details.

 The following configuration options are supported for SSPI™:

	include_realm
	
 If set to 0, the realm name from the authenticated user principal is
 stripped off before being passed through the user name mapping
 (the section called “User Name Maps”). This is discouraged and is
 primarily available for backwards compatibility, as it is not secure
 in multi-realm environments unless krb_realm is
 also used. It is recommended to
 leave include_realm set to the default (1) and to
 provide an explicit mapping in pg_ident.conf to convert
 principal names to PostgreSQL™ user names.

	compat_realm
	
 If set to 1, the domain's SAM-compatible name (also known as the
 NetBIOS name) is used for the include_realm
 option. This is the default. If set to 0, the true realm name from
 the Kerberos user principal name is used.

 Do not disable this option unless your server runs under a domain
 account (this includes virtual service accounts on a domain member
 system) and all clients authenticating through SSPI are also using
 domain accounts, or authentication will fail.

	upn_username
	
 If this option is enabled along with compat_realm,
 the user name from the Kerberos UPN is used for authentication. If
 it is disabled (the default), the SAM-compatible user name is used.
 By default, these two names are identical for new user accounts.

 Note that libpq uses the SAM-compatible name if no
 explicit user name is specified. If you use
 libpq or a driver based on it, you should
 leave this option disabled or explicitly specify user name in the
 connection string.

	map
	
 Allows for mapping between system and database user names. See
 the section called “User Name Maps” for details. For an SSPI/Kerberos
 principal, such as username@EXAMPLE.COM (or, less
 commonly, username/hostbased@EXAMPLE.COM), the
 user name used for mapping is
 username@EXAMPLE.COM (or
 username/hostbased@EXAMPLE.COM, respectively),
 unless include_realm has been set to 0, in which case
 username (or username/hostbased)
 is what is seen as the system user name when mapping.

	krb_realm
	
 Sets the realm to match user principal names against. If this parameter
 is set, only users of that realm will be accepted. If it is not set,
 users of any realm can connect, subject to whatever user name mapping
 is done.

Ident Authentication

 The ident authentication method works by obtaining the client's
 operating system user name from an ident server and using it as
 the allowed database user name (with an optional user name mapping).
 This is only supported on TCP/IP connections.

Note

 When ident is specified for a local (non-TCP/IP) connection,
 peer authentication (see the section called “Peer Authentication”) will be
 used instead.

 The following configuration options are supported for ident:

	map
	
 Allows for mapping between system and database user names. See
 the section called “User Name Maps” for details.

 The “Identification Protocol” is described in
 RFC 1413.
 Virtually every Unix-like
 operating system ships with an ident server that listens on TCP
 port 113 by default. The basic functionality of an ident server
 is to answer questions like “What user initiated the
 connection that goes out of your port X
 and connects to my port Y?”.
 Since PostgreSQL™ knows both X and
 Y when a physical connection is established, it
 can interrogate the ident server on the host of the connecting
 client and can theoretically determine the operating system user
 for any given connection.

 The drawback of this procedure is that it depends on the integrity
 of the client: if the client machine is untrusted or compromised,
 an attacker could run just about any program on port 113 and
 return any user name they choose. This authentication method is
 therefore only appropriate for closed networks where each client
 machine is under tight control and where the database and system
 administrators operate in close contact. In other words, you must
 trust the machine running the ident server.
 Heed the warning:

	 	
 The Identification Protocol is not intended as an authorization
 or access control protocol.

	
	 	--RFC 1413

 Some ident servers have a nonstandard option that causes the returned
 user name to be encrypted, using a key that only the originating
 machine's administrator knows. This option must not be
 used when using the ident server with PostgreSQL™,
 since PostgreSQL™ does not have any way to decrypt the
 returned string to determine the actual user name.

Peer Authentication

 The peer authentication method works by obtaining the client's
 operating system user name from the kernel and using it as the
 allowed database user name (with optional user name mapping). This
 method is only supported on local connections.

 The following configuration options are supported for peer:

	map
	
 Allows for mapping between system and database user names. See
 the section called “User Name Maps” for details.

 Peer authentication is only available on operating systems providing
 the getpeereid() function, the SO_PEERCRED
 socket parameter, or similar mechanisms. Currently that includes
 Linux,
 most flavors of BSD including
 macOS,
 and Solaris.

LDAP Authentication

 This authentication method operates similarly to
 password except that it uses LDAP
 as the password verification method. LDAP is used only to validate
 the user name/password pairs. Therefore the user must already
 exist in the database before LDAP can be used for
 authentication.

 LDAP authentication can operate in two modes. In the first mode,
 which we will call the simple bind mode,
 the server will bind to the distinguished name constructed as
 prefix username suffix.
 Typically, the prefix parameter is used to specify
 cn=, or DOMAIN\ in an Active
 Directory environment. suffix is used to specify the
 remaining part of the DN in a non-Active Directory environment.

 In the second mode, which we will call the search+bind mode,
 the server first binds to the LDAP directory with
 a fixed user name and password, specified with ldapbinddn
 and ldapbindpasswd, and performs a search for the user trying
 to log in to the database. If no user and password is configured, an
 anonymous bind will be attempted to the directory. The search will be
 performed over the subtree at ldapbasedn, and will try to
 do an exact match of the attribute specified in
 ldapsearchattribute.
 Once the user has been found in
 this search, the server disconnects and re-binds to the directory as
 this user, using the password specified by the client, to verify that the
 login is correct. This mode is the same as that used by LDAP authentication
 schemes in other software, such as Apache mod_authnz_ldap and pam_ldap.
 This method allows for significantly more flexibility
 in where the user objects are located in the directory, but will cause
 two separate connections to the LDAP server to be made.

 The following configuration options are used in both modes:

	ldapserver
	
 Names or IP addresses of LDAP servers to connect to. Multiple
 servers may be specified, separated by spaces.

	ldapport
	
 Port number on LDAP server to connect to. If no port is specified,
 the LDAP library's default port setting will be used.

	ldapscheme
	
 Set to ldaps to use LDAPS. This is a non-standard
 way of using LDAP over SSL, supported by some LDAP server
 implementations. See also the ldaptls option for
 an alternative.

	ldaptls
	
 Set to 1 to make the connection between PostgreSQL and the LDAP server
 use TLS encryption. This uses the StartTLS
 operation per RFC 4513.
 See also the ldapscheme option for an alternative.

 Note that using ldapscheme or
 ldaptls only encrypts the traffic between the
 PostgreSQL server and the LDAP server. The connection between the
 PostgreSQL server and the PostgreSQL client will still be unencrypted
 unless SSL is used there as well.

 The following options are used in simple bind mode only:

	ldapprefix
	
 String to prepend to the user name when forming the DN to bind as,
 when doing simple bind authentication.

	ldapsuffix
	
 String to append to the user name when forming the DN to bind as,
 when doing simple bind authentication.

 The following options are used in search+bind mode only:

	ldapbasedn
	
 Root DN to begin the search for the user in, when doing search+bind
 authentication.

	ldapbinddn
	
 DN of user to bind to the directory with to perform the search when
 doing search+bind authentication.

	ldapbindpasswd
	
 Password for user to bind to the directory with to perform the search
 when doing search+bind authentication.

	ldapsearchattribute
	
 Attribute to match against the user name in the search when doing
 search+bind authentication. If no attribute is specified, the
 uid attribute will be used.

	ldapsearchfilter
	
 The search filter to use when doing search+bind authentication.
 Occurrences of $username will be replaced with the
 user name. This allows for more flexible search filters than
 ldapsearchattribute.

	ldapurl
	
 An RFC 4516
 LDAP URL. This is an alternative way to write some of the
 other LDAP options in a more compact and standard form. The format is

ldap[s]://host[:port]/basedn[?[attribute][?[scope][?[filter]]]]

 scope must be one
 of base, one, sub,
 typically the last. (The default is base, which
 is normally not useful in this application.) attribute can
 nominate a single attribute, in which case it is used as a value for
 ldapsearchattribute. If
 attribute is empty then
 filter can be used as a value for
 ldapsearchfilter.

 The URL scheme ldaps chooses the LDAPS method for
 making LDAP connections over SSL, equivalent to using
 ldapscheme=ldaps. To use encrypted LDAP
 connections using the StartTLS operation, use the
 normal URL scheme ldap and specify the
 ldaptls option in addition to
 ldapurl.

 For non-anonymous binds, ldapbinddn
 and ldapbindpasswd must be specified as separate
 options.

 LDAP URLs are currently only supported with
 OpenLDAP™, not on Windows.

 It is an error to mix configuration options for simple bind with options
 for search+bind.

 When using search+bind mode, the search can be performed using a single
 attribute specified with ldapsearchattribute, or using
 a custom search filter specified with
 ldapsearchfilter.
 Specifying ldapsearchattribute=foo is equivalent to
 specifying ldapsearchfilter="(foo=$username)". If neither
 option is specified the default is
 ldapsearchattribute=uid.

 If PostgreSQL™ was compiled with
 OpenLDAP™ as the LDAP client library, the
 ldapserver setting may be omitted. In that case, a
 list of host names and ports is looked up via
 RFC 2782 DNS SRV records.
 The name _ldap._tcp.DOMAIN is looked up, where
 DOMAIN is extracted from ldapbasedn.

 Here is an example for a simple-bind LDAP configuration:

host ... ldap ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"

 When a connection to the database server as database
 user someuser is requested, PostgreSQL will attempt to
 bind to the LDAP server using the DN cn=someuser, dc=example,
 dc=net and the password provided by the client. If that connection
 succeeds, the database access is granted.

 Here is an example for a search+bind configuration:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net" ldapsearchattribute=uid

 When a connection to the database server as database
 user someuser is requested, PostgreSQL will attempt to
 bind anonymously (since ldapbinddn was not specified) to
 the LDAP server, perform a search for (uid=someuser)
 under the specified base DN. If an entry is found, it will then attempt to
 bind using that found information and the password supplied by the client.
 If that second connection succeeds, the database access is granted.

 Here is the same search+bind configuration written as a URL:

host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?sub"

 Some other software that supports authentication against LDAP uses the
 same URL format, so it will be easier to share the configuration.

 Here is an example for a search+bind configuration that uses
 ldapsearchfilter instead of
 ldapsearchattribute to allow authentication by
 user ID or email address:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net" ldapsearchfilter="(|(uid=$username)(mail=$username))"

 Here is an example for a search+bind configuration that uses DNS SRV
 discovery to find the host name(s) and port(s) for the LDAP service for the
 domain name example.net:

host ... ldap ldapbasedn="dc=example,dc=net"

Tip

 Since LDAP often uses commas and spaces to separate the different
 parts of a DN, it is often necessary to use double-quoted parameter
 values when configuring LDAP options, as shown in the examples.

RADIUS Authentication

 This authentication method operates similarly to
 password except that it uses RADIUS
 as the password verification method. RADIUS is used only to validate
 the user name/password pairs. Therefore the user must already
 exist in the database before RADIUS can be used for
 authentication.

 When using RADIUS authentication, an Access Request message will be sent
 to the configured RADIUS server. This request will be of type
 Authenticate Only, and include parameters for
 user name, password (encrypted) and
 NAS Identifier. The request will be encrypted using
 a secret shared with the server. The RADIUS server will respond to
 this request with either Access Accept or
 Access Reject. There is no support for RADIUS accounting.

 Multiple RADIUS servers can be specified, in which case they will
 be tried sequentially. If a negative response is received from
 a server, the authentication will fail. If no response is received,
 the next server in the list will be tried. To specify multiple
 servers, separate the server names with commas and surround the list
 with double quotes. If multiple servers are specified, the other
 RADIUS options can also be given as comma-separated lists, to provide
 individual values for each server. They can also be specified as
 a single value, in which case that value will apply to all servers.

 The following configuration options are supported for RADIUS:

	radiusservers
	
 The DNS names or IP addresses of the RADIUS servers to connect to.
 This parameter is required.

	radiussecrets
	
 The shared secrets used when talking securely to the RADIUS
 servers. This must have exactly the same value on the PostgreSQL
 and RADIUS servers. It is recommended that this be a string of
 at least 16 characters. This parameter is required.

Note

 The encryption vector used will only be cryptographically
 strong if PostgreSQL™ is built with support for
 OpenSSL™. In other cases, the transmission to the
 RADIUS server should only be considered obfuscated, not secured, and
 external security measures should be applied if necessary.

	radiusports
	
 The port numbers to connect to on the RADIUS servers. If no port
 is specified, the default RADIUS port (1812)
 will be used.

	radiusidentifiers
	
 The strings to be used as NAS Identifier in the
 RADIUS requests. This parameter can be used, for example, to
 identify which database cluster the user is attempting to connect
 to, which can be useful for policy matching on
 the RADIUS server. If no identifier is specified, the default
 postgresql will be used.

 If it is necessary to have a comma or whitespace in a RADIUS parameter
 value, that can be done by putting double quotes around the value, but
 it is tedious because two layers of double-quoting are now required.
 An example of putting whitespace into RADIUS secret strings is:

host ... radius radiusservers="server1,server2" radiussecrets="""secret one"",""secret two"""

Certificate Authentication

 This authentication method uses SSL client certificates to perform
 authentication. It is therefore only available for SSL connections;
 see the section called “OpenSSL Configuration” for SSL configuration instructions.
 When using this authentication method, the server will require that
 the client provide a valid, trusted certificate. No password prompt
 will be sent to the client. The cn (Common Name)
 attribute of the certificate
 will be compared to the requested database user name, and if they match
 the login will be allowed. User name mapping can be used to allow
 cn to be different from the database user name.

 The following configuration options are supported for SSL certificate
 authentication:

	map
	
 Allows for mapping between system and database user names. See
 the section called “User Name Maps” for details.

 It is redundant to use the clientcert option with
 cert authentication because cert
 authentication is effectively trust authentication
 with clientcert=verify-full.

PAM Authentication

 This authentication method operates similarly to
 password except that it uses PAM (Pluggable
 Authentication Modules) as the authentication mechanism. The
 default PAM service name is postgresql.
 PAM is used only to validate user name/password pairs and optionally the
 connected remote host name or IP address. Therefore the user must already
 exist in the database before PAM can be used for authentication. For more
 information about PAM, please read the

 Linux-PAM™ Page.

 The following configuration options are supported for PAM:

	pamservice
	
 PAM service name.

	pam_use_hostname
	
 Determines whether the remote IP address or the host name is provided
 to PAM modules through the PAM_RHOST item. By
 default, the IP address is used. Set this option to 1 to use the
 resolved host name instead. Host name resolution can lead to login
 delays. (Most PAM configurations don't use this information, so it is
 only necessary to consider this setting if a PAM configuration was
 specifically created to make use of it.)

Note

 If PAM is set up to read /etc/shadow, authentication
 will fail because the PostgreSQL server is started by a non-root
 user. However, this is not an issue when PAM is configured to use
 LDAP or other authentication methods.

BSD Authentication

 This authentication method operates similarly to
 password except that it uses BSD Authentication
 to verify the password. BSD Authentication is used only
 to validate user name/password pairs. Therefore the user's role must
 already exist in the database before BSD Authentication can be used
 for authentication. The BSD Authentication framework is currently
 only available on OpenBSD.

 BSD Authentication in PostgreSQL™ uses
 the auth-postgresql login type and authenticates with
 the postgresql login class if that's defined
 in login.conf. By default that login class does not
 exist, and PostgreSQL™ will use the default login class.

Note

 To use BSD Authentication, the PostgreSQL user account (that is, the
 operating system user running the server) must first be added to
 the auth group. The auth group
 exists by default on OpenBSD systems.

Authentication Problems

 Authentication failures and related problems generally
 manifest themselves through error messages like the following:

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"

 This is what you are most likely to get if you succeed in contacting
 the server, but it does not want to talk to you. As the message
 suggests, the server refused the connection request because it found
 no matching entry in its pg_hba.conf
 configuration file.

FATAL: password authentication failed for user "andym"

 Messages like this indicate that you contacted the server, and it is
 willing to talk to you, but not until you pass the authorization
 method specified in the pg_hba.conf file. Check
 the password you are providing, or check your Kerberos or ident
 software if the complaint mentions one of those authentication
 types.

FATAL: user "andym" does not exist

 The indicated database user name was not found.

FATAL: database "testdb" does not exist

 The database you are trying to connect to does not exist. Note that
 if you do not specify a database name, it defaults to the database
 user name.

Tip

 The server log might contain more information about an
 authentication failure than is reported to the client. If you are
 confused about the reason for a failure, check the server log.

Chapter 22. Database Roles

 PostgreSQL™ manages database access permissions
 using the concept of roles. A role can be thought of as
 either a database user, or a group of database users, depending on how
 the role is set up. Roles can own database objects (for example, tables
 and functions) and can assign privileges on those objects to other roles to
 control who has access to which objects. Furthermore, it is possible
 to grant membership in a role to another role, thus
 allowing the member role to use privileges assigned to another role.

 The concept of roles subsumes the concepts of “users” and
 “groups”. In PostgreSQL™ versions
 before 8.1, users and groups were distinct kinds of entities, but now
 there are only roles. Any role can act as a user, a group, or both.

 This chapter describes how to create and manage roles.
 More information about the effects of role privileges on various
 database objects can be found in the section called “Privileges”.

Database Roles

 Database roles are conceptually completely separate from
 operating system users. In practice it might be convenient to
 maintain a correspondence, but this is not required. Database roles
 are global across a database cluster installation (and not
 per individual database). To create a role use the CREATE ROLE SQL command:

CREATE ROLE name;

 name follows the rules for SQL
 identifiers: either unadorned without special characters, or
 double-quoted. (In practice, you will usually want to add additional
 options, such as LOGIN, to the command. More details appear
 below.) To remove an existing role, use the analogous
 DROP ROLE command:

DROP ROLE name;

 For convenience, the programs createuser(1)
 and dropuser(1) are provided as wrappers
 around these SQL commands that can be called from the shell command
 line:

createuser name
dropuser name

 To determine the set of existing roles, examine the pg_roles
 system catalog, for example:

SELECT rolname FROM pg_roles;

 or to see just those capable of logging in:

SELECT rolname FROM pg_roles WHERE rolcanlogin;

 The psql(1) program's \du meta-command
 is also useful for listing the existing roles.

 In order to bootstrap the database system, a freshly initialized
 system always contains one predefined login-capable role. This role
 is always a “superuser”, and it will have
 the same name as the operating system user that initialized the
 database cluster with initdb unless a different name
 is specified. This role is often named
 postgres. In order to create more roles you
 first have to connect as this initial role.

 Every connection to the database server is made using the name of some
 particular role, and this role determines the initial access privileges for
 commands issued in that connection.
 The role name to use for a particular database
 connection is indicated by the client that is initiating the
 connection request in an application-specific fashion. For example,
 the psql program uses the
 -U command line option to indicate the role to
 connect as. Many applications assume the name of the current
 operating system user by default (including
 createuser and psql). Therefore it
 is often convenient to maintain a naming correspondence between
 roles and operating system users.

 The set of database roles a given client connection can connect as
 is determined by the client authentication setup, as explained in
 Chapter 21, Client Authentication. (Thus, a client is not
 limited to connect as the role matching
 its operating system user, just as a person's login name
 need not match his or her real name.) Since the role
 identity determines the set of privileges available to a connected
 client, it is important to carefully configure privileges when setting up
 a multiuser environment.

Role Attributes

 A database role can have a number of attributes that define its
 privileges and interact with the client authentication system.

	login privilege
	
 Only roles that have the LOGIN attribute can be used
 as the initial role name for a database connection. A role with
 the LOGIN attribute can be considered the same
 as a “database user”. To create a role with login privilege,
 use either:

CREATE ROLE name LOGIN;
CREATE USER name;

 (CREATE USER is equivalent to CREATE ROLE
 except that CREATE USER includes LOGIN by
 default, while CREATE ROLE does not.)

	superuser status
	
 A database superuser bypasses all permission checks, except the right
 to log in. This is a dangerous privilege and should not be used
 carelessly; it is best to do most of your work as a role that is not a
 superuser. To create a new database superuser, use CREATE
 ROLE name SUPERUSER. You must do
 this as a role that is already a superuser.

	database creation
	
 A role must be explicitly given permission to create databases
 (except for superusers, since those bypass all permission
 checks). To create such a role, use CREATE ROLE
 name CREATEDB.

	role creation
	
 A role must be explicitly given permission to create more roles
 (except for superusers, since those bypass all permission
 checks). To create such a role, use CREATE ROLE
 name CREATEROLE.
 A role with CREATEROLE privilege can alter and drop
 roles which have been granted to the CREATEROLE
 user with the ADMIN option. Such a grant occurs
 automatically when a CREATEROLE user that is not
 a superuser creates a new role, so that by default, a
 CREATEROLE user can alter and drop the roles
 which they have created.
 Altering a role includes most changes that can be made using
 ALTER ROLE, including, for example, changing
 passwords. It also includes modifications to a role that can
 be made using the COMMENT and
 SECURITY LABEL commands.

 However, CREATEROLE does not convey the ability to
 create SUPERUSER roles, nor does it convey any
 power over SUPERUSER roles that already exist.
 Furthermore, CREATEROLE does not convey the power
 to create REPLICATION users, nor the ability to
 grant or revoke the REPLICATION privilege, nor the
 ability to modify the role properties of such users. However, it does
 allow ALTER ROLE ... SET and
 ALTER ROLE ... RENAME to be used on
 REPLICATION roles, as well as the use of
 COMMENT ON ROLE,
 SECURITY LABEL ON ROLE,
 and DROP ROLE.
 Finally, CREATEROLE does not
 confer the ability to grant or revoke the BYPASSRLS
 privilege.

	initiating replication
	
 A role must explicitly be given permission to initiate streaming
 replication (except for superusers, since those bypass all permission
 checks). A role used for streaming replication must
 have LOGIN permission as well. To create such a role, use
 CREATE ROLE name REPLICATION
 LOGIN.

	password
	
 A password is only significant if the client authentication
 method requires the user to supply a password when connecting
 to the database. The password and
 md5 authentication methods
 make use of passwords. Database passwords are separate from
 operating system passwords. Specify a password upon role
 creation with CREATE ROLE
 name PASSWORD 'string'.

	inheritance of privileges
	
 A role inherits the privileges of roles it is a member of, by default.
 However, to create a role which does not inherit privileges by
 default, use CREATE ROLE name
 NOINHERIT. Alternatively, inheritance can be overridden
 for individual grants by using WITH INHERIT TRUE
 or WITH INHERIT FALSE.

	bypassing row-level security
	
 A role must be explicitly given permission to bypass every row-level security (RLS) policy
 (except for superusers, since those bypass all permission checks).
 To create such a role, use CREATE ROLE name BYPASSRLS as a superuser.

	connection limit
	
 Connection limit can specify how many concurrent connections a role can make.
 -1 (the default) means no limit. Specify connection limit upon role creation with
 CREATE ROLE name CONNECTION LIMIT 'integer'.

 A role's attributes can be modified after creation with
 ALTER ROLE.
 See the reference pages for the CREATE ROLE(7)
 and ALTER ROLE(7) commands for details.

 A role can also have role-specific defaults for many of the run-time
 configuration settings described in Chapter 20, Server Configuration. For example, if for some reason you
 want to disable index scans (hint: not a good idea) anytime you
 connect, you can use:

ALTER ROLE myname SET enable_indexscan TO off;

 This will save the setting (but not set it immediately). In
 subsequent connections by this role it will appear as though
 SET enable_indexscan TO off had been executed
 just before the session started.
 You can still alter this setting during the session; it will only
 be the default. To remove a role-specific default setting, use
 ALTER ROLE rolename RESET varname.
 Note that role-specific defaults attached to roles without
 LOGIN privilege are fairly useless, since they will never
 be invoked.

 When a non-superuser creates a role using the CREATEROLE
 privilege, the created role is automatically granted back to the creating
 user, just as if the bootstrap superuser had executed the command
 GRANT created_user TO creating_user WITH ADMIN TRUE, SET FALSE,
 INHERIT FALSE. Since a CREATEROLE user can
 only exercise special privileges with regard to an existing role if they
 have ADMIN OPTION on it, this grant is just sufficient
 to allow a CREATEROLE user to administer the roles they
 created. However, because it is created with INHERIT FALSE, SET
 FALSE, the CREATEROLE user doesn't inherit the
 privileges of the created role, nor can it access the privileges of that
 role using SET ROLE. However, since any user who has
 ADMIN OPTION on a role can grant membership in that
 role to any other user, the CREATEROLE user can gain
 access to the created role by simply granting that role back to
 themselves with the INHERIT and/or SET
 options. Thus, the fact that privileges are not inherited by default nor
 is SET ROLE granted by default is a safeguard against
 accidents, not a security feature. Also note that, because this automatic
 grant is granted by the bootstrap user, it cannot be removed or changed by
 the CREATEROLE user; however, any superuser could
 revoke it, modify it, and/or issue additional such grants to other
 CREATEROLE users. Whichever CREATEROLE
 users have ADMIN OPTION on a role at any given time
 can administer it.

Role Membership

 It is frequently convenient to group users together to ease
 management of privileges: that way, privileges can be granted to, or
 revoked from, a group as a whole. In PostgreSQL™
 this is done by creating a role that represents the group, and then
 granting membership in the group role to individual user
 roles.

 To set up a group role, first create the role:

CREATE ROLE name;

 Typically a role being used as a group would not have the LOGIN
 attribute, though you can set it if you wish.

 Once the group role exists, you can add and remove members using the
 GRANT and
 REVOKE commands:

GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;

 You can grant membership to other group roles, too (since there isn't
 really any distinction between group roles and non-group roles). The
 database will not let you set up circular membership loops. Also,
 it is not permitted to grant membership in a role to
 PUBLIC.

 The members of a group role can use the privileges of the role in two
 ways. First, member roles that have been granted membership with the
 SET option can do
 SET ROLE to
 temporarily “become” the group role. In this state, the
 database session has access to the privileges of the group role rather
 than the original login role, and any database objects created are
 considered owned by the group role not the login role. Second, member
 roles that have been granted membership with the
 INHERIT option automatically have use of the
 privileges of those directly or indirectly a member of, though the
 chain stops at memberships lacking the inherit option. As an example,
 suppose we have done:

CREATE ROLE joe LOGIN;
CREATE ROLE admin;
CREATE ROLE wheel;
CREATE ROLE island;
GRANT admin TO joe WITH INHERIT TRUE;
GRANT wheel TO admin WITH INHERIT FALSE;
GRANT island TO joe WITH INHERIT TRUE, SET FALSE;

 Immediately after connecting as role joe, a database
 session will have use of privileges granted directly to joe
 plus any privileges granted to admin and
 island, because joe
 “inherits” those privileges. However, privileges
 granted to wheel are not available, because even though
 joe is indirectly a member of wheel, the
 membership is via admin which was granted using
 WITH INHERIT FALSE. After:

SET ROLE admin;

 the session would have use of only those privileges granted to
 admin, and not those granted to joe or
 island. After:

SET ROLE wheel;

 the session would have use of only those privileges granted to
 wheel, and not those granted to either joe
 or admin. The original privilege state can be restored
 with any of:

SET ROLE joe;
SET ROLE NONE;
RESET ROLE;

Note

 The SET ROLE command always allows selecting any role
 that the original login role is directly or indirectly a member of,
 provided that there is a chain of membership grants each of which has
 SET TRUE (which is the default).
 Thus, in the above example, it is not necessary to become
 admin before becoming wheel.
 On the other hand, it is not possible to become island
 at all; joe can only access those privileges via
 inheritance.

Note

 In the SQL standard, there is a clear distinction between users and roles,
 and users do not automatically inherit privileges while roles do. This
 behavior can be obtained in PostgreSQL™ by giving
 roles being used as SQL roles the INHERIT attribute, while
 giving roles being used as SQL users the NOINHERIT attribute.
 However, PostgreSQL™ defaults to giving all roles
 the INHERIT attribute, for backward compatibility with pre-8.1
 releases in which users always had use of permissions granted to groups
 they were members of.

 The role attributes LOGIN, SUPERUSER,
 CREATEDB, and CREATEROLE can be thought of as
 special privileges, but they are never inherited as ordinary privileges
 on database objects are. You must actually SET ROLE to a
 specific role having one of these attributes in order to make use of
 the attribute. Continuing the above example, we might choose to
 grant CREATEDB and CREATEROLE to the
 admin role. Then a session connecting as role joe
 would not have these privileges immediately, only after doing
 SET ROLE admin.

 To destroy a group role, use DROP ROLE:

DROP ROLE name;

 Any memberships in the group role are automatically revoked (but the
 member roles are not otherwise affected).

Dropping Roles

 Because roles can own database objects and can hold privileges
 to access other objects, dropping a role is often not just a matter of a
 quick DROP ROLE. Any objects owned by the role must
 first be dropped or reassigned to other owners; and any permissions
 granted to the role must be revoked.

 Ownership of objects can be transferred one at a time
 using ALTER commands, for example:

ALTER TABLE bobs_table OWNER TO alice;

 Alternatively, the REASSIGN OWNED command can be
 used to reassign ownership of all objects owned by the role-to-be-dropped
 to a single other role. Because REASSIGN OWNED cannot access
 objects in other databases, it is necessary to run it in each database
 that contains objects owned by the role. (Note that the first
 such REASSIGN OWNED will change the ownership of any
 shared-across-databases objects, that is databases or tablespaces, that
 are owned by the role-to-be-dropped.)

 Once any valuable objects have been transferred to new owners, any
 remaining objects owned by the role-to-be-dropped can be dropped with
 the DROP OWNED command. Again, this command cannot
 access objects in other databases, so it is necessary to run it in each
 database that contains objects owned by the role. Also, DROP
 OWNED will not drop entire databases or tablespaces, so it is
 necessary to do that manually if the role owns any databases or
 tablespaces that have not been transferred to new owners.

 DROP OWNED also takes care of removing any privileges granted
 to the target role for objects that do not belong to it.
 Because REASSIGN OWNED does not touch such objects, it's
 typically necessary to run both REASSIGN OWNED
 and DROP OWNED (in that order!) to fully remove the
 dependencies of a role to be dropped.

 In short then, the most general recipe for removing a role that has been
 used to own objects is:

REASSIGN OWNED BY doomed_role TO successor_role;
DROP OWNED BY doomed_role;
-- repeat the above commands in each database of the cluster
DROP ROLE doomed_role;

 When not all owned objects are to be transferred to the same successor
 owner, it's best to handle the exceptions manually and then perform
 the above steps to mop up.

 If DROP ROLE is attempted while dependent objects still
 remain, it will issue messages identifying which objects need to be
 reassigned or dropped.

Predefined Roles

 PostgreSQL™ provides a set of predefined roles
 that provide access to certain, commonly needed, privileged capabilities
 and information. Administrators (including roles that have the
 CREATEROLE privilege) can GRANT these
 roles to users and/or other roles in their environment, providing those
 users with access to the specified capabilities and information.

 The predefined roles are described in Table 22.1, “Predefined Roles”.
 Note that the specific permissions for each of the roles may change in
 the future as additional capabilities are added. Administrators
 should monitor the release notes for changes.

Table 22.1. Predefined Roles
	Role	Allowed Access
	pg_read_all_data	Read all data (tables, views, sequences), as if having
 SELECT rights on those objects, and USAGE rights on
 all schemas, even without having it explicitly. This role does not have
 the role attribute BYPASSRLS set. If RLS is being
 used, an administrator may wish to set BYPASSRLS on
 roles which this role is GRANTed to.
	pg_write_all_data	Write all data (tables, views, sequences), as if having
 INSERT, UPDATE, and
 DELETE rights on those objects, and USAGE rights on
 all schemas, even without having it explicitly. This role does not have
 the role attribute BYPASSRLS set. If RLS is being
 used, an administrator may wish to set BYPASSRLS on
 roles which this role is GRANTed to.
	pg_read_all_settings	Read all configuration variables, even those normally visible only to
 superusers.
	pg_read_all_stats	Read all pg_stat_* views and use various statistics related extensions,
 even those normally visible only to superusers.
	pg_stat_scan_tables	Execute monitoring functions that may take ACCESS SHARE locks on tables,
 potentially for a long time.
	pg_monitor	Read/execute various monitoring views and functions.
 This role is a member of pg_read_all_settings,
 pg_read_all_stats and
 pg_stat_scan_tables.
	pg_database_owner	None. Membership consists, implicitly, of the current database owner.
	pg_signal_backend	Signal another backend to cancel a query or terminate its session.
	pg_read_server_files	Allow reading files from any location the database can access on the server with COPY and
 other file-access functions.
	pg_write_server_files	Allow writing to files in any location the database can access on the server with COPY and
 other file-access functions.
	pg_execute_server_program	Allow executing programs on the database server as the user the database runs as with
 COPY and other functions which allow executing a server-side program.
	pg_checkpoint	Allow executing
 the CHECKPOINT
 command.
	pg_use_reserved_connections	Allow use of connection slots reserved via
 reserved_connections.
	pg_create_subscription	Allow users with CREATE permission on the
 database to issue
 CREATE SUBSCRIPTION.

 The pg_monitor, pg_read_all_settings,
 pg_read_all_stats and pg_stat_scan_tables
 roles are intended to allow administrators to easily configure a role for the
 purpose of monitoring the database server. They grant a set of common privileges
 allowing the role to read various useful configuration settings, statistics and
 other system information normally restricted to superusers.

 The pg_database_owner role has one implicit,
 situation-dependent member, namely the owner of the current database. Like
 any role, it can own objects or receive grants of access privileges.
 Consequently, once pg_database_owner has rights within a
 template database, each owner of a database instantiated from that template
 will exercise those rights. pg_database_owner cannot be
 a member of any role, and it cannot have non-implicit members. Initially,
 this role owns the public schema, so each database owner
 governs local use of the schema.

 The pg_signal_backend role is intended to allow
 administrators to enable trusted, but non-superuser, roles to send signals
 to other backends. Currently this role enables sending of signals for
 canceling a query on another backend or terminating its session. A user
 granted this role cannot however send signals to a backend owned by a
 superuser. See the section called “Server Signaling Functions”.

 The pg_read_server_files, pg_write_server_files and
 pg_execute_server_program roles are intended to allow administrators to have
 trusted, but non-superuser, roles which are able to access files and run programs on the
 database server as the user the database runs as. As these roles are able to access any file on
 the server file system, they bypass all database-level permission checks when accessing files
 directly and they could be used to gain superuser-level access, therefore
 great care should be taken when granting these roles to users.

 Care should be taken when granting these roles to ensure they are only used where
 needed and with the understanding that these roles grant access to privileged
 information.

 Administrators can grant access to these roles to users using the
 GRANT command, for example:

GRANT pg_signal_backend TO admin_user;

Function Security

 Functions, triggers and row-level security policies allow users to insert
 code into the backend server that other users might execute
 unintentionally. Hence, these mechanisms permit users to “Trojan
 horse” others with relative ease. The strongest protection is tight
 control over who can define objects. Where that is infeasible, write
 queries referring only to objects having trusted owners. Remove
 from search_path any schemas that permit untrusted users
 to create objects.

 Functions run inside the backend
 server process with the operating system permissions of the
 database server daemon. If the programming language
 used for the function allows unchecked memory accesses, it is
 possible to change the server's internal data structures.
 Hence, among many other things, such functions can circumvent any
 system access controls. Function languages that allow such access
 are considered “untrusted”, and
 PostgreSQL™ allows only superusers to
 create functions written in those languages.

Chapter 23. Managing Databases

 Every instance of a running PostgreSQL™
 server manages one or more databases. Databases are therefore the
 topmost hierarchical level for organizing SQL
 objects (“database objects”). This chapter describes
 the properties of databases, and how to create, manage, and destroy
 them.

Overview

 A small number of objects, like role, database, and tablespace
 names, are defined at the cluster level and stored in the
 pg_global tablespace. Inside the cluster are
 multiple databases, which are isolated from each other but can access
 cluster-level objects. Inside each database are multiple schemas,
 which contain objects like tables and functions. So the full hierarchy
 is: cluster, database, schema, table (or some other kind of object,
 such as a function).

 When connecting to the database server, a client must specify the
 database name in its connection request.
 It is not possible to access more than one database per
 connection. However, clients can open multiple connections to
 the same database, or different databases.
 Database-level security has two components: access control
 (see the section called “The pg_hba.conf File”), managed at the
 connection level, and authorization control
 (see the section called “Privileges”), managed via the grant system.
 Foreign data wrappers (see postgres_fdw)
 allow for objects within one database to act as proxies for objects in
 other database or clusters.
 The older dblink module (see dblink) provides a similar capability.
 By default, all users can connect to all databases using all connection methods.

 If one PostgreSQL™ server cluster is planned to contain
 unrelated projects or users that should be, for the most part, unaware
 of each other, it is recommended to put them into separate databases and
 adjust authorizations and access controls accordingly.
 If the projects or users are interrelated, and thus should be able to use
 each other's resources, they should be put in the same database but probably
 into separate schemas; this provides a modular structure with namespace
 isolation and authorization control.
 More information about managing schemas is in the section called “Schemas”.

 While multiple databases can be created within a single cluster, it is advised
 to consider carefully whether the benefits outweigh the risks and limitations.
 In particular, the impact that having a shared WAL (see Chapter 30, Reliability and the Write-Ahead Log)
 has on backup and recovery options. While individual databases in the cluster
 are isolated when considered from the user's perspective, they are closely bound
 from the database administrator's point-of-view.

 Databases are created with the CREATE DATABASE command
 (see the section called “Creating a Database”) and destroyed with the
 DROP DATABASE command
 (see the section called “Destroying a Database”).
 To determine the set of existing databases, examine the
 pg_database system catalog, for example

SELECT datname FROM pg_database;

 The psql(1) program's \l meta-command
 and -l command-line option are also useful for listing the
 existing databases.

Note

 The SQL standard calls databases “catalogs”, but there
 is no difference in practice.

Creating a Database

 In order to create a database, the PostgreSQL™
 server must be up and running (see the section called “Starting the Database Server”).

 Databases are created with the SQL command
 CREATE DATABASE(7):

CREATE DATABASE name;

 where name follows the usual rules for
 SQL identifiers. The current role automatically
 becomes the owner of the new database. It is the privilege of the
 owner of a database to remove it later (which also removes all
 the objects in it, even if they have a different owner).

 The creation of databases is a restricted operation. See the section called “Role Attributes” for how to grant permission.

 Since you need to be connected to the database server in order to
 execute the CREATE DATABASE command, the
 question remains how the first database at any given
 site can be created. The first database is always created by the
 initdb command when the data storage area is
 initialized. (See the section called “Creating a Database Cluster”.) This
 database is called
 postgres. So to
 create the first “ordinary” database you can connect to
 postgres.

 Two additional databases,
 template1
 and
 template0,
 are also created during database cluster initialization. Whenever a
 new database is created within the
 cluster, template1 is essentially cloned.
 This means that any changes you make in template1 are
 propagated to all subsequently created databases. Because of this,
 avoid creating objects in template1 unless you want them
 propagated to every newly created database.
 template0 is meant as a pristine copy of the original
 contents of template1. It can be cloned instead
 of template1 when it is important to make a database
 without any such site-local additions. More details
 appear in the section called “Template Databases”.

 As a convenience, there is a program you can
 execute from the shell to create new databases,
 createdb.

createdb dbname

 createdb does no magic. It connects to the postgres
 database and issues the CREATE DATABASE command,
 exactly as described above.
 The createdb(1) reference page contains the invocation
 details. Note that createdb without any arguments will create
 a database with the current user name.

Note

 Chapter 21, Client Authentication contains information about
 how to restrict who can connect to a given database.

 Sometimes you want to create a database for someone else, and have them
 become the owner of the new database, so they can
 configure and manage it themselves. To achieve that, use one of the
 following commands:

CREATE DATABASE dbname OWNER rolename;

 from the SQL environment, or:

createdb -O rolename dbname

 from the shell.
 Only the superuser is allowed to create a database for
 someone else (that is, for a role you are not a member of).

Template Databases

 CREATE DATABASE actually works by copying an existing
 database. By default, it copies the standard system database named
 template1. Thus that
 database is the “template” from which new databases are
 made. If you add objects to template1, these objects
 will be copied into subsequently created user databases. This
 behavior allows site-local modifications to the standard set of
 objects in databases. For example, if you install the procedural
 language PL/Perl in template1, it will
 automatically be available in user databases without any extra
 action being taken when those databases are created.

 However, CREATE DATABASE does not copy database-level
 GRANT permissions attached to the source database.
 The new database has default database-level permissions.

 There is a second standard system database named
 template0. This
 database contains the same data as the initial contents of
 template1, that is, only the standard objects
 predefined by your version of
 PostgreSQL™. template0
 should never be changed after the database cluster has been
 initialized. By instructing
 CREATE DATABASE to copy template0 instead
 of template1, you can create a “pristine” user
 database (one where no user-defined objects exist and where the system
 objects have not been altered) that contains none of the site-local additions in
 template1. This is particularly handy when restoring a
 pg_dump dump: the dump script should be restored in a
 pristine database to ensure that one recreates the correct contents
 of the dumped database, without conflicting with objects that
 might have been added to template1 later on.

 Another common reason for copying template0 instead
 of template1 is that new encoding and locale settings
 can be specified when copying template0, whereas a copy
 of template1 must use the same settings it does.
 This is because template1 might contain encoding-specific
 or locale-specific data, while template0 is known not to.

 To create a database by copying template0, use:

CREATE DATABASE dbname TEMPLATE template0;

 from the SQL environment, or:

createdb -T template0 dbname

 from the shell.

 It is possible to create additional template databases, and indeed
 one can copy any database in a cluster by specifying its name
 as the template for CREATE DATABASE. It is important to
 understand, however, that this is not (yet) intended as
 a general-purpose “COPY DATABASE” facility.
 The principal limitation is that no other sessions can be connected to
 the source database while it is being copied. CREATE
 DATABASE will fail if any other connection exists when it starts;
 during the copy operation, new connections to the source database
 are prevented.

 Two useful flags exist in pg_database for each
 database: the columns datistemplate and
 datallowconn. datistemplate
 can be set to indicate that a database is intended as a template for
 CREATE DATABASE. If this flag is set, the database can be
 cloned by any user with CREATEDB privileges; if it is not set,
 only superusers and the owner of the database can clone it.
 If datallowconn is false, then no new connections
 to that database will be allowed (but existing sessions are not terminated
 simply by setting the flag false). The template0
 database is normally marked datallowconn = false to prevent its modification.
 Both template0 and template1
 should always be marked with datistemplate = true.

Note

 template1 and template0 do not have any special
 status beyond the fact that the name template1 is the default
 source database name for CREATE DATABASE.
 For example, one could drop template1 and recreate it from
 template0 without any ill effects. This course of action
 might be advisable if one has carelessly added a bunch of junk in
 template1. (To delete template1,
 it must have pg_database.datistemplate = false.)

 The postgres database is also created when a database
 cluster is initialized. This database is meant as a default database for
 users and applications to connect to. It is simply a copy of
 template1 and can be dropped and recreated if necessary.

Database Configuration

 Recall from Chapter 20, Server Configuration that the
 PostgreSQL™ server provides a large number of
 run-time configuration variables. You can set database-specific
 default values for many of these settings.

 For example, if for some reason you want to disable the
 GEQO optimizer for a given database, you'd
 ordinarily have to either disable it for all databases or make sure
 that every connecting client is careful to issue SET geqo
 TO off. To make this setting the default within a particular
 database, you can execute the command:

ALTER DATABASE mydb SET geqo TO off;

 This will save the setting (but not set it immediately). In
 subsequent connections to this database it will appear as though
 SET geqo TO off; had been executed just before the
 session started.
 Note that users can still alter this setting during their sessions; it
 will only be the default. To undo any such setting, use
 ALTER DATABASE dbname RESET
 varname.

Destroying a Database

 Databases are destroyed with the command
 DROP DATABASE(7):

DROP DATABASE name;

 Only the owner of the database, or
 a superuser, can drop a database. Dropping a database removes all objects
 that were
 contained within the database. The destruction of a database cannot
 be undone.

 You cannot execute the DROP DATABASE command
 while connected to the victim database. You can, however, be
 connected to any other database, including the template1
 database.
 template1 would be the only option for dropping the last user database of a
 given cluster.

 For convenience, there is also a shell program to drop
 databases, dropdb(1):

dropdb dbname

 (Unlike createdb, it is not the default action to drop
 the database with the current user name.)

Tablespaces

 Tablespaces in PostgreSQL™ allow database administrators to
 define locations in the file system where the files representing
 database objects can be stored. Once created, a tablespace can be referred
 to by name when creating database objects.

 By using tablespaces, an administrator can control the disk layout
 of a PostgreSQL™ installation. This is useful in at
 least two ways. First, if the partition or volume on which the
 cluster was initialized runs out of space and cannot be extended,
 a tablespace can be created on a different partition and used
 until the system can be reconfigured.

 Second, tablespaces allow an administrator to use knowledge of the
 usage pattern of database objects to optimize performance. For
 example, an index which is very heavily used can be placed on a
 very fast, highly available disk, such as an expensive solid state
 device. At the same time a table storing archived data which is
 rarely used or not performance critical could be stored on a less
 expensive, slower disk system.

Warning

 Even though located outside the main PostgreSQL data directory,
 tablespaces are an integral part of the database cluster and
 cannot be treated as an autonomous collection
 of data files. They are dependent on metadata contained in the main
 data directory, and therefore cannot be attached to a different
 database cluster or backed up individually. Similarly, if you lose
 a tablespace (file deletion, disk failure, etc.), the database cluster
 might become unreadable or unable to start. Placing a tablespace
 on a temporary file system like a RAM disk risks the reliability of
 the entire cluster.

 To define a tablespace, use the CREATE TABLESPACE(7)
 command, for example::

CREATE TABLESPACE fastspace LOCATION '/ssd1/postgresql/data';

 The location must be an existing, empty directory that is owned by
 the PostgreSQL™ operating system user. All objects subsequently
 created within the tablespace will be stored in files underneath this
 directory. The location must not be on removable or transient storage,
 as the cluster might fail to function if the tablespace is missing
 or lost.

Note

 There is usually not much point in making more than one
 tablespace per logical file system, since you cannot control the location
 of individual files within a logical file system. However,
 PostgreSQL™ does not enforce any such limitation, and
 indeed it is not directly aware of the file system boundaries on your
 system. It just stores files in the directories you tell it to use.

 Creation of the tablespace itself must be done as a database superuser,
 but after that you can allow ordinary database users to use it.
 To do that, grant them the CREATE privilege on it.

 Tables, indexes, and entire databases can be assigned to
 particular tablespaces. To do so, a user with the CREATE
 privilege on a given tablespace must pass the tablespace name as a
 parameter to the relevant command. For example, the following creates
 a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

 Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

 When default_tablespace is set to anything but an empty
 string, it supplies an implicit TABLESPACE clause for
 CREATE TABLE and CREATE INDEX commands that
 do not have an explicit one.

 There is also a temp_tablespaces parameter, which
 determines the placement of temporary tables and indexes, as well as
 temporary files that are used for purposes such as sorting large data
 sets. This can be a list of tablespace names, rather than only one,
 so that the load associated with temporary objects can be spread over
 multiple tablespaces. A random member of the list is picked each time
 a temporary object is to be created.

 The tablespace associated with a database is used to store the system
 catalogs of that database. Furthermore, it is the default tablespace
 used for tables, indexes, and temporary files created within the database,
 if no TABLESPACE clause is given and no other selection is
 specified by default_tablespace or
 temp_tablespaces (as appropriate).
 If a database is created without specifying a tablespace for it,
 it uses the same tablespace as the template database it is copied from.

 Two tablespaces are automatically created when the database cluster
 is initialized. The
 pg_global tablespace is used for shared system catalogs. The
 pg_default tablespace is the default tablespace of the
 template1 and template0 databases (and, therefore,
 will be the default tablespace for other databases as well, unless
 overridden by a TABLESPACE clause in CREATE
 DATABASE).

 Once created, a tablespace can be used from any database, provided
 the requesting user has sufficient privilege. This means that a tablespace
 cannot be dropped until all objects in all databases using the tablespace
 have been removed.

 To remove an empty tablespace, use the DROP TABLESPACE(7)
 command.

 To determine the set of existing tablespaces, examine the
 pg_tablespace
 system catalog, for example

SELECT spcname FROM pg_tablespace;

 The psql(1) program's \db meta-command
 is also useful for listing the existing tablespaces.

 The directory $PGDATA/pg_tblspc contains symbolic links that
 point to each of the non-built-in tablespaces defined in the cluster.
 Although not recommended, it is possible to adjust the tablespace
 layout by hand by redefining these links. Under no circumstances perform
 this operation while the server is running. Note that in PostgreSQL 9.1
 and earlier you will also need to update the pg_tablespace
 catalog with the new locations. (If you do not, pg_dump will
 continue to output the old tablespace locations.)

Chapter 24. Localization

 This chapter describes the available localization features from the
 point of view of the administrator.
 PostgreSQL™ supports two localization
 facilities:

	
 Using the locale features of the operating system to provide
 locale-specific collation order, number formatting, translated
 messages, and other aspects.
 This is covered in the section called “Locale Support” and
 the section called “Collation Support”.

	
 Providing a number of different character sets to support storing text
 in all kinds of languages, and providing character set translation
 between client and server.
 This is covered in the section called “Character Set Support”.

Locale Support

 Locale support refers to an application respecting
 cultural preferences regarding alphabets, sorting, number
 formatting, etc. PostgreSQL™ uses the standard ISO
 C and POSIX locale facilities provided by the server operating
 system. For additional information refer to the documentation of your
 system.

Overview

 Locale support is automatically initialized when a database
 cluster is created using initdb.
 initdb will initialize the database cluster
 with the locale setting of its execution environment by default,
 so if your system is already set to use the locale that you want
 in your database cluster then there is nothing else you need to
 do. If you want to use a different locale (or you are not sure
 which locale your system is set to), you can instruct
 initdb exactly which locale to use by
 specifying the --locale option. For example:

initdb --locale=sv_SE

 This example for Unix systems sets the locale to Swedish
 (sv) as spoken
 in Sweden (SE). Other possibilities might include
 en_US (U.S. English) and fr_CA (French
 Canadian). If more than one character set can be used for a
 locale then the specifications can take the form
 language_territory.codeset. For example,
 fr_BE.UTF-8 represents the French language (fr) as
 spoken in Belgium (BE), with a UTF-8 character set
 encoding.

 What locales are available on your
 system under what names depends on what was provided by the operating
 system vendor and what was installed. On most Unix systems, the command
 locale -a will provide a list of available locales.
 Windows uses more verbose locale names, such as German_Germany
 or Swedish_Sweden.1252, but the principles are the same.

 Occasionally it is useful to mix rules from several locales, e.g.,
 use English collation rules but Spanish messages. To support that, a
 set of locale subcategories exist that control only certain
 aspects of the localization rules:

	LC_COLLATE	String sort order
	LC_CTYPE	Character classification (What is a letter? Its upper-case equivalent?)
	LC_MESSAGES	Language of messages
	LC_MONETARY	Formatting of currency amounts
	LC_NUMERIC	Formatting of numbers
	LC_TIME	Formatting of dates and times

 The category names translate into names of
 initdb options to override the locale choice
 for a specific category. For instance, to set the locale to
 French Canadian, but use U.S. rules for formatting currency, use
 initdb --locale=fr_CA --lc-monetary=en_US.

 If you want the system to behave as if it had no locale support,
 use the special locale name C, or equivalently
 POSIX.

 Some locale categories must have their values
 fixed when the database is created. You can use different settings
 for different databases, but once a database is created, you cannot
 change them for that database anymore. LC_COLLATE
 and LC_CTYPE are these categories. They affect
 the sort order of indexes, so they must be kept fixed, or indexes on
 text columns would become corrupt.
 (But you can alleviate this restriction using collations, as discussed
 in the section called “Collation Support”.)
 The default values for these
 categories are determined when initdb is run, and
 those values are used when new databases are created, unless
 specified otherwise in the CREATE DATABASE command.

 The other locale categories can be changed whenever desired
 by setting the server configuration parameters
 that have the same name as the locale categories (see the section called “Locale and Formatting” for details). The values
 that are chosen by initdb are actually only written
 into the configuration file postgresql.conf to
 serve as defaults when the server is started. If you remove these
 assignments from postgresql.conf then the
 server will inherit the settings from its execution environment.

 Note that the locale behavior of the server is determined by the
 environment variables seen by the server, not by the environment
 of any client. Therefore, be careful to configure the correct locale settings
 before starting the server. A consequence of this is that if
 client and server are set up in different locales, messages might
 appear in different languages depending on where they originated.

Note

 When we speak of inheriting the locale from the execution
 environment, this means the following on most operating systems:
 For a given locale category, say the collation, the following
 environment variables are consulted in this order until one is
 found to be set: LC_ALL, LC_COLLATE
 (or the variable corresponding to the respective category),
 LANG. If none of these environment variables are
 set then the locale defaults to C.

 Some message localization libraries also look at the environment
 variable LANGUAGE which overrides all other locale
 settings for the purpose of setting the language of messages. If
 in doubt, please refer to the documentation of your operating
 system, in particular the documentation about
 gettext.

 To enable messages to be translated to the user's preferred language,
 NLS must have been selected at build time
 (configure --enable-nls). All other locale support is
 built in automatically.

Behavior

 The locale settings influence the following SQL features:

	
 Sort order in queries using ORDER BY or the standard
 comparison operators on textual data

	
 The upper, lower, and initcap
 functions

	
 Pattern matching operators (LIKE, SIMILAR TO,
 and POSIX-style regular expressions); locales affect both case
 insensitive matching and the classification of characters by
 character-class regular expressions

	
 The to_char family of functions

	
 The ability to use indexes with LIKE clauses

 The drawback of using locales other than C or
 POSIX in PostgreSQL™ is its performance
 impact. It slows character handling and prevents ordinary indexes
 from being used by LIKE. For this reason use locales
 only if you actually need them.

 As a workaround to allow PostgreSQL™ to use indexes
 with LIKE clauses under a non-C locale, several custom
 operator classes exist. These allow the creation of an index that
 performs a strict character-by-character comparison, ignoring
 locale comparison rules. Refer to the section called “Operator Classes and Operator Families”
 for more information. Another approach is to create indexes using
 the C collation, as discussed in
 the section called “Collation Support”.

Selecting Locales

 Locales can be selected in different scopes depending on requirements.
 The above overview showed how locales are specified using
 initdb to set the defaults for the entire cluster. The
 following list shows where locales can be selected. Each item provides
 the defaults for the subsequent items, and each lower item allows
 overriding the defaults on a finer granularity.

	
 As explained above, the environment of the operating system provides the
 defaults for the locales of a newly initialized database cluster. In
 many cases, this is enough: If the operating system is configured for
 the desired language/territory, then
 PostgreSQL™ will by default also behave
 according to that locale.

	
 As shown above, command-line options for initdb
 specify the locale settings for a newly initialized database cluster.
 Use this if the operating system does not have the locale configuration
 you want for your database system.

	
 A locale can be selected separately for each database. The SQL command
 CREATE DATABASE and its command-line equivalent
 createdb have options for that. Use this for example
 if a database cluster houses databases for multiple tenants with
 different requirements.

	
 Locale settings can be made for individual table columns. This uses an
 SQL object called collation and is explained in
 the section called “Collation Support”. Use this for example to sort data in
 different languages or customize the sort order of a particular table.

	
 Finally, locales can be selected for an individual query. Again, this
 uses SQL collation objects. This could be used to change the sort order
 based on run-time choices or for ad-hoc experimentation.

Locale Providers

 PostgreSQL™ supports multiple locale
 providers. This specifies which library supplies the locale
 data. One standard provider name is libc, which uses
 the locales provided by the operating system C library. These are the
 locales used by most tools provided by the operating system. Another
 provider is icu, which uses the external
 ICU library. ICU locales can
 only be used if support for ICU was configured when PostgreSQL was built.

 The commands and tools that select the locale settings, as described
 above, each have an option to select the locale provider. The examples
 shown earlier all use the libc provider, which is the
 default. Here is an example to initialize a database cluster using the
 ICU provider:

initdb --locale-provider=icu --icu-locale=en

 See the description of the respective commands and programs for
 details. Note that you can mix locale providers at different
 granularities, for example use libc by default for the
 cluster but have one database that uses the icu
 provider, and then have collation objects using either provider within
 those databases.

 Which locale provider to use depends on individual requirements. For most
 basic uses, either provider will give adequate results. For the libc
 provider, it depends on what the operating system offers; some operating
 systems are better than others. For advanced uses, ICU offers more locale
 variants and customization options.

ICU Locales

ICU Locale Names

 The ICU format for the locale name is a Language Tag.

CREATE COLLATION mycollation1 (provider = icu, locale = 'ja-JP');
CREATE COLLATION mycollation2 (provider = icu, locale = 'fr');

Locale Canonicalization and Validation

 When defining a new ICU collation object or database with ICU as the
 provider, the given locale name is transformed ("canonicalized") into a
 language tag if not already in that form. For instance,

CREATE COLLATION mycollation3 (provider = icu, locale = 'en-US-u-kn-true');
NOTICE: using standard form "en-US-u-kn" for locale "en-US-u-kn-true"
CREATE COLLATION mycollation4 (provider = icu, locale = 'de_DE.utf8');
NOTICE: using standard form "de-DE" for locale "de_DE.utf8"

 If you see this notice, ensure that the provider and
 locale are the expected result. For consistent results
 when using the ICU provider, specify the canonical language tag instead of relying on the
 transformation.

 A locale with no language name, or the special language name
 root, is transformed to have the language
 und ("undefined").

 ICU can transform most libc locale names, as well as some other formats,
 into language tags for easier transition to ICU. If a libc locale name is
 used in ICU, it may not have precisely the same behavior as in libc.

 If there is a problem interpreting the locale name, or if the locale name
 represents a language or region that ICU does not recognize, you will see
 the following warning:

CREATE COLLATION nonsense (provider = icu, locale = 'nonsense');
WARNING: ICU locale "nonsense" has unknown language "nonsense"
HINT: To disable ICU locale validation, set parameter icu_validation_level to DISABLED.
CREATE COLLATION

 icu_validation_level controls how the message is
 reported. Unless set to ERROR, the collation will
 still be created, but the behavior may not be what the user intended.

Language Tag

 A language tag, defined in BCP 47, is a standardized identifier used to
 identify languages, regions, and other information about a locale.

 Basic language tags are simply
 language-region;
 or even just language. The
 language is a language code
 (e.g. fr for French), and
 region is a region code
 (e.g. CA for Canada). Examples:
 ja-JP, de, or
 fr-CA.

 Collation settings may be included in the language tag to customize
 collation behavior. ICU allows extensive customization, such as
 sensitivity (or insensitivity) to accents, case, and punctuation;
 treatment of digits within text; and many other options to satisfy a
 variety of uses.

 To include this additional collation information in a language tag,
 append -u, which indicates there are additional
 collation settings, followed by one or more
 -key-value
 pairs. The key is the key for a collation setting and
 value is a valid value for that setting. For
 boolean settings, the -key
 may be specified without a corresponding
 -value, which implies a
 value of true.

 For example, the language tag en-US-u-kn-ks-level2
 means the locale with the English language in the US region, with
 collation settings kn set to true
 and ks set to level2. Those
 settings mean the collation will be case-insensitive and treat a sequence
 of digits as a single number:

CREATE COLLATION mycollation5 (provider = icu, deterministic = false, locale = 'en-US-u-kn-ks-level2');
SELECT 'aB' = 'Ab' COLLATE mycollation5 as result;
 result

 t
(1 row)

SELECT 'N-45' < 'N-123' COLLATE mycollation5 as result;
 result

 t
(1 row)

 See the section called “ICU Custom Collations” for details and additional
 examples of using language tags with custom collation information for the
 locale.

Problems

 If locale support doesn't work according to the explanation above,
 check that the locale support in your operating system is
 correctly configured. To check what locales are installed on your
 system, you can use the command locale -a if
 your operating system provides it.

 Check that PostgreSQL™ is actually using the locale
 that you think it is. The LC_COLLATE and LC_CTYPE
 settings are determined when a database is created, and cannot be
 changed except by creating a new database. Other locale
 settings including LC_MESSAGES and LC_MONETARY
 are initially determined by the environment the server is started
 in, but can be changed on-the-fly. You can check the active locale
 settings using the SHOW command.

 The directory src/test/locale in the source
 distribution contains a test suite for
 PostgreSQL™'s locale support.

 Client applications that handle server-side errors by parsing the
 text of the error message will obviously have problems when the
 server's messages are in a different language. Authors of such
 applications are advised to make use of the error code scheme
 instead.

 Maintaining catalogs of message translations requires the on-going
 efforts of many volunteers that want to see
 PostgreSQL™ speak their preferred language well.
 If messages in your language are currently not available or not fully
 translated, your assistance would be appreciated. If you want to
 help, refer to Chapter 57, Native Language Support or write to the developers'
 mailing list.

Collation Support

 The collation feature allows specifying the sort order and character
 classification behavior of data per-column, or even per-operation.
 This alleviates the restriction that the
 LC_COLLATE and LC_CTYPE settings
 of a database cannot be changed after its creation.

Concepts

 Conceptually, every expression of a collatable data type has a
 collation. (The built-in collatable data types are
 text, varchar, and char.
 User-defined base types can also be marked collatable, and of course
 a domain over a
 collatable data type is collatable.) If the
 expression is a column reference, the collation of the expression is the
 defined collation of the column. If the expression is a constant, the
 collation is the default collation of the data type of the
 constant. The collation of a more complex expression is derived
 from the collations of its inputs, as described below.

 The collation of an expression can be the “default”
 collation, which means the locale settings defined for the
 database. It is also possible for an expression's collation to be
 indeterminate. In such cases, ordering operations and other
 operations that need to know the collation will fail.

 When the database system has to perform an ordering or a character
 classification, it uses the collation of the input expression. This
 happens, for example, with ORDER BY clauses
 and function or operator calls such as <.
 The collation to apply for an ORDER BY clause
 is simply the collation of the sort key. The collation to apply for a
 function or operator call is derived from the arguments, as described
 below. In addition to comparison operators, collations are taken into
 account by functions that convert between lower and upper case
 letters, such as lower, upper, and
 initcap; by pattern matching operators; and by
 to_char and related functions.

 For a function or operator call, the collation that is derived by
 examining the argument collations is used at run time for performing
 the specified operation. If the result of the function or operator
 call is of a collatable data type, the collation is also used at parse
 time as the defined collation of the function or operator expression,
 in case there is a surrounding expression that requires knowledge of
 its collation.

 The collation derivation of an expression can be
 implicit or explicit. This distinction affects how collations are
 combined when multiple different collations appear in an
 expression. An explicit collation derivation occurs when a
 COLLATE clause is used; all other collation
 derivations are implicit. When multiple collations need to be
 combined, for example in a function call, the following rules are
 used:

	
 If any input expression has an explicit collation derivation, then
 all explicitly derived collations among the input expressions must be
 the same, otherwise an error is raised. If any explicitly
 derived collation is present, that is the result of the
 collation combination.

	
 Otherwise, all input expressions must have the same implicit
 collation derivation or the default collation. If any non-default
 collation is present, that is the result of the collation combination.
 Otherwise, the result is the default collation.

	
 If there are conflicting non-default implicit collations among the
 input expressions, then the combination is deemed to have indeterminate
 collation. This is not an error condition unless the particular
 function being invoked requires knowledge of the collation it should
 apply. If it does, an error will be raised at run-time.

 For example, consider this table definition:

CREATE TABLE test1 (
 a text COLLATE "de_DE",
 b text COLLATE "es_ES",
 ...
);

 Then in

SELECT a < 'foo' FROM test1;

 the < comparison is performed according to
 de_DE rules, because the expression combines an
 implicitly derived collation with the default collation. But in

SELECT a < ('foo' COLLATE "fr_FR") FROM test1;

 the comparison is performed using fr_FR rules,
 because the explicit collation derivation overrides the implicit one.
 Furthermore, given

SELECT a < b FROM test1;

 the parser cannot determine which collation to apply, since the
 a and b columns have conflicting
 implicit collations. Since the < operator
 does need to know which collation to use, this will result in an
 error. The error can be resolved by attaching an explicit collation
 specifier to either input expression, thus:

SELECT a < b COLLATE "de_DE" FROM test1;

 or equivalently

SELECT a COLLATE "de_DE" < b FROM test1;

 On the other hand, the structurally similar case

SELECT a || b FROM test1;

 does not result in an error, because the || operator
 does not care about collations: its result is the same regardless
 of the collation.

 The collation assigned to a function or operator's combined input
 expressions is also considered to apply to the function or operator's
 result, if the function or operator delivers a result of a collatable
 data type. So, in

SELECT * FROM test1 ORDER BY a || 'foo';

 the ordering will be done according to de_DE rules.
 But this query:

SELECT * FROM test1 ORDER BY a || b;

 results in an error, because even though the || operator
 doesn't need to know a collation, the ORDER BY clause does.
 As before, the conflict can be resolved with an explicit collation
 specifier:

SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";

Managing Collations

 A collation is an SQL schema object that maps an SQL name to locales
 provided by libraries installed in the operating system. A collation
 definition has a provider that specifies which
 library supplies the locale data. One standard provider name
 is libc, which uses the locales provided by the
 operating system C library. These are the locales used by most tools
 provided by the operating system. Another provider
 is icu, which uses the external
 ICU library. ICU locales can only be
 used if support for ICU was configured when PostgreSQL was built.

 A collation object provided by libc maps to a
 combination of LC_COLLATE and LC_CTYPE
 settings, as accepted by the setlocale() system library call. (As
 the name would suggest, the main purpose of a collation is to set
 LC_COLLATE, which controls the sort order. But
 it is rarely necessary in practice to have an
 LC_CTYPE setting that is different from
 LC_COLLATE, so it is more convenient to collect
 these under one concept than to create another infrastructure for
 setting LC_CTYPE per expression.) Also,
 a libc collation
 is tied to a character set encoding (see the section called “Character Set Support”).
 The same collation name may exist for different encodings.

 A collation object provided by icu maps to a named
 collator provided by the ICU library. ICU does not support
 separate “collate” and “ctype” settings, so
 they are always the same. Also, ICU collations are independent of the
 encoding, so there is always only one ICU collation of a given name in
 a database.

Standard Collations

 On all platforms, the collations named default,
 C, and POSIX are available. Additional
 collations may be available depending on operating system support.
 The default collation selects the LC_COLLATE
 and LC_CTYPE values specified at database creation time.
 The C and POSIX collations both specify
 “traditional C” behavior, in which only the ASCII letters
 “A” through “Z”
 are treated as letters, and sorting is done strictly by character
 code byte values.

Note

 The C and POSIX locales may behave
 differently depending on the database encoding.

 Additionally, two SQL standard collation names are available:

	unicode
	
 This collation sorts using the Unicode Collation Algorithm with the
 Default Unicode Collation Element Table. It is available in all
 encodings. ICU support is required to use this collation. (This
 collation has the same behavior as the ICU root locale; see und-x-icu (for “undefined”).)

	ucs_basic
	
 This collation sorts by Unicode code point. It is only available for
 encoding UTF8. (This collation has the same
 behavior as the libc locale specification C in
 UTF8 encoding.)

Predefined Collations

 If the operating system provides support for using multiple locales
 within a single program (newlocale and related functions),
 or if support for ICU is configured,
 then when a database cluster is initialized, initdb
 populates the system catalog pg_collation with
 collations based on all the locales it finds in the operating
 system at the time.

 To inspect the currently available locales, use the query SELECT
 * FROM pg_collation, or the command \dOS+
 in psql.

libc Collations

 For example, the operating system might
 provide a locale named de_DE.utf8.
 initdb would then create a collation named
 de_DE.utf8 for encoding UTF8
 that has both LC_COLLATE and
 LC_CTYPE set to de_DE.utf8.
 It will also create a collation with the .utf8
 tag stripped off the name. So you could also use the collation
 under the name de_DE, which is less cumbersome
 to write and makes the name less encoding-dependent. Note that,
 nevertheless, the initial set of collation names is
 platform-dependent.

 The default set of collations provided by libc map
 directly to the locales installed in the operating system, which can be
 listed using the command locale -a. In case
 a libc collation is needed that has different values
 for LC_COLLATE and LC_CTYPE, or if new
 locales are installed in the operating system after the database system
 was initialized, then a new collation may be created using
 the CREATE COLLATION(7) command.
 New operating system locales can also be imported en masse using
 the pg_import_system_collations() function.

 Within any particular database, only collations that use that
 database's encoding are of interest. Other entries in
 pg_collation are ignored. Thus, a stripped collation
 name such as de_DE can be considered unique
 within a given database even though it would not be unique globally.
 Use of the stripped collation names is recommended, since it will
 make one fewer thing you need to change if you decide to change to
 another database encoding. Note however that the default,
 C, and POSIX collations can be used regardless of
 the database encoding.

 PostgreSQL™ considers distinct collation
 objects to be incompatible even when they have identical properties.
 Thus for example,

SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;

 will draw an error even though the C and POSIX
 collations have identical behaviors. Mixing stripped and non-stripped
 collation names is therefore not recommended.

ICU Collations

 With ICU, it is not sensible to enumerate all possible locale names. ICU
 uses a particular naming system for locales, but there are many more ways
 to name a locale than there are actually distinct locales.
 initdb uses the ICU APIs to extract a set of distinct
 locales to populate the initial set of collations. Collations provided by
 ICU are created in the SQL environment with names in BCP 47 language tag
 format, with a “private use”
 extension -x-icu appended, to distinguish them from
 libc locales.

 Here are some example collations that might be created:

	de-x-icu
	German collation, default variant

	de-AT-x-icu
	German collation for Austria, default variant

 (There are also, say, de-DE-x-icu
 or de-CH-x-icu, but as of this writing, they are
 equivalent to de-x-icu.)

	und-x-icu (for “undefined”)
	
 ICU “root” collation. Use this to get a reasonable
 language-agnostic sort order.

 Some (less frequently used) encodings are not supported by ICU. When the
 database encoding is one of these, ICU collation entries
 in pg_collation are ignored. Attempting to use one
 will draw an error along the lines of “collation "de-x-icu" for
 encoding "WIN874" does not exist”.

Creating New Collation Objects

 If the standard and predefined collations are not sufficient, users can
 create their own collation objects using the SQL
 command CREATE COLLATION(7).

 The standard and predefined collations are in the
 schema pg_catalog, like all predefined objects.
 User-defined collations should be created in user schemas. This also
 ensures that they are saved by pg_dump.

libc Collations

 New libc collations can be created like this:

CREATE COLLATION german (provider = libc, locale = 'de_DE');

 The exact values that are acceptable for the locale
 clause in this command depend on the operating system. On Unix-like
 systems, the command locale -a will show a list.

 Since the predefined libc collations already include all collations
 defined in the operating system when the database instance is
 initialized, it is not often necessary to manually create new ones.
 Reasons might be if a different naming system is desired (in which case
 see also the section called “Copying Collations”) or if the operating system has
 been upgraded to provide new locale definitions (in which case see
 also pg_import_system_collations()).

ICU Collations

 ICU collations can be created like:

CREATE COLLATION german (provider = icu, locale = 'de-DE');

 ICU locales are specified as a BCP 47 Language Tag, but can also accept most
 libc-style locale names. If possible, libc-style locale names are
 transformed into language tags.

 New ICU collations can customize collation behavior extensively by
 including collation attributes in the language tag. See the section called “ICU Custom Collations” for details and examples.

Copying Collations

 The command CREATE COLLATION(7) can also be used to
 create a new collation from an existing collation, which can be useful to
 be able to use operating-system-independent collation names in
 applications, create compatibility names, or use an ICU-provided collation
 under a more readable name. For example:

CREATE COLLATION german FROM "de_DE";
CREATE COLLATION french FROM "fr-x-icu";

Nondeterministic Collations

 A collation is either deterministic or
 nondeterministic. A deterministic collation uses
 deterministic comparisons, which means that it considers strings to be
 equal only if they consist of the same byte sequence. Nondeterministic
 comparison may determine strings to be equal even if they consist of
 different bytes. Typical situations include case-insensitive comparison,
 accent-insensitive comparison, as well as comparison of strings in
 different Unicode normal forms. It is up to the collation provider to
 actually implement such insensitive comparisons; the deterministic flag
 only determines whether ties are to be broken using bytewise comparison.
 See also Unicode Technical
 Standard 10 for more information on the terminology.

 To create a nondeterministic collation, specify the property
 deterministic = false to CREATE
 COLLATION, for example:

CREATE COLLATION ndcoll (provider = icu, locale = 'und', deterministic = false);

 This example would use the standard Unicode collation in a
 nondeterministic way. In particular, this would allow strings in
 different normal forms to be compared correctly. More interesting
 examples make use of the ICU customization facilities explained above.
 For example:

CREATE COLLATION case_insensitive (provider = icu, locale = 'und-u-ks-level2', deterministic = false);
CREATE COLLATION ignore_accents (provider = icu, locale = 'und-u-ks-level1-kc-true', deterministic = false);

 All standard and predefined collations are deterministic, all
 user-defined collations are deterministic by default. While
 nondeterministic collations give a more “correct” behavior,
 especially when considering the full power of Unicode and its many
 special cases, they also have some drawbacks. Foremost, their use leads
 to a performance penalty. Note, in particular, that B-tree cannot use
 deduplication with indexes that use a nondeterministic collation. Also,
 certain operations are not possible with nondeterministic collations,
 such as pattern matching operations. Therefore, they should be used
 only in cases where they are specifically wanted.

Tip

 To deal with text in different Unicode normalization forms, it is also
 an option to use the functions/expressions
 normalize and is normalized to
 preprocess or check the strings, instead of using nondeterministic
 collations. There are different trade-offs for each approach.

ICU Custom Collations

 ICU allows extensive control over collation behavior by defining new
 collations with collation settings as a part of the language tag. These
 settings can modify the collation order to suit a variety of needs. For
 instance:

-- ignore differences in accents and case
CREATE COLLATION ignore_accent_case (provider = icu, deterministic = false, locale = 'und-u-ks-level1');
SELECT 'Å' = 'A' COLLATE ignore_accent_case; -- true
SELECT 'z' = 'Z' COLLATE ignore_accent_case; -- true

-- upper case letters sort before lower case.
CREATE COLLATION upper_first (provider = icu, locale = 'und-u-kf-upper');
SELECT 'B' < 'b' COLLATE upper_first; -- true

-- treat digits numerically and ignore punctuation
CREATE COLLATION num_ignore_punct (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-kn');
SELECT 'id-45' < 'id-123' COLLATE num_ignore_punct; -- true
SELECT 'w;x*y-z' = 'wxyz' COLLATE num_ignore_punct; -- true

 Many of the available options are described in the section called “Collation Settings for an ICU Locale”, or see the section called “External References for ICU” for more details.

ICU Comparison Levels

 Comparison of two strings (collation) in ICU is determined by a
 multi-level process, where textual features are grouped into
 "levels". Treatment of each level is controlled by the collation settings. Higher
 levels correspond to finer textual features.

 Table 24.1, “ICU Collation Levels” shows which textual feature
 differences are considered significant when determining equality at the
 given level. The Unicode character U+2063 is an
 invisible separator, and as seen in the table, is ignored for at all
 levels of comparison less than identic.

Table 24.1. ICU Collation Levels
	Level	Description	'f' = 'f'	'ab' = U&'a\2063b'	'x-y' = 'x_y'	'g' = 'G'	'n' = 'ñ'	'y' = 'z'
	level1	Base Character	true	true	true	true	true	false
	level2	Accents	true	true	true	true	false	false
	level3	Case/Variants	true	true	true	false	false	false
	level4	Punctuation	true	true	false	false	false	false
	identic	All	true	false	false	false	false	false

 At every level, even with full normalization off, basic normalization is
 performed. For example, 'á' may be composed of the
 code points U&'\0061\0301' or the single code
 point U&'\00E1', and those sequences will be
 considered equal even at the identic level. To treat
 any difference in code point representation as distinct, use a collation
 created with deterministic set to
 true.

Collation Level Examples

CREATE COLLATION level3 (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-level3');
CREATE COLLATION level4 (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-level4');
CREATE COLLATION identic (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-identic');

-- invisible separator ignored at all levels except identic
SELECT 'ab' = U&'a\2063b' COLLATE level4; -- true
SELECT 'ab' = U&'a\2063b' COLLATE identic; -- false

-- punctuation ignored at level3 but not at level 4
SELECT 'x-y' = 'x_y' COLLATE level3; -- true
SELECT 'x-y' = 'x_y' COLLATE level4; -- false

Collation Settings for an ICU Locale

 Table 24.2, “ICU Collation Settings” shows the available
 collation settings, which can be used as part of a language tag to
 customize a collation.

Table 24.2. ICU Collation Settings
	Key	Values	Default	Description
	co	emoji, phonebk, standard, ...	standard	
 Collation type. See the section called “External References for ICU” for additional options and details.

	ka	noignore, shifted	noignore	
 If set to shifted, causes some characters
 (e.g. punctuation or space) to be ignored in comparison. Key
 ks must be set to level3 or
 lower to take effect. Set key kv to control which
 character classes are ignored.

	kb	true, false	false	
 Backwards comparison for the level 2 differences. For example,
 locale und-u-kb sorts 'àe'
 before 'aé'.

	kc	true, false	false	

 Separates case into a "level 2.5" that falls between accents and
 other level 3 features.

 If set to true and ks is set
 to level1, will ignore accents but take case
 into account.

	kf	
 upper, lower,
 false
 	false	
 If set to upper, upper case sorts before lower
 case. If set to lower, lower case sorts before
 upper case. If set to false, the sort depends on
 the rules of the locale.

	kn	true, false	false	
 If set to true, numbers within a string are
 treated as a single numeric value rather than a sequence of
 digits. For example, 'id-45' sorts before
 'id-123'.

	kk	true, false	false	

 Enable full normalization; may affect performance. Basic
 normalization is performed even when set to
 false. Locales for languages that require full
 normalization typically enable it by default.

 Full normalization is important in some cases, such as when
 multiple accents are applied to a single character. For example,
 the code point sequences U&'\0065\0323\0302'
 and U&'\0065\0302\0323' represent
 an e with circumflex and dot-below accents
 applied in different orders. With full normalization
 on, these code point sequences are treated as equal; otherwise they
 are unequal.

	kr	
 space, punct,
 symbol, currency,
 digit, script-id
 	 	

 Set to one or more of the valid values, or any BCP 47
 script-id, e.g. latn
 ("Latin") or grek ("Greek"). Multiple values are
 separated by "-".

 Redefines the ordering of classes of characters; those characters
 belonging to a class earlier in the list sort before characters
 belonging to a class later in the list. For instance, the value
 digit-currency-space (as part of a language tag
 like und-u-kr-digit-currency-space) sorts
 punctuation before digits and spaces.

	ks	level1, level2, level3, level4, identic	level3	
 Sensitivity (or "strength") when determining equality, with
 level1 the least sensitive to differences and
 identic the most sensitive to differences. See
 Table 24.1, “ICU Collation Levels” for details.

	kv	
 space, punct,
 symbol, currency
 	punct	
 Classes of characters ignored during comparison at level 3. Setting
 to a later value includes earlier values;
 e.g. symbol also includes
 punct and space in the
 characters to be ignored. Key ka must be set to
 shifted and key ks must be set
 to level3 or lower to take effect.

 Defaults may depend on locale. The above table is not meant to be
 complete. See the section called “External References for ICU” for additional
 options and details.

Note

 For many collation settings, you must create the collation with
 deterministic set to false for the
 setting to have the desired effect (see the section called “Nondeterministic Collations”). Additionally, some settings
 only take effect when the key ka is set to
 shifted (see Table 24.2, “ICU Collation Settings”).

Collation Settings Examples

	CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale = 'de-u-co-phonebk');
	German collation with phone book collation type

	CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = 'und-u-co-emoji');
	
 Root collation with Emoji collation type, per Unicode Technical Standard #51

	CREATE COLLATION latinlast (provider = icu, locale = 'en-u-kr-grek-latn');
	
 Sort Greek letters before Latin ones. (The default is Latin before Greek.)

	CREATE COLLATION upperfirst (provider = icu, locale = 'en-u-kf-upper');
	
 Sort upper-case letters before lower-case letters. (The default is
 lower-case letters first.)

	CREATE COLLATION special (provider = icu, locale = 'en-u-kf-upper-kr-grek-latn');
	
 Combines both of the above options.

ICU Tailoring Rules

 If the options provided by the collation settings shown above are not
 sufficient, the order of collation elements can be changed with tailoring
 rules, whose syntax is detailed at https://unicode-org.github.io/icu/userguide/collation/customization/.

 This small example creates a collation based on the root locale with a
 tailoring rule:

CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');

 With this rule, the letter “W” is sorted after
 “V”, but is treated as a secondary difference similar to an
 accent. Rules like this are contained in the locale definitions of some
 languages. (Of course, if a locale definition already contains the
 desired rules, then they don't need to be specified again explicitly.)

 Here is a more complex example. The following statement sets up a
 collation named ebcdic with rules to sort US-ASCII
 characters in the order of the EBCDIC encoding.

CREATE COLLATION ebcdic (provider = icu, locale = 'und',
rules = $$
& ' ' < '.' < '<' < '(' < '+' < \|
< '&' < '!' < '$' < '*' < ')' < ';'
< '-' < '/' < ',' < '%' < '_' < '>' < '?'
< '`' < ':' < '#' < '@' < \' < '=' < '"'
<*a-r < '~' <*s-z < '^' < '[' < ']'
< '{' <*A-I < '}' <*J-R < '\' <*S-Z <*0-9
$$);

SELECT c
FROM (VALUES ('a'), ('b'), ('A'), ('B'), ('1'), ('2'), ('!'), ('^')) AS x(c)
ORDER BY c COLLATE ebcdic;
 c

 !
 a
 b
 ^
 A
 B
 1
 2

External References for ICU

 This section (the section called “ICU Custom Collations”) is only a brief
 overview of ICU behavior and language tags. Refer to the following
 documents for technical details, additional options, and new behavior:

	
 Unicode Technical Standard #35

	
 BCP 47

	
 CLDR repository

	
 https://unicode-org.github.io/icu/userguide/locale/

	
 https://unicode-org.github.io/icu/userguide/collation/

Character Set Support

 The character set support in PostgreSQL™
 allows you to store text in a variety of character sets (also called
 encodings), including
 single-byte character sets such as the ISO 8859 series and
 multiple-byte character sets such as EUC (Extended Unix
 Code), UTF-8, and Mule internal code. All supported character sets
 can be used transparently by clients, but a few are not supported
 for use within the server (that is, as a server-side encoding).
 The default character set is selected while
 initializing your PostgreSQL™ database
 cluster using initdb. It can be overridden when you
 create a database, so you can have multiple
 databases each with a different character set.

 An important restriction, however, is that each database's character set
 must be compatible with the database's LC_CTYPE (character
 classification) and LC_COLLATE (string sort order) locale
 settings. For C or
 POSIX locale, any character set is allowed, but for other
 libc-provided locales there is only one character set that will work
 correctly.
 (On Windows, however, UTF-8 encoding can be used with any locale.)
 If you have ICU support configured, ICU-provided locales can be used
 with most but not all server-side encodings.

Supported Character Sets

 Table 24.3, “PostgreSQL™ Character Sets” shows the character sets available
 for use in PostgreSQL™.

Table 24.3. PostgreSQL™ Character Sets
	Name	Description	Language	Server?	ICU?	Bytes/​Char	Aliases
	BIG5	Big Five	Traditional Chinese	No	No	1–2	WIN950, Windows950
	EUC_CN	Extended UNIX Code-CN	Simplified Chinese	Yes	Yes	1–3	
	EUC_JP	Extended UNIX Code-JP	Japanese	Yes	Yes	1–3	
	EUC_JIS_2004	Extended UNIX Code-JP, JIS X 0213	Japanese	Yes	No	1–3	
	EUC_KR	Extended UNIX Code-KR	Korean	Yes	Yes	1–3	
	EUC_TW	Extended UNIX Code-TW	Traditional Chinese, Taiwanese	Yes	Yes	1–4	
	GB18030	National Standard	Chinese	No	No	1–4	
	GBK	Extended National Standard	Simplified Chinese	No	No	1–2	WIN936, Windows936
	ISO_8859_5	ISO 8859-5, ECMA 113	Latin/Cyrillic	Yes	Yes	1	
	ISO_8859_6	ISO 8859-6, ECMA 114	Latin/Arabic	Yes	Yes	1	
	ISO_8859_7	ISO 8859-7, ECMA 118	Latin/Greek	Yes	Yes	1	
	ISO_8859_8	ISO 8859-8, ECMA 121	Latin/Hebrew	Yes	Yes	1	
	JOHAB	JOHAB	Korean (Hangul)	No	No	1–3	
	KOI8R	KOI8-R	Cyrillic (Russian)	Yes	Yes	1	KOI8
	KOI8U	KOI8-U	Cyrillic (Ukrainian)	Yes	Yes	1	
	LATIN1	ISO 8859-1, ECMA 94	Western European	Yes	Yes	1	ISO88591
	LATIN2	ISO 8859-2, ECMA 94	Central European	Yes	Yes	1	ISO88592
	LATIN3	ISO 8859-3, ECMA 94	South European	Yes	Yes	1	ISO88593
	LATIN4	ISO 8859-4, ECMA 94	North European	Yes	Yes	1	ISO88594
	LATIN5	ISO 8859-9, ECMA 128	Turkish	Yes	Yes	1	ISO88599
	LATIN6	ISO 8859-10, ECMA 144	Nordic	Yes	Yes	1	ISO885910
	LATIN7	ISO 8859-13	Baltic	Yes	Yes	1	ISO885913
	LATIN8	ISO 8859-14	Celtic	Yes	Yes	1	ISO885914
	LATIN9	ISO 8859-15	LATIN1 with Euro and accents	Yes	Yes	1	ISO885915
	LATIN10	ISO 8859-16, ASRO SR 14111	Romanian	Yes	No	1	ISO885916
	MULE_INTERNAL	Mule internal code	Multilingual Emacs	Yes	No	1–4	
	SJIS	Shift JIS	Japanese	No	No	1–2	Mskanji, ShiftJIS, WIN932, Windows932
	SHIFT_JIS_2004	Shift JIS, JIS X 0213	Japanese	No	No	1–2	
	SQL_ASCII	unspecified (see text)	any	Yes	No	1	
	UHC	Unified Hangul Code	Korean	No	No	1–2	WIN949, Windows949
	UTF8	Unicode, 8-bit	all	Yes	Yes	1–4	Unicode
	WIN866	Windows CP866	Cyrillic	Yes	Yes	1	ALT
	WIN874	Windows CP874	Thai	Yes	No	1	
	WIN1250	Windows CP1250	Central European	Yes	Yes	1	
	WIN1251	Windows CP1251	Cyrillic	Yes	Yes	1	WIN
	WIN1252	Windows CP1252	Western European	Yes	Yes	1	
	WIN1253	Windows CP1253	Greek	Yes	Yes	1	
	WIN1254	Windows CP1254	Turkish	Yes	Yes	1	
	WIN1255	Windows CP1255	Hebrew	Yes	Yes	1	
	WIN1256	Windows CP1256	Arabic	Yes	Yes	1	
	WIN1257	Windows CP1257	Baltic	Yes	Yes	1	
	WIN1258	Windows CP1258	Vietnamese	Yes	Yes	1	ABC, TCVN, TCVN5712, VSCII

 Not all client APIs support all the listed character sets. For example, the
 PostgreSQL™
 JDBC driver does not support MULE_INTERNAL, LATIN6,
 LATIN8, and LATIN10.

 The SQL_ASCII setting behaves considerably differently
 from the other settings. When the server character set is
 SQL_ASCII, the server interprets byte values 0–127
 according to the ASCII standard, while byte values 128–255 are taken
 as uninterpreted characters. No encoding conversion will be done when
 the setting is SQL_ASCII. Thus, this setting is not so
 much a declaration that a specific encoding is in use, as a declaration
 of ignorance about the encoding. In most cases, if you are
 working with any non-ASCII data, it is unwise to use the
 SQL_ASCII setting because
 PostgreSQL™ will be unable to help you by
 converting or validating non-ASCII characters.

Setting the Character Set

 initdb defines the default character set (encoding)
 for a PostgreSQL™ cluster. For example,

initdb -E EUC_JP

 sets the default character set to
 EUC_JP (Extended Unix Code for Japanese). You
 can use --encoding instead of
 -E if you prefer longer option strings.
 If no -E or --encoding option is
 given, initdb attempts to determine the appropriate
 encoding to use based on the specified or default locale.

 You can specify a non-default encoding at database creation time,
 provided that the encoding is compatible with the selected locale:

createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-ctype=ko_KR.euckr korean

 This will create a database named korean that
 uses the character set EUC_KR, and locale ko_KR.
 Another way to accomplish this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr' LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;

 Notice that the above commands specify copying the template0
 database. When copying any other database, the encoding and locale
 settings cannot be changed from those of the source database, because
 that might result in corrupt data. For more information see
 the section called “Template Databases”.

 The encoding for a database is stored in the system catalog
 pg_database. You can see it by using the
 psql -l option or the
 \l command.

$ psql -l
 List of databases
 Name | Owner | Encoding | Collation | Ctype | Access Privileges
-----------+----------+-----------+-------------+-------------+-------------------------------------
 clocaledb | hlinnaka | SQL_ASCII | C | C |
 englishdb | hlinnaka | UTF8 | en_GB.UTF8 | en_GB.UTF8 |
 japanese | hlinnaka | UTF8 | ja_JP.UTF8 | ja_JP.UTF8 |
 korean | hlinnaka | EUC_KR | ko_KR.euckr | ko_KR.euckr |
 postgres | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 |
 template0 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
 template1 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)

Important

 On most modern operating systems, PostgreSQL™
 can determine which character set is implied by the LC_CTYPE
 setting, and it will enforce that only the matching database encoding is
 used. On older systems it is your responsibility to ensure that you use
 the encoding expected by the locale you have selected. A mistake in
 this area is likely to lead to strange behavior of locale-dependent
 operations such as sorting.

 PostgreSQL™ will allow superusers to create
 databases with SQL_ASCII encoding even when
 LC_CTYPE is not C or POSIX. As noted
 above, SQL_ASCII does not enforce that the data stored in
 the database has any particular encoding, and so this choice poses risks
 of locale-dependent misbehavior. Using this combination of settings is
 deprecated and may someday be forbidden altogether.

Automatic Character Set Conversion Between Server and Client

 PostgreSQL™ supports automatic character
 set conversion between server and client for many combinations of
 character sets (the section called “Available Character Set Conversions”
 shows which ones).

 To enable automatic character set conversion, you have to
 tell PostgreSQL™ the character set
 (encoding) you would like to use in the client. There are several
 ways to accomplish this:

	
 Using the \encoding command in
 psql.
 \encoding allows you to change client
 encoding on the fly. For
 example, to change the encoding to SJIS, type:

\encoding SJIS

	
 libpq (the section called “Control Functions”) has functions to control the client encoding.

	
 Using SET client_encoding TO.

 Setting the client encoding can be done with this SQL command:

SET CLIENT_ENCODING TO 'value';

 Also you can use the standard SQL syntax SET NAMES
 for this purpose:

SET NAMES 'value';

 To query the current client encoding:

SHOW client_encoding;

 To return to the default encoding:

RESET client_encoding;

	
 Using PGCLIENTENCODING. If the environment variable
 PGCLIENTENCODING is defined in the client's
 environment, that client encoding is automatically selected
 when a connection to the server is made. (This can
 subsequently be overridden using any of the other methods
 mentioned above.)

	
 Using the configuration variable client_encoding. If the
 client_encoding variable is set, that client
 encoding is automatically selected when a connection to the
 server is made. (This can subsequently be overridden using any
 of the other methods mentioned above.)

 If the conversion of a particular character is not possible
 — suppose you chose EUC_JP for the
 server and LATIN1 for the client, and some
 Japanese characters are returned that do not have a representation in
 LATIN1 — an error is reported.

 If the client character set is defined as SQL_ASCII,
 encoding conversion is disabled, regardless of the server's character
 set. (However, if the server's character set is
 not SQL_ASCII, the server will still check that
 incoming data is valid for that encoding; so the net effect is as
 though the client character set were the same as the server's.)
 Just as for the server, use of SQL_ASCII is unwise
 unless you are working with all-ASCII data.

Available Character Set Conversions

 PostgreSQL™ allows conversion between any
 two character sets for which a conversion function is listed in the
 pg_conversion
 system catalog. PostgreSQL™ comes with
 some predefined conversions, as summarized in
 Table 24.4, “Built-in Client/Server Character Set Conversions” and shown in more
 detail in Table 24.5, “All Built-in Character Set Conversions”. You can
 create a new conversion using the SQL command
 CREATE CONVERSION(7). (To be used for automatic
 client/server conversions, a conversion must be marked
 as “default” for its character set pair.)

Table 24.4. Built-in Client/Server Character Set Conversions
	Server Character Set	Available Client Character Sets
	BIG5	not supported as a server encoding

	EUC_CN	EUC_CN,
 MULE_INTERNAL,
 UTF8

	EUC_JP	EUC_JP,
 MULE_INTERNAL,
 SJIS,
 UTF8

	EUC_JIS_2004	EUC_JIS_2004,
 SHIFT_JIS_2004,
 UTF8

	EUC_KR	EUC_KR,
 MULE_INTERNAL,
 UTF8

	EUC_TW	EUC_TW,
 BIG5,
 MULE_INTERNAL,
 UTF8

	GB18030	not supported as a server encoding

	GBK	not supported as a server encoding

	ISO_8859_5	ISO_8859_5,
 KOI8R,
 MULE_INTERNAL,
 UTF8,
 WIN866,
 WIN1251

	ISO_8859_6	ISO_8859_6,
 UTF8

	ISO_8859_7	ISO_8859_7,
 UTF8

	ISO_8859_8	ISO_8859_8,
 UTF8

	JOHAB	not supported as a server encoding

	KOI8R	KOI8R,
 ISO_8859_5,
 MULE_INTERNAL,
 UTF8,
 WIN866,
 WIN1251

	KOI8U	KOI8U,
 UTF8

	LATIN1	LATIN1,
 MULE_INTERNAL,
 UTF8

	LATIN2	LATIN2,
 MULE_INTERNAL,
 UTF8,
 WIN1250

	LATIN3	LATIN3,
 MULE_INTERNAL,
 UTF8

	LATIN4	LATIN4,
 MULE_INTERNAL,
 UTF8

	LATIN5	LATIN5,
 UTF8

	LATIN6	LATIN6,
 UTF8

	LATIN7	LATIN7,
 UTF8

	LATIN8	LATIN8,
 UTF8

	LATIN9	LATIN9,
 UTF8

	LATIN10	LATIN10,
 UTF8

	MULE_INTERNAL	MULE_INTERNAL,
 BIG5,
 EUC_CN,
 EUC_JP,
 EUC_KR,
 EUC_TW,
 ISO_8859_5,
 KOI8R,
 LATIN1 to LATIN4,
 SJIS,
 WIN866,
 WIN1250,
 WIN1251

	SJIS	not supported as a server encoding

	SHIFT_JIS_2004	not supported as a server encoding

	SQL_ASCII	any (no conversion will be performed)

	UHC	not supported as a server encoding

	UTF8	all supported encodings

	WIN866	WIN866,
 ISO_8859_5,
 KOI8R,
 MULE_INTERNAL,
 UTF8,
 WIN1251

	WIN874	WIN874,
 UTF8

	WIN1250	WIN1250,
 LATIN2,
 MULE_INTERNAL,
 UTF8

	WIN1251	WIN1251,
 ISO_8859_5,
 KOI8R,
 MULE_INTERNAL,
 UTF8,
 WIN866

	WIN1252	WIN1252,
 UTF8

	WIN1253	WIN1253,
 UTF8

	WIN1254	WIN1254,
 UTF8

	WIN1255	WIN1255,
 UTF8

	WIN1256	WIN1256,
 UTF8

	WIN1257	WIN1257,
 UTF8

	WIN1258	WIN1258,
 UTF8

Table 24.5. All Built-in Character Set Conversions
	Conversion Name
 [a]
 	Source Encoding	Destination Encoding
	big5_to_euc_tw	BIG5	EUC_TW
	big5_to_mic	BIG5	MULE_INTERNAL
	big5_to_utf8	BIG5	UTF8
	euc_cn_to_mic	EUC_CN	MULE_INTERNAL
	euc_cn_to_utf8	EUC_CN	UTF8
	euc_jp_to_mic	EUC_JP	MULE_INTERNAL
	euc_jp_to_sjis	EUC_JP	SJIS
	euc_jp_to_utf8	EUC_JP	UTF8
	euc_kr_to_mic	EUC_KR	MULE_INTERNAL
	euc_kr_to_utf8	EUC_KR	UTF8
	euc_tw_to_big5	EUC_TW	BIG5
	euc_tw_to_mic	EUC_TW	MULE_INTERNAL
	euc_tw_to_utf8	EUC_TW	UTF8
	gb18030_to_utf8	GB18030	UTF8
	gbk_to_utf8	GBK	UTF8
	iso_8859_10_to_utf8	LATIN6	UTF8
	iso_8859_13_to_utf8	LATIN7	UTF8
	iso_8859_14_to_utf8	LATIN8	UTF8
	iso_8859_15_to_utf8	LATIN9	UTF8
	iso_8859_16_to_utf8	LATIN10	UTF8
	iso_8859_1_to_mic	LATIN1	MULE_INTERNAL
	iso_8859_1_to_utf8	LATIN1	UTF8
	iso_8859_2_to_mic	LATIN2	MULE_INTERNAL
	iso_8859_2_to_utf8	LATIN2	UTF8
	iso_8859_2_to_windows_1250	LATIN2	WIN1250
	iso_8859_3_to_mic	LATIN3	MULE_INTERNAL
	iso_8859_3_to_utf8	LATIN3	UTF8
	iso_8859_4_to_mic	LATIN4	MULE_INTERNAL
	iso_8859_4_to_utf8	LATIN4	UTF8
	iso_8859_5_to_koi8_r	ISO_8859_5	KOI8R
	iso_8859_5_to_mic	ISO_8859_5	MULE_INTERNAL
	iso_8859_5_to_utf8	ISO_8859_5	UTF8
	iso_8859_5_to_windows_1251	ISO_8859_5	WIN1251
	iso_8859_5_to_windows_866	ISO_8859_5	WIN866
	iso_8859_6_to_utf8	ISO_8859_6	UTF8
	iso_8859_7_to_utf8	ISO_8859_7	UTF8
	iso_8859_8_to_utf8	ISO_8859_8	UTF8
	iso_8859_9_to_utf8	LATIN5	UTF8
	johab_to_utf8	JOHAB	UTF8
	koi8_r_to_iso_8859_5	KOI8R	ISO_8859_5
	koi8_r_to_mic	KOI8R	MULE_INTERNAL
	koi8_r_to_utf8	KOI8R	UTF8
	koi8_r_to_windows_1251	KOI8R	WIN1251
	koi8_r_to_windows_866	KOI8R	WIN866
	koi8_u_to_utf8	KOI8U	UTF8
	mic_to_big5	MULE_INTERNAL	BIG5
	mic_to_euc_cn	MULE_INTERNAL	EUC_CN
	mic_to_euc_jp	MULE_INTERNAL	EUC_JP
	mic_to_euc_kr	MULE_INTERNAL	EUC_KR
	mic_to_euc_tw	MULE_INTERNAL	EUC_TW
	mic_to_iso_8859_1	MULE_INTERNAL	LATIN1
	mic_to_iso_8859_2	MULE_INTERNAL	LATIN2
	mic_to_iso_8859_3	MULE_INTERNAL	LATIN3
	mic_to_iso_8859_4	MULE_INTERNAL	LATIN4
	mic_to_iso_8859_5	MULE_INTERNAL	ISO_8859_5
	mic_to_koi8_r	MULE_INTERNAL	KOI8R
	mic_to_sjis	MULE_INTERNAL	SJIS
	mic_to_windows_1250	MULE_INTERNAL	WIN1250
	mic_to_windows_1251	MULE_INTERNAL	WIN1251
	mic_to_windows_866	MULE_INTERNAL	WIN866
	sjis_to_euc_jp	SJIS	EUC_JP
	sjis_to_mic	SJIS	MULE_INTERNAL
	sjis_to_utf8	SJIS	UTF8
	windows_1258_to_utf8	WIN1258	UTF8
	uhc_to_utf8	UHC	UTF8
	utf8_to_big5	UTF8	BIG5
	utf8_to_euc_cn	UTF8	EUC_CN
	utf8_to_euc_jp	UTF8	EUC_JP
	utf8_to_euc_kr	UTF8	EUC_KR
	utf8_to_euc_tw	UTF8	EUC_TW
	utf8_to_gb18030	UTF8	GB18030
	utf8_to_gbk	UTF8	GBK
	utf8_to_iso_8859_1	UTF8	LATIN1
	utf8_to_iso_8859_10	UTF8	LATIN6
	utf8_to_iso_8859_13	UTF8	LATIN7
	utf8_to_iso_8859_14	UTF8	LATIN8
	utf8_to_iso_8859_15	UTF8	LATIN9
	utf8_to_iso_8859_16	UTF8	LATIN10
	utf8_to_iso_8859_2	UTF8	LATIN2
	utf8_to_iso_8859_3	UTF8	LATIN3
	utf8_to_iso_8859_4	UTF8	LATIN4
	utf8_to_iso_8859_5	UTF8	ISO_8859_5
	utf8_to_iso_8859_6	UTF8	ISO_8859_6
	utf8_to_iso_8859_7	UTF8	ISO_8859_7
	utf8_to_iso_8859_8	UTF8	ISO_8859_8
	utf8_to_iso_8859_9	UTF8	LATIN5
	utf8_to_johab	UTF8	JOHAB
	utf8_to_koi8_r	UTF8	KOI8R
	utf8_to_koi8_u	UTF8	KOI8U
	utf8_to_sjis	UTF8	SJIS
	utf8_to_windows_1258	UTF8	WIN1258
	utf8_to_uhc	UTF8	UHC
	utf8_to_windows_1250	UTF8	WIN1250
	utf8_to_windows_1251	UTF8	WIN1251
	utf8_to_windows_1252	UTF8	WIN1252
	utf8_to_windows_1253	UTF8	WIN1253
	utf8_to_windows_1254	UTF8	WIN1254
	utf8_to_windows_1255	UTF8	WIN1255
	utf8_to_windows_1256	UTF8	WIN1256
	utf8_to_windows_1257	UTF8	WIN1257
	utf8_to_windows_866	UTF8	WIN866
	utf8_to_windows_874	UTF8	WIN874
	windows_1250_to_iso_8859_2	WIN1250	LATIN2
	windows_1250_to_mic	WIN1250	MULE_INTERNAL
	windows_1250_to_utf8	WIN1250	UTF8
	windows_1251_to_iso_8859_5	WIN1251	ISO_8859_5
	windows_1251_to_koi8_r	WIN1251	KOI8R
	windows_1251_to_mic	WIN1251	MULE_INTERNAL
	windows_1251_to_utf8	WIN1251	UTF8
	windows_1251_to_windows_866	WIN1251	WIN866
	windows_1252_to_utf8	WIN1252	UTF8
	windows_1256_to_utf8	WIN1256	UTF8
	windows_866_to_iso_8859_5	WIN866	ISO_8859_5
	windows_866_to_koi8_r	WIN866	KOI8R
	windows_866_to_mic	WIN866	MULE_INTERNAL
	windows_866_to_utf8	WIN866	UTF8
	windows_866_to_windows_1251	WIN866	WIN
	windows_874_to_utf8	WIN874	UTF8
	euc_jis_2004_to_utf8	EUC_JIS_2004	UTF8
	utf8_to_euc_jis_2004	UTF8	EUC_JIS_2004
	shift_jis_2004_to_utf8	SHIFT_JIS_2004	UTF8
	utf8_to_shift_jis_2004	UTF8	SHIFT_JIS_2004
	euc_jis_2004_to_shift_jis_2004	EUC_JIS_2004	SHIFT_JIS_2004
	shift_jis_2004_to_euc_jis_2004	SHIFT_JIS_2004	EUC_JIS_2004
	[a]
 The conversion names follow a standard naming scheme: The
 official name of the source encoding with all
 non-alphanumeric characters replaced by underscores, followed
 by _to_, followed by the similarly processed
 destination encoding name. Therefore, these names sometimes
 deviate from the customary encoding names shown in
 Table 24.3, “PostgreSQL™ Character Sets”.

Further Reading

 These are good sources to start learning about various kinds of encoding
 systems.

	CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing
	
 Contains detailed explanations of EUC_JP,
 EUC_CN, EUC_KR,
 EUC_TW.

	https://www.unicode.org/
	
 The web site of the Unicode Consortium.

	RFC 3629
	
 UTF-8 (8-bit UCS/Unicode Transformation
 Format) is defined here.

Chapter 25. Routine Database Maintenance Tasks

 PostgreSQL™, like any database software, requires that certain tasks
 be performed regularly to achieve optimum performance. The tasks
 discussed here are required, but they
 are repetitive in nature and can easily be automated using standard
 tools such as cron scripts or
 Windows' Task Scheduler. It is the database
 administrator's responsibility to set up appropriate scripts, and to
 check that they execute successfully.

 One obvious maintenance task is the creation of backup copies of the data on a
 regular schedule. Without a recent backup, you have no chance of recovery
 after a catastrophe (disk failure, fire, mistakenly dropping a critical
 table, etc.). The backup and recovery mechanisms available in
 PostgreSQL™ are discussed at length in
 Chapter 26, Backup and Restore.

 The other main category of maintenance task is periodic “vacuuming”
 of the database. This activity is discussed in
 the section called “Routine Vacuuming”. Closely related to this is updating
 the statistics that will be used by the query planner, as discussed in
 the section called “Updating Planner Statistics”.

 Another task that might need periodic attention is log file management.
 This is discussed in the section called “Log File Maintenance”.

 check_postgres
 is available for monitoring database health and reporting unusual
 conditions. check_postgres integrates with
 Nagios and MRTG, but can be run standalone too.

 PostgreSQL™ is low-maintenance compared
 to some other database management systems. Nonetheless,
 appropriate attention to these tasks will go far towards ensuring a
 pleasant and productive experience with the system.

Routine Vacuuming

 PostgreSQL™ databases require periodic
 maintenance known as vacuuming. For many installations, it
 is sufficient to let vacuuming be performed by the autovacuum
 daemon, which is described in the section called “The Autovacuum Daemon”. You might
 need to adjust the autovacuuming parameters described there to obtain best
 results for your situation. Some database administrators will want to
 supplement or replace the daemon's activities with manually-managed
 VACUUM commands, which typically are executed according to a
 schedule by cron or Task
 Scheduler scripts. To set up manually-managed vacuuming properly,
 it is essential to understand the issues discussed in the next few
 subsections. Administrators who rely on autovacuuming may still wish
 to skim this material to help them understand and adjust autovacuuming.

Vacuuming Basics

 PostgreSQL™'s
 VACUUM command has to
 process each table on a regular basis for several reasons:

	To recover or reuse disk space occupied by updated or deleted
 rows.
	To update data statistics used by the
 PostgreSQL™ query planner.
	To update the visibility map, which speeds
 up index-only
 scans.
	To protect against loss of very old data due to
 transaction ID wraparound or
 multixact ID wraparound.

 Each of these reasons dictates performing VACUUM operations
 of varying frequency and scope, as explained in the following subsections.

 There are two variants of VACUUM: standard VACUUM
 and VACUUM FULL. VACUUM FULL can reclaim more
 disk space but runs much more slowly. Also,
 the standard form of VACUUM can run in parallel with production
 database operations. (Commands such as SELECT,
 INSERT, UPDATE, and
 DELETE will continue to function normally, though you
 will not be able to modify the definition of a table with commands such as
 ALTER TABLE while it is being vacuumed.)
 VACUUM FULL requires an
 ACCESS EXCLUSIVE lock on the table it is
 working on, and therefore cannot be done in parallel with other use
 of the table. Generally, therefore,
 administrators should strive to use standard VACUUM and
 avoid VACUUM FULL.

 VACUUM creates a substantial amount of I/O
 traffic, which can cause poor performance for other active sessions.
 There are configuration parameters that can be adjusted to reduce the
 performance impact of background vacuuming — see
 the section called “Cost-based Vacuum Delay”.

Recovering Disk Space

 In PostgreSQL™, an
 UPDATE or DELETE of a row does not
 immediately remove the old version of the row.
 This approach is necessary to gain the benefits of multiversion
 concurrency control (MVCC, see Chapter 13, Concurrency Control): the row version
 must not be deleted while it is still potentially visible to other
 transactions. But eventually, an outdated or deleted row version is no
 longer of interest to any transaction. The space it occupies must then be
 reclaimed for reuse by new rows, to avoid unbounded growth of disk
 space requirements. This is done by running VACUUM.

 The standard form of VACUUM removes dead row
 versions in tables and indexes and marks the space available for
 future reuse. However, it will not return the space to the operating
 system, except in the special case where one or more pages at the
 end of a table become entirely free and an exclusive table lock can be
 easily obtained. In contrast, VACUUM FULL actively compacts
 tables by writing a complete new version of the table file with no dead
 space. This minimizes the size of the table, but can take a long time.
 It also requires extra disk space for the new copy of the table, until
 the operation completes.

 The usual goal of routine vacuuming is to do standard VACUUMs
 often enough to avoid needing VACUUM FULL. The
 autovacuum daemon attempts to work this way, and in fact will
 never issue VACUUM FULL. In this approach, the idea
 is not to keep tables at their minimum size, but to maintain steady-state
 usage of disk space: each table occupies space equivalent to its
 minimum size plus however much space gets used up between vacuum runs.
 Although VACUUM FULL can be used to shrink a table back
 to its minimum size and return the disk space to the operating system,
 there is not much point in this if the table will just grow again in the
 future. Thus, moderately-frequent standard VACUUM runs are a
 better approach than infrequent VACUUM FULL runs for
 maintaining heavily-updated tables.

 Some administrators prefer to schedule vacuuming themselves, for example
 doing all the work at night when load is low.
 The difficulty with doing vacuuming according to a fixed schedule
 is that if a table has an unexpected spike in update activity, it may
 get bloated to the point that VACUUM FULL is really necessary
 to reclaim space. Using the autovacuum daemon alleviates this problem,
 since the daemon schedules vacuuming dynamically in response to update
 activity. It is unwise to disable the daemon completely unless you
 have an extremely predictable workload. One possible compromise is
 to set the daemon's parameters so that it will only react to unusually
 heavy update activity, thus keeping things from getting out of hand,
 while scheduled VACUUMs are expected to do the bulk of the
 work when the load is typical.

 For those not using autovacuum, a typical approach is to schedule a
 database-wide VACUUM once a day during a low-usage period,
 supplemented by more frequent vacuuming of heavily-updated tables as
 necessary. (Some installations with extremely high update rates vacuum
 their busiest tables as often as once every few minutes.) If you have
 multiple databases in a cluster, don't forget to
 VACUUM each one; the program vacuumdb(1) might be helpful.

Tip

 Plain VACUUM may not be satisfactory when
 a table contains large numbers of dead row versions as a result of
 massive update or delete activity. If you have such a table and
 you need to reclaim the excess disk space it occupies, you will need
 to use VACUUM FULL, or alternatively
 CLUSTER
 or one of the table-rewriting variants of
 ALTER TABLE.
 These commands rewrite an entire new copy of the table and build
 new indexes for it. All these options require an
 ACCESS EXCLUSIVE lock. Note that
 they also temporarily use extra disk space approximately equal to the size
 of the table, since the old copies of the table and indexes can't be
 released until the new ones are complete.

Tip

 If you have a table whose entire contents are deleted on a periodic
 basis, consider doing it with
 TRUNCATE rather
 than using DELETE followed by
 VACUUM. TRUNCATE removes the
 entire content of the table immediately, without requiring a
 subsequent VACUUM or VACUUM
 FULL to reclaim the now-unused disk space.
 The disadvantage is that strict MVCC semantics are violated.

Updating Planner Statistics

 The PostgreSQL™ query planner relies on
 statistical information about the contents of tables in order to
 generate good plans for queries. These statistics are gathered by
 the ANALYZE command,
 which can be invoked by itself or
 as an optional step in VACUUM. It is important to have
 reasonably accurate statistics, otherwise poor choices of plans might
 degrade database performance.

 The autovacuum daemon, if enabled, will automatically issue
 ANALYZE commands whenever the content of a table has
 changed sufficiently. However, administrators might prefer to rely
 on manually-scheduled ANALYZE operations, particularly
 if it is known that update activity on a table will not affect the
 statistics of “interesting” columns. The daemon schedules
 ANALYZE strictly as a function of the number of rows
 inserted or updated; it has no knowledge of whether that will lead
 to meaningful statistical changes.

 Tuples changed in partitions and inheritance children do not trigger
 analyze on the parent table. If the parent table is empty or rarely
 changed, it may never be processed by autovacuum, and the statistics for
 the inheritance tree as a whole won't be collected. It is necessary to
 run ANALYZE on the parent table manually in order to
 keep the statistics up to date.

 As with vacuuming for space recovery, frequent updates of statistics
 are more useful for heavily-updated tables than for seldom-updated
 ones. But even for a heavily-updated table, there might be no need for
 statistics updates if the statistical distribution of the data is
 not changing much. A simple rule of thumb is to think about how much
 the minimum and maximum values of the columns in the table change.
 For example, a timestamp column that contains the time
 of row update will have a constantly-increasing maximum value as
 rows are added and updated; such a column will probably need more
 frequent statistics updates than, say, a column containing URLs for
 pages accessed on a website. The URL column might receive changes just
 as often, but the statistical distribution of its values probably
 changes relatively slowly.

 It is possible to run ANALYZE on specific tables and even
 just specific columns of a table, so the flexibility exists to update some
 statistics more frequently than others if your application requires it.
 In practice, however, it is usually best to just analyze the entire
 database, because it is a fast operation. ANALYZE uses a
 statistically random sampling of the rows of a table rather than reading
 every single row.

Tip

 Although per-column tweaking of ANALYZE frequency might not be
 very productive, you might find it worthwhile to do per-column
 adjustment of the level of detail of the statistics collected by
 ANALYZE. Columns that are heavily used in WHERE
 clauses and have highly irregular data distributions might require a
 finer-grain data histogram than other columns. See ALTER TABLE
 SET STATISTICS, or change the database-wide default using the default_statistics_target configuration parameter.

 Also, by default there is limited information available about
 the selectivity of functions. However, if you create a statistics
 object or an expression
 index that uses a function call, useful statistics will be
 gathered about the function, which can greatly improve query
 plans that use the expression index.

Tip

 The autovacuum daemon does not issue ANALYZE commands for
 foreign tables, since it has no means of determining how often that
 might be useful. If your queries require statistics on foreign tables
 for proper planning, it's a good idea to run manually-managed
 ANALYZE commands on those tables on a suitable schedule.

Tip

 The autovacuum daemon does not issue ANALYZE commands
 for partitioned tables. Inheritance parents will only be analyzed if the
 parent itself is changed - changes to child tables do not trigger
 autoanalyze on the parent table. If your queries require statistics on
 parent tables for proper planning, it is necessary to periodically run
 a manual ANALYZE on those tables to keep the statistics
 up to date.

Updating the Visibility Map

 Vacuum maintains a visibility map for each
 table to keep track of which pages contain only tuples that are known to be
 visible to all active transactions (and all future transactions, until the
 page is again modified). This has two purposes. First, vacuum
 itself can skip such pages on the next run, since there is nothing to
 clean up.

 Second, it allows PostgreSQL™ to answer some
 queries using only the index, without reference to the underlying table.
 Since PostgreSQL™ indexes don't contain tuple
 visibility information, a normal index scan fetches the heap tuple for each
 matching index entry, to check whether it should be seen by the current
 transaction.
 An index-only
 scan, on the other hand, checks the visibility map first.
 If it's known that all tuples on the page are
 visible, the heap fetch can be skipped. This is most useful on
 large data sets where the visibility map can prevent disk accesses.
 The visibility map is vastly smaller than the heap, so it can easily be
 cached even when the heap is very large.

Preventing Transaction ID Wraparound Failures

 PostgreSQL™'s
 MVCC transaction semantics
 depend on being able to compare transaction ID (XID)
 numbers: a row version with an insertion XID greater than the current
 transaction's XID is “in the future” and should not be visible
 to the current transaction. But since transaction IDs have limited size
 (32 bits) a cluster that runs for a long time (more
 than 4 billion transactions) would suffer transaction ID
 wraparound: the XID counter wraps around to zero, and all of a sudden
 transactions that were in the past appear to be in the future — which
 means their output become invisible. In short, catastrophic data loss.
 (Actually the data is still there, but that's cold comfort if you cannot
 get at it.) To avoid this, it is necessary to vacuum every table
 in every database at least once every two billion transactions.

 The reason that periodic vacuuming solves the problem is that
 VACUUM will mark rows as frozen, indicating that
 they were inserted by a transaction that committed sufficiently far in
 the past that the effects of the inserting transaction are certain to be
 visible to all current and future transactions.
 Normal XIDs are
 compared using modulo-232 arithmetic. This means
 that for every normal XID, there are two billion XIDs that are
 “older” and two billion that are “newer”; another
 way to say it is that the normal XID space is circular with no
 endpoint. Therefore, once a row version has been created with a particular
 normal XID, the row version will appear to be “in the past” for
 the next two billion transactions, no matter which normal XID we are
 talking about. If the row version still exists after more than two billion
 transactions, it will suddenly appear to be in the future. To
 prevent this, PostgreSQL™ reserves a special XID,
 FrozenTransactionId, which does not follow the normal XID
 comparison rules and is always considered older
 than every normal XID.
 Frozen row versions are treated as if the inserting XID were
 FrozenTransactionId, so that they will appear to be
 “in the past” to all normal transactions regardless of wraparound
 issues, and so such row versions will be valid until deleted, no matter
 how long that is.

Note

 In PostgreSQL™ versions before 9.4, freezing was
 implemented by actually replacing a row's insertion XID
 with FrozenTransactionId, which was visible in the
 row's xmin system column. Newer versions just set a flag
 bit, preserving the row's original xmin for possible
 forensic use. However, rows with xmin equal
 to FrozenTransactionId (2) may still be found
 in databases pg_upgrade'd from pre-9.4 versions.

 Also, system catalogs may contain rows with xmin equal
 to BootstrapTransactionId (1), indicating that they were
 inserted during the first phase of initdb.
 Like FrozenTransactionId, this special XID is treated as
 older than every normal XID.

 vacuum_freeze_min_age
 controls how old an XID value has to be before rows bearing that XID will be
 frozen. Increasing this setting may avoid unnecessary work if the
 rows that would otherwise be frozen will soon be modified again,
 but decreasing this setting increases
 the number of transactions that can elapse before the table must be
 vacuumed again.

 VACUUM uses the visibility map
 to determine which pages of a table must be scanned. Normally, it
 will skip pages that don't have any dead row versions even if those pages
 might still have row versions with old XID values. Therefore, normal
 VACUUMs won't always freeze every old row version in the table.
 When that happens, VACUUM will eventually need to perform an
 aggressive vacuum, which will freeze all eligible unfrozen
 XID and MXID values, including those from all-visible but not all-frozen pages.
 In practice most tables require periodic aggressive vacuuming.
 vacuum_freeze_table_age
 controls when VACUUM does that: all-visible but not all-frozen
 pages are scanned if the number of transactions that have passed since the
 last such scan is greater than vacuum_freeze_table_age minus
 vacuum_freeze_min_age. Setting
 vacuum_freeze_table_age to 0 forces VACUUM to
 always use its aggressive strategy.

 The maximum time that a table can go unvacuumed is two billion
 transactions minus the vacuum_freeze_min_age value at
 the time of the last aggressive vacuum. If it were to go
 unvacuumed for longer than
 that, data loss could result. To ensure that this does not happen,
 autovacuum is invoked on any table that might contain unfrozen rows with
 XIDs older than the age specified by the configuration parameter autovacuum_freeze_max_age. (This will happen even if
 autovacuum is disabled.)

 This implies that if a table is not otherwise vacuumed,
 autovacuum will be invoked on it approximately once every
 autovacuum_freeze_max_age minus
 vacuum_freeze_min_age transactions.
 For tables that are regularly vacuumed for space reclamation purposes,
 this is of little importance. However, for static tables
 (including tables that receive inserts, but no updates or deletes),
 there is no need to vacuum for space reclamation, so it can
 be useful to try to maximize the interval between forced autovacuums
 on very large static tables. Obviously one can do this either by
 increasing autovacuum_freeze_max_age or decreasing
 vacuum_freeze_min_age.

 The effective maximum for vacuum_freeze_table_age is 0.95 *
 autovacuum_freeze_max_age; a setting higher than that will be
 capped to the maximum. A value higher than
 autovacuum_freeze_max_age wouldn't make sense because an
 anti-wraparound autovacuum would be triggered at that point anyway, and
 the 0.95 multiplier leaves some breathing room to run a manual
 VACUUM before that happens. As a rule of thumb,
 vacuum_freeze_table_age should be set to a value somewhat
 below autovacuum_freeze_max_age, leaving enough gap so that
 a regularly scheduled VACUUM or an autovacuum triggered by
 normal delete and update activity is run in that window. Setting it too
 close could lead to anti-wraparound autovacuums, even though the table
 was recently vacuumed to reclaim space, whereas lower values lead to more
 frequent aggressive vacuuming.

 The sole disadvantage of increasing autovacuum_freeze_max_age
 (and vacuum_freeze_table_age along with it) is that
 the pg_xact and pg_commit_ts
 subdirectories of the database cluster will take more space, because it
 must store the commit status and (if track_commit_timestamp is
 enabled) timestamp of all transactions back to
 the autovacuum_freeze_max_age horizon. The commit status uses
 two bits per transaction, so if
 autovacuum_freeze_max_age is set to its maximum allowed value
 of two billion, pg_xact can be expected to grow to about half
 a gigabyte and pg_commit_ts to about 20GB. If this
 is trivial compared to your total database size,
 setting autovacuum_freeze_max_age to its maximum allowed value
 is recommended. Otherwise, set it depending on what you are willing to
 allow for pg_xact and pg_commit_ts storage.
 (The default, 200 million transactions, translates to about 50MB
 of pg_xact storage and about 2GB of pg_commit_ts
 storage.)

 One disadvantage of decreasing vacuum_freeze_min_age is that
 it might cause VACUUM to do useless work: freezing a row
 version is a waste of time if the row is modified
 soon thereafter (causing it to acquire a new XID). So the setting should
 be large enough that rows are not frozen until they are unlikely to change
 any more.

 To track the age of the oldest unfrozen XIDs in a database,
 VACUUM stores XID
 statistics in the system tables pg_class and
 pg_database. In particular,
 the relfrozenxid column of a table's
 pg_class row contains the oldest remaining unfrozen
 XID at the end of the most recent VACUUM that successfully
 advanced relfrozenxid (typically the most recent
 aggressive VACUUM). Similarly, the
 datfrozenxid column of a database's
 pg_database row is a lower bound on the unfrozen XIDs
 appearing in that database — it is just the minimum of the
 per-table relfrozenxid values within the database.
 A convenient way to
 examine this information is to execute queries such as:

SELECT c.oid::regclass as table_name,
 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;

 The age column measures the number of transactions from the
 cutoff XID to the current transaction's XID.

Tip

 When the VACUUM command's VERBOSE
 parameter is specified, VACUUM prints various
 statistics about the table. This includes information about how
 relfrozenxid and
 relminmxid advanced, and the number of
 newly frozen pages. The same details appear in the server log when
 autovacuum logging (controlled by log_autovacuum_min_duration) reports on a
 VACUUM operation executed by autovacuum.

 VACUUM normally only scans pages that have been modified
 since the last vacuum, but relfrozenxid can only be
 advanced when every page of the table
 that might contain unfrozen XIDs is scanned. This happens when
 relfrozenxid is more than
 vacuum_freeze_table_age transactions old, when
 VACUUM's FREEZE option is used, or when all
 pages that are not already all-frozen happen to
 require vacuuming to remove dead row versions. When VACUUM
 scans every page in the table that is not already all-frozen, it should
 set age(relfrozenxid) to a value just a little more than the
 vacuum_freeze_min_age setting
 that was used (more by the number of transactions started since the
 VACUUM started). VACUUM
 will set relfrozenxid to the oldest XID
 that remains in the table, so it's possible that the final value
 will be much more recent than strictly required.
 If no relfrozenxid-advancing
 VACUUM is issued on the table until
 autovacuum_freeze_max_age is reached, an autovacuum will soon
 be forced for the table.

 If for some reason autovacuum fails to clear old XIDs from a table, the
 system will begin to emit warning messages like this when the database's
 oldest XIDs reach forty million transactions from the wraparound point:

WARNING: database "mydb" must be vacuumed within 39985967 transactions
HINT: To avoid a database shutdown, execute a database-wide VACUUM in that database.

 (A manual VACUUM should fix the problem, as suggested by the
 hint; but note that the VACUUM should be performed by a
 superuser, else it will fail to process system catalogs, which prevent it from
 being able to advance the database's datfrozenxid.)
 If these warnings are ignored, the system will refuse to assign new XIDs once
 there are fewer than three million transactions left until wraparound:

ERROR: database is not accepting commands to avoid wraparound data loss in database "mydb"
HINT: Stop the postmaster and vacuum that database in single-user mode.

 In this condition any transactions already in progress can continue,
 but only read-only transactions can be started. Operations that
 modify database records or truncate relations will fail.
 The VACUUM command can still be run normally.
 Contrary to what the hint states, it is not necessary or desirable to stop the
 postmaster or enter single user-mode in order to restore normal operation.
 Instead, follow these steps:

	Resolve old prepared transactions. You can find these by checking
 pg_prepared_xacts for rows where
 age(transactionid) is large. Such transactions should be
 committed or rolled back.
	End long-running open transactions. You can find these by checking
 pg_stat_activity for rows where
 age(backend_xid) or age(backend_xmin) is
 large. Such transactions should be committed or rolled back, or the session
 can be terminated using pg_terminate_backend.
	Drop any old replication slots. Use
 pg_stat_replication to
 find slots where age(xmin) or age(catalog_xmin)
 is large. In many cases, such slots were created for replication to servers that no
 longer exist, or that have been down for a long time. If you drop a slot for a server
 that still exists and might still try to connect to that slot, that replica may
 need to be rebuilt.
	Execute VACUUM in the target database. A database-wide
 VACUUM is simplest; to reduce the time required, it as also possible
 to issue manual VACUUM commands on the tables where
 relminxid is oldest. Do not use VACUUM FULL
 in this scenario, because it requires an XID and will therefore fail, except in super-user
 mode, where it will instead consume an XID and thus increase the risk of transaction ID
 wraparound. Do not use VACUUM FREEZE either, because it will do
 more than the minimum amount of work required to restore normal operation.
	Once normal operation is restored, ensure that autovacuum is properly configured
 in the target database in order to avoid future problems.

Note

 In earlier versions, it was sometimes necessary to stop the postmaster and
 VACUUM the database in a single-user mode. In typical scenarios, this
 is no longer necessary, and should be avoided whenever possible, since it involves taking
 the system down. It is also riskier, since it disables transaction ID wraparound safeguards
 that are designed to prevent data loss. The only reason to use single-user mode in this
 scenario is if you wish to TRUNCATE or DROP unneeded
 tables to avoid needing to VACUUM them. The three-million-transaction
 safety margin exists to let the administrator do this. See the
 postgres(1) reference page for details about using single-user mode.

Multixacts and Wraparound

 Multixact IDs are used to support row locking by
 multiple transactions. Since there is only limited space in a tuple
 header to store lock information, that information is encoded as
 a “multiple transaction ID”, or multixact ID for short,
 whenever there is more than one transaction concurrently locking a
 row. Information about which transaction IDs are included in any
 particular multixact ID is stored separately in
 the pg_multixact subdirectory, and only the multixact ID
 appears in the xmax field in the tuple header.
 Like transaction IDs, multixact IDs are implemented as a
 32-bit counter and corresponding storage, all of which requires
 careful aging management, storage cleanup, and wraparound handling.
 There is a separate storage area which holds the list of members in
 each multixact, which also uses a 32-bit counter and which must also
 be managed. The system function
 pg_get_multixact_members() described in
 Table 9.80, “Transaction ID and Snapshot Information Functions” can be used to examine the
 transaction IDs associated with a multixact ID.

 Whenever VACUUM scans any part of a table, it will replace
 any multixact ID it encounters which is older than
 vacuum_multixact_freeze_min_age
 by a different value, which can be the zero value, a single
 transaction ID, or a newer multixact ID. For each table,
 pg_class.relminmxid stores the oldest
 possible multixact ID still appearing in any tuple of that table.
 If this value is older than
 vacuum_multixact_freeze_table_age, an aggressive
 vacuum is forced. As discussed in the previous section, an aggressive
 vacuum means that only those pages which are known to be all-frozen will
 be skipped. mxid_age() can be used on
 pg_class.relminmxid to find its age.

 Aggressive VACUUMs, regardless of what causes
 them, are guaranteed to be able to advance
 the table's relminmxid.
 Eventually, as all tables in all databases are scanned and their
 oldest multixact values are advanced, on-disk storage for older
 multixacts can be removed.

 As a safety device, an aggressive vacuum scan will
 occur for any table whose multixact-age is greater than autovacuum_multixact_freeze_max_age. Also, if the
 storage occupied by multixacts members exceeds about 10GB, aggressive vacuum
 scans will occur more often for all tables, starting with those that
 have the oldest multixact-age. Both of these kinds of aggressive
 scans will occur even if autovacuum is nominally disabled. The members storage
 area can grow up to about 20GB before reaching wraparound.

 Similar to the XID case, if autovacuum fails to clear old MXIDs from a table, the
 system will begin to emit warning messages when the database's oldest MXIDs reach forty
 million transactions from the wraparound point. And, just as an the XID case, if these
 warnings are ignored, the system will refuse to generate new MXIDs once there are fewer
 than three million left until wraparound.

 Normal operation when MXIDs are exhausted can be restored in much the same way as
 when XIDs are exhausted. Follow the same steps in the previous section, but with the
 following differences:

	Running transactions and prepared transactions can be ignored if there
 is no chance that they might appear in a multixact.
	MXID information is not directly visible in system views such as
 pg_stat_activity; however, looking for old XIDs is still a good
 way of determining which transactions are causing MXID wraparound problems.
	XID exhaustion will block all write transactions, but MXID exhaustion will
 only block a subset of write transactions, specifically those that involve
 row locks that require an MXID.

The Autovacuum Daemon

 PostgreSQL™ has an optional but highly
 recommended feature called autovacuum,
 whose purpose is to automate the execution of
 VACUUM and ANALYZE commands.
 When enabled, autovacuum checks for
 tables that have had a large number of inserted, updated or deleted
 tuples. These checks use the statistics collection facility;
 therefore, autovacuum cannot be used unless track_counts is set to true.
 In the default configuration, autovacuuming is enabled and the related
 configuration parameters are appropriately set.

 The “autovacuum daemon” actually consists of multiple processes.
 There is a persistent daemon process, called the
 autovacuum launcher, which is in charge of starting
 autovacuum worker processes for all databases. The
 launcher will distribute the work across time, attempting to start one
 worker within each database every autovacuum_naptime
 seconds. (Therefore, if the installation has N databases,
 a new worker will be launched every
 autovacuum_naptime/N seconds.)
 A maximum of autovacuum_max_workers worker processes
 are allowed to run at the same time. If there are more than
 autovacuum_max_workers databases to be processed,
 the next database will be processed as soon as the first worker finishes.
 Each worker process will check each table within its database and
 execute VACUUM and/or ANALYZE as needed.
 log_autovacuum_min_duration can be set to monitor
 autovacuum workers' activity.

 If several large tables all become eligible for vacuuming in a short
 amount of time, all autovacuum workers might become occupied with
 vacuuming those tables for a long period. This would result
 in other tables and databases not being vacuumed until a worker becomes
 available. There is no limit on how many workers might be in a
 single database, but workers do try to avoid repeating work that has
 already been done by other workers. Note that the number of running
 workers does not count towards max_connections or
 superuser_reserved_connections limits.

 Tables whose relfrozenxid value is more than
 autovacuum_freeze_max_age transactions old are always
 vacuumed (this also applies to those tables whose freeze max age has
 been modified via storage parameters; see below). Otherwise, if the
 number of tuples obsoleted since the last
 VACUUM exceeds the “vacuum threshold”, the
 table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples

 where the vacuum base threshold is
 autovacuum_vacuum_threshold,
 the vacuum scale factor is
 autovacuum_vacuum_scale_factor,
 and the number of tuples is
 pg_class.reltuples.

 The table is also vacuumed if the number of tuples inserted since the last
 vacuum has exceeded the defined insert threshold, which is defined as:

vacuum insert threshold = vacuum base insert threshold + vacuum insert scale factor * number of tuples

 where the vacuum insert base threshold is
 autovacuum_vacuum_insert_threshold,
 and vacuum insert scale factor is
 autovacuum_vacuum_insert_scale_factor.
 Such vacuums may allow portions of the table to be marked as
 all visible and also allow tuples to be frozen, which
 can reduce the work required in subsequent vacuums.
 For tables which receive INSERT operations but no or
 almost no UPDATE/DELETE operations,
 it may be beneficial to lower the table's
 autovacuum_freeze_min_age as this may allow
 tuples to be frozen by earlier vacuums. The number of obsolete tuples and
 the number of inserted tuples are obtained from the cumulative statistics system;
 it is a semi-accurate count updated by each UPDATE,
 DELETE and INSERT operation. (It is
 only semi-accurate because some information might be lost under heavy
 load.) If the relfrozenxid value of the table
 is more than vacuum_freeze_table_age transactions old,
 an aggressive vacuum is performed to freeze old tuples and advance
 relfrozenxid; otherwise, only pages that have been modified
 since the last vacuum are scanned.

 For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor * number of tuples

 is compared to the total number of tuples inserted, updated, or deleted
 since the last ANALYZE.

 Partitioned tables do not directly store tuples and consequently
 are not processed by autovacuum. (Autovacuum does process table
 partitions just like other tables.) Unfortunately, this means that
 autovacuum does not run ANALYZE on partitioned
 tables, and this can cause suboptimal plans for queries that reference
 partitioned table statistics. You can work around this problem by
 manually running ANALYZE on partitioned tables
 when they are first populated, and again whenever the distribution
 of data in their partitions changes significantly.

 Temporary tables cannot be accessed by autovacuum. Therefore,
 appropriate vacuum and analyze operations should be performed via
 session SQL commands.

 The default thresholds and scale factors are taken from
 postgresql.conf, but it is possible to override them
 (and many other autovacuum control parameters) on a per-table basis; see
 Storage Parameters for more information.
 If a setting has been changed via a table's storage parameters, that value
 is used when processing that table; otherwise the global settings are
 used. See the section called “Automatic Vacuuming” for more details on
 the global settings.

 When multiple workers are running, the autovacuum cost delay parameters
 (see the section called “Cost-based Vacuum Delay”) are
 “balanced” among all the running workers, so that the
 total I/O impact on the system is the same regardless of the number
 of workers actually running. However, any workers processing tables whose
 per-table autovacuum_vacuum_cost_delay or
 autovacuum_vacuum_cost_limit storage parameters have been set
 are not considered in the balancing algorithm.

 Autovacuum workers generally don't block other commands. If a process
 attempts to acquire a lock that conflicts with the
 SHARE UPDATE EXCLUSIVE lock held by autovacuum, lock
 acquisition will interrupt the autovacuum. For conflicting lock modes,
 see Table 13.2, “Conflicting Lock Modes”. However, if the autovacuum
 is running to prevent transaction ID wraparound (i.e., the autovacuum query
 name in the pg_stat_activity view ends with
 (to prevent wraparound)), the autovacuum is not
 automatically interrupted.

Warning

 Regularly running commands that acquire locks conflicting with a
 SHARE UPDATE EXCLUSIVE lock (e.g., ANALYZE) can
 effectively prevent autovacuums from ever completing.

Routine Reindexing

 In some situations it is worthwhile to rebuild indexes periodically
 with the REINDEX(7) command or a series of individual
 rebuilding steps.

 B-tree index pages that have become completely empty are reclaimed for
 re-use. However, there is still a possibility
 of inefficient use of space: if all but a few index keys on a page have
 been deleted, the page remains allocated. Therefore, a usage
 pattern in which most, but not all, keys in each range are eventually
 deleted will see poor use of space. For such usage patterns,
 periodic reindexing is recommended.

 The potential for bloat in non-B-tree indexes has not been well
 researched. It is a good idea to periodically monitor the index's physical
 size when using any non-B-tree index type.

 Also, for B-tree indexes, a freshly-constructed index is slightly faster to
 access than one that has been updated many times because logically
 adjacent pages are usually also physically adjacent in a newly built index.
 (This consideration does not apply to non-B-tree indexes.) It
 might be worthwhile to reindex periodically just to improve access speed.

 REINDEX(7) can be used safely and easily in all cases.
 This command requires an ACCESS EXCLUSIVE lock by
 default, hence it is often preferable to execute it with its
 CONCURRENTLY option, which requires only a
 SHARE UPDATE EXCLUSIVE lock.

Log File Maintenance

 It is a good idea to save the database server's log output
 somewhere, rather than just discarding it via /dev/null.
 The log output is invaluable when diagnosing
 problems.

Note

 The server log can contain sensitive information and needs to be protected,
 no matter how or where it is stored, or the destination to which it is routed.
 For example, some DDL statements might contain plaintext passwords or other
 authentication details. Logged statements at the ERROR
 level might show the SQL source code for applications
 and might also contain some parts of data rows. Recording data, events and
 related information is the intended function of this facility, so this is
 not a leakage or a bug. Please ensure the server logs are visible only to
 appropriately authorized people.

 Log output tends to be voluminous
 (especially at higher debug levels) so you won't want to save it
 indefinitely. You need to rotate the log files so that
 new log files are started and old ones removed after a reasonable
 period of time.

 If you simply direct the stderr of
 postgres into a
 file, you will have log output, but
 the only way to truncate the log file is to stop and restart
 the server. This might be acceptable if you are using
 PostgreSQL™ in a development environment,
 but few production servers would find this behavior acceptable.

 A better approach is to send the server's
 stderr output to some type of log rotation program.
 There is a built-in log rotation facility, which you can use by
 setting the configuration parameter logging_collector to
 true in postgresql.conf. The control
 parameters for this program are described in the section called “Where to Log”. You can also use this approach
 to capture the log data in machine readable CSV
 (comma-separated values) format.

 Alternatively, you might prefer to use an external log rotation
 program if you have one that you are already using with other
 server software. For example, the rotatelogs
 tool included in the Apache™ distribution
 can be used with PostgreSQL™. One way to
 do this is to pipe the server's
 stderr output to the desired program.
 If you start the server with
 pg_ctl, then stderr
 is already redirected to stdout, so you just need a
 pipe command, for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

 You can combine these approaches by setting up logrotate
 to collect log files produced by PostgreSQL™ built-in
 logging collector. In this case, the logging collector defines the names and
 location of the log files, while logrotate
 periodically archives these files. When initiating log rotation,
 logrotate must ensure that the application
 sends further output to the new file. This is commonly done with a
 postrotate script that sends a SIGHUP
 signal to the application, which then reopens the log file.
 In PostgreSQL™, you can run pg_ctl
 with the logrotate option instead. When the server receives
 this command, the server either switches to a new log file or reopens the
 existing file, depending on the logging configuration
 (see the section called “Where to Log”).

Note

 When using static log file names, the server might fail to reopen the log
 file if the max open file limit is reached or a file table overflow occurs.
 In this case, log messages are sent to the old log file until a
 successful log rotation. If logrotate is
 configured to compress the log file and delete it, the server may lose
 the messages logged in this time frame. To avoid this issue, you can
 configure the logging collector to dynamically assign log file names
 and use a prerotate script to ignore open log files.

 Another production-grade approach to managing log output is to
 send it to syslog and let
 syslog deal with file rotation. To do this, set the
 configuration parameter log_destination to syslog
 (to log to syslog only) in
 postgresql.conf. Then you can send a SIGHUP
 signal to the syslog daemon whenever you want to force it
 to start writing a new log file. If you want to automate log
 rotation, the logrotate program can be
 configured to work with log files from
 syslog.

 On many systems, however, syslog is not very reliable,
 particularly with large log messages; it might truncate or drop messages
 just when you need them the most. Also, on Linux™,
 syslog will flush each message to disk, yielding poor
 performance. (You can use a “-” at the start of the file name
 in the syslog configuration file to disable syncing.)

 Note that all the solutions described above take care of starting new
 log files at configurable intervals, but they do not handle deletion
 of old, no-longer-useful log files. You will probably want to set
 up a batch job to periodically delete old log files. Another possibility
 is to configure the rotation program so that old log files are overwritten
 cyclically.

 pgBadger™
 is an external project that does sophisticated log file analysis.
 check_postgres™
 provides Nagios alerts when important messages appear in the log
 files, as well as detection of many other extraordinary conditions.

Chapter 26. Backup and Restore

 As with everything that contains valuable data, PostgreSQL™
 databases should be backed up regularly. While the procedure is
 essentially simple, it is important to have a clear understanding of
 the underlying techniques and assumptions.

 There are three fundamentally different approaches to backing up
 PostgreSQL™ data:

	SQL dump

	File system level backup

	Continuous archiving

 Each has its own strengths and weaknesses; each is discussed in turn
 in the following sections.

SQL Dump

 The idea behind this dump method is to generate a file with SQL
 commands that, when fed back to the server, will recreate the
 database in the same state as it was at the time of the dump.
 PostgreSQL™ provides the utility program
 pg_dump(1) for this purpose. The basic usage of this
 command is:

pg_dump dbname > dumpfile

 As you see, pg_dump writes its result to the
 standard output. We will see below how this can be useful.
 While the above command creates a text file, pg_dump
 can create files in other formats that allow for parallelism and more
 fine-grained control of object restoration.

 pg_dump is a regular PostgreSQL™
 client application (albeit a particularly clever one). This means
 that you can perform this backup procedure from any remote host that has
 access to the database. But remember that pg_dump
 does not operate with special permissions. In particular, it must
 have read access to all tables that you want to back up, so in order
 to back up the entire database you almost always have to run it as a
 database superuser. (If you do not have sufficient privileges to back up
 the entire database, you can still back up portions of the database to which
 you do have access using options such as
 -n schema
 or -t table.)

 To specify which database server pg_dump should
 contact, use the command line options -h
 host and -p port. The
 default host is the local host or whatever your
 PGHOST environment variable specifies. Similarly,
 the default port is indicated by the PGPORT
 environment variable or, failing that, by the compiled-in default.
 (Conveniently, the server will normally have the same compiled-in
 default.)

 Like any other PostgreSQL™ client application,
 pg_dump will by default connect with the database
 user name that is equal to the current operating system user name. To override
 this, either specify the -U option or set the
 environment variable PGUSER. Remember that
 pg_dump connections are subject to the normal
 client authentication mechanisms (which are described in Chapter 21, Client Authentication).

 An important advantage of pg_dump over the other backup
 methods described later is that pg_dump's output can
 generally be re-loaded into newer versions of PostgreSQL™,
 whereas file-level backups and continuous archiving are both extremely
 server-version-specific. pg_dump is also the only method
 that will work when transferring a database to a different machine
 architecture, such as going from a 32-bit to a 64-bit server.

 Dumps created by pg_dump are internally consistent,
 meaning, the dump represents a snapshot of the database at the time
 pg_dump began running. pg_dump does not
 block other operations on the database while it is working.
 (Exceptions are those operations that need to operate with an
 exclusive lock, such as most forms of ALTER TABLE.)

Restoring the Dump

 Text files created by pg_dump are intended to
 be read by the psql program using its default
 settings. The general command form to restore a text dump is

psql -X dbname < dumpfile

 where dumpfile is the
 file output by the pg_dump command. The database dbname will not be created by this
 command, so you must create it yourself from template0
 before executing psql (e.g., with
 createdb -T template0 dbname).
 To ensure psql runs with its default settings,
 use the -X (--no-psqlrc) option.
 psql
 supports options similar to pg_dump for specifying
 the database server to connect to and the user name to use. See
 the psql(1) reference page for more information.

 Non-text file dumps should be restored using the pg_restore(1) utility.

 Before restoring an SQL dump, all the users who own objects or were
 granted permissions on objects in the dumped database must already
 exist. If they do not, the restore will fail to recreate the
 objects with the original ownership and/or permissions.
 (Sometimes this is what you want, but usually it is not.)

 By default, the psql script will continue to
 execute after an SQL error is encountered. You might wish to run
 psql with
 the ON_ERROR_STOP variable set to alter that
 behavior and have psql exit with an
 exit status of 3 if an SQL error occurs:

psql -X --set ON_ERROR_STOP=on dbname < dumpfile

 Either way, you will only have a partially restored database.
 Alternatively, you can specify that the whole dump should be
 restored as a single transaction, so the restore is either fully
 completed or fully rolled back. This mode can be specified by
 passing the -1 or --single-transaction
 command-line options to psql. When using this
 mode, be aware that even a minor error can rollback a
 restore that has already run for many hours. However, that might
 still be preferable to manually cleaning up a complex database
 after a partially restored dump.

 The ability of pg_dump and psql to
 write to or read from pipes makes it possible to dump a database
 directly from one server to another, for example:

pg_dump -h host1 dbname | psql -X -h host2 dbname

Important

 The dumps produced by pg_dump are relative to
 template0. This means that any languages, procedures,
 etc. added via template1 will also be dumped by
 pg_dump. As a result, when restoring, if you are
 using a customized template1, you must create the
 empty database from template0, as in the example
 above.

 After restoring a backup, it is wise to run ANALYZE on each
 database so the query optimizer has useful statistics;
 see the section called “Updating Planner Statistics”
 and the section called “The Autovacuum Daemon” for more information.
 For more advice on how to load large amounts of data
 into PostgreSQL™ efficiently, refer to the section called “Populating a Database”.

Using pg_dumpall

 pg_dump dumps only a single database at a time,
 and it does not dump information about roles or tablespaces
 (because those are cluster-wide rather than per-database).
 To support convenient dumping of the entire contents of a database
 cluster, the pg_dumpall(1) program is provided.
 pg_dumpall backs up each database in a given
 cluster, and also preserves cluster-wide data such as role and
 tablespace definitions. The basic usage of this command is:

pg_dumpall > dumpfile

 The resulting dump can be restored with psql:

psql -X -f dumpfile postgres

 (Actually, you can specify any existing database name to start from,
 but if you are loading into an empty cluster then postgres
 should usually be used.) It is always necessary to have
 database superuser access when restoring a pg_dumpall
 dump, as that is required to restore the role and tablespace information.
 If you use tablespaces, make sure that the tablespace paths in the
 dump are appropriate for the new installation.

 pg_dumpall works by emitting commands to re-create
 roles, tablespaces, and empty databases, then invoking
 pg_dump for each database. This means that while
 each database will be internally consistent, the snapshots of
 different databases are not synchronized.

 Cluster-wide data can be dumped alone using the
 pg_dumpall --globals-only option.
 This is necessary to fully backup the cluster if running the
 pg_dump command on individual databases.

Handling Large Databases

 Some operating systems have maximum file size limits that cause
 problems when creating large pg_dump output files.
 Fortunately, pg_dump can write to the standard
 output, so you can use standard Unix tools to work around this
 potential problem. There are several possible methods:

Use compressed dumps.
 You can use your favorite compression program, for example
 gzip:

pg_dump dbname | gzip > filename.gz

 Reload with:

gunzip -c filename.gz | psql dbname

 or:

cat filename.gz | gunzip | psql dbname

Use split.
 The split command
 allows you to split the output into smaller files that are
 acceptable in size to the underlying file system. For example, to
 make 2 gigabyte chunks:

pg_dump dbname | split -b 2G - filename

 Reload with:

cat filename* | psql dbname

 If using GNU split, it is possible to
 use it and gzip together:

pg_dump dbname | split -b 2G --filter='gzip > $FILE.gz'

 It can be restored using zcat.

Use pg_dump's custom dump format.
 If PostgreSQL™ was built on a system with the
 zlib compression library installed, the custom dump
 format will compress data as it writes it to the output file. This will
 produce dump file sizes similar to using gzip, but it
 has the added advantage that tables can be restored selectively. The
 following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

 A custom-format dump is not a script for psql, but
 instead must be restored with pg_restore, for example:

pg_restore -d dbname filename

 See the pg_dump(1) and pg_restore(1) reference pages for details.

 For very large databases, you might need to combine split
 with one of the other two approaches.

Use pg_dump's parallel dump feature.
 To speed up the dump of a large database, you can use
 pg_dump's parallel mode. This will dump
 multiple tables at the same time. You can control the degree of
 parallelism with the -j parameter. Parallel dumps
 are only supported for the "directory" archive format.

pg_dump -j num -F d -f out.dir dbname

 You can use pg_restore -j to restore a dump in parallel.
 This will work for any archive of either the "custom" or the "directory"
 archive mode, whether or not it has been created with pg_dump -j.

File System Level Backup

 An alternative backup strategy is to directly copy the files that
 PostgreSQL™ uses to store the data in the database;
 the section called “Creating a Database Cluster” explains where these files
 are located. You can use whatever method you prefer
 for doing file system backups; for example:

tar -cf backup.tar /usr/local/pgsql/data

 There are two restrictions, however, which make this method
 impractical, or at least inferior to the pg_dump
 method:

	
 The database server must be shut down in order to
 get a usable backup. Half-way measures such as disallowing all
 connections will not work
 (in part because tar and similar tools do not take
 an atomic snapshot of the state of the file system,
 but also because of internal buffering within the server).
 Information about stopping the server can be found in
 the section called “Shutting Down the Server”. Needless to say, you
 also need to shut down the server before restoring the data.

	
 If you have dug into the details of the file system layout of the
 database, you might be tempted to try to back up or restore only certain
 individual tables or databases from their respective files or
 directories. This will not work because the
 information contained in these files is not usable without
 the commit log files,
 pg_xact/*, which contain the commit status of
 all transactions. A table file is only usable with this
 information. Of course it is also impossible to restore only a
 table and the associated pg_xact data
 because that would render all other tables in the database
 cluster useless. So file system backups only work for complete
 backup and restoration of an entire database cluster.

 An alternative file-system backup approach is to make a
 “consistent snapshot” of the data directory, if the
 file system supports that functionality (and you are willing to
 trust that it is implemented correctly). The typical procedure is
 to make a “frozen snapshot” of the volume containing the
 database, then copy the whole data directory (not just parts, see
 above) from the snapshot to a backup device, then release the frozen
 snapshot. This will work even while the database server is running.
 However, a backup created in this way saves
 the database files in a state as if the database server was not
 properly shut down; therefore, when you start the database server
 on the backed-up data, it will think the previous server instance
 crashed and will replay the WAL log. This is not a problem; just
 be aware of it (and be sure to include the WAL files in your backup).
 You can perform a CHECKPOINT before taking the
 snapshot to reduce recovery time.

 If your database is spread across multiple file systems, there might not
 be any way to obtain exactly-simultaneous frozen snapshots of all
 the volumes. For example, if your data files and WAL log are on different
 disks, or if tablespaces are on different file systems, it might
 not be possible to use snapshot backup because the snapshots
 must be simultaneous.
 Read your file system documentation very carefully before trusting
 the consistent-snapshot technique in such situations.

 If simultaneous snapshots are not possible, one option is to shut down
 the database server long enough to establish all the frozen snapshots.
 Another option is to perform a continuous archiving base backup (the section called “Making a Base Backup”) because such backups are immune to file
 system changes during the backup. This requires enabling continuous
 archiving just during the backup process; restore is done using
 continuous archive recovery (the section called “Recovering Using a Continuous Archive Backup”).

 Another option is to use rsync to perform a file
 system backup. This is done by first running rsync
 while the database server is running, then shutting down the database
 server long enough to do an rsync --checksum.
 (--checksum is necessary because rsync only
 has file modification-time granularity of one second.) The
 second rsync will be quicker than the first,
 because it has relatively little data to transfer, and the end result
 will be consistent because the server was down. This method
 allows a file system backup to be performed with minimal downtime.

 Note that a file system backup will typically be larger
 than an SQL dump. (pg_dump does not need to dump
 the contents of indexes for example, just the commands to recreate
 them.) However, taking a file system backup might be faster.

Continuous Archiving and Point-in-Time Recovery (PITR)

 At all times, PostgreSQL™ maintains a
 write ahead log (WAL) in the pg_wal/
 subdirectory of the cluster's data directory. The log records
 every change made to the database's data files. This log exists
 primarily for crash-safety purposes: if the system crashes, the
 database can be restored to consistency by “replaying” the
 log entries made since the last checkpoint. However, the existence
 of the log makes it possible to use a third strategy for backing up
 databases: we can combine a file-system-level backup with backup of
 the WAL files. If recovery is needed, we restore the file system backup and
 then replay from the backed-up WAL files to bring the system to a
 current state. This approach is more complex to administer than
 either of the previous approaches, but it has some significant
 benefits:

	
 We do not need a perfectly consistent file system backup as the starting point.
 Any internal inconsistency in the backup will be corrected by log
 replay (this is not significantly different from what happens during
 crash recovery). So we do not need a file system snapshot capability,
 just tar or a similar archiving tool.

	
 Since we can combine an indefinitely long sequence of WAL files
 for replay, continuous backup can be achieved simply by continuing to archive
 the WAL files. This is particularly valuable for large databases, where
 it might not be convenient to take a full backup frequently.

	
 It is not necessary to replay the WAL entries all the
 way to the end. We could stop the replay at any point and have a
 consistent snapshot of the database as it was at that time. Thus,
 this technique supports point-in-time recovery: it is
 possible to restore the database to its state at any time since your base
 backup was taken.

	
 If we continuously feed the series of WAL files to another
 machine that has been loaded with the same base backup file, we
 have a warm standby system: at any point we can bring up
 the second machine and it will have a nearly-current copy of the
 database.

Note

 pg_dump and
 pg_dumpall do not produce file-system-level
 backups and cannot be used as part of a continuous-archiving solution.
 Such dumps are logical and do not contain enough
 information to be used by WAL replay.

 As with the plain file-system-backup technique, this method can only
 support restoration of an entire database cluster, not a subset.
 Also, it requires a lot of archival storage: the base backup might be bulky,
 and a busy system will generate many megabytes of WAL traffic that
 have to be archived. Still, it is the preferred backup technique in
 many situations where high reliability is needed.

 To recover successfully using continuous archiving (also called
 “online backup” by many database vendors), you need a continuous
 sequence of archived WAL files that extends back at least as far as the
 start time of your backup. So to get started, you should set up and test
 your procedure for archiving WAL files before you take your
 first base backup. Accordingly, we first discuss the mechanics of
 archiving WAL files.

Setting Up WAL Archiving

 In an abstract sense, a running PostgreSQL™ system
 produces an indefinitely long sequence of WAL records. The system
 physically divides this sequence into WAL segment
 files, which are normally 16MB apiece (although the segment size
 can be altered during initdb). The segment
 files are given numeric names that reflect their position in the
 abstract WAL sequence. When not using WAL archiving, the system
 normally creates just a few segment files and then
 “recycles” them by renaming no-longer-needed segment files
 to higher segment numbers. It's assumed that segment files whose
 contents precede the last checkpoint are no longer of
 interest and can be recycled.

 When archiving WAL data, we need to capture the contents of each segment
 file once it is filled, and save that data somewhere before the segment
 file is recycled for reuse. Depending on the application and the
 available hardware, there could be many different ways of “saving
 the data somewhere”: we could copy the segment files to an NFS-mounted
 directory on another machine, write them onto a tape drive (ensuring that
 you have a way of identifying the original name of each file), or batch
 them together and burn them onto CDs, or something else entirely. To
 provide the database administrator with flexibility,
 PostgreSQL™ tries not to make any assumptions about how
 the archiving will be done. Instead, PostgreSQL™ lets
 the administrator specify a shell command or an archive library to be executed to copy a
 completed segment file to wherever it needs to go. This could be as simple
 as a shell command that uses cp, or it could invoke a
 complex C function — it's all up to you.

 To enable WAL archiving, set the wal_level
 configuration parameter to replica or higher,
 archive_mode to on,
 specify the shell command to use in the archive_command configuration parameter
 or specify the library to use in the archive_library configuration parameter. In practice
 these settings will always be placed in the
 postgresql.conf file.

 In archive_command,
 %p is replaced by the path name of the file to
 archive, while %f is replaced by only the file name.
 (The path name is relative to the current working directory,
 i.e., the cluster's data directory.)
 Use %% if you need to embed an actual %
 character in the command. The simplest useful command is something
 like:

archive_command = 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/%f' # Unix
archive_command = 'copy "%p" "C:\\server\\archivedir\\%f"' # Windows

 which will copy archivable WAL segments to the directory
 /mnt/server/archivedir. (This is an example, not a
 recommendation, and might not work on all platforms.) After the
 %p and %f parameters have been replaced,
 the actual command executed might look like this:

test ! -f /mnt/server/archivedir/00000001000000A900000065 && cp pg_wal/00000001000000A900000065 /mnt/server/archivedir/00000001000000A900000065

 A similar command will be generated for each new file to be archived.

 The archive command will be executed under the ownership of the same
 user that the PostgreSQL™ server is running as. Since
 the series of WAL files being archived contains effectively everything
 in your database, you will want to be sure that the archived data is
 protected from prying eyes; for example, archive into a directory that
 does not have group or world read access.

 It is important that the archive command return zero exit status if and
 only if it succeeds. Upon getting a zero result,
 PostgreSQL™ will assume that the file has been
 successfully archived, and will remove or recycle it. However, a nonzero
 status tells PostgreSQL™ that the file was not archived;
 it will try again periodically until it succeeds.

 Another way to archive is to use a custom archive module as the
 archive_library. Since such modules are written in
 C, creating your own may require considerably more effort
 than writing a shell command. However, archive modules can be more
 performant than archiving via shell, and they will have access to many
 useful server resources. For more information about archive modules, see
 Chapter 51, Archive Modules.

 When the archive command is terminated by a signal (other than
 SIGTERM that is used as part of a server
 shutdown) or an error by the shell with an exit status greater than
 125 (such as command not found), or if the archive function emits an
 ERROR or FATAL, the archiver process
 aborts and gets restarted by the postmaster. In such cases, the failure is
 not reported in pg_stat_archiver.

 Archive commands and libraries should generally be designed to refuse to overwrite
 any pre-existing archive file. This is an important safety feature to
 preserve the integrity of your archive in case of administrator error
 (such as sending the output of two different servers to the same archive
 directory). It is advisable to test your proposed archive library to ensure
 that it does not overwrite an existing file.

 In rare cases, PostgreSQL™ may attempt to
 re-archive a WAL file that was previously archived. For example, if the
 system crashes before the server makes a durable record of archival
 success, the server will attempt to archive the file again after
 restarting (provided archiving is still enabled). When an archive command or library
 encounters a pre-existing file, it should return a zero status or true, respectively,
 if the WAL file has identical contents to the pre-existing archive and the
 pre-existing archive is fully persisted to storage. If a pre-existing
 file contains different contents than the WAL file being archived, the
 archive command or library must return a nonzero status or
 false, respectively.

 The example command above for Unix avoids overwriting a pre-existing archive
 by including a separate
 test step. On some Unix platforms, cp has
 switches such as -i that can be used to do the same thing
 less verbosely, but you should not rely on these without verifying that
 the right exit status is returned. (In particular, GNU cp
 will return status zero when -i is used and the target file
 already exists, which is not the desired behavior.)

 While designing your archiving setup, consider what will happen if
 the archive command or library fails repeatedly because some aspect requires
 operator intervention or the archive runs out of space. For example, this
 could occur if you write to tape without an autochanger; when the tape
 fills, nothing further can be archived until the tape is swapped.
 You should ensure that any error condition or request to a human operator
 is reported appropriately so that the situation can be
 resolved reasonably quickly. The pg_wal/ directory will
 continue to fill with WAL segment files until the situation is resolved.
 (If the file system containing pg_wal/ fills up,
 PostgreSQL™ will do a PANIC shutdown. No committed
 transactions will be lost, but the database will remain offline until
 you free some space.)

 The speed of the archive command or library is unimportant as long as it can keep up
 with the average rate at which your server generates WAL data. Normal
 operation continues even if the archiving process falls a little behind.
 If archiving falls significantly behind, this will increase the amount of
 data that would be lost in the event of a disaster. It will also mean that
 the pg_wal/ directory will contain large numbers of
 not-yet-archived segment files, which could eventually exceed available
 disk space. You are advised to monitor the archiving process to ensure that
 it is working as you intend.

 In writing your archive command or library, you should assume that the file names to
 be archived can be up to 64 characters long and can contain any
 combination of ASCII letters, digits, and dots. It is not necessary to
 preserve the original relative path (%p) but it is necessary to
 preserve the file name (%f).

 Note that although WAL archiving will allow you to restore any
 modifications made to the data in your PostgreSQL™ database,
 it will not restore changes made to configuration files (that is,
 postgresql.conf, pg_hba.conf and
 pg_ident.conf), since those are edited manually rather
 than through SQL operations.
 You might wish to keep the configuration files in a location that will
 be backed up by your regular file system backup procedures. See
 the section called “File Locations” for how to relocate the
 configuration files.

 The archive command or function is only invoked on completed WAL segments. Hence,
 if your server generates only little WAL traffic (or has slack periods
 where it does so), there could be a long delay between the completion
 of a transaction and its safe recording in archive storage. To put
 a limit on how old unarchived data can be, you can set
 archive_timeout to force the server to switch
 to a new WAL segment file at least that often. Note that archived
 files that are archived early due to a forced switch are still the same
 length as completely full files. It is therefore unwise to set a very
 short archive_timeout — it will bloat your archive
 storage. archive_timeout settings of a minute or so are
 usually reasonable.

 Also, you can force a segment switch manually with
 pg_switch_wal if you want to ensure that a
 just-finished transaction is archived as soon as possible. Other utility
 functions related to WAL management are listed in Table 9.91, “Backup Control Functions”.

 When wal_level is minimal some SQL commands
 are optimized to avoid WAL logging, as described in the section called “Disable WAL Archival and Streaming Replication”. If archiving or streaming replication were
 turned on during execution of one of these statements, WAL would not
 contain enough information for archive recovery. (Crash recovery is
 unaffected.) For this reason, wal_level can only be changed at
 server start. However, archive_command and archive_library can be changed with a
 configuration file reload. If you are archiving via shell and wish to
 temporarily stop archiving,
 one way to do it is to set archive_command to the empty
 string ('').
 This will cause WAL files to accumulate in pg_wal/ until a
 working archive_command is re-established.

Making a Base Backup

 The easiest way to perform a base backup is to use the
 pg_basebackup(1) tool. It can create
 a base backup either as regular files or as a tar archive. If more
 flexibility than pg_basebackup(1) can provide is
 required, you can also make a base backup using the low level API
 (see the section called “Making a Base Backup Using the Low Level API”).

 It is not necessary to be concerned about the amount of time it takes
 to make a base backup. However, if you normally run the
 server with full_page_writes disabled, you might notice a drop
 in performance while the backup runs since full_page_writes is
 effectively forced on during backup mode.

 To make use of the backup, you will need to keep all the WAL
 segment files generated during and after the file system backup.
 To aid you in doing this, the base backup process
 creates a backup history file that is immediately
 stored into the WAL archive area. This file is named after the first
 WAL segment file that you need for the file system backup.
 For example, if the starting WAL file is
 0000000100001234000055CD the backup history file will be
 named something like
 0000000100001234000055CD.007C9330.backup. (The second
 part of the file name stands for an exact position within the WAL
 file, and can ordinarily be ignored.) Once you have safely archived
 the file system backup and the WAL segment files used during the
 backup (as specified in the backup history file), all archived WAL
 segments with names numerically less are no longer needed to recover
 the file system backup and can be deleted. However, you should
 consider keeping several backup sets to be absolutely certain that
 you can recover your data.

 The backup history file is just a small text file. It contains the
 label string you gave to pg_basebackup(1), as well as
 the starting and ending times and WAL segments of the backup.
 If you used the label to identify the associated dump file,
 then the archived history file is enough to tell you which dump file to
 restore.

 Since you have to keep around all the archived WAL files back to your
 last base backup, the interval between base backups should usually be
 chosen based on how much storage you want to expend on archived WAL
 files. You should also consider how long you are prepared to spend
 recovering, if recovery should be necessary — the system will have to
 replay all those WAL segments, and that could take awhile if it has
 been a long time since the last base backup.

Making a Base Backup Using the Low Level API

 The procedure for making a base backup using the low level
 APIs contains a few more steps than
 the pg_basebackup(1) method, but is relatively
 simple. It is very important that these steps are executed in
 sequence, and that the success of a step is verified before
 proceeding to the next step.

 Multiple backups are able to be run concurrently (both those
 started using this backup API and those started using
 pg_basebackup(1)).

	
 Ensure that WAL archiving is enabled and working.

	
 Connect to the server (it does not matter which database) as a user with
 rights to run pg_backup_start (superuser,
 or a user who has been granted EXECUTE on the
 function) and issue the command:

SELECT pg_backup_start(label => 'label', fast => false);

 where label is any string you want to use to uniquely
 identify this backup operation. The connection
 calling pg_backup_start must be maintained until the end of
 the backup, or the backup will be automatically aborted.

 Online backups are always started at the beginning of a checkpoint.
 By default, pg_backup_start will wait for the next
 regularly scheduled checkpoint to complete, which may take a long time (see the
 configuration parameters checkpoint_timeout and
 checkpoint_completion_target). This is
 usually preferable as it minimizes the impact on the running system. If you
 want to start the backup as soon as possible, pass true as
 the second parameter to pg_backup_start and it will
 request an immediate checkpoint, which will finish as fast as possible using
 as much I/O as possible.

	
 Perform the backup, using any convenient file-system-backup tool
 such as tar or cpio (not
 pg_dump or
 pg_dumpall). It is neither
 necessary nor desirable to stop normal operation of the database
 while you do this. See
 the section called “Backing Up the Data Directory” for things to
 consider during this backup.

	
 In the same connection as before, issue the command:

SELECT * FROM pg_backup_stop(wait_for_archive => true);

 This terminates backup mode. On a primary, it also performs an automatic
 switch to the next WAL segment. On a standby, it is not possible to
 automatically switch WAL segments, so you may wish to run
 pg_switch_wal on the primary to perform a manual
 switch. The reason for the switch is to arrange for
 the last WAL segment file written during the backup interval to be
 ready to archive.

 pg_backup_stop will return one row with three
 values. The second of these fields should be written to a file named
 backup_label in the root directory of the backup. The
 third field should be written to a file named
 tablespace_map unless the field is empty. These files are
 vital to the backup working and must be written byte for byte without
 modification, which may require opening the file in binary mode.

	
 Once the WAL segment files active during the backup are archived, you are
 done. The file identified by pg_backup_stop's first return
 value is the last segment that is required to form a complete set of
 backup files. On a primary, if archive_mode is enabled and the
 wait_for_archive parameter is true,
 pg_backup_stop does not return until the last segment has
 been archived.
 On a standby, archive_mode must be always in order
 for pg_backup_stop to wait.
 Archiving of these files happens automatically since you have
 already configured archive_command or archive_library.
 In most cases this happens quickly, but you are advised to monitor your
 archive system to ensure there are no delays.
 If the archive process has fallen behind because of failures of the
 archive command or library, it will keep retrying
 until the archive succeeds and the backup is complete.
 If you wish to place a time limit on the execution of
 pg_backup_stop, set an appropriate
 statement_timeout value, but make note that if
 pg_backup_stop terminates because of this your backup
 may not be valid.

 If the backup process monitors and ensures that all WAL segment files
 required for the backup are successfully archived then the
 wait_for_archive parameter (which defaults to true) can be set
 to false to have
 pg_backup_stop return as soon as the stop backup record is
 written to the WAL. By default, pg_backup_stop will wait
 until all WAL has been archived, which can take some time. This option
 must be used with caution: if WAL archiving is not monitored correctly
 then the backup might not include all of the WAL files and will
 therefore be incomplete and not able to be restored.

Backing Up the Data Directory

 Some file system backup tools emit warnings or errors
 if the files they are trying to copy change while the copy proceeds.
 When taking a base backup of an active database, this situation is normal
 and not an error. However, you need to ensure that you can distinguish
 complaints of this sort from real errors. For example, some versions
 of rsync return a separate exit code for
 “vanished source files”, and you can write a driver script to
 accept this exit code as a non-error case. Also, some versions of
 GNU tar return an error code indistinguishable from
 a fatal error if a file was truncated while tar was
 copying it. Fortunately, GNU tar versions 1.16 and
 later exit with 1 if a file was changed during the backup,
 and 2 for other errors. With GNU tar version 1.23 and
 later, you can use the warning options --warning=no-file-changed
 --warning=no-file-removed to hide the related warning messages.

 Be certain that your backup includes all of the files under
 the database cluster directory (e.g., /usr/local/pgsql/data).
 If you are using tablespaces that do not reside underneath this directory,
 be careful to include them as well (and be sure that your backup
 archives symbolic links as links, otherwise the restore will corrupt
 your tablespaces).

 You should, however, omit from the backup the files within the
 cluster's pg_wal/ subdirectory. This
 slight adjustment is worthwhile because it reduces the risk
 of mistakes when restoring. This is easy to arrange if
 pg_wal/ is a symbolic link pointing to someplace outside
 the cluster directory, which is a common setup anyway for performance
 reasons. You might also want to exclude postmaster.pid
 and postmaster.opts, which record information
 about the running postmaster, not about the
 postmaster which will eventually use this backup.
 (These files can confuse pg_ctl.)

 It is often a good idea to also omit from the backup the files
 within the cluster's pg_replslot/ directory, so that
 replication slots that exist on the primary do not become part of the
 backup. Otherwise, the subsequent use of the backup to create a standby
 may result in indefinite retention of WAL files on the standby, and
 possibly bloat on the primary if hot standby feedback is enabled, because
 the clients that are using those replication slots will still be connecting
 to and updating the slots on the primary, not the standby. Even if the
 backup is only intended for use in creating a new primary, copying the
 replication slots isn't expected to be particularly useful, since the
 contents of those slots will likely be badly out of date by the time
 the new primary comes on line.

 The contents of the directories pg_dynshmem/,
 pg_notify/, pg_serial/,
 pg_snapshots/, pg_stat_tmp/,
 and pg_subtrans/ (but not the directories themselves) can be
 omitted from the backup as they will be initialized on postmaster startup.

 Any file or directory beginning with pgsql_tmp can be
 omitted from the backup. These files are removed on postmaster start and
 the directories will be recreated as needed.

 pg_internal.init files can be omitted from the
 backup whenever a file of that name is found. These files contain
 relation cache data that is always rebuilt when recovering.

 The backup label
 file includes the label string you gave to pg_backup_start,
 as well as the time at which pg_backup_start was run, and
 the name of the starting WAL file. In case of confusion it is therefore
 possible to look inside a backup file and determine exactly which
 backup session the dump file came from. The tablespace map file includes
 the symbolic link names as they exist in the directory
 pg_tblspc/ and the full path of each symbolic link.
 These files are not merely for your information; their presence and
 contents are critical to the proper operation of the system's recovery
 process.

 It is also possible to make a backup while the server is
 stopped. In this case, you obviously cannot use
 pg_backup_start or pg_backup_stop, and
 you will therefore be left to your own devices to keep track of which
 backup is which and how far back the associated WAL files go.
 It is generally better to follow the continuous archiving procedure above.

Recovering Using a Continuous Archive Backup

 Okay, the worst has happened and you need to recover from your backup.
 Here is the procedure:

	
 Stop the server, if it's running.

	
 If you have the space to do so,
 copy the whole cluster data directory and any tablespaces to a temporary
 location in case you need them later. Note that this precaution will
 require that you have enough free space on your system to hold two
 copies of your existing database. If you do not have enough space,
 you should at least save the contents of the cluster's pg_wal
 subdirectory, as it might contain WAL files which
 were not archived before the system went down.

	
 Remove all existing files and subdirectories under the cluster data
 directory and under the root directories of any tablespaces you are using.

	
 Restore the database files from your file system backup. Be sure that they
 are restored with the right ownership (the database system user, not
 root!) and with the right permissions. If you are using
 tablespaces,
 you should verify that the symbolic links in pg_tblspc/
 were correctly restored.

	
 Remove any files present in pg_wal/; these came from the
 file system backup and are therefore probably obsolete rather than current.
 If you didn't archive pg_wal/ at all, then recreate
 it with proper permissions,
 being careful to ensure that you re-establish it as a symbolic link
 if you had it set up that way before.

	
 If you have unarchived WAL segment files that you saved in step 2,
 copy them into pg_wal/. (It is best to copy them,
 not move them, so you still have the unmodified files if a
 problem occurs and you have to start over.)

	
 Set recovery configuration settings in
 postgresql.conf (see the section called “Archive Recovery”) and create a file
 recovery.signal in the cluster
 data directory. You might
 also want to temporarily modify pg_hba.conf to prevent
 ordinary users from connecting until you are sure the recovery was successful.

	
 Start the server. The server will go into recovery mode and
 proceed to read through the archived WAL files it needs. Should the
 recovery be terminated because of an external error, the server can
 simply be restarted and it will continue recovery. Upon completion
 of the recovery process, the server will remove
 recovery.signal (to prevent
 accidentally re-entering recovery mode later) and then
 commence normal database operations.

	
 Inspect the contents of the database to ensure you have recovered to
 the desired state. If not, return to step 1. If all is well,
 allow your users to connect by restoring pg_hba.conf to normal.

 The key part of all this is to set up a recovery configuration that
 describes how you want to recover and how far the recovery should
 run. The one thing that you absolutely must specify is the restore_command,
 which tells PostgreSQL™ how to retrieve archived
 WAL file segments. Like the archive_command, this is
 a shell command string. It can contain %f, which is
 replaced by the name of the desired WAL file, and %p,
 which is replaced by the path name to copy the WAL file to.
 (The path name is relative to the current working directory,
 i.e., the cluster's data directory.)
 Write %% if you need to embed an actual %
 character in the command. The simplest useful command is
 something like:

restore_command = 'cp /mnt/server/archivedir/%f %p'

 which will copy previously archived WAL segments from the directory
 /mnt/server/archivedir. Of course, you can use something
 much more complicated, perhaps even a shell script that requests the
 operator to mount an appropriate tape.

 It is important that the command return nonzero exit status on failure.
 The command will be called requesting files that are not
 present in the archive; it must return nonzero when so asked. This is not
 an error condition. An exception is that if the command was terminated by
 a signal (other than SIGTERM, which is used as
 part of a database server shutdown) or an error by the shell (such as
 command not found), then recovery will abort and the server will not start
 up.

 Not all of the requested files will be WAL segment
 files; you should also expect requests for files with a suffix of
 .history. Also be aware that
 the base name of the %p path will be different from
 %f; do not expect them to be interchangeable.

 WAL segments that cannot be found in the archive will be sought in
 pg_wal/; this allows use of recent un-archived segments.
 However, segments that are available from the archive will be used in
 preference to files in pg_wal/.

 Normally, recovery will proceed through all available WAL segments,
 thereby restoring the database to the current point in time (or as
 close as possible given the available WAL segments). Therefore, a normal
 recovery will end with a “file not found” message, the exact text
 of the error message depending upon your choice of
 restore_command. You may also see an error message
 at the start of recovery for a file named something like
 00000001.history. This is also normal and does not
 indicate a problem in simple recovery situations; see
 the section called “Timelines” for discussion.

 If you want to recover to some previous point in time (say, right before
 the junior DBA dropped your main transaction table), just specify the
 required stopping point. You can specify
 the stop point, known as the “recovery target”, either by
 date/time, named restore point or by completion of a specific transaction
 ID. As of this writing only the date/time and named restore point options
 are very usable, since there are no tools to help you identify with any
 accuracy which transaction ID to use.

Note

 The stop point must be after the ending time of the base backup, i.e.,
 the end time of pg_backup_stop. You cannot use a base backup
 to recover to a time when that backup was in progress. (To
 recover to such a time, you must go back to your previous base backup
 and roll forward from there.)

 If recovery finds corrupted WAL data, recovery will
 halt at that point and the server will not start. In such a case the
 recovery process could be re-run from the beginning, specifying a
 “recovery target” before the point of corruption so that recovery
 can complete normally.
 If recovery fails for an external reason, such as a system crash or
 if the WAL archive has become inaccessible, then the recovery can simply
 be restarted and it will restart almost from where it failed.
 Recovery restart works much like checkpointing in normal operation:
 the server periodically forces all its state to disk, and then updates
 the pg_control file to indicate that the already-processed
 WAL data need not be scanned again.

Timelines

 The ability to restore the database to a previous point in time creates
 some complexities that are akin to science-fiction stories about time
 travel and parallel universes. For example, in the original history of the database,
 suppose you dropped a critical table at 5:15PM on Tuesday evening, but
 didn't realize your mistake until Wednesday noon.
 Unfazed, you get out your backup, restore to the point-in-time 5:14PM
 Tuesday evening, and are up and running. In this history of
 the database universe, you never dropped the table. But suppose
 you later realize this wasn't such a great idea, and would like
 to return to sometime Wednesday morning in the original history.
 You won't be able
 to if, while your database was up-and-running, it overwrote some of the
 WAL segment files that led up to the time you now wish you
 could get back to. Thus, to avoid this, you need to distinguish the series of
 WAL records generated after you've done a point-in-time recovery from
 those that were generated in the original database history.

 To deal with this problem, PostgreSQL™ has a notion
 of timelines. Whenever an archive recovery completes,
 a new timeline is created to identify the series of WAL records
 generated after that recovery. The timeline
 ID number is part of WAL segment file names so a new timeline does
 not overwrite the WAL data generated by previous timelines.
 For example, in the WAL file name
 0000000100001234000055CD, the leading
 00000001 is the timeline ID in hexadecimal. (Note that
 in other contexts, such as server log messages, timeline IDs are
 usually printed in decimal.)

 It is
 in fact possible to archive many different timelines. While that might
 seem like a useless feature, it's often a lifesaver. Consider the
 situation where you aren't quite sure what point-in-time to recover to,
 and so have to do several point-in-time recoveries by trial and error
 until you find the best place to branch off from the old history. Without
 timelines this process would soon generate an unmanageable mess. With
 timelines, you can recover to any prior state, including
 states in timeline branches that you abandoned earlier.

 Every time a new timeline is created, PostgreSQL™ creates
 a “timeline history” file that shows which timeline it branched
 off from and when. These history files are necessary to allow the system
 to pick the right WAL segment files when recovering from an archive that
 contains multiple timelines. Therefore, they are archived into the WAL
 archive area just like WAL segment files. The history files are just
 small text files, so it's cheap and appropriate to keep them around
 indefinitely (unlike the segment files which are large). You can, if
 you like, add comments to a history file to record your own notes about
 how and why this particular timeline was created. Such comments will be
 especially valuable when you have a thicket of different timelines as
 a result of experimentation.

 The default behavior of recovery is to recover to the latest timeline found
 in the archive. If you wish to recover to the timeline that was current
 when the base backup was taken or into a specific child timeline (that
 is, you want to return to some state that was itself generated after a
 recovery attempt), you need to specify current or the
 target timeline ID in recovery_target_timeline. You
 cannot recover into timelines that branched off earlier than the base backup.

Tips and Examples

 Some tips for configuring continuous archiving are given here.

Standalone Hot Backups

 It is possible to use PostgreSQL™'s backup facilities to
 produce standalone hot backups. These are backups that cannot be used
 for point-in-time recovery, yet are typically much faster to backup and
 restore than pg_dump dumps. (They are also much larger
 than pg_dump dumps, so in some cases the speed advantage
 might be negated.)

 As with base backups, the easiest way to produce a standalone
 hot backup is to use the pg_basebackup(1)
 tool. If you include the -X parameter when calling
 it, all the write-ahead log required to use the backup will be
 included in the backup automatically, and no special action is
 required to restore the backup.

Compressed Archive Logs

 If archive storage size is a concern, you can use
 gzip to compress the archive files:

archive_command = 'gzip < %p > /mnt/server/archivedir/%f.gz'

 You will then need to use gunzip during recovery:

restore_command = 'gunzip < /mnt/server/archivedir/%f.gz > %p'

archive_command Scripts

 Many people choose to use scripts to define their
 archive_command, so that their
 postgresql.conf entry looks very simple:

archive_command = 'local_backup_script.sh "%p" "%f"'

 Using a separate script file is advisable any time you want to use
 more than a single command in the archiving process.
 This allows all complexity to be managed within the script, which
 can be written in a popular scripting language such as
 bash or perl.

 Examples of requirements that might be solved within a script include:

	
 Copying data to secure off-site data storage

	
 Batching WAL files so that they are transferred every three hours,
 rather than one at a time

	
 Interfacing with other backup and recovery software

	
 Interfacing with monitoring software to report errors

Tip

 When using an archive_command script, it's desirable
 to enable logging_collector.
 Any messages written to stderr from the script will then
 appear in the database server log, allowing complex configurations to
 be diagnosed easily if they fail.

Caveats

 At this writing, there are several limitations of the continuous archiving
 technique. These will probably be fixed in future releases:

	
 If a CREATE DATABASE
 command is executed while a base backup is being taken, and then
 the template database that the CREATE DATABASE copied
 is modified while the base backup is still in progress, it is
 possible that recovery will cause those modifications to be
 propagated into the created database as well. This is of course
 undesirable. To avoid this risk, it is best not to modify any
 template databases while taking a base backup.

	
 CREATE TABLESPACE
 commands are WAL-logged with the literal absolute path, and will
 therefore be replayed as tablespace creations with the same
 absolute path. This might be undesirable if the WAL is being
 replayed on a different machine. It can be dangerous even if the
 WAL is being replayed on the same machine, but into a new data
 directory: the replay will still overwrite the contents of the
 original tablespace. To avoid potential gotchas of this sort,
 the best practice is to take a new base backup after creating or
 dropping tablespaces.

 It should also be noted that the default WAL
 format is fairly bulky since it includes many disk page snapshots.
 These page snapshots are designed to support crash recovery, since
 we might need to fix partially-written disk pages. Depending on
 your system hardware and software, the risk of partial writes might
 be small enough to ignore, in which case you can significantly
 reduce the total volume of archived WAL files by turning off page
 snapshots using the full_page_writes
 parameter. (Read the notes and warnings in Chapter 30, Reliability and the Write-Ahead Log
 before you do so.) Turning off page snapshots does not prevent
 use of the WAL for PITR operations. An area for future
 development is to compress archived WAL data by removing
 unnecessary page copies even when full_page_writes is
 on. In the meantime, administrators might wish to reduce the number
 of page snapshots included in WAL by increasing the checkpoint
 interval parameters as much as feasible.

Chapter 27. High Availability, Load Balancing, and Replication

 Database servers can work together to allow a second server to
 take over quickly if the primary server fails (high
 availability), or to allow several computers to serve the same
 data (load balancing). Ideally, database servers could work
 together seamlessly. Web servers serving static web pages can
 be combined quite easily by merely load-balancing web requests
 to multiple machines. In fact, read-only database servers can
 be combined relatively easily too. Unfortunately, most database
 servers have a read/write mix of requests, and read/write servers
 are much harder to combine. This is because though read-only
 data needs to be placed on each server only once, a write to any
 server has to be propagated to all servers so that future read
 requests to those servers return consistent results.

 This synchronization problem is the fundamental difficulty for
 servers working together. Because there is no single solution
 that eliminates the impact of the sync problem for all use cases,
 there are multiple solutions. Each solution addresses this
 problem in a different way, and minimizes its impact for a specific
 workload.

 Some solutions deal with synchronization by allowing only one
 server to modify the data. Servers that can modify data are
 called read/write, master or primary servers.
 Servers that track changes in the primary are called standby
 or secondary servers. A standby server that cannot be connected
 to until it is promoted to a primary server is called a warm
 standby server, and one that can accept connections and serves read-only
 queries is called a hot standby server.

 Some solutions are synchronous,
 meaning that a data-modifying transaction is not considered
 committed until all servers have committed the transaction. This
 guarantees that a failover will not lose any data and that all
 load-balanced servers will return consistent results no matter
 which server is queried. In contrast, asynchronous solutions allow some
 delay between the time of a commit and its propagation to the other servers,
 opening the possibility that some transactions might be lost in
 the switch to a backup server, and that load balanced servers
 might return slightly stale results. Asynchronous communication
 is used when synchronous would be too slow.

 Solutions can also be categorized by their granularity. Some solutions
 can deal only with an entire database server, while others allow control
 at the per-table or per-database level.

 Performance must be considered in any choice. There is usually a
 trade-off between functionality and
 performance. For example, a fully synchronous solution over a slow
 network might cut performance by more than half, while an asynchronous
 one might have a minimal performance impact.

 The remainder of this section outlines various failover, replication,
 and load balancing solutions.

Comparison of Different Solutions

	Shared Disk Failover
	
 Shared disk failover avoids synchronization overhead by having only one
 copy of the database. It uses a single disk array that is shared by
 multiple servers. If the main database server fails, the standby server
 is able to mount and start the database as though it were recovering from
 a database crash. This allows rapid failover with no data loss.

 Shared hardware functionality is common in network storage devices.
 Using a network file system is also possible, though care must be
 taken that the file system has full POSIX behavior (see the section called “NFS”). One significant limitation of this
 method is that if the shared disk array fails or becomes corrupt, the
 primary and standby servers are both nonfunctional. Another issue is
 that the standby server should never access the shared storage while
 the primary server is running.

	File System (Block Device) Replication
	
 A modified version of shared hardware functionality is file system
 replication, where all changes to a file system are mirrored to a file
 system residing on another computer. The only restriction is that
 the mirroring must be done in a way that ensures the standby server
 has a consistent copy of the file system — specifically, writes
 to the standby must be done in the same order as those on the primary.
 DRBD™ is a popular file system replication solution
 for Linux.

	Write-Ahead Log Shipping
	
 Warm and hot standby servers can be kept current by reading a
 stream of write-ahead log (WAL)
 records. If the main server fails, the standby contains
 almost all of the data of the main server, and can be quickly
 made the new primary database server. This can be synchronous or
 asynchronous and can only be done for the entire database server.

 A standby server can be implemented using file-based log shipping
 (the section called “Log-Shipping Standby Servers”) or streaming replication (see
 the section called “Streaming Replication”), or a combination of both. For
 information on hot standby, see the section called “Hot Standby”.

	Logical Replication
	
 Logical replication allows a database server to send a stream of data
 modifications to another server. PostgreSQL™
 logical replication constructs a stream of logical data modifications
 from the WAL. Logical replication allows replication of data changes on
 a per-table basis. In addition, a server that is publishing its own
 changes can also subscribe to changes from another server, allowing data
 to flow in multiple directions. For more information on logical
 replication, see Chapter 31, Logical Replication. Through the
 logical decoding interface (Chapter 49, Logical Decoding),
 third-party extensions can also provide similar functionality.

	Trigger-Based Primary-Standby Replication
	
 A trigger-based replication setup typically funnels data modification
 queries to a designated primary server. Operating on a per-table basis,
 the primary server sends data changes (typically) asynchronously to the
 standby servers. Standby servers can answer queries while the primary is
 running, and may allow some local data changes or write activity. This
 form of replication is often used for offloading large analytical or data
 warehouse queries.

 Slony-I™ is an example of this type of
 replication, with per-table granularity, and support for multiple standby
 servers. Because it updates the standby server asynchronously (in
 batches), there is possible data loss during fail over.

	SQL-Based Replication Middleware
	
 With SQL-based replication middleware, a program intercepts
 every SQL query and sends it to one or all servers. Each server
 operates independently. Read-write queries must be sent to all servers,
 so that every server receives any changes. But read-only queries can be
 sent to just one server, allowing the read workload to be distributed
 among them.

 If queries are simply broadcast unmodified, functions like
 random(), CURRENT_TIMESTAMP, and
 sequences can have different values on different servers.
 This is because each server operates independently, and because
 SQL queries are broadcast rather than actual data changes. If
 this is unacceptable, either the middleware or the application
 must determine such values from a single source and then use those
 values in write queries. Care must also be taken that all
 transactions either commit or abort on all servers, perhaps
 using two-phase commit (PREPARE TRANSACTION(7)
 and COMMIT PREPARED(7)).
 Pgpool-II™ and Continuent Tungsten™
 are examples of this type of replication.

	Asynchronous Multimaster Replication
	
 For servers that are not regularly connected or have slow
 communication links, like laptops or
 remote servers, keeping data consistent among servers is a
 challenge. Using asynchronous multimaster replication, each
 server works independently, and periodically communicates with
 the other servers to identify conflicting transactions. The
 conflicts can be resolved by users or conflict resolution rules.
 Bucardo is an example of this type of replication.

	Synchronous Multimaster Replication
	
 In synchronous multimaster replication, each server can accept
 write requests, and modified data is transmitted from the
 original server to every other server before each transaction
 commits. Heavy write activity can cause excessive locking and
 commit delays, leading to poor performance. Read requests can
 be sent to any server. Some implementations use shared disk
 to reduce the communication overhead. Synchronous multimaster
 replication is best for mostly read workloads, though its big
 advantage is that any server can accept write requests —
 there is no need to partition workloads between primary and
 standby servers, and because the data changes are sent from one
 server to another, there is no problem with non-deterministic
 functions like random().

 PostgreSQL™ does not offer this type of replication,
 though PostgreSQL™ two-phase commit (PREPARE TRANSACTION(7) and COMMIT PREPARED(7))
 can be used to implement this in application code or middleware.

 Table 27.1, “High Availability, Load Balancing, and Replication Feature Matrix” summarizes
 the capabilities of the various solutions listed above.

Table 27.1. High Availability, Load Balancing, and Replication Feature Matrix
	Feature	Shared Disk	File System Repl.	Write-Ahead Log Shipping	Logical Repl.	Trigger-​Based Repl.	SQL Repl. Middle-ware	Async. MM Repl.	Sync. MM Repl.
	Popular examples	NAS	DRBD	built-in streaming repl.	built-in logical repl., pglogical	Londiste, Slony	pgpool-II	Bucardo	
	Comm. method	shared disk	disk blocks	WAL	logical decoding	table rows	SQL	table rows	table rows and row locks
	No special hardware required	 	•	•	•	•	•	•	•
	Allows multiple primary servers	 	 	 	•	 	•	•	•
	No overhead on primary	•	 	•	•	 	•	 	
	No waiting for multiple servers	•	 	with sync off	with sync off	•	 	•	
	Primary failure will never lose data	•	•	with sync on	with sync on	 	•	 	•
	Replicas accept read-only queries	 	 	with hot standby	•	•	•	•	•
	Per-table granularity	 	 	 	•	•	 	•	•
	No conflict resolution necessary	•	•	•	 	•	•	 	•

 There are a few solutions that do not fit into the above categories:

	Data Partitioning
	
 Data partitioning splits tables into data sets. Each set can
 be modified by only one server. For example, data can be
 partitioned by offices, e.g., London and Paris, with a server
 in each office. If queries combining London and Paris data
 are necessary, an application can query both servers, or
 primary/standby replication can be used to keep a read-only copy
 of the other office's data on each server.

	Multiple-Server Parallel Query Execution
	
 Many of the above solutions allow multiple servers to handle multiple
 queries, but none allow a single query to use multiple servers to
 complete faster. This solution allows multiple servers to work
 concurrently on a single query. It is usually accomplished by
 splitting the data among servers and having each server execute its
 part of the query and return results to a central server where they
 are combined and returned to the user. This can be implemented using the
 PL/Proxy™ tool set.

 It should also be noted that because PostgreSQL™
 is open source and easily extended, a number of companies have
 taken PostgreSQL™ and created commercial
 closed-source solutions with unique failover, replication, and load
 balancing capabilities. These are not discussed here.

Log-Shipping Standby Servers

 Continuous archiving can be used to create a high
 availability (HA) cluster configuration with one or more
 standby servers ready to take over operations if the
 primary server fails. This capability is widely referred to as
 warm standby or log shipping.

 The primary and standby server work together to provide this capability,
 though the servers are only loosely coupled. The primary server operates
 in continuous archiving mode, while each standby server operates in
 continuous recovery mode, reading the WAL files from the primary. No
 changes to the database tables are required to enable this capability,
 so it offers low administration overhead compared to some other
 replication solutions. This configuration also has relatively low
 performance impact on the primary server.

 Directly moving WAL records from one database server to another
 is typically described as log shipping. PostgreSQL™
 implements file-based log shipping by transferring WAL records
 one file (WAL segment) at a time. WAL files (16MB) can be
 shipped easily and cheaply over any distance, whether it be to an
 adjacent system, another system at the same site, or another system on
 the far side of the globe. The bandwidth required for this technique
 varies according to the transaction rate of the primary server.
 Record-based log shipping is more granular and streams WAL changes
 incrementally over a network connection (see the section called “Streaming Replication”).

 It should be noted that log shipping is asynchronous, i.e., the WAL
 records are shipped after transaction commit. As a result, there is a
 window for data loss should the primary server suffer a catastrophic
 failure; transactions not yet shipped will be lost. The size of the
 data loss window in file-based log shipping can be limited by use of the
 archive_timeout parameter, which can be set as low
 as a few seconds. However such a low setting will
 substantially increase the bandwidth required for file shipping.
 Streaming replication (see the section called “Streaming Replication”)
 allows a much smaller window of data loss.

 Recovery performance is sufficiently good that the standby will
 typically be only moments away from full
 availability once it has been activated. As a result, this is called
 a warm standby configuration which offers high
 availability. Restoring a server from an archived base backup and
 rollforward will take considerably longer, so that technique only
 offers a solution for disaster recovery, not high availability.
 A standby server can also be used for read-only queries, in which case
 it is called a hot standby server. See
 the section called “Hot Standby” for more information.

Planning

 It is usually wise to create the primary and standby servers
 so that they are as similar as possible, at least from the
 perspective of the database server. In particular, the path names
 associated with tablespaces will be passed across unmodified, so both
 primary and standby servers must have the same mount paths for
 tablespaces if that feature is used. Keep in mind that if
 CREATE TABLESPACE(7)
 is executed on the primary, any new mount point needed for it must
 be created on the primary and all standby servers before the command
 is executed. Hardware need not be exactly the same, but experience shows
 that maintaining two identical systems is easier than maintaining two
 dissimilar ones over the lifetime of the application and system.
 In any case the hardware architecture must be the same — shipping
 from, say, a 32-bit to a 64-bit system will not work.

 In general, log shipping between servers running different major
 PostgreSQL™ release
 levels is not possible. It is the policy of the PostgreSQL Global
 Development Group not to make changes to disk formats during minor release
 upgrades, so it is likely that running different minor release levels
 on primary and standby servers will work successfully. However, no
 formal support for that is offered and you are advised to keep primary
 and standby servers at the same release level as much as possible.
 When updating to a new minor release, the safest policy is to update
 the standby servers first — a new minor release is more likely
 to be able to read WAL files from a previous minor release than vice
 versa.

Standby Server Operation

 A server enters standby mode if a

 standby.signal

 file exists in the data directory when the server is started.

 In standby mode, the server continuously applies WAL received from the
 primary server. The standby server can read WAL from a WAL archive
 (see restore_command) or directly from the primary
 over a TCP connection (streaming replication). The standby server will
 also attempt to restore any WAL found in the standby cluster's
 pg_wal directory. That typically happens after a server
 restart, when the standby replays again WAL that was streamed from the
 primary before the restart, but you can also manually copy files to
 pg_wal at any time to have them replayed.

 At startup, the standby begins by restoring all WAL available in the
 archive location, calling restore_command. Once it
 reaches the end of WAL available there and restore_command
 fails, it tries to restore any WAL available in the pg_wal directory.
 If that fails, and streaming replication has been configured, the
 standby tries to connect to the primary server and start streaming WAL
 from the last valid record found in archive or pg_wal. If that fails
 or streaming replication is not configured, or if the connection is
 later disconnected, the standby goes back to step 1 and tries to
 restore the file from the archive again. This loop of retries from the
 archive, pg_wal, and via streaming replication goes on until the server
 is stopped or is promoted.

 Standby mode is exited and the server switches to normal operation
 when pg_ctl promote is run, or
 pg_promote() is called. Before failover,
 any WAL immediately available in the archive or in pg_wal
 will be restored, but no attempt is made to connect to the primary.

Preparing the Primary for Standby Servers

 Set up continuous archiving on the primary to an archive directory
 accessible from the standby, as described
 in the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”. The archive location should be
 accessible from the standby even when the primary is down, i.e., it should
 reside on the standby server itself or another trusted server, not on
 the primary server.

 If you want to use streaming replication, set up authentication on the
 primary server to allow replication connections from the standby
 server(s); that is, create a role and provide a suitable entry or
 entries in pg_hba.conf with the database field set to
 replication. Also ensure max_wal_senders is set
 to a sufficiently large value in the configuration file of the primary
 server. If replication slots will be used,
 ensure that max_replication_slots is set sufficiently
 high as well.

 Take a base backup as described in the section called “Making a Base Backup”
 to bootstrap the standby server.

Setting Up a Standby Server

 To set up the standby server, restore the base backup taken from primary
 server (see the section called “Recovering Using a Continuous Archive Backup”). Create a file
 standby.signal
 in the standby's cluster data
 directory. Set restore_command to a simple command to copy files from
 the WAL archive. If you plan to have multiple standby servers for high
 availability purposes, make sure that recovery_target_timeline is set to
 latest (the default), to make the standby server follow the timeline change
 that occurs at failover to another standby.

Note

 restore_command should return immediately
 if the file does not exist; the server will retry the command again if
 necessary.

 If you want to use streaming replication, fill in
 primary_conninfo with a libpq connection string, including
 the host name (or IP address) and any additional details needed to
 connect to the primary server. If the primary needs a password for
 authentication, the password needs to be specified in
 primary_conninfo as well.

 If you're setting up the standby server for high availability purposes,
 set up WAL archiving, connections and authentication like the primary
 server, because the standby server will work as a primary server after
 failover.

 If you're using a WAL archive, its size can be minimized using the archive_cleanup_command parameter to remove files that are no
 longer required by the standby server.
 The pg_archivecleanup utility is designed specifically to
 be used with archive_cleanup_command in typical single-standby
 configurations, see pg_archivecleanup(1).
 Note however, that if you're using the archive for backup purposes, you
 need to retain files needed to recover from at least the latest base
 backup, even if they're no longer needed by the standby.

 A simple example of configuration is:

primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass options=''-c wal_sender_timeout=5000'''
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'

 You can have any number of standby servers, but if you use streaming
 replication, make sure you set max_wal_senders high enough in
 the primary to allow them to be connected simultaneously.

Streaming Replication

 Streaming replication allows a standby server to stay more up-to-date
 than is possible with file-based log shipping. The standby connects
 to the primary, which streams WAL records to the standby as they're
 generated, without waiting for the WAL file to be filled.

 Streaming replication is asynchronous by default
 (see the section called “Synchronous Replication”), in which case there is
 a small delay between committing a transaction in the primary and the
 changes becoming visible in the standby. This delay is however much
 smaller than with file-based log shipping, typically under one second
 assuming the standby is powerful enough to keep up with the load. With
 streaming replication, archive_timeout is not required to
 reduce the data loss window.

 If you use streaming replication without file-based continuous
 archiving, the server might recycle old WAL segments before the standby
 has received them. If this occurs, the standby will need to be
 reinitialized from a new base backup. You can avoid this by setting
 wal_keep_size to a value large enough to ensure that
 WAL segments are not recycled too early, or by configuring a replication
 slot for the standby. If you set up a WAL archive that's accessible from
 the standby, these solutions are not required, since the standby can
 always use the archive to catch up provided it retains enough segments.

 To use streaming replication, set up a file-based log-shipping standby
 server as described in the section called “Log-Shipping Standby Servers”. The step that
 turns a file-based log-shipping standby into streaming replication
 standby is setting the primary_conninfo setting
 to point to the primary server. Set
 listen_addresses and authentication options
 (see pg_hba.conf) on the primary so that the standby server
 can connect to the replication pseudo-database on the primary
 server (see the section called “Authentication”).

 On systems that support the keepalive socket option, setting
 tcp_keepalives_idle,
 tcp_keepalives_interval and
 tcp_keepalives_count helps the primary promptly
 notice a broken connection.

 Set the maximum number of concurrent connections from the standby servers
 (see max_wal_senders for details).

 When the standby is started and primary_conninfo is set
 correctly, the standby will connect to the primary after replaying all
 WAL files available in the archive. If the connection is established
 successfully, you will see a walreceiver in the standby, and
 a corresponding walsender process in the primary.

Authentication

 It is very important that the access privileges for replication be set up
 so that only trusted users can read the WAL stream, because it is
 easy to extract privileged information from it. Standby servers must
 authenticate to the primary as an account that has the
 REPLICATION privilege or a superuser. It is
 recommended to create a dedicated user account with
 REPLICATION and LOGIN
 privileges for replication. While REPLICATION
 privilege gives very high permissions, it does not allow the user to
 modify any data on the primary system, which the
 SUPERUSER privilege does.

 Client authentication for replication is controlled by a
 pg_hba.conf record specifying replication in the
 database field. For example, if the standby is running on
 host IP 192.168.1.100 and the account name for replication
 is foo, the administrator can add the following line to the
 pg_hba.conf file on the primary:

Allow the user "foo" from host 192.168.1.100 to connect to the primary
as a replication standby if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

 The host name and port number of the primary, connection user name,
 and password are specified in the primary_conninfo.
 The password can also be set in the ~/.pgpass file on the
 standby (specify replication in the database
 field).
 For example, if the primary is running on host IP 192.168.1.50,
 port 5432, the account name for replication is
 foo, and the password is foopass, the administrator
 can add the following line to the postgresql.conf file on the
 standby:

The standby connects to the primary that is running on host 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'

Monitoring

 An important health indicator of streaming replication is the amount
 of WAL records generated in the primary, but not yet applied in the
 standby. You can calculate this lag by comparing the current WAL write
 location on the primary with the last WAL location received by the
 standby. These locations can be retrieved using
 pg_current_wal_lsn on the primary and
 pg_last_wal_receive_lsn on the standby,
 respectively (see Table 9.91, “Backup Control Functions” and
 Table 9.92, “Recovery Information Functions” for details).
 The last WAL receive location in the standby is also displayed in the
 process status of the WAL receiver process, displayed using the
 ps command (see the section called “Standard Unix Tools” for details).

 You can retrieve a list of WAL sender processes via the

 pg_stat_replication view. Large differences between
 pg_current_wal_lsn and the view's sent_lsn field
 might indicate that the primary server is under heavy load, while
 differences between sent_lsn and
 pg_last_wal_receive_lsn on the standby might indicate
 network delay, or that the standby is under heavy load.

 On a hot standby, the status of the WAL receiver process can be retrieved
 via the
 pg_stat_wal_receiver view. A large
 difference between pg_last_wal_replay_lsn and the
 view's flushed_lsn indicates that WAL is being
 received faster than it can be replayed.

Replication Slots

 Replication slots provide an automated way to ensure that the primary does
 not remove WAL segments until they have been received by all standbys,
 and that the primary does not remove rows which could cause a
 recovery conflict even when the
 standby is disconnected.

 In lieu of using replication slots, it is possible to prevent the removal
 of old WAL segments using wal_keep_size, or by
 storing the segments in an archive using
 archive_command or archive_library.
 However, these methods often result in retaining more WAL segments than
 required, whereas replication slots retain only the number of segments
 known to be needed. On the other hand, replication slots can retain so
 many WAL segments that they fill up the space allocated
 for pg_wal;
 max_slot_wal_keep_size limits the size of WAL files
 retained by replication slots.

 Similarly, hot_standby_feedback on its own, without
 also using a replication slot, provides protection against relevant rows
 being removed by vacuum, but provides no protection during any time period
 when the standby is not connected. Replication slots overcome these
 disadvantages.

Querying and Manipulating Replication Slots

 Each replication slot has a name, which can contain lower-case letters,
 numbers, and the underscore character.

 Existing replication slots and their state can be seen in the
 pg_replication_slots
 view.

 Slots can be created and dropped either via the streaming replication
 protocol (see the section called “Streaming Replication Protocol”) or via SQL
 functions (see the section called “Replication Management Functions”).

Configuration Example

 You can create a replication slot like this:

postgres=# SELECT * FROM pg_create_physical_replication_slot('node_a_slot');
 slot_name | lsn
-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM pg_replication_slots;
 slot_name | slot_type | active
-------------+-----------+--------
 node_a_slot | physical | f
(1 row)

 To configure the standby to use this slot, primary_slot_name
 should be configured on the standby. Here is a simple example:

primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'
primary_slot_name = 'node_a_slot'

Cascading Replication

 The cascading replication feature allows a standby server to accept replication
 connections and stream WAL records to other standbys, acting as a relay.
 This can be used to reduce the number of direct connections to the primary
 and also to minimize inter-site bandwidth overheads.

 A standby acting as both a receiver and a sender is known as a cascading
 standby. Standbys that are more directly connected to the primary are known
 as upstream servers, while those standby servers further away are downstream
 servers. Cascading replication does not place limits on the number or
 arrangement of downstream servers, though each standby connects to only
 one upstream server which eventually links to a single primary server.

 A cascading standby sends not only WAL records received from the
 primary but also those restored from the archive. So even if the replication
 connection in some upstream connection is terminated, streaming replication
 continues downstream for as long as new WAL records are available.

 Cascading replication is currently asynchronous. Synchronous replication
 (see the section called “Synchronous Replication”) settings have no effect on
 cascading replication at present.

 Hot standby feedback propagates upstream, whatever the cascaded arrangement.

 If an upstream standby server is promoted to become the new primary, downstream
 servers will continue to stream from the new primary if
 recovery_target_timeline is set to 'latest' (the default).

 To use cascading replication, set up the cascading standby so that it can
 accept replication connections (that is, set
 max_wal_senders and hot_standby,
 and configure
 host-based authentication).
 You will also need to set primary_conninfo in the downstream
 standby to point to the cascading standby.

Synchronous Replication

 PostgreSQL™ streaming replication is asynchronous by
 default. If the primary server
 crashes then some transactions that were committed may not have been
 replicated to the standby server, causing data loss. The amount
 of data loss is proportional to the replication delay at the time of
 failover.

 Synchronous replication offers the ability to confirm that all changes
 made by a transaction have been transferred to one or more synchronous
 standby servers. This extends that standard level of durability
 offered by a transaction commit. This level of protection is referred
 to as 2-safe replication in computer science theory, and group-1-safe
 (group-safe and 1-safe) when synchronous_commit is set to
 remote_write.

 When requesting synchronous replication, each commit of a
 write transaction will wait until confirmation is
 received that the commit has been written to the write-ahead log on disk
 of both the primary and standby server. The only possibility that data
 can be lost is if both the primary and the standby suffer crashes at the
 same time. This can provide a much higher level of durability, though only
 if the sysadmin is cautious about the placement and management of the two
 servers. Waiting for confirmation increases the user's confidence that the
 changes will not be lost in the event of server crashes but it also
 necessarily increases the response time for the requesting transaction.
 The minimum wait time is the round-trip time between primary and standby.

 Read-only transactions and transaction rollbacks need not wait for
 replies from standby servers. Subtransaction commits do not wait for
 responses from standby servers, only top-level commits. Long
 running actions such as data loading or index building do not wait
 until the very final commit message. All two-phase commit actions
 require commit waits, including both prepare and commit.

 A synchronous standby can be a physical replication standby or a logical
 replication subscriber. It can also be any other physical or logical WAL
 replication stream consumer that knows how to send the appropriate
 feedback messages. Besides the built-in physical and logical replication
 systems, this includes special programs such
 as pg_receivewal and pg_recvlogical
 as well as some third-party replication systems and custom programs.
 Check the respective documentation for details on synchronous replication
 support.

Basic Configuration

 Once streaming replication has been configured, configuring synchronous
 replication requires only one additional configuration step:
 synchronous_standby_names must be set to
 a non-empty value. synchronous_commit must also be set to
 on, but since this is the default value, typically no change is
 required. (See the section called “Settings” and
 the section called “Primary Server”.)
 This configuration will cause each commit to wait for
 confirmation that the standby has written the commit record to durable
 storage.
 synchronous_commit can be set by individual
 users, so it can be configured in the configuration file, for particular
 users or databases, or dynamically by applications, in order to control
 the durability guarantee on a per-transaction basis.

 After a commit record has been written to disk on the primary, the
 WAL record is then sent to the standby. The standby sends reply
 messages each time a new batch of WAL data is written to disk, unless
 wal_receiver_status_interval is set to zero on the standby.
 In the case that synchronous_commit is set to
 remote_apply, the standby sends reply messages when the commit
 record is replayed, making the transaction visible.
 If the standby is chosen as a synchronous standby, according to the setting
 of synchronous_standby_names on the primary, the reply
 messages from that standby will be considered along with those from other
 synchronous standbys to decide when to release transactions waiting for
 confirmation that the commit record has been received. These parameters
 allow the administrator to specify which standby servers should be
 synchronous standbys. Note that the configuration of synchronous
 replication is mainly on the primary. Named standbys must be directly
 connected to the primary; the primary knows nothing about downstream
 standby servers using cascaded replication.

 Setting synchronous_commit to remote_write will
 cause each commit to wait for confirmation that the standby has received
 the commit record and written it out to its own operating system, but not
 for the data to be flushed to disk on the standby. This
 setting provides a weaker guarantee of durability than on
 does: the standby could lose the data in the event of an operating system
 crash, though not a PostgreSQL™ crash.
 However, it's a useful setting in practice
 because it can decrease the response time for the transaction.
 Data loss could only occur if both the primary and the standby crash and
 the database of the primary gets corrupted at the same time.

 Setting synchronous_commit to remote_apply will
 cause each commit to wait until the current synchronous standbys report
 that they have replayed the transaction, making it visible to user
 queries. In simple cases, this allows for load balancing with causal
 consistency.

 Users will stop waiting if a fast shutdown is requested. However, as
 when using asynchronous replication, the server will not fully
 shutdown until all outstanding WAL records are transferred to the currently
 connected standby servers.

Multiple Synchronous Standbys

 Synchronous replication supports one or more synchronous standby servers;
 transactions will wait until all the standby servers which are considered
 as synchronous confirm receipt of their data. The number of synchronous
 standbys that transactions must wait for replies from is specified in
 synchronous_standby_names. This parameter also specifies
 a list of standby names and the method (FIRST and
 ANY) to choose synchronous standbys from the listed ones.

 The method FIRST specifies a priority-based synchronous
 replication and makes transaction commits wait until their WAL records are
 replicated to the requested number of synchronous standbys chosen based on
 their priorities. The standbys whose names appear earlier in the list are
 given higher priority and will be considered as synchronous. Other standby
 servers appearing later in this list represent potential synchronous
 standbys. If any of the current synchronous standbys disconnects for
 whatever reason, it will be replaced immediately with the
 next-highest-priority standby.

 An example of synchronous_standby_names for
 a priority-based multiple synchronous standbys is:

synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'

 In this example, if four standby servers s1, s2,
 s3 and s4 are running, the two standbys
 s1 and s2 will be chosen as synchronous standbys
 because their names appear early in the list of standby names.
 s3 is a potential synchronous standby and will take over
 the role of synchronous standby when either of s1 or
 s2 fails. s4 is an asynchronous standby since
 its name is not in the list.

 The method ANY specifies a quorum-based synchronous
 replication and makes transaction commits wait until their WAL records
 are replicated to at least the requested number of
 synchronous standbys in the list.

 An example of synchronous_standby_names for
 a quorum-based multiple synchronous standbys is:

synchronous_standby_names = 'ANY 2 (s1, s2, s3)'

 In this example, if four standby servers s1, s2,
 s3 and s4 are running, transaction commits will
 wait for replies from at least any two standbys of s1,
 s2 and s3. s4 is an asynchronous
 standby since its name is not in the list.

 The synchronous states of standby servers can be viewed using
 the pg_stat_replication view.

Planning for Performance

 Synchronous replication usually requires carefully planned and placed
 standby servers to ensure applications perform acceptably. Waiting
 doesn't utilize system resources, but transaction locks continue to be
 held until the transfer is confirmed. As a result, incautious use of
 synchronous replication will reduce performance for database
 applications because of increased response times and higher contention.

 PostgreSQL™ allows the application developer
 to specify the durability level required via replication. This can be
 specified for the system overall, though it can also be specified for
 specific users or connections, or even individual transactions.

 For example, an application workload might consist of:
 10% of changes are important customer details, while
 90% of changes are less important data that the business can more
 easily survive if it is lost, such as chat messages between users.

 With synchronous replication options specified at the application level
 (on the primary) we can offer synchronous replication for the most
 important changes, without slowing down the bulk of the total workload.
 Application level options are an important and practical tool for allowing
 the benefits of synchronous replication for high performance applications.

 You should consider that the network bandwidth must be higher than
 the rate of generation of WAL data.

Planning for High Availability

 synchronous_standby_names specifies the number and
 names of synchronous standbys that transaction commits made when
 synchronous_commit is set to on,
 remote_apply or remote_write will wait for
 responses from. Such transaction commits may never be completed
 if any one of the synchronous standbys should crash.

 The best solution for high availability is to ensure you keep as many
 synchronous standbys as requested. This can be achieved by naming multiple
 potential synchronous standbys using synchronous_standby_names.

 In a priority-based synchronous replication, the standbys whose names
 appear earlier in the list will be used as synchronous standbys.
 Standbys listed after these will take over the role of synchronous standby
 if one of current ones should fail.

 In a quorum-based synchronous replication, all the standbys appearing
 in the list will be used as candidates for synchronous standbys.
 Even if one of them should fail, the other standbys will keep performing
 the role of candidates of synchronous standby.

 When a standby first attaches to the primary, it will not yet be properly
 synchronized. This is described as catchup mode. Once
 the lag between standby and primary reaches zero for the first time
 we move to real-time streaming state.
 The catch-up duration may be long immediately after the standby has
 been created. If the standby is shut down, then the catch-up period
 will increase according to the length of time the standby has been down.
 The standby is only able to become a synchronous standby
 once it has reached streaming state.
 This state can be viewed using
 the pg_stat_replication view.

 If primary restarts while commits are waiting for acknowledgment, those
 waiting transactions will be marked fully committed once the primary
 database recovers.
 There is no way to be certain that all standbys have received all
 outstanding WAL data at time of the crash of the primary. Some
 transactions may not show as committed on the standby, even though
 they show as committed on the primary. The guarantee we offer is that
 the application will not receive explicit acknowledgment of the
 successful commit of a transaction until the WAL data is known to be
 safely received by all the synchronous standbys.

 If you really cannot keep as many synchronous standbys as requested
 then you should decrease the number of synchronous standbys that
 transaction commits must wait for responses from
 in synchronous_standby_names (or disable it) and
 reload the configuration file on the primary server.

 If the primary is isolated from remaining standby servers you should
 fail over to the best candidate of those other remaining standby servers.

 If you need to re-create a standby server while transactions are
 waiting, make sure that the commands pg_backup_start() and
 pg_backup_stop() are run in a session with
 synchronous_commit = off, otherwise those
 requests will wait forever for the standby to appear.

Continuous Archiving in Standby

 When continuous WAL archiving is used in a standby, there are two
 different scenarios: the WAL archive can be shared between the primary
 and the standby, or the standby can have its own WAL archive. When
 the standby has its own WAL archive, set archive_mode
 to always, and the standby will call the archive
 command for every WAL segment it receives, whether it's by restoring
 from the archive or by streaming replication. The shared archive can
 be handled similarly, but the archive_command or archive_library must
 test if the file being archived exists already, and if the existing file
 has identical contents. This requires more care in the
 archive_command or archive_library, as it must
 be careful to not overwrite an existing file with different contents,
 but return success if the exactly same file is archived twice. And
 all that must be done free of race conditions, if two servers attempt
 to archive the same file at the same time.

 If archive_mode is set to on, the
 archiver is not enabled during recovery or standby mode. If the standby
 server is promoted, it will start archiving after the promotion, but
 will not archive any WAL or timeline history files that
 it did not generate itself. To get a complete
 series of WAL files in the archive, you must ensure that all WAL is
 archived, before it reaches the standby. This is inherently true with
 file-based log shipping, as the standby can only restore files that
 are found in the archive, but not if streaming replication is enabled.
 When a server is not in recovery mode, there is no difference between
 on and always modes.

Failover

 If the primary server fails then the standby server should begin
 failover procedures.

 If the standby server fails then no failover need take place. If the
 standby server can be restarted, even some time later, then the recovery
 process can also be restarted immediately, taking advantage of
 restartable recovery. If the standby server cannot be restarted, then a
 full new standby server instance should be created.

 If the primary server fails and the standby server becomes the
 new primary, and then the old primary restarts, you must have
 a mechanism for informing the old primary that it is no longer the primary. This is
 sometimes known as STONITH (Shoot The Other Node In The Head), which is
 necessary to avoid situations where both systems think they are the
 primary, which will lead to confusion and ultimately data loss.

 Many failover systems use just two systems, the primary and the standby,
 connected by some kind of heartbeat mechanism to continually verify the
 connectivity between the two and the viability of the primary. It is
 also possible to use a third system (called a witness server) to prevent
 some cases of inappropriate failover, but the additional complexity
 might not be worthwhile unless it is set up with sufficient care and
 rigorous testing.

 PostgreSQL™ does not provide the system
 software required to identify a failure on the primary and notify
 the standby database server. Many such tools exist and are well
 integrated with the operating system facilities required for
 successful failover, such as IP address migration.

 Once failover to the standby occurs, there is only a
 single server in operation. This is known as a degenerate state.
 The former standby is now the primary, but the former primary is down
 and might stay down. To return to normal operation, a standby server
 must be recreated,
 either on the former primary system when it comes up, or on a third,
 possibly new, system. The pg_rewind(1) utility can be
 used to speed up this process on large clusters.
 Once complete, the primary and standby can be
 considered to have switched roles. Some people choose to use a third
 server to provide backup for the new primary until the new standby
 server is recreated,
 though clearly this complicates the system configuration and
 operational processes.

 So, switching from primary to standby server can be fast but requires
 some time to re-prepare the failover cluster. Regular switching from
 primary to standby is useful, since it allows regular downtime on
 each system for maintenance. This also serves as a test of the
 failover mechanism to ensure that it will really work when you need it.
 Written administration procedures are advised.

 To trigger failover of a log-shipping standby server, run
 pg_ctl promote or call pg_promote().
 If you're setting up reporting servers that are only used to offload
 read-only queries from the primary, not for high availability purposes,
 you don't need to promote.

Hot Standby

 Hot standby is the term used to describe the ability to connect to
 the server and run read-only queries while the server is in archive
 recovery or standby mode. This
 is useful both for replication purposes and for restoring a backup
 to a desired state with great precision.
 The term hot standby also refers to the ability of the server to move
 from recovery through to normal operation while users continue running
 queries and/or keep their connections open.

 Running queries in hot standby mode is similar to normal query operation,
 though there are several usage and administrative differences
 explained below.

User's Overview

 When the hot_standby parameter is set to true on a
 standby server, it will begin accepting connections once the recovery has
 brought the system to a consistent state. All such connections are
 strictly read-only; not even temporary tables may be written.

 The data on the standby takes some time to arrive from the primary server
 so there will be a measurable delay between primary and standby. Running the
 same query nearly simultaneously on both primary and standby might therefore
 return differing results. We say that data on the standby is
 eventually consistent with the primary. Once the
 commit record for a transaction is replayed on the standby, the changes
 made by that transaction will be visible to any new snapshots taken on
 the standby. Snapshots may be taken at the start of each query or at the
 start of each transaction, depending on the current transaction isolation
 level. For more details, see the section called “Transaction Isolation”.

 Transactions started during hot standby may issue the following commands:

	
 Query access: SELECT, COPY TO

	
 Cursor commands: DECLARE, FETCH, CLOSE

	
 Settings: SHOW, SET, RESET

	
 Transaction management commands:

	
 BEGIN, END, ABORT, START TRANSACTION

	
 SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT

	
 EXCEPTION blocks and other internal subtransactions

	
 LOCK TABLE, though only when explicitly in one of these modes:
 ACCESS SHARE, ROW SHARE or ROW EXCLUSIVE.

	
 Plans and resources: PREPARE, EXECUTE,
 DEALLOCATE, DISCARD

	
 Plugins and extensions: LOAD

	
 UNLISTEN

 Transactions started during hot standby will never be assigned a
 transaction ID and cannot write to the system write-ahead log.
 Therefore, the following actions will produce error messages:

	
 Data Manipulation Language (DML): INSERT,
 UPDATE, DELETE,
 MERGE, COPY FROM,
 TRUNCATE.
 Note that there are no allowed actions that result in a trigger
 being executed during recovery. This restriction applies even to
 temporary tables, because table rows cannot be read or written without
 assigning a transaction ID, which is currently not possible in a
 hot standby environment.

	
 Data Definition Language (DDL): CREATE,
 DROP, ALTER, COMMENT.
 This restriction applies even to temporary tables, because carrying
 out these operations would require updating the system catalog tables.

	
 SELECT ... FOR SHARE | UPDATE, because row locks cannot be
 taken without updating the underlying data files.

	
 Rules on SELECT statements that generate DML commands.

	
 LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.

	
 LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.

	
 Transaction management commands that explicitly set non-read-only state:

	
 BEGIN READ WRITE,
 START TRANSACTION READ WRITE

	
 SET TRANSACTION READ WRITE,
 SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE

	
 SET transaction_read_only = off

	
 Two-phase commit commands: PREPARE TRANSACTION,
 COMMIT PREPARED, ROLLBACK PREPARED
 because even read-only transactions need to write WAL in the
 prepare phase (the first phase of two phase commit).

	
 Sequence updates: nextval(), setval()

	
 LISTEN, NOTIFY

 In normal operation, “read-only” transactions are allowed to
 use LISTEN and NOTIFY,
 so hot standby sessions operate under slightly tighter
 restrictions than ordinary read-only sessions. It is possible that some
 of these restrictions might be loosened in a future release.

 During hot standby, the parameter transaction_read_only is always
 true and may not be changed. But as long as no attempt is made to modify
 the database, connections during hot standby will act much like any other
 database connection. If failover or switchover occurs, the database will
 switch to normal processing mode. Sessions will remain connected while the
 server changes mode. Once hot standby finishes, it will be possible to
 initiate read-write transactions (even from a session begun during
 hot standby).

 Users can determine whether hot standby is currently active for their
 session by issuing SHOW in_hot_standby.
 (In server versions before 14, the in_hot_standby
 parameter did not exist; a workable substitute method for older servers
 is SHOW transaction_read_only.) In addition, a set of
 functions (Table 9.92, “Recovery Information Functions”) allow users to
 access information about the standby server. These allow you to write
 programs that are aware of the current state of the database. These
 can be used to monitor the progress of recovery, or to allow you to
 write complex programs that restore the database to particular states.

Handling Query Conflicts

 The primary and standby servers are in many ways loosely connected. Actions
 on the primary will have an effect on the standby. As a result, there is
 potential for negative interactions or conflicts between them. The easiest
 conflict to understand is performance: if a huge data load is taking place
 on the primary then this will generate a similar stream of WAL records on the
 standby, so standby queries may contend for system resources, such as I/O.

 There are also additional types of conflict that can occur with hot standby.
 These conflicts are hard conflicts in the sense that queries
 might need to be canceled and, in some cases, sessions disconnected to resolve them.
 The user is provided with several ways to handle these
 conflicts. Conflict cases include:

	
 Access Exclusive locks taken on the primary server, including both
 explicit LOCK commands and various DDL
 actions, conflict with table accesses in standby queries.

	
 Dropping a tablespace on the primary conflicts with standby queries
 using that tablespace for temporary work files.

	
 Dropping a database on the primary conflicts with sessions connected
 to that database on the standby.

	
 Application of a vacuum cleanup record from WAL conflicts with
 standby transactions whose snapshots can still “see” any of
 the rows to be removed.

	
 Application of a vacuum cleanup record from WAL conflicts with
 queries accessing the target page on the standby, whether or not
 the data to be removed is visible.

 On the primary server, these cases simply result in waiting; and the
 user might choose to cancel either of the conflicting actions. However,
 on the standby there is no choice: the WAL-logged action already occurred
 on the primary so the standby must not fail to apply it. Furthermore,
 allowing WAL application to wait indefinitely may be very undesirable,
 because the standby's state will become increasingly far behind the
 primary's. Therefore, a mechanism is provided to forcibly cancel standby
 queries that conflict with to-be-applied WAL records.

 An example of the problem situation is an administrator on the primary
 server running DROP TABLE on a table that is currently being
 queried on the standby server. Clearly the standby query cannot continue
 if the DROP TABLE is applied on the standby. If this situation
 occurred on the primary, the DROP TABLE would wait until the
 other query had finished. But when DROP TABLE is run on the
 primary, the primary doesn't have information about what queries are
 running on the standby, so it will not wait for any such standby
 queries. The WAL change records come through to the standby while the
 standby query is still running, causing a conflict. The standby server
 must either delay application of the WAL records (and everything after
 them, too) or else cancel the conflicting query so that the DROP
 TABLE can be applied.

 When a conflicting query is short, it's typically desirable to allow it to
 complete by delaying WAL application for a little bit; but a long delay in
 WAL application is usually not desirable. So the cancel mechanism has
 parameters, max_standby_archive_delay and max_standby_streaming_delay, that define the maximum
 allowed delay in WAL application. Conflicting queries will be canceled
 once it has taken longer than the relevant delay setting to apply any
 newly-received WAL data. There are two parameters so that different delay
 values can be specified for the case of reading WAL data from an archive
 (i.e., initial recovery from a base backup or “catching up” a
 standby server that has fallen far behind) versus reading WAL data via
 streaming replication.

 In a standby server that exists primarily for high availability, it's
 best to set the delay parameters relatively short, so that the server
 cannot fall far behind the primary due to delays caused by standby
 queries. However, if the standby server is meant for executing
 long-running queries, then a high or even infinite delay value may be
 preferable. Keep in mind however that a long-running query could
 cause other sessions on the standby server to not see recent changes
 on the primary, if it delays application of WAL records.

 Once the delay specified by max_standby_archive_delay or
 max_standby_streaming_delay has been exceeded, conflicting
 queries will be canceled. This usually results just in a cancellation
 error, although in the case of replaying a DROP DATABASE
 the entire conflicting session will be terminated. Also, if the conflict
 is over a lock held by an idle transaction, the conflicting session is
 terminated (this behavior might change in the future).

 Canceled queries may be retried immediately (after beginning a new
 transaction, of course). Since query cancellation depends on
 the nature of the WAL records being replayed, a query that was
 canceled may well succeed if it is executed again.

 Keep in mind that the delay parameters are compared to the elapsed time
 since the WAL data was received by the standby server. Thus, the grace
 period allowed to any one query on the standby is never more than the
 delay parameter, and could be considerably less if the standby has already
 fallen behind as a result of waiting for previous queries to complete, or
 as a result of being unable to keep up with a heavy update load.

 The most common reason for conflict between standby queries and WAL replay
 is “early cleanup”. Normally, PostgreSQL™ allows
 cleanup of old row versions when there are no transactions that need to
 see them to ensure correct visibility of data according to MVCC rules.
 However, this rule can only be applied for transactions executing on the
 primary. So it is possible that cleanup on the primary will remove row
 versions that are still visible to a transaction on the standby.

 Row version cleanup isn't the only potential cause of conflicts with
 standby queries. All index-only scans (including those that run on
 standbys) must use an MVCC snapshot that
 “agrees” with the visibility map. Conflicts are therefore
 required whenever VACUUM sets a page as all-visible in the
 visibility map containing one or more rows
 not visible to all standby queries. So even running
 VACUUM against a table with no updated or deleted rows
 requiring cleanup might lead to conflicts.

 Users should be clear that tables that are regularly and heavily updated
 on the primary server will quickly cause cancellation of longer running
 queries on the standby. In such cases the setting of a finite value for
 max_standby_archive_delay or
 max_standby_streaming_delay can be considered similar to
 setting statement_timeout.

 Remedial possibilities exist if the number of standby-query cancellations
 is found to be unacceptable. The first option is to set the parameter
 hot_standby_feedback, which prevents VACUUM from
 removing recently-dead rows and so cleanup conflicts do not occur.
 If you do this, you
 should note that this will delay cleanup of dead rows on the primary,
 which may result in undesirable table bloat. However, the cleanup
 situation will be no worse than if the standby queries were running
 directly on the primary server, and you are still getting the benefit of
 off-loading execution onto the standby.
 If standby servers connect and disconnect frequently, you
 might want to make adjustments to handle the period when
 hot_standby_feedback feedback is not being provided.
 For example, consider increasing max_standby_archive_delay
 so that queries are not rapidly canceled by conflicts in WAL archive
 files during disconnected periods. You should also consider increasing
 max_standby_streaming_delay to avoid rapid cancellations
 by newly-arrived streaming WAL entries after reconnection.

 The number of query cancels and the reason for them can be viewed using
 the pg_stat_database_conflicts system view on the standby
 server. The pg_stat_database system view also contains
 summary information.

 Users can control whether a log message is produced when WAL replay is waiting
 longer than deadlock_timeout for conflicts. This
 is controlled by the log_recovery_conflict_waits parameter.

Administrator's Overview

 If hot_standby is on in postgresql.conf
 (the default value) and there is a
 standby.signal
 file present, the server will run in hot standby mode.
 However, it may take some time for hot standby connections to be allowed,
 because the server will not accept connections until it has completed
 sufficient recovery to provide a consistent state against which queries
 can run. During this period,
 clients that attempt to connect will be refused with an error message.
 To confirm the server has come up, either loop trying to connect from
 the application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

LOG: consistent recovery state reached
LOG: database system is ready to accept read-only connections

 Consistency information is recorded once per checkpoint on the primary.
 It is not possible to enable hot standby when reading WAL
 written during a period when wal_level was not set to
 replica or logical on the primary. Reaching
 a consistent state can also be delayed in the presence of both of these
 conditions:

	
 A write transaction has more than 64 subtransactions

	
 Very long-lived write transactions

 If you are running file-based log shipping ("warm standby"), you might need
 to wait until the next WAL file arrives, which could be as long as the
 archive_timeout setting on the primary.

 The settings of some parameters determine the size of shared memory for
 tracking transaction IDs, locks, and prepared transactions. These shared
 memory structures must be no smaller on a standby than on the primary in
 order to ensure that the standby does not run out of shared memory during
 recovery. For example, if the primary had used a prepared transaction but
 the standby had not allocated any shared memory for tracking prepared
 transactions, then recovery could not continue until the standby's
 configuration is changed. The parameters affected are:

	
 max_connections

	
 max_prepared_transactions

	
 max_locks_per_transaction

	
 max_wal_senders

	
 max_worker_processes

 The easiest way to ensure this does not become a problem is to have these
 parameters set on the standbys to values equal to or greater than on the
 primary. Therefore, if you want to increase these values, you should do
 so on all standby servers first, before applying the changes to the
 primary server. Conversely, if you want to decrease these values, you
 should do so on the primary server first, before applying the changes to
 all standby servers. Keep in mind that when a standby is promoted, it
 becomes the new reference for the required parameter settings for the
 standbys that follow it. Therefore, to avoid this becoming a problem
 during a switchover or failover, it is recommended to keep these settings
 the same on all standby servers.

 The WAL tracks changes to these parameters on the
 primary. If a hot standby processes WAL that indicates that the current
 value on the primary is higher than its own value, it will log a warning
 and pause recovery, for example:

WARNING: hot standby is not possible because of insufficient parameter settings
DETAIL: max_connections = 80 is a lower setting than on the primary server, where its value was 100.
LOG: recovery has paused
DETAIL: If recovery is unpaused, the server will shut down.
HINT: You can then restart the server after making the necessary configuration changes.

 At that point, the settings on the standby need to be updated and the
 instance restarted before recovery can continue. If the standby is not a
 hot standby, then when it encounters the incompatible parameter change, it
 will shut down immediately without pausing, since there is then no value
 in keeping it up.

 It is important that the administrator select appropriate settings for
 max_standby_archive_delay and max_standby_streaming_delay. The best choices vary
 depending on business priorities. For example if the server is primarily
 tasked as a High Availability server, then you will want low delay
 settings, perhaps even zero, though that is a very aggressive setting. If
 the standby server is tasked as an additional server for decision support
 queries then it might be acceptable to set the maximum delay values to
 many hours, or even -1 which means wait forever for queries to complete.

 Transaction status "hint bits" written on the primary are not WAL-logged,
 so data on the standby will likely re-write the hints again on the standby.
 Thus, the standby server will still perform disk writes even though
 all users are read-only; no changes occur to the data values
 themselves. Users will still write large sort temporary files and
 re-generate relcache info files, so no part of the database
 is truly read-only during hot standby mode.
 Note also that writes to remote databases using
 dblink module, and other operations outside the
 database using PL functions will still be possible, even though the
 transaction is read-only locally.

 The following types of administration commands are not accepted
 during recovery mode:

	
 Data Definition Language (DDL): e.g., CREATE INDEX

	
 Privilege and Ownership: GRANT, REVOKE,
 REASSIGN

	
 Maintenance commands: ANALYZE, VACUUM,
 CLUSTER, REINDEX

 Again, note that some of these commands are actually allowed during
 "read only" mode transactions on the primary.

 As a result, you cannot create additional indexes that exist solely
 on the standby, nor statistics that exist solely on the standby.
 If these administration commands are needed, they should be executed
 on the primary, and eventually those changes will propagate to the
 standby.

 pg_cancel_backend()
 and pg_terminate_backend() will work on user backends,
 but not the startup process, which performs
 recovery. pg_stat_activity does not show
 recovering transactions as active. As a result,
 pg_prepared_xacts is always empty during
 recovery. If you wish to resolve in-doubt prepared transactions, view
 pg_prepared_xacts on the primary and issue commands to
 resolve transactions there or resolve them after the end of recovery.

 pg_locks will show locks held by backends,
 as normal. pg_locks also shows
 a virtual transaction managed by the startup process that owns all
 AccessExclusiveLocks held by transactions being replayed by recovery.
 Note that the startup process does not acquire locks to
 make database changes, and thus locks other than AccessExclusiveLocks
 do not show in pg_locks for the Startup
 process; they are just presumed to exist.

 The Nagios™ plugin check_pgsql™ will
 work, because the simple information it checks for exists.
 The check_postgres™ monitoring script will also work,
 though some reported values could give different or confusing results.
 For example, last vacuum time will not be maintained, since no
 vacuum occurs on the standby. Vacuums running on the primary
 do still send their changes to the standby.

 WAL file control commands will not work during recovery,
 e.g., pg_backup_start, pg_switch_wal etc.

 Dynamically loadable modules work, including pg_stat_statements.

 Advisory locks work normally in recovery, including deadlock detection.
 Note that advisory locks are never WAL logged, so it is impossible for
 an advisory lock on either the primary or the standby to conflict with WAL
 replay. Nor is it possible to acquire an advisory lock on the primary
 and have it initiate a similar advisory lock on the standby. Advisory
 locks relate only to the server on which they are acquired.

 Trigger-based replication systems such as Slony™,
 Londiste™ and Bucardo™ won't run on the
 standby at all, though they will run happily on the primary server as
 long as the changes are not sent to standby servers to be applied.
 WAL replay is not trigger-based so you cannot relay from the
 standby to any system that requires additional database writes or
 relies on the use of triggers.

 New OIDs cannot be assigned, though some UUID generators may still
 work as long as they do not rely on writing new status to the database.

 Currently, temporary table creation is not allowed during read-only
 transactions, so in some cases existing scripts will not run correctly.
 This restriction might be relaxed in a later release. This is
 both an SQL standard compliance issue and a technical issue.

 DROP TABLESPACE can only succeed if the tablespace is empty.
 Some standby users may be actively using the tablespace via their
 temp_tablespaces parameter. If there are temporary files in the
 tablespace, all active queries are canceled to ensure that temporary
 files are removed, so the tablespace can be removed and WAL replay
 can continue.

 Running DROP DATABASE or ALTER DATABASE ... SET
 TABLESPACE on the primary
 will generate a WAL entry that will cause all users connected to that
 database on the standby to be forcibly disconnected. This action occurs
 immediately, whatever the setting of
 max_standby_streaming_delay. Note that
 ALTER DATABASE ... RENAME does not disconnect users, which
 in most cases will go unnoticed, though might in some cases cause a
 program confusion if it depends in some way upon database name.

 In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE
 for a role with login capability while that user is still connected then
 nothing happens to the connected user — they remain connected. The user cannot
 reconnect however. This behavior applies in recovery also, so a
 DROP USER on the primary does not disconnect that user on the standby.

 The cumulative statistics system is active during recovery. All scans,
 reads, blocks, index usage, etc., will be recorded normally on the
 standby. However, WAL replay will not increment relation and database
 specific counters. I.e. replay will not increment pg_stat_all_tables
 columns (like n_tup_ins), nor will reads or writes performed by the
 startup process be tracked in the pg_statio views, nor will associated
 pg_stat_database columns be incremented.

 Autovacuum is not active during recovery. It will start normally at the
 end of recovery.

 The checkpointer process and the background writer process are active during
 recovery. The checkpointer process will perform restartpoints (similar to
 checkpoints on the primary) and the background writer process will perform
 normal block cleaning activities. This can include updates of the hint bit
 information stored on the standby server.
 The CHECKPOINT command is accepted during recovery,
 though it performs a restartpoint rather than a new checkpoint.

Hot Standby Parameter Reference

 Various parameters have been mentioned above in
 the section called “Handling Query Conflicts” and
 the section called “Administrator's Overview”.

 On the primary, the wal_level parameter can be used.
 max_standby_archive_delay and
 max_standby_streaming_delay have no effect if set on
 the primary.

 On the standby, parameters hot_standby,
 max_standby_archive_delay and
 max_standby_streaming_delay can be used.

Caveats

 There are several limitations of hot standby.
 These can and probably will be fixed in future releases:

	
 Full knowledge of running transactions is required before snapshots
 can be taken. Transactions that use large numbers of subtransactions
 (currently greater than 64) will delay the start of read-only
 connections until the completion of the longest running write transaction.
 If this situation occurs, explanatory messages will be sent to the server log.

	
 Valid starting points for standby queries are generated at each
 checkpoint on the primary. If the standby is shut down while the primary
 is in a shutdown state, it might not be possible to re-enter hot standby
 until the primary is started up, so that it generates further starting
 points in the WAL logs. This situation isn't a problem in the most
 common situations where it might happen. Generally, if the primary is
 shut down and not available anymore, that's likely due to a serious
 failure that requires the standby being converted to operate as
 the new primary anyway. And in situations where the primary is
 being intentionally taken down, coordinating to make sure the standby
 becomes the new primary smoothly is also standard procedure.

	
 At the end of recovery, AccessExclusiveLocks held by prepared transactions
 will require twice the normal number of lock table entries. If you plan
 on running either a large number of concurrent prepared transactions
 that normally take AccessExclusiveLocks, or you plan on having one
 large transaction that takes many AccessExclusiveLocks, you are
 advised to select a larger value of max_locks_per_transaction,
 perhaps as much as twice the value of the parameter on
 the primary server. You need not consider this at all if
 your setting of max_prepared_transactions is 0.

	
 The Serializable transaction isolation level is not yet available in hot
 standby. (See the section called “Serializable Isolation Level” and
 the section called “Enforcing Consistency with Serializable Transactions” for details.)
 An attempt to set a transaction to the serializable isolation level in
 hot standby mode will generate an error.

Chapter 28. Monitoring Database Activity

 A database administrator frequently wonders, “What is the system
 doing right now?”
 This chapter discusses how to find that out.

 Several tools are available for monitoring database activity and
 analyzing performance. Most of this chapter is devoted to describing
 PostgreSQL™'s cumulative statistics system,
 but one should not neglect regular Unix monitoring programs such as
 ps, top, iostat, and vmstat.
 Also, once one has identified a
 poorly-performing query, further investigation might be needed using
 PostgreSQL™'s EXPLAIN command.
 the section called “Using EXPLAIN” discusses EXPLAIN
 and other methods for understanding the behavior of an individual
 query.

Standard Unix Tools

 On most Unix platforms, PostgreSQL™ modifies its
 command title as reported by ps, so that individual server
 processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00 postgres: background writer
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: checkpointer
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: walwriter
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00 postgres: autovacuum launcher
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00 postgres: joe runbug 127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00 postgres: tgl regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00 postgres: tgl regression [local] idle in transaction

 (The appropriate invocation of ps varies across different
 platforms, as do the details of what is shown. This example is from a
 recent Linux system.) The first process listed here is the
 primary server process. The command arguments
 shown for it are the same ones used when it was launched. The next four
 processes are background worker processes automatically launched by the
 primary process. (The “autovacuum launcher” process will not
 be present if you have set the system not to run autovacuum.)
 Each of the remaining
 processes is a server process handling one client connection. Each such
 process sets its command line display in the form

postgres: user database host activity

 The user, database, and (client) host items remain the same for
 the life of the client connection, but the activity indicator changes.
 The activity can be idle (i.e., waiting for a client command),
 idle in transaction (waiting for client inside a BEGIN block),
 or a command type name such as SELECT. Also,
 waiting is appended if the server process is presently waiting
 on a lock held by another session. In the above example we can infer
 that process 15606 is waiting for process 15610 to complete its transaction
 and thereby release some lock. (Process 15610 must be the blocker, because
 there is no other active session. In more complicated cases it would be
 necessary to look into the
 pg_locks
 system view to determine who is blocking whom.)

 If cluster_name has been configured the
 cluster name will also be shown in ps output:

$ psql -c 'SHOW cluster_name'
 cluster_name

 server1
(1 row)

$ ps aux|grep server1
postgres 27093 0.0 0.0 30096 2752 ? Ss 11:34 0:00 postgres: server1: background writer
...

 If you have turned off update_process_title then the
 activity indicator is not updated; the process title is set only once
 when a new process is launched. On some platforms this saves a measurable
 amount of per-command overhead; on others it's insignificant.

Tip

 Solaris™ requires special handling. You must
 use /usr/ucb/ps, rather than
 /bin/ps. You also must use two w
 flags, not just one. In addition, your original invocation of the
 postgres command must have a shorter
 ps status display than that provided by each
 server process. If you fail to do all three things, the ps
 output for each server process will be the original postgres
 command line.

The Cumulative Statistics System

 PostgreSQL™'s cumulative statistics
 system supports collection and reporting of information about
 server activity. Presently, accesses to tables and indexes in both
 disk-block and individual-row terms are counted. The total number of rows
 in each table, and information about vacuum and analyze actions for each
 table are also counted. If enabled, calls to user-defined functions and
 the total time spent in each one are counted as well.

 PostgreSQL™ also supports reporting dynamic
 information about exactly what is going on in the system right now, such as
 the exact command currently being executed by other server processes, and
 which other connections exist in the system. This facility is independent
 of the cumulative statistics system.

Statistics Collection Configuration

 Since collection of statistics adds some overhead to query execution,
 the system can be configured to collect or not collect information.
 This is controlled by configuration parameters that are normally set in
 postgresql.conf. (See Chapter 20, Server Configuration for
 details about setting configuration parameters.)

 The parameter track_activities enables monitoring
 of the current command being executed by any server process.

 The parameter track_counts controls whether
 cumulative statistics are collected about table and index accesses.

 The parameter track_functions enables tracking of
 usage of user-defined functions.

 The parameter track_io_timing enables monitoring
 of block read, write, extend, and fsync times.

 The parameter track_wal_io_timing enables monitoring
 of WAL write and fsync times.

 Normally these parameters are set in postgresql.conf so
 that they apply to all server processes, but it is possible to turn
 them on or off in individual sessions using the SET(7) command. (To prevent
 ordinary users from hiding their activity from the administrator,
 only superusers are allowed to change these parameters with
 SET.)

 Cumulative statistics are collected in shared memory. Every
 PostgreSQL™ process collects statistics locally,
 then updates the shared data at appropriate intervals. When a server,
 including a physical replica, shuts down cleanly, a permanent copy of the
 statistics data is stored in the pg_stat subdirectory,
 so that statistics can be retained across server restarts. In contrast,
 when starting from an unclean shutdown (e.g., after an immediate shutdown,
 a server crash, starting from a base backup, and point-in-time recovery),
 all statistics counters are reset.

Viewing Statistics

 Several predefined views, listed in Table 28.1, “Dynamic Statistics Views”, are available to show
 the current state of the system. There are also several other
 views, listed in Table 28.2, “Collected Statistics Views”, available to show the accumulated
 statistics. Alternatively, one can
 build custom views using the underlying cumulative statistics functions, as
 discussed in the section called “Statistics Functions”.

 When using the cumulative statistics views and functions to monitor
 collected data, it is important to realize that the information does not
 update instantaneously. Each individual server process flushes out
 accumulated statistics to shared memory just before going idle, but not
 more frequently than once per PGSTAT_MIN_INTERVAL
 milliseconds (1 second unless altered while building the server); so a
 query or transaction still in progress does not affect the displayed totals
 and the displayed information lags behind actual activity. However,
 current-query information collected by track_activities
 is always up-to-date.

 Another important point is that when a server process is asked to display
 any of the accumulated statistics, accessed values are cached until the end
 of its current transaction in the default configuration. So the statistics
 will show static information as long as you continue the current
 transaction. Similarly, information about the current queries of all
 sessions is collected when any such information is first requested within a
 transaction, and the same information will be displayed throughout the
 transaction. This is a feature, not a bug, because it allows you to perform
 several queries on the statistics and correlate the results without
 worrying that the numbers are changing underneath you.

 When analyzing statistics interactively, or with expensive queries, the
 time delta between accesses to individual statistics can lead to
 significant skew in the cached statistics. To minimize skew,
 stats_fetch_consistency can be set to
 snapshot, at the price of increased memory usage for
 caching not-needed statistics data. Conversely, if it's known that
 statistics are only accessed once, caching accessed statistics is
 unnecessary and can be avoided by setting
 stats_fetch_consistency to none.

 You can invoke pg_stat_clear_snapshot() to discard the
 current transaction's statistics snapshot or cached values (if any). The
 next use of statistical information will (when in snapshot mode) cause a
 new snapshot to be built or (when in cache mode) accessed statistics to be
 cached.

 A transaction can also see its own statistics (not yet flushed out to the
 shared memory statistics) in the views
 pg_stat_xact_all_tables,
 pg_stat_xact_sys_tables,
 pg_stat_xact_user_tables, and
 pg_stat_xact_user_functions. These numbers do not act as
 stated above; instead they update continuously throughout the transaction.

 Some of the information in the dynamic statistics views shown in Table 28.1, “Dynamic Statistics Views” is security restricted.
 Ordinary users can only see all the information about their own sessions
 (sessions belonging to a role that they are a member of). In rows about
 other sessions, many columns will be null. Note, however, that the
 existence of a session and its general properties such as its sessions user
 and database are visible to all users. Superusers and roles with privileges of
 built-in role pg_read_all_stats (see also the section called “Predefined Roles”) can see all the information about all sessions.

Table 28.1. Dynamic Statistics Views
	View Name	Description
	
 pg_stat_activity

 	
 One row per server process, showing information related to
 the current activity of that process, such as state and current query.
 See
 pg_stat_activity for details.

	pg_stat_replication	One row per WAL sender process, showing statistics about
 replication to that sender's connected standby server.
 See
 pg_stat_replication for details.

	pg_stat_wal_receiver	Only one row, showing statistics about the WAL receiver from
 that receiver's connected server.
 See
 pg_stat_wal_receiver for details.

	pg_stat_recovery_prefetch	Only one row, showing statistics about blocks prefetched during recovery.
 See
 pg_stat_recovery_prefetch for details.

	pg_stat_subscription	At least one row per subscription, showing information about
 the subscription workers.
 See
 pg_stat_subscription for details.

	pg_stat_ssl	One row per connection (regular and replication), showing information about
 SSL used on this connection.
 See
 pg_stat_ssl for details.

	pg_stat_gssapi	One row per connection (regular and replication), showing information about
 GSSAPI authentication and encryption used on this connection.
 See
 pg_stat_gssapi for details.

	pg_stat_progress_analyze	One row for each backend (including autovacuum worker processes) running
 ANALYZE, showing current progress.
 See the section called “ANALYZE Progress Reporting”.

	pg_stat_progress_create_index	One row for each backend running CREATE INDEX or REINDEX, showing
 current progress.
 See the section called “CREATE INDEX Progress Reporting”.

	pg_stat_progress_vacuum	One row for each backend (including autovacuum worker processes) running
 VACUUM, showing current progress.
 See the section called “VACUUM Progress Reporting”.

	pg_stat_progress_cluster	One row for each backend running
 CLUSTER or VACUUM FULL, showing current progress.
 See the section called “CLUSTER Progress Reporting”.

	pg_stat_progress_basebackup	One row for each WAL sender process streaming a base backup,
 showing current progress.
 See the section called “Base Backup Progress Reporting”.

	pg_stat_progress_copy	One row for each backend running COPY, showing current progress.
 See the section called “COPY Progress Reporting”.

Table 28.2. Collected Statistics Views
	View Name	Description
	pg_stat_archiver	One row only, showing statistics about the
 WAL archiver process's activity. See

 pg_stat_archiver for details.

	pg_stat_bgwriter	One row only, showing statistics about the
 background writer process's activity. See

 pg_stat_bgwriter for details.

	pg_stat_database	One row per database, showing database-wide statistics. See

 pg_stat_database for details.

	pg_stat_database_conflicts	
 One row per database, showing database-wide statistics about
 query cancels due to conflict with recovery on standby servers.
 See
 pg_stat_database_conflicts for details.

	pg_stat_io	
 One row for each combination of backend type, context, and target object
 containing cluster-wide I/O statistics.
 See
 pg_stat_io for details.

	pg_stat_replication_slots	One row per replication slot, showing statistics about the
 replication slot's usage. See

 pg_stat_replication_slots for details.

	pg_stat_slru	One row per SLRU, showing statistics of operations. See

 pg_stat_slru for details.

	pg_stat_subscription_stats	One row per subscription, showing statistics about errors.
 See
 pg_stat_subscription_stats for details.

	pg_stat_wal	One row only, showing statistics about WAL activity. See

 pg_stat_wal for details.

	pg_stat_all_tables	
 One row for each table in the current database, showing statistics
 about accesses to that specific table.
 See
 pg_stat_all_tables for details.

	pg_stat_sys_tables	Same as pg_stat_all_tables, except that only
 system tables are shown.
	pg_stat_user_tables	Same as pg_stat_all_tables, except that only user
 tables are shown.
	pg_stat_xact_all_tables	Similar to pg_stat_all_tables, but counts actions
 taken so far within the current transaction (which are not
 yet included in pg_stat_all_tables and related views).
 The columns for numbers of live and dead rows and vacuum and
 analyze actions are not present in this view.
	pg_stat_xact_sys_tables	Same as pg_stat_xact_all_tables, except that only
 system tables are shown.
	pg_stat_xact_user_tables	Same as pg_stat_xact_all_tables, except that only
 user tables are shown.
	pg_stat_all_indexes	
 One row for each index in the current database, showing statistics
 about accesses to that specific index.
 See
 pg_stat_all_indexes for details.

	pg_stat_sys_indexes	Same as pg_stat_all_indexes, except that only
 indexes on system tables are shown.
	pg_stat_user_indexes	Same as pg_stat_all_indexes, except that only
 indexes on user tables are shown.
	pg_stat_user_functions	
 One row for each tracked function, showing statistics
 about executions of that function. See

 pg_stat_user_functions for details.

	pg_stat_xact_user_functions	Similar to pg_stat_user_functions, but counts only
 calls during the current transaction (which are not
 yet included in pg_stat_user_functions).
	pg_statio_all_tables	
 One row for each table in the current database, showing statistics
 about I/O on that specific table.
 See
 pg_statio_all_tables for details.

	pg_statio_sys_tables	Same as pg_statio_all_tables, except that only
 system tables are shown.
	pg_statio_user_tables	Same as pg_statio_all_tables, except that only
 user tables are shown.
	pg_statio_all_indexes	
 One row for each index in the current database,
 showing statistics about I/O on that specific index.
 See
 pg_statio_all_indexes for details.

	pg_statio_sys_indexes	Same as pg_statio_all_indexes, except that only
 indexes on system tables are shown.
	pg_statio_user_indexes	Same as pg_statio_all_indexes, except that only
 indexes on user tables are shown.
	pg_statio_all_sequences	
 One row for each sequence in the current database,
 showing statistics about I/O on that specific sequence.
 See
 pg_statio_all_sequences for details.

	pg_statio_sys_sequences	Same as pg_statio_all_sequences, except that only
 system sequences are shown. (Presently, no system sequences are defined,
 so this view is always empty.)
	pg_statio_user_sequences	Same as pg_statio_all_sequences, except that only
 user sequences are shown.

 The per-index statistics are particularly useful to determine which
 indexes are being used and how effective they are.

 The pg_stat_io and
 pg_statio_ set of views are useful for determining
 the effectiveness of the buffer cache. They can be used to calculate a cache
 hit ratio. Note that while PostgreSQL™'s I/O
 statistics capture most instances in which the kernel was invoked in order
 to perform I/O, they do not differentiate between data which had to be
 fetched from disk and that which already resided in the kernel page cache.
 Users are advised to use the PostgreSQL™
 statistics views in combination with operating system utilities for a more
 complete picture of their database's I/O performance.

pg_stat_activity

 The pg_stat_activity view will have one row
 per server process, showing information related to
 the current activity of that process.

Table 28.3. pg_stat_activity View
	
 Column Type

 Description

	
 datid oid

 OID of the database this backend is connected to

	
 datname name

 Name of the database this backend is connected to

	
 pid integer

 Process ID of this backend

	
 leader_pid integer

 Process ID of the parallel group leader if this process is a parallel
 query worker, or process ID of the leader apply worker if this process
 is a parallel apply worker. NULL indicates that this
 process is a parallel group leader or leader apply worker, or does not
 participate in any parallel operation.

	
 usesysid oid

 OID of the user logged into this backend

	
 usename name

 Name of the user logged into this backend

	
 application_name text

 Name of the application that is connected
 to this backend

	
 client_addr inet

 IP address of the client connected to this backend.
 If this field is null, it indicates either that the client is
 connected via a Unix socket on the server machine or that this is an
 internal process such as autovacuum.

	
 client_hostname text

 Host name of the connected client, as reported by a
 reverse DNS lookup of client_addr. This field will
 only be non-null for IP connections, and only when log_hostname is enabled.

	
 client_port integer

 TCP port number that the client is using for communication
 with this backend, or -1 if a Unix socket is used.
 If this field is null, it indicates that this is an internal server process.

	
 backend_start timestamp with time zone

 Time when this process was started. For client backends,
 this is the time the client connected to the server.

	
 xact_start timestamp with time zone

 Time when this process' current transaction was started, or null
 if no transaction is active. If the current
 query is the first of its transaction, this column is equal to the
 query_start column.

	
 query_start timestamp with time zone

 Time when the currently active query was started, or if
 state is not active, when the last query
 was started

	
 state_change timestamp with time zone

 Time when the state was last changed

	
 wait_event_type text

 The type of event for which the backend is waiting, if any;
 otherwise NULL. See Table 28.4, “Wait Event Types”.

	
 wait_event text

 Wait event name if backend is currently waiting, otherwise NULL.
 See Table 28.5, “Wait Events of Type Activity” through
 Table 28.13, “Wait Events of Type Timeout”.

	
 state text

 Current overall state of this backend.
 Possible values are:

	
 active: The backend is executing a query.

	
 idle: The backend is waiting for a new client command.

	
 idle in transaction: The backend is in a transaction,
 but is not currently executing a query.

	
 idle in transaction (aborted): This state is similar to
 idle in transaction, except one of the statements in
 the transaction caused an error.

	
 fastpath function call: The backend is executing a
 fast-path function.

	
 disabled: This state is reported if track_activities is disabled in this backend.

	
 backend_xid xid

 Top-level transaction identifier of this backend, if any; see
 the section called “Transactions and Identifiers”.

	
 backend_xmin xid

 The current backend's xmin horizon.

	
 query_id bigint

 Identifier of this backend's most recent query. If
 state is active this
 field shows the identifier of the currently executing query. In
 all other states, it shows the identifier of last query that was
 executed. Query identifiers are not computed by default so this
 field will be null unless compute_query_id
 parameter is enabled or a third-party module that computes query
 identifiers is configured.

	
 query text

 Text of this backend's most recent query. If
 state is active this field shows the
 currently executing query. In all other states, it shows the last query
 that was executed. By default the query text is truncated at 1024
 bytes; this value can be changed via the parameter
 track_activity_query_size.

	
 backend_type text

 Type of current backend. Possible types are
 autovacuum launcher, autovacuum worker,
 logical replication launcher,
 logical replication worker,
 parallel worker, background writer,
 client backend, checkpointer,
 archiver, standalone backend,
 startup, walreceiver,
 walsender and walwriter.
 In addition, background workers registered by extensions may have
 additional types.

Note

 The wait_event and state columns are
 independent. If a backend is in the active state,
 it may or may not be waiting on some event. If the state
 is active and wait_event is non-null, it
 means that a query is being executed, but is being blocked somewhere
 in the system.

Table 28.4. Wait Event Types
	Wait Event Type	Description
	Activity	The server process is idle. This event type indicates a process
 waiting for activity in its main processing loop.
 wait_event will identify the specific wait point;
 see Table 28.5, “Wait Events of Type Activity”.

	BufferPin	The server process is waiting for exclusive access to
 a data buffer. Buffer pin waits can be protracted if
 another process holds an open cursor that last read data from the
 buffer in question. See Table 28.6, “Wait Events of Type BufferPin”.

	Client	The server process is waiting for activity on a socket
 connected to a user application. Thus, the server expects something
 to happen that is independent of its internal processes.
 wait_event will identify the specific wait point;
 see Table 28.7, “Wait Events of Type Client”.

	Extension	The server process is waiting for some condition defined by an
 extension module.
 See Table 28.8, “Wait Events of Type Extension”.

	IO	The server process is waiting for an I/O operation to complete.
 wait_event will identify the specific wait point;
 see Table 28.9, “Wait Events of Type IO”.

	IPC	The server process is waiting for some interaction with
 another server process. wait_event will
 identify the specific wait point;
 see Table 28.10, “Wait Events of Type IPC”.

	Lock	The server process is waiting for a heavyweight lock.
 Heavyweight locks, also known as lock manager locks or simply locks,
 primarily protect SQL-visible objects such as tables. However,
 they are also used to ensure mutual exclusion for certain internal
 operations such as relation extension. wait_event
 will identify the type of lock awaited;
 see Table 28.11, “Wait Events of Type Lock”.

	LWLock	 The server process is waiting for a lightweight lock.
 Most such locks protect a particular data structure in shared memory.
 wait_event will contain a name identifying the purpose
 of the lightweight lock. (Some locks have specific names; others
 are part of a group of locks each with a similar purpose.)
 See Table 28.12, “Wait Events of Type LWLock”.

	Timeout	The server process is waiting for a timeout
 to expire. wait_event will identify the specific wait
 point; see Table 28.13, “Wait Events of Type Timeout”.

Table 28.5. Wait Events of Type Activity
	Activity Wait Event	Description
	ArchiverMain	Waiting in main loop of archiver process.
	AutoVacuumMain	Waiting in main loop of autovacuum launcher process.
	BgWriterHibernate	Waiting in background writer process, hibernating.
	BgWriterMain	Waiting in main loop of background writer process.
	CheckpointerMain	Waiting in main loop of checkpointer process.
	LogicalApplyMain	Waiting in main loop of logical replication apply process.
	LogicalLauncherMain	Waiting in main loop of logical replication launcher process.
	LogicalParallelApplyMain	Waiting in main loop of logical replication parallel apply
 process.
	RecoveryWalStream	Waiting in main loop of startup process for WAL to arrive, during
 streaming recovery.
	SysLoggerMain	Waiting in main loop of syslogger process.
	WalReceiverMain	Waiting in main loop of WAL receiver process.
	WalSenderMain	Waiting in main loop of WAL sender process.
	WalWriterMain	Waiting in main loop of WAL writer process.

Table 28.6. Wait Events of Type BufferPin
	BufferPin Wait Event	Description
	BufferPin	Waiting to acquire an exclusive pin on a buffer.

Table 28.7. Wait Events of Type Client
	Client Wait Event	Description
	ClientRead	Waiting to read data from the client.
	ClientWrite	Waiting to write data to the client.
	GSSOpenServer	Waiting to read data from the client while establishing a GSSAPI
 session.
	LibPQWalReceiverConnect	Waiting in WAL receiver to establish connection to remote
 server.
	LibPQWalReceiverReceive	Waiting in WAL receiver to receive data from remote server.
	SSLOpenServer	Waiting for SSL while attempting connection.
	WalSenderWaitForWAL	Waiting for WAL to be flushed in WAL sender process.
	WalSenderWriteData	Waiting for any activity when processing replies from WAL
 receiver in WAL sender process.

Table 28.8. Wait Events of Type Extension
	Extension Wait Event	Description
	Extension	Waiting in an extension.

Table 28.9. Wait Events of Type IO
	IO Wait Event	Description
	BaseBackupRead	Waiting for base backup to read from a file.
	BaseBackupSync	Waiting for data written by a base backup to reach durable storage.
	BaseBackupWrite	Waiting for base backup to write to a file.
	BufFileRead	Waiting for a read from a buffered file.
	BufFileTruncate	Waiting for a buffered file to be truncated.
	BufFileWrite	Waiting for a write to a buffered file.
	ControlFileRead	Waiting for a read from the pg_control
 file.
	ControlFileSync	Waiting for the pg_control file to reach
 durable storage.
	ControlFileSyncUpdate	Waiting for an update to the pg_control file
 to reach durable storage.
	ControlFileWrite	Waiting for a write to the pg_control
 file.
	ControlFileWriteUpdate	Waiting for a write to update the pg_control
 file.
	CopyFileRead	Waiting for a read during a file copy operation.
	CopyFileWrite	Waiting for a write during a file copy operation.
	DSMAllocate	Waiting for a dynamic shared memory segment to be
 allocated.
	DSMFillZeroWrite	Waiting to fill a dynamic shared memory backing file with
 zeroes.
	DataFileExtend	Waiting for a relation data file to be extended.
	DataFileFlush	Waiting for a relation data file to reach durable storage.
	DataFileImmediateSync	Waiting for an immediate synchronization of a relation data file to
 durable storage.
	DataFilePrefetch	Waiting for an asynchronous prefetch from a relation data
 file.
	DataFileRead	Waiting for a read from a relation data file.
	DataFileSync	Waiting for changes to a relation data file to reach durable storage.
	DataFileTruncate	Waiting for a relation data file to be truncated.
	DataFileWrite	Waiting for a write to a relation data file.
	LockFileAddToDataDirRead	Waiting for a read while adding a line to the data directory lock
 file.
	LockFileAddToDataDirSync	Waiting for data to reach durable storage while adding a line to the
 data directory lock file.
	LockFileAddToDataDirWrite	Waiting for a write while adding a line to the data directory
 lock file.
	LockFileCreateRead	Waiting to read while creating the data directory lock
 file.
	LockFileCreateSync	Waiting for data to reach durable storage while creating the data
 directory lock file.
	LockFileCreateWrite	Waiting for a write while creating the data directory lock
 file.
	LockFileReCheckDataDirRead	Waiting for a read during recheck of the data directory lock
 file.
	LogicalRewriteCheckpointSync	Waiting for logical rewrite mappings to reach durable storage
 during a checkpoint.
	LogicalRewriteMappingSync	Waiting for mapping data to reach durable storage during a logical
 rewrite.
	LogicalRewriteMappingWrite	Waiting for a write of mapping data during a logical
 rewrite.
	LogicalRewriteSync	Waiting for logical rewrite mappings to reach durable
 storage.
	LogicalRewriteTruncate	Waiting for truncate of mapping data during a logical
 rewrite.
	LogicalRewriteWrite	Waiting for a write of logical rewrite mappings.
	RelationMapRead	Waiting for a read of the relation map file.
	RelationMapReplace	Waiting for durable replacement of a relation map file.
	RelationMapWrite	Waiting for a write to the relation map file.
	ReorderBufferRead	Waiting for a read during reorder buffer management.
	ReorderBufferWrite	Waiting for a write during reorder buffer management.
	ReorderLogicalMappingRead	Waiting for a read of a logical mapping during reorder buffer
 management.
	ReplicationSlotRead	Waiting for a read from a replication slot control file.
	ReplicationSlotRestoreSync	Waiting for a replication slot control file to reach durable storage
 while restoring it to memory.
	ReplicationSlotSync	Waiting for a replication slot control file to reach durable
 storage.
	ReplicationSlotWrite	Waiting for a write to a replication slot control file.
	SLRUFlushSync	Waiting for SLRU data to reach durable storage during a checkpoint
 or database shutdown.
	SLRURead	Waiting for a read of an SLRU page.
	SLRUSync	Waiting for SLRU data to reach durable storage following a page
 write.
	SLRUWrite	Waiting for a write of an SLRU page.
	SnapbuildRead	Waiting for a read of a serialized historical catalog
 snapshot.
	SnapbuildSync	Waiting for a serialized historical catalog snapshot to reach
 durable storage.
	SnapbuildWrite	Waiting for a write of a serialized historical catalog
 snapshot.
	TimelineHistoryFileSync	Waiting for a timeline history file received via streaming
 replication to reach durable storage.
	TimelineHistoryFileWrite	Waiting for a write of a timeline history file received via
 streaming replication.
	TimelineHistoryRead	Waiting for a read of a timeline history file.
	TimelineHistorySync	Waiting for a newly created timeline history file to reach durable
 storage.
	TimelineHistoryWrite	Waiting for a write of a newly created timeline history
 file.
	TwophaseFileRead	Waiting for a read of a two phase state file.
	TwophaseFileSync	Waiting for a two phase state file to reach durable storage.
	TwophaseFileWrite	Waiting for a write of a two phase state file.
	VersionFileSync	Waiting for the version file to reach durable storage while
 creating a database.
	VersionFileWrite	Waiting for the version file to be written while creating a database.
	WALBootstrapSync	Waiting for WAL to reach durable storage during
 bootstrapping.
	WALBootstrapWrite	Waiting for a write of a WAL page during bootstrapping.
	WALCopyRead	Waiting for a read when creating a new WAL segment by copying an
 existing one.
	WALCopySync	Waiting for a new WAL segment created by copying an existing one to
 reach durable storage.
	WALCopyWrite	Waiting for a write when creating a new WAL segment by copying an
 existing one.
	WALInitSync	Waiting for a newly initialized WAL file to reach durable
 storage.
	WALInitWrite	Waiting for a write while initializing a new WAL file.
	WALRead	Waiting for a read from a WAL file.
	WALSenderTimelineHistoryRead	Waiting for a read from a timeline history file during a walsender
 timeline command.
	WALSync	Waiting for a WAL file to reach durable storage.
	WALSyncMethodAssign	Waiting for data to reach durable storage while assigning a new
 WAL sync method.
	WALWrite	Waiting for a write to a WAL file.

Table 28.10. Wait Events of Type IPC
	IPC Wait Event	Description
	AppendReady	Waiting for subplan nodes of an Append plan
 node to be ready.
	ArchiveCleanupCommand	Waiting for archive_cleanup_command to
 complete.
	ArchiveCommand	Waiting for archive_command to
 complete.
	BackendTermination	Waiting for the termination of another backend.
	BackupWaitWalArchive	Waiting for WAL files required for a backup to be successfully
 archived.
	BgWorkerShutdown	Waiting for background worker to shut down.
	BgWorkerStartup	Waiting for background worker to start up.
	BtreePage	Waiting for the page number needed to continue a parallel B-tree
 scan to become available.
	BufferIO	Waiting for buffer I/O to complete.
	CheckpointDone	Waiting for a checkpoint to complete.
	CheckpointStart	Waiting for a checkpoint to start.
	ExecuteGather	Waiting for activity from a child process while
 executing a Gather plan node.
	HashBatchAllocate	Waiting for an elected Parallel Hash participant to allocate a hash
 table.
	HashBatchElect	Waiting to elect a Parallel Hash participant to allocate a hash
 table.
	HashBatchLoad	Waiting for other Parallel Hash participants to finish loading a
 hash table.
	HashBuildAllocate	Waiting for an elected Parallel Hash participant to allocate the
 initial hash table.
	HashBuildElect	Waiting to elect a Parallel Hash participant to allocate the
 initial hash table.
	HashBuildHashInner	Waiting for other Parallel Hash participants to finish hashing the
 inner relation.
	HashBuildHashOuter	Waiting for other Parallel Hash participants to finish partitioning
 the outer relation.
	HashGrowBatchesDecide	Waiting to elect a Parallel Hash participant to decide on future
 batch growth.
	HashGrowBatchesElect	Waiting to elect a Parallel Hash participant to allocate more
 batches.
	HashGrowBatchesFinish	Waiting for an elected Parallel Hash participant to decide on
 future batch growth.
	HashGrowBatchesReallocate	Waiting for an elected Parallel Hash participant to allocate more
 batches.
	HashGrowBatchesRepartition	Waiting for other Parallel Hash participants to finish
 repartitioning.
	HashGrowBucketsElect	Waiting to elect a Parallel Hash participant to allocate more
 buckets.
	HashGrowBucketsReallocate	Waiting for an elected Parallel Hash participant to finish
 allocating more buckets.
	HashGrowBucketsReinsert	Waiting for other Parallel Hash participants to finish inserting
 tuples into new buckets.
	LogicalApplySendData	Waiting for a logical replication leader apply process to send
 data to a parallel apply process.
	LogicalParallelApplyStateChange	Waiting for a logical replication parallel apply process to change
 state.
	LogicalSyncData	Waiting for a logical replication remote server to send data for
 initial table synchronization.
	LogicalSyncStateChange	Waiting for a logical replication remote server to change
 state.
	MessageQueueInternal	Waiting for another process to be attached to a shared message
 queue.
	MessageQueuePutMessage	Waiting to write a protocol message to a shared message queue.
	MessageQueueReceive	Waiting to receive bytes from a shared message queue.
	MessageQueueSend	Waiting to send bytes to a shared message queue.
	ParallelBitmapScan	Waiting for parallel bitmap scan to become initialized.
	ParallelCreateIndexScan	Waiting for parallel CREATE INDEX workers to
 finish heap scan.
	ParallelFinish	Waiting for parallel workers to finish computing.
	ProcArrayGroupUpdate	Waiting for the group leader to clear the transaction ID at
 transaction end.
	ProcSignalBarrier	Waiting for a barrier event to be processed by all
 backends.
	Promote	Waiting for standby promotion.
	RecoveryConflictSnapshot	Waiting for recovery conflict resolution for a vacuum
 cleanup.
	RecoveryConflictTablespace	Waiting for recovery conflict resolution for dropping a
 tablespace.
	RecoveryEndCommand	Waiting for recovery_end_command to
 complete.
	RecoveryPause	Waiting for recovery to be resumed.
	ReplicationOriginDrop	Waiting for a replication origin to become inactive so it can be
 dropped.
	ReplicationSlotDrop	Waiting for a replication slot to become inactive so it can be
 dropped.
	RestoreCommand	Waiting for restore_command to
 complete.
	SafeSnapshot	Waiting to obtain a valid snapshot for a READ ONLY
 DEFERRABLE transaction.
	SyncRep	Waiting for confirmation from a remote server during synchronous
 replication.
	WalReceiverExit	Waiting for the WAL receiver to exit.
	WalReceiverWaitStart	Waiting for startup process to send initial data for streaming
 replication.
	XactGroupUpdate	Waiting for the group leader to update transaction status at
 transaction end.

Table 28.11. Wait Events of Type Lock
	Lock Wait Event	Description
	advisory	Waiting to acquire an advisory user lock.
	applytransaction	Waiting to acquire a lock on a remote transaction being applied
 by a logical replication subscriber.
	extend	Waiting to extend a relation.
	frozenid	Waiting to
 update pg_database.datfrozenxid
 and pg_database.datminmxid.
	object	Waiting to acquire a lock on a non-relation database object.
	page	Waiting to acquire a lock on a page of a relation.
	relation	Waiting to acquire a lock on a relation.
	spectoken	Waiting to acquire a speculative insertion lock.
	transactionid	Waiting for a transaction to finish.
	tuple	Waiting to acquire a lock on a tuple.
	userlock	Waiting to acquire a user lock.
	virtualxid	Waiting to acquire a virtual transaction ID lock; see
 the section called “Transactions and Identifiers”.

Table 28.12. Wait Events of Type LWLock
	LWLock Wait Event	Description
	AddinShmemInit	Waiting to manage an extension's space allocation in shared
 memory.
	AutoFile	Waiting to update the postgresql.auto.conf
 file.
	Autovacuum	Waiting to read or update the current state of autovacuum
 workers.
	AutovacuumSchedule	Waiting to ensure that a table selected for autovacuum
 still needs vacuuming.
	BackgroundWorker	Waiting to read or update background worker state.
	BtreeVacuum	Waiting to read or update vacuum-related information for a
 B-tree index.
	BufferContent	Waiting to access a data page in memory.
	BufferMapping	Waiting to associate a data block with a buffer in the buffer
 pool.
	CheckpointerComm	Waiting to manage fsync requests.
	CommitTs	Waiting to read or update the last value set for a
 transaction commit timestamp.
	CommitTsBuffer	Waiting for I/O on a commit timestamp SLRU buffer.
	CommitTsSLRU	Waiting to access the commit timestamp SLRU cache.
	ControlFile	Waiting to read or update the pg_control
 file or create a new WAL file.
	DynamicSharedMemoryControl	Waiting to read or update dynamic shared memory allocation
 information.
	LockFastPath	Waiting to read or update a process' fast-path lock
 information.
	LockManager	Waiting to read or update information
 about “heavyweight” locks.
	LogicalRepLauncherDSA	Waiting to access logical replication launcher's dynamic shared
 memory allocator.
	LogicalRepLauncherHash	Waiting to access logical replication launcher's shared
 hash table.
	LogicalRepWorker	Waiting to read or update the state of logical replication
 workers.
	MultiXactGen	Waiting to read or update shared multixact state.
	MultiXactMemberBuffer	Waiting for I/O on a multixact member SLRU buffer.
	MultiXactMemberSLRU	Waiting to access the multixact member SLRU cache.
	MultiXactOffsetBuffer	Waiting for I/O on a multixact offset SLRU buffer.
	MultiXactOffsetSLRU	Waiting to access the multixact offset SLRU cache.
	MultiXactTruncation	Waiting to read or truncate multixact information.
	NotifyBuffer	Waiting for I/O on a NOTIFY message SLRU
 buffer.
	NotifyQueue	Waiting to read or update NOTIFY messages.
	NotifyQueueTail	Waiting to update limit on NOTIFY message
 storage.
	NotifySLRU	Waiting to access the NOTIFY message SLRU
 cache.
	OidGen	Waiting to allocate a new OID.
	OldSnapshotTimeMap	Waiting to read or update old snapshot control information.
	ParallelAppend	Waiting to choose the next subplan during Parallel Append plan
 execution.
	ParallelHashJoin	Waiting to synchronize workers during Parallel Hash Join plan
 execution.
	ParallelQueryDSA	Waiting for parallel query dynamic shared memory allocation.
	PerSessionDSA	Waiting for parallel query dynamic shared memory allocation.
	PerSessionRecordType	Waiting to access a parallel query's information about composite
 types.
	PerSessionRecordTypmod	Waiting to access a parallel query's information about type
 modifiers that identify anonymous record types.
	PerXactPredicateList	Waiting to access the list of predicate locks held by the current
 serializable transaction during a parallel query.
	PgStatsData	Waiting for shared memory stats data access
	PgStatsDSA	Waiting for stats dynamic shared memory allocator access
	PgStatsHash	Waiting for stats shared memory hash table access
	PredicateLockManager	Waiting to access predicate lock information used by
 serializable transactions.
	ProcArray	Waiting to access the shared per-process data structures
 (typically, to get a snapshot or report a session's transaction
 ID).
	RelationMapping	Waiting to read or update
 a pg_filenode.map file (used to track the
 filenode assignments of certain system catalogs).
	RelCacheInit	Waiting to read or update a pg_internal.init
 relation cache initialization file.
	ReplicationOrigin	Waiting to create, drop or use a replication origin.
	ReplicationOriginState	Waiting to read or update the progress of one replication
 origin.
	ReplicationSlotAllocation	Waiting to allocate or free a replication slot.
	ReplicationSlotControl	Waiting to read or update replication slot state.
	ReplicationSlotIO	Waiting for I/O on a replication slot.
	SerialBuffer	Waiting for I/O on a serializable transaction conflict SLRU
 buffer.
	SerializableFinishedList	Waiting to access the list of finished serializable
 transactions.
	SerializablePredicateList	Waiting to access the list of predicate locks held by
 serializable transactions.
	SerializableXactHash	Waiting to read or update information about serializable
 transactions.
	SerialSLRU	Waiting to access the serializable transaction conflict SLRU
 cache.
	SharedTidBitmap	Waiting to access a shared TID bitmap during a parallel bitmap
 index scan.
	SharedTupleStore	Waiting to access a shared tuple store during parallel
 query.
	ShmemIndex	Waiting to find or allocate space in shared memory.
	SInvalRead	Waiting to retrieve messages from the shared catalog invalidation
 queue.
	SInvalWrite	Waiting to add a message to the shared catalog invalidation
 queue.
	SubtransBuffer	Waiting for I/O on a sub-transaction SLRU buffer.
	SubtransSLRU	Waiting to access the sub-transaction SLRU cache.
	SyncRep	Waiting to read or update information about the state of
 synchronous replication.
	SyncScan	Waiting to select the starting location of a synchronized table
 scan.
	TablespaceCreate	Waiting to create or drop a tablespace.
	TwoPhaseState	Waiting to read or update the state of prepared transactions.
	WALBufMapping	Waiting to replace a page in WAL buffers.
	WALInsert	Waiting to insert WAL data into a memory buffer.
	WALWrite	Waiting for WAL buffers to be written to disk.
	WrapLimitsVacuum	Waiting to update limits on transaction id and multixact
 consumption.
	XactBuffer	Waiting for I/O on a transaction status SLRU buffer.
	XactSLRU	Waiting to access the transaction status SLRU cache.
	XactTruncation	Waiting to execute pg_xact_status or update
 the oldest transaction ID available to it.
	XidGen	Waiting to allocate a new transaction ID.

Note

 Extensions can add LWLock types to the list shown in
 Table 28.12, “Wait Events of Type LWLock”. In some cases, the name
 assigned by an extension will not be available in all server processes;
 so an LWLock wait event might be reported as
 just “extension” rather than the
 extension-assigned name.

Table 28.13. Wait Events of Type Timeout
	Timeout Wait Event	Description
	BaseBackupThrottle	Waiting during base backup when throttling activity.
	CheckpointWriteDelay	Waiting between writes while performing a checkpoint.
	PgSleep	Waiting due to a call to pg_sleep or
 a sibling function.
	RecoveryApplyDelay	Waiting to apply WAL during recovery because of a delay
 setting.
	RecoveryRetrieveRetryInterval	Waiting during recovery when WAL data is not available from any
 source (pg_wal, archive or stream).
	RegisterSyncRequest	Waiting while sending synchronization requests to the
 checkpointer, because the request queue is full.
	SpinDelay	Waiting while acquiring a contended spinlock.
	VacuumDelay	Waiting in a cost-based vacuum delay point.
	VacuumTruncate	Waiting to acquire an exclusive lock to truncate off any
 empty pages at the end of a table vacuumed.

 Here is an example of how wait events can be viewed:

SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE wait_event is NOT NULL;
 pid | wait_event_type | wait_event
------+-----------------+------------
 2540 | Lock | relation
 6644 | LWLock | ProcArray
(2 rows)

pg_stat_replication

 The pg_stat_replication view will contain one row
 per WAL sender process, showing statistics about replication to that
 sender's connected standby server. Only directly connected standbys are
 listed; no information is available about downstream standby servers.

Table 28.14. pg_stat_replication View
	
 Column Type

 Description

	
 pid integer

 Process ID of a WAL sender process

	
 usesysid oid

 OID of the user logged into this WAL sender process

	
 usename name

 Name of the user logged into this WAL sender process

	
 application_name text

 Name of the application that is connected
 to this WAL sender

	
 client_addr inet

 IP address of the client connected to this WAL sender.
 If this field is null, it indicates that the client is
 connected via a Unix socket on the server machine.

	
 client_hostname text

 Host name of the connected client, as reported by a
 reverse DNS lookup of client_addr. This field will
 only be non-null for IP connections, and only when log_hostname is enabled.

	
 client_port integer

 TCP port number that the client is using for communication
 with this WAL sender, or -1 if a Unix socket is used

	
 backend_start timestamp with time zone

 Time when this process was started, i.e., when the
 client connected to this WAL sender

	
 backend_xmin xid

 This standby's xmin horizon reported
 by hot_standby_feedback.

	
 state text

 Current WAL sender state.
 Possible values are:

	
 startup: This WAL sender is starting up.

	
 catchup: This WAL sender's connected standby is
 catching up with the primary.

	
 streaming: This WAL sender is streaming changes
 after its connected standby server has caught up with the primary.

	
 backup: This WAL sender is sending a backup.

	
 stopping: This WAL sender is stopping.

	
 sent_lsn pg_lsn

 Last write-ahead log location sent on this connection

	
 write_lsn pg_lsn

 Last write-ahead log location written to disk by this standby
 server

	
 flush_lsn pg_lsn

 Last write-ahead log location flushed to disk by this standby
 server

	
 replay_lsn pg_lsn

 Last write-ahead log location replayed into the database on this
 standby server

	
 write_lag interval

 Time elapsed between flushing recent WAL locally and receiving
 notification that this standby server has written it (but not yet
 flushed it or applied it). This can be used to gauge the delay that
 synchronous_commit level
 remote_write incurred while committing if this
 server was configured as a synchronous standby.

	
 flush_lag interval

 Time elapsed between flushing recent WAL locally and receiving
 notification that this standby server has written and flushed it
 (but not yet applied it). This can be used to gauge the delay that
 synchronous_commit level
 on incurred while committing if this
 server was configured as a synchronous standby.

	
 replay_lag interval

 Time elapsed between flushing recent WAL locally and receiving
 notification that this standby server has written, flushed and
 applied it. This can be used to gauge the delay that
 synchronous_commit level
 remote_apply incurred while committing if this
 server was configured as a synchronous standby.

	
 sync_priority integer

 Priority of this standby server for being chosen as the
 synchronous standby in a priority-based synchronous replication.
 This has no effect in a quorum-based synchronous replication.

	
 sync_state text

 Synchronous state of this standby server.
 Possible values are:

	
 async: This standby server is asynchronous.

	
 potential: This standby server is now asynchronous,
 but can potentially become synchronous if one of current
 synchronous ones fails.

	
 sync: This standby server is synchronous.

	
 quorum: This standby server is considered as a candidate
 for quorum standbys.

	
 reply_time timestamp with time zone

 Send time of last reply message received from standby server

 The lag times reported in the pg_stat_replication
 view are measurements of the time taken for recent WAL to be written,
 flushed and replayed and for the sender to know about it. These times
 represent the commit delay that was (or would have been) introduced by each
 synchronous commit level, if the remote server was configured as a
 synchronous standby. For an asynchronous standby, the
 replay_lag column approximates the delay
 before recent transactions became visible to queries. If the standby
 server has entirely caught up with the sending server and there is no more
 WAL activity, the most recently measured lag times will continue to be
 displayed for a short time and then show NULL.

 Lag times work automatically for physical replication. Logical decoding
 plugins may optionally emit tracking messages; if they do not, the tracking
 mechanism will simply display NULL lag.

Note

 The reported lag times are not predictions of how long it will take for
 the standby to catch up with the sending server assuming the current
 rate of replay. Such a system would show similar times while new WAL is
 being generated, but would differ when the sender becomes idle. In
 particular, when the standby has caught up completely,
 pg_stat_replication shows the time taken to
 write, flush and replay the most recent reported WAL location rather than
 zero as some users might expect. This is consistent with the goal of
 measuring synchronous commit and transaction visibility delays for
 recent write transactions.
 To reduce confusion for users expecting a different model of lag, the
 lag columns revert to NULL after a short time on a fully replayed idle
 system. Monitoring systems should choose whether to represent this
 as missing data, zero or continue to display the last known value.

pg_stat_replication_slots

 The pg_stat_replication_slots view will contain
 one row per logical replication slot, showing statistics about its usage.

Table 28.15. pg_stat_replication_slots View
	
 Column Type

 Description

	
 slot_name text

 A unique, cluster-wide identifier for the replication slot

	
 spill_txns bigint

 Number of transactions spilled to disk once the memory used by
 logical decoding to decode changes from WAL has exceeded
 logical_decoding_work_mem. The counter gets
 incremented for both top-level transactions and subtransactions.

	
 spill_count bigint

 Number of times transactions were spilled to disk while decoding
 changes from WAL for this slot. This counter is incremented each time
 a transaction is spilled, and the same transaction may be spilled
 multiple times.

	
 spill_bytes bigint

 Amount of decoded transaction data spilled to disk while performing
 decoding of changes from WAL for this slot. This and other spill
 counters can be used to gauge the I/O which occurred during logical
 decoding and allow tuning logical_decoding_work_mem.

	
 stream_txns bigint

 Number of in-progress transactions streamed to the decoding output
 plugin after the memory used by logical decoding to decode changes
 from WAL for this slot has exceeded
 logical_decoding_work_mem. Streaming only
 works with top-level transactions (subtransactions can't be streamed
 independently), so the counter is not incremented for subtransactions.

	
 stream_countbigint

 Number of times in-progress transactions were streamed to the decoding
 output plugin while decoding changes from WAL for this slot. This
 counter is incremented each time a transaction is streamed, and the
 same transaction may be streamed multiple times.

	
 stream_bytesbigint

 Amount of transaction data decoded for streaming in-progress
 transactions to the decoding output plugin while decoding changes from
 WAL for this slot. This and other streaming counters for this slot can
 be used to tune logical_decoding_work_mem.

	
 total_txns bigint

 Number of decoded transactions sent to the decoding output plugin for
 this slot. This counts top-level transactions only, and is not incremented
 for subtransactions. Note that this includes the transactions that are
 streamed and/or spilled.

	
 total_bytesbigint

 Amount of transaction data decoded for sending transactions to the
 decoding output plugin while decoding changes from WAL for this slot.
 Note that this includes data that is streamed and/or spilled.

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

pg_stat_wal_receiver

 The pg_stat_wal_receiver view will contain only
 one row, showing statistics about the WAL receiver from that receiver's
 connected server.

Table 28.16. pg_stat_wal_receiver View
	
 Column Type

 Description

	
 pid integer

 Process ID of the WAL receiver process

	
 status text

 Activity status of the WAL receiver process

	
 receive_start_lsn pg_lsn

 First write-ahead log location used when WAL receiver is
 started

	
 receive_start_tli integer

 First timeline number used when WAL receiver is started

	
 written_lsn pg_lsn

 Last write-ahead log location already received and written to disk,
 but not flushed. This should not be used for data integrity checks.

	
 flushed_lsn pg_lsn

 Last write-ahead log location already received and flushed to
 disk, the initial value of this field being the first log location used
 when WAL receiver is started

	
 received_tli integer

 Timeline number of last write-ahead log location received and
 flushed to disk, the initial value of this field being the timeline
 number of the first log location used when WAL receiver is started

	
 last_msg_send_time timestamp with time zone

 Send time of last message received from origin WAL sender

	
 last_msg_receipt_time timestamp with time zone

 Receipt time of last message received from origin WAL sender

	
 latest_end_lsn pg_lsn

 Last write-ahead log location reported to origin WAL sender

	
 latest_end_time timestamp with time zone

 Time of last write-ahead log location reported to origin WAL sender

	
 slot_name text

 Replication slot name used by this WAL receiver

	
 sender_host text

 Host of the PostgreSQL™ instance
 this WAL receiver is connected to. This can be a host name,
 an IP address, or a directory path if the connection is via
 Unix socket. (The path case can be distinguished because it
 will always be an absolute path, beginning with /.)

	
 sender_port integer

 Port number of the PostgreSQL™ instance
 this WAL receiver is connected to.

	
 conninfo text

 Connection string used by this WAL receiver,
 with security-sensitive fields obfuscated.

pg_stat_recovery_prefetch

 The pg_stat_recovery_prefetch view will contain
 only one row. The columns wal_distance,
 block_distance and
 io_depth show current values, and the
 other columns show cumulative counters that can be reset
 with the pg_stat_reset_shared function.

Table 28.17. pg_stat_recovery_prefetch View
	
 Column Type

 Description

	

 stats_reset timestamp with time zone

 Time at which these statistics were last reset

	

 prefetch bigint

 Number of blocks prefetched because they were not in the buffer pool

	

 hit bigint

 Number of blocks not prefetched because they were already in the buffer pool

	

 skip_init bigint

 Number of blocks not prefetched because they would be zero-initialized

	

 skip_new bigint

 Number of blocks not prefetched because they didn't exist yet

	

 skip_fpw bigint

 Number of blocks not prefetched because a full page image was included in the WAL

	

 skip_rep bigint

 Number of blocks not prefetched because they were already recently prefetched

	

 wal_distance int

 How many bytes ahead the prefetcher is looking

	

 block_distance int

 How many blocks ahead the prefetcher is looking

	

 io_depth int

 How many prefetches have been initiated but are not yet known to have completed

pg_stat_subscription

Table 28.18. pg_stat_subscription View
	
 Column Type

 Description

	
 subid oid

 OID of the subscription

	
 subname name

 Name of the subscription

	
 pid integer

 Process ID of the subscription worker process

	
 leader_pid integer

 Process ID of the leader apply worker if this process is a parallel
 apply worker; NULL if this process is a leader apply worker or a
 synchronization worker

	
 relid oid

 OID of the relation that the worker is synchronizing; NULL for the
 leader apply worker and parallel apply workers

	
 received_lsn pg_lsn

 Last write-ahead log location received, the initial value of
 this field being 0; NULL for parallel apply workers

	
 last_msg_send_time timestamp with time zone

 Send time of last message received from origin WAL sender; NULL for
 parallel apply workers

	
 last_msg_receipt_time timestamp with time zone

 Receipt time of last message received from origin WAL sender; NULL for
 parallel apply workers

	
 latest_end_lsn pg_lsn

 Last write-ahead log location reported to origin WAL sender; NULL for
 parallel apply workers

	
 latest_end_time timestamp with time zone

 Time of last write-ahead log location reported to origin WAL
 sender; NULL for parallel apply workers

pg_stat_subscription_stats

 The pg_stat_subscription_stats view will contain
 one row per subscription.

Table 28.19. pg_stat_subscription_stats View
	
 Column Type

 Description

	
 subid oid

 OID of the subscription

	
 subname name

 Name of the subscription

	
 apply_error_count bigint

 Number of times an error occurred while applying changes

	
 sync_error_count bigint

 Number of times an error occurred during the initial table
 synchronization

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

pg_stat_ssl

 The pg_stat_ssl view will contain one row per
 backend or WAL sender process, showing statistics about SSL usage on
 this connection. It can be joined to pg_stat_activity
 or pg_stat_replication on the
 pid column to get more details about the
 connection.

Table 28.20. pg_stat_ssl View
	
 Column Type

 Description

	
 pid integer

 Process ID of a backend or WAL sender process

	
 ssl boolean

 True if SSL is used on this connection

	
 version text

 Version of SSL in use, or NULL if SSL is not in use
 on this connection

	
 cipher text

 Name of SSL cipher in use, or NULL if SSL is not in use
 on this connection

	
 bits integer

 Number of bits in the encryption algorithm used, or NULL
 if SSL is not used on this connection

	
 client_dn text

 Distinguished Name (DN) field from the client certificate
 used, or NULL if no client certificate was supplied or if SSL
 is not in use on this connection. This field is truncated if the
 DN field is longer than NAMEDATALEN (64 characters
 in a standard build).

	
 client_serial numeric

 Serial number of the client certificate, or NULL if no client
 certificate was supplied or if SSL is not in use on this connection. The
 combination of certificate serial number and certificate issuer uniquely
 identifies a certificate (unless the issuer erroneously reuses serial
 numbers).

	
 issuer_dn text

 DN of the issuer of the client certificate, or NULL if no client
 certificate was supplied or if SSL is not in use on this connection.
 This field is truncated like client_dn.

pg_stat_gssapi

 The pg_stat_gssapi view will contain one row per
 backend, showing information about GSSAPI usage on this connection. It can
 be joined to pg_stat_activity or
 pg_stat_replication on the
 pid column to get more details about the
 connection.

Table 28.21. pg_stat_gssapi View
	
 Column Type

 Description

	
 pid integer

 Process ID of a backend

	
 gss_authenticated boolean

 True if GSSAPI authentication was used for this connection

	
 principal text

 Principal used to authenticate this connection, or NULL
 if GSSAPI was not used to authenticate this connection. This
 field is truncated if the principal is longer than
 NAMEDATALEN (64 characters in a standard build).

	
 encrypted boolean

 True if GSSAPI encryption is in use on this connection

	
 credentials_delegated boolean

 True if GSSAPI credentials were delegated on this connection.

pg_stat_archiver

 The pg_stat_archiver view will always have a
 single row, containing data about the archiver process of the cluster.

Table 28.22. pg_stat_archiver View
	
 Column Type

 Description

	
 archived_count bigint

 Number of WAL files that have been successfully archived

	
 last_archived_wal text

 Name of the WAL file most recently successfully archived

	
 last_archived_time timestamp with time zone

 Time of the most recent successful archive operation

	
 failed_count bigint

 Number of failed attempts for archiving WAL files

	
 last_failed_wal text

 Name of the WAL file of the most recent failed archival operation

	
 last_failed_time timestamp with time zone

 Time of the most recent failed archival operation

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

 Normally, WAL files are archived in order, oldest to newest, but that is
 not guaranteed, and does not hold under special circumstances like when
 promoting a standby or after crash recovery. Therefore it is not safe to
 assume that all files older than
 last_archived_wal have also been successfully
 archived.

pg_stat_io

 The pg_stat_io view will contain one row for each
 combination of backend type, target I/O object, and I/O context, showing
 cluster-wide I/O statistics. Combinations which do not make sense are
 omitted.

 Currently, I/O on relations (e.g. tables, indexes) is tracked. However,
 relation I/O which bypasses shared buffers (e.g. when moving a table from one
 tablespace to another) is currently not tracked.

Table 28.23. pg_stat_io View
	

 Column Type

 Description

	

 backend_type text

 Type of backend (e.g. background worker, autovacuum worker). See
 pg_stat_activity for more information
 on backend_types. Some
 backend_types do not accumulate I/O operation
 statistics and will not be included in the view.

	

 object text

 Target object of an I/O operation. Possible values are:

	
 relation: Permanent relations.

	
 temp relation: Temporary relations.

	

 context text

 The context of an I/O operation. Possible values are:

 	
 normal: The default or standard
 context for a type of I/O operation. For
 example, by default, relation data is read into and written out from
 shared buffers. Thus, reads and writes of relation data to and from
 shared buffers are tracked in context
 normal.

	
 vacuum: I/O operations performed outside of shared
 buffers while vacuuming and analyzing permanent relations. Temporary
 table vacuums use the same local buffer pool as other temporary table
 IO operations and are tracked in context
 normal.

	
 bulkread: Certain large read I/O operations
 done outside of shared buffers, for example, a sequential scan of a
 large table.

	
 bulkwrite: Certain large write I/O operations
 done outside of shared buffers, such as COPY.

	

 reads bigint

 Number of read operations, each of the size specified in
 op_bytes.

	

 read_time double precision

 Time spent in read operations in milliseconds (if
 track_io_timing is enabled, otherwise zero)

	

 writes bigint

 Number of write operations, each of the size specified in
 op_bytes.

	

 write_time double precision

 Time spent in write operations in milliseconds (if
 track_io_timing is enabled, otherwise zero)

	

 writebacks bigint

 Number of units of size op_bytes which the process
 requested the kernel write out to permanent storage.

	

 writeback_time double precision

 Time spent in writeback operations in milliseconds (if
 track_io_timing is enabled, otherwise zero). This
 includes the time spent queueing write-out requests and, potentially,
 the time spent to write out the dirty data.

	

 extends bigint

 Number of relation extend operations, each of the size specified in
 op_bytes.

	

 extend_time double precision

 Time spent in extend operations in milliseconds (if
 track_io_timing is enabled, otherwise zero)

	

 op_bytes bigint

 The number of bytes per unit of I/O read, written, or extended.

 Relation data reads, writes, and extends are done in
 block_size units, derived from the build-time
 parameter BLCKSZ, which is 8192 by
 default.

	

 hits bigint

 The number of times a desired block was found in a shared buffer.

	

 evictions bigint

 Number of times a block has been written out from a shared or local
 buffer in order to make it available for another use.

 In context normal, this counts
 the number of times a block was evicted from a buffer and replaced with
 another block. In contexts
 bulkwrite, bulkread, and
 vacuum, this counts the number of times a block was
 evicted from shared buffers in order to add the shared buffer to a
 separate, size-limited ring buffer for use in a bulk I/O operation.

	

 reuses bigint

 The number of times an existing buffer in a size-limited ring buffer
 outside of shared buffers was reused as part of an I/O operation in the
 bulkread, bulkwrite, or
 vacuum contexts.

	

 fsyncs bigint

 Number of fsync calls. These are only tracked in
 context normal.

	

 fsync_time double precision

 Time spent in fsync operations in milliseconds (if
 track_io_timing is enabled, otherwise zero)

	

 stats_reset timestamp with time zone

 Time at which these statistics were last reset.

 Some backend types never perform I/O operations on some I/O objects and/or
 in some I/O contexts. These rows are omitted from the view. For example, the
 checkpointer does not checkpoint temporary tables, so there will be no rows
 for backend_type checkpointer and
 object temp relation.

 In addition, some I/O operations will never be performed either by certain
 backend types or on certain I/O objects and/or in certain I/O contexts.
 These cells will be NULL. For example, temporary tables are not
 fsynced, so fsyncs will be NULL for
 object temp relation. Also, the
 background writer does not perform reads, so reads will
 be NULL in rows for backend_type background
 writer.

 pg_stat_io can be used to inform database tuning.
 For example:

	
 A high evictions count can indicate that shared
 buffers should be increased.

	
 Client backends rely on the checkpointer to ensure data is persisted to
 permanent storage. Large numbers of fsyncs by
 client backends could indicate a misconfiguration of
 shared buffers or of the checkpointer. More information on configuring
 the checkpointer can be found in the section called “WAL Configuration”.

	
 Normally, client backends should be able to rely on auxiliary processes
 like the checkpointer and the background writer to write out dirty data
 as much as possible. Large numbers of writes by client backends could
 indicate a misconfiguration of shared buffers or of the checkpointer.
 More information on configuring the checkpointer can be found in the section called “WAL Configuration”.

Note

 Columns tracking I/O time will only be non-zero when
 track_io_timing is enabled. The user should be
 careful when referencing these columns in combination with their
 corresponding IO operations in case track_io_timing
 was not enabled for the entire time since the last stats reset.

pg_stat_bgwriter

 The pg_stat_bgwriter view will always have a
 single row, containing global data for the cluster.

Table 28.24. pg_stat_bgwriter View
	
 Column Type

 Description

	
 checkpoints_timed bigint

 Number of scheduled checkpoints that have been performed

	
 checkpoints_req bigint

 Number of requested checkpoints that have been performed

	
 checkpoint_write_time double precision

 Total amount of time that has been spent in the portion of
 checkpoint processing where files are written to disk, in milliseconds

	
 checkpoint_sync_time double precision

 Total amount of time that has been spent in the portion of
 checkpoint processing where files are synchronized to disk, in
 milliseconds

	
 buffers_checkpoint bigint

 Number of buffers written during checkpoints

	
 buffers_clean bigint

 Number of buffers written by the background writer

	
 maxwritten_clean bigint

 Number of times the background writer stopped a cleaning
 scan because it had written too many buffers

	
 buffers_backend bigint

 Number of buffers written directly by a backend

	
 buffers_backend_fsync bigint

 Number of times a backend had to execute its own
 fsync call (normally the background writer handles those
 even when the backend does its own write)

	
 buffers_alloc bigint

 Number of buffers allocated

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

pg_stat_wal

 The pg_stat_wal view will always have a
 single row, containing data about WAL activity of the cluster.

Table 28.25. pg_stat_wal View
	
 Column Type

 Description

	
 wal_records bigint

 Total number of WAL records generated

	
 wal_fpi bigint

 Total number of WAL full page images generated

	
 wal_bytes numeric

 Total amount of WAL generated in bytes

	
 wal_buffers_full bigint

 Number of times WAL data was written to disk because WAL buffers became full

	
 wal_write bigint

 Number of times WAL buffers were written out to disk via
 XLogWrite request.
 See the section called “WAL Configuration” for more information about
 the internal WAL function XLogWrite.

	
 wal_sync bigint

 Number of times WAL files were synced to disk via
 issue_xlog_fsync request
 (if fsync is on and
 wal_sync_method is either
 fdatasync, fsync or
 fsync_writethrough, otherwise zero).
 See the section called “WAL Configuration” for more information about
 the internal WAL function issue_xlog_fsync.

	
 wal_write_time double precision

 Total amount of time spent writing WAL buffers to disk via
 XLogWrite request, in milliseconds
 (if track_wal_io_timing is enabled,
 otherwise zero). This includes the sync time when
 wal_sync_method is either
 open_datasync or open_sync.

	
 wal_sync_time double precision

 Total amount of time spent syncing WAL files to disk via
 issue_xlog_fsync request, in milliseconds
 (if track_wal_io_timing is enabled,
 fsync is on, and
 wal_sync_method is either
 fdatasync, fsync or
 fsync_writethrough, otherwise zero).

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

pg_stat_database

 The pg_stat_database view will contain one row
 for each database in the cluster, plus one for shared objects, showing
 database-wide statistics.

Table 28.26. pg_stat_database View
	
 Column Type

 Description

	
 datid oid

 OID of this database, or 0 for objects belonging to a shared
 relation

	
 datname name

 Name of this database, or NULL for shared
 objects.

	
 numbackends integer

 Number of backends currently connected to this database, or
 NULL for shared objects. This is the only column
 in this view that returns a value reflecting current state; all other
 columns return the accumulated values since the last reset.

	
 xact_commit bigint

 Number of transactions in this database that have been
 committed

	
 xact_rollback bigint

 Number of transactions in this database that have been
 rolled back

	
 blks_read bigint

 Number of disk blocks read in this database

	
 blks_hit bigint

 Number of times disk blocks were found already in the buffer
 cache, so that a read was not necessary (this only includes hits in the
 PostgreSQL buffer cache, not the operating system's file system cache)

	
 tup_returned bigint

 Number of live rows fetched by sequential scans and index entries returned by index scans in this database

	
 tup_fetched bigint

 Number of live rows fetched by index scans in this database

	
 tup_inserted bigint

 Number of rows inserted by queries in this database

	
 tup_updated bigint

 Number of rows updated by queries in this database

	
 tup_deleted bigint

 Number of rows deleted by queries in this database

	
 conflicts bigint

 Number of queries canceled due to conflicts with recovery
 in this database. (Conflicts occur only on standby servers; see

 pg_stat_database_conflicts for details.)

	
 temp_files bigint

 Number of temporary files created by queries in this database.
 All temporary files are counted, regardless of why the temporary file
 was created (e.g., sorting or hashing), and regardless of the
 log_temp_files setting.

	
 temp_bytes bigint

 Total amount of data written to temporary files by queries in
 this database. All temporary files are counted, regardless of why
 the temporary file was created, and
 regardless of the log_temp_files setting.

	
 deadlocks bigint

 Number of deadlocks detected in this database

	
 checksum_failures bigint

 Number of data page checksum failures detected in this
 database (or on a shared object), or NULL if data checksums are not
 enabled.

	
 checksum_last_failure timestamp with time zone

 Time at which the last data page checksum failure was detected in
 this database (or on a shared object), or NULL if data checksums are not
 enabled.

	
 blk_read_time double precision

 Time spent reading data file blocks by backends in this database,
 in milliseconds (if track_io_timing is enabled,
 otherwise zero)

	
 blk_write_time double precision

 Time spent writing data file blocks by backends in this database,
 in milliseconds (if track_io_timing is enabled,
 otherwise zero)

	
 session_time double precision

 Time spent by database sessions in this database, in milliseconds
 (note that statistics are only updated when the state of a session
 changes, so if sessions have been idle for a long time, this idle time
 won't be included)

	
 active_time double precision

 Time spent executing SQL statements in this database, in milliseconds
 (this corresponds to the states active and
 fastpath function call in

 pg_stat_activity)

	
 idle_in_transaction_time double precision

 Time spent idling while in a transaction in this database, in milliseconds
 (this corresponds to the states idle in transaction and
 idle in transaction (aborted) in

 pg_stat_activity)

	
 sessions bigint

 Total number of sessions established to this database

	
 sessions_abandoned bigint

 Number of database sessions to this database that were terminated
 because connection to the client was lost

	
 sessions_fatal bigint

 Number of database sessions to this database that were terminated
 by fatal errors

	
 sessions_killed bigint

 Number of database sessions to this database that were terminated
 by operator intervention

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

pg_stat_database_conflicts

 The pg_stat_database_conflicts view will contain
 one row per database, showing database-wide statistics about
 query cancels occurring due to conflicts with recovery on standby servers.
 This view will only contain information on standby servers, since
 conflicts do not occur on primary servers.

Table 28.27. pg_stat_database_conflicts View
	
 Column Type

 Description

	
 datid oid

 OID of a database

	
 datname name

 Name of this database

	
 confl_tablespace bigint

 Number of queries in this database that have been canceled due to
 dropped tablespaces

	
 confl_lock bigint

 Number of queries in this database that have been canceled due to
 lock timeouts

	
 confl_snapshot bigint

 Number of queries in this database that have been canceled due to
 old snapshots

	
 confl_bufferpin bigint

 Number of queries in this database that have been canceled due to
 pinned buffers

	
 confl_deadlock bigint

 Number of queries in this database that have been canceled due to
 deadlocks

	
 confl_active_logicalslot bigint

 Number of uses of logical slots in this database that have been
 canceled due to old snapshots or too low a wal_level
 on the primary

pg_stat_all_tables

 The pg_stat_all_tables view will contain
 one row for each table in the current database (including TOAST
 tables), showing statistics about accesses to that specific table. The
 pg_stat_user_tables and
 pg_stat_sys_tables views
 contain the same information,
 but filtered to only show user and system tables respectively.

Table 28.28. pg_stat_all_tables View
	
 Column Type

 Description

	
 relid oid

 OID of a table

	
 schemaname name

 Name of the schema that this table is in

	
 relname name

 Name of this table

	
 seq_scan bigint

 Number of sequential scans initiated on this table

	
 last_seq_scan timestamp with time zone

 The time of the last sequential scan on this table, based on the
 most recent transaction stop time

	
 seq_tup_read bigint

 Number of live rows fetched by sequential scans

	
 idx_scan bigint

 Number of index scans initiated on this table

	
 last_idx_scan timestamp with time zone

 The time of the last index scan on this table, based on the
 most recent transaction stop time

	
 idx_tup_fetch bigint

 Number of live rows fetched by index scans

	
 n_tup_ins bigint

 Total number of rows inserted

	
 n_tup_upd bigint

 Total number of rows updated. (This includes row updates
 counted in n_tup_hot_upd and
 n_tup_newpage_upd, and remaining
 non-HOT updates.)

	
 n_tup_del bigint

 Total number of rows deleted

	
 n_tup_hot_upd bigint

 Number of rows HOT updated.
 These are updates where no successor versions are required in
 indexes.

	
 n_tup_newpage_upd bigint

 Number of rows updated where the successor version goes onto a
 new heap page, leaving behind an original
 version with a
 t_ctid
 field that points to a different heap page. These are
 always non-HOT updates.

	
 n_live_tup bigint

 Estimated number of live rows

	
 n_dead_tup bigint

 Estimated number of dead rows

	
 n_mod_since_analyze bigint

 Estimated number of rows modified since this table was last analyzed

	
 n_ins_since_vacuum bigint

 Estimated number of rows inserted since this table was last vacuumed

	
 last_vacuum timestamp with time zone

 Last time at which this table was manually vacuumed
 (not counting VACUUM FULL)

	
 last_autovacuum timestamp with time zone

 Last time at which this table was vacuumed by the autovacuum
 daemon

	
 last_analyze timestamp with time zone

 Last time at which this table was manually analyzed

	
 last_autoanalyze timestamp with time zone

 Last time at which this table was analyzed by the autovacuum
 daemon

	
 vacuum_count bigint

 Number of times this table has been manually vacuumed
 (not counting VACUUM FULL)

	
 autovacuum_count bigint

 Number of times this table has been vacuumed by the autovacuum
 daemon

	
 analyze_count bigint

 Number of times this table has been manually analyzed

	
 autoanalyze_count bigint

 Number of times this table has been analyzed by the autovacuum
 daemon

pg_stat_all_indexes

 The pg_stat_all_indexes view will contain
 one row for each index in the current database,
 showing statistics about accesses to that specific index. The
 pg_stat_user_indexes and
 pg_stat_sys_indexes views
 contain the same information,
 but filtered to only show user and system indexes respectively.

Table 28.29. pg_stat_all_indexes View
	
 Column Type

 Description

	
 relid oid

 OID of the table for this index

	
 indexrelid oid

 OID of this index

	
 schemaname name

 Name of the schema this index is in

	
 relname name

 Name of the table for this index

	
 indexrelname name

 Name of this index

	
 idx_scan bigint

 Number of index scans initiated on this index

	
 last_idx_scan timestamp with time zone

 The time of the last scan on this index, based on the
 most recent transaction stop time

	
 idx_tup_read bigint

 Number of index entries returned by scans on this index

	
 idx_tup_fetch bigint

 Number of live table rows fetched by simple index scans using this
 index

 Indexes can be used by simple index scans, “bitmap” index scans,
 and the optimizer. In a bitmap scan
 the output of several indexes can be combined via AND or OR rules,
 so it is difficult to associate individual heap row fetches
 with specific indexes when a bitmap scan is used. Therefore, a bitmap
 scan increments the
 pg_stat_all_indexes.idx_tup_read
 count(s) for the index(es) it uses, and it increments the
 pg_stat_all_tables.idx_tup_fetch
 count for the table, but it does not affect
 pg_stat_all_indexes.idx_tup_fetch.
 The optimizer also accesses indexes to check for supplied constants
 whose values are outside the recorded range of the optimizer statistics
 because the optimizer statistics might be stale.

Note

 The idx_tup_read and idx_tup_fetch counts
 can be different even without any use of bitmap scans,
 because idx_tup_read counts
 index entries retrieved from the index while idx_tup_fetch
 counts live rows fetched from the table. The latter will be less if any
 dead or not-yet-committed rows are fetched using the index, or if any
 heap fetches are avoided by means of an index-only scan.

pg_statio_all_tables

 The pg_statio_all_tables view will contain
 one row for each table in the current database (including TOAST
 tables), showing statistics about I/O on that specific table. The
 pg_statio_user_tables and
 pg_statio_sys_tables views
 contain the same information,
 but filtered to only show user and system tables respectively.

Table 28.30. pg_statio_all_tables View
	
 Column Type

 Description

	
 relid oid

 OID of a table

	
 schemaname name

 Name of the schema that this table is in

	
 relname name

 Name of this table

	
 heap_blks_read bigint

 Number of disk blocks read from this table

	
 heap_blks_hit bigint

 Number of buffer hits in this table

	
 idx_blks_read bigint

 Number of disk blocks read from all indexes on this table

	
 idx_blks_hit bigint

 Number of buffer hits in all indexes on this table

	
 toast_blks_read bigint

 Number of disk blocks read from this table's TOAST table (if any)

	
 toast_blks_hit bigint

 Number of buffer hits in this table's TOAST table (if any)

	
 tidx_blks_read bigint

 Number of disk blocks read from this table's TOAST table indexes (if any)

	
 tidx_blks_hit bigint

 Number of buffer hits in this table's TOAST table indexes (if any)

pg_statio_all_indexes

 The pg_statio_all_indexes view will contain
 one row for each index in the current database,
 showing statistics about I/O on that specific index. The
 pg_statio_user_indexes and
 pg_statio_sys_indexes views
 contain the same information,
 but filtered to only show user and system indexes respectively.

Table 28.31. pg_statio_all_indexes View
	
 Column Type

 Description

	
 relid oid

 OID of the table for this index

	
 indexrelid oid

 OID of this index

	
 schemaname name

 Name of the schema this index is in

	
 relname name

 Name of the table for this index

	
 indexrelname name

 Name of this index

	
 idx_blks_read bigint

 Number of disk blocks read from this index

	
 idx_blks_hit bigint

 Number of buffer hits in this index

pg_statio_all_sequences

 The pg_statio_all_sequences view will contain
 one row for each sequence in the current database,
 showing statistics about I/O on that specific sequence.

Table 28.32. pg_statio_all_sequences View
	
 Column Type

 Description

	
 relid oid

 OID of a sequence

	
 schemaname name

 Name of the schema this sequence is in

	
 relname name

 Name of this sequence

	
 blks_read bigint

 Number of disk blocks read from this sequence

	
 blks_hit bigint

 Number of buffer hits in this sequence

pg_stat_user_functions

 The pg_stat_user_functions view will contain
 one row for each tracked function, showing statistics about executions of
 that function. The track_functions parameter
 controls exactly which functions are tracked.

Table 28.33. pg_stat_user_functions View
	
 Column Type

 Description

	
 funcid oid

 OID of a function

	
 schemaname name

 Name of the schema this function is in

	
 funcname name

 Name of this function

	
 calls bigint

 Number of times this function has been called

	
 total_time double precision

 Total time spent in this function and all other functions
 called by it, in milliseconds

	
 self_time double precision

 Total time spent in this function itself, not including
 other functions called by it, in milliseconds

pg_stat_slru

 PostgreSQL™ accesses certain on-disk information
 via SLRU (simple least-recently-used) caches.
 The pg_stat_slru view will contain
 one row for each tracked SLRU cache, showing statistics about access
 to cached pages.

Table 28.34. pg_stat_slru View
	
 Column Type

 Description

	
 name text

 Name of the SLRU

	
 blks_zeroed bigint

 Number of blocks zeroed during initializations

	
 blks_hit bigint

 Number of times disk blocks were found already in the SLRU,
 so that a read was not necessary (this only includes hits in the
 SLRU, not the operating system's file system cache)

	
 blks_read bigint

 Number of disk blocks read for this SLRU

	
 blks_written bigint

 Number of disk blocks written for this SLRU

	
 blks_exists bigint

 Number of blocks checked for existence for this SLRU

	
 flushes bigint

 Number of flushes of dirty data for this SLRU

	
 truncates bigint

 Number of truncates for this SLRU

	
 stats_reset timestamp with time zone

 Time at which these statistics were last reset

Statistics Functions

 Other ways of looking at the statistics can be set up by writing
 queries that use the same underlying statistics access functions used by
 the standard views shown above. For details such as the functions' names,
 consult the definitions of the standard views. (For example, in
 psql you could issue \d+ pg_stat_activity.)
 The access functions for per-database statistics take a database OID as an
 argument to identify which database to report on.
 The per-table and per-index functions take a table or index OID.
 The functions for per-function statistics take a function OID.
 Note that only tables, indexes, and functions in the current database
 can be seen with these functions.

 Additional functions related to the cumulative statistics system are listed
 in Table 28.35, “Additional Statistics Functions”.

Table 28.35. Additional Statistics Functions
	
 Function

 Description

	
 pg_backend_pid ()
 integer

 Returns the process ID of the server process attached to the current
 session.

	

 pg_stat_get_activity (integer)
 setof record

 Returns a record of information about the backend with the specified
 process ID, or one record for each active backend in the system
 if NULL is specified. The fields returned are a
 subset of those in the pg_stat_activity view.

	

 pg_stat_get_snapshot_timestamp ()
 timestamp with time zone

 Returns the timestamp of the current statistics snapshot, or NULL if
 no statistics snapshot has been taken. A snapshot is taken the first
 time cumulative statistics are accessed in a transaction if
 stats_fetch_consistency is set to
 snapshot

	

 pg_stat_get_xact_blocks_fetched (oid)
 bigint

 Returns the number of block read requests for table or index, in the
 current transaction. This number minus
 pg_stat_get_xact_blocks_hit gives the number of
 kernel read() calls; the number of actual
 physical reads is usually lower due to kernel-level buffering.

	

 pg_stat_get_xact_blocks_hit (oid)
 bigint

 Returns the number of block read requests for table or index, in the
 current transaction, found in cache (not triggering kernel
 read() calls).

	

 pg_stat_clear_snapshot ()
 void

 Discards the current statistics snapshot or cached information.

	

 pg_stat_reset ()
 void

 Resets all statistics counters for the current database to zero.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_shared (text)
 void

 Resets some cluster-wide statistics counters to zero, depending on the
 argument. The argument can be bgwriter to reset
 all the counters shown in
 the pg_stat_bgwriter
 view, archiver to reset all the counters shown in
 the pg_stat_archiver view,
 io to reset all the counters shown in the
 pg_stat_io view,
 wal to reset all the counters shown in the
 pg_stat_wal view or
 recovery_prefetch to reset all the counters shown
 in the pg_stat_recovery_prefetch view.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_single_table_counters (oid)
 void

 Resets statistics for a single table or index in the current database
 or shared across all databases in the cluster to zero.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_single_function_counters (oid)
 void

 Resets statistics for a single function in the current database to
 zero.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_slru (text)
 void

 Resets statistics to zero for a single SLRU cache, or for all SLRUs in
 the cluster. If the argument is NULL, all counters shown in
 the pg_stat_slru view for all SLRU caches are
 reset. The argument can be one of
 CommitTs,
 MultiXactMember,
 MultiXactOffset,
 Notify,
 Serial,
 Subtrans, or
 Xact
 to reset the counters for only that entry.
 If the argument is other (or indeed, any
 unrecognized name), then the counters for all other SLRU caches, such
 as extension-defined caches, are reset.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_replication_slot (text)
 void

 Resets statistics of the replication slot defined by the argument. If
 the argument is NULL, resets statistics for all
 the replication slots.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

	

 pg_stat_reset_subscription_stats (oid)
 void

 Resets statistics for a single subscription shown in the
 pg_stat_subscription_stats view to zero. If
 the argument is NULL, reset statistics for all
 subscriptions.

 This function is restricted to superusers by default, but other users
 can be granted EXECUTE to run the function.

Warning

 Using pg_stat_reset() also resets counters that
 autovacuum uses to determine when to trigger a vacuum or an analyze.
 Resetting these counters can cause autovacuum to not perform necessary
 work, which can cause problems such as table bloat or out-dated
 table statistics. A database-wide ANALYZE is
 recommended after the statistics have been reset.

 pg_stat_get_activity, the underlying function of
 the pg_stat_activity view, returns a set of records
 containing all the available information about each backend process.
 Sometimes it may be more convenient to obtain just a subset of this
 information. In such cases, another set of per-backend statistics
 access functions can be used; these are shown in Table 28.36, “Per-Backend Statistics Functions”.
 These access functions use the session's backend ID number, which is a
 small positive integer that is distinct from the backend ID of any
 concurrent session, although a session's ID can be recycled as soon as
 it exits. The backend ID is used, among other things, to identify the
 session's temporary schema if it has one.
 The function pg_stat_get_backend_idset provides a
 convenient way to list all the active backends' ID numbers for
 invoking these functions. For example, to show the PIDs and
 current queries of all backends:

SELECT pg_stat_get_backend_pid(backendid) AS pid,
 pg_stat_get_backend_activity(backendid) AS query
FROM pg_stat_get_backend_idset() AS backendid;

Table 28.36. Per-Backend Statistics Functions
	
 Function

 Description

	

 pg_stat_get_backend_activity (integer)
 text

 Returns the text of this backend's most recent query.

	

 pg_stat_get_backend_activity_start (integer)
 timestamp with time zone

 Returns the time when the backend's most recent query was started.

	

 pg_stat_get_backend_client_addr (integer)
 inet

 Returns the IP address of the client connected to this backend.

	

 pg_stat_get_backend_client_port (integer)
 integer

 Returns the TCP port number that the client is using for communication.

	

 pg_stat_get_backend_dbid (integer)
 oid

 Returns the OID of the database this backend is connected to.

	

 pg_stat_get_backend_idset ()
 setof integer

 Returns the set of currently active backend ID numbers.

	

 pg_stat_get_backend_pid (integer)
 integer

 Returns the process ID of this backend.

	

 pg_stat_get_backend_start (integer)
 timestamp with time zone

 Returns the time when this process was started.

	

 pg_stat_get_backend_subxact (integer)
 record

 Returns a record of information about the subtransactions of the
 backend with the specified ID.
 The fields returned are subxact_count, which
 is the number of subtransactions in the backend's subtransaction cache,
 and subxact_overflow, which indicates whether
 the backend's subtransaction cache is overflowed or not.

	

 pg_stat_get_backend_userid (integer)
 oid

 Returns the OID of the user logged into this backend.

	

 pg_stat_get_backend_wait_event (integer)
 text

 Returns the wait event name if this backend is currently waiting,
 otherwise NULL. See Table 28.5, “Wait Events of Type Activity” through
 Table 28.13, “Wait Events of Type Timeout”.

	

 pg_stat_get_backend_wait_event_type (integer)
 text

 Returns the wait event type name if this backend is currently waiting,
 otherwise NULL. See Table 28.4, “Wait Event Types” for details.

	

 pg_stat_get_backend_xact_start (integer)
 timestamp with time zone

 Returns the time when the backend's current transaction was started.

Viewing Locks

 Another useful tool for monitoring database activity is the
 pg_locks system table. It allows the
 database administrator to view information about the outstanding
 locks in the lock manager. For example, this capability can be used
 to:

	
 View all the locks currently outstanding, all the locks on
 relations in a particular database, all the locks on a
 particular relation, or all the locks held by a particular
 PostgreSQL™ session.

	
 Determine the relation in the current database with the most
 ungranted locks (which might be a source of contention among
 database clients).

	
 Determine the effect of lock contention on overall database
 performance, as well as the extent to which contention varies
 with overall database traffic.

 Details of the pg_locks view appear in
 the section called “pg_locks”.
 For more information on locking and managing concurrency with
 PostgreSQL™, refer to Chapter 13, Concurrency Control.

Progress Reporting

 PostgreSQL™ has the ability to report the progress of
 certain commands during command execution. Currently, the only commands
 which support progress reporting are ANALYZE,
 CLUSTER,
 CREATE INDEX, VACUUM,
 COPY,
 and BASE_BACKUP (i.e., replication
 command that pg_basebackup(1) issues to take
 a base backup).
 This may be expanded in the future.

ANALYZE Progress Reporting

 Whenever ANALYZE is running, the
 pg_stat_progress_analyze view will contain a
 row for each backend that is currently running that command. The tables
 below describe the information that will be reported and provide
 information about how to interpret it.

Table 28.37. pg_stat_progress_analyze View
	
 Column Type

 Description

	
 pid integer

 Process ID of backend.

	
 datid oid

 OID of the database to which this backend is connected.

	
 datname name

 Name of the database to which this backend is connected.

	
 relid oid

 OID of the table being analyzed.

	
 phase text

 Current processing phase. See Table 28.38, “ANALYZE Phases”.

	
 sample_blks_total bigint

 Total number of heap blocks that will be sampled.

	
 sample_blks_scanned bigint

 Number of heap blocks scanned.

	
 ext_stats_total bigint

 Number of extended statistics.

	
 ext_stats_computed bigint

 Number of extended statistics computed. This counter only advances
 when the phase is computing extended statistics.

	
 child_tables_total bigint

 Number of child tables.

	
 child_tables_done bigint

 Number of child tables scanned. This counter only advances when the
 phase is acquiring inherited sample rows.

	
 current_child_table_relid oid

 OID of the child table currently being scanned. This field is
 only valid when the phase is
 acquiring inherited sample rows.

Table 28.38. ANALYZE Phases
	Phase	Description
	initializing	
 The command is preparing to begin scanning the heap. This phase is
 expected to be very brief.

	acquiring sample rows	
 The command is currently scanning the table given by
 relid to obtain sample rows.

	acquiring inherited sample rows	
 The command is currently scanning child tables to obtain sample rows.
 Columns child_tables_total,
 child_tables_done, and
 current_child_table_relid contain the
 progress information for this phase.

	computing statistics	
 The command is computing statistics from the sample rows obtained
 during the table scan.

	computing extended statistics	
 The command is computing extended statistics from the sample rows
 obtained during the table scan.

	finalizing analyze	
 The command is updating pg_class. When this
 phase is completed, ANALYZE will end.

Note

 Note that when ANALYZE is run on a partitioned table,
 all of its partitions are also recursively analyzed.
 In that case, ANALYZE
 progress is reported first for the parent table, whereby its inheritance
 statistics are collected, followed by that for each partition.

CLUSTER Progress Reporting

 Whenever CLUSTER or VACUUM FULL is
 running, the pg_stat_progress_cluster view will
 contain a row for each backend that is currently running either command.
 The tables below describe the information that will be reported and
 provide information about how to interpret it.

Table 28.39. pg_stat_progress_cluster View
	
 Column Type

 Description

	
 pid integer

 Process ID of backend.

	
 datid oid

 OID of the database to which this backend is connected.

	
 datname name

 Name of the database to which this backend is connected.

	
 relid oid

 OID of the table being clustered.

	
 command text

 The command that is running. Either CLUSTER or VACUUM FULL.

	
 phase text

 Current processing phase. See Table 28.40, “CLUSTER and VACUUM FULL Phases”.

	
 cluster_index_relid oid

 If the table is being scanned using an index, this is the OID of the
 index being used; otherwise, it is zero.

	
 heap_tuples_scanned bigint

 Number of heap tuples scanned.
 This counter only advances when the phase is
 seq scanning heap,
 index scanning heap
 or writing new heap.

	
 heap_tuples_written bigint

 Number of heap tuples written.
 This counter only advances when the phase is
 seq scanning heap,
 index scanning heap
 or writing new heap.

	
 heap_blks_total bigint

 Total number of heap blocks in the table. This number is reported
 as of the beginning of seq scanning heap.

	
 heap_blks_scanned bigint

 Number of heap blocks scanned. This counter only advances when the
 phase is seq scanning heap.

	
 index_rebuild_count bigint

 Number of indexes rebuilt. This counter only advances when the phase
 is rebuilding index.

Table 28.40. CLUSTER and VACUUM FULL Phases
	Phase	Description
	initializing	
 The command is preparing to begin scanning the heap. This phase is
 expected to be very brief.

	seq scanning heap	
 The command is currently scanning the table using a sequential scan.

	index scanning heap	
 CLUSTER is currently scanning the table using an index scan.

	sorting tuples	
 CLUSTER is currently sorting tuples.

	writing new heap	
 CLUSTER is currently writing the new heap.

	swapping relation files	
 The command is currently swapping newly-built files into place.

	rebuilding index	
 The command is currently rebuilding an index.

	performing final cleanup	
 The command is performing final cleanup. When this phase is
 completed, CLUSTER
 or VACUUM FULL will end.

COPY Progress Reporting

 Whenever COPY is running, the
 pg_stat_progress_copy view will contain one row
 for each backend that is currently running a COPY command.
 The table below describes the information that will be reported and provides
 information about how to interpret it.

Table 28.41. pg_stat_progress_copy View
	
 Column Type

 Description

	
 pid integer

 Process ID of backend.

	
 datid oid

 OID of the database to which this backend is connected.

	
 datname name

 Name of the database to which this backend is connected.

	
 relid oid

 OID of the table on which the COPY command is
 executed. It is set to 0 if copying from a
 SELECT query.

	
 command text

 The command that is running: COPY FROM, or
 COPY TO.

	
 type text

 The io type that the data is read from or written to:
 FILE, PROGRAM,
 PIPE (for COPY FROM STDIN and
 COPY TO STDOUT), or CALLBACK
 (used for example during the initial table synchronization in
 logical replication).

	
 bytes_processed bigint

 Number of bytes already processed by COPY command.

	
 bytes_total bigint

 Size of source file for COPY FROM command in bytes.
 It is set to 0 if not available.

	
 tuples_processed bigint

 Number of tuples already processed by COPY command.

	
 tuples_excluded bigint

 Number of tuples not processed because they were excluded by the
 WHERE clause of the COPY command.

CREATE INDEX Progress Reporting

 Whenever CREATE INDEX or REINDEX is running, the
 pg_stat_progress_create_index view will contain
 one row for each backend that is currently creating indexes. The tables
 below describe the information that will be reported and provide information
 about how to interpret it.

Table 28.42. pg_stat_progress_create_index View
	
 Column Type

 Description

	
 pid integer

 Process ID of the backend creating indexes.

	
 datid oid

 OID of the database to which this backend is connected.

	
 datname name

 Name of the database to which this backend is connected.

	
 relid oid

 OID of the table on which the index is being created.

	
 index_relid oid

 OID of the index being created or reindexed. During a
 non-concurrent CREATE INDEX, this is 0.

	
 command text

 Specific command type: CREATE INDEX,
 CREATE INDEX CONCURRENTLY,
 REINDEX, or REINDEX CONCURRENTLY.

	
 phase text

 Current processing phase of index creation. See Table 28.43, “CREATE INDEX Phases”.

	
 lockers_total bigint

 Total number of lockers to wait for, when applicable.

	
 lockers_done bigint

 Number of lockers already waited for.

	
 current_locker_pid bigint

 Process ID of the locker currently being waited for.

	
 blocks_total bigint

 Total number of blocks to be processed in the current phase.

	
 blocks_done bigint

 Number of blocks already processed in the current phase.

	
 tuples_total bigint

 Total number of tuples to be processed in the current phase.

	
 tuples_done bigint

 Number of tuples already processed in the current phase.

	
 partitions_total bigint

 Total number of partitions on which the index is to be created
 or attached, including both direct and indirect partitions.
 0 during a REINDEX, or when
 the index is not partitioned.

	
 partitions_done bigint

 Number of partitions on which the index has already been created
 or attached, including both direct and indirect partitions.
 0 during a REINDEX, or when
 the index is not partitioned.

Table 28.43. CREATE INDEX Phases
	Phase	Description
	initializing	
 CREATE INDEX or REINDEX is preparing to create the index. This
 phase is expected to be very brief.

	waiting for writers before build	
 CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting for transactions
 with write locks that can potentially see the table to finish.
 This phase is skipped when not in concurrent mode.
 Columns lockers_total, lockers_done
 and current_locker_pid contain the progress
 information for this phase.

	building index	
 The index is being built by the access method-specific code. In this phase,
 access methods that support progress reporting fill in their own progress data,
 and the subphase is indicated in this column. Typically,
 blocks_total and blocks_done
 will contain progress data, as well as potentially
 tuples_total and tuples_done.

	waiting for writers before validation	
 CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting for transactions
 with write locks that can potentially write into the table to finish.
 This phase is skipped when not in concurrent mode.
 Columns lockers_total, lockers_done
 and current_locker_pid contain the progress
 information for this phase.

	index validation: scanning index	
 CREATE INDEX CONCURRENTLY is scanning the index searching
 for tuples that need to be validated.
 This phase is skipped when not in concurrent mode.
 Columns blocks_total (set to the total size of the index)
 and blocks_done contain the progress information for this phase.

	index validation: sorting tuples	
 CREATE INDEX CONCURRENTLY is sorting the output of the
 index scanning phase.

	index validation: scanning table	
 CREATE INDEX CONCURRENTLY is scanning the table
 to validate the index tuples collected in the previous two phases.
 This phase is skipped when not in concurrent mode.
 Columns blocks_total (set to the total size of the table)
 and blocks_done contain the progress information for this phase.

	waiting for old snapshots	
 CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting for transactions
 that can potentially see the table to release their snapshots. This
 phase is skipped when not in concurrent mode.
 Columns lockers_total, lockers_done
 and current_locker_pid contain the progress
 information for this phase.

	waiting for readers before marking dead	
 REINDEX CONCURRENTLY is waiting for transactions
 with read locks on the table to finish, before marking the old index dead.
 This phase is skipped when not in concurrent mode.
 Columns lockers_total, lockers_done
 and current_locker_pid contain the progress
 information for this phase.

	waiting for readers before dropping	
 REINDEX CONCURRENTLY is waiting for transactions
 with read locks on the table to finish, before dropping the old index.
 This phase is skipped when not in concurrent mode.
 Columns lockers_total, lockers_done
 and current_locker_pid contain the progress
 information for this phase.

VACUUM Progress Reporting

 Whenever VACUUM is running, the
 pg_stat_progress_vacuum view will contain
 one row for each backend (including autovacuum worker processes) that is
 currently vacuuming. The tables below describe the information
 that will be reported and provide information about how to interpret it.
 Progress for VACUUM FULL commands is reported via
 pg_stat_progress_cluster
 because both VACUUM FULL and CLUSTER
 rewrite the table, while regular VACUUM only modifies it
 in place. See the section called “CLUSTER Progress Reporting”.

Table 28.44. pg_stat_progress_vacuum View
	
 Column Type

 Description

	
 pid integer

 Process ID of backend.

	
 datid oid

 OID of the database to which this backend is connected.

	
 datname name

 Name of the database to which this backend is connected.

	
 relid oid

 OID of the table being vacuumed.

	
 phase text

 Current processing phase of vacuum. See Table 28.45, “VACUUM Phases”.

	
 heap_blks_total bigint

 Total number of heap blocks in the table. This number is reported
 as of the beginning of the scan; blocks added later will not be (and
 need not be) visited by this VACUUM.

	
 heap_blks_scanned bigint

 Number of heap blocks scanned. Because the
 visibility map is used to optimize scans,
 some blocks will be skipped without inspection; skipped blocks are
 included in this total, so that this number will eventually become
 equal to heap_blks_total when the vacuum is complete.
 This counter only advances when the phase is scanning heap.

	
 heap_blks_vacuumed bigint

 Number of heap blocks vacuumed. Unless the table has no indexes, this
 counter only advances when the phase is vacuuming heap.
 Blocks that contain no dead tuples are skipped, so the counter may
 sometimes skip forward in large increments.

	
 index_vacuum_count bigint

 Number of completed index vacuum cycles.

	
 max_dead_tuples bigint

 Number of dead tuples that we can store before needing to perform
 an index vacuum cycle, based on
 maintenance_work_mem.

	
 num_dead_tuples bigint

 Number of dead tuples collected since the last index vacuum cycle.

Table 28.45. VACUUM Phases
	Phase	Description
	initializing	
 VACUUM is preparing to begin scanning the heap. This
 phase is expected to be very brief.

	scanning heap	
 VACUUM is currently scanning the heap. It will prune and
 defragment each page if required, and possibly perform freezing
 activity. The heap_blks_scanned column can be used
 to monitor the progress of the scan.

	vacuuming indexes	
 VACUUM is currently vacuuming the indexes. If a table has
 any indexes, this will happen at least once per vacuum, after the heap
 has been completely scanned. It may happen multiple times per vacuum
 if maintenance_work_mem (or, in the case of autovacuum,
 autovacuum_work_mem if set) is insufficient to store
 the number of dead tuples found.

	vacuuming heap	
 VACUUM is currently vacuuming the heap. Vacuuming the heap
 is distinct from scanning the heap, and occurs after each instance of
 vacuuming indexes. If heap_blks_scanned is less than
 heap_blks_total, the system will return to scanning
 the heap after this phase is completed; otherwise, it will begin
 cleaning up indexes after this phase is completed.

	cleaning up indexes	
 VACUUM is currently cleaning up indexes. This occurs after
 the heap has been completely scanned and all vacuuming of the indexes
 and the heap has been completed.

	truncating heap	
 VACUUM is currently truncating the heap so as to return
 empty pages at the end of the relation to the operating system. This
 occurs after cleaning up indexes.

	performing final cleanup	
 VACUUM is performing final cleanup. During this phase,
 VACUUM will vacuum the free space map, update statistics
 in pg_class, and report statistics to the cumulative
 statistics system. When this phase is completed, VACUUM will end.

Base Backup Progress Reporting

 Whenever an application like pg_basebackup
 is taking a base backup, the
 pg_stat_progress_basebackup
 view will contain a row for each WAL sender process that is currently
 running the BASE_BACKUP replication command
 and streaming the backup. The tables below describe the information
 that will be reported and provide information about how to interpret it.

Table 28.46. pg_stat_progress_basebackup View
	
 Column Type

 Description

	
 pid integer

 Process ID of a WAL sender process.

	
 phase text

 Current processing phase. See Table 28.47, “Base Backup Phases”.

	
 backup_total bigint

 Total amount of data that will be streamed. This is estimated and
 reported as of the beginning of
 streaming database files phase. Note that
 this is only an approximation since the database
 may change during streaming database files phase
 and WAL log may be included in the backup later. This is always
 the same value as backup_streamed
 once the amount of data streamed exceeds the estimated
 total size. If the estimation is disabled in
 pg_basebackup
 (i.e., --no-estimate-size option is specified),
 this is NULL.

	
 backup_streamed bigint

 Amount of data streamed. This counter only advances
 when the phase is streaming database files or
 transferring wal files.

	
 tablespaces_total bigint

 Total number of tablespaces that will be streamed.

	
 tablespaces_streamed bigint

 Number of tablespaces streamed. This counter only
 advances when the phase is streaming database files.

Table 28.47. Base Backup Phases
	Phase	Description
	initializing	
 The WAL sender process is preparing to begin the backup.
 This phase is expected to be very brief.

	waiting for checkpoint to finish	
 The WAL sender process is currently performing
 pg_backup_start to prepare to
 take a base backup, and waiting for the start-of-backup
 checkpoint to finish.

	estimating backup size	
 The WAL sender process is currently estimating the total amount
 of database files that will be streamed as a base backup.

	streaming database files	
 The WAL sender process is currently streaming database files
 as a base backup.

	waiting for wal archiving to finish	
 The WAL sender process is currently performing
 pg_backup_stop to finish the backup,
 and waiting for all the WAL files required for the base backup
 to be successfully archived.
 If either --wal-method=none or
 --wal-method=stream is specified in
 pg_basebackup, the backup will end
 when this phase is completed.

	transferring wal files	
 The WAL sender process is currently transferring all WAL logs
 generated during the backup. This phase occurs after
 waiting for wal archiving to finish phase if
 --wal-method=fetch is specified in
 pg_basebackup. The backup will end
 when this phase is completed.

Dynamic Tracing

 PostgreSQL™ provides facilities to support
 dynamic tracing of the database server. This allows an external
 utility to be called at specific points in the code and thereby trace
 execution.

 A number of probes or trace points are already inserted into the source
 code. These probes are intended to be used by database developers and
 administrators. By default the probes are not compiled into
 PostgreSQL™; the user needs to explicitly tell
 the configure script to make the probes available.

 Currently, the
 DTrace
 utility is supported, which, at the time of this writing, is available
 on Solaris, macOS, FreeBSD, NetBSD, and Oracle Linux. The
 SystemTap project
 for Linux provides a DTrace equivalent and can also be used. Supporting other dynamic
 tracing utilities is theoretically possible by changing the definitions for
 the macros in src/include/utils/probes.h.

Compiling for Dynamic Tracing

 By default, probes are not available, so you will need to
 explicitly tell the configure script to make the probes available
 in PostgreSQL™. To include DTrace support
 specify --enable-dtrace to configure. See the section called “Developer Options” for further information.

Built-in Probes

 A number of standard probes are provided in the source code,
 as shown in Table 28.48, “Built-in DTrace Probes”;
 Table 28.49, “Defined Types Used in Probe Parameters”
 shows the types used in the probes. More probes can certainly be
 added to enhance PostgreSQL™'s observability.

Table 28.48. Built-in DTrace Probes
	Name	Parameters	Description
	transaction-start	(LocalTransactionId)	Probe that fires at the start of a new transaction.
 arg0 is the transaction ID.
	transaction-commit	(LocalTransactionId)	Probe that fires when a transaction completes successfully.
 arg0 is the transaction ID.
	transaction-abort	(LocalTransactionId)	Probe that fires when a transaction completes unsuccessfully.
 arg0 is the transaction ID.
	query-start	(const char *)	Probe that fires when the processing of a query is started.
 arg0 is the query string.
	query-done	(const char *)	Probe that fires when the processing of a query is complete.
 arg0 is the query string.
	query-parse-start	(const char *)	Probe that fires when the parsing of a query is started.
 arg0 is the query string.
	query-parse-done	(const char *)	Probe that fires when the parsing of a query is complete.
 arg0 is the query string.
	query-rewrite-start	(const char *)	Probe that fires when the rewriting of a query is started.
 arg0 is the query string.
	query-rewrite-done	(const char *)	Probe that fires when the rewriting of a query is complete.
 arg0 is the query string.
	query-plan-start	()	Probe that fires when the planning of a query is started.
	query-plan-done	()	Probe that fires when the planning of a query is complete.
	query-execute-start	()	Probe that fires when the execution of a query is started.
	query-execute-done	()	Probe that fires when the execution of a query is complete.
	statement-status	(const char *)	Probe that fires anytime the server process updates its
 pg_stat_activity.status.
 arg0 is the new status string.
	checkpoint-start	(int)	Probe that fires when a checkpoint is started.
 arg0 holds the bitwise flags used to distinguish different checkpoint
 types, such as shutdown, immediate or force.
	checkpoint-done	(int, int, int, int, int)	Probe that fires when a checkpoint is complete.
 (The probes listed next fire in sequence during checkpoint processing.)
 arg0 is the number of buffers written. arg1 is the total number of
 buffers. arg2, arg3 and arg4 contain the number of WAL files added,
 removed and recycled respectively.
	clog-checkpoint-start	(bool)	Probe that fires when the CLOG portion of a checkpoint is started.
 arg0 is true for normal checkpoint, false for shutdown
 checkpoint.
	clog-checkpoint-done	(bool)	Probe that fires when the CLOG portion of a checkpoint is
 complete. arg0 has the same meaning as for clog-checkpoint-start.
	subtrans-checkpoint-start	(bool)	Probe that fires when the SUBTRANS portion of a checkpoint is
 started.
 arg0 is true for normal checkpoint, false for shutdown
 checkpoint.
	subtrans-checkpoint-done	(bool)	Probe that fires when the SUBTRANS portion of a checkpoint is
 complete. arg0 has the same meaning as for
 subtrans-checkpoint-start.
	multixact-checkpoint-start	(bool)	Probe that fires when the MultiXact portion of a checkpoint is
 started.
 arg0 is true for normal checkpoint, false for shutdown
 checkpoint.
	multixact-checkpoint-done	(bool)	Probe that fires when the MultiXact portion of a checkpoint is
 complete. arg0 has the same meaning as for
 multixact-checkpoint-start.
	buffer-checkpoint-start	(int)	Probe that fires when the buffer-writing portion of a checkpoint
 is started.
 arg0 holds the bitwise flags used to distinguish different checkpoint
 types, such as shutdown, immediate or force.
	buffer-sync-start	(int, int)	Probe that fires when we begin to write dirty buffers during
 checkpoint (after identifying which buffers must be written).
 arg0 is the total number of buffers.
 arg1 is the number that are currently dirty and need to be written.
	buffer-sync-written	(int)	Probe that fires after each buffer is written during checkpoint.
 arg0 is the ID number of the buffer.
	buffer-sync-done	(int, int, int)	Probe that fires when all dirty buffers have been written.
 arg0 is the total number of buffers.
 arg1 is the number of buffers actually written by the checkpoint process.
 arg2 is the number that were expected to be written (arg1 of
 buffer-sync-start); any difference reflects other processes flushing
 buffers during the checkpoint.
	buffer-checkpoint-sync-start	()	Probe that fires after dirty buffers have been written to the
 kernel, and before starting to issue fsync requests.
	buffer-checkpoint-done	()	Probe that fires when syncing of buffers to disk is
 complete.
	twophase-checkpoint-start	()	Probe that fires when the two-phase portion of a checkpoint is
 started.
	twophase-checkpoint-done	()	Probe that fires when the two-phase portion of a checkpoint is
 complete.
	buffer-extend-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, unsigned int)	Probe that fires when a relation extension starts.
 arg0 contains the fork to be extended. arg1, arg2, and arg3 contain the
 tablespace, database, and relation OIDs identifying the relation. arg4
 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared
 buffer. arg5 is the number of blocks the caller would like to extend
 by.
	buffer-extend-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, unsigned int, BlockNumber)	Probe that fires when a relation extension is complete.
 arg0 contains the fork to be extended. arg1, arg2, and arg3 contain the
 tablespace, database, and relation OIDs identifying the relation. arg4
 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared
 buffer. arg5 is the number of blocks the relation was extended by, this
 can be less than the number in the
 buffer-extend-start due to resource
 constraints. arg6 contains the BlockNumber of the first new
 block.
	buffer-read-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	Probe that fires when a buffer read is started.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.

	buffer-read-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, bool)	Probe that fires when a buffer read is complete.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.
 arg6 is true if the buffer was found in the pool, false if not.
	buffer-flush-start	(ForkNumber, BlockNumber, Oid, Oid, Oid)	Probe that fires before issuing any write request for a shared
 buffer.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
	buffer-flush-done	(ForkNumber, BlockNumber, Oid, Oid, Oid)	Probe that fires when a write request is complete. (Note
 that this just reflects the time to pass the data to the kernel;
 it's typically not actually been written to disk yet.)
 The arguments are the same as for buffer-flush-start.
	wal-buffer-write-dirty-start	()	Probe that fires when a server process begins to write a
 dirty WAL buffer because no more WAL buffer space is available.
 (If this happens often, it implies that
 wal_buffers is too small.)
	wal-buffer-write-dirty-done	()	Probe that fires when a dirty WAL buffer write is complete.
	wal-insert	(unsigned char, unsigned char)	Probe that fires when a WAL record is inserted.
 arg0 is the resource manager (rmid) for the record.
 arg1 contains the info flags.
	wal-switch	()	Probe that fires when a WAL segment switch is requested.
	smgr-md-read-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	Probe that fires when beginning to read a block from a relation.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.
	smgr-md-read-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, int, int)	Probe that fires when a block read is complete.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.
 arg6 is the number of bytes actually read, while arg7 is the number
 requested (if these are different it indicates trouble).
	smgr-md-write-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	Probe that fires when beginning to write a block to a relation.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.
	smgr-md-write-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, int, int)	Probe that fires when a block write is complete.
 arg0 and arg1 contain the fork and block numbers of the page.
 arg2, arg3, and arg4 contain the tablespace, database, and relation OIDs
 identifying the relation.
 arg5 is the ID of the backend which created the temporary relation for a
 local buffer, or InvalidBackendId (-1) for a shared buffer.
 arg6 is the number of bytes actually written, while arg7 is the number
 requested (if these are different it indicates trouble).
	sort-start	(int, bool, int, int, bool, int)	Probe that fires when a sort operation is started.
 arg0 indicates heap, index or datum sort.
 arg1 is true for unique-value enforcement.
 arg2 is the number of key columns.
 arg3 is the number of kilobytes of work memory allowed.
 arg4 is true if random access to the sort result is required.
 arg5 indicates serial when 0, parallel worker when
 1, or parallel leader when 2.
	sort-done	(bool, long)	Probe that fires when a sort is complete.
 arg0 is true for external sort, false for internal sort.
 arg1 is the number of disk blocks used for an external sort,
 or kilobytes of memory used for an internal sort.
	lwlock-acquire	(char *, LWLockMode)	Probe that fires when an LWLock has been acquired.
 arg0 is the LWLock's tranche.
 arg1 is the requested lock mode, either exclusive or shared.
	lwlock-release	(char *)	Probe that fires when an LWLock has been released (but note
 that any released waiters have not yet been awakened).
 arg0 is the LWLock's tranche.
	lwlock-wait-start	(char *, LWLockMode)	Probe that fires when an LWLock was not immediately available and
 a server process has begun to wait for the lock to become available.
 arg0 is the LWLock's tranche.
 arg1 is the requested lock mode, either exclusive or shared.
	lwlock-wait-done	(char *, LWLockMode)	Probe that fires when a server process has been released from its
 wait for an LWLock (it does not actually have the lock yet).
 arg0 is the LWLock's tranche.
 arg1 is the requested lock mode, either exclusive or shared.
	lwlock-condacquire	(char *, LWLockMode)	Probe that fires when an LWLock was successfully acquired when the
 caller specified no waiting.
 arg0 is the LWLock's tranche.
 arg1 is the requested lock mode, either exclusive or shared.
	lwlock-condacquire-fail	(char *, LWLockMode)	Probe that fires when an LWLock was not successfully acquired when
 the caller specified no waiting.
 arg0 is the LWLock's tranche.
 arg1 is the requested lock mode, either exclusive or shared.
	lock-wait-start	(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, LOCKMODE)	Probe that fires when a request for a heavyweight lock (lmgr lock)
 has begun to wait because the lock is not available.
 arg0 through arg3 are the tag fields identifying the object being
 locked. arg4 indicates the type of object being locked.
 arg5 indicates the lock type being requested.
	lock-wait-done	(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, LOCKMODE)	Probe that fires when a request for a heavyweight lock (lmgr lock)
 has finished waiting (i.e., has acquired the lock).
 The arguments are the same as for lock-wait-start.
	deadlock-found	()	Probe that fires when a deadlock is found by the deadlock
 detector.

Table 28.49. Defined Types Used in Probe Parameters
	Type	Definition
	LocalTransactionId	unsigned int
	LWLockMode	int
	LOCKMODE	int
	BlockNumber	unsigned int
	Oid	unsigned int
	ForkNumber	int
	bool	unsigned char

Using Probes

 The example below shows a DTrace script for analyzing transaction
 counts in the system, as an alternative to snapshotting
 pg_stat_database before and after a performance test:

#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{
 @start["Start"] = count();
 self->ts = timestamp;
}

postgresql$1:::transaction-abort
{
 @abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{
 @commit["Commit"] = count();
 @time["Total time (ns)"] = sum(timestamp - self->ts);
 self->ts=0;
}

 When executed, the example D script gives output such as:

./txn_count.d `pgrep -n postgres` or ./txn_count.d <PID>
^C

Start 71
Commit 70
Total time (ns) 2312105013

Note

 SystemTap uses a different notation for trace scripts than DTrace does,
 even though the underlying trace points are compatible. One point worth
 noting is that at this writing, SystemTap scripts must reference probe
 names using double underscores in place of hyphens. This is expected to
 be fixed in future SystemTap releases.

 You should remember that DTrace scripts need to be carefully written and
 debugged, otherwise the trace information collected might
 be meaningless. In most cases where problems are found it is the
 instrumentation that is at fault, not the underlying system. When
 discussing information found using dynamic tracing, be sure to enclose
 the script used to allow that too to be checked and discussed.

Defining New Probes

 New probes can be defined within the code wherever the developer
 desires, though this will require a recompilation. Below are the steps
 for inserting new probes:

	
 Decide on probe names and data to be made available through the probes

	
 Add the probe definitions to src/backend/utils/probes.d

	
 Include pg_trace.h if it is not already present in the
 module(s) containing the probe points, and insert
 TRACE_POSTGRESQL probe macros at the desired locations
 in the source code

	
 Recompile and verify that the new probes are available

Example:
 Here is an example of how you would add a probe to trace all new
 transactions by transaction ID.

	
 Decide that the probe will be named transaction-start and
 requires a parameter of type LocalTransactionId

	
 Add the probe definition to src/backend/utils/probes.d:

probe transaction__start(LocalTransactionId);

 Note the use of the double underline in the probe name. In a DTrace
 script using the probe, the double underline needs to be replaced with a
 hyphen, so transaction-start is the name to document for
 users.

	
 At compile time, transaction__start is converted to a macro
 called TRACE_POSTGRESQL_TRANSACTION_START (notice the
 underscores are single here), which is available by including
 pg_trace.h. Add the macro call to the appropriate location
 in the source code. In this case, it looks like the following:

TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);

	
 After recompiling and running the new binary, check that your newly added
 probe is available by executing the following DTrace command. You
 should see similar output:

dtrace -ln transaction-start
 ID PROVIDER MODULE FUNCTION NAME
18705 postgresql49878 postgres StartTransactionCommand transaction-start
18755 postgresql49877 postgres StartTransactionCommand transaction-start
18805 postgresql49876 postgres StartTransactionCommand transaction-start
18855 postgresql49875 postgres StartTransactionCommand transaction-start
18986 postgresql49873 postgres StartTransactionCommand transaction-start

 There are a few things to be careful about when adding trace macros
 to the C code:

	
 You should take care that the data types specified for a probe's
 parameters match the data types of the variables used in the macro.
 Otherwise, you will get compilation errors.

	
 On most platforms, if PostgreSQL™ is
 built with --enable-dtrace, the arguments to a trace
 macro will be evaluated whenever control passes through the
 macro, even if no tracing is being done. This is
 usually not worth worrying about if you are just reporting the
 values of a few local variables. But beware of putting expensive
 function calls into the arguments. If you need to do that,
 consider protecting the macro with a check to see if the trace
 is actually enabled:

if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
 TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));

 Each trace macro has a corresponding ENABLED macro.

Chapter 29. Monitoring Disk Usage

 This chapter discusses how to monitor the disk usage of a
 PostgreSQL™ database system.

Determining Disk Usage

 Each table has a primary heap disk file where most of the data is
 stored. If the table has any columns with potentially-wide values,
 there also might be a TOAST file associated with the table,
 which is used to store values too wide to fit comfortably in the main
 table (see the section called “TOAST”). There will be one valid index
 on the TOAST table, if present. There also might be indexes
 associated with the base table. Each table and index is stored in a
 separate disk file — possibly more than one file, if the file would
 exceed one gigabyte. Naming conventions for these files are described
 in the section called “Database File Layout”.

 You can monitor disk space in three ways:
 using the SQL functions listed in Table 9.96, “Database Object Size Functions”,
 using the oid2name(1) module, or
 using manual inspection of the system catalogs.
 The SQL functions are the easiest to use and are generally recommended.
 The remainder of this section shows how to do it by inspection of the
 system catalogs.

 Using psql on a recently vacuumed or analyzed database,
 you can issue queries to see the disk usage of any table:

SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'customer';

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806 | 60
(1 row)

 Each page is typically 8 kilobytes. (Remember, relpages
 is only updated by VACUUM, ANALYZE, and
 a few DDL commands such as CREATE INDEX.) The file path name
 is of interest if you want to examine the table's disk file directly.

 To show the space used by TOAST tables, use a query
 like the following:

SELECT relname, relpages
FROM pg_class,
 (SELECT reltoastrelid
 FROM pg_class
 WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
 oid = (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

 relname | relpages
----------------------+----------
 pg_toast_16806 | 0
 pg_toast_16806_index | 1

 You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
 c.oid = i.indrelid AND
 c2.oid = i.indexrelid
ORDER BY c2.relname;

 relname | relpages
-------------------+----------
 customer_id_index | 26

 It is easy to find your largest tables and indexes using this
 information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

 relname | relpages
----------------------+----------
 bigtable | 3290
 customer | 3144

Disk Full Failure

 The most important disk monitoring task of a database administrator
 is to make sure the disk doesn't become full. A filled data disk will
 not result in data corruption, but it might prevent useful activity
 from occurring. If the disk holding the WAL files grows full, database
 server panic and consequent shutdown might occur.

 If you cannot free up additional space on the disk by deleting
 other things, you can move some of the database files to other file
 systems by making use of tablespaces. See the section called “Tablespaces” for more information about that.

Tip

 Some file systems perform badly when they are almost full, so do
 not wait until the disk is completely full to take action.

 If your system supports per-user disk quotas, then the database
 will naturally be subject to whatever quota is placed on the user
 the server runs as. Exceeding the quota will have the same bad
 effects as running out of disk space entirely.

Chapter 30. Reliability and the Write-Ahead Log

 This chapter explains how to control the reliability of
 PostgreSQL™, including details about the
 Write-Ahead Log.

Reliability

 Reliability is an important property of any serious database
 system, and PostgreSQL™ does everything possible to
 guarantee reliable operation. One aspect of reliable operation is
 that all data recorded by a committed transaction should be stored
 in a nonvolatile area that is safe from power loss, operating
 system failure, and hardware failure (except failure of the
 nonvolatile area itself, of course). Successfully writing the data
 to the computer's permanent storage (disk drive or equivalent)
 ordinarily meets this requirement. In fact, even if a computer is
 fatally damaged, if the disk drives survive they can be moved to
 another computer with similar hardware and all committed
 transactions will remain intact.

 While forcing data to the disk platters periodically might seem like
 a simple operation, it is not. Because disk drives are dramatically
 slower than main memory and CPUs, several layers of caching exist
 between the computer's main memory and the disk platters.
 First, there is the operating system's buffer cache, which caches
 frequently requested disk blocks and combines disk writes. Fortunately,
 all operating systems give applications a way to force writes from
 the buffer cache to disk, and PostgreSQL™ uses those
 features. (See the wal_sync_method parameter
 to adjust how this is done.)

 Next, there might be a cache in the disk drive controller; this is
 particularly common on RAID controller cards. Some of
 these caches are write-through, meaning writes are sent
 to the drive as soon as they arrive. Others are
 write-back, meaning data is sent to the drive at
 some later time. Such caches can be a reliability hazard because the
 memory in the disk controller cache is volatile, and will lose its
 contents in a power failure. Better controller cards have
 battery-backup units (BBUs), meaning
 the card has a battery that
 maintains power to the cache in case of system power loss. After power
 is restored the data will be written to the disk drives.

 And finally, most disk drives have caches. Some are write-through
 while some are write-back, and the same concerns about data loss
 exist for write-back drive caches as for disk controller
 caches. Consumer-grade IDE and SATA drives are particularly likely
 to have write-back caches that will not survive a power failure. Many
 solid-state drives (SSD) also have volatile write-back caches.

 These caches can typically be disabled; however, the method for doing
 this varies by operating system and drive type:

	
 On Linux™, IDE and SATA drives can be queried using
 hdparm -I; write caching is enabled if there is
 a * next to Write cache. hdparm -W 0
 can be used to turn off write caching. SCSI drives can be queried
 using sdparm.
 Use sdparm --get=WCE to check
 whether the write cache is enabled and sdparm --clear=WCE
 to disable it.

	
 On FreeBSD™, IDE drives can be queried using
 camcontrol identify and write caching turned off using
 hw.ata.wc=0 in /boot/loader.conf;
 SCSI drives can be queried using camcontrol identify,
 and the write cache both queried and changed using
 sdparm when available.

	
 On Solaris™, the disk write cache is controlled by
 format -e.
 (The Solaris ZFS file system is safe with disk write-cache
 enabled because it issues its own disk cache flush commands.)

	
 On Windows™, if wal_sync_method is
 open_datasync (the default), write caching can be disabled
 by unchecking My Computer\Open\disk drive\Properties\Hardware\Properties\Policies\Enable write caching on the disk.
 Alternatively, set wal_sync_method to
 fdatasync (NTFS only), fsync or
 fsync_writethrough, which prevent
 write caching.

	
 On macOS™, write caching can be prevented by
 setting wal_sync_method to fsync_writethrough.

 Recent SATA drives (those following ATAPI-6 or later)
 offer a drive cache flush command (FLUSH CACHE EXT),
 while SCSI drives have long supported a similar command
 SYNCHRONIZE CACHE. These commands are not directly
 accessible to PostgreSQL™, but some file systems
 (e.g., ZFS, ext4) can use them to flush
 data to the platters on write-back-enabled drives. Unfortunately, such
 file systems behave suboptimally when combined with battery-backup unit
 (BBU) disk controllers. In such setups, the synchronize
 command forces all data from the controller cache to the disks,
 eliminating much of the benefit of the BBU. You can run the
 pg_test_fsync(1) program to see
 if you are affected. If you are affected, the performance benefits
 of the BBU can be regained by turning off write barriers in
 the file system or reconfiguring the disk controller, if that is
 an option. If write barriers are turned off, make sure the battery
 remains functional; a faulty battery can potentially lead to data loss.
 Hopefully file system and disk controller designers will eventually
 address this suboptimal behavior.

 When the operating system sends a write request to the storage hardware,
 there is little it can do to make sure the data has arrived at a truly
 non-volatile storage area. Rather, it is the
 administrator's responsibility to make certain that all storage components
 ensure integrity for both data and file-system metadata.
 Avoid disk controllers that have non-battery-backed write caches.
 At the drive level, disable write-back caching if the
 drive cannot guarantee the data will be written before shutdown.
 If you use SSDs, be aware that many of these do not honor cache flush
 commands by default.
 You can test for reliable I/O subsystem behavior using diskchecker.pl.

 Another risk of data loss is posed by the disk platter write
 operations themselves. Disk platters are divided into sectors,
 commonly 512 bytes each. Every physical read or write operation
 processes a whole sector.
 When a write request arrives at the drive, it might be for some multiple
 of 512 bytes (PostgreSQL™ typically writes 8192 bytes, or
 16 sectors, at a time), and the process of writing could fail due
 to power loss at any time, meaning some of the 512-byte sectors were
 written while others were not. To guard against such failures,
 PostgreSQL™ periodically writes full page images to
 permanent WAL storage before modifying the actual page on
 disk. By doing this, during crash recovery PostgreSQL™ can
 restore partially-written pages from WAL. If you have file-system software
 that prevents partial page writes (e.g., ZFS), you can turn off
 this page imaging by turning off the full_page_writes parameter. Battery-Backed Unit
 (BBU) disk controllers do not prevent partial page writes unless
 they guarantee that data is written to the BBU as full (8kB) pages.

 PostgreSQL™ also protects against some kinds of data corruption
 on storage devices that may occur because of hardware errors or media failure over time,
 such as reading/writing garbage data.

	
 Each individual record in a WAL file is protected by a CRC-32C (32-bit) check
 that allows us to tell if record contents are correct. The CRC value
 is set when we write each WAL record and checked during crash recovery,
 archive recovery and replication.

	
 Data pages are not currently checksummed by default, though full page images
 recorded in WAL records will be protected; see initdb
 for details about enabling data checksums.

	
 Internal data structures such as pg_xact, pg_subtrans, pg_multixact,
 pg_serial, pg_notify, pg_stat, pg_snapshots are not directly
 checksummed, nor are pages protected by full page writes. However, where
 such data structures are persistent, WAL records are written that allow
 recent changes to be accurately rebuilt at crash recovery and those
 WAL records are protected as discussed above.

	
 Individual state files in pg_twophase are protected by CRC-32C.

	
 Temporary data files used in larger SQL queries for sorts,
 materializations and intermediate results are not currently checksummed,
 nor will WAL records be written for changes to those files.

 PostgreSQL™ does not protect against correctable memory errors
 and it is assumed you will operate using RAM that uses industry standard
 Error Correcting Codes (ECC) or better protection.

Data Checksums

 By default, data pages are not protected by checksums, but this can
 optionally be enabled for a cluster. When enabled, each data page includes
 a checksum that is updated when the page is written and verified each time
 the page is read. Only data pages are protected by checksums; internal data
 structures and temporary files are not.

 Checksums can be enabled when the cluster is initialized using initdb.
 They can also be enabled or disabled at a later time as an offline
 operation. Data checksums are enabled or disabled at the full cluster
 level, and cannot be specified individually for databases or tables.

 The current state of checksums in the cluster can be verified by viewing the
 value of the read-only configuration variable data_checksums by issuing the command SHOW
 data_checksums.

 When attempting to recover from page corruptions, it may be necessary to
 bypass the checksum protection. To do this, temporarily set the
 configuration parameter ignore_checksum_failure.

Off-line Enabling of Checksums

 The pg_checksums
 application can be used to enable or disable data checksums, as well as
 verify checksums, on an offline cluster.

Write-Ahead Logging (WAL)

 Write-Ahead Logging (WAL)
 is a standard method for ensuring data integrity. A detailed
 description can be found in most (if not all) books about
 transaction processing. Briefly, WAL's central
 concept is that changes to data files (where tables and indexes
 reside) must be written only after those changes have been logged,
 that is, after WAL records describing the changes have been flushed
 to permanent storage. If we follow this procedure, we do not need
 to flush data pages to disk on every transaction commit, because we
 know that in the event of a crash we will be able to recover the
 database using the log: any changes that have not been applied to
 the data pages can be redone from the WAL records. (This is
 roll-forward recovery, also known as REDO.)

Tip

 Because WAL restores database file
 contents after a crash, journaled file systems are not necessary for
 reliable storage of the data files or WAL files. In fact, journaling
 overhead can reduce performance, especially if journaling
 causes file system data to be flushed
 to disk. Fortunately, data flushing during journaling can
 often be disabled with a file system mount option, e.g.,
 data=writeback on a Linux ext3 file system.
 Journaled file systems do improve boot speed after a crash.

 Using WAL results in a
 significantly reduced number of disk writes, because only the WAL
 file needs to be flushed to disk to guarantee that a transaction is
 committed, rather than every data file changed by the transaction.
 The WAL file is written sequentially,
 and so the cost of syncing the WAL is much less than the cost of
 flushing the data pages. This is especially true for servers
 handling many small transactions touching different parts of the data
 store. Furthermore, when the server is processing many small concurrent
 transactions, one fsync of the WAL file may
 suffice to commit many transactions.

 WAL also makes it possible to support on-line
 backup and point-in-time recovery, as described in the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”. By archiving the WAL data we can support
 reverting to any time instant covered by the available WAL data:
 we simply install a prior physical backup of the database, and
 replay the WAL just as far as the desired time. What's more,
 the physical backup doesn't have to be an instantaneous snapshot
 of the database state — if it is made over some period of time,
 then replaying the WAL for that period will fix any internal
 inconsistencies.

Asynchronous Commit

 Asynchronous commit is an option that allows transactions
 to complete more quickly, at the cost that the most recent transactions may
 be lost if the database should crash. In many applications this is an
 acceptable trade-off.

 As described in the previous section, transaction commit is normally
 synchronous: the server waits for the transaction's
 WAL records to be flushed to permanent storage
 before returning a success indication to the client. The client is
 therefore guaranteed that a transaction reported to be committed will
 be preserved, even in the event of a server crash immediately after.
 However, for short transactions this delay is a major component of the
 total transaction time. Selecting asynchronous commit mode means that
 the server returns success as soon as the transaction is logically
 completed, before the WAL records it generated have
 actually made their way to disk. This can provide a significant boost
 in throughput for small transactions.

 Asynchronous commit introduces the risk of data loss. There is a short
 time window between the report of transaction completion to the client
 and the time that the transaction is truly committed (that is, it is
 guaranteed not to be lost if the server crashes). Thus asynchronous
 commit should not be used if the client will take external actions
 relying on the assumption that the transaction will be remembered.
 As an example, a bank would certainly not use asynchronous commit for
 a transaction recording an ATM's dispensing of cash. But in many
 scenarios, such as event logging, there is no need for a strong
 guarantee of this kind.

 The risk that is taken by using asynchronous commit is of data loss,
 not data corruption. If the database should crash, it will recover
 by replaying WAL up to the last record that was
 flushed. The database will therefore be restored to a self-consistent
 state, but any transactions that were not yet flushed to disk will
 not be reflected in that state. The net effect is therefore loss of
 the last few transactions. Because the transactions are replayed in
 commit order, no inconsistency can be introduced — for example,
 if transaction B made changes relying on the effects of a previous
 transaction A, it is not possible for A's effects to be lost while B's
 effects are preserved.

 The user can select the commit mode of each transaction, so that
 it is possible to have both synchronous and asynchronous commit
 transactions running concurrently. This allows flexible trade-offs
 between performance and certainty of transaction durability.
 The commit mode is controlled by the user-settable parameter
 synchronous_commit, which can be changed in any of
 the ways that a configuration parameter can be set. The mode used for
 any one transaction depends on the value of
 synchronous_commit when transaction commit begins.

 Certain utility commands, for instance DROP TABLE, are
 forced to commit synchronously regardless of the setting of
 synchronous_commit. This is to ensure consistency
 between the server's file system and the logical state of the database.
 The commands supporting two-phase commit, such as PREPARE
 TRANSACTION, are also always synchronous.

 If the database crashes during the risk window between an
 asynchronous commit and the writing of the transaction's
 WAL records,
 then changes made during that transaction will be lost.
 The duration of the
 risk window is limited because a background process (the “WAL
 writer”) flushes unwritten WAL records to disk
 every wal_writer_delay milliseconds.
 The actual maximum duration of the risk window is three times
 wal_writer_delay because the WAL writer is
 designed to favor writing whole pages at a time during busy periods.

Caution

 An immediate-mode shutdown is equivalent to a server crash, and will
 therefore cause loss of any unflushed asynchronous commits.

 Asynchronous commit provides behavior different from setting
 fsync = off.
 fsync is a server-wide
 setting that will alter the behavior of all transactions. It disables
 all logic within PostgreSQL™ that attempts to synchronize
 writes to different portions of the database, and therefore a system
 crash (that is, a hardware or operating system crash, not a failure of
 PostgreSQL™ itself) could result in arbitrarily bad
 corruption of the database state. In many scenarios, asynchronous
 commit provides most of the performance improvement that could be
 obtained by turning off fsync, but without the risk
 of data corruption.

 commit_delay also sounds very similar to
 asynchronous commit, but it is actually a synchronous commit method
 (in fact, commit_delay is ignored during an
 asynchronous commit). commit_delay causes a delay
 just before a transaction flushes WAL to disk, in
 the hope that a single flush executed by one such transaction can also
 serve other transactions committing at about the same time. The
 setting can be thought of as a way of increasing the time window in
 which transactions can join a group about to participate in a single
 flush, to amortize the cost of the flush among multiple transactions.

WAL Configuration

 There are several WAL-related configuration parameters that
 affect database performance. This section explains their use.
 Consult Chapter 20, Server Configuration for general information about
 setting server configuration parameters.

 Checkpoints
 are points in the sequence of transactions at which it is guaranteed
 that the heap and index data files have been updated with all
 information written before that checkpoint. At checkpoint time, all
 dirty data pages are flushed to disk and a special checkpoint record is
 written to the WAL file. (The change records were previously flushed
 to the WAL files.)
 In the event of a crash, the crash recovery procedure looks at the latest
 checkpoint record to determine the point in the WAL (known as the redo
 record) from which it should start the REDO operation. Any changes made to
 data files before that point are guaranteed to be already on disk.
 Hence, after a checkpoint, WAL segments preceding the one containing
 the redo record are no longer needed and can be recycled or removed. (When
 WAL archiving is being done, the WAL segments must be
 archived before being recycled or removed.)

 The checkpoint requirement of flushing all dirty data pages to disk
 can cause a significant I/O load. For this reason, checkpoint
 activity is throttled so that I/O begins at checkpoint start and completes
 before the next checkpoint is due to start; this minimizes performance
 degradation during checkpoints.

 The server's checkpointer process automatically performs
 a checkpoint every so often. A checkpoint is begun every checkpoint_timeout seconds, or if
 max_wal_size is about to be exceeded,
 whichever comes first.
 The default settings are 5 minutes and 1 GB, respectively.
 If no WAL has been written since the previous checkpoint, new checkpoints
 will be skipped even if checkpoint_timeout has passed.
 (If WAL archiving is being used and you want to put a lower limit on how
 often files are archived in order to bound potential data loss, you should
 adjust the archive_timeout parameter rather than the
 checkpoint parameters.)
 It is also possible to force a checkpoint by using the SQL
 command CHECKPOINT.

 Reducing checkpoint_timeout and/or
 max_wal_size causes checkpoints to occur
 more often. This allows faster after-crash recovery, since less work
 will need to be redone. However, one must balance this against the
 increased cost of flushing dirty data pages more often. If
 full_page_writes is set (as is the default), there is
 another factor to consider. To ensure data page consistency,
 the first modification of a data page after each checkpoint results in
 logging the entire page content. In that case,
 a smaller checkpoint interval increases the volume of output to the WAL,
 partially negating the goal of using a smaller interval,
 and in any case causing more disk I/O.

 Checkpoints are fairly expensive, first because they require writing
 out all currently dirty buffers, and second because they result in
 extra subsequent WAL traffic as discussed above. It is therefore
 wise to set the checkpointing parameters high enough so that checkpoints
 don't happen too often. As a simple sanity check on your checkpointing
 parameters, you can set the checkpoint_warning
 parameter. If checkpoints happen closer together than
 checkpoint_warning seconds,
 a message will be output to the server log recommending increasing
 max_wal_size. Occasional appearance of such
 a message is not cause for alarm, but if it appears often then the
 checkpoint control parameters should be increased. Bulk operations such
 as large COPY transfers might cause a number of such warnings
 to appear if you have not set max_wal_size high
 enough.

 To avoid flooding the I/O system with a burst of page writes,
 writing dirty buffers during a checkpoint is spread over a period of time.
 That period is controlled by
 checkpoint_completion_target, which is
 given as a fraction of the checkpoint interval (configured by using
 checkpoint_timeout).
 The I/O rate is adjusted so that the checkpoint finishes when the
 given fraction of
 checkpoint_timeout seconds have elapsed, or before
 max_wal_size is exceeded, whichever is sooner.
 With the default value of 0.9,
 PostgreSQL™ can be expected to complete each checkpoint
 a bit before the next scheduled checkpoint (at around 90% of the last checkpoint's
 duration). This spreads out the I/O as much as possible so that the checkpoint
 I/O load is consistent throughout the checkpoint interval. The disadvantage of
 this is that prolonging checkpoints affects recovery time, because more WAL
 segments will need to be kept around for possible use in recovery. A user
 concerned about the amount of time required to recover might wish to reduce
 checkpoint_timeout so that checkpoints occur more frequently
 but still spread the I/O across the checkpoint interval. Alternatively,
 checkpoint_completion_target could be reduced, but this would
 result in times of more intense I/O (during the checkpoint) and times of less I/O
 (after the checkpoint completed but before the next scheduled checkpoint) and
 therefore is not recommended.
 Although checkpoint_completion_target could be set as high as
 1.0, it is typically recommended to set it to no higher than 0.9 (the default)
 since checkpoints include some other activities besides writing dirty buffers.
 A setting of 1.0 is quite likely to result in checkpoints not being
 completed on time, which would result in performance loss due to
 unexpected variation in the number of WAL segments needed.

 On Linux and POSIX platforms checkpoint_flush_after
 allows to force the OS that pages written by the checkpoint should be
 flushed to disk after a configurable number of bytes. Otherwise, these
 pages may be kept in the OS's page cache, inducing a stall when
 fsync is issued at the end of a checkpoint. This setting will
 often help to reduce transaction latency, but it also can have an adverse
 effect on performance; particularly for workloads that are bigger than
 shared_buffers, but smaller than the OS's page cache.

 The number of WAL segment files in pg_wal directory depends on
 min_wal_size, max_wal_size and
 the amount of WAL generated in previous checkpoint cycles. When old WAL
 segment files are no longer needed, they are removed or recycled (that is,
 renamed to become future segments in the numbered sequence). If, due to a
 short-term peak of WAL output rate, max_wal_size is
 exceeded, the unneeded segment files will be removed until the system
 gets back under this limit. Below that limit, the system recycles enough
 WAL files to cover the estimated need until the next checkpoint, and
 removes the rest. The estimate is based on a moving average of the number
 of WAL files used in previous checkpoint cycles. The moving average
 is increased immediately if the actual usage exceeds the estimate, so it
 accommodates peak usage rather than average usage to some extent.
 min_wal_size puts a minimum on the amount of WAL files
 recycled for future usage; that much WAL is always recycled for future use,
 even if the system is idle and the WAL usage estimate suggests that little
 WAL is needed.

 Independently of max_wal_size,
 the most recent wal_keep_size megabytes of
 WAL files plus one additional WAL file are
 kept at all times. Also, if WAL archiving is used, old segments cannot be
 removed or recycled until they are archived. If WAL archiving cannot keep up
 with the pace that WAL is generated, or if archive_command
 or archive_library
 fails repeatedly, old WAL files will accumulate in pg_wal
 until the situation is resolved. A slow or failed standby server that
 uses a replication slot will have the same effect (see
 the section called “Replication Slots”).

 In archive recovery or standby mode, the server periodically performs
 restartpoints,
 which are similar to checkpoints in normal operation: the server forces
 all its state to disk, updates the pg_control file to
 indicate that the already-processed WAL data need not be scanned again,
 and then recycles any old WAL segment files in the pg_wal
 directory.
 Restartpoints can't be performed more frequently than checkpoints on the
 primary because restartpoints can only be performed at checkpoint records.
 A restartpoint is triggered when a checkpoint record is reached if at
 least checkpoint_timeout seconds have passed since the last
 restartpoint, or if WAL size is about to exceed
 max_wal_size. However, because of limitations on when a
 restartpoint can be performed, max_wal_size is often exceeded
 during recovery, by up to one checkpoint cycle's worth of WAL.
 (max_wal_size is never a hard limit anyway, so you should
 always leave plenty of headroom to avoid running out of disk space.)

 There are two commonly used internal WAL functions:
 XLogInsertRecord and XLogFlush.
 XLogInsertRecord is used to place a new record into
 the WAL buffers in shared memory. If there is no
 space for the new record, XLogInsertRecord will have
 to write (move to kernel cache) a few filled WAL
 buffers. This is undesirable because XLogInsertRecord
 is used on every database low level modification (for example, row
 insertion) at a time when an exclusive lock is held on affected
 data pages, so the operation needs to be as fast as possible. What
 is worse, writing WAL buffers might also force the
 creation of a new WAL segment, which takes even more
 time. Normally, WAL buffers should be written
 and flushed by an XLogFlush request, which is
 made, for the most part, at transaction commit time to ensure that
 transaction records are flushed to permanent storage. On systems
 with high WAL output, XLogFlush requests might
 not occur often enough to prevent XLogInsertRecord
 from having to do writes. On such systems
 one should increase the number of WAL buffers by
 modifying the wal_buffers parameter. When
 full_page_writes is set and the system is very busy,
 setting wal_buffers higher will help smooth response times
 during the period immediately following each checkpoint.

 The commit_delay parameter defines for how many
 microseconds a group commit leader process will sleep after acquiring a
 lock within XLogFlush, while group commit
 followers queue up behind the leader. This delay allows other server
 processes to add their commit records to the WAL buffers so that all of
 them will be flushed by the leader's eventual sync operation. No sleep
 will occur if fsync is not enabled, or if fewer
 than commit_siblings other sessions are currently
 in active transactions; this avoids sleeping when it's unlikely that
 any other session will commit soon. Note that on some platforms, the
 resolution of a sleep request is ten milliseconds, so that any nonzero
 commit_delay setting between 1 and 10000
 microseconds would have the same effect. Note also that on some
 platforms, sleep operations may take slightly longer than requested by
 the parameter.

 Since the purpose of commit_delay is to allow the
 cost of each flush operation to be amortized across concurrently
 committing transactions (potentially at the expense of transaction
 latency), it is necessary to quantify that cost before the setting can
 be chosen intelligently. The higher that cost is, the more effective
 commit_delay is expected to be in increasing
 transaction throughput, up to a point. The pg_test_fsync(1) program can be used to measure the average time
 in microseconds that a single WAL flush operation takes. A value of
 half of the average time the program reports it takes to flush after a
 single 8kB write operation is often the most effective setting for
 commit_delay, so this value is recommended as the
 starting point to use when optimizing for a particular workload. While
 tuning commit_delay is particularly useful when the
 WAL is stored on high-latency rotating disks, benefits can be
 significant even on storage media with very fast sync times, such as
 solid-state drives or RAID arrays with a battery-backed write cache;
 but this should definitely be tested against a representative workload.
 Higher values of commit_siblings should be used in
 such cases, whereas smaller commit_siblings values
 are often helpful on higher latency media. Note that it is quite
 possible that a setting of commit_delay that is too
 high can increase transaction latency by so much that total transaction
 throughput suffers.

 When commit_delay is set to zero (the default), it
 is still possible for a form of group commit to occur, but each group
 will consist only of sessions that reach the point where they need to
 flush their commit records during the window in which the previous
 flush operation (if any) is occurring. At higher client counts a
 “gangway effect” tends to occur, so that the effects of group
 commit become significant even when commit_delay is
 zero, and thus explicitly setting commit_delay tends
 to help less. Setting commit_delay can only help
 when (1) there are some concurrently committing transactions, and (2)
 throughput is limited to some degree by commit rate; but with high
 rotational latency this setting can be effective in increasing
 transaction throughput with as few as two clients (that is, a single
 committing client with one sibling transaction).

 The wal_sync_method parameter determines how
 PostgreSQL™ will ask the kernel to force
 WAL updates out to disk.
 All the options should be the same in terms of reliability, with
 the exception of fsync_writethrough, which can sometimes
 force a flush of the disk cache even when other options do not do so.
 However, it's quite platform-specific which one will be the fastest.
 You can test the speeds of different options using the pg_test_fsync(1) program.
 Note that this parameter is irrelevant if fsync
 has been turned off.

 Enabling the wal_debug configuration parameter
 (provided that PostgreSQL™ has been
 compiled with support for it) will result in each
 XLogInsertRecord and XLogFlush
 WAL call being logged to the server log. This
 option might be replaced by a more general mechanism in the future.

 There are two internal functions to write WAL data to disk:
 XLogWrite and issue_xlog_fsync.
 When track_wal_io_timing is enabled, the total
 amounts of time XLogWrite writes and
 issue_xlog_fsync syncs WAL data to disk are counted as
 wal_write_time and wal_sync_time in
 pg_stat_wal, respectively.
 XLogWrite is normally called by
 XLogInsertRecord (when there is no space for the new
 record in WAL buffers), XLogFlush and the WAL writer,
 to write WAL buffers to disk and call issue_xlog_fsync.
 issue_xlog_fsync is normally called by
 XLogWrite to sync WAL files to disk.
 If wal_sync_method is either
 open_datasync or open_sync,
 a write operation in XLogWrite guarantees to sync written
 WAL data to disk and issue_xlog_fsync does nothing.
 If wal_sync_method is either fdatasync,
 fsync, or fsync_writethrough,
 the write operation moves WAL buffers to kernel cache and
 issue_xlog_fsync syncs them to disk. Regardless
 of the setting of track_wal_io_timing, the number
 of times XLogWrite writes and
 issue_xlog_fsync syncs WAL data to disk are also
 counted as wal_write and wal_sync
 in pg_stat_wal, respectively.

 The recovery_prefetch parameter can be used to reduce
 I/O wait times during recovery by instructing the kernel to initiate reads
 of disk blocks that will soon be needed but are not currently in
 PostgreSQL™'s buffer pool.
 The maintenance_io_concurrency and
 wal_decode_buffer_size settings limit prefetching
 concurrency and distance, respectively. By default, it is set to
 try, which enables the feature on systems where
 posix_fadvise is available.

WAL Internals

 WAL is automatically enabled; no action is
 required from the administrator except ensuring that the
 disk-space requirements for the WAL files are met,
 and that any necessary tuning is done (see the section called “WAL Configuration”).

 WAL records are appended to the WAL
 files as each new record is written. The insert position is described by
 a Log Sequence Number (LSN) that is a byte offset into
 the WAL, increasing monotonically with each new record.
 LSN values are returned as the datatype
 pg_lsn. Values can be
 compared to calculate the volume of WAL data that
 separates them, so they are used to measure the progress of replication
 and recovery.

 WAL files are stored in the directory
 pg_wal under the data directory, as a set of
 segment files, normally each 16 MB in size (but the size can be changed
 by altering the --wal-segsize initdb option). Each segment is
 divided into pages, normally 8 kB each (this size can be changed via the
 --with-wal-blocksize configure option). The WAL record headers
 are described in access/xlogrecord.h; the record
 content is dependent on the type of event that is being logged. Segment
 files are given ever-increasing numbers as names, starting at
 000000010000000000000001. The numbers do not wrap,
 but it will take a very, very long time to exhaust the
 available stock of numbers.

 It is advantageous if the WAL is located on a different disk from the
 main database files. This can be achieved by moving the
 pg_wal directory to another location (while the server
 is shut down, of course) and creating a symbolic link from the
 original location in the main data directory to the new location.

 The aim of WAL is to ensure that the log is
 written before database records are altered, but this can be subverted by
 disk drives that falsely report a
 successful write to the kernel,
 when in fact they have only cached the data and not yet stored it
 on the disk. A power failure in such a situation might lead to
 irrecoverable data corruption. Administrators should try to ensure
 that disks holding PostgreSQL™'s
 WAL files do not make such false reports.
 (See the section called “Reliability”.)

 After a checkpoint has been made and the WAL flushed, the
 checkpoint's position is saved in the file
 pg_control. Therefore, at the start of recovery,
 the server first reads pg_control and
 then the checkpoint record; then it performs the REDO operation by
 scanning forward from the WAL location indicated in the checkpoint
 record. Because the entire content of data pages is saved in the
 WAL on the first page modification after a checkpoint (assuming
 full_page_writes is not disabled), all pages
 changed since the checkpoint will be restored to a consistent
 state.

 To deal with the case where pg_control is
 corrupt, we should support the possibility of scanning existing WAL
 segments in reverse order — newest to oldest — in order to find the
 latest checkpoint. This has not been implemented yet.
 pg_control is small enough (less than one disk page)
 that it is not subject to partial-write problems, and as of this writing
 there have been no reports of database failures due solely to the inability
 to read pg_control itself. So while it is
 theoretically a weak spot, pg_control does not
 seem to be a problem in practice.

Chapter 31. Logical Replication

 Logical replication is a method of replicating data objects and their
 changes, based upon their replication identity (usually a primary key). We
 use the term logical in contrast to physical replication, which uses exact
 block addresses and byte-by-byte replication. PostgreSQL supports both
 mechanisms concurrently, see Chapter 27, High Availability, Load Balancing, and Replication. Logical
 replication allows fine-grained control over both data replication and
 security.

 Logical replication uses a publish
 and subscribe model with one or
 more subscribers subscribing to one or more
 publications on a publisher
 node. Subscribers pull data from the publications they subscribe to and may
 subsequently re-publish data to allow cascading replication or more complex
 configurations.

 Logical replication of a table typically starts with taking a snapshot
 of the data on the publisher database and copying that to the subscriber.
 Once that is done, the changes on the publisher are sent to the subscriber
 as they occur in real-time. The subscriber applies the data in the same
 order as the publisher so that transactional consistency is guaranteed for
 publications within a single subscription. This method of data replication
 is sometimes referred to as transactional replication.

 The typical use-cases for logical replication are:

	
 Sending incremental changes in a single database or a subset of a
 database to subscribers as they occur.

	
 Firing triggers for individual changes as they arrive on the
 subscriber.

	
 Consolidating multiple databases into a single one (for example for
 analytical purposes).

	
 Replicating between different major versions of PostgreSQL.

	
 Replicating between PostgreSQL instances on different platforms (for
 example Linux to Windows)

	
 Giving access to replicated data to different groups of users.

	
 Sharing a subset of the database between multiple databases.

 The subscriber database behaves in the same way as any other PostgreSQL
 instance and can be used as a publisher for other databases by defining its
 own publications. When the subscriber is treated as read-only by
 application, there will be no conflicts from a single subscription. On the
 other hand, if there are other writes done either by an application or by other
 subscribers to the same set of tables, conflicts can arise.

Publication

 A publication can be defined on any physical
 replication primary. The node where a publication is defined is referred to
 as publisher. A publication is a set of changes
 generated from a table or a group of tables, and might also be described as
 a change set or replication set. Each publication exists in only one database.

 Publications are different from schemas and do not affect how the table is
 accessed. Each table can be added to multiple publications if needed.
 Publications may currently only contain tables and all tables in schema.
 Objects must be added explicitly, except when a publication is created for
 ALL TABLES.

 Publications can choose to limit the changes they produce to
 any combination of INSERT, UPDATE,
 DELETE, and TRUNCATE, similar to how triggers are fired by
 particular event types. By default, all operation types are replicated.
 These publication specifications apply only for DML operations; they do not affect the initial
 data synchronization copy. (Row filters have no effect for
 TRUNCATE. See the section called “Row Filters”).

 A published table must have a replica identity configured in
 order to be able to replicate UPDATE
 and DELETE operations, so that appropriate rows to
 update or delete can be identified on the subscriber side. By default,
 this is the primary key, if there is one. Another unique index (with
 certain additional requirements) can also be set to be the replica
 identity. If the table does not have any suitable key, then it can be set
 to replica identity FULL, which means the entire row becomes
 the key. When replica identity FULL is specified,
 indexes can be used on the subscriber side for searching the rows. Candidate
 indexes must be btree, non-partial, and the leftmost index field must be a
 column (not an expression) that references the published table column. These
 restrictions on the non-unique index properties adhere to some of the
 restrictions that are enforced for primary keys. If there are no such
 suitable indexes, the search on the subscriber side can be very inefficient,
 therefore replica identity FULL should only be used as a
 fallback if no other solution is possible. If a replica identity other
 than FULL is set on the publisher side, a replica identity
 comprising the same or fewer columns must also be set on the subscriber
 side. See REPLICA IDENTITY for details on
 how to set the replica identity. If a table without a replica identity is
 added to a publication that replicates UPDATE
 or DELETE operations then
 subsequent UPDATE or DELETE
 operations will cause an error on the publisher. INSERT
 operations can proceed regardless of any replica identity.

 Every publication can have multiple subscribers.

 A publication is created using the CREATE PUBLICATION
 command and may later be altered or dropped using corresponding commands.

 The individual tables can be added and removed dynamically using
 ALTER PUBLICATION. Both the ADD
 TABLE and DROP TABLE operations are
 transactional; so the table will start or stop replicating at the correct
 snapshot once the transaction has committed.

Subscription

 A subscription is the downstream side of logical
 replication. The node where a subscription is defined is referred to as
 the subscriber. A subscription defines the connection
 to another database and set of publications (one or more) to which it wants
 to subscribe.

 The subscriber database behaves in the same way as any other PostgreSQL
 instance and can be used as a publisher for other databases by defining its
 own publications.

 A subscriber node may have multiple subscriptions if desired. It is
 possible to define multiple subscriptions between a single
 publisher-subscriber pair, in which case care must be taken to ensure
 that the subscribed publication objects don't overlap.

 Each subscription will receive changes via one replication slot (see
 the section called “Replication Slots”). Additional replication
 slots may be required for the initial data synchronization of
 pre-existing table data and those will be dropped at the end of data
 synchronization.

 A logical replication subscription can be a standby for synchronous
 replication (see the section called “Synchronous Replication”). The standby
 name is by default the subscription name. An alternative name can be
 specified as application_name in the connection
 information of the subscription.

 Subscriptions are dumped by pg_dump if the current user
 is a superuser. Otherwise a warning is written and subscriptions are
 skipped, because non-superusers cannot read all subscription information
 from the pg_subscription catalog.

 The subscription is added using CREATE SUBSCRIPTION and
 can be stopped/resumed at any time using the
 ALTER SUBSCRIPTION command and removed using
 DROP SUBSCRIPTION.

 When a subscription is dropped and recreated, the synchronization
 information is lost. This means that the data has to be resynchronized
 afterwards.

 The schema definitions are not replicated, and the published tables must
 exist on the subscriber. Only regular tables may be
 the target of replication. For example, you can't replicate to a view.

 The tables are matched between the publisher and the subscriber using the
 fully qualified table name. Replication to differently-named tables on the
 subscriber is not supported.

 Columns of a table are also matched by name. The order of columns in the
 subscriber table does not need to match that of the publisher. The data
 types of the columns do not need to match, as long as the text
 representation of the data can be converted to the target type. For
 example, you can replicate from a column of type integer to a
 column of type bigint. The target table can also have
 additional columns not provided by the published table. Any such columns
 will be filled with the default value as specified in the definition of the
 target table. However, logical replication in binary format is more
 restrictive. See the
 binary
 option of CREATE SUBSCRIPTION for details.

Replication Slot Management

 As mentioned earlier, each (active) subscription receives changes from a
 replication slot on the remote (publishing) side.

 Additional table synchronization slots are normally transient, created
 internally to perform initial table synchronization and dropped
 automatically when they are no longer needed. These table synchronization
 slots have generated names: “pg_%u_sync_%u_%llu”
 (parameters: Subscription oid,
 Table relid, system identifier sysid)

 Normally, the remote replication slot is created automatically when the
 subscription is created using CREATE SUBSCRIPTION and it
 is dropped automatically when the subscription is dropped using
 DROP SUBSCRIPTION. In some situations, however, it can
 be useful or necessary to manipulate the subscription and the underlying
 replication slot separately. Here are some scenarios:

	
 When creating a subscription, the replication slot already exists. In
 that case, the subscription can be created using
 the create_slot = false option to associate with the
 existing slot.

	
 When creating a subscription, the remote host is not reachable or in an
 unclear state. In that case, the subscription can be created using
 the connect = false option. The remote host will then not
 be contacted at all. This is what pg_dump
 uses. The remote replication slot will then have to be created
 manually before the subscription can be activated.

	
 When dropping a subscription, the replication slot should be kept.
 This could be useful when the subscriber database is being moved to a
 different host and will be activated from there. In that case,
 disassociate the slot from the subscription using ALTER
 SUBSCRIPTION before attempting to drop the subscription.

	
 When dropping a subscription, the remote host is not reachable. In
 that case, disassociate the slot from the subscription
 using ALTER SUBSCRIPTION before attempting to drop
 the subscription. If the remote database instance no longer exists, no
 further action is then necessary. If, however, the remote database
 instance is just unreachable, the replication slot (and any still
 remaining table synchronization slots) should then be
 dropped manually; otherwise it/they would continue to reserve WAL and might
 eventually cause the disk to fill up. Such cases should be carefully
 investigated.

Examples: Set Up Logical Replication

 Create some test tables on the publisher.

test_pub=# CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
CREATE TABLE
test_pub=# CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
CREATE TABLE
test_pub=# CREATE TABLE t3(e int, f text, PRIMARY KEY(e));
CREATE TABLE

 Create the same tables on the subscriber.

test_sub=# CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
CREATE TABLE
test_sub=# CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
CREATE TABLE
test_sub=# CREATE TABLE t3(e int, f text, PRIMARY KEY(e));
CREATE TABLE

 Insert data to the tables at the publisher side.

test_pub=# INSERT INTO t1 VALUES (1, 'one'), (2, 'two'), (3, 'three');
INSERT 0 3
test_pub=# INSERT INTO t2 VALUES (1, 'A'), (2, 'B'), (3, 'C');
INSERT 0 3
test_pub=# INSERT INTO t3 VALUES (1, 'i'), (2, 'ii'), (3, 'iii');
INSERT 0 3

 Create publications for the tables. The publications pub2
 and pub3a disallow some
 publish
 operations. The publication pub3b has a row filter (see
 the section called “Row Filters”).

test_pub=# CREATE PUBLICATION pub1 FOR TABLE t1;
CREATE PUBLICATION
test_pub=# CREATE PUBLICATION pub2 FOR TABLE t2 WITH (publish = 'truncate');
CREATE PUBLICATION
test_pub=# CREATE PUBLICATION pub3a FOR TABLE t3 WITH (publish = 'truncate');
CREATE PUBLICATION
test_pub=# CREATE PUBLICATION pub3b FOR TABLE t3 WHERE (e > 5);
CREATE PUBLICATION

 Create subscriptions for the publications. The subscription
 sub3 subscribes to both pub3a and
 pub3b. All subscriptions will copy initial data by default.

test_sub=# CREATE SUBSCRIPTION sub1
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=sub1'
test_sub-# PUBLICATION pub1;
CREATE SUBSCRIPTION
test_sub=# CREATE SUBSCRIPTION sub2
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=sub2'
test_sub-# PUBLICATION pub2;
CREATE SUBSCRIPTION
test_sub=# CREATE SUBSCRIPTION sub3
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=sub3'
test_sub-# PUBLICATION pub3a, pub3b;
CREATE SUBSCRIPTION

 Observe that initial table data is copied, regardless of the
 publish operation of the publication.

test_sub=# SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
(3 rows)

test_sub=# SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)

 Furthermore, because the initial data copy ignores the publish
 operation, and because publication pub3a has no row filter,
 it means the copied table t3 contains all rows even when
 they do not match the row filter of publication pub3b.

test_sub=# SELECT * FROM t3;
 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
(3 rows)

 Insert more data to the tables at the publisher side.

test_pub=# INSERT INTO t1 VALUES (4, 'four'), (5, 'five'), (6, 'six');
INSERT 0 3
test_pub=# INSERT INTO t2 VALUES (4, 'D'), (5, 'E'), (6, 'F');
INSERT 0 3
test_pub=# INSERT INTO t3 VALUES (4, 'iv'), (5, 'v'), (6, 'vi');
INSERT 0 3

 Now the publisher side data looks like:

test_pub=# SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

test_pub=# SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
 4 | D
 5 | E
 6 | F
(6 rows)

test_pub=# SELECT * FROM t3;
 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
 4 | iv
 5 | v
 6 | vi
(6 rows)

 Observe that during normal replication the appropriate
 publish operations are used. This means publications
 pub2 and pub3a will not replicate the
 INSERT. Also, publication pub3b will
 only replicate data that matches the row filter of pub3b.
 Now the subscriber side data looks like:

test_sub=# SELECT * FROM t1;
 a | b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

test_sub=# SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)

test_sub=# SELECT * FROM t3;
 e | f
---+-----
 1 | i
 2 | ii
 3 | iii
 6 | vi
(4 rows)

Examples: Deferred Replication Slot Creation

 There are some cases (e.g.
 the section called “Replication Slot Management”) where, if the
 remote replication slot was not created automatically, the user must create
 it manually before the subscription can be activated. The steps to create
 the slot and activate the subscription are shown in the following examples.
 These examples specify the standard logical decoding output plugin
 (pgoutput), which is what the built-in logical
 replication uses.

 First, create a publication for the examples to use.

test_pub=# CREATE PUBLICATION pub1 FOR ALL TABLES;
CREATE PUBLICATION

 Example 1: Where the subscription says connect = false

	
 Create the subscription.

test_sub=# CREATE SUBSCRIPTION sub1
test_sub-# CONNECTION 'host=localhost dbname=test_pub'
test_sub-# PUBLICATION pub1
test_sub-# WITH (connect=false);
WARNING: subscription was created, but is not connected
HINT: To initiate replication, you must manually create the replication slot, enable the subscription, and refresh the subscription.
CREATE SUBSCRIPTION

	
 On the publisher, manually create a slot. Because the name was not
 specified during CREATE SUBSCRIPTION, the name of the
 slot to create is same as the subscription name, e.g. "sub1".

test_pub=# SELECT * FROM pg_create_logical_replication_slot('sub1', 'pgoutput');
 slot_name | lsn
-----------+-----------
 sub1 | 0/19404D0
(1 row)

	
 On the subscriber, complete the activation of the subscription. After
 this the tables of pub1 will start replicating.

test_sub=# ALTER SUBSCRIPTION sub1 ENABLE;
ALTER SUBSCRIPTION
test_sub=# ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;
ALTER SUBSCRIPTION

 Example 2: Where the subscription says connect = false,
 but also specifies the
 slot_name
 option.

	
 Create the subscription.

test_sub=# CREATE SUBSCRIPTION sub1
test_sub-# CONNECTION 'host=localhost dbname=test_pub'
test_sub-# PUBLICATION pub1
test_sub-# WITH (connect=false, slot_name='myslot');
WARNING: subscription was created, but is not connected
HINT: To initiate replication, you must manually create the replication slot, enable the subscription, and refresh the subscription.
CREATE SUBSCRIPTION

	
 On the publisher, manually create a slot using the same name that was
 specified during CREATE SUBSCRIPTION, e.g. "myslot".

test_pub=# SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name | lsn
-----------+-----------
 myslot | 0/19059A0
(1 row)

	
 On the subscriber, the remaining subscription activation steps are the
 same as before.

test_sub=# ALTER SUBSCRIPTION sub1 ENABLE;
ALTER SUBSCRIPTION
test_sub=# ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;
ALTER SUBSCRIPTION

 Example 3: Where the subscription specifies slot_name = NONE

	
 Create the subscription. When slot_name = NONE then
 enabled = false, and
 create_slot = false are also needed.

test_sub=# CREATE SUBSCRIPTION sub1
test_sub-# CONNECTION 'host=localhost dbname=test_pub'
test_sub-# PUBLICATION pub1
test_sub-# WITH (slot_name=NONE, enabled=false, create_slot=false);
CREATE SUBSCRIPTION

	
 On the publisher, manually create a slot using any name, e.g. "myslot".

test_pub=# SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name | lsn
-----------+-----------
 myslot | 0/1905930
(1 row)

	
 On the subscriber, associate the subscription with the slot name just
 created.

test_sub=# ALTER SUBSCRIPTION sub1 SET (slot_name='myslot');
ALTER SUBSCRIPTION

	
 The remaining subscription activation steps are same as before.

test_sub=# ALTER SUBSCRIPTION sub1 ENABLE;
ALTER SUBSCRIPTION
test_sub=# ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;
ALTER SUBSCRIPTION

Row Filters

 By default, all data from all published tables will be replicated to the
 appropriate subscribers. The replicated data can be reduced by using a
 row filter. A user might choose to use row filters
 for behavioral, security or performance reasons. If a published table sets a
 row filter, a row is replicated only if its data satisfies the row filter
 expression. This allows a set of tables to be partially replicated. The row
 filter is defined per table. Use a WHERE clause after the
 table name for each published table that requires data to be filtered out.
 The WHERE clause must be enclosed by parentheses. See
 CREATE PUBLICATION(7) for details.

Row Filter Rules

 Row filters are applied before publishing the changes.
 If the row filter evaluates to false or NULL
 then the row is not replicated. The WHERE clause expression
 is evaluated with the same role used for the replication connection (i.e.
 the role specified in the
 CONNECTION
 clause of the CREATE SUBSCRIPTION(7)). Row filters have
 no effect for TRUNCATE command.

Expression Restrictions

 The WHERE clause allows only simple expressions. It
 cannot contain user-defined functions, operators, types, and collations,
 system column references or non-immutable built-in functions.

 If a publication publishes UPDATE or
 DELETE operations, the row filter WHERE
 clause must contain only columns that are covered by the replica identity
 (see REPLICA IDENTITY). If a publication
 publishes only INSERT operations, the row filter
 WHERE clause can use any column.

UPDATE Transformations

 Whenever an UPDATE is processed, the row filter
 expression is evaluated for both the old and new row (i.e. using the data
 before and after the update). If both evaluations are true,
 it replicates the UPDATE change. If both evaluations are
 false, it doesn't replicate the change. If only one of
 the old/new rows matches the row filter expression, the UPDATE
 is transformed to INSERT or DELETE, to
 avoid any data inconsistency. The row on the subscriber should reflect what
 is defined by the row filter expression on the publisher.

 If the old row satisfies the row filter expression (it was sent to the
 subscriber) but the new row doesn't, then, from a data consistency
 perspective the old row should be removed from the subscriber.
 So the UPDATE is transformed into a DELETE.

 If the old row doesn't satisfy the row filter expression (it wasn't sent
 to the subscriber) but the new row does, then, from a data consistency
 perspective the new row should be added to the subscriber.
 So the UPDATE is transformed into an INSERT.

 Table 31.1, “UPDATE Transformation Summary”
 summarizes the applied transformations.

Table 31.1. UPDATE Transformation Summary
	Old row	New row	Transformation
	no match	no match	don't replicate
	no match	match	INSERT
	match	no match	DELETE
	match	match	UPDATE

Partitioned Tables

 If the publication contains a partitioned table, the publication parameter
 publish_via_partition_root
 determines which row filter is used. If publish_via_partition_root
 is true, the root partitioned table's
 row filter is used. Otherwise, if publish_via_partition_root
 is false (default), each partition's
 row filter is used.

Initial Data Synchronization

 If the subscription requires copying pre-existing table data
 and a publication contains WHERE clauses, only data that
 satisfies the row filter expressions is copied to the subscriber.

 If the subscription has several publications in which a table has been
 published with different WHERE clauses, rows that satisfy
 any of the expressions will be copied. See
 the section called “Combining Multiple Row Filters” for details.

Warning

 Because initial data synchronization does not take into account the
 publish
 parameter when copying existing table data, some rows may be copied that
 would not be replicated using DML. Refer to
 the section called “Initial Snapshot”, and see
 the section called “Examples: Set Up Logical Replication” for examples.

Note

 If the subscriber is in a release prior to 15, copy pre-existing data
 doesn't use row filters even if they are defined in the publication.
 This is because old releases can only copy the entire table data.

Combining Multiple Row Filters

 If the subscription has several publications in which the same table has
 been published with different row filters (for the same
 publish
 operation), those expressions get ORed together, so that rows satisfying
 any of the expressions will be replicated. This means all
 the other row filters for the same table become redundant if:

	
 One of the publications has no row filter.

	
 One of the publications was created using
 FOR ALL TABLES.
 This clause does not allow row filters.

	
 One of the publications was created using
 FOR TABLES IN SCHEMA
 and the table belongs to the referred schema. This clause does not allow
 row filters.

Examples

 Create some tables to be used in the following examples.

test_pub=# CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
CREATE TABLE
test_pub=# CREATE TABLE t2(d int, e int, f int, PRIMARY KEY(d));
CREATE TABLE
test_pub=# CREATE TABLE t3(g int, h int, i int, PRIMARY KEY(g));
CREATE TABLE

 Create some publications. Publication p1 has one table
 (t1) and that table has a row filter. Publication
 p2 has two tables. Table t1 has no row
 filter, and table t2 has a row filter. Publication
 p3 has two tables, and both of them have a row filter.

test_pub=# CREATE PUBLICATION p1 FOR TABLE t1 WHERE (a > 5 AND c = 'NSW');
CREATE PUBLICATION
test_pub=# CREATE PUBLICATION p2 FOR TABLE t1, t2 WHERE (e = 99);
CREATE PUBLICATION
test_pub=# CREATE PUBLICATION p3 FOR TABLE t2 WHERE (d = 10), t3 WHERE (g = 10);
CREATE PUBLICATION

 psql can be used to show the row filter expressions (if
 defined) for each publication.

test_pub=# \dRp+
 Publication p1
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root
----------+------------+---------+---------+---------+-----------+----------
 postgres | f | t | t | t | t | f
Tables:
 "public.t1" WHERE ((a > 5) AND (c = 'NSW'::text))

 Publication p2
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root
----------+------------+---------+---------+---------+-----------+----------
 postgres | f | t | t | t | t | f
Tables:
 "public.t1"
 "public.t2" WHERE (e = 99)

 Publication p3
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root
----------+------------+---------+---------+---------+-----------+----------
 postgres | f | t | t | t | t | f
Tables:
 "public.t2" WHERE (d = 10)
 "public.t3" WHERE (g = 10)

 psql can be used to show the row filter expressions (if
 defined) for each table. See that table t1 is a member
 of two publications, but has a row filter only in p1.
 See that table t2 is a member of two publications, and
 has a different row filter in each of them.

test_pub=# \d t1
 Table "public.t1"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 a | integer | | not null |
 b | integer | | |
 c | text | | not null |
Indexes:
 "t1_pkey" PRIMARY KEY, btree (a, c)
Publications:
 "p1" WHERE ((a > 5) AND (c = 'NSW'::text))
 "p2"

test_pub=# \d t2
 Table "public.t2"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 d | integer | | not null |
 e | integer | | |
 f | integer | | |
Indexes:
 "t2_pkey" PRIMARY KEY, btree (d)
Publications:
 "p2" WHERE (e = 99)
 "p3" WHERE (d = 10)

test_pub=# \d t3
 Table "public.t3"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 g | integer | | not null |
 h | integer | | |
 i | integer | | |
Indexes:
 "t3_pkey" PRIMARY KEY, btree (g)
Publications:
 "p3" WHERE (g = 10)

 On the subscriber node, create a table t1 with the same
 definition as the one on the publisher, and also create the subscription
 s1 that subscribes to the publication p1.

test_sub=# CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
CREATE TABLE
test_sub=# CREATE SUBSCRIPTION s1
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=s1'
test_sub-# PUBLICATION p1;
CREATE SUBSCRIPTION

 Insert some rows. Only the rows satisfying the t1 WHERE
 clause of publication p1 are replicated.

test_pub=# INSERT INTO t1 VALUES (2, 102, 'NSW');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (3, 103, 'QLD');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (4, 104, 'VIC');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (5, 105, 'ACT');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (6, 106, 'NSW');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (7, 107, 'NT');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (8, 108, 'QLD');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES (9, 109, 'NSW');
INSERT 0 1

test_pub=# SELECT * FROM t1;
 a | b | c
---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 6 | 106 | NSW
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
(8 rows)

test_sub=# SELECT * FROM t1;
 a | b | c
---+-----+-----
 6 | 106 | NSW
 9 | 109 | NSW
(2 rows)

 Update some data, where the old and new row values both
 satisfy the t1 WHERE clause of publication
 p1. The UPDATE replicates
 the change as normal.

test_pub=# UPDATE t1 SET b = 999 WHERE a = 6;
UPDATE 1

test_pub=# SELECT * FROM t1;
 a | b | c
---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
 6 | 999 | NSW
(8 rows)

test_sub=# SELECT * FROM t1;
 a | b | c
---+-----+-----
 9 | 109 | NSW
 6 | 999 | NSW
(2 rows)

 Update some data, where the old row values did not satisfy
 the t1 WHERE clause of publication p1,
 but the new row values do satisfy it. The UPDATE is
 transformed into an INSERT and the change is replicated.
 See the new row on the subscriber.

test_pub=# UPDATE t1 SET a = 555 WHERE a = 2;
UPDATE 1

test_pub=# SELECT * FROM t1;
 a | b | c
-----+-----+-----
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
 6 | 999 | NSW
 555 | 102 | NSW
(8 rows)

test_sub=# SELECT * FROM t1;
 a | b | c
-----+-----+-----
 9 | 109 | NSW
 6 | 999 | NSW
 555 | 102 | NSW
(3 rows)

 Update some data, where the old row values satisfied
 the t1 WHERE clause of publication p1,
 but the new row values do not satisfy it. The UPDATE is
 transformed into a DELETE and the change is replicated.
 See that the row is removed from the subscriber.

test_pub=# UPDATE t1 SET c = 'VIC' WHERE a = 9;
UPDATE 1

test_pub=# SELECT * FROM t1;
 a | b | c
-----+-----+-----
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 6 | 999 | NSW
 555 | 102 | NSW
 9 | 109 | VIC
(8 rows)

test_sub=# SELECT * FROM t1;
 a | b | c
-----+-----+-----
 6 | 999 | NSW
 555 | 102 | NSW
(2 rows)

 The following examples show how the publication parameter
 publish_via_partition_root
 determines whether the row filter of the parent or child table will be used
 in the case of partitioned tables.

 Create a partitioned table on the publisher.

test_pub=# CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
CREATE TABLE
test_pub=# CREATE TABLE child PARTITION OF parent DEFAULT;
CREATE TABLE

 Create the same tables on the subscriber.

test_sub=# CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
CREATE TABLE
test_sub=# CREATE TABLE child PARTITION OF parent DEFAULT;
CREATE TABLE

 Create a publication p4, and then subscribe to it. The
 publication parameter publish_via_partition_root is set
 as true. There are row filters defined on both the partitioned table
 (parent), and on the partition (child).

test_pub=# CREATE PUBLICATION p4 FOR TABLE parent WHERE (a < 5), child WHERE (a >= 5)
test_pub-# WITH (publish_via_partition_root=true);
CREATE PUBLICATION

test_sub=# CREATE SUBSCRIPTION s4
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=s4'
test_sub-# PUBLICATION p4;
CREATE SUBSCRIPTION

 Insert some values directly into the parent and
 child tables. They replicate using the row filter of
 parent (because publish_via_partition_root
 is true).

test_pub=# INSERT INTO parent VALUES (2), (4), (6);
INSERT 0 3
test_pub=# INSERT INTO child VALUES (3), (5), (7);
INSERT 0 3

test_pub=# SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
 5
 6
 7
(6 rows)

test_sub=# SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
(3 rows)

 Repeat the same test, but with a different value for publish_via_partition_root.
 The publication parameter publish_via_partition_root is
 set as false. A row filter is defined on the partition (child).

test_pub=# DROP PUBLICATION p4;
DROP PUBLICATION
test_pub=# CREATE PUBLICATION p4 FOR TABLE parent, child WHERE (a >= 5)
test_pub-# WITH (publish_via_partition_root=false);
CREATE PUBLICATION

test_sub=# ALTER SUBSCRIPTION s4 REFRESH PUBLICATION;
ALTER SUBSCRIPTION

 Do the inserts on the publisher same as before. They replicate using the
 row filter of child (because
 publish_via_partition_root is false).

test_pub=# TRUNCATE parent;
TRUNCATE TABLE
test_pub=# INSERT INTO parent VALUES (2), (4), (6);
INSERT 0 3
test_pub=# INSERT INTO child VALUES (3), (5), (7);
INSERT 0 3

test_pub=# SELECT * FROM parent ORDER BY a;
 a

 2
 3
 4
 5
 6
 7
(6 rows)

test_sub=# SELECT * FROM child ORDER BY a;
 a

 5
 6
 7
(3 rows)

Column Lists

 Each publication can optionally specify which columns of each table are
 replicated to subscribers. The table on the subscriber side must have at
 least all the columns that are published. If no column list is specified,
 then all columns on the publisher are replicated.
 See CREATE PUBLICATION(7) for details on the syntax.

 The choice of columns can be based on behavioral or performance reasons.
 However, do not rely on this feature for security: a malicious subscriber
 is able to obtain data from columns that are not specifically
 published. If security is a consideration, protections can be applied
 at the publisher side.

 If no column list is specified, any columns added to the table later are
 automatically replicated. This means that having a column list which names
 all columns is not the same as having no column list at all.

 A column list can contain only simple column references. The order
 of columns in the list is not preserved.

 Specifying a column list when the publication also publishes
 FOR TABLES IN SCHEMA
 is not supported.

 For partitioned tables, the publication parameter
 publish_via_partition_root
 determines which column list is used. If publish_via_partition_root
 is true, the root partitioned table's column list is
 used. Otherwise, if publish_via_partition_root is
 false (the default), each partition's column list is used.

 If a publication publishes UPDATE or
 DELETE operations, any column list must include the
 table's replica identity columns (see
 REPLICA IDENTITY).
 If a publication publishes only INSERT operations, then
 the column list may omit replica identity columns.

 Column lists have no effect for the TRUNCATE command.

 During initial data synchronization, only the published columns are
 copied. However, if the subscriber is from a release prior to 15, then
 all the columns in the table are copied during initial data synchronization,
 ignoring any column lists.

Warning: Combining Column Lists from Multiple Publications

 There's currently no support for subscriptions comprising several
 publications where the same table has been published with different
 column lists. CREATE SUBSCRIPTION(7) disallows
 creating such subscriptions, but it is still possible to get into
 that situation by adding or altering column lists on the publication
 side after a subscription has been created.

 This means changing the column lists of tables on publications that are
 already subscribed could lead to errors being thrown on the subscriber
 side.

 If a subscription is affected by this problem, the only way to resume
 replication is to adjust one of the column lists on the publication
 side so that they all match; and then either recreate the subscription,
 or use ALTER SUBSCRIPTION ... DROP PUBLICATION to
 remove one of the offending publications and add it again.

Examples

 Create a table t1 to be used in the following example.

test_pub=# CREATE TABLE t1(id int, a text, b text, c text, d text, e text, PRIMARY KEY(id));
CREATE TABLE

 Create a publication p1. A column list is defined for
 table t1 to reduce the number of columns that will be
 replicated. Notice that the order of column names in the column list does
 not matter.

test_pub=# CREATE PUBLICATION p1 FOR TABLE t1 (id, b, a, d);
CREATE PUBLICATION

 psql can be used to show the column lists (if defined)
 for each publication.

test_pub=# \dRp+
 Publication p1
 Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root
----------+------------+---------+---------+---------+-----------+----------
 postgres | f | t | t | t | t | f
Tables:
 "public.t1" (id, a, b, d)

 psql can be used to show the column lists (if defined)
 for each table.

test_pub=# \d t1
 Table "public.t1"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | not null |
 a | text | | |
 b | text | | |
 c | text | | |
 d | text | | |
 e | text | | |
Indexes:
 "t1_pkey" PRIMARY KEY, btree (id)
Publications:
 "p1" (id, a, b, d)

 On the subscriber node, create a table t1 which now
 only needs a subset of the columns that were on the publisher table
 t1, and also create the subscription
 s1 that subscribes to the publication
 p1.

test_sub=# CREATE TABLE t1(id int, b text, a text, d text, PRIMARY KEY(id));
CREATE TABLE
test_sub=# CREATE SUBSCRIPTION s1
test_sub-# CONNECTION 'host=localhost dbname=test_pub application_name=s1'
test_sub-# PUBLICATION p1;
CREATE SUBSCRIPTION

 On the publisher node, insert some rows to table t1.

test_pub=# INSERT INTO t1 VALUES(1, 'a-1', 'b-1', 'c-1', 'd-1', 'e-1');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES(2, 'a-2', 'b-2', 'c-2', 'd-2', 'e-2');
INSERT 0 1
test_pub=# INSERT INTO t1 VALUES(3, 'a-3', 'b-3', 'c-3', 'd-3', 'e-3');
INSERT 0 1
test_pub=# SELECT * FROM t1 ORDER BY id;
 id | a | b | c | d | e
----+-----+-----+-----+-----+-----
 1 | a-1 | b-1 | c-1 | d-1 | e-1
 2 | a-2 | b-2 | c-2 | d-2 | e-2
 3 | a-3 | b-3 | c-3 | d-3 | e-3
(3 rows)

 Only data from the column list of publication p1 is
 replicated.

test_sub=# SELECT * FROM t1 ORDER BY id;
 id | b | a | d
----+-----+-----+-----
 1 | b-1 | a-1 | d-1
 2 | b-2 | a-2 | d-2
 3 | b-3 | a-3 | d-3
(3 rows)

Conflicts

 Logical replication behaves similarly to normal DML operations in that
 the data will be updated even if it was changed locally on the subscriber
 node. If incoming data violates any constraints the replication will
 stop. This is referred to as a conflict. When
 replicating UPDATE or DELETE
 operations, missing data will not produce a conflict and such operations
 will simply be skipped.

 Logical replication operations are performed with the privileges of the role
 which owns the subscription. Permissions failures on target tables will
 cause replication conflicts, as will enabled
 row-level security on target tables
 that the subscription owner is subject to, without regard to whether any
 policy would ordinarily reject the INSERT,
 UPDATE, DELETE or
 TRUNCATE which is being replicated. This restriction on
 row-level security may be lifted in a future version of
 PostgreSQL™.

 A conflict will produce an error and will stop the replication; it must be
 resolved manually by the user. Details about the conflict can be found in
 the subscriber's server log.

 The resolution can be done either by changing data or permissions on the subscriber so
 that it does not conflict with the incoming change or by skipping the
 transaction that conflicts with the existing data. When a conflict produces
 an error, the replication won't proceed, and the logical replication worker will
 emit the following kind of message to the subscriber's server log:

ERROR: duplicate key value violates unique constraint "test_pkey"
DETAIL: Key (c)=(1) already exists.
CONTEXT: processing remote data for replication origin "pg_16395" during "INSERT" for replication target relation "public.test" in transaction 725 finished at 0/14C0378

 The LSN of the transaction that contains the change violating the constraint and
 the replication origin name can be found from the server log (LSN 0/14C0378 and
 replication origin pg_16395 in the above case). The
 transaction that produced the conflict can be skipped by using
 ALTER SUBSCRIPTION ... SKIP with the finish LSN
 (i.e., LSN 0/14C0378). The finish LSN could be an LSN at which the transaction
 is committed or prepared on the publisher. Alternatively, the transaction can
 also be skipped by calling the
 pg_replication_origin_advance() function.
 Before using this function, the subscription needs to be disabled temporarily
 either by ALTER SUBSCRIPTION ... DISABLE or, the
 subscription can be used with the
 disable_on_error
 option. Then, you can use pg_replication_origin_advance()
 function with the node_name (i.e., pg_16395)
 and the next LSN of the finish LSN (i.e., 0/14C0379). The current position of
 origins can be seen in the
 pg_replication_origin_status system view.
 Please note that skipping the whole transaction includes skipping changes that
 might not violate any constraint. This can easily make the subscriber
 inconsistent.

 When the
 streaming
 mode is parallel, the finish LSN of failed transactions
 may not be logged. In that case, it may be necessary to change the streaming
 mode to on or off and cause the same
 conflicts again so the finish LSN of the failed transaction will be written
 to the server log. For the usage of finish LSN, please refer to ALTER SUBSCRIPTION ...
 SKIP.

Restrictions

 Logical replication currently has the following restrictions or missing
 functionality. These might be addressed in future releases.

	
 The database schema and DDL commands are not replicated. The initial
 schema can be copied by hand using pg_dump
 --schema-only. Subsequent schema changes would need to be kept
 in sync manually. (Note, however, that there is no need for the schemas
 to be absolutely the same on both sides.) Logical replication is robust
 when schema definitions change in a live database: When the schema is
 changed on the publisher and replicated data starts arriving at the
 subscriber but does not fit into the table schema, replication will error
 until the schema is updated. In many cases, intermittent errors can be
 avoided by applying additive schema changes to the subscriber first.

	
 Sequence data is not replicated. The data in serial or identity columns
 backed by sequences will of course be replicated as part of the table,
 but the sequence itself would still show the start value on the
 subscriber. If the subscriber is used as a read-only database, then this
 should typically not be a problem. If, however, some kind of switchover
 or failover to the subscriber database is intended, then the sequences
 would need to be updated to the latest values, either by copying the
 current data from the publisher (perhaps
 using pg_dump) or by determining a sufficiently high
 value from the tables themselves.

	
 Replication of TRUNCATE commands is supported, but
 some care must be taken when truncating groups of tables connected by
 foreign keys. When replicating a truncate action, the subscriber will
 truncate the same group of tables that was truncated on the publisher,
 either explicitly specified or implicitly collected via
 CASCADE, minus tables that are not part of the
 subscription. This will work correctly if all affected tables are part
 of the same subscription. But if some tables to be truncated on the
 subscriber have foreign-key links to tables that are not part of the same
 (or any) subscription, then the application of the truncate action on the
 subscriber will fail.

	
 Large objects (see Chapter 35, Large Objects) are not replicated.
 There is no workaround for that, other than storing data in normal
 tables.

	
 Replication is only supported by tables, including partitioned tables.
 Attempts to replicate other types of relations, such as views, materialized
 views, or foreign tables, will result in an error.

	
 When replicating between partitioned tables, the actual replication
 originates, by default, from the leaf partitions on the publisher, so
 partitions on the publisher must also exist on the subscriber as valid
 target tables. (They could either be leaf partitions themselves, or they
 could be further subpartitioned, or they could even be independent
 tables.) Publications can also specify that changes are to be replicated
 using the identity and schema of the partitioned root table instead of
 that of the individual leaf partitions in which the changes actually
 originate (see
 publish_via_partition_root
 parameter of CREATE PUBLICATION).

Architecture

 Logical replication starts by copying a snapshot of the data on the
 publisher database. Once that is done, changes on the publisher are sent
 to the subscriber as they occur in real time. The subscriber applies data
 in the order in which commits were made on the publisher so that
 transactional consistency is guaranteed for the publications within any
 single subscription.

 Logical replication is built with an architecture similar to physical
 streaming replication (see the section called “Streaming Replication”). It is
 implemented by walsender and apply
 processes. The walsender process starts logical decoding (described
 in Chapter 49, Logical Decoding) of the WAL and loads the standard
 logical decoding output plugin (pgoutput). The plugin
 transforms the changes read
 from WAL to the logical replication protocol
 (see the section called “Logical Streaming Replication Protocol”) and filters the data
 according to the publication specification. The data is then continuously
 transferred using the streaming replication protocol to the apply worker,
 which maps the data to local tables and applies the individual changes as
 they are received, in correct transactional order.

 The apply process on the subscriber database always runs with
 session_replication_role
 set to replica. This means that, by default,
 triggers and rules will not fire on a subscriber. Users can optionally choose to
 enable triggers and rules on a table using the
 ALTER TABLE command
 and the ENABLE TRIGGER and ENABLE RULE
 clauses.

 The logical replication apply process currently only fires row triggers,
 not statement triggers. The initial table synchronization, however, is
 implemented like a COPY command and thus fires both row
 and statement triggers for INSERT.

Initial Snapshot

 The initial data in existing subscribed tables are snapshotted and
 copied in a parallel instance of a special kind of apply process.
 This process will create its own replication slot and copy the existing
 data. As soon as the copy is finished the table contents will become
 visible to other backends. Once existing data is copied, the worker
 enters synchronization mode, which ensures that the table is brought
 up to a synchronized state with the main apply process by streaming
 any changes that happened during the initial data copy using standard
 logical replication. During this synchronization phase, the changes
 are applied and committed in the same order as they happened on the
 publisher. Once synchronization is done, control of the
 replication of the table is given back to the main apply process where
 replication continues as normal.

Note

 The publication
 publish
 parameter only affects what DML operations will be replicated. The
 initial data synchronization does not take this parameter into account
 when copying the existing table data.

Monitoring

 Because logical replication is based on a similar architecture as
 physical streaming replication,
 the monitoring on a publication node is similar to monitoring of a
 physical replication primary
 (see the section called “Monitoring”).

 The monitoring information about subscription is visible in

 pg_stat_subscription.
 This view contains one row for every subscription worker. A subscription
 can have zero or more active subscription workers depending on its state.

 Normally, there is a single apply process running for an enabled
 subscription. A disabled subscription or a crashed subscription will have
 zero rows in this view. If the initial data synchronization of any
 table is in progress, there will be additional workers for the tables
 being synchronized. Moreover, if the
 streaming
 transaction is applied in parallel, there may be additional parallel apply
 workers.

Security

 The role used for the replication connection must have
 the REPLICATION attribute (or be a superuser). If the
 role lacks SUPERUSER and BYPASSRLS,
 publisher row security policies can execute. If the role does not trust
 all table owners, include options=-crow_security=off in
 the connection string; if a table owner then adds a row security policy,
 that setting will cause replication to halt rather than execute the policy.
 Access for the role must be configured in pg_hba.conf
 and it must have the LOGIN attribute.

 In order to be able to copy the initial table data, the role used for the
 replication connection must have the SELECT privilege on
 a published table (or be a superuser).

 To create a publication, the user must have the CREATE
 privilege in the database.

 To add tables to a publication, the user must have ownership rights on the
 table. To add all tables in schema to a publication, the user must be a
 superuser. To create a publication that publishes all tables or all tables in
 schema automatically, the user must be a superuser.

 There are currently no privileges on publications. Any subscription (that
 is able to connect) can access any publication. Thus, if you intend to
 hide some information from particular subscribers, such as by using row
 filters or column lists, or by not adding the whole table to the
 publication, be aware that other publications in the same database could
 expose the same information. Publication privileges might be added to
 PostgreSQL™ in the future to allow for
 finer-grained access control.

 To create a subscription, the user must have the privileges of the
 the pg_create_subscription role, as well as
 CREATE privileges on the database.

 The subscription apply process will, at a session level, run with the
 privileges of the subscription owner. However, when performing an insert,
 update, delete, or truncate operation on a particular table, it will switch
 roles to the table owner and perform the operation with the table owner's
 privileges. This means that the subscription owner needs to be able to
 SET ROLE to each role that owns a replicated table.

 If the subscription has been configured with
 run_as_owner = true, then no user switching will
 occur. Instead, all operations will be performed with the permissions
 of the subscription owner. In this case, the subscription owner only
 needs privileges to SELECT, INSERT,
 UPDATE, and DELETE from the
 target table, and does not need privileges to SET ROLE
 to the table owner. However, this also means that any user who owns
 a table into which replication is happening can execute arbitrary code with
 the privileges of the subscription owner. For example, they could do this
 by simply attaching a trigger to one of the tables which they own.
 Because it is usually undesirable to allow one role to freely assume
 the privileges of another, this option should be avoided unless user
 security within the database is of no concern.

 On the publisher, privileges are only checked once at the start of a
 replication connection and are not re-checked as each change record is read.

 On the subscriber, the subscription owner's privileges are re-checked for
 each transaction when applied. If a worker is in the process of applying a
 transaction when the ownership of the subscription is changed by a
 concurrent transaction, the application of the current transaction will
 continue under the old owner's privileges.

Configuration Settings

 Logical replication requires several configuration options to be set. Most
 options are relevant only on one side of the replication. However,
 max_replication_slots is used on both the publisher and
 the subscriber, but it has a different meaning for each.

Publishers

 wal_level must be
 set to logical.

 max_replication_slots
 must be set to at least the number of subscriptions expected to connect,
 plus some reserve for table synchronization.

 max_wal_senders
 should be set to at least the same as
 max_replication_slots, plus the number of physical
 replicas that are connected at the same time.

 Logical replication walsender is also affected by
 wal_sender_timeout.

Subscribers

 max_replication_slots
 must be set to at least the number of subscriptions that will be added to
 the subscriber, plus some reserve for table synchronization.

 max_logical_replication_workers
 must be set to at least the number of subscriptions (for leader apply
 workers), plus some reserve for the table synchronization workers and
 parallel apply workers.

 max_worker_processes
 may need to be adjusted to accommodate for replication workers, at least
 (max_logical_replication_workers
 + 1). Note, some extensions and parallel queries also
 take worker slots from max_worker_processes.

 max_sync_workers_per_subscription
 controls the amount of parallelism of the initial data copy during the
 subscription initialization or when new tables are added.

 max_parallel_apply_workers_per_subscription
 controls the amount of parallelism for streaming of in-progress
 transactions with subscription parameter
 streaming = parallel.

 Logical replication workers are also affected by
 wal_receiver_timeout,
 wal_receiver_status_interval and
 wal_retrieve_retry_interval.

Quick Setup

 First set the configuration options in postgresql.conf:

wal_level = logical

 The other required settings have default values that are sufficient for a
 basic setup.

 pg_hba.conf needs to be adjusted to allow replication
 (the values here depend on your actual network configuration and user you
 want to use for connecting):

host all repuser 0.0.0.0/0 md5

 Then on the publisher database:

CREATE PUBLICATION mypub FOR TABLE users, departments;

 And on the subscriber database:

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=foo host=bar user=repuser' PUBLICATION mypub;

 The above will start the replication process, which synchronizes the
 initial table contents of the tables users and
 departments and then starts replicating
 incremental changes to those tables.

Chapter 32. Just-in-Time Compilation (JIT)

 This chapter explains what just-in-time compilation is, and how it can be
 configured in PostgreSQL™.

What Is JIT compilation?

 Just-in-Time (JIT) compilation is the process of turning
 some form of interpreted program evaluation into a native program, and
 doing so at run time.
 For example, instead of using general-purpose code that can evaluate
 arbitrary SQL expressions to evaluate a particular SQL predicate
 like WHERE a.col = 3, it is possible to generate a
 function that is specific to that expression and can be natively executed
 by the CPU, yielding a speedup.

 PostgreSQL™ has builtin support to perform
 JIT compilation using LLVM™ when
 PostgreSQL™ is built with
 --with-llvm.

 See src/backend/jit/README for further details.

JIT Accelerated Operations

 Currently PostgreSQL™'s JIT
 implementation has support for accelerating expression evaluation and
 tuple deforming. Several other operations could be accelerated in the
 future.

 Expression evaluation is used to evaluate WHERE
 clauses, target lists, aggregates and projections. It can be accelerated
 by generating code specific to each case.

 Tuple deforming is the process of transforming an on-disk tuple (see the section called “Table Row Layout”) into its in-memory representation.
 It can be accelerated by creating a function specific to the table layout
 and the number of columns to be extracted.

Inlining

 PostgreSQL™ is very extensible and allows new
 data types, functions, operators and other database objects to be defined;
 see Chapter 38, Extending SQL. In fact the built-in objects are implemented
 using nearly the same mechanisms. This extensibility implies some
 overhead, for example due to function calls (see the section called “User-Defined Functions”).
 To reduce that overhead, JIT compilation can inline the
 bodies of small functions into the expressions using them. That allows a
 significant percentage of the overhead to be optimized away.

Optimization

 LLVM™ has support for optimizing generated
 code. Some of the optimizations are cheap enough to be performed whenever
 JIT is used, while others are only beneficial for
 longer-running queries.
 See https://llvm.org/docs/Passes.html#transform-passes for
 more details about optimizations.

When to JIT?

 JIT compilation is beneficial primarily for long-running
 CPU-bound queries. Frequently these will be analytical queries. For short
 queries the added overhead of performing JIT compilation
 will often be higher than the time it can save.

 To determine whether JIT compilation should be used,
 the total estimated cost of a query (see
 Chapter 76, How the Planner Uses Statistics and
 the section called “Planner Cost Constants”) is used.
 The estimated cost of the query will be compared with the setting of jit_above_cost. If the cost is higher,
 JIT compilation will be performed.
 Two further decisions are then needed.
 Firstly, if the estimated cost is more
 than the setting of jit_inline_above_cost, short
 functions and operators used in the query will be inlined.
 Secondly, if the estimated cost is more than the setting of jit_optimize_above_cost, expensive optimizations are
 applied to improve the generated code.
 Each of these options increases the JIT compilation
 overhead, but can reduce query execution time considerably.

 These cost-based decisions will be made at plan time, not execution
 time. This means that when prepared statements are in use, and a generic
 plan is used (see PREPARE(7)), the values of the
 configuration parameters in effect at prepare time control the decisions,
 not the settings at execution time.

Note

 If jit is set to off, or if no
 JIT implementation is available (for example because
 the server was compiled without --with-llvm),
 JIT will not be performed, even if it would be
 beneficial based on the above criteria. Setting jit
 to off has effects at both plan and execution time.

 EXPLAIN(7) can be used to see whether
 JIT is used or not. As an example, here is a query that
 is not using JIT:

=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN
---​--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=0.303..0.303 rows=1 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual time=0.017..0.111 rows=356 loops=1)
 Planning Time: 0.116 ms
 Execution Time: 0.365 ms
(4 rows)

 Given the cost of the plan, it is entirely reasonable that no
 JIT was used; the cost of JIT would
 have been bigger than the potential savings. Adjusting the cost limits
 will lead to JIT use:

=# SET jit_above_cost = 10;
SET
=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN
---​--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=6.049..6.049 rows=1 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual time=0.019..0.052 rows=356 loops=1)
 Planning Time: 0.133 ms
 JIT:
 Functions: 3
 Options: Inlining false, Optimization false, Expressions true, Deforming true
 Timing: Generation 1.259 ms, Inlining 0.000 ms, Optimization 0.797 ms, Emission 5.048 ms, Total 7.104 ms
 Execution Time: 7.416 ms

 As visible here, JIT was used, but inlining and
 expensive optimization were not. If jit_inline_above_cost or jit_optimize_above_cost were also lowered,
 that would change.

Configuration

 The configuration variable
 jit determines whether JIT
 compilation is enabled or disabled.
 If it is enabled, the configuration variables
 jit_above_cost, jit_inline_above_cost, and jit_optimize_above_cost determine
 whether JIT compilation is performed for a query,
 and how much effort is spent doing so.

 jit_provider determines which JIT
 implementation is used. It is rarely required to be changed. See the section called “Pluggable JIT Providers”.

 For development and debugging purposes a few additional configuration
 parameters exist, as described in
 the section called “Developer Options”.

Extensibility

Inlining Support for Extensions

 PostgreSQL™'s JIT
 implementation can inline the bodies of functions
 of types C and internal, as well as
 operators based on such functions. To do so for functions in extensions,
 the definitions of those functions need to be made available.
 When using PGXS to build an extension
 against a server that has been compiled with LLVM JIT support, the
 relevant files will be built and installed automatically.

 The relevant files have to be installed into
 $pkglibdir/bitcode/$extension/ and a summary of them
 into $pkglibdir/bitcode/$extension.index.bc, where
 $pkglibdir is the directory returned by
 pg_config --pkglibdir and $extension
 is the base name of the extension's shared library.

Note

 For functions built into PostgreSQL™ itself,
 the bitcode is installed into
 $pkglibdir/bitcode/postgres.

Pluggable JIT Providers

 PostgreSQL™ provides a JIT
 implementation based on LLVM™. The interface to
 the JIT provider is pluggable and the provider can be
 changed without recompiling (although currently, the build process only
 provides inlining support data for LLVM™).
 The active provider is chosen via the setting
 jit_provider.

JIT Provider Interface

 A JIT provider is loaded by dynamically loading the
 named shared library. The normal library search path is used to locate
 the library. To provide the required JIT provider
 callbacks and to indicate that the library is actually a
 JIT provider, it needs to provide a C function named
 _PG_jit_provider_init. This function is passed a
 struct that needs to be filled with the callback function pointers for
 individual actions:

struct JitProviderCallbacks
{
 JitProviderResetAfterErrorCB reset_after_error;
 JitProviderReleaseContextCB release_context;
 JitProviderCompileExprCB compile_expr;
};

extern void _PG_jit_provider_init(JitProviderCallbacks *cb);

Chapter 33. Regression Tests

 The regression tests are a comprehensive set of tests for the SQL
 implementation in PostgreSQL™. They test
 standard SQL operations as well as the extended capabilities of
 PostgreSQL™.

Running the Tests

 The regression tests can be run against an already installed and
 running server, or using a temporary installation within the build
 tree. Furthermore, there is a “parallel” and a
 “sequential” mode for running the tests. The
 sequential method runs each test script alone, while the
 parallel method starts up multiple server processes to run groups
 of tests in parallel. Parallel testing adds confidence that
 interprocess communication and locking are working correctly.
 Some tests may run sequentially even in the “parallel”
 mode in case this is required by the test.

Running the Tests Against a Temporary Installation

 To run the parallel regression tests after building but before installation,
 type:

make check

 in the top-level directory. (Or you can change to
 src/test/regress and run the command there.)
 Tests which are run in parallel are prefixed with “+”, and
 tests which run sequentially are prefixed with “-”.
 At the end you should see something like:

All 213 tests passed.

 or otherwise a note about which tests failed. See the section called “Test Evaluation” below before assuming that a
 “failure” represents a serious problem.

 Because this test method runs a temporary server, it will not work
 if you did the build as the root user, since the server will not start as
 root. Recommended procedure is not to do the build as root, or else to
 perform testing after completing the installation.

 If you have configured PostgreSQL™ to install
 into a location where an older PostgreSQL™
 installation already exists, and you perform make check
 before installing the new version, you might find that the tests fail
 because the new programs try to use the already-installed shared
 libraries. (Typical symptoms are complaints about undefined symbols.)
 If you wish to run the tests before overwriting the old installation,
 you'll need to build with configure --disable-rpath.
 It is not recommended that you use this option for the final installation,
 however.

 The parallel regression test starts quite a few processes under your
 user ID. Presently, the maximum concurrency is twenty parallel test
 scripts, which means forty processes: there's a server process and a
 psql process for each test script.
 So if your system enforces a per-user limit on the number of processes,
 make sure this limit is at least fifty or so, else you might get
 random-seeming failures in the parallel test. If you are not in
 a position to raise the limit, you can cut down the degree of parallelism
 by setting the MAX_CONNECTIONS parameter. For example:

make MAX_CONNECTIONS=10 check

 runs no more than ten tests concurrently.

Running the Tests Against an Existing Installation

 To run the tests after installation (see Chapter 17, Installation from Source Code),
 initialize a data directory and start the
 server as explained in Chapter 19, Server Setup and Operation, then type:

make installcheck

or for a parallel test:

make installcheck-parallel

 The tests will expect to contact the server at the local host and the
 default port number, unless directed otherwise by PGHOST and
 PGPORT environment variables. The tests will be run in a
 database named regression; any existing database by this name
 will be dropped.

 The tests will also transiently create some cluster-wide objects, such as
 roles, tablespaces, and subscriptions. These objects will have names
 beginning with regress_. Beware of
 using installcheck mode with an installation that has
 any actual global objects named that way.

Additional Test Suites

 The make check and make installcheck commands
 run only the “core” regression tests, which test built-in
 functionality of the PostgreSQL™ server. The source
 distribution contains many additional test suites, most of them having
 to do with add-on functionality such as optional procedural languages.

 To run all test suites applicable to the modules that have been selected
 to be built, including the core tests, type one of these commands at the
 top of the build tree:

make check-world
make installcheck-world

 These commands run the tests using temporary servers or an
 already-installed server, respectively, just as previously explained
 for make check and make installcheck. Other
 considerations are the same as previously explained for each method.
 Note that make check-world builds a separate instance
 (temporary data directory) for each tested module, so it requires more
 time and disk space than make installcheck-world.

 On a modern machine with multiple CPU cores and no tight operating-system
 limits, you can make things go substantially faster with parallelism.
 The recipe that most PostgreSQL developers actually use for running all
 tests is something like

make check-world -j8 >/dev/null

 with a -j limit near to or a bit more than the number
 of available cores. Discarding stdout
 eliminates chatter that's not interesting when you just want to verify
 success. (In case of failure, the stderr
 messages are usually enough to determine where to look closer.)

 Alternatively, you can run individual test suites by typing
 make check or make installcheck in the appropriate
 subdirectory of the build tree. Keep in mind that make
 installcheck assumes you've installed the relevant module(s), not
 only the core server.

 The additional tests that can be invoked this way include:

	
 Regression tests for optional procedural languages.
 These are located under src/pl.

	
 Regression tests for contrib modules,
 located under contrib.
 Not all contrib modules have tests.

	
 Regression tests for the interface libraries,
 located in src/interfaces/libpq/test and
 src/interfaces/ecpg/test.

	
 Tests for core-supported authentication methods,
 located in src/test/authentication.
 (See below for additional authentication-related tests.)

	
 Tests stressing behavior of concurrent sessions,
 located in src/test/isolation.

	
 Tests for crash recovery and physical replication,
 located in src/test/recovery.

	
 Tests for logical replication,
 located in src/test/subscription.

	
 Tests of client programs, located under src/bin.

 When using installcheck mode, these tests will create
 and destroy test databases whose names
 include regression, for
 example pl_regression
 or contrib_regression. Beware of
 using installcheck mode with an installation that has
 any non-test databases named that way.

 Some of these auxiliary test suites use the TAP infrastructure explained
 in the section called “TAP Tests”.
 The TAP-based tests are run only when PostgreSQL was configured with the
 option --enable-tap-tests. This is recommended for
 development, but can be omitted if there is no suitable Perl installation.

 Some test suites are not run by default, either because they are not secure
 to run on a multiuser system, because they require special software or
 because they are resource intensive. You can decide which test suites to
 run additionally by setting the make or environment
 variable PG_TEST_EXTRA to a whitespace-separated list,
 for example:

make check-world PG_TEST_EXTRA='kerberos ldap ssl load_balance'

 The following values are currently supported:

	kerberos
	
 Runs the test suite under src/test/kerberos. This
 requires an MIT Kerberos installation and opens TCP/IP listen sockets.

	ldap
	
 Runs the test suite under src/test/ldap. This
 requires an OpenLDAP™ installation and opens
 TCP/IP listen sockets.

	ssl
	
 Runs the test suite under src/test/ssl. This opens TCP/IP listen sockets.

	load_balance
	
 Runs the test src/interfaces/libpq/t/004_load_balance_dns.pl.
 This requires editing the system hosts file and
 opens TCP/IP listen sockets.

	wal_consistency_checking
	
 Uses wal_consistency_checking=all while running
 certain tests under src/test/recovery. Not
 enabled by default because it is resource intensive.

 Tests for features that are not supported by the current build
 configuration are not run even if they are mentioned in
 PG_TEST_EXTRA.

 In addition, there are tests in src/test/modules
 which will be run by make check-world but not
 by make installcheck-world. This is because they
 install non-production extensions or have other side-effects that are
 considered undesirable for a production installation. You can
 use make install and make
 installcheck in one of those subdirectories if you wish,
 but it's not recommended to do so with a non-test server.

Locale and Encoding

 By default, tests using a temporary installation use the
 locale defined in the current environment and the corresponding
 database encoding as determined by initdb. It
 can be useful to test different locales by setting the appropriate
 environment variables, for example:

make check LANG=C
make check LC_COLLATE=en_US.utf8 LC_CTYPE=fr_CA.utf8

 For implementation reasons, setting LC_ALL does not
 work for this purpose; all the other locale-related environment
 variables do work.

 When testing against an existing installation, the locale is
 determined by the existing database cluster and cannot be set
 separately for the test run.

 You can also choose the database encoding explicitly by setting
 the variable ENCODING, for example:

make check LANG=C ENCODING=EUC_JP

 Setting the database encoding this way typically only makes sense
 if the locale is C; otherwise the encoding is chosen automatically
 from the locale, and specifying an encoding that does not match
 the locale will result in an error.

 The database encoding can be set for tests against either a temporary or
 an existing installation, though in the latter case it must be
 compatible with the installation's locale.

Custom Server Settings

 Custom server settings to use when running a regression test suite can be
 set in the PGOPTIONS environment variable (for settings
 that allow this):

make check PGOPTIONS="-c debug_parallel_query=regress -c work_mem=50MB"

 When running against a temporary installation, custom settings can also be
 set by supplying a pre-written postgresql.conf:

echo 'log_checkpoints = on' > test_postgresql.conf
echo 'work_mem = 50MB' >> test_postgresql.conf
make check EXTRA_REGRESS_OPTS="--temp-config=test_postgresql.conf"

 This can be useful to enable additional logging, adjust resource limits,
 or enable extra run-time checks such as debug_discard_caches.

Extra Tests

 The core regression test suite contains a few test files that are not
 run by default, because they might be platform-dependent or take a
 very long time to run. You can run these or other extra test
 files by setting the variable EXTRA_TESTS. For
 example, to run the numeric_big test:

make check EXTRA_TESTS=numeric_big

Test Evaluation

 Some properly installed and fully functional
 PostgreSQL™ installations can
 “fail” some of these regression tests due to
 platform-specific artifacts such as varying floating-point representation
 and message wording. The tests are currently evaluated using a simple
 diff comparison against the outputs
 generated on a reference system, so the results are sensitive to
 small system differences. When a test is reported as
 “failed”, always examine the differences between
 expected and actual results; you might find that the
 differences are not significant. Nonetheless, we still strive to
 maintain accurate reference files across all supported platforms,
 so it can be expected that all tests pass.

 The actual outputs of the regression tests are in files in the
 src/test/regress/results directory. The test
 script uses diff to compare each output
 file against the reference outputs stored in the
 src/test/regress/expected directory. Any
 differences are saved for your inspection in
 src/test/regress/regression.diffs.
 (When running a test suite other than the core tests, these files
 of course appear in the relevant subdirectory,
 not src/test/regress.)

 If you don't
 like the diff options that are used by default, set the
 environment variable PG_REGRESS_DIFF_OPTS, for
 instance PG_REGRESS_DIFF_OPTS='-c'. (Or you
 can run diff yourself, if you prefer.)

 If for some reason a particular platform generates a “failure”
 for a given test, but inspection of the output convinces you that
 the result is valid, you can add a new comparison file to silence
 the failure report in future test runs. See
 the section called “Variant Comparison Files” for details.

Error Message Differences

 Some of the regression tests involve intentional invalid input
 values. Error messages can come from either the
 PostgreSQL™ code or from the host
 platform system routines. In the latter case, the messages can
 vary between platforms, but should reflect similar
 information. These differences in messages will result in a
 “failed” regression test that can be validated by
 inspection.

Locale Differences

 If you run the tests against a server that was
 initialized with a collation-order locale other than C, then
 there might be differences due to sort order and subsequent
 failures. The regression test suite is set up to handle this
 problem by providing alternate result files that together are
 known to handle a large number of locales.

 To run the tests in a different locale when using the
 temporary-installation method, pass the appropriate
 locale-related environment variables on
 the make command line, for example:

make check LANG=de_DE.utf8

 (The regression test driver unsets LC_ALL, so it
 does not work to choose the locale using that variable.) To use
 no locale, either unset all locale-related environment variables
 (or set them to C) or use the following
 special invocation:

make check NO_LOCALE=1

 When running the tests against an existing installation, the
 locale setup is determined by the existing installation. To
 change it, initialize the database cluster with a different
 locale by passing the appropriate options
 to initdb.

 In general, it is advisable to try to run the
 regression tests in the locale setup that is wanted for
 production use, as this will exercise the locale- and
 encoding-related code portions that will actually be used in
 production. Depending on the operating system environment, you
 might get failures, but then you will at least know what
 locale-specific behaviors to expect when running real
 applications.

Date and Time Differences

 Most of the date and time results are dependent on the time zone
 environment. The reference files are generated for time zone
 America/Los_Angeles, and there will be
 apparent failures if the tests are not run with that time zone setting.
 The regression test driver sets environment variable
 PGTZ to America/Los_Angeles,
 which normally ensures proper results.

Floating-Point Differences

 Some of the tests involve computing 64-bit floating-point numbers (double
 precision) from table columns. Differences in
 results involving mathematical functions of double
 precision columns have been observed. The float8 and
 geometry tests are particularly prone to small differences
 across platforms, or even with different compiler optimization settings.
 Human eyeball comparison is needed to determine the real
 significance of these differences which are usually 10 places to
 the right of the decimal point.

 Some systems display minus zero as -0, while others
 just show 0.

 Some systems signal errors from pow() and
 exp() differently from the mechanism
 expected by the current PostgreSQL™
 code.

Row Ordering Differences

You might see differences in which the same rows are output in a
different order than what appears in the expected file. In most cases
this is not, strictly speaking, a bug. Most of the regression test
scripts are not so pedantic as to use an ORDER BY for every single
SELECT, and so their result row orderings are not well-defined
according to the SQL specification. In practice, since we are
looking at the same queries being executed on the same data by the same
software, we usually get the same result ordering on all platforms,
so the lack of ORDER BY is not a problem. Some queries do exhibit
cross-platform ordering differences, however. When testing against an
already-installed server, ordering differences can also be caused by
non-C locale settings or non-default parameter settings, such as custom values
of work_mem or the planner cost parameters.

Therefore, if you see an ordering difference, it's not something to
worry about, unless the query does have an ORDER BY that your
result is violating. However, please report it anyway, so that we can add an
ORDER BY to that particular query to eliminate the bogus
“failure” in future releases.

You might wonder why we don't order all the regression test queries explicitly
to get rid of this issue once and for all. The reason is that that would
make the regression tests less useful, not more, since they'd tend
to exercise query plan types that produce ordered results to the
exclusion of those that don't.

Insufficient Stack Depth

 If the errors test results in a server crash
 at the select infinite_recurse() command, it means that
 the platform's limit on process stack size is smaller than the
 max_stack_depth parameter indicates. This
 can be fixed by running the server under a higher stack
 size limit (4MB is recommended with the default value of
 max_stack_depth). If you are unable to do that, an
 alternative is to reduce the value of max_stack_depth.

 On platforms supporting getrlimit(), the server should
 automatically choose a safe value of max_stack_depth;
 so unless you've manually overridden this setting, a failure of this
 kind is a reportable bug.

The “random” Test

 The random test script is intended to produce
 random results. In very rare cases, this causes that regression
 test to fail. Typing:

diff results/random.out expected/random.out

 should produce only one or a few lines of differences. You need
 not worry unless the random test fails repeatedly.

Configuration Parameters

 When running the tests against an existing installation, some non-default
 parameter settings could cause the tests to fail. For example, changing
 parameters such as enable_seqscan or
 enable_indexscan could cause plan changes that would
 affect the results of tests that use EXPLAIN.

Variant Comparison Files

 Since some of the tests inherently produce environment-dependent
 results, we have provided ways to specify alternate “expected”
 result files. Each regression test can have several comparison files
 showing possible results on different platforms. There are two
 independent mechanisms for determining which comparison file is used
 for each test.

 The first mechanism allows comparison files to be selected for
 specific platforms. There is a mapping file,
 src/test/regress/resultmap, that defines
 which comparison file to use for each platform.
 To eliminate bogus test “failures” for a particular platform,
 you first choose or make a variant result file, and then add a line to the
 resultmap file.

 Each line in the mapping file is of the form

testname:output:platformpattern=comparisonfilename

 The test name is just the name of the particular regression test
 module. The output value indicates which output file to check. For the
 standard regression tests, this is always out. The
 value corresponds to the file extension of the output file.
 The platform pattern is a pattern in the style of the Unix
 tool expr (that is, a regular expression with an implicit
 ^ anchor at the start). It is matched against the
 platform name as printed by config.guess.
 The comparison file name is the base name of the substitute result
 comparison file.

 For example: some systems lack a working strtof function,
 for which our workaround causes rounding errors in the
 float4 regression test.
 Therefore, we provide a variant comparison file,
 float4-misrounded-input.out, which includes
 the results to be expected on these systems. To silence the bogus
 “failure” message on Cygwin
 platforms, resultmap includes:

float4:out:.*-.*-cygwin.*=float4-misrounded-input.out

 which will trigger on any machine where the output of
 config.guess matches .*-.*-cygwin.*.
 Other lines in resultmap select the variant comparison
 file for other platforms where it's appropriate.

 The second selection mechanism for variant comparison files is
 much more automatic: it simply uses the “best match” among
 several supplied comparison files. The regression test driver
 script considers both the standard comparison file for a test,
 testname.out, and variant files named
 testname_digit.out
 (where the digit is any single digit
 0-9). If any such file is an exact match,
 the test is considered to pass; otherwise, the one that generates
 the shortest diff is used to create the failure report. (If
 resultmap includes an entry for the particular
 test, then the base testname is the substitute
 name given in resultmap.)

 For example, for the char test, the comparison file
 char.out contains results that are expected
 in the C and POSIX locales, while
 the file char_1.out contains results sorted as
 they appear in many other locales.

 The best-match mechanism was devised to cope with locale-dependent
 results, but it can be used in any situation where the test results
 cannot be predicted easily from the platform name alone. A limitation of
 this mechanism is that the test driver cannot tell which variant is
 actually “correct” for the current environment; it will just pick
 the variant that seems to work best. Therefore it is safest to use this
 mechanism only for variant results that you are willing to consider
 equally valid in all contexts.

TAP Tests

 Various tests, particularly the client program tests
 under src/bin, use the Perl TAP tools and are run
 using the Perl testing program prove. You can pass
 command-line options to prove by setting
 the make variable PROVE_FLAGS, for example:

make -C src/bin check PROVE_FLAGS='--timer'

 See the manual page of prove for more information.

 The make variable PROVE_TESTS
 can be used to define a whitespace-separated list of paths relative
 to the Makefile invoking prove
 to run the specified subset of tests instead of the default
 t/*.pl. For example:

make check PROVE_TESTS='t/001_test1.pl t/003_test3.pl'

 The TAP tests require the Perl module IPC::Run.
 This module is available from
 CPAN
 or an operating system package.
 They also require PostgreSQL™ to be
 configured with the option --enable-tap-tests.

 Generically speaking, the TAP tests will test the executables in a
 previously-installed installation tree if you say make
 installcheck, or will build a new local installation tree from
 current sources if you say make check. In either
 case they will initialize a local instance (data directory) and
 transiently run a server in it. Some of these tests run more than one
 server. Thus, these tests can be fairly resource-intensive.

 It's important to realize that the TAP tests will start test server(s)
 even when you say make installcheck; this is unlike
 the traditional non-TAP testing infrastructure, which expects to use an
 already-running test server in that case. Some PostgreSQL
 subdirectories contain both traditional-style and TAP-style tests,
 meaning that make installcheck will produce a mix of
 results from temporary servers and the already-running test server.

Environment Variables

 Data directories are named according to the test filename, and will be
 retained if a test fails. If the environment variable
 PG_TEST_NOCLEAN is set, data directories will be
 retained regardless of test status. For example, retaining the data
 directory regardless of test results when running the
 pg_dump tests:

PG_TEST_NOCLEAN=1 make -C src/bin/pg_dump check

 This environment variable also prevents the test's temporary directories
 from being removed.

 Many operations in the test suites use a 180-second timeout, which on slow
 hosts may lead to load-induced timeouts. Setting the environment variable
 PG_TEST_TIMEOUT_DEFAULT to a higher number will change
 the default to avoid this.

Test Coverage Examination

 The PostgreSQL source code can be compiled with coverage testing
 instrumentation, so that it becomes possible to examine which
 parts of the code are covered by the regression tests or any other
 test suite that is run with the code. This is currently supported
 when compiling with GCC, and it requires the gcov
 and lcov packages.

Coverage with Autoconf and Make

 A typical workflow looks like this:

./configure --enable-coverage ... OTHER OPTIONS ...
make
make check # or other test suite
make coverage-html

 Then point your HTML browser
 to coverage/index.html.

 If you don't have lcov or prefer text output over an
 HTML report, you can run

make coverage

 instead of make coverage-html, which will
 produce .gcov output files for each source file
 relevant to the test. (make coverage and make
 coverage-html will overwrite each other's files, so mixing them
 might be confusing.)

 You can run several different tests before making the coverage report;
 the execution counts will accumulate. If you want
 to reset the execution counts between test runs, run:

make coverage-clean

 You can run the make coverage-html or make
 coverage command in a subdirectory if you want a coverage
 report for only a portion of the code tree.

 Use make distclean to clean up when done.

Coverage with Meson

 A typical workflow looks like this:

meson setup -Db_coverage=true ... OTHER OPTIONS ... builddir/
meson compile -C builddir/
meson test -C builddir/
cd builddir/
ninja coverage-html

 Then point your HTML browser
 to ./meson-logs/coveragereport/index.html.

 You can run several different tests before making the coverage report;
 the execution counts will accumulate.

Part IV. Client Interfaces

 This part describes the client programming interfaces distributed
 with PostgreSQL™. Each of these chapters can be
 read independently. Note that there are many other programming
 interfaces for client programs that are distributed separately and
 contain their own documentation (Appendix H, External Projects
 lists some of the more popular ones). Readers of this part should be
 familiar with using SQL commands to manipulate
 and query the database (see Part II, “The SQL Language”) and of course
 with the programming language that the interface uses.

Chapter 34. libpq — C Library

 libpq is the C
 application programmer's interface to PostgreSQL™.
 libpq is a set of library functions that allow
 client programs to pass queries to the PostgreSQL™
 backend server and to receive the results of these queries.

 libpq is also the underlying engine for several
 other PostgreSQL™ application interfaces, including
 those written for C++, Perl, Python, Tcl and ECPG.
 So some aspects of libpq's behavior will be
 important to you if you use one of those packages. In particular,
 the section called “Environment Variables”,
 the section called “The Password File” and
 the section called “SSL Support”
 describe behavior that is visible to the user of any application
 that uses libpq.

 Some short programs are included at the end of this chapter (the section called “Example Programs”) to show how
 to write programs that use libpq. There are also several
 complete examples of libpq applications in the
 directory src/test/examples in the source code distribution.

 Client programs that use libpq must
 include the header file
 libpq-fe.h
 and must link with the libpq library.

Database Connection Control Functions

 The following functions deal with making a connection to a
 PostgreSQL™ backend server. An
 application program can have several backend connections open at
 one time. (One reason to do that is to access more than one
 database.) Each connection is represented by a
 PGconn object, which
 is obtained from the function PQconnectdb,
 PQconnectdbParams, or
 PQsetdbLogin. Note that these functions will always
 return a non-null object pointer, unless perhaps there is too
 little memory even to allocate the PGconn object.
 The PQstatus function should be called to check
 the return value for a successful connection before queries are sent
 via the connection object.

Warning

 If untrusted users have access to a database that has not adopted a
 secure schema usage pattern,
 begin each session by removing publicly-writable schemas from
 search_path. One can set parameter key
 word options to
 value -csearch_path=. Alternately, one can
 issue PQexec(conn, "SELECT
 pg_catalog.set_config('search_path', '', false)") after
 connecting. This consideration is not specific
 to libpq; it applies to every interface for
 executing arbitrary SQL commands.

Warning

 On Unix, forking a process with open libpq connections can lead to
 unpredictable results because the parent and child processes share
 the same sockets and operating system resources. For this reason,
 such usage is not recommended, though doing an exec from
 the child process to load a new executable is safe.

	PQconnectdbParams
	
 Makes a new connection to the database server.

PGconn *PQconnectdbParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

 This function opens a new database connection using the parameters taken
 from two NULL-terminated arrays. The first,
 keywords, is defined as an array of strings, each one
 being a key word. The second, values, gives the value
 for each key word. Unlike PQsetdbLogin below, the parameter
 set can be extended without changing the function signature, so use of
 this function (or its nonblocking analogs PQconnectStartParams
 and PQconnectPoll) is preferred for new application
 programming.

 The currently recognized parameter key words are listed in
 the section called “Parameter Key Words”.

 The passed arrays can be empty to use all default parameters, or can
 contain one or more parameter settings. They must be matched in length.
 Processing will stop at the first NULL entry
 in the keywords array.
 Also, if the values entry associated with a
 non-NULL keywords entry is
 NULL or an empty string, that entry is ignored and
 processing continues with the next pair of array entries.

 When expand_dbname is non-zero, the value for
 the first dbname key word is checked to see
 if it is a connection string. If so, it
 is “expanded” into the individual connection
 parameters extracted from the string. The value is considered to
 be a connection string, rather than just a database name, if it
 contains an equal sign (=) or it begins with a
 URI scheme designator. (More details on connection string formats
 appear in the section called “Connection Strings”.) Only the first
 occurrence of dbname is treated in this way;
 any subsequent dbname parameter is processed
 as a plain database name.

 In general the parameter arrays are processed from start to end.
 If any key word is repeated, the last value (that is
 not NULL or empty) is used. This rule applies in
 particular when a key word found in a connection string conflicts
 with one appearing in the keywords array. Thus,
 the programmer may determine whether array entries can override or
 be overridden by values taken from a connection string. Array
 entries appearing before an expanded dbname
 entry can be overridden by fields of the connection string, and in
 turn those fields are overridden by array entries appearing
 after dbname (but, again, only if those
 entries supply non-empty values).

 After processing all the array entries and any expanded connection
 string, any connection parameters that remain unset are filled with
 default values. If an unset parameter's corresponding environment
 variable (see the section called “Environment Variables”) is set, its value is
 used. If the environment variable is not set either, then the
 parameter's built-in default value is used.

	PQconnectdb
	
 Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo);

 This function opens a new database connection using the parameters taken
 from the string conninfo.

 The passed string can be empty to use all default parameters, or it can
 contain one or more parameter settings separated by whitespace,
 or it can contain a URI.
 See the section called “Connection Strings” for details.

	PQsetdbLogin
	
 Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd);

 This is the predecessor of PQconnectdb with a fixed
 set of parameters. It has the same functionality except that the
 missing parameters will always take on default values. Write NULL or an
 empty string for any one of the fixed parameters that is to be defaulted.

 If the dbName contains
 an = sign or has a valid connection URI prefix, it
 is taken as a conninfo string in exactly the same way as
 if it had been passed to PQconnectdb, and the remaining
 parameters are then applied as specified for PQconnectdbParams.

 pgtty is no longer used and any value passed will
 be ignored.

	PQsetdb
	
 Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
 char *pgport,
 char *pgoptions,
 char *pgtty,
 char *dbName);

 This is a macro that calls PQsetdbLogin with null pointers
 for the login and pwd parameters. It is provided
 for backward compatibility with very old programs.

	PQconnectStartParams, PQconnectStart, PQconnectPoll
	

 Make a connection to the database server in a nonblocking manner.

PGconn *PQconnectStartParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

 These three functions are used to open a connection to a database server such
 that your application's thread of execution is not blocked on remote I/O
 whilst doing so. The point of this approach is that the waits for I/O to
 complete can occur in the application's main loop, rather than down inside
 PQconnectdbParams or PQconnectdb, and so the
 application can manage this operation in parallel with other activities.

 With PQconnectStartParams, the database connection is made
 using the parameters taken from the keywords and
 values arrays, and controlled by expand_dbname,
 as described above for PQconnectdbParams.

 With PQconnectStart, the database connection is made
 using the parameters taken from the string conninfo as
 described above for PQconnectdb.

 Neither PQconnectStartParams nor PQconnectStart
 nor PQconnectPoll will block, so long as a number of
 restrictions are met:

	
 The hostaddr parameter must be used appropriately
 to prevent DNS queries from being made. See the documentation of
 this parameter in the section called “Parameter Key Words” for details.

	
 If you call PQtrace, ensure that the stream object
 into which you trace will not block.

	
 You must ensure that the socket is in the appropriate state
 before calling PQconnectPoll, as described below.

 To begin a nonblocking connection request,
 call PQconnectStart
 or PQconnectStartParams. If the result is null,
 then libpq has been unable to allocate a
 new PGconn structure. Otherwise, a
 valid PGconn pointer is returned (though not
 yet representing a valid connection to the database). Next
 call PQstatus(conn). If the result
 is CONNECTION_BAD, the connection attempt has already
 failed, typically because of invalid connection parameters.

 If PQconnectStart
 or PQconnectStartParams succeeds, the next stage
 is to poll libpq so that it can proceed with
 the connection sequence.
 Use PQsocket(conn) to obtain the descriptor of the
 socket underlying the database connection.
 (Caution: do not assume that the socket remains the same
 across PQconnectPoll calls.)
 Loop thus: If PQconnectPoll(conn) last returned
 PGRES_POLLING_READING, wait until the socket is ready to
 read (as indicated by select(), poll(), or
 similar system function).
 Then call PQconnectPoll(conn) again.
 Conversely, if PQconnectPoll(conn) last returned
 PGRES_POLLING_WRITING, wait until the socket is ready
 to write, then call PQconnectPoll(conn) again.
 On the first iteration, i.e., if you have yet to call
 PQconnectPoll, behave as if it last returned
 PGRES_POLLING_WRITING. Continue this loop until
 PQconnectPoll(conn) returns
 PGRES_POLLING_FAILED, indicating the connection procedure
 has failed, or PGRES_POLLING_OK, indicating the connection
 has been successfully made.

 At any time during connection, the status of the connection can be
 checked by calling PQstatus. If this call returns CONNECTION_BAD, then the
 connection procedure has failed; if the call returns CONNECTION_OK, then the
 connection is ready. Both of these states are equally detectable
 from the return value of PQconnectPoll, described above. Other states might also occur
 during (and only during) an asynchronous connection procedure. These
 indicate the current stage of the connection procedure and might be useful
 to provide feedback to the user for example. These statuses are:

	CONNECTION_STARTED
	
 Waiting for connection to be made.

	CONNECTION_MADE
	
 Connection OK; waiting to send.

	CONNECTION_AWAITING_RESPONSE
	
 Waiting for a response from the server.

	CONNECTION_AUTH_OK
	
 Received authentication; waiting for backend start-up to finish.

	CONNECTION_SSL_STARTUP
	
 Negotiating SSL encryption.

	CONNECTION_SETENV
	
 Negotiating environment-driven parameter settings.

	CONNECTION_CHECK_WRITABLE
	
 Checking if connection is able to handle write transactions.

	CONNECTION_CONSUME
	
 Consuming any remaining response messages on connection.

 Note that, although these constants will remain (in order to maintain
 compatibility), an application should never rely upon these occurring in a
 particular order, or at all, or on the status always being one of these
 documented values. An application might do something like this:

switch(PQstatus(conn))
{
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
}

 The connect_timeout connection parameter is ignored
 when using PQconnectPoll; it is the application's
 responsibility to decide whether an excessive amount of time has elapsed.
 Otherwise, PQconnectStart followed by a
 PQconnectPoll loop is equivalent to
 PQconnectdb.

 Note that when PQconnectStart
 or PQconnectStartParams returns a non-null
 pointer, you must call PQfinish when you are
 finished with it, in order to dispose of the structure and any
 associated memory blocks. This must be done even if the connection
 attempt fails or is abandoned.

	PQconndefaults
	
 Returns the default connection options.

PQconninfoOption *PQconndefaults(void);

typedef struct
{
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable name */
 char *compiled; /* Fallback compiled in default value */
 char *val; /* Option's current value, or NULL */
 char *label; /* Label for field in connect dialog */
 char *dispchar; /* Indicates how to display this field
 in a connect dialog. Values are:
 "" Display entered value as is
 "*" Password field - hide value
 "D" Debug option - don't show by default */
 int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

 Returns a connection options array. This can be used to determine
 all possible PQconnectdb options and their
 current default values. The return value points to an array of
 PQconninfoOption structures, which ends
 with an entry having a null keyword pointer. The
 null pointer is returned if memory could not be allocated. Note that
 the current default values (val fields)
 will depend on environment variables and other context. A
 missing or invalid service file will be silently ignored. Callers
 must treat the connection options data as read-only.

 After processing the options array, free it by passing it to
 PQconninfoFree. If this is not done, a small amount of memory
 is leaked for each call to PQconndefaults.

	PQconninfo
	
 Returns the connection options used by a live connection.

PQconninfoOption *PQconninfo(PGconn *conn);

 Returns a connection options array. This can be used to determine
 all possible PQconnectdb options and the
 values that were used to connect to the server. The return
 value points to an array of PQconninfoOption
 structures, which ends with an entry having a null keyword
 pointer. All notes above for PQconndefaults also
 apply to the result of PQconninfo.

	PQconninfoParse
	
 Returns parsed connection options from the provided connection string.

PQconninfoOption *PQconninfoParse(const char *conninfo, char **errmsg);

 Parses a connection string and returns the resulting options as an
 array; or returns NULL if there is a problem with the connection
 string. This function can be used to extract
 the PQconnectdb options in the provided
 connection string. The return value points to an array of
 PQconninfoOption structures, which ends
 with an entry having a null keyword pointer.

 All legal options will be present in the result array, but the
 PQconninfoOption for any option not present
 in the connection string will have val set to
 NULL; default values are not inserted.

 If errmsg is not NULL, then *errmsg is set
 to NULL on success, else to a malloc'd error string explaining
 the problem. (It is also possible for *errmsg to be
 set to NULL and the function to return NULL;
 this indicates an out-of-memory condition.)

 After processing the options array, free it by passing it to
 PQconninfoFree. If this is not done, some memory
 is leaked for each call to PQconninfoParse.
 Conversely, if an error occurs and errmsg is not NULL,
 be sure to free the error string using PQfreemem.

	PQfinish
	
 Closes the connection to the server. Also frees
 memory used by the PGconn object.

void PQfinish(PGconn *conn);

 Note that even if the server connection attempt fails (as
 indicated by PQstatus), the application should call PQfinish
 to free the memory used by the PGconn object.
 The PGconn pointer must not be used again after
 PQfinish has been called.

	PQreset
	
 Resets the communication channel to the server.

void PQreset(PGconn *conn);

 This function will close the connection
 to the server and attempt to establish a new
 connection, using all the same
 parameters previously used. This might be useful for
 error recovery if a working connection is lost.

	PQresetStart, PQresetPoll
	
 Reset the communication channel to the server, in a nonblocking manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

 These functions will close the connection to the server and attempt to
 establish a new connection, using all the same
 parameters previously used. This can be useful for error recovery if a
 working connection is lost. They differ from PQreset (above) in that they
 act in a nonblocking manner. These functions suffer from the same
 restrictions as PQconnectStartParams, PQconnectStart
 and PQconnectPoll.

 To initiate a connection reset, call
 PQresetStart. If it returns 0, the reset has
 failed. If it returns 1, poll the reset using
 PQresetPoll in exactly the same way as you
 would create the connection using PQconnectPoll.

	PQpingParams
	
 PQpingParams reports the status of the
 server. It accepts connection parameters identical to those of
 PQconnectdbParams, described above. It is not
 necessary to supply correct user name, password, or database name
 values to obtain the server status; however, if incorrect values
 are provided, the server will log a failed connection attempt.

PGPing PQpingParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

 The function returns one of the following values:

	PQPING_OK
	
 The server is running and appears to be accepting connections.

	PQPING_REJECT
	
 The server is running but is in a state that disallows connections
 (startup, shutdown, or crash recovery).

	PQPING_NO_RESPONSE
	
 The server could not be contacted. This might indicate that the
 server is not running, or that there is something wrong with the
 given connection parameters (for example, wrong port number), or
 that there is a network connectivity problem (for example, a
 firewall blocking the connection request).

	PQPING_NO_ATTEMPT
	
 No attempt was made to contact the server, because the supplied
 parameters were obviously incorrect or there was some client-side
 problem (for example, out of memory).

	PQping
	
 PQping reports the status of the
 server. It accepts connection parameters identical to those of
 PQconnectdb, described above. It is not
 necessary to supply correct user name, password, or database name
 values to obtain the server status; however, if incorrect values
 are provided, the server will log a failed connection attempt.

PGPing PQping(const char *conninfo);

 The return values are the same as for PQpingParams.

	PQsetSSLKeyPassHook_OpenSSL
	
 PQsetSSLKeyPassHook_OpenSSL lets an application override
 libpq's default
 handling of encrypted client certificate key files using
 sslpassword or interactive prompting.

void PQsetSSLKeyPassHook_OpenSSL(PQsslKeyPassHook_OpenSSL_type hook);

 The application passes a pointer to a callback function with signature:

int callback_fn(char *buf, int size, PGconn *conn);

 which libpq will then call
 instead of its default
 PQdefaultSSLKeyPassHook_OpenSSL handler. The
 callback should determine the password for the key and copy it to
 result-buffer buf of size
 size. The string in buf
 must be null-terminated. The callback must return the length of the
 password stored in buf excluding the null
 terminator. On failure, the callback should set
 buf[0] = '\0' and return 0. See
 PQdefaultSSLKeyPassHook_OpenSSL in
 libpq's source code for an example.

 If the user specified an explicit key location,
 its path will be in conn->sslkey when the callback
 is invoked. This will be empty if the default key path is being used.
 For keys that are engine specifiers, it is up to engine implementations
 whether they use the OpenSSL™ password
 callback or define their own handling.

 The app callback may choose to delegate unhandled cases to
 PQdefaultSSLKeyPassHook_OpenSSL,
 or call it first and try something else if it returns 0, or completely override it.

 The callback must not escape normal flow control with exceptions,
 longjmp(...), etc. It must return normally.

	PQgetSSLKeyPassHook_OpenSSL
	
 PQgetSSLKeyPassHook_OpenSSL returns the current
 client certificate key password hook, or NULL
 if none has been set.

PQsslKeyPassHook_OpenSSL_type PQgetSSLKeyPassHook_OpenSSL(void);

Connection Strings

 Several libpq functions parse a user-specified string to obtain
 connection parameters. There are two accepted formats for these strings:
 plain keyword/value strings
 and URIs. URIs generally follow
 RFC
 3986, except that multi-host connection strings are allowed
 as further described below.

Keyword/Value Connection Strings

 In the keyword/value format, each parameter setting is in the form
 keyword =
 value, with space(s) between settings.
 Spaces around a setting's equal sign are
 optional. To write an empty value, or a value containing spaces, surround it
 with single quotes, for example keyword = 'a value'.
 Single quotes and backslashes within
 a value must be escaped with a backslash, i.e., \' and
 \\.

 Example:

host=localhost port=5432 dbname=mydb connect_timeout=10

 The recognized parameter key words are listed in the section called “Parameter Key Words”.

Connection URIs

 The general form for a connection URI is:

postgresql://[userspec@][hostspec][/dbname][?paramspec]

where userspec is:

user[:password]

and hostspec is:

[host][:port][,...]

and paramspec is:

name=value[&...]

 The URI scheme designator can be either
 postgresql:// or postgres://. Each
 of the remaining URI parts is optional. The
 following examples illustrate valid URI syntax:

postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?connect_timeout=10&application_name=myapp
postgresql://host1:123,host2:456/somedb?target_session_attrs=any&application_name=myapp

 Values that would normally appear in the hierarchical part of
 the URI can alternatively be given as named
 parameters. For example:

postgresql:///mydb?host=localhost&port=5433

 All named parameters must match key words listed in
 the section called “Parameter Key Words”, except that for compatibility
 with JDBC connection URIs, instances
 of ssl=true are translated into
 sslmode=require.

 The connection URI needs to be encoded with percent-encoding
 if it includes symbols with special meaning in any of its parts. Here is
 an example where the equal sign (=) is replaced with
 %3D and the space character with
 %20:

postgresql://user@localhost:5433/mydb?options=-c%20synchronous_commit%3Doff

 The host part may be either a host name or an IP address. To specify an
 IPv6 address, enclose it in square brackets:

postgresql://[2001:db8::1234]/database

 The host part is interpreted as described for the parameter host. In particular, a Unix-domain socket
 connection is chosen if the host part is either empty or looks like an
 absolute path name,
 otherwise a TCP/IP connection is initiated. Note, however, that the
 slash is a reserved character in the hierarchical part of the URI. So, to
 specify a non-standard Unix-domain socket directory, either omit the host
 part of the URI and specify the host as a named parameter, or
 percent-encode the path in the host part of the URI:

postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname

 It is possible to specify multiple host components, each with an optional
 port component, in a single URI. A URI of the form
 postgresql://host1:port1,host2:port2,host3:port3/
 is equivalent to a connection string of the form
 host=host1,host2,host3 port=port1,port2,port3.
 As further described below, each
 host will be tried in turn until a connection is successfully established.

Specifying Multiple Hosts

 It is possible to specify multiple hosts to connect to, so that they are
 tried in the given order. In the Keyword/Value format, the host,
 hostaddr, and port options accept comma-separated
 lists of values. The same number of elements must be given in each
 option that is specified, such
 that e.g., the first hostaddr corresponds to the first host name,
 the second hostaddr corresponds to the second host name, and so
 forth. As an exception, if only one port is specified, it
 applies to all the hosts.

 In the connection URI format, you can list multiple host:port pairs
 separated by commas in the host component of the URI.

 In either format, a single host name can translate to multiple network
 addresses. A common example of this is a host that has both an IPv4 and
 an IPv6 address.

 When multiple hosts are specified, or when a single host name is
 translated to multiple addresses, all the hosts and addresses will be
 tried in order, until one succeeds. If none of the hosts can be reached,
 the connection fails. If a connection is established successfully, but
 authentication fails, the remaining hosts in the list are not tried.

 If a password file is used, you can have different passwords for
 different hosts. All the other connection options are the same for every
 host in the list; it is not possible to e.g., specify different
 usernames for different hosts.

Parameter Key Words

 The currently recognized parameter key words are:

	host
	
 Name of host to connect to. If a host name looks like an absolute path
 name, it specifies Unix-domain communication rather than TCP/IP
 communication; the value is the name of the directory in which the
 socket file is stored. (On Unix, an absolute path name begins with a
 slash. On Windows, paths starting with drive letters are also
 recognized.) If the host name starts with @, it is
 taken as a Unix-domain socket in the abstract namespace (currently
 supported on Linux and Windows).
 The default behavior when host is not
 specified, or is empty, is to connect to a Unix-domain
 socket in
 /tmp (or whatever socket directory was specified
 when PostgreSQL™ was built). On Windows,
 the default is to connect to localhost.

 A comma-separated list of host names is also accepted, in which case
 each host name in the list is tried in order; an empty item in the
 list selects the default behavior as explained above. See
 the section called “Specifying Multiple Hosts” for details.

	hostaddr
	
 Numeric IP address of host to connect to. This should be in the
 standard IPv4 address format, e.g., 172.28.40.9. If
 your machine supports IPv6, you can also use those addresses.
 TCP/IP communication is
 always used when a nonempty string is specified for this parameter.
 If this parameter is not specified, the value of host
 will be looked up to find the corresponding IP address — or, if
 host specifies an IP address, that value will be
 used directly.

 Using hostaddr allows the
 application to avoid a host name look-up, which might be important
 in applications with time constraints. However, a host name is
 required for GSSAPI or SSPI authentication
 methods, as well as for verify-full SSL
 certificate verification. The following rules are used:

	
 If host is specified
 without hostaddr, a host name lookup occurs.
 (When using PQconnectPoll, the lookup occurs
 when PQconnectPoll first considers this host
 name, and it may cause PQconnectPoll to block
 for a significant amount of time.)

	
 If hostaddr is specified without host,
 the value for hostaddr gives the server network address.
 The connection attempt will fail if the authentication
 method requires a host name.

	
 If both host and hostaddr are specified,
 the value for hostaddr gives the server network address.
 The value for host is ignored unless the
 authentication method requires it, in which case it will be
 used as the host name.

 Note that authentication is likely to fail if host
 is not the name of the server at network address hostaddr.
 Also, when both host and hostaddr
 are specified, host
 is used to identify the connection in a password file (see
 the section called “The Password File”).

 A comma-separated list of hostaddr values is also
 accepted, in which case each host in the list is tried in order.
 An empty item in the list causes the corresponding host name to be
 used, or the default host name if that is empty as well. See
 the section called “Specifying Multiple Hosts” for details.

 Without either a host name or host address,
 libpq will connect using a local
 Unix-domain socket; or on Windows, it will attempt to connect to
 localhost.

	port
	
 Port number to connect to at the server host, or socket file
 name extension for Unix-domain
 connections.
 If multiple hosts were given in the host or
 hostaddr parameters, this parameter may specify a
 comma-separated list of ports of the same length as the host list, or
 it may specify a single port number to be used for all hosts.
 An empty string, or an empty item in a comma-separated list,
 specifies the default port number established
 when PostgreSQL™ was built.

	dbname
	
 The database name. Defaults to be the same as the user name.
 In certain contexts, the value is checked for extended
 formats; see the section called “Connection Strings” for more details on
 those.

	user
	
 PostgreSQL™ user name to connect as.
 Defaults to be the same as the operating system name of the user
 running the application.

	password
	
 Password to be used if the server demands password authentication.

	passfile
	
 Specifies the name of the file used to store passwords
 (see the section called “The Password File”).
 Defaults to ~/.pgpass, or
 %APPDATA%\postgresql\pgpass.conf on Microsoft Windows.
 (No error is reported if this file does not exist.)

	require_auth
	
 Specifies the authentication method that the client requires from the
 server. If the server does not use the required method to authenticate
 the client, or if the authentication handshake is not fully completed by
 the server, the connection will fail. A comma-separated list of methods
 may also be provided, of which the server must use exactly one in order
 for the connection to succeed. By default, any authentication method is
 accepted, and the server is free to skip authentication altogether.

 Methods may be negated with the addition of a !
 prefix, in which case the server must not attempt
 the listed method; any other method is accepted, and the server is free
 not to authenticate the client at all. If a comma-separated list is
 provided, the server may not attempt any of the
 listed negated methods. Negated and non-negated forms may not be
 combined in the same setting.

 As a final special case, the none method requires the
 server not to use an authentication challenge. (It may also be negated,
 to require some form of authentication.)

 The following methods may be specified:

	password
	
 The server must request plaintext password authentication.

	md5
	
 The server must request MD5 hashed password authentication.

	gss
	
 The server must either request a Kerberos handshake via
 GSSAPI or establish a
 GSS-encrypted channel (see also
 gssencmode).

	sspi
	
 The server must request Windows SSPI
 authentication.

	scram-sha-256
	
 The server must successfully complete a SCRAM-SHA-256 authentication
 exchange with the client.

	none
	
 The server must not prompt the client for an authentication
 exchange. (This does not prohibit client certificate authentication
 via TLS, nor GSS authentication via its encrypted transport.)

	channel_binding
	
 This option controls the client's use of channel binding. A setting
 of require means that the connection must employ
 channel binding, prefer means that the client will
 choose channel binding if available, and disable
 prevents the use of channel binding. The default
 is prefer if
 PostgreSQL™ is compiled with SSL support;
 otherwise the default is disable.

 Channel binding is a method for the server to authenticate itself to
 the client. It is only supported over SSL connections
 with PostgreSQL™ 11 or later servers using
 the SCRAM authentication method.

	connect_timeout
	
 Maximum time to wait while connecting, in seconds (write as a decimal integer,
 e.g., 10). Zero, negative, or not specified means
 wait indefinitely. The minimum allowed timeout is 2 seconds, therefore
 a value of 1 is interpreted as 2.
 This timeout applies separately to each host name or IP address.
 For example, if you specify two hosts and connect_timeout
 is 5, each host will time out if no connection is made within 5
 seconds, so the total time spent waiting for a connection might be
 up to 10 seconds.

	client_encoding
	
 This sets the client_encoding
 configuration parameter for this connection. In addition to
 the values accepted by the corresponding server option, you
 can use auto to determine the right
 encoding from the current locale in the client
 (LC_CTYPE environment variable on Unix
 systems).

	options
	
 Specifies command-line options to send to the server at connection
 start. For example, setting this to -c geqo=off sets the
 session's value of the geqo parameter to
 off. Spaces within this string are considered to
 separate command-line arguments, unless escaped with a backslash
 (\); write \\ to represent a literal
 backslash. For a detailed discussion of the available
 options, consult Chapter 20, Server Configuration.

	application_name
	
 Specifies a value for the application_name
 configuration parameter.

	fallback_application_name
	
 Specifies a fallback value for the application_name configuration parameter.
 This value will be used if no value has been given for
 application_name via a connection parameter or the
 PGAPPNAME environment variable. Specifying
 a fallback name is useful in generic utility programs that
 wish to set a default application name but allow it to be
 overridden by the user.

	keepalives
	
 Controls whether client-side TCP keepalives are used. The default
 value is 1, meaning on, but you can change this to 0, meaning off,
 if keepalives are not wanted. This parameter is ignored for
 connections made via a Unix-domain socket.

	keepalives_idle
	
 Controls the number of seconds of inactivity after which TCP should
 send a keepalive message to the server. A value of zero uses the
 system default. This parameter is ignored for connections made via a
 Unix-domain socket, or if keepalives are disabled.
 It is only supported on systems where TCP_KEEPIDLE or
 an equivalent socket option is available, and on Windows; on other
 systems, it has no effect.

	keepalives_interval
	
 Controls the number of seconds after which a TCP keepalive message
 that is not acknowledged by the server should be retransmitted. A
 value of zero uses the system default. This parameter is ignored for
 connections made via a Unix-domain socket, or if keepalives are disabled.
 It is only supported on systems where TCP_KEEPINTVL or
 an equivalent socket option is available, and on Windows; on other
 systems, it has no effect.

	keepalives_count
	
 Controls the number of TCP keepalives that can be lost before the
 client's connection to the server is considered dead. A value of
 zero uses the system default. This parameter is ignored for
 connections made via a Unix-domain socket, or if keepalives are disabled.
 It is only supported on systems where TCP_KEEPCNT or
 an equivalent socket option is available; on other systems, it has no
 effect.

	tcp_user_timeout
	
 Controls the number of milliseconds that transmitted data may
 remain unacknowledged before a connection is forcibly closed.
 A value of zero uses the system default. This parameter is
 ignored for connections made via a Unix-domain socket.
 It is only supported on systems where TCP_USER_TIMEOUT
 is available; on other systems, it has no effect.

	replication
	
 This option determines whether the connection should use the
 replication protocol instead of the normal protocol. This is what
 PostgreSQL replication connections as well as tools such as
 pg_basebackup use internally, but it can
 also be used by third-party applications. For a description of the
 replication protocol, consult the section called “Streaming Replication Protocol”.

 The following values, which are case-insensitive, are supported:

	
 true, on,
 yes, 1

	
 The connection goes into physical replication mode.

	database
	
 The connection goes into logical replication mode, connecting to
 the database specified in the dbname parameter.

	
 false, off,
 no, 0

	
 The connection is a regular one, which is the default behavior.

 In physical or logical replication mode, only the simple query protocol
 can be used.

	gssencmode
	
 This option determines whether or with what priority a secure
 GSS TCP/IP connection will be negotiated with the
 server. There are three modes:

	disable
	
 only try a non-GSSAPI-encrypted connection

	prefer (default)
	
 if there are GSSAPI credentials present (i.e.,
 in a credentials cache), first try
 a GSSAPI-encrypted connection; if that fails or
 there are no credentials, try a
 non-GSSAPI-encrypted connection. This is the
 default when PostgreSQL™ has been
 compiled with GSSAPI support.

	require
	
 only try a GSSAPI-encrypted connection

 gssencmode is ignored for Unix domain socket
 communication. If PostgreSQL™ is compiled
 without GSSAPI support, using the require option
 will cause an error, while prefer will be accepted
 but libpq will not actually attempt
 a GSSAPI-encrypted
 connection.

	sslmode
	
 This option determines whether or with what priority a secure
 SSL TCP/IP connection will be negotiated with the
 server. There are six modes:

	disable
	
 only try a non-SSL connection

	allow
	
 first try a non-SSL connection; if that
 fails, try an SSL connection

	prefer (default)
	
 first try an SSL connection; if that fails,
 try a non-SSL connection

	require
	
 only try an SSL connection. If a root CA
 file is present, verify the certificate in the same way as
 if verify-ca was specified

	verify-ca
	
 only try an SSL connection, and verify that
 the server certificate is issued by a trusted
 certificate authority (CA)

	verify-full
	
 only try an SSL connection, verify that the
 server certificate is issued by a
 trusted CA and that the requested server host name
 matches that in the certificate

 See the section called “SSL Support” for a detailed description of how
 these options work.

 sslmode is ignored for Unix domain socket
 communication.
 If PostgreSQL™ is compiled without SSL support,
 using options require, verify-ca, or
 verify-full will cause an error, while
 options allow and prefer will be
 accepted but libpq will not actually attempt
 an SSL
 connection.

 Note that if GSSAPI encryption is possible,
 that will be used in preference to SSL
 encryption, regardless of the value of sslmode.
 To force use of SSL encryption in an
 environment that has working GSSAPI
 infrastructure (such as a Kerberos server), also
 set gssencmode to disable.

	requiressl
	
 This option is deprecated in favor of the sslmode
 setting.

 If set to 1, an SSL connection to the server
 is required (this is equivalent to sslmode
 require). libpq will then refuse
 to connect if the server does not accept an
 SSL connection. If set to 0 (default),
 libpq will negotiate the connection type with
 the server (equivalent to sslmode
 prefer). This option is only available if
 PostgreSQL™ is compiled with SSL support.

	sslcompression
	
 If set to 1, data sent over SSL connections will be compressed. If
 set to 0, compression will be disabled. The default is 0. This
 parameter is ignored if a connection without SSL is made.

 SSL compression is nowadays considered insecure and its use is no
 longer recommended. OpenSSL™ 1.1.0 disables
 compression by default, and many operating system distributions
 disable it in prior versions as well, so setting this parameter to on
 will not have any effect if the server does not accept compression.
 PostgreSQL™ 14 disables compression
 completely in the backend.

 If security is not a primary concern, compression can improve
 throughput if the network is the bottleneck. Disabling compression
 can improve response time and throughput if CPU performance is the
 limiting factor.

	sslcert
	
 This parameter specifies the file name of the client SSL
 certificate, replacing the default
 ~/.postgresql/postgresql.crt.
 This parameter is ignored if an SSL connection is not made.

	sslkey
	
 This parameter specifies the location for the secret key used for
 the client certificate. It can either specify a file name that will
 be used instead of the default
 ~/.postgresql/postgresql.key, or it can specify a key
 obtained from an external “engine” (engines are
 OpenSSL™ loadable modules). An external engine
 specification should consist of a colon-separated engine name and
 an engine-specific key identifier. This parameter is ignored if an
 SSL connection is not made.

	sslpassword
	
 This parameter specifies the password for the secret key specified in
 sslkey, allowing client certificate private keys
 to be stored in encrypted form on disk even when interactive passphrase
 input is not practical.

 Specifying this parameter with any non-empty value suppresses the
 Enter PEM pass phrase:
 prompt that OpenSSL™ will emit by default
 when an encrypted client certificate key is provided to
 libpq.

 If the key is not encrypted this parameter is ignored. The parameter
 has no effect on keys specified by OpenSSL™
 engines unless the engine uses the OpenSSL™
 password callback mechanism for prompts.

 There is no environment variable equivalent to this option, and no
 facility for looking it up in .pgpass. It can be
 used in a service file connection definition. Users with
 more sophisticated uses should consider using OpenSSL™ engines and
 tools like PKCS#11 or USB crypto offload devices.

	sslcertmode
	
 This option determines whether a client certificate may be sent to the
 server, and whether the server is required to request one. There are
 three modes:

	disable
	
 A client certificate is never sent, even if one is available
 (default location or provided via
 sslcert).

	allow (default)
	
 A certificate may be sent, if the server requests one and the
 client has one to send.

	require
	
 The server must request a certificate. The
 connection will fail if the client does not send a certificate and
 the server successfully authenticates the client anyway.

Note

 sslcertmode=require doesn't add any additional
 security, since there is no guarantee that the server is validating
 the certificate correctly; PostgreSQL servers generally request TLS
 certificates from clients whether they validate them or not. The
 option may be useful when troubleshooting more complicated TLS
 setups.

	sslrootcert
	
 This parameter specifies the name of a file containing SSL
 certificate authority (CA) certificate(s).
 If the file exists, the server's certificate will be verified
 to be signed by one of these authorities. The default is
 ~/.postgresql/root.crt.

 The special value system may be specified instead, in
 which case the trusted CA roots from the SSL implementation will be loaded. The exact
 locations of these root certificates differ by SSL implementation and
 platform. For OpenSSL™ in particular, the
 locations may be further modified by the SSL_CERT_DIR
 and SSL_CERT_FILE environment variables.

Note

 When using sslrootcert=system, the default
 sslmode is changed to verify-full,
 and any weaker setting will result in an error. In most cases it is
 trivial for anyone to obtain a certificate trusted by the system for a
 hostname they control, rendering verify-ca and all
 weaker modes useless.

 The magic system value will take precedence over a
 local certificate file with the same name. If for some reason you find
 yourself in this situation, use an alternative path like
 sslrootcert=./system instead.

	sslcrl
	
 This parameter specifies the file name of the SSL server certificate
 revocation list (CRL). Certificates listed in this file, if it
 exists, will be rejected while attempting to authenticate the
 server's certificate. If neither
 sslcrl nor
 sslcrldir is set, this setting is
 taken as
 ~/.postgresql/root.crl.

	sslcrldir
	
 This parameter specifies the directory name of the SSL server certificate
 revocation list (CRL). Certificates listed in the files in this
 directory, if it exists, will be rejected while attempting to
 authenticate the server's certificate.

 The directory needs to be prepared with the
 OpenSSL™ command
 openssl rehash or c_rehash. See
 its documentation for details.

 Both sslcrl and sslcrldir can be
 specified together.

	sslsni
	
 If set to 1 (default), libpq sets the TLS extension “Server Name
 Indication” (SNI) on SSL-enabled connections.
 By setting this parameter to 0, this is turned off.

 The Server Name Indication can be used by SSL-aware proxies to route
 connections without having to decrypt the SSL stream. (Note that this
 requires a proxy that is aware of the PostgreSQL protocol handshake,
 not just any SSL proxy.) However, SNI makes the
 destination host name appear in cleartext in the network traffic, so
 it might be undesirable in some cases.

	requirepeer
	
 This parameter specifies the operating-system user name of the
 server, for example requirepeer=postgres.
 When making a Unix-domain socket connection, if this
 parameter is set, the client checks at the beginning of the
 connection that the server process is running under the specified
 user name; if it is not, the connection is aborted with an error.
 This parameter can be used to provide server authentication similar
 to that available with SSL certificates on TCP/IP connections.
 (Note that if the Unix-domain socket is in
 /tmp or another publicly writable location,
 any user could start a server listening there. Use this parameter
 to ensure that you are connected to a server run by a trusted user.)
 This option is only supported on platforms for which the
 peer authentication method is implemented; see
 the section called “Peer Authentication”.

	ssl_min_protocol_version
	
 This parameter specifies the minimum SSL/TLS protocol version to allow
 for the connection. Valid values are TLSv1,
 TLSv1.1, TLSv1.2 and
 TLSv1.3. The supported protocols depend on the
 version of OpenSSL™ used, older versions
 not supporting the most modern protocol versions. If not specified,
 the default is TLSv1.2, which satisfies industry
 best practices as of this writing.

	ssl_max_protocol_version
	
 This parameter specifies the maximum SSL/TLS protocol version to allow
 for the connection. Valid values are TLSv1,
 TLSv1.1, TLSv1.2 and
 TLSv1.3. The supported protocols depend on the
 version of OpenSSL™ used, older versions
 not supporting the most modern protocol versions. If not set, this
 parameter is ignored and the connection will use the maximum bound
 defined by the backend, if set. Setting the maximum protocol version
 is mainly useful for testing or if some component has issues working
 with a newer protocol.

	krbsrvname
	
 Kerberos service name to use when authenticating with GSSAPI.
 This must match the service name specified in the server
 configuration for Kerberos authentication to succeed. (See also
 the section called “GSSAPI Authentication”.)
 The default value is normally postgres,
 but that can be changed when
 building PostgreSQL™ via
 the --with-krb-srvnam option
 of configure.
 In most environments, this parameter never needs to be changed.
 Some Kerberos implementations might require a different service name,
 such as Microsoft Active Directory which requires the service name
 to be in upper case (POSTGRES).

	gsslib
	
 GSS library to use for GSSAPI authentication.
 Currently this is disregarded except on Windows builds that include
 both GSSAPI and SSPI support. In that case, set
 this to gssapi to cause libpq to use the GSSAPI
 library for authentication instead of the default SSPI.

	gssdelegation
	
 Forward (delegate) GSS credentials to the server. The default is
 0 which means credentials will not be forwarded
 to the server. Set this to 1 to have credentials
 forwarded when possible.

	service
	
 Service name to use for additional parameters. It specifies a service
 name in pg_service.conf that holds additional connection parameters.
 This allows applications to specify only a service name so connection parameters
 can be centrally maintained. See the section called “The Connection Service File”.

	target_session_attrs
	
 This option determines whether the session must have certain
 properties to be acceptable. It's typically used in combination
 with multiple host names to select the first acceptable alternative
 among several hosts. There are six modes:

	any (default)
	
 any successful connection is acceptable

	read-write
	
 session must accept read-write transactions by default (that
 is, the server must not be in hot standby mode and
 the default_transaction_read_only parameter
 must be off)

	read-only
	
 session must not accept read-write transactions by default (the
 converse)

	primary
	
 server must not be in hot standby mode

	standby
	
 server must be in hot standby mode

	prefer-standby
	
 first try to find a standby server, but if none of the listed
 hosts is a standby server, try again in any
 mode

	load_balance_hosts
	
 Controls the order in which the client tries to connect to the available
 hosts and addresses. Once a connection attempt is successful no other
 hosts and addresses will be tried. This parameter is typically used in
 combination with multiple host names or a DNS record that returns
 multiple IPs. This parameter can be used in combination with
 target_session_attrs
 to, for example, load balance over standby servers only. Once successfully
 connected, subsequent queries on the returned connection will all be
 sent to the same server. There are currently two modes:

	disable (default)
	
 No load balancing across hosts is performed. Hosts are tried in
 the order in which they are provided and addresses are tried in
 the order they are received from DNS or a hosts file.

	random
	
 Hosts and addresses are tried in random order. This value is mostly
 useful when opening multiple connections at the same time, possibly
 from different machines. This way connections can be load balanced
 across multiple PostgreSQL™ servers.

 While random load balancing, due to its random nature, will almost
 never result in a completely uniform distribution, it statistically
 gets quite close. One important aspect here is that this algorithm
 uses two levels of random choices: First the hosts
 will be resolved in random order. Then secondly, before resolving
 the next host, all resolved addresses for the current host will be
 tried in random order. This behaviour can skew the amount of
 connections each node gets greatly in certain cases, for instance
 when some hosts resolve to more addresses than others. But such a
 skew can also be used on purpose, e.g. to increase the number of
 connections a larger server gets by providing its hostname multiple
 times in the host string.

 When using this value it's recommended to also configure a reasonable
 value for connect_timeout. Because then,
 if one of the nodes that are used for load balancing is not responding,
 a new node will be tried.

Connection Status Functions

 These functions can be used to interrogate the status
 of an existing database connection object.

Tip

 libpq application programmers should be careful to
 maintain the PGconn abstraction. Use the accessor
 functions described below to get at the contents of PGconn.
 Reference to internal PGconn fields using
 libpq-int.h is not recommended because they are subject to change
 in the future.

 The following functions return parameter values established at connection.
 These values are fixed for the life of the connection. If a multi-host
 connection string is used, the values of PQhost,
 PQport, and PQpass can change if a new connection
 is established using the same PGconn object. Other values
 are fixed for the lifetime of the PGconn object.

	PQdb
	
 Returns the database name of the connection.

char *PQdb(const PGconn *conn);

	PQuser
	
 Returns the user name of the connection.

char *PQuser(const PGconn *conn);

	PQpass
	
 Returns the password of the connection.

char *PQpass(const PGconn *conn);

 PQpass will return either the password specified
 in the connection parameters, or if there was none and the password
 was obtained from the password
 file, it will return that. In the latter case,
 if multiple hosts were specified in the connection parameters, it is
 not possible to rely on the result of PQpass until
 the connection is established. The status of the connection can be
 checked using the function PQstatus.

	PQhost
	
 Returns the server host name of the active connection.
 This can be a host name, an IP address, or a directory path if the
 connection is via Unix socket. (The path case can be distinguished
 because it will always be an absolute path, beginning
 with /.)

char *PQhost(const PGconn *conn);

 If the connection parameters specified both host and
 hostaddr, then PQhost will
 return the host information. If only
 hostaddr was specified, then that is returned.
 If multiple hosts were specified in the connection parameters,
 PQhost returns the host actually connected to.

 PQhost returns NULL if the
 conn argument is NULL.
 Otherwise, if there is an error producing the host information (perhaps
 if the connection has not been fully established or there was an
 error), it returns an empty string.

 If multiple hosts were specified in the connection parameters, it is
 not possible to rely on the result of PQhost until
 the connection is established. The status of the connection can be
 checked using the function PQstatus.

	PQhostaddr
	
 Returns the server IP address of the active connection.
 This can be the address that a host name resolved to,
 or an IP address provided through the hostaddr
 parameter.

char *PQhostaddr(const PGconn *conn);

 PQhostaddr returns NULL if the
 conn argument is NULL.
 Otherwise, if there is an error producing the host information
 (perhaps if the connection has not been fully established or
 there was an error), it returns an empty string.

	PQport
	
 Returns the port of the active connection.

char *PQport(const PGconn *conn);

 If multiple ports were specified in the connection parameters,
 PQport returns the port actually connected to.

 PQport returns NULL if the
 conn argument is NULL.
 Otherwise, if there is an error producing the port information (perhaps
 if the connection has not been fully established or there was an
 error), it returns an empty string.

 If multiple ports were specified in the connection parameters, it is
 not possible to rely on the result of PQport until
 the connection is established. The status of the connection can be
 checked using the function PQstatus.

	PQtty
	
 This function no longer does anything, but it remains for backwards
 compatibility. The function always return an empty string, or
 NULL if the conn argument is
 NULL.

char *PQtty(const PGconn *conn);

	PQoptions
	
 Returns the command-line options passed in the connection request.

char *PQoptions(const PGconn *conn);

 The following functions return status data that can change as operations
 are executed on the PGconn object.

	PQstatus
	
 Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn);

 The status can be one of a number of values. However, only two of
 these are seen outside of an asynchronous connection procedure:
 CONNECTION_OK and
 CONNECTION_BAD. A good connection to the database
 has the status CONNECTION_OK. A failed
 connection attempt is signaled by status
 CONNECTION_BAD. Ordinarily, an OK status will
 remain so until PQfinish, but a communications
 failure might result in the status changing to
 CONNECTION_BAD prematurely. In that case the
 application could try to recover by calling
 PQreset.

 See the entry for PQconnectStartParams, PQconnectStart
 and PQconnectPoll with regards to other status codes that
 might be returned.

	PQtransactionStatus
	
 Returns the current in-transaction status of the server.

PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

 The status can be PQTRANS_IDLE (currently idle),
 PQTRANS_ACTIVE (a command is in progress),
 PQTRANS_INTRANS (idle, in a valid transaction block),
 or PQTRANS_INERROR (idle, in a failed transaction block).
 PQTRANS_UNKNOWN is reported if the connection is bad.
 PQTRANS_ACTIVE is reported only when a query
 has been sent to the server and not yet completed.

	PQparameterStatus
	
 Looks up a current parameter setting of the server.

const char *PQparameterStatus(const PGconn *conn, const char *paramName);

 Certain parameter values are reported by the server automatically at
 connection startup or whenever their values change.
 PQparameterStatus can be used to interrogate these settings.
 It returns the current value of a parameter if known, or NULL
 if the parameter is not known.

 Parameters reported as of the current release include:

	application_name	is_superuser
	client_encoding	scram_iterations
	DateStyle	server_encoding
	default_transaction_read_only	server_version
	in_hot_standby	session_authorization
	integer_datetimes	standard_conforming_strings
	IntervalStyle	TimeZone

 (server_encoding, TimeZone, and
 integer_datetimes were not reported by releases before 8.0;
 standard_conforming_strings was not reported by releases
 before 8.1;
 IntervalStyle was not reported by releases before 8.4;
 application_name was not reported by releases before
 9.0;
 default_transaction_read_only and
 in_hot_standby were not reported by releases before
 14; scram_iterations was not reported by releases
 before 16.)
 Note that
 server_version,
 server_encoding and
 integer_datetimes
 cannot change after startup.

 If no value for standard_conforming_strings is reported,
 applications can assume it is off, that is, backslashes
 are treated as escapes in string literals. Also, the presence of
 this parameter can be taken as an indication that the escape string
 syntax (E'...') is accepted.

 Although the returned pointer is declared const, it in fact
 points to mutable storage associated with the PGconn structure.
 It is unwise to assume the pointer will remain valid across queries.

	PQprotocolVersion
	
 Interrogates the frontend/backend protocol being used.

int PQprotocolVersion(const PGconn *conn);

 Applications might wish to use this function to determine whether certain
 features are supported. Currently, the possible values are 3
 (3.0 protocol), or zero (connection bad). The protocol version will
 not change after connection startup is complete, but it could
 theoretically change during a connection reset. The 3.0 protocol is
 supported by PostgreSQL™ server versions 7.4
 and above.

	PQserverVersion
	
 Returns an integer representing the server version.

int PQserverVersion(const PGconn *conn);

 Applications might use this function to determine the version of the
 database server they are connected to. The result is formed by
 multiplying the server's major version number by 10000 and adding
 the minor version number. For example, version 10.1 will be
 returned as 100001, and version 11.0 will be returned as 110000.
 Zero is returned if the connection is bad.

 Prior to major version 10, PostgreSQL™ used
 three-part version numbers in which the first two parts together
 represented the major version. For those
 versions, PQserverVersion uses two digits for each
 part; for example version 9.1.5 will be returned as 90105, and
 version 9.2.0 will be returned as 90200.

 Therefore, for purposes of determining feature compatibility,
 applications should divide the result of PQserverVersion
 by 100 not 10000 to determine a logical major version number.
 In all release series, only the last two digits differ between
 minor releases (bug-fix releases).

	PQerrorMessage
	
 Returns the error message
 most recently generated by an operation on the connection.

char *PQerrorMessage(const PGconn *conn);

 Nearly all libpq functions will set a message for
 PQerrorMessage if they fail. Note that by
 libpq convention, a nonempty
 PQerrorMessage result can consist of multiple lines,
 and will include a trailing newline. The caller should not free
 the result directly. It will be freed when the associated
 PGconn handle is passed to
 PQfinish. The result string should not be
 expected to remain the same across operations on the
 PGconn structure.

	PQsocket
	
 Obtains the file descriptor number of the connection socket to
 the server. A valid descriptor will be greater than or equal
 to 0; a result of -1 indicates that no server connection is
 currently open. (This will not change during normal operation,
 but could change during connection setup or reset.)

int PQsocket(const PGconn *conn);

	PQbackendPID
	
 Returns the process ID (PID)
 of the backend process handling this connection.

int PQbackendPID(const PGconn *conn);

 The backend PID is useful for debugging
 purposes and for comparison to NOTIFY
 messages (which include the PID of the
 notifying backend process). Note that the
 PID belongs to a process executing on the
 database server host, not the local host!

	PQconnectionNeedsPassword
	
 Returns true (1) if the connection authentication method
 required a password, but none was available.
 Returns false (0) if not.

int PQconnectionNeedsPassword(const PGconn *conn);

 This function can be applied after a failed connection attempt
 to decide whether to prompt the user for a password.

	PQconnectionUsedPassword
	
 Returns true (1) if the connection authentication method
 used a password. Returns false (0) if not.

int PQconnectionUsedPassword(const PGconn *conn);

 This function can be applied after either a failed or successful
 connection attempt to detect whether the server demanded a password.

	PQconnectionUsedGSSAPI
	
 Returns true (1) if the connection authentication method
 used GSSAPI. Returns false (0) if not.

int PQconnectionUsedGSSAPI(const PGconn *conn);

 This function can be applied to detect whether the connection was
 authenticated with GSSAPI.

 The following functions return information related to SSL. This information
 usually doesn't change after a connection is established.

	PQsslInUse
	
 Returns true (1) if the connection uses SSL, false (0) if not.

int PQsslInUse(const PGconn *conn);

	PQsslAttribute
	
 Returns SSL-related information about the connection.

const char *PQsslAttribute(const PGconn *conn, const char *attribute_name);

 The list of available attributes varies depending on the SSL library
 being used and the type of connection. Returns NULL if the connection
 does not use SSL or the specified attribute name is not defined for the
 library in use.

 The following attributes are commonly available:

	library
	
 Name of the SSL implementation in use. (Currently, only
 "OpenSSL" is implemented)

	protocol
	
 SSL/TLS version in use. Common values
 are "TLSv1", "TLSv1.1"
 and "TLSv1.2", but an implementation may
 return other strings if some other protocol is used.

	key_bits
	
 Number of key bits used by the encryption algorithm.

	cipher
	
 A short name of the ciphersuite used, e.g.,
 "DHE-RSA-DES-CBC3-SHA". The names are specific
 to each SSL implementation.

	compression
	
 Returns "on" if SSL compression is in use, else it returns "off".

 As a special case, the library attribute may be
 queried without a connection by passing NULL as
 the conn argument. The result will be the default
 SSL library name, or NULL if libpq was
 compiled without any SSL support. (Prior
 to PostgreSQL™ version 15, passing NULL as
 the conn argument always resulted in NULL.
 Client programs needing to differentiate between the newer and older
 implementations of this case may check the
 LIBPQ_HAS_SSL_LIBRARY_DETECTION feature macro.)

	PQsslAttributeNames
	
 Returns an array of SSL attribute names that can be used
 in PQsslAttribute().
 The array is terminated by a NULL pointer.

const char * const * PQsslAttributeNames(const PGconn *conn);

 If conn is NULL, the attributes available for the
 default SSL library are returned, or an empty list
 if libpq was compiled without any SSL
 support. If conn is not NULL, the attributes
 available for the SSL library in use for the connection are returned,
 or an empty list if the connection is not encrypted.

	PQsslStruct
	
 Returns a pointer to an SSL-implementation-specific object describing
 the connection. Returns NULL if the connection is not encrypted
 or the requested type of object is not available from the connection's
 SSL implementation.

void *PQsslStruct(const PGconn *conn, const char *struct_name);

 The struct(s) available depend on the SSL implementation in use.
 For OpenSSL™, there is one struct,
 available under the name OpenSSL,
 and it returns a pointer to
 OpenSSL™'s SSL struct.
 To use this function, code along the following lines could be used:

#include <libpq-fe.h>
#include <openssl/ssl.h>

...

 SSL *ssl;

 dbconn = PQconnectdb(...);
 ...

 ssl = PQsslStruct(dbconn, "OpenSSL");
 if (ssl)
 {
 /* use OpenSSL functions to access ssl */
 }

 This structure can be used to verify encryption levels, check server
 certificates, and more. Refer to the OpenSSL™
 documentation for information about this structure.

	PQgetssl
	

 Returns the SSL structure used in the connection, or NULL
 if SSL is not in use.

void *PQgetssl(const PGconn *conn);

 This function is equivalent to PQsslStruct(conn, "OpenSSL"). It should
 not be used in new applications, because the returned struct is
 specific to OpenSSL™ and will not be
 available if another SSL implementation is used.
 To check if a connection uses SSL, call
 PQsslInUse instead, and for more details about the
 connection, use PQsslAttribute.

Command Execution Functions

 Once a connection to a database server has been successfully
 established, the functions described here are used to perform
 SQL queries and commands.

Main Functions

	PQexec
	
 Submits a command to the server and waits for the result.

PGresult *PQexec(PGconn *conn, const char *command);

 Returns a PGresult pointer or possibly a null
 pointer. A non-null pointer will generally be returned except in
 out-of-memory conditions or serious errors such as inability to send
 the command to the server. The PQresultStatus function
 should be called to check the return value for any errors (including
 the value of a null pointer, in which case it will return
 PGRES_FATAL_ERROR). Use
 PQerrorMessage to get more information about such
 errors.

 The command string can include multiple SQL commands
 (separated by semicolons). Multiple queries sent in a single
 PQexec call are processed in a single transaction, unless
 there are explicit BEGIN/COMMIT
 commands included in the query string to divide it into multiple
 transactions. (See the section called “Multiple Statements in a Simple Query”
 for more details about how the server handles multi-query strings.)
 Note however that the returned
 PGresult structure describes only the result
 of the last command executed from the string. Should one of the
 commands fail, processing of the string stops with it and the returned
 PGresult describes the error condition.

	PQexecParams
	
 Submits a command to the server and waits for the result,
 with the ability to pass parameters separately from the SQL
 command text.

PGresult *PQexecParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

 PQexecParams is like PQexec, but offers additional
 functionality: parameter values can be specified separately from the command
 string proper, and query results can be requested in either text or binary
 format.

 The function arguments are:

	conn
	
 The connection object to send the command through.

	command
	
 The SQL command string to be executed. If parameters are used,
 they are referred to in the command string as $1,
 $2, etc.

	nParams
	
 The number of parameters supplied; it is the length of the arrays
 paramTypes[], paramValues[],
 paramLengths[], and paramFormats[]. (The
 array pointers can be NULL when nParams
 is zero.)

	paramTypes[]
	
 Specifies, by OID, the data types to be assigned to the
 parameter symbols. If paramTypes is
 NULL, or any particular element in the array
 is zero, the server infers a data type for the parameter symbol
 in the same way it would do for an untyped literal string.

	paramValues[]
	
 Specifies the actual values of the parameters. A null pointer
 in this array means the corresponding parameter is null;
 otherwise the pointer points to a zero-terminated text string
 (for text format) or binary data in the format expected by the
 server (for binary format).

	paramLengths[]
	
 Specifies the actual data lengths of binary-format parameters.
 It is ignored for null parameters and text-format parameters.
 The array pointer can be null when there are no binary parameters.

	paramFormats[]
	
 Specifies whether parameters are text (put a zero in the
 array entry for the corresponding parameter) or binary (put
 a one in the array entry for the corresponding parameter).
 If the array pointer is null then all parameters are presumed
 to be text strings.

 Values passed in binary format require knowledge of
 the internal representation expected by the backend.
 For example, integers must be passed in network byte
 order. Passing numeric values requires
 knowledge of the server storage format, as implemented
 in
 src/backend/utils/adt/numeric.c::numeric_send() and
 src/backend/utils/adt/numeric.c::numeric_recv().

	resultFormat
	
 Specify zero to obtain results in text format, or one to obtain
 results in binary format. (There is not currently a provision
 to obtain different result columns in different formats,
 although that is possible in the underlying protocol.)

 The primary advantage of PQexecParams over
 PQexec is that parameter values can be separated from the
 command string, thus avoiding the need for tedious and error-prone
 quoting and escaping.

 Unlike PQexec, PQexecParams allows at most
 one SQL command in the given string. (There can be semicolons in it,
 but not more than one nonempty command.) This is a limitation of the
 underlying protocol, but has some usefulness as an extra defense against
 SQL-injection attacks.

Tip

 Specifying parameter types via OIDs is tedious, particularly if you prefer
 not to hard-wire particular OID values into your program. However, you can
 avoid doing so even in cases where the server by itself cannot determine the
 type of the parameter, or chooses a different type than you want. In the
 SQL command text, attach an explicit cast to the parameter symbol to show what
 data type you will send. For example:

SELECT * FROM mytable WHERE x = $1::bigint;

 This forces parameter $1 to be treated as bigint, whereas
 by default it would be assigned the same type as x. Forcing the
 parameter type decision, either this way or by specifying a numeric type OID,
 is strongly recommended when sending parameter values in binary format, because
 binary format has less redundancy than text format and so there is less chance
 that the server will detect a type mismatch mistake for you.

	PQprepare
	
 Submits a request to create a prepared statement with the
 given parameters, and waits for completion.

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

 PQprepare creates a prepared statement for later
 execution with PQexecPrepared. This feature allows
 commands to be executed repeatedly without being parsed and
 planned each time; see PREPARE(7) for details.

 The function creates a prepared statement named
 stmtName from the query string, which
 must contain a single SQL command. stmtName can be
 "" to create an unnamed statement, in which case any
 pre-existing unnamed statement is automatically replaced; otherwise
 it is an error if the statement name is already defined in the
 current session. If any parameters are used, they are referred
 to in the query as $1, $2, etc.
 nParams is the number of parameters for which types
 are pre-specified in the array paramTypes[]. (The
 array pointer can be NULL when
 nParams is zero.) paramTypes[]
 specifies, by OID, the data types to be assigned to the parameter
 symbols. If paramTypes is NULL,
 or any particular element in the array is zero, the server assigns
 a data type to the parameter symbol in the same way it would do
 for an untyped literal string. Also, the query can use parameter
 symbols with numbers higher than nParams; data types
 will be inferred for these symbols as well. (See
 PQdescribePrepared for a means to find out
 what data types were inferred.)

 As with PQexec, the result is normally a
 PGresult object whose contents indicate
 server-side success or failure. A null result indicates
 out-of-memory or inability to send the command at all. Use
 PQerrorMessage to get more information about
 such errors.

 Prepared statements for use with PQexecPrepared can also
 be created by executing SQL PREPARE(7)
 statements. Also, although there is no libpq
 function for deleting a prepared statement, the SQL DEALLOCATE(7) statement
 can be used for that purpose.

	PQexecPrepared
	
 Sends a request to execute a prepared statement with given
 parameters, and waits for the result.

PGresult *PQexecPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

 PQexecPrepared is like PQexecParams,
 but the command to be executed is specified by naming a
 previously-prepared statement, instead of giving a query string.
 This feature allows commands that will be used repeatedly to be
 parsed and planned just once, rather than each time they are
 executed. The statement must have been prepared previously in
 the current session.

 The parameters are identical to PQexecParams, except that the
 name of a prepared statement is given instead of a query string, and the
 paramTypes[] parameter is not present (it is not needed since
 the prepared statement's parameter types were determined when it was created).

	PQdescribePrepared
	
 Submits a request to obtain information about the specified
 prepared statement, and waits for completion.

PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);

 PQdescribePrepared allows an application to obtain
 information about a previously prepared statement.

 stmtName can be "" or NULL to reference
 the unnamed statement, otherwise it must be the name of an existing
 prepared statement. On success, a PGresult with
 status PGRES_COMMAND_OK is returned. The
 functions PQnparams and
 PQparamtype can be applied to this
 PGresult to obtain information about the parameters
 of the prepared statement, and the functions
 PQnfields, PQfname,
 PQftype, etc. provide information about the
 result columns (if any) of the statement.

	PQdescribePortal
	
 Submits a request to obtain information about the specified
 portal, and waits for completion.

PGresult *PQdescribePortal(PGconn *conn, const char *portalName);

 PQdescribePortal allows an application to obtain
 information about a previously created portal.
 (libpq does not provide any direct access to
 portals, but you can use this function to inspect the properties
 of a cursor created with a DECLARE CURSOR SQL command.)

 portalName can be "" or NULL to reference
 the unnamed portal, otherwise it must be the name of an existing
 portal. On success, a PGresult with status
 PGRES_COMMAND_OK is returned. The functions
 PQnfields, PQfname,
 PQftype, etc. can be applied to the
 PGresult to obtain information about the result
 columns (if any) of the portal.

 The PGresult
 structure encapsulates the result returned by the server.
 libpq application programmers should be
 careful to maintain the PGresult abstraction.
 Use the accessor functions below to get at the contents of
 PGresult. Avoid directly referencing the
 fields of the PGresult structure because they
 are subject to change in the future.

	PQresultStatus
	
 Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res);

 PQresultStatus can return one of the following values:

	PGRES_EMPTY_QUERY
	
 The string sent to the server was empty.

	PGRES_COMMAND_OK
	
 Successful completion of a command returning no data.

	PGRES_TUPLES_OK
	
 Successful completion of a command returning data (such as
 a SELECT or SHOW).

	PGRES_COPY_OUT
	
 Copy Out (from server) data transfer started.

	PGRES_COPY_IN
	
 Copy In (to server) data transfer started.

	PGRES_BAD_RESPONSE
	
 The server's response was not understood.

	PGRES_NONFATAL_ERROR
	
 A nonfatal error (a notice or warning) occurred.

	PGRES_FATAL_ERROR
	
 A fatal error occurred.

	PGRES_COPY_BOTH
	
 Copy In/Out (to and from server) data transfer started. This
 feature is currently used only for streaming replication,
 so this status should not occur in ordinary applications.

	PGRES_SINGLE_TUPLE
	
 The PGresult contains a single result tuple
 from the current command. This status occurs only when
 single-row mode has been selected for the query
 (see the section called “Retrieving Query Results Row-by-Row”).

	PGRES_PIPELINE_SYNC
	
 The PGresult represents a
 synchronization point in pipeline mode, requested by
 PQpipelineSync.
 This status occurs only when pipeline mode has been selected.

	PGRES_PIPELINE_ABORTED
	
 The PGresult represents a pipeline that has
 received an error from the server. PQgetResult
 must be called repeatedly, and each time it will return this status code
 until the end of the current pipeline, at which point it will return
 PGRES_PIPELINE_SYNC and normal processing can
 resume.

 If the result status is PGRES_TUPLES_OK or
 PGRES_SINGLE_TUPLE, then
 the functions described below can be used to retrieve the rows
 returned by the query. Note that a SELECT
 command that happens to retrieve zero rows still shows
 PGRES_TUPLES_OK.
 PGRES_COMMAND_OK is for commands that can never
 return rows (INSERT or UPDATE
 without a RETURNING clause,
 etc.). A response of PGRES_EMPTY_QUERY might
 indicate a bug in the client software.

 A result of status PGRES_NONFATAL_ERROR will
 never be returned directly by PQexec or other
 query execution functions; results of this kind are instead passed
 to the notice processor (see the section called “Notice Processing”).

	PQresStatus
	
 Converts the enumerated type returned by
 PQresultStatus into a string constant describing the
 status code. The caller should not free the result.

char *PQresStatus(ExecStatusType status);

	PQresultErrorMessage
	
 Returns the error message associated with the command, or an empty string
 if there was no error.

char *PQresultErrorMessage(const PGresult *res);

 If there was an error, the returned string will include a trailing
 newline. The caller should not free the result directly. It will
 be freed when the associated PGresult handle is
 passed to PQclear.

 Immediately following a PQexec or
 PQgetResult call,
 PQerrorMessage (on the connection) will return
 the same string as PQresultErrorMessage (on
 the result). However, a PGresult will
 retain its error message until destroyed, whereas the connection's
 error message will change when subsequent operations are done.
 Use PQresultErrorMessage when you want to
 know the status associated with a particular
 PGresult; use
 PQerrorMessage when you want to know the
 status from the latest operation on the connection.

	PQresultVerboseErrorMessage
	
 Returns a reformatted version of the error message associated with
 a PGresult object.

char *PQresultVerboseErrorMessage(const PGresult *res,
 PGVerbosity verbosity,
 PGContextVisibility show_context);

 In some situations a client might wish to obtain a more detailed
 version of a previously-reported error.
 PQresultVerboseErrorMessage addresses this need
 by computing the message that would have been produced
 by PQresultErrorMessage if the specified
 verbosity settings had been in effect for the connection when the
 given PGresult was generated. If
 the PGresult is not an error result,
 “PGresult is not an error result” is reported instead.
 The returned string includes a trailing newline.

 Unlike most other functions for extracting data from
 a PGresult, the result of this function is a freshly
 allocated string. The caller must free it
 using PQfreemem() when the string is no longer needed.

 A NULL return is possible if there is insufficient memory.

	PQresultErrorField
	
 Returns an individual field of an error report.

char *PQresultErrorField(const PGresult *res, int fieldcode);

 fieldcode is an error field identifier; see the symbols
 listed below. NULL is returned if the
 PGresult is not an error or warning result,
 or does not include the specified field. Field values will normally
 not include a trailing newline. The caller should not free the
 result directly. It will be freed when the
 associated PGresult handle is passed to
 PQclear.

 The following field codes are available:

	PG_DIAG_SEVERITY
	
 The severity; the field contents are ERROR,
 FATAL, or PANIC (in an error message),
 or WARNING, NOTICE, DEBUG,
 INFO, or LOG (in a notice message), or
 a localized translation of one of these. Always present.

	PG_DIAG_SEVERITY_NONLOCALIZED
	
 The severity; the field contents are ERROR,
 FATAL, or PANIC (in an error message),
 or WARNING, NOTICE, DEBUG,
 INFO, or LOG (in a notice message).
 This is identical to the PG_DIAG_SEVERITY field except
 that the contents are never localized. This is present only in
 reports generated by PostgreSQL™ versions 9.6
 and later.

	PG_DIAG_SQLSTATE
	
 The SQLSTATE code for the error. The SQLSTATE code identifies
 the type of error that has occurred; it can be used by
 front-end applications to perform specific operations (such
 as error handling) in response to a particular database error.
 For a list of the possible SQLSTATE codes, see Appendix A, PostgreSQL™ Error Codes. This field is not localizable,
 and is always present.

	PG_DIAG_MESSAGE_PRIMARY
	
 The primary human-readable error message (typically one line).
 Always present.

	PG_DIAG_MESSAGE_DETAIL
	
 Detail: an optional secondary error message carrying more
 detail about the problem. Might run to multiple lines.

	PG_DIAG_MESSAGE_HINT
	
 Hint: an optional suggestion what to do about the problem.
 This is intended to differ from detail in that it offers advice
 (potentially inappropriate) rather than hard facts. Might
 run to multiple lines.

	PG_DIAG_STATEMENT_POSITION
	
 A string containing a decimal integer indicating an error cursor
 position as an index into the original statement string. The
 first character has index 1, and positions are measured in
 characters not bytes.

	PG_DIAG_INTERNAL_POSITION
	
 This is defined the same as the
 PG_DIAG_STATEMENT_POSITION field, but it is used
 when the cursor position refers to an internally generated
 command rather than the one submitted by the client. The
 PG_DIAG_INTERNAL_QUERY field will always appear when
 this field appears.

	PG_DIAG_INTERNAL_QUERY
	
 The text of a failed internally-generated command. This could
 be, for example, an SQL query issued by a PL/pgSQL function.

	PG_DIAG_CONTEXT
	
 An indication of the context in which the error occurred.
 Presently this includes a call stack traceback of active
 procedural language functions and internally-generated queries.
 The trace is one entry per line, most recent first.

	PG_DIAG_SCHEMA_NAME
	
 If the error was associated with a specific database object,
 the name of the schema containing that object, if any.

	PG_DIAG_TABLE_NAME
	
 If the error was associated with a specific table, the name of the
 table. (Refer to the schema name field for the name of the
 table's schema.)

	PG_DIAG_COLUMN_NAME
	
 If the error was associated with a specific table column, the name
 of the column. (Refer to the schema and table name fields to
 identify the table.)

	PG_DIAG_DATATYPE_NAME
	
 If the error was associated with a specific data type, the name of
 the data type. (Refer to the schema name field for the name of
 the data type's schema.)

	PG_DIAG_CONSTRAINT_NAME
	
 If the error was associated with a specific constraint, the name
 of the constraint. Refer to fields listed above for the
 associated table or domain. (For this purpose, indexes are
 treated as constraints, even if they weren't created with
 constraint syntax.)

	PG_DIAG_SOURCE_FILE
	
 The file name of the source-code location where the error was
 reported.

	PG_DIAG_SOURCE_LINE
	
 The line number of the source-code location where the error
 was reported.

	PG_DIAG_SOURCE_FUNCTION
	
 The name of the source-code function reporting the error.

Note

 The fields for schema name, table name, column name, data type name,
 and constraint name are supplied only for a limited number of error
 types; see Appendix A, PostgreSQL™ Error Codes. Do not assume that
 the presence of any of these fields guarantees the presence of
 another field. Core error sources observe the interrelationships
 noted above, but user-defined functions may use these fields in other
 ways. In the same vein, do not assume that these fields denote
 contemporary objects in the current database.

 The client is responsible for formatting displayed information to meet
 its needs; in particular it should break long lines as needed.
 Newline characters appearing in the error message fields should be
 treated as paragraph breaks, not line breaks.

 Errors generated internally by libpq will
 have severity and primary message, but typically no other fields.

 Note that error fields are only available from
 PGresult objects, not
 PGconn objects; there is no
 PQerrorField function.

	PQclear
	
 Frees the storage associated with a
 PGresult. Every command result should be
 freed via PQclear when it is no longer
 needed.

void PQclear(PGresult *res);

 If the argument is a NULL pointer, no operation is
 performed.

 You can keep a PGresult object around for
 as long as you need it; it does not go away when you issue a new
 command, nor even if you close the connection. To get rid of it,
 you must call PQclear. Failure to do this
 will result in memory leaks in your application.

Retrieving Query Result Information

 These functions are used to extract information from a
 PGresult object that represents a successful
 query result (that is, one that has status
 PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE).
 They can also be used to extract
 information from a successful Describe operation: a Describe's result
 has all the same column information that actual execution of the query
 would provide, but it has zero rows. For objects with other status values,
 these functions will act as though the result has zero rows and zero columns.

	PQntuples
	
 Returns the number of rows (tuples) in the query result.
 (Note that PGresult objects are limited to no more
 than INT_MAX rows, so an int result is
 sufficient.)

int PQntuples(const PGresult *res);

	PQnfields
	
 Returns the number of columns (fields) in each row of the query
 result.

int PQnfields(const PGresult *res);

	PQfname
	
 Returns the column name associated with the given column number.
 Column numbers start at 0. The caller should not free the result
 directly. It will be freed when the associated
 PGresult handle is passed to
 PQclear.

char *PQfname(const PGresult *res,
 int column_number);

 NULL is returned if the column number is out of range.

	PQfnumber
	
 Returns the column number associated with the given column name.

int PQfnumber(const PGresult *res,
 const char *column_name);

 -1 is returned if the given name does not match any column.

 The given name is treated like an identifier in an SQL command,
 that is, it is downcased unless double-quoted. For example, given
 a query result generated from the SQL command:

SELECT 1 AS FOO, 2 AS "BAR";

 we would have the results:

PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1
PQfnumber(res, "\"BAR\"") 1

	PQftable
	
 Returns the OID of the table from which the given column was
 fetched. Column numbers start at 0.

Oid PQftable(const PGresult *res,
 int column_number);

 InvalidOid is returned if the column number is out of range,
 or if the specified column is not a simple reference to a table column.
 You can query the system table pg_class to determine
 exactly which table is referenced.

 The type Oid and the constant
 InvalidOid will be defined when you include
 the libpq header file. They will both
 be some integer type.

	PQftablecol
	
 Returns the column number (within its table) of the column making
 up the specified query result column. Query-result column numbers
 start at 0, but table columns have nonzero numbers.

int PQftablecol(const PGresult *res,
 int column_number);

 Zero is returned if the column number is out of range, or if the
 specified column is not a simple reference to a table column.

	PQfformat
	
 Returns the format code indicating the format of the given
 column. Column numbers start at 0.

int PQfformat(const PGresult *res,
 int column_number);

 Format code zero indicates textual data representation, while format
 code one indicates binary representation. (Other codes are reserved
 for future definition.)

	PQftype
	
 Returns the data type associated with the given column number.
 The integer returned is the internal OID number of the type.
 Column numbers start at 0.

Oid PQftype(const PGresult *res,
 int column_number);

 You can query the system table pg_type to
 obtain the names and properties of the various data types. The
 OIDs of the built-in data types are defined
 in the file catalog/pg_type_d.h
 in the PostgreSQL™
 installation's include directory.

	PQfmod
	
 Returns the type modifier of the column associated with the
 given column number. Column numbers start at 0.

int PQfmod(const PGresult *res,
 int column_number);

 The interpretation of modifier values is type-specific; they
 typically indicate precision or size limits. The value -1 is
 used to indicate “no information available”. Most data
 types do not use modifiers, in which case the value is always
 -1.

	PQfsize
	
 Returns the size in bytes of the column associated with the
 given column number. Column numbers start at 0.

int PQfsize(const PGresult *res,
 int column_number);

 PQfsize returns the space allocated for this column
 in a database row, in other words the size of the server's
 internal representation of the data type. (Accordingly, it is
 not really very useful to clients.) A negative value indicates
 the data type is variable-length.

	PQbinaryTuples
	
 Returns 1 if the PGresult contains binary data
 and 0 if it contains text data.

int PQbinaryTuples(const PGresult *res);

 This function is deprecated (except for its use in connection with
 COPY), because it is possible for a single
 PGresult to contain text data in some columns and
 binary data in others. PQfformat is preferred.
 PQbinaryTuples returns 1 only if all columns of the
 result are binary (format 1).

	PQgetvalue
	
 Returns a single field value of one row of a
 PGresult. Row and column numbers start
 at 0. The caller should not free the result directly. It will
 be freed when the associated PGresult handle is
 passed to PQclear.

char *PQgetvalue(const PGresult *res,
 int row_number,
 int column_number);

 For data in text format, the value returned by
 PQgetvalue is a null-terminated character
 string representation of the field value. For data in binary
 format, the value is in the binary representation determined by
 the data type's typsend and typreceive
 functions. (The value is actually followed by a zero byte in
 this case too, but that is not ordinarily useful, since the
 value is likely to contain embedded nulls.)

 An empty string is returned if the field value is null. See
 PQgetisnull to distinguish null values from
 empty-string values.

 The pointer returned by PQgetvalue points
 to storage that is part of the PGresult
 structure. One should not modify the data it points to, and one
 must explicitly copy the data into other storage if it is to be
 used past the lifetime of the PGresult
 structure itself.

	PQgetisnull
	
 Tests a field for a null value. Row and column numbers start
 at 0.

int PQgetisnull(const PGresult *res,
 int row_number,
 int column_number);

 This function returns 1 if the field is null and 0 if it
 contains a non-null value. (Note that
 PQgetvalue will return an empty string,
 not a null pointer, for a null field.)

	PQgetlength
	
 Returns the actual length of a field value in bytes. Row and
 column numbers start at 0.

int PQgetlength(const PGresult *res,
 int row_number,
 int column_number);

 This is the actual data length for the particular data value,
 that is, the size of the object pointed to by
 PQgetvalue. For text data format this is
 the same as strlen(). For binary format this is
 essential information. Note that one should not
 rely on PQfsize to obtain the actual data
 length.

	PQnparams
	
 Returns the number of parameters of a prepared statement.

int PQnparams(const PGresult *res);

 This function is only useful when inspecting the result of
 PQdescribePrepared. For other types of results it
 will return zero.

	PQparamtype
	
 Returns the data type of the indicated statement parameter.
 Parameter numbers start at 0.

Oid PQparamtype(const PGresult *res, int param_number);

 This function is only useful when inspecting the result of
 PQdescribePrepared. For other types of results it
 will return zero.

	PQprint
	
 Prints out all the rows and, optionally, the column names to
 the specified output stream.

void PQprint(FILE *fout, /* output stream */
 const PGresult *res,
 const PQprintOpt *po);
typedef struct
{
 pqbool header; /* print output field headings and row count */
 pqbool align; /* fill align the fields */
 pqbool standard; /* old brain dead format */
 pqbool html3; /* output HTML tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* attributes for HTML table element */
 char *caption; /* HTML table caption */
 char **fieldName; /* null-terminated array of replacement field names */
} PQprintOpt;

 This function was formerly used by psql
 to print query results, but this is no longer the case. Note
 that it assumes all the data is in text format.

Retrieving Other Result Information

 These functions are used to extract other information from
 PGresult objects.

	PQcmdStatus
	
 Returns the command status tag from the SQL command that generated
 the PGresult.

char *PQcmdStatus(PGresult *res);

 Commonly this is just the name of the command, but it might include
 additional data such as the number of rows processed. The caller
 should not free the result directly. It will be freed when the
 associated PGresult handle is passed to
 PQclear.

	PQcmdTuples
	
 Returns the number of rows affected by the SQL command.

char *PQcmdTuples(PGresult *res);

 This function returns a string containing the number of rows
 affected by the SQL statement that generated the
 PGresult. This function can only be used following
 the execution of a SELECT, CREATE TABLE AS,
 INSERT, UPDATE, DELETE,
 MERGE, MOVE, FETCH,
 or COPY statement, or an EXECUTE of a
 prepared query that contains an INSERT,
 UPDATE, DELETE,
 or MERGE statement.
 If the command that generated the PGresult was anything
 else, PQcmdTuples returns an empty string. The caller
 should not free the return value directly. It will be freed when
 the associated PGresult handle is passed to
 PQclear.

	PQoidValue
	
 Returns the OID
 of the inserted row, if the SQL command was an
 INSERT that inserted exactly one row into a table that
 has OIDs, or a EXECUTE of a prepared query containing
 a suitable INSERT statement. Otherwise, this function
 returns InvalidOid. This function will also
 return InvalidOid if the table affected by the
 INSERT statement does not contain OIDs.

Oid PQoidValue(const PGresult *res);

	PQoidStatus
	
 This function is deprecated in favor of
 PQoidValue and is not thread-safe.
 It returns a string with the OID of the inserted row, while
 PQoidValue returns the OID value.

char *PQoidStatus(const PGresult *res);

Escaping Strings for Inclusion in SQL Commands

	PQescapeLiteral
	

char *PQescapeLiteral(PGconn *conn, const char *str, size_t length);

 PQescapeLiteral escapes a string for
 use within an SQL command. This is useful when inserting data
 values as literal constants in SQL commands. Certain characters
 (such as quotes and backslashes) must be escaped to prevent them
 from being interpreted specially by the SQL parser.
 PQescapeLiteral performs this operation.

 PQescapeLiteral returns an escaped version of the
 str parameter in memory allocated with
 malloc(). This memory should be freed using
 PQfreemem() when the result is no longer needed.
 A terminating zero byte is not required, and should not be
 counted in length. (If a terminating zero byte is found
 before length bytes are processed,
 PQescapeLiteral stops at the zero; the behavior is
 thus rather like strncpy.) The
 return string has all special characters replaced so that they can
 be properly processed by the PostgreSQL™
 string literal parser. A terminating zero byte is also added. The
 single quotes that must surround PostgreSQL™
 string literals are included in the result string.

 On error, PQescapeLiteral returns NULL and a suitable
 message is stored in the conn object.

Tip

 It is especially important to do proper escaping when handling
 strings that were received from an untrustworthy source.
 Otherwise there is a security risk: you are vulnerable to
 “SQL injection” attacks wherein unwanted SQL commands are
 fed to your database.

 Note that it is neither necessary nor correct to do escaping when a data
 value is passed as a separate parameter in PQexecParams or
 its sibling routines.

	PQescapeIdentifier
	

char *PQescapeIdentifier(PGconn *conn, const char *str, size_t length);

 PQescapeIdentifier escapes a string for
 use as an SQL identifier, such as a table, column, or function name.
 This is useful when a user-supplied identifier might contain
 special characters that would otherwise not be interpreted as part
 of the identifier by the SQL parser, or when the identifier might
 contain upper case characters whose case should be preserved.

 PQescapeIdentifier returns a version of the
 str parameter escaped as an SQL identifier
 in memory allocated with malloc(). This memory must be
 freed using PQfreemem() when the result is no longer
 needed. A terminating zero byte is not required, and should not be
 counted in length. (If a terminating zero byte is found
 before length bytes are processed,
 PQescapeIdentifier stops at the zero; the behavior is
 thus rather like strncpy.) The
 return string has all special characters replaced so that it
 will be properly processed as an SQL identifier. A terminating zero byte
 is also added. The return string will also be surrounded by double
 quotes.

 On error, PQescapeIdentifier returns NULL and a suitable
 message is stored in the conn object.

Tip

 As with string literals, to prevent SQL injection attacks,
 SQL identifiers must be escaped when they are received from an
 untrustworthy source.

	PQescapeStringConn
	

size_t PQescapeStringConn(PGconn *conn,
 char *to, const char *from, size_t length,
 int *error);

 PQescapeStringConn escapes string literals, much like
 PQescapeLiteral. Unlike PQescapeLiteral,
 the caller is responsible for providing an appropriately sized buffer.
 Furthermore, PQescapeStringConn does not generate the
 single quotes that must surround PostgreSQL™ string
 literals; they should be provided in the SQL command that the
 result is inserted into. The parameter from points to
 the first character of the string that is to be escaped, and the
 length parameter gives the number of bytes in this
 string. A terminating zero byte is not required, and should not be
 counted in length. (If a terminating zero byte is found
 before length bytes are processed,
 PQescapeStringConn stops at the zero; the behavior is
 thus rather like strncpy.) to shall point
 to a buffer that is able to hold at least one more byte than twice
 the value of length, otherwise the behavior is undefined.
 Behavior is likewise undefined if the to and
 from strings overlap.

 If the error parameter is not NULL, then
 *error is set to zero on success, nonzero on error.
 Presently the only possible error conditions involve invalid multibyte
 encoding in the source string. The output string is still generated
 on error, but it can be expected that the server will reject it as
 malformed. On error, a suitable message is stored in the
 conn object, whether or not error is NULL.

 PQescapeStringConn returns the number of bytes written
 to to, not including the terminating zero byte.

	PQescapeString
	
 PQescapeString is an older, deprecated version of
 PQescapeStringConn.

size_t PQescapeString (char *to, const char *from, size_t length);

 The only difference from PQescapeStringConn is that
 PQescapeString does not take PGconn
 or error parameters.
 Because of this, it cannot adjust its behavior depending on the
 connection properties (such as character encoding) and therefore
 it might give the wrong results. Also, it has no way
 to report error conditions.

 PQescapeString can be used safely in
 client programs that work with only one PostgreSQL™
 connection at a time (in this case it can find out what it needs to
 know “behind the scenes”). In other contexts it is a security
 hazard and should be avoided in favor of
 PQescapeStringConn.

	PQescapeByteaConn
	
 Escapes binary data for use within an SQL command with the type
 bytea. As with PQescapeStringConn,
 this is only used when inserting data directly into an SQL command string.

unsigned char *PQescapeByteaConn(PGconn *conn,
 const unsigned char *from,
 size_t from_length,
 size_t *to_length);

 Certain byte values must be escaped when used as part of a
 bytea literal in an SQL statement.
 PQescapeByteaConn escapes bytes using
 either hex encoding or backslash escaping. See the section called “Binary Data Types” for more information.

 The from parameter points to the first
 byte of the string that is to be escaped, and the
 from_length parameter gives the number of
 bytes in this binary string. (A terminating zero byte is
 neither necessary nor counted.) The to_length
 parameter points to a variable that will hold the resultant
 escaped string length. This result string length includes the terminating
 zero byte of the result.

 PQescapeByteaConn returns an escaped version of the
 from parameter binary string in memory
 allocated with malloc(). This memory should be freed using
 PQfreemem() when the result is no longer needed. The
 return string has all special characters replaced so that they can
 be properly processed by the PostgreSQL™
 string literal parser, and the bytea input function. A
 terminating zero byte is also added. The single quotes that must
 surround PostgreSQL™ string literals are
 not part of the result string.

 On error, a null pointer is returned, and a suitable error message
 is stored in the conn object. Currently, the only
 possible error is insufficient memory for the result string.

	PQescapeBytea
	
 PQescapeBytea is an older, deprecated version of
 PQescapeByteaConn.

unsigned char *PQescapeBytea(const unsigned char *from,
 size_t from_length,
 size_t *to_length);

 The only difference from PQescapeByteaConn is that
 PQescapeBytea does not take a PGconn
 parameter. Because of this, PQescapeBytea can
 only be used safely in client programs that use a single
 PostgreSQL™ connection at a time (in this case
 it can find out what it needs to know “behind the
 scenes”). It might give the wrong results if
 used in programs that use multiple database connections (use
 PQescapeByteaConn in such cases).

	PQunescapeBytea
	
 Converts a string representation of binary data into binary data
 — the reverse of PQescapeBytea. This
 is needed when retrieving bytea data in text format,
 but not when retrieving it in binary format.

unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);

 The from parameter points to a string
 such as might be returned by PQgetvalue when applied
 to a bytea column. PQunescapeBytea
 converts this string representation into its binary representation.
 It returns a pointer to a buffer allocated with
 malloc(), or NULL on error, and puts the size of
 the buffer in to_length. The result must be
 freed using PQfreemem when it is no longer needed.

 This conversion is not exactly the inverse of
 PQescapeBytea, because the string is not expected
 to be “escaped” when received from PQgetvalue.
 In particular this means there is no need for string quoting considerations,
 and so no need for a PGconn parameter.

Asynchronous Command Processing

 The PQexec function is adequate for submitting
 commands in normal, synchronous applications. It has a few
 deficiencies, however, that can be of importance to some users:

	
 PQexec waits for the command to be completed.
 The application might have other work to do (such as maintaining a
 user interface), in which case it won't want to block waiting for
 the response.

	
 Since the execution of the client application is suspended while it
 waits for the result, it is hard for the application to decide that
 it would like to try to cancel the ongoing command. (It can be done
 from a signal handler, but not otherwise.)

	
 PQexec can return only one
 PGresult structure. If the submitted command
 string contains multiple SQL commands, all but
 the last PGresult are discarded by
 PQexec.

	
 PQexec always collects the command's entire result,
 buffering it in a single PGresult. While
 this simplifies error-handling logic for the application, it can be
 impractical for results containing many rows.

 Applications that do not like these limitations can instead use the
 underlying functions that PQexec is built from:
 PQsendQuery and PQgetResult.
 There are also
 PQsendQueryParams,
 PQsendPrepare,
 PQsendQueryPrepared,
 PQsendDescribePrepared, and
 PQsendDescribePortal,
 which can be used with PQgetResult to duplicate
 the functionality of
 PQexecParams,
 PQprepare,
 PQexecPrepared,
 PQdescribePrepared, and
 PQdescribePortal
 respectively.

	PQsendQuery
	
 Submits a command to the server without waiting for the result(s).
 1 is returned if the command was successfully dispatched and 0 if
 not (in which case, use PQerrorMessage to get more
 information about the failure).

int PQsendQuery(PGconn *conn, const char *command);

 After successfully calling PQsendQuery, call
 PQgetResult one or more times to obtain the
 results. PQsendQuery cannot be called again
 (on the same connection) until PQgetResult
 has returned a null pointer, indicating that the command is done.

 In pipeline mode, this function is disallowed.

	PQsendQueryParams
	
 Submits a command and separate parameters to the server without
 waiting for the result(s).

int PQsendQueryParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

 This is equivalent to PQsendQuery except that
 query parameters can be specified separately from the query string.
 The function's parameters are handled identically to
 PQexecParams. Like
 PQexecParams, it allows only one command in the
 query string.

	PQsendPrepare
	
 Sends a request to create a prepared statement with the given
 parameters, without waiting for completion.

int PQsendPrepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

 This is an asynchronous version of PQprepare: it
 returns 1 if it was able to dispatch the request, and 0 if not.
 After a successful call, call PQgetResult to
 determine whether the server successfully created the prepared
 statement. The function's parameters are handled identically to
 PQprepare.

	PQsendQueryPrepared
	
 Sends a request to execute a prepared statement with given
 parameters, without waiting for the result(s).

int PQsendQueryPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

 This is similar to PQsendQueryParams, but
 the command to be executed is specified by naming a
 previously-prepared statement, instead of giving a query string.
 The function's parameters are handled identically to
 PQexecPrepared.

	PQsendDescribePrepared
	
 Submits a request to obtain information about the specified
 prepared statement, without waiting for completion.

int PQsendDescribePrepared(PGconn *conn, const char *stmtName);

 This is an asynchronous version of PQdescribePrepared:
 it returns 1 if it was able to dispatch the request, and 0 if not.
 After a successful call, call PQgetResult to
 obtain the results. The function's parameters are handled
 identically to PQdescribePrepared.

	PQsendDescribePortal
	
 Submits a request to obtain information about the specified
 portal, without waiting for completion.

int PQsendDescribePortal(PGconn *conn, const char *portalName);

 This is an asynchronous version of PQdescribePortal:
 it returns 1 if it was able to dispatch the request, and 0 if not.
 After a successful call, call PQgetResult to
 obtain the results. The function's parameters are handled
 identically to PQdescribePortal.

	PQgetResult
	
 Waits for the next result from a prior
 PQsendQuery,
 PQsendQueryParams,
 PQsendPrepare,
 PQsendQueryPrepared,
 PQsendDescribePrepared,
 PQsendDescribePortal, or
 PQpipelineSync
 call, and returns it.
 A null pointer is returned when the command is complete and there
 will be no more results.

PGresult *PQgetResult(PGconn *conn);

 PQgetResult must be called repeatedly until
 it returns a null pointer, indicating that the command is done.
 (If called when no command is active,
 PQgetResult will just return a null pointer
 at once.) Each non-null result from
 PQgetResult should be processed using the
 same PGresult accessor functions previously
 described. Don't forget to free each result object with
 PQclear when done with it. Note that
 PQgetResult will block only if a command is
 active and the necessary response data has not yet been read by
 PQconsumeInput
 .

 In pipeline mode, PQgetResult will return normally
 unless an error occurs; for any subsequent query sent after the one
 that caused the error until (and excluding) the next synchronization point,
 a special result of type PGRES_PIPELINE_ABORTED will
 be returned, and a null pointer will be returned after it.
 When the pipeline synchronization point is reached, a result of type
 PGRES_PIPELINE_SYNC will be returned.
 The result of the next query after the synchronization point follows
 immediately (that is, no null pointer is returned after
 the synchronization point).

Note

 Even when PQresultStatus indicates a fatal
 error, PQgetResult should be called until it
 returns a null pointer, to allow libpq to
 process the error information completely.

 Using PQsendQuery and
 PQgetResult solves one of
 PQexec's problems: If a command string contains
 multiple SQL commands, the results of those commands
 can be obtained individually. (This allows a simple form of overlapped
 processing, by the way: the client can be handling the results of one
 command while the server is still working on later queries in the same
 command string.)

 Another frequently-desired feature that can be obtained with
 PQsendQuery and PQgetResult
 is retrieving large query results a row at a time. This is discussed
 in the section called “Retrieving Query Results Row-by-Row”.

 By itself, calling PQgetResult
 will still cause the client to block until the server completes the
 next SQL command. This can be avoided by proper
 use of two more functions:

	PQconsumeInput

	
 If input is available from the server, consume it.

int PQconsumeInput(PGconn *conn);

 PQconsumeInput
 normally returns 1 indicating
 “no error”, but returns 0 if there was some kind of
 trouble (in which case PQerrorMessage can be
 consulted). Note that the result does not say whether any input
 data was actually collected. After calling
 PQconsumeInput
 , the application can check
 PQisBusy and/or
 PQnotifies to see if their state has changed.

 PQconsumeInput
 can be called even if the
 application is not prepared to deal with a result or notification
 just yet. The function will read available data and save it in
 a buffer, thereby causing a select()
 read-ready indication to go away. The application can thus use
 PQconsumeInput
 to clear the
 select() condition immediately, and then
 examine the results at leisure.

	PQisBusy
	
 Returns 1 if a command is busy, that is,
 PQgetResult would block waiting for input.
 A 0 return indicates that PQgetResult can be
 called with assurance of not blocking.

int PQisBusy(PGconn *conn);

 PQisBusy will not itself attempt to read data
 from the server; therefore PQconsumeInput

 must be invoked first, or the busy state will never end.

 A typical application using these functions will have a main loop that
 uses select() or poll() to wait for
 all the conditions that it must respond to. One of the conditions
 will be input available from the server, which in terms of
 select() means readable data on the file
 descriptor identified by PQsocket. When the main
 loop detects input ready, it should call
 PQconsumeInput
 to read the input. It can then
 call PQisBusy, followed by
 PQgetResult if PQisBusy
 returns false (0). It can also call PQnotifies
 to detect NOTIFY messages (see the section called “Asynchronous Notification”).

 A client that uses
 PQsendQuery/PQgetResult
 can also attempt to cancel a command that is still being processed
 by the server; see the section called “Canceling Queries in Progress”. But regardless of
 the return value of PQcancel, the application
 must continue with the normal result-reading sequence using
 PQgetResult. A successful cancellation will
 simply cause the command to terminate sooner than it would have
 otherwise.

 By using the functions described above, it is possible to avoid
 blocking while waiting for input from the database server. However,
 it is still possible that the application will block waiting to send
 output to the server. This is relatively uncommon but can happen if
 very long SQL commands or data values are sent. (It is much more
 probable if the application sends data via COPY IN,
 however.) To prevent this possibility and achieve completely
 nonblocking database operation, the following additional functions
 can be used.

	PQsetnonblocking
	
 Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg);

 Sets the state of the connection to nonblocking if
 arg is 1, or blocking if
 arg is 0. Returns 0 if OK, -1 if error.

 In the nonblocking state, successful calls to
 PQsendQuery, PQputline,
 PQputnbytes, PQputCopyData,
 and PQendcopy will not block; their changes
 are stored in the local output buffer until they are flushed.
 Unsuccessful calls will return an error and must be retried.

 Note that PQexec does not honor nonblocking
 mode; if it is called, it will act in blocking fashion anyway.

	PQisnonblocking
	
 Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn);

 Returns 1 if the connection is set to nonblocking mode and 0 if
 blocking.

	PQflush
	
 Attempts to flush any queued output data to the server. Returns
 0 if successful (or if the send queue is empty), -1 if it failed
 for some reason, or 1 if it was unable to send all the data in
 the send queue yet (this case can only occur if the connection
 is nonblocking).

int PQflush(PGconn *conn);

 After sending any command or data on a nonblocking connection, call
 PQflush. If it returns 1, wait for the socket
 to become read- or write-ready. If it becomes write-ready, call
 PQflush again. If it becomes read-ready, call
 PQconsumeInput
 , then call
 PQflush again. Repeat until
 PQflush returns 0. (It is necessary to check for
 read-ready and drain the input with PQconsumeInput
 ,
 because the server can block trying to send us data, e.g., NOTICE
 messages, and won't read our data until we read its.) Once
 PQflush returns 0, wait for the socket to be
 read-ready and then read the response as described above.

Pipeline Mode

 libpq pipeline mode allows applications to
 send a query without having to read the result of the previously
 sent query. Taking advantage of the pipeline mode, a client will wait
 less for the server, since multiple queries/results can be
 sent/received in a single network transaction.

 While pipeline mode provides a significant performance boost, writing
 clients using the pipeline mode is more complex because it involves
 managing a queue of pending queries and finding which result
 corresponds to which query in the queue.

 Pipeline mode also generally consumes more memory on both the client and server,
 though careful and aggressive management of the send/receive queue can mitigate
 this. This applies whether or not the connection is in blocking or non-blocking
 mode.

 While libpq's pipeline API was introduced in
 PostgreSQL™ 14, it is a client-side feature
 which doesn't require special server support and works on any server
 that supports the v3 extended query protocol. For more information see
 the section called “Pipelining”.

Using Pipeline Mode

 To issue pipelines, the application must switch the connection
 into pipeline mode,
 which is done with PQenterPipelineMode.
 PQpipelineStatus can be used
 to test whether pipeline mode is active.
 In pipeline mode, only asynchronous operations
 that utilize the extended query protocol
 are permitted, command strings containing multiple SQL commands are
 disallowed, and so is COPY.
 Using synchronous command execution functions
 such as PQfn,
 PQexec,
 PQexecParams,
 PQprepare,
 PQexecPrepared,
 PQdescribePrepared,
 PQdescribePortal,
 is an error condition.
 PQsendQuery is
 also disallowed, because it uses the simple query protocol.
 Once all dispatched commands have had their results processed, and
 the end pipeline result has been consumed, the application may return
 to non-pipelined mode with PQexitPipelineMode.

Note

 It is best to use pipeline mode with libpq in
 non-blocking mode. If used
 in blocking mode it is possible for a client/server deadlock to occur.
 [15]

Issuing Queries

 After entering pipeline mode, the application dispatches requests using
 PQsendQueryParams
 or its prepared-query sibling
 PQsendQueryPrepared.
 These requests are queued on the client-side until flushed to the server;
 this occurs when PQpipelineSync is used to
 establish a synchronization point in the pipeline,
 or when PQflush is called.
 The functions PQsendPrepare,
 PQsendDescribePrepared, and
 PQsendDescribePortal also work in pipeline mode.
 Result processing is described below.

 The server executes statements, and returns results, in the order the
 client sends them. The server will begin executing the commands in the
 pipeline immediately, not waiting for the end of the pipeline.
 Note that results are buffered on the server side; the server flushes
 that buffer when a synchronization point is established with
 PQpipelineSync, or when
 PQsendFlushRequest is called.
 If any statement encounters an error, the server aborts the current
 transaction and does not execute any subsequent command in the queue
 until the next synchronization point;
 a PGRES_PIPELINE_ABORTED result is produced for
 each such command.
 (This remains true even if the commands in the pipeline would rollback
 the transaction.)
 Query processing resumes after the synchronization point.

 It's fine for one operation to depend on the results of a
 prior one; for example, one query may define a table that the next
 query in the same pipeline uses. Similarly, an application may
 create a named prepared statement and execute it with later
 statements in the same pipeline.

Processing Results

 To process the result of one query in a pipeline, the application calls
 PQgetResult repeatedly and handles each result
 until PQgetResult returns null.
 The result from the next query in the pipeline may then be retrieved using
 PQgetResult again and the cycle repeated.
 The application handles individual statement results as normal.
 When the results of all the queries in the pipeline have been
 returned, PQgetResult returns a result
 containing the status value PGRES_PIPELINE_SYNC

 The client may choose to defer result processing until the complete
 pipeline has been sent, or interleave that with sending further
 queries in the pipeline; see the section called “Interleaving Result Processing and Query Dispatch”.

 To enter single-row mode, call PQsetSingleRowMode
 before retrieving results with PQgetResult.
 This mode selection is effective only for the query currently
 being processed. For more information on the use of
 PQsetSingleRowMode,
 refer to the section called “Retrieving Query Results Row-by-Row”.

 PQgetResult behaves the same as for normal
 asynchronous processing except that it may contain the new
 PGresult types PGRES_PIPELINE_SYNC
 and PGRES_PIPELINE_ABORTED.
 PGRES_PIPELINE_SYNC is reported exactly once for each
 PQpipelineSync at the corresponding point
 in the pipeline.
 PGRES_PIPELINE_ABORTED is emitted in place of a normal
 query result for the first error and all subsequent results
 until the next PGRES_PIPELINE_SYNC;
 see the section called “Error Handling”.

 PQisBusy, PQconsumeInput, etc
 operate as normal when processing pipeline results. In particular,
 a call to PQisBusy in the middle of a pipeline
 returns 0 if the results for all the queries issued so far have been
 consumed.

 libpq does not provide any information to the
 application about the query currently being processed (except that
 PQgetResult returns null to indicate that we start
 returning the results of next query). The application must keep track
 of the order in which it sent queries, to associate them with their
 corresponding results.
 Applications will typically use a state machine or a FIFO queue for this.

Error Handling

 From the client's perspective, after PQresultStatus
 returns PGRES_FATAL_ERROR,
 the pipeline is flagged as aborted.
 PQresultStatus will report a
 PGRES_PIPELINE_ABORTED result for each remaining queued
 operation in an aborted pipeline. The result for
 PQpipelineSync is reported as
 PGRES_PIPELINE_SYNC to signal the end of the aborted pipeline
 and resumption of normal result processing.

 The client must process results with
 PQgetResult during error recovery.

 If the pipeline used an implicit transaction, then operations that have
 already executed are rolled back and operations that were queued to follow
 the failed operation are skipped entirely. The same behavior holds if the
 pipeline starts and commits a single explicit transaction (i.e. the first
 statement is BEGIN and the last is
 COMMIT) except that the session remains in an aborted
 transaction state at the end of the pipeline. If a pipeline contains
 multiple explicit transactions, all transactions that
 committed prior to the error remain committed, the currently in-progress
 transaction is aborted, and all subsequent operations are skipped completely,
 including subsequent transactions. If a pipeline synchronization point
 occurs with an explicit transaction block in aborted state, the next pipeline
 will become aborted immediately unless the next command puts the transaction
 in normal mode with ROLLBACK.

Note

 The client must not assume that work is committed when it
 sends a COMMIT — only when the
 corresponding result is received to confirm the commit is complete.
 Because errors arrive asynchronously, the application needs to be able to
 restart from the last received committed change and
 resend work done after that point if something goes wrong.

Interleaving Result Processing and Query Dispatch

 To avoid deadlocks on large pipelines the client should be structured
 around a non-blocking event loop using operating system facilities
 such as select, poll,
 WaitForMultipleObjectEx, etc.

 The client application should generally maintain a queue of work
 remaining to be dispatched and a queue of work that has been dispatched
 but not yet had its results processed. When the socket is writable
 it should dispatch more work. When the socket is readable it should
 read results and process them, matching them up to the next entry in
 its corresponding results queue. Based on available memory, results from the
 socket should be read frequently: there's no need to wait until the
 pipeline end to read the results. Pipelines should be scoped to logical
 units of work, usually (but not necessarily) one transaction per pipeline.
 There's no need to exit pipeline mode and re-enter it between pipelines,
 or to wait for one pipeline to finish before sending the next.

 An example using select() and a simple state
 machine to track sent and received work is in
 src/test/modules/libpq_pipeline/libpq_pipeline.c
 in the PostgreSQL source distribution.

Functions Associated with Pipeline Mode

	PQpipelineStatus
	
 Returns the current pipeline mode status of the
 libpq connection.

PGpipelineStatus PQpipelineStatus(const PGconn *conn);

 PQpipelineStatus can return one of the following values:

	
 PQ_PIPELINE_ON

	
 The libpq connection is in
 pipeline mode.

	
 PQ_PIPELINE_OFF

	
 The libpq connection is
 not in pipeline mode.

	
 PQ_PIPELINE_ABORTED

	
 The libpq connection is in pipeline
 mode and an error occurred while processing the current pipeline.
 The aborted flag is cleared when PQgetResult
 returns a result of type PGRES_PIPELINE_SYNC.

	PQenterPipelineMode
	
 Causes a connection to enter pipeline mode if it is currently idle or
 already in pipeline mode.

int PQenterPipelineMode(PGconn *conn);

 Returns 1 for success.
 Returns 0 and has no effect if the connection is not currently
 idle, i.e., it has a result ready, or it is waiting for more
 input from the server, etc.
 This function does not actually send anything to the server,
 it just changes the libpq connection
 state.

	PQexitPipelineMode
	
 Causes a connection to exit pipeline mode if it is currently in pipeline mode
 with an empty queue and no pending results.

int PQexitPipelineMode(PGconn *conn);

 Returns 1 for success. Returns 1 and takes no action if not in
 pipeline mode. If the current statement isn't finished processing,
 or PQgetResult has not been called to collect
 results from all previously sent query, returns 0 (in which case,
 use PQerrorMessage to get more information
 about the failure).

	PQpipelineSync
	
 Marks a synchronization point in a pipeline by sending a
 sync message
 and flushing the send buffer. This serves as
 the delimiter of an implicit transaction and an error recovery
 point; see the section called “Error Handling”.

int PQpipelineSync(PGconn *conn);

 Returns 1 for success. Returns 0 if the connection is not in
 pipeline mode or sending a
 sync message
 failed.

	PQsendFlushRequest
	
 Sends a request for the server to flush its output buffer.

int PQsendFlushRequest(PGconn *conn);

 Returns 1 for success. Returns 0 on any failure.

 The server flushes its output buffer automatically as a result of
 PQpipelineSync being called, or
 on any request when not in pipeline mode; this function is useful
 to cause the server to flush its output buffer in pipeline mode
 without establishing a synchronization point.
 Note that the request is not itself flushed to the server automatically;
 use PQflush if necessary.

When to Use Pipeline Mode

 Much like asynchronous query mode, there is no meaningful performance
 overhead when using pipeline mode. It increases client application complexity,
 and extra caution is required to prevent client/server deadlocks, but
 pipeline mode can offer considerable performance improvements, in exchange for
 increased memory usage from leaving state around longer.

 Pipeline mode is most useful when the server is distant, i.e., network latency
 (“ping time”) is high, and also when many small operations
 are being performed in rapid succession. There is usually less benefit
 in using pipelined commands when each query takes many multiples of the client/server
 round-trip time to execute. A 100-statement operation run on a server
 300 ms round-trip-time away would take 30 seconds in network latency alone
 without pipelining; with pipelining it may spend as little as 0.3 s waiting for
 results from the server.

 Use pipelined commands when your application does lots of small
 INSERT, UPDATE and
 DELETE operations that can't easily be transformed
 into operations on sets, or into a COPY operation.

 Pipeline mode is not useful when information from one operation is required by
 the client to produce the next operation. In such cases, the client
 would have to introduce a synchronization point and wait for a full client/server
 round-trip to get the results it needs. However, it's often possible to
 adjust the client design to exchange the required information server-side.
 Read-modify-write cycles are especially good candidates; for example:

BEGIN;
SELECT x FROM mytable WHERE id = 42 FOR UPDATE;
-- result: x=2
-- client adds 1 to x:
UPDATE mytable SET x = 3 WHERE id = 42;
COMMIT;

 could be much more efficiently done with:

UPDATE mytable SET x = x + 1 WHERE id = 42;

 Pipelining is less useful, and more complex, when a single pipeline contains
 multiple transactions (see the section called “Error Handling”).

[15]
 The client will block trying to send queries to the server, but the
 server will block trying to send results to the client from queries
 it has already processed. This only occurs when the client sends
 enough queries to fill both its output buffer and the server's receive
 buffer before it switches to processing input from the server,
 but it's hard to predict exactly when that will happen.

Retrieving Query Results Row-by-Row

 Ordinarily, libpq collects an SQL command's
 entire result and returns it to the application as a single
 PGresult. This can be unworkable for commands
 that return a large number of rows. For such cases, applications can use
 PQsendQuery and PQgetResult in
 single-row mode. In this mode, the result row(s) are
 returned to the application one at a time, as they are received from the
 server.

 To enter single-row mode, call PQsetSingleRowMode
 immediately after a successful call of PQsendQuery
 (or a sibling function). This mode selection is effective only for the
 currently executing query. Then call PQgetResult
 repeatedly, until it returns null, as documented in the section called “Asynchronous Command Processing”. If the query returns any rows, they are returned
 as individual PGresult objects, which look like
 normal query results except for having status code
 PGRES_SINGLE_TUPLE instead of
 PGRES_TUPLES_OK. After the last row, or immediately if
 the query returns zero rows, a zero-row object with status
 PGRES_TUPLES_OK is returned; this is the signal that no
 more rows will arrive. (But note that it is still necessary to continue
 calling PQgetResult until it returns null.) All of
 these PGresult objects will contain the same row
 description data (column names, types, etc.) that an ordinary
 PGresult object for the query would have.
 Each object should be freed with PQclear as usual.

 When using pipeline mode, single-row mode needs to be activated for each
 query in the pipeline before retrieving results for that query
 with PQgetResult.
 See the section called “Pipeline Mode” for more information.

	PQsetSingleRowMode
	
 Select single-row mode for the currently-executing query.

int PQsetSingleRowMode(PGconn *conn);

 This function can only be called immediately after
 PQsendQuery or one of its sibling functions,
 before any other operation on the connection such as
 PQconsumeInput
 or
 PQgetResult. If called at the correct time,
 the function activates single-row mode for the current query and
 returns 1. Otherwise the mode stays unchanged and the function
 returns 0. In any case, the mode reverts to normal after
 completion of the current query.

Caution

 While processing a query, the server may return some rows and then
 encounter an error, causing the query to be aborted. Ordinarily,
 libpq discards any such rows and reports only the
 error. But in single-row mode, those rows will have already been
 returned to the application. Hence, the application will see some
 PGRES_SINGLE_TUPLE PGresult
 objects followed by a PGRES_FATAL_ERROR object. For
 proper transactional behavior, the application must be designed to
 discard or undo whatever has been done with the previously-processed
 rows, if the query ultimately fails.

Canceling Queries in Progress

 A client application can request cancellation of a command that is
 still being processed by the server, using the functions described in
 this section.

	PQgetCancel
	
 Creates a data structure containing the information needed to cancel
 a command issued through a particular database connection.

PGcancel *PQgetCancel(PGconn *conn);

 PQgetCancel creates a
 PGcancel object
 given a PGconn connection object. It will return
 NULL if the given conn is NULL or an invalid
 connection. The PGcancel object is an opaque
 structure that is not meant to be accessed directly by the
 application; it can only be passed to PQcancel
 or PQfreeCancel.

	PQfreeCancel
	
 Frees a data structure created by PQgetCancel.

void PQfreeCancel(PGcancel *cancel);

 PQfreeCancel frees a data object previously created
 by PQgetCancel.

	PQcancel
	
 Requests that the server abandon processing of the current command.

int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

 The return value is 1 if the cancel request was successfully
 dispatched and 0 if not. If not, errbuf is filled
 with an explanatory error message. errbuf
 must be a char array of size errbufsize (the
 recommended size is 256 bytes).

 Successful dispatch is no guarantee that the request will have
 any effect, however. If the cancellation is effective, the current
 command will terminate early and return an error result. If the
 cancellation fails (say, because the server was already done
 processing the command), then there will be no visible result at
 all.

 PQcancel can safely be invoked from a signal
 handler, if the errbuf is a local variable in the
 signal handler. The PGcancel object is read-only
 as far as PQcancel is concerned, so it can
 also be invoked from a thread that is separate from the one
 manipulating the PGconn object.

	PQrequestCancel
	
 PQrequestCancel is a deprecated variant of
 PQcancel.

int PQrequestCancel(PGconn *conn);

 Requests that the server abandon processing of the current
 command. It operates directly on the
 PGconn object, and in case of failure stores the
 error message in the PGconn object (whence it can
 be retrieved by PQerrorMessage). Although
 the functionality is the same, this approach is not safe within
 multiple-thread programs or signal handlers, since it is possible
 that overwriting the PGconn's error message will
 mess up the operation currently in progress on the connection.

The Fast-Path Interface

 PostgreSQL™ provides a fast-path interface
 to send simple function calls to the server.

Tip

 This interface is somewhat obsolete, as one can achieve similar
 performance and greater functionality by setting up a prepared
 statement to define the function call. Then, executing the statement
 with binary transmission of parameters and results substitutes for a
 fast-path function call.

 The function PQfn
 requests execution of a server function via the fast-path interface:

PGresult *PQfn(PGconn *conn,
 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 const PQArgBlock *args,
 int nargs);

typedef struct
{
 int len;
 int isint;
 union
 {
 int *ptr;
 int integer;
 } u;
} PQArgBlock;

 The fnid argument is the OID of the function to be
 executed. args and nargs define the
 parameters to be passed to the function; they must match the declared
 function argument list. When the isint field of a
 parameter structure is true, the u.integer value is sent
 to the server as an integer of the indicated length (this must be
 2 or 4 bytes); proper byte-swapping occurs. When isint
 is false, the indicated number of bytes at *u.ptr are
 sent with no processing; the data must be in the format expected by
 the server for binary transmission of the function's argument data
 type. (The declaration of u.ptr as being of
 type int * is historical; it would be better to consider
 it void *.)
 result_buf points to the buffer in which to place
 the function's return value. The caller must have allocated sufficient
 space to store the return value. (There is no check!) The actual result
 length in bytes will be returned in the integer pointed to by
 result_len. If a 2- or 4-byte integer result
 is expected, set result_is_int to 1, otherwise
 set it to 0. Setting result_is_int to 1 causes
 libpq to byte-swap the value if necessary, so that it
 is delivered as a proper int value for the client machine;
 note that a 4-byte integer is delivered into *result_buf
 for either allowed result size.
 When result_is_int is 0, the binary-format byte string
 sent by the server is returned unmodified. (In this case it's better
 to consider result_buf as being of
 type void *.)

 PQfn always returns a valid
 PGresult pointer, with
 status PGRES_COMMAND_OK for success
 or PGRES_FATAL_ERROR if some problem was encountered.
 The result status should be
 checked before the result is used. The caller is responsible for
 freeing the PGresult with
 PQclear when it is no longer needed.

 To pass a NULL argument to the function, set
 the len field of that parameter structure
 to -1; the isint
 and u fields are then irrelevant.

 If the function returns NULL, *result_len is set
 to -1, and *result_buf is not
 modified.

 Note that it is not possible to handle set-valued results when using
 this interface. Also, the function must be a plain function, not an
 aggregate, window function, or procedure.

Asynchronous Notification

 PostgreSQL™ offers asynchronous notification
 via the LISTEN and NOTIFY
 commands. A client session registers its interest in a particular
 notification channel with the LISTEN command (and
 can stop listening with the UNLISTEN command). All
 sessions listening on a particular channel will be notified
 asynchronously when a NOTIFY command with that
 channel name is executed by any session. A “payload” string can
 be passed to communicate additional data to the listeners.

 libpq applications submit
 LISTEN, UNLISTEN,
 and NOTIFY commands as
 ordinary SQL commands. The arrival of NOTIFY
 messages can subsequently be detected by calling
 PQnotifies.

 The function PQnotifies returns the next notification
 from a list of unhandled notification messages received from the server.
 It returns a null pointer if there are no pending notifications. Once a
 notification is returned from PQnotifies, it is considered
 handled and will be removed from the list of notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{
 char *relname; /* notification channel name */
 int be_pid; /* process ID of notifying server process */
 char *extra; /* notification payload string */
} PGnotify;

 After processing a PGnotify object returned
 by PQnotifies, be sure to free it with
 PQfreemem. It is sufficient to free the
 PGnotify pointer; the
 relname and extra
 fields do not represent separate allocations. (The names of these fields
 are historical; in particular, channel names need not have anything to
 do with relation names.)

 Example 34.2, “libpq Example Program 2” gives a sample program that illustrates
 the use of asynchronous notification.

 PQnotifies does not actually read data from the
 server; it just returns messages previously absorbed by another
 libpq function. In ancient releases of
 libpq, the only way to ensure timely receipt
 of NOTIFY messages was to constantly submit commands, even
 empty ones, and then check PQnotifies after each
 PQexec. While this still works, it is deprecated
 as a waste of processing power.

 A better way to check for NOTIFY messages when you have no
 useful commands to execute is to call
 PQconsumeInput
 , then check
 PQnotifies. You can use
 select() to wait for data to arrive from the
 server, thereby using no CPU power unless there is
 something to do. (See PQsocket to obtain the file
 descriptor number to use with select().) Note that
 this will work OK whether you submit commands with
 PQsendQuery/PQgetResult or
 simply use PQexec. You should, however, remember
 to check PQnotifies after each
 PQgetResult or PQexec, to
 see if any notifications came in during the processing of the command.

Functions Associated with the COPY Command

 The COPY command in
 PostgreSQL™ has options to read from or write
 to the network connection used by libpq.
 The functions described in this section allow applications to take
 advantage of this capability by supplying or consuming copied data.

 The overall process is that the application first issues the SQL
 COPY command via PQexec or one
 of the equivalent functions. The response to this (if there is no
 error in the command) will be a PGresult object bearing
 a status code of PGRES_COPY_OUT or
 PGRES_COPY_IN (depending on the specified copy
 direction). The application should then use the functions of this
 section to receive or transmit data rows. When the data transfer is
 complete, another PGresult object is returned to indicate
 success or failure of the transfer. Its status will be
 PGRES_COMMAND_OK for success or
 PGRES_FATAL_ERROR if some problem was encountered.
 At this point further SQL commands can be issued via
 PQexec. (It is not possible to execute other SQL
 commands using the same connection while the COPY
 operation is in progress.)

 If a COPY command is issued via
 PQexec in a string that could contain additional
 commands, the application must continue fetching results via
 PQgetResult after completing the COPY
 sequence. Only when PQgetResult returns
 NULL is it certain that the PQexec
 command string is done and it is safe to issue more commands.

 The functions of this section should be executed only after obtaining
 a result status of PGRES_COPY_OUT or
 PGRES_COPY_IN from PQexec or
 PQgetResult.

 A PGresult object bearing one of these status values
 carries some additional data about the COPY operation
 that is starting. This additional data is available using functions
 that are also used in connection with query results:

	PQnfields
	
 Returns the number of columns (fields) to be copied.

	PQbinaryTuples
	
 0 indicates the overall copy format is textual (rows separated by
 newlines, columns separated by separator characters, etc.). 1
 indicates the overall copy format is binary. See COPY(7) for more information.

	PQfformat
	
 Returns the format code (0 for text, 1 for binary) associated with
 each column of the copy operation. The per-column format codes
 will always be zero when the overall copy format is textual, but
 the binary format can support both text and binary columns.
 (However, as of the current implementation of COPY,
 only binary columns appear in a binary copy; so the per-column
 formats always match the overall format at present.)

Functions for Sending COPY Data

 These functions are used to send data during COPY FROM
 STDIN. They will fail if called when the connection is not in
 COPY_IN state.

	PQputCopyData
	
 Sends data to the server during COPY_IN state.

int PQputCopyData(PGconn *conn,
 const char *buffer,
 int nbytes);

 Transmits the COPY data in the specified
 buffer, of length nbytes, to the server.
 The result is 1 if the data was queued, zero if it was not queued
 because of full buffers (this will only happen in nonblocking mode),
 or -1 if an error occurred.
 (Use PQerrorMessage to retrieve details if
 the return value is -1. If the value is zero, wait for write-ready
 and try again.)

 The application can divide the COPY data stream
 into buffer loads of any convenient size. Buffer-load boundaries
 have no semantic significance when sending. The contents of the
 data stream must match the data format expected by the
 COPY command; see COPY(7) for details.

	PQputCopyEnd
	
 Sends end-of-data indication to the server during COPY_IN state.

int PQputCopyEnd(PGconn *conn,
 const char *errormsg);

 Ends the COPY_IN operation successfully if
 errormsg is NULL. If
 errormsg is not NULL then the
 COPY is forced to fail, with the string pointed to by
 errormsg used as the error message. (One should not
 assume that this exact error message will come back from the server,
 however, as the server might have already failed the
 COPY for its own reasons.)

 The result is 1 if the termination message was sent; or in
 nonblocking mode, this may only indicate that the termination
 message was successfully queued. (In nonblocking mode, to be
 certain that the data has been sent, you should next wait for
 write-ready and call PQflush, repeating until it
 returns zero.) Zero indicates that the function could not queue
 the termination message because of full buffers; this will only
 happen in nonblocking mode. (In this case, wait for
 write-ready and try the PQputCopyEnd call
 again.) If a hard error occurs, -1 is returned; you can use
 PQerrorMessage to retrieve details.

 After successfully calling PQputCopyEnd, call
 PQgetResult to obtain the final result status of the
 COPY command. One can wait for this result to be
 available in the usual way. Then return to normal operation.

Functions for Receiving COPY Data

 These functions are used to receive data during COPY TO
 STDOUT. They will fail if called when the connection is not in
 COPY_OUT state.

	PQgetCopyData
	
 Receives data from the server during COPY_OUT state.

int PQgetCopyData(PGconn *conn,
 char **buffer,
 int async);

 Attempts to obtain another row of data from the server during a
 COPY. Data is always returned one data row at
 a time; if only a partial row is available, it is not returned.
 Successful return of a data row involves allocating a chunk of
 memory to hold the data. The buffer parameter must
 be non-NULL. *buffer is set to
 point to the allocated memory, or to NULL in cases
 where no buffer is returned. A non-NULL result
 buffer should be freed using PQfreemem when no longer
 needed.

 When a row is successfully returned, the return value is the number
 of data bytes in the row (this will always be greater than zero).
 The returned string is always null-terminated, though this is
 probably only useful for textual COPY. A result
 of zero indicates that the COPY is still in
 progress, but no row is yet available (this is only possible when
 async is true). A result of -1 indicates that the
 COPY is done. A result of -2 indicates that an
 error occurred (consult PQerrorMessage for the reason).

 When async is true (not zero),
 PQgetCopyData will not block waiting for input; it
 will return zero if the COPY is still in progress
 but no complete row is available. (In this case wait for read-ready
 and then call PQconsumeInput
 before calling
 PQgetCopyData again.) When async is
 false (zero), PQgetCopyData will block until data is
 available or the operation completes.

 After PQgetCopyData returns -1, call
 PQgetResult to obtain the final result status of the
 COPY command. One can wait for this result to be
 available in the usual way. Then return to normal operation.

Obsolete Functions for COPY

 These functions represent older methods of handling COPY.
 Although they still work, they are deprecated due to poor error handling,
 inconvenient methods of detecting end-of-data, and lack of support for binary
 or nonblocking transfers.

	PQgetline
	
 Reads a newline-terminated line of characters (transmitted
 by the server) into a buffer string of size length.

int PQgetline(PGconn *conn,
 char *buffer,
 int length);

 This function copies up to length-1 characters into
 the buffer and converts the terminating newline into a zero byte.
 PQgetline returns EOF at the
 end of input, 0 if the entire line has been read, and 1 if the
 buffer is full but the terminating newline has not yet been read.

 Note that the application must check to see if a new line consists
 of the two characters \., which indicates
 that the server has finished sending the results of the
 COPY command. If the application might receive
 lines that are more than length-1 characters long,
 care is needed to be sure it recognizes the \.
 line correctly (and does not, for example, mistake the end of a
 long data line for a terminator line).

	PQgetlineAsync
	
 Reads a row of COPY data (transmitted by the
 server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize);

 This function is similar to PQgetline, but it can be used
 by applications
 that must read COPY data asynchronously, that is, without blocking.
 Having issued the COPY command and gotten a PGRES_COPY_OUT
 response, the
 application should call PQconsumeInput
 and
 PQgetlineAsync until the
 end-of-data signal is detected.

 Unlike PQgetline, this function takes
 responsibility for detecting end-of-data.

 On each call, PQgetlineAsync will return data if a
 complete data row is available in libpq's input buffer.
 Otherwise, no data is returned until the rest of the row arrives.
 The function returns -1 if the end-of-copy-data marker has been recognized,
 or 0 if no data is available, or a positive number giving the number of
 bytes of data returned. If -1 is returned, the caller must next call
 PQendcopy, and then return to normal processing.

 The data returned will not extend beyond a data-row boundary. If possible
 a whole row will be returned at one time. But if the buffer offered by
 the caller is too small to hold a row sent by the server, then a partial
 data row will be returned. With textual data this can be detected by testing
 whether the last returned byte is \n or not. (In a binary
 COPY, actual parsing of the COPY data format will be needed to make the
 equivalent determination.)
 The returned string is not null-terminated. (If you want to add a
 terminating null, be sure to pass a bufsize one smaller
 than the room actually available.)

	PQputline
	
 Sends a null-terminated string to the server. Returns 0 if
 OK and EOF if unable to send the string.

int PQputline(PGconn *conn,
 const char *string);

 The COPY data stream sent by a series of calls
 to PQputline has the same format as that
 returned by PQgetlineAsync, except that
 applications are not obliged to send exactly one data row per
 PQputline call; it is okay to send a partial
 line or multiple lines per call.

Note

 Before PostgreSQL™ protocol 3.0, it was necessary
 for the application to explicitly send the two characters
 \. as a final line to indicate to the server that it had
 finished sending COPY data. While this still works, it is deprecated and the
 special meaning of \. can be expected to be removed in a
 future release. It is sufficient to call PQendcopy after
 having sent the actual data.

	PQputnbytes
	
 Sends a non-null-terminated string to the server. Returns
 0 if OK and EOF if unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

 This is exactly like PQputline, except that the data
 buffer need not be null-terminated since the number of bytes to send is
 specified directly. Use this procedure when sending binary data.

	PQendcopy
	
 Synchronizes with the server.

int PQendcopy(PGconn *conn);

 This function waits until the server has finished the copying.
 It should either be issued when the last string has been sent
 to the server using PQputline or when the
 last string has been received from the server using
 PQgetline. It must be issued or the server
 will get “out of sync” with the client. Upon return
 from this function, the server is ready to receive the next SQL
 command. The return value is 0 on successful completion,
 nonzero otherwise. (Use PQerrorMessage to
 retrieve details if the return value is nonzero.)

 When using PQgetResult, the application should
 respond to a PGRES_COPY_OUT result by executing
 PQgetline repeatedly, followed by
 PQendcopy after the terminator line is seen.
 It should then return to the PQgetResult loop
 until PQgetResult returns a null pointer.
 Similarly a PGRES_COPY_IN result is processed
 by a series of PQputline calls followed by
 PQendcopy, then return to the
 PQgetResult loop. This arrangement will
 ensure that a COPY command embedded in a series
 of SQL commands will be executed correctly.

 Older applications are likely to submit a COPY
 via PQexec and assume that the transaction
 is done after PQendcopy. This will work
 correctly only if the COPY is the only
 SQL command in the command string.

Control Functions

 These functions control miscellaneous details of libpq's
 behavior.

	PQclientEncoding
	
 Returns the client encoding.

int PQclientEncoding(const PGconn *conn);

 Note that it returns the encoding ID, not a symbolic string
 such as EUC_JP. If unsuccessful, it returns -1.
 To convert an encoding ID to an encoding name, you
 can use:

char *pg_encoding_to_char(int encoding_id);

	PQsetClientEncoding
	
 Sets the client encoding.

int PQsetClientEncoding(PGconn *conn, const char *encoding);

 conn is a connection to the server,
 and encoding is the encoding you want to
 use. If the function successfully sets the encoding, it returns 0,
 otherwise -1. The current encoding for this connection can be
 determined by using PQclientEncoding.

	PQsetErrorVerbosity
	
 Determines the verbosity of messages returned by
 PQerrorMessage and PQresultErrorMessage.

typedef enum
{
 PQERRORS_TERSE,
 PQERRORS_DEFAULT,
 PQERRORS_VERBOSE,
 PQERRORS_SQLSTATE
} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);

 PQsetErrorVerbosity sets the verbosity mode,
 returning the connection's previous setting.
 In TERSE mode, returned messages include
 severity, primary text, and position only; this will normally fit on a
 single line. The DEFAULT mode produces messages
 that include the above plus any detail, hint, or context fields (these
 might span multiple lines). The VERBOSE mode
 includes all available fields. The SQLSTATE
 mode includes only the error severity and the SQLSTATE
 error code, if one is available (if not, the output is like
 TERSE mode).

 Changing the verbosity setting does not affect the messages available
 from already-existing PGresult objects, only
 subsequently-created ones.
 (But see PQresultVerboseErrorMessage if you
 want to print a previous error with a different verbosity.)

	PQsetErrorContextVisibility
	
 Determines the handling of CONTEXT fields in messages
 returned by PQerrorMessage
 and PQresultErrorMessage.

typedef enum
{
 PQSHOW_CONTEXT_NEVER,
 PQSHOW_CONTEXT_ERRORS,
 PQSHOW_CONTEXT_ALWAYS
} PGContextVisibility;

PGContextVisibility PQsetErrorContextVisibility(PGconn *conn, PGContextVisibility show_context);

 PQsetErrorContextVisibility sets the context display mode,
 returning the connection's previous setting. This mode controls
 whether the CONTEXT field is included in messages.
 The NEVER mode
 never includes CONTEXT, while ALWAYS always
 includes it if available. In ERRORS mode (the
 default), CONTEXT fields are included only in error
 messages, not in notices and warnings.
 (However, if the verbosity setting is TERSE
 or SQLSTATE, CONTEXT fields
 are omitted regardless of the context display mode.)

 Changing this mode does not
 affect the messages available from
 already-existing PGresult objects, only
 subsequently-created ones.
 (But see PQresultVerboseErrorMessage if you
 want to print a previous error with a different display mode.)

	PQtrace
	
 Enables tracing of the client/server communication to a debugging file
 stream.

void PQtrace(PGconn *conn, FILE *stream);

 Each line consists of: an optional timestamp, a direction indicator
 (F for messages from client to server
 or B for messages from server to client),
 message length, message type, and message contents.
 Non-message contents fields (timestamp, direction, length and message type)
 are separated by a tab. Message contents are separated by a space.
 Protocol strings are enclosed in double quotes, while strings used as data
 values are enclosed in single quotes. Non-printable chars are printed as
 hexadecimal escapes.
 Further message-type-specific detail can be found in
 the section called “Message Formats”.

Note

 On Windows, if the libpq library and an application are
 compiled with different flags, this function call will crash the
 application because the internal representation of the FILE
 pointers differ. Specifically, multithreaded/single-threaded,
 release/debug, and static/dynamic flags should be the same for the
 library and all applications using that library.

	PQsetTraceFlags
	
 Controls the tracing behavior of client/server communication.

void PQsetTraceFlags(PGconn *conn, int flags);

 flags contains flag bits describing the operating mode
 of tracing.
 If flags contains PQTRACE_SUPPRESS_TIMESTAMPS,
 then the timestamp is not included when printing each message.
 If flags contains PQTRACE_REGRESS_MODE,
 then some fields are redacted when printing each message, such as object
 OIDs, to make the output more convenient to use in testing frameworks.
 This function must be called after calling PQtrace.

	PQuntrace
	
 Disables tracing started by PQtrace.

void PQuntrace(PGconn *conn);

Miscellaneous Functions

 As always, there are some functions that just don't fit anywhere.

	PQfreemem
	
 Frees memory allocated by libpq.

void PQfreemem(void *ptr);

 Frees memory allocated by libpq, particularly
 PQescapeByteaConn,
 PQescapeBytea,
 PQunescapeBytea,
 and PQnotifies.
 It is particularly important that this function, rather than
 free(), be used on Microsoft Windows. This is because
 allocating memory in a DLL and releasing it in the application works
 only if multithreaded/single-threaded, release/debug, and static/dynamic
 flags are the same for the DLL and the application. On non-Microsoft
 Windows platforms, this function is the same as the standard library
 function free().

	PQconninfoFree
	
 Frees the data structures allocated by
 PQconndefaults or PQconninfoParse.

void PQconninfoFree(PQconninfoOption *connOptions);

 If the argument is a NULL pointer, no operation is
 performed.

 A simple PQfreemem will not do for this, since
 the array contains references to subsidiary strings.

	PQencryptPasswordConn
	
 Prepares the encrypted form of a PostgreSQL™ password.

char *PQencryptPasswordConn(PGconn *conn, const char *passwd, const char *user, const char *algorithm);

 This function is intended to be used by client applications that
 wish to send commands like ALTER USER joe PASSWORD
 'pwd'. It is good practice not to send the original cleartext
 password in such a command, because it might be exposed in command
 logs, activity displays, and so on. Instead, use this function to
 convert the password to encrypted form before it is sent.

 The passwd and user arguments
 are the cleartext password, and the SQL name of the user it is for.
 algorithm specifies the encryption algorithm
 to use to encrypt the password. Currently supported algorithms are
 md5 and scram-sha-256 (on and
 off are also accepted as aliases for md5, for
 compatibility with older server versions). Note that support for
 scram-sha-256 was introduced in PostgreSQL™
 version 10, and will not work correctly with older server versions. If
 algorithm is NULL, this function will query
 the server for the current value of the
 password_encryption setting. That can block, and
 will fail if the current transaction is aborted, or if the connection
 is busy executing another query. If you wish to use the default
 algorithm for the server but want to avoid blocking, query
 password_encryption yourself before calling
 PQencryptPasswordConn, and pass that value as the
 algorithm.

 The return value is a string allocated by malloc.
 The caller can assume the string doesn't contain any special characters
 that would require escaping. Use PQfreemem to free the
 result when done with it. On error, returns NULL, and
 a suitable message is stored in the connection object.

	PQencryptPassword
	
 Prepares the md5-encrypted form of a PostgreSQL™ password.

char *PQencryptPassword(const char *passwd, const char *user);

 PQencryptPassword is an older, deprecated version of
 PQencryptPasswordConn. The difference is that
 PQencryptPassword does not
 require a connection object, and md5 is always used as the
 encryption algorithm.

	PQmakeEmptyPGresult
	
 Constructs an empty PGresult object with the given status.

PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

 This is libpq's internal function to allocate and
 initialize an empty PGresult object. This
 function returns NULL if memory could not be allocated. It is
 exported because some applications find it useful to generate result
 objects (particularly objects with error status) themselves. If
 conn is not null and status
 indicates an error, the current error message of the specified
 connection is copied into the PGresult.
 Also, if conn is not null, any event procedures
 registered in the connection are copied into the
 PGresult. (They do not get
 PGEVT_RESULTCREATE calls, but see
 PQfireResultCreateEvents.)
 Note that PQclear should eventually be called
 on the object, just as with a PGresult
 returned by libpq itself.

	PQfireResultCreateEvents
	
 Fires a PGEVT_RESULTCREATE event (see the section called “Event System”) for each event procedure registered in the
 PGresult object. Returns non-zero for success,
 zero if any event procedure fails.

int PQfireResultCreateEvents(PGconn *conn, PGresult *res);

 The conn argument is passed through to event procedures
 but not used directly. It can be NULL if the event
 procedures won't use it.

 Event procedures that have already received a
 PGEVT_RESULTCREATE or PGEVT_RESULTCOPY event
 for this object are not fired again.

 The main reason that this function is separate from
 PQmakeEmptyPGresult is that it is often appropriate
 to create a PGresult and fill it with data
 before invoking the event procedures.

	PQcopyResult
	
 Makes a copy of a PGresult object. The copy is
 not linked to the source result in any way and
 PQclear must be called when the copy is no longer
 needed. If the function fails, NULL is returned.

PGresult *PQcopyResult(const PGresult *src, int flags);

 This is not intended to make an exact copy. The returned result is
 always put into PGRES_TUPLES_OK status, and does not
 copy any error message in the source. (It does copy the command status
 string, however.) The flags argument determines
 what else is copied. It is a bitwise OR of several flags.
 PG_COPYRES_ATTRS specifies copying the source
 result's attributes (column definitions).
 PG_COPYRES_TUPLES specifies copying the source
 result's tuples. (This implies copying the attributes, too.)
 PG_COPYRES_NOTICEHOOKS specifies
 copying the source result's notify hooks.
 PG_COPYRES_EVENTS specifies copying the source
 result's events. (But any instance data associated with the source
 is not copied.)
 The event procedures receive PGEVT_RESULTCOPY events.

	PQsetResultAttrs
	
 Sets the attributes of a PGresult object.

int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs);

 The provided attDescs are copied into the result.
 If the attDescs pointer is NULL or
 numAttributes is less than one, the request is
 ignored and the function succeeds. If res
 already contains attributes, the function will fail. If the function
 fails, the return value is zero. If the function succeeds, the return
 value is non-zero.

	PQsetvalue
	
 Sets a tuple field value of a PGresult object.

int PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len);

 The function will automatically grow the result's internal tuples array
 as needed. However, the tup_num argument must be
 less than or equal to PQntuples, meaning this
 function can only grow the tuples array one tuple at a time. But any
 field of any existing tuple can be modified in any order. If a value at
 field_num already exists, it will be overwritten.
 If len is -1 or
 value is NULL, the field value
 will be set to an SQL null value. The
 value is copied into the result's private storage,
 thus is no longer needed after the function
 returns. If the function fails, the return value is zero. If the
 function succeeds, the return value is non-zero.

	PQresultAlloc
	
 Allocate subsidiary storage for a PGresult object.

void *PQresultAlloc(PGresult *res, size_t nBytes);

 Any memory allocated with this function will be freed when
 res is cleared. If the function fails,
 the return value is NULL. The result is
 guaranteed to be adequately aligned for any type of data,
 just as for malloc.

	PQresultMemorySize
	
 Retrieves the number of bytes allocated for
 a PGresult object.

size_t PQresultMemorySize(const PGresult *res);

 This value is the sum of all malloc requests
 associated with the PGresult object, that is,
 all the space that will be freed by PQclear.
 This information can be useful for managing memory consumption.

	PQlibVersion
	
 Return the version of libpq™ that is being used.

int PQlibVersion(void);

 The result of this function can be used to determine, at
 run time, whether specific functionality is available in the currently
 loaded version of libpq. The function can be used, for example,
 to determine which connection options are available in
 PQconnectdb.

 The result is formed by multiplying the library's major version
 number by 10000 and adding the minor version number. For example,
 version 10.1 will be returned as 100001, and version 11.0 will be
 returned as 110000.

 Prior to major version 10, PostgreSQL™ used
 three-part version numbers in which the first two parts together
 represented the major version. For those
 versions, PQlibVersion uses two digits for each
 part; for example version 9.1.5 will be returned as 90105, and
 version 9.2.0 will be returned as 90200.

 Therefore, for purposes of determining feature compatibility,
 applications should divide the result of PQlibVersion
 by 100 not 10000 to determine a logical major version number.
 In all release series, only the last two digits differ between
 minor releases (bug-fix releases).

Note

 This function appeared in PostgreSQL™ version 9.1, so
 it cannot be used to detect required functionality in earlier
 versions, since calling it will create a link dependency
 on version 9.1 or later.

Notice Processing

 Notice and warning messages generated by the server are not returned
 by the query execution functions, since they do not imply failure of
 the query. Instead they are passed to a notice handling function, and
 execution continues normally after the handler returns. The default
 notice handling function prints the message on
 stderr, but the application can override this
 behavior by supplying its own handling function.

 For historical reasons, there are two levels of notice handling, called
 the notice receiver and notice processor. The default behavior is for
 the notice receiver to format the notice and pass a string to the notice
 processor for printing. However, an application that chooses to provide
 its own notice receiver will typically ignore the notice processor
 layer and just do all the work in the notice receiver.

 The function PQsetNoticeReceiver

 sets or
 examines the current notice receiver for a connection object.
 Similarly, PQsetNoticeProcessor

 sets or
 examines the current notice processor.

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,
 PQnoticeReceiver proc,
 void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
 PQnoticeProcessor proc,
 void *arg);

 Each of these functions returns the previous notice receiver or
 processor function pointer, and sets the new value. If you supply a
 null function pointer, no action is taken, but the current pointer is
 returned.

 When a notice or warning message is received from the server, or
 generated internally by libpq, the notice
 receiver function is called. It is passed the message in the form of
 a PGRES_NONFATAL_ERROR
 PGresult. (This allows the receiver to extract
 individual fields using PQresultErrorField, or obtain a
 complete preformatted message using PQresultErrorMessage
 or PQresultVerboseErrorMessage.) The same
 void pointer passed to PQsetNoticeReceiver is also
 passed. (This pointer can be used to access application-specific state
 if needed.)

 The default notice receiver simply extracts the message (using
 PQresultErrorMessage) and passes it to the notice
 processor.

 The notice processor is responsible for handling a notice or warning
 message given in text form. It is passed the string text of the message
 (including a trailing newline), plus a void pointer that is the same
 one passed to PQsetNoticeProcessor. (This pointer
 can be used to access application-specific state if needed.)

 The default notice processor is simply:

static void
defaultNoticeProcessor(void *arg, const char *message)
{
 fprintf(stderr, "%s", message);
}

 Once you have set a notice receiver or processor, you should expect
 that that function could be called as long as either the
 PGconn object or PGresult objects made
 from it exist. At creation of a PGresult, the
 PGconn's current notice handling pointers are copied
 into the PGresult for possible use by functions like
 PQgetvalue.

Event System

 libpq's event system is designed to notify
 registered event handlers about interesting
 libpq events, such as the creation or
 destruction of PGconn and
 PGresult objects. A principal use case is that
 this allows applications to associate their own data with a
 PGconn or PGresult
 and ensure that that data is freed at an appropriate time.

 Each registered event handler is associated with two pieces of data,
 known to libpq only as opaque void *
 pointers. There is a pass-through pointer that is provided
 by the application when the event handler is registered with a
 PGconn. The pass-through pointer never changes for the
 life of the PGconn and all PGresults
 generated from it; so if used, it must point to long-lived data.
 In addition there is an instance data pointer, which starts
 out NULL in every PGconn and PGresult.
 This pointer can be manipulated using the
 PQinstanceData,
 PQsetInstanceData,
 PQresultInstanceData and
 PQresultSetInstanceData functions. Note that
 unlike the pass-through pointer, instance data of a PGconn
 is not automatically inherited by PGresults created from
 it. libpq does not know what pass-through
 and instance data pointers point to (if anything) and will never attempt
 to free them — that is the responsibility of the event handler.

Event Types

 The enum PGEventId names the types of events handled by
 the event system. All its values have names beginning with
 PGEVT. For each event type, there is a corresponding
 event info structure that carries the parameters passed to the event
 handlers. The event types are:

	PGEVT_REGISTER
	
 The register event occurs when PQregisterEventProc
 is called. It is the ideal time to initialize any
 instanceData an event procedure may need. Only one
 register event will be fired per event handler per connection. If the
 event procedure fails (returns zero), the registration is cancelled.

typedef struct
{
 PGconn *conn;
} PGEventRegister;

 When a PGEVT_REGISTER event is received, the
 evtInfo pointer should be cast to a
 PGEventRegister *. This structure contains a
 PGconn that should be in the
 CONNECTION_OK status; guaranteed if one calls
 PQregisterEventProc right after obtaining a good
 PGconn. When returning a failure code, all
 cleanup must be performed as no PGEVT_CONNDESTROY
 event will be sent.

	PGEVT_CONNRESET
	
 The connection reset event is fired on completion of
 PQreset or PQresetPoll. In
 both cases, the event is only fired if the reset was successful.
 The return value of the event procedure is ignored
 in PostgreSQL™ v15 and later.
 With earlier versions, however, it's important to return success
 (nonzero) or the connection will be aborted.

typedef struct
{
 PGconn *conn;
} PGEventConnReset;

 When a PGEVT_CONNRESET event is received, the
 evtInfo pointer should be cast to a
 PGEventConnReset *. Although the contained
 PGconn was just reset, all event data remains
 unchanged. This event should be used to reset/reload/requery any
 associated instanceData. Note that even if the
 event procedure fails to process PGEVT_CONNRESET, it will
 still receive a PGEVT_CONNDESTROY event when the connection
 is closed.

	PGEVT_CONNDESTROY
	
 The connection destroy event is fired in response to
 PQfinish. It is the event procedure's
 responsibility to properly clean up its event data as libpq has no
 ability to manage this memory. Failure to clean up will lead
 to memory leaks.

typedef struct
{
 PGconn *conn;
} PGEventConnDestroy;

 When a PGEVT_CONNDESTROY event is received, the
 evtInfo pointer should be cast to a
 PGEventConnDestroy *. This event is fired
 prior to PQfinish performing any other cleanup.
 The return value of the event procedure is ignored since there is no
 way of indicating a failure from PQfinish. Also,
 an event procedure failure should not abort the process of cleaning up
 unwanted memory.

	PGEVT_RESULTCREATE
	
 The result creation event is fired in response to any query execution
 function that generates a result, including
 PQgetResult. This event will only be fired after
 the result has been created successfully.

typedef struct
{
 PGconn *conn;
 PGresult *result;
} PGEventResultCreate;

 When a PGEVT_RESULTCREATE event is received, the
 evtInfo pointer should be cast to a
 PGEventResultCreate *. The
 conn is the connection used to generate the
 result. This is the ideal place to initialize any
 instanceData that needs to be associated with the
 result. If an event procedure fails (returns zero), that event
 procedure will be ignored for the remaining lifetime of the result;
 that is, it will not receive PGEVT_RESULTCOPY
 or PGEVT_RESULTDESTROY events for this result or
 results copied from it.

	PGEVT_RESULTCOPY
	
 The result copy event is fired in response to
 PQcopyResult. This event will only be fired after
 the copy is complete. Only event procedures that have
 successfully handled the PGEVT_RESULTCREATE
 or PGEVT_RESULTCOPY event for the source result
 will receive PGEVT_RESULTCOPY events.

typedef struct
{
 const PGresult *src;
 PGresult *dest;
} PGEventResultCopy;

 When a PGEVT_RESULTCOPY event is received, the
 evtInfo pointer should be cast to a
 PGEventResultCopy *. The
 src result is what was copied while the
 dest result is the copy destination. This event
 can be used to provide a deep copy of instanceData,
 since PQcopyResult cannot do that. If an event
 procedure fails (returns zero), that event procedure will be
 ignored for the remaining lifetime of the new result; that is, it
 will not receive PGEVT_RESULTCOPY
 or PGEVT_RESULTDESTROY events for that result or
 results copied from it.

	PGEVT_RESULTDESTROY
	
 The result destroy event is fired in response to a
 PQclear. It is the event procedure's
 responsibility to properly clean up its event data as libpq has no
 ability to manage this memory. Failure to clean up will lead
 to memory leaks.

typedef struct
{
 PGresult *result;
} PGEventResultDestroy;

 When a PGEVT_RESULTDESTROY event is received, the
 evtInfo pointer should be cast to a
 PGEventResultDestroy *. This event is fired
 prior to PQclear performing any other cleanup.
 The return value of the event procedure is ignored since there is no
 way of indicating a failure from PQclear. Also,
 an event procedure failure should not abort the process of cleaning up
 unwanted memory.

Event Callback Procedure

	PGEventProc
	
 PGEventProc is a typedef for a pointer to an
 event procedure, that is, the user callback function that receives
 events from libpq. The signature of an event procedure must be

int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)

 The evtId parameter indicates which
 PGEVT event occurred. The
 evtInfo pointer must be cast to the appropriate
 structure type to obtain further information about the event.
 The passThrough parameter is the pointer
 provided to PQregisterEventProc when the event
 procedure was registered. The function should return a non-zero value
 if it succeeds and zero if it fails.

 A particular event procedure can be registered only once in any
 PGconn. This is because the address of the procedure
 is used as a lookup key to identify the associated instance data.

Caution

 On Windows, functions can have two different addresses: one visible
 from outside a DLL and another visible from inside the DLL. One
 should be careful that only one of these addresses is used with
 libpq's event-procedure functions, else confusion will
 result. The simplest rule for writing code that will work is to
 ensure that event procedures are declared static. If the
 procedure's address must be available outside its own source file,
 expose a separate function to return the address.

Event Support Functions

	PQregisterEventProc
	
 Registers an event callback procedure with libpq.

int PQregisterEventProc(PGconn *conn, PGEventProc proc,
 const char *name, void *passThrough);

 An event procedure must be registered once on each
 PGconn you want to receive events about. There is no
 limit, other than memory, on the number of event procedures that
 can be registered with a connection. The function returns a non-zero
 value if it succeeds and zero if it fails.

 The proc argument will be called when a libpq
 event is fired. Its memory address is also used to lookup
 instanceData. The name
 argument is used to refer to the event procedure in error messages.
 This value cannot be NULL or a zero-length string. The name string is
 copied into the PGconn, so what is passed need not be
 long-lived. The passThrough pointer is passed
 to the proc whenever an event occurs. This
 argument can be NULL.

	PQsetInstanceData
	
 Sets the connection conn's instanceData
 for procedure proc to data. This
 returns non-zero for success and zero for failure. (Failure is
 only possible if proc has not been properly
 registered in conn.)

int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);

	PQinstanceData
	
 Returns the
 connection conn's instanceData
 associated with procedure proc,
 or NULL if there is none.

void *PQinstanceData(const PGconn *conn, PGEventProc proc);

	PQresultSetInstanceData
	
 Sets the result's instanceData
 for proc to data. This returns
 non-zero for success and zero for failure. (Failure is only
 possible if proc has not been properly registered
 in the result.)

int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void *data);

 Beware that any storage represented by data
 will not be accounted for by PQresultMemorySize,
 unless it is allocated using PQresultAlloc.
 (Doing so is recommendable because it eliminates the need to free
 such storage explicitly when the result is destroyed.)

	PQresultInstanceData
	
 Returns the result's instanceData associated with proc, or NULL
 if there is none.

void *PQresultInstanceData(const PGresult *res, PGEventProc proc);

Event Example

 Here is a skeleton example of managing private data associated with
 libpq connections and results.

/* required header for libpq events (note: includes libpq-fe.h) */
#include <libpq-events.h>

/* The instanceData */
typedef struct
{
 int n;
 char *str;
} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void *passThrough);

int
main(void)
{
 mydata *data;
 PGresult *res;
 PGconn *conn =
 PQconnectdb("dbname=postgres options=-csearch_path=");

 if (PQstatus(conn) != CONNECTION_OK)
 {
 /* PQerrorMessage's result includes a trailing newline */
 fprintf(stderr, "%s", PQerrorMessage(conn));
 PQfinish(conn);
 return 1;
 }

 /* called once on any connection that should receive events.
 * Sends a PGEVT_REGISTER to myEventProc.
 */
 if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
 {
 fprintf(stderr, "Cannot register PGEventProc\n");
 PQfinish(conn);
 return 1;
 }

 /* conn instanceData is available */
 data = PQinstanceData(conn, myEventProc);

 /* Sends a PGEVT_RESULTCREATE to myEventProc */
 res = PQexec(conn, "SELECT 1 + 1");

 /* result instanceData is available */
 data = PQresultInstanceData(res, myEventProc);

 /* If PG_COPYRES_EVENTS is used, sends a PGEVT_RESULTCOPY to myEventProc */
 res_copy = PQcopyResult(res, PG_COPYRES_TUPLES | PG_COPYRES_EVENTS);

 /* result instanceData is available if PG_COPYRES_EVENTS was
 * used during the PQcopyResult call.
 */
 data = PQresultInstanceData(res_copy, myEventProc);

 /* Both clears send a PGEVT_RESULTDESTROY to myEventProc */
 PQclear(res);
 PQclear(res_copy);

 /* Sends a PGEVT_CONNDESTROY to myEventProc */
 PQfinish(conn);

 return 0;
}

static int
myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{
 switch (evtId)
 {
 case PGEVT_REGISTER:
 {
 PGEventRegister *e = (PGEventRegister *)evtInfo;
 mydata *data = get_mydata(e->conn);

 /* associate app specific data with connection */
 PQsetInstanceData(e->conn, myEventProc, data);
 break;
 }

 case PGEVT_CONNRESET:
 {
 PGEventConnReset *e = (PGEventConnReset *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 if (data)
 memset(data, 0, sizeof(mydata));
 break;
 }

 case PGEVT_CONNDESTROY:
 {
 PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 /* free instance data because the conn is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 case PGEVT_RESULTCREATE:
 {
 PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
 mydata *conn_data = PQinstanceData(e->conn, myEventProc);
 mydata *res_data = dup_mydata(conn_data);

 /* associate app specific data with result (copy it from conn) */
 PQresultSetInstanceData(e->result, myEventProc, res_data);
 break;
 }

 case PGEVT_RESULTCOPY:
 {
 PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;
 mydata *src_data = PQresultInstanceData(e->src, myEventProc);
 mydata *dest_data = dup_mydata(src_data);

 /* associate app specific data with result (copy it from a result) */
 PQresultSetInstanceData(e->dest, myEventProc, dest_data);
 break;
 }

 case PGEVT_RESULTDESTROY:
 {
 PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
 mydata *data = PQresultInstanceData(e->result, myEventProc);

 /* free instance data because the result is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 /* unknown event ID, just return true. */
 default:
 break;
 }

 return true; /* event processing succeeded */
}

Environment Variables

 The following environment variables can be used to select default
 connection parameter values, which will be used by
 PQconnectdb, PQsetdbLogin and
 PQsetdb if no value is directly specified by the calling
 code. These are useful to avoid hard-coding database connection
 information into simple client applications, for example.

	

 PGHOST behaves the same as the host connection parameter.

	

 PGHOSTADDR behaves the same as the hostaddr connection parameter.
 This can be set instead of or in addition to PGHOST
 to avoid DNS lookup overhead.

	

 PGPORT behaves the same as the port connection parameter.

	

 PGDATABASE behaves the same as the dbname connection parameter.

	

 PGUSER behaves the same as the user connection parameter.

	

 PGPASSWORD behaves the same as the password connection parameter.
 Use of this environment variable
 is not recommended for security reasons, as some operating systems
 allow non-root users to see process environment variables via
 ps; instead consider using a password file
 (see the section called “The Password File”).

	

 PGPASSFILE behaves the same as the passfile connection parameter.

	

 PGREQUIREAUTH behaves the same as the require_auth connection parameter.

	

 PGCHANNELBINDING behaves the same as the channel_binding connection parameter.

	

 PGSERVICE behaves the same as the service connection parameter.

	

 PGSERVICEFILE specifies the name of the per-user
 connection service file
 (see the section called “The Connection Service File”).
 Defaults to ~/.pg_service.conf, or
 %APPDATA%\postgresql\.pg_service.conf on
 Microsoft Windows.

	

 PGOPTIONS behaves the same as the options connection parameter.

	

 PGAPPNAME behaves the same as the application_name connection parameter.

	

 PGSSLMODE behaves the same as the sslmode connection parameter.

	

 PGREQUIRESSL behaves the same as the requiressl connection parameter.
 This environment variable is deprecated in favor of the
 PGSSLMODE variable; setting both variables suppresses the
 effect of this one.

	

 PGSSLCOMPRESSION behaves the same as the sslcompression connection parameter.

	

 PGSSLCERT behaves the same as the sslcert connection parameter.

	

 PGSSLKEY behaves the same as the sslkey connection parameter.

	

 PGSSLCERTMODE behaves the same as the sslcertmode connection parameter.

	

 PGSSLROOTCERT behaves the same as the sslrootcert connection parameter.

	

 PGSSLCRL behaves the same as the sslcrl connection parameter.

	

 PGSSLCRLDIR behaves the same as the sslcrldir connection parameter.

	

 PGSSLSNI behaves the same as the sslsni connection parameter.

	

 PGREQUIREPEER behaves the same as the requirepeer connection parameter.

	

 PGSSLMINPROTOCOLVERSION behaves the same as the ssl_min_protocol_version connection parameter.

	

 PGSSLMAXPROTOCOLVERSION behaves the same as the ssl_max_protocol_version connection parameter.

	

 PGGSSENCMODE behaves the same as the gssencmode connection parameter.

	

 PGKRBSRVNAME behaves the same as the krbsrvname connection parameter.

	

 PGGSSLIB behaves the same as the gsslib connection parameter.

	

 PGGSSDELEGATION behaves the same as the gssdelegation connection parameter.

	

 PGCONNECT_TIMEOUT behaves the same as the connect_timeout connection parameter.

	

 PGCLIENTENCODING behaves the same as the client_encoding connection parameter.

	

 PGTARGETSESSIONATTRS behaves the same as the target_session_attrs connection parameter.

	

 PGLOADBALANCEHOSTS behaves the same as the load_balance_hosts connection parameter.

 The following environment variables can be used to specify default
 behavior for each PostgreSQL™ session. (See
 also the ALTER ROLE(7)
 and ALTER DATABASE(7)
 commands for ways to set default behavior on a per-user or per-database
 basis.)

	

 PGDATESTYLE sets the default style of date/time
 representation. (Equivalent to SET datestyle TO
 )

	

 PGTZ sets the default time zone. (Equivalent to
 SET timezone TO)

	

 PGGEQO sets the default mode for the genetic query
 optimizer. (Equivalent to SET geqo TO)

 Refer to the SQL command SET(7)
 for information on correct values for these
 environment variables.

 The following environment variables determine internal behavior of
 libpq; they override compiled-in defaults.

	

 PGSYSCONFDIR sets the directory containing the
 pg_service.conf file and in a future version
 possibly other system-wide configuration files.

	

 PGLOCALEDIR sets the directory containing the
 locale files for message localization.

The Password File

 The file .pgpass in a user's home directory can
 contain passwords to
 be used if the connection requires a password (and no password has been
 specified otherwise). On Microsoft Windows the file is named
 %APPDATA%\postgresql\pgpass.conf (where
 %APPDATA% refers to the Application Data subdirectory in
 the user's profile).
 Alternatively, the password file to use can be specified
 using the connection parameter passfile
 or the environment variable PGPASSFILE.

 This file should contain lines of the following format:

hostname:port:database:username:password

 (You can add a reminder comment to the file by copying the line above and
 preceding it with #.)
 Each of the first four fields can be a literal value, or
 *, which matches anything. The password field from
 the first line that matches the current connection parameters will be
 used. (Therefore, put more-specific entries first when you are using
 wildcards.) If an entry needs to contain : or
 \, escape this character with \.
 The host name field is matched to the host connection
 parameter if that is specified, otherwise to
 the hostaddr parameter if that is specified; if neither
 are given then the host name localhost is searched for.
 The host name localhost is also searched for when
 the connection is a Unix-domain socket connection and
 the host parameter
 matches libpq's default socket directory path.
 In a standby server, a database field of replication
 matches streaming replication connections made to the primary server.
 The database field is of limited usefulness otherwise, because users have
 the same password for all databases in the same cluster.

 On Unix systems, the permissions on a password file must
 disallow any access to world or group; achieve this by a command such as
 chmod 0600 ~/.pgpass. If the permissions are less
 strict than this, the file will be ignored. On Microsoft Windows, it
 is assumed that the file is stored in a directory that is secure, so
 no special permissions check is made.

The Connection Service File

 The connection service file allows libpq connection parameters to be
 associated with a single service name. That service name can then be
 specified in a libpq connection string, and the associated settings will be
 used. This allows connection parameters to be modified without requiring
 a recompile of the libpq-using application. The service name can also be
 specified using the PGSERVICE environment variable.

 Service names can be defined in either a per-user service file or a
 system-wide file. If the same service name exists in both the user
 and the system file, the user file takes precedence.
 By default, the per-user service file is named
 ~/.pg_service.conf.
 On Microsoft Windows, it is named
 %APPDATA%\postgresql\.pg_service.conf (where
 %APPDATA% refers to the Application Data subdirectory
 in the user's profile). A different file name can be specified by
 setting the environment variable PGSERVICEFILE.
 The system-wide file is named pg_service.conf.
 By default it is sought in the etc directory
 of the PostgreSQL™ installation
 (use pg_config --sysconfdir to identify this
 directory precisely). Another directory, but not a different file
 name, can be specified by setting the environment variable
 PGSYSCONFDIR.

 Either service file uses an “INI file” format where the section
 name is the service name and the parameters are connection
 parameters; see the section called “Parameter Key Words” for a list. For
 example:

comment
[mydb]
host=somehost
port=5433
user=admin

 An example file is provided in
 the PostgreSQL™ installation at
 share/pg_service.conf.sample.

 Connection parameters obtained from a service file are combined with
 parameters obtained from other sources. A service file setting
 overrides the corresponding environment variable, and in turn can be
 overridden by a value given directly in the connection string.
 For example, using the above service file, a connection string
 service=mydb port=5434 will use
 host somehost, port 5434,
 user admin, and other parameters as set by
 environment variables or built-in defaults.

LDAP Lookup of Connection Parameters

 If libpq has been compiled with LDAP support (option
 --with-ldap for configure)
 it is possible to retrieve connection options like host
 or dbname via LDAP from a central server.
 The advantage is that if the connection parameters for a database change,
 the connection information doesn't have to be updated on all client machines.

 LDAP connection parameter lookup uses the connection service file
 pg_service.conf (see the section called “The Connection Service File”). A line in a
 pg_service.conf stanza that starts with
 ldap:// will be recognized as an LDAP URL and an
 LDAP query will be performed. The result must be a list of
 keyword = value pairs which will be used to set
 connection options. The URL must conform to
 RFC 1959
 and be of the form

ldap://[hostname[:port]]/search_base?attribute?search_scope?filter

 where hostname defaults to
 localhost and port
 defaults to 389.

 Processing of pg_service.conf is terminated after
 a successful LDAP lookup, but is continued if the LDAP server cannot
 be contacted. This is to provide a fallback with further LDAP URL
 lines that point to different LDAP servers, classical keyword
 = value pairs, or default connection options. If you would
 rather get an error message in this case, add a syntactically incorrect
 line after the LDAP URL.

 A sample LDAP entry that has been created with the LDIF file

version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:device
cn:mydatabase
description:host=dbserver.mycompany.com
description:port=5439
description:dbname=mydb
description:user=mydb_user
description:sslmode=require

 might be queried with the following LDAP URL:

ldap://ldap.mycompany.com/dc=mycompany,dc=com?description?one?(cn=mydatabase)

 You can also mix regular service file entries with LDAP lookups.
 A complete example for a stanza in pg_service.conf
 would be:

only host and port are stored in LDAP, specify dbname and user explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?(objectclass=*)

SSL Support

 PostgreSQL™ has native support for using SSL
 connections to encrypt client/server communications using
 TLS protocols for increased security.
 See the section called “Secure TCP/IP Connections with SSL” for details about the server-side
 SSL functionality.

 libpq reads the system-wide
 OpenSSL™ configuration file. By default, this
 file is named openssl.cnf and is located in the
 directory reported by openssl version -d. This default
 can be overridden by setting environment variable
 OPENSSL_CONF to the name of the desired configuration
 file.

Client Verification of Server Certificates

 By default, PostgreSQL™ will not perform any verification of
 the server certificate. This means that it is possible to spoof the server
 identity (for example by modifying a DNS record or by taking over the server
 IP address) without the client knowing. In order to prevent spoofing,
 the client must be able to verify the server's identity via a chain of
 trust. A chain of trust is established by placing a root (self-signed)
 certificate authority (CA) certificate on one
 computer and a leaf certificate signed by the
 root certificate on another computer. It is also possible to use an
 “intermediate” certificate which is signed by the root
 certificate and signs leaf certificates.

 To allow the client to verify the identity of the server, place a root
 certificate on the client and a leaf certificate signed by the root
 certificate on the server. To allow the server to verify the identity
 of the client, place a root certificate on the server and a leaf
 certificate signed by the root certificate on the client. One or more
 intermediate certificates (usually stored with the leaf certificate)
 can also be used to link the leaf certificate to the root certificate.

 Once a chain of trust has been established, there are two ways for
 the client to validate the leaf certificate sent by the server.
 If the parameter sslmode is set to verify-ca,
 libpq will verify that the server is trustworthy by checking the
 certificate chain up to the root certificate stored on the client.
 If sslmode is set to verify-full,
 libpq will also verify that the server host
 name matches the name stored in the server certificate. The
 SSL connection will fail if the server certificate cannot be
 verified. verify-full is recommended in most
 security-sensitive environments.

 In verify-full mode, the host name is matched against the
 certificate's Subject Alternative Name attribute(s) (SAN), or against the
 Common Name attribute if no SAN of type dNSName is
 present. If the certificate's name attribute starts with an asterisk
 (*), the asterisk will be treated as
 a wildcard, which will match all characters except a dot
 (.). This means the certificate will not match subdomains.
 If the connection is made using an IP address instead of a host name, the
 IP address will be matched (without doing any DNS lookups) against SANs of
 type iPAddress or dNSName. If no
 iPAddress SAN is present and no
 matching dNSName SAN is present, the host IP address is
 matched against the Common Name attribute.

Note

 For backward compatibility with earlier versions of PostgreSQL, the host
 IP address is verified in a manner different
 from RFC 6125.
 The host IP address is always matched against dNSName
 SANs as well as iPAddress SANs, and can be matched
 against the Common Name attribute if no relevant SANs exist.

 To allow server certificate verification, one or more root certificates
 must be placed in the file ~/.postgresql/root.crt
 in the user's home directory. (On Microsoft Windows the file is named
 %APPDATA%\postgresql\root.crt.) Intermediate
 certificates should also be added to the file if they are needed to link
 the certificate chain sent by the server to the root certificates
 stored on the client.

 Certificate Revocation List (CRL) entries are also checked
 if the file ~/.postgresql/root.crl exists
 (%APPDATA%\postgresql\root.crl on Microsoft
 Windows).

 The location of the root certificate file and the CRL can be changed by
 setting
 the connection parameters sslrootcert and sslcrl
 or the environment variables PGSSLROOTCERT and PGSSLCRL.
 sslcrldir or the environment variable PGSSLCRLDIR
 can also be used to specify a directory containing CRL files.

Note

 For backwards compatibility with earlier versions of PostgreSQL, if a
 root CA file exists, the behavior of
 sslmode=require will be the same
 as that of verify-ca, meaning the server certificate
 is validated against the CA. Relying on this behavior is discouraged,
 and applications that need certificate validation should always use
 verify-ca or verify-full.

Client Certificates

 If the server attempts to verify the identity of the
 client by requesting the client's leaf certificate,
 libpq will send the certificate(s) stored in
 file ~/.postgresql/postgresql.crt in the user's home
 directory. The certificates must chain to the root certificate trusted
 by the server. A matching
 private key file ~/.postgresql/postgresql.key must also
 be present.
 On Microsoft Windows these files are named
 %APPDATA%\postgresql\postgresql.crt and
 %APPDATA%\postgresql\postgresql.key.
 The location of the certificate and key files can be overridden by the
 connection parameters sslcert
 and sslkey, or by the
 environment variables PGSSLCERT and PGSSLKEY.

 On Unix systems, the permissions on the private key file must disallow
 any access to world or group; achieve this by a command such as
 chmod 0600 ~/.postgresql/postgresql.key.
 Alternatively, the file can be owned by root and have group read access
 (that is, 0640 permissions). That setup is intended
 for installations where certificate and key files are managed by the
 operating system. The user of libpq should
 then be made a member of the group that has access to those certificate
 and key files. (On Microsoft Windows, there is no file permissions
 check, since the %APPDATA%\postgresql directory is
 presumed secure.)

 The first certificate in postgresql.crt must be the
 client's certificate because it must match the client's private key.
 “Intermediate” certificates can be optionally appended
 to the file — doing so avoids requiring storage of intermediate
 certificates on the server (ssl_ca_file).

 The certificate and key may be in PEM or ASN.1 DER format.

 The key may be
 stored in cleartext or encrypted with a passphrase using any algorithm
 supported by OpenSSL™, like AES-128. If the key
 is stored encrypted, then the passphrase may be provided in the
 sslpassword connection option. If an
 encrypted key is supplied and the sslpassword option
 is absent or blank, a password will be prompted for interactively by
 OpenSSL™ with a
 Enter PEM pass phrase: prompt if a TTY is available.
 Applications can override the client certificate prompt and the handling
 of the sslpassword parameter by supplying their own
 key password callback; see
 PQsetSSLKeyPassHook_OpenSSL.

 For instructions on creating certificates, see the section called “Creating Certificates”.

Protection Provided in Different Modes

 The different values for the sslmode parameter provide different
 levels of protection. SSL can provide
 protection against three types of attacks:

	Eavesdropping
	If a third party can examine the network traffic between the
 client and the server, it can read both connection information (including
 the user name and password) and the data that is passed. SSL
 uses encryption to prevent this.

	Man-in-the-middle (MITM)
	If a third party can modify the data while passing between the
 client and server, it can pretend to be the server and therefore see and
 modify data even if it is encrypted. The third party can then
 forward the connection information and data to the original server,
 making it impossible to detect this attack. Common vectors to do this
 include DNS poisoning and address hijacking, whereby the client is directed
 to a different server than intended. There are also several other
 attack methods that can accomplish this. SSL uses certificate
 verification to prevent this, by authenticating the server to the client.

	Impersonation
	If a third party can pretend to be an authorized client, it can
 simply access data it should not have access to. Typically this can
 happen through insecure password management. SSL uses
 client certificates to prevent this, by making sure that only holders
 of valid certificates can access the server.

 For a connection to be known SSL-secured, SSL usage must be configured
 on both the client and the server before the connection
 is made. If it is only configured on the server, the client may end up
 sending sensitive information (e.g., passwords) before
 it knows that the server requires high security. In libpq, secure
 connections can be ensured
 by setting the sslmode parameter to verify-full or
 verify-ca, and providing the system with a root certificate to
 verify against. This is analogous to using an https
 URL for encrypted web browsing.

 Once the server has been authenticated, the client can pass sensitive data.
 This means that up until this point, the client does not need to know if
 certificates will be used for authentication, making it safe to specify that
 only in the server configuration.

 All SSL options carry overhead in the form of encryption and
 key-exchange, so there is a trade-off that has to be made between performance
 and security. Table 34.1, “SSL Mode Descriptions”
 illustrates the risks the different sslmode values
 protect against, and what statement they make about security and overhead.

Table 34.1. SSL Mode Descriptions
	sslmode	Eavesdropping protection	MITM protection	Statement
	disable	No	No	I don't care about security, and I don't want to pay the overhead
 of encryption.

	allow	Maybe	No	I don't care about security, but I will pay the overhead of
 encryption if the server insists on it.

	prefer	Maybe	No	I don't care about encryption, but I wish to pay the overhead of
 encryption if the server supports it.

	require	Yes	No	I want my data to be encrypted, and I accept the overhead. I trust
 that the network will make sure I always connect to the server I want.

	verify-ca	Yes	Depends on CA policy	I want my data encrypted, and I accept the overhead. I want to be
 sure that I connect to a server that I trust.

	verify-full	Yes	Yes	I want my data encrypted, and I accept the overhead. I want to be
 sure that I connect to a server I trust, and that it's the one I
 specify.

 The difference between verify-ca and verify-full
 depends on the policy of the root CA. If a public
 CA is used, verify-ca allows connections to a server
 that somebody else may have registered with the CA.
 In this case, verify-full should always be used. If
 a local CA is used, or even a self-signed certificate, using
 verify-ca often provides enough protection.

 The default value for sslmode is prefer. As is shown
 in the table, this makes no sense from a security point of view, and it only
 promises performance overhead if possible. It is only provided as the default
 for backward compatibility, and is not recommended in secure deployments.

SSL Client File Usage

 Table 34.2, “Libpq/Client SSL File Usage” summarizes the files that are
 relevant to the SSL setup on the client.

Table 34.2. Libpq/Client SSL File Usage
	File	Contents	Effect
	~/.postgresql/postgresql.crt	client certificate	sent to server
	~/.postgresql/postgresql.key	client private key	proves client certificate sent by owner; does not indicate
 certificate owner is trustworthy
	~/.postgresql/root.crt	trusted certificate authorities	checks that server certificate is signed by a trusted certificate
 authority
	~/.postgresql/root.crl	certificates revoked by certificate authorities	server certificate must not be on this list

SSL Library Initialization

 If your application initializes libssl and/or
 libcrypto libraries and libpq
 is built with SSL support, you should call
 PQinitOpenSSL to tell libpq
 that the libssl and/or libcrypto libraries
 have been initialized by your application, so that
 libpq will not also initialize those libraries.
 However, this is unnecessary when using OpenSSL™
 version 1.1.0 or later, as duplicate initializations are no longer problematic.

	PQinitOpenSSL
	
 Allows applications to select which security libraries to initialize.

void PQinitOpenSSL(int do_ssl, int do_crypto);

 When do_ssl is non-zero, libpq
 will initialize the OpenSSL™ library before first
 opening a database connection. When do_crypto is
 non-zero, the libcrypto library will be initialized. By
 default (if PQinitOpenSSL is not called), both libraries
 are initialized. When SSL support is not compiled in, this function is
 present but does nothing.

 If your application uses and initializes either OpenSSL™
 or its underlying libcrypto library, you must
 call this function with zeroes for the appropriate parameter(s)
 before first opening a database connection. Also be sure that you
 have done that initialization before opening a database connection.

	PQinitSSL
	
 Allows applications to select which security libraries to initialize.

void PQinitSSL(int do_ssl);

 This function is equivalent to
 PQinitOpenSSL(do_ssl, do_ssl).
 It is sufficient for applications that initialize both or neither
 of OpenSSL™ and libcrypto.

 PQinitSSL has been present since
 PostgreSQL™ 8.0, while PQinitOpenSSL
 was added in PostgreSQL™ 8.4, so PQinitSSL
 might be preferable for applications that need to work with older
 versions of libpq.

Behavior in Threaded Programs

 libpq is reentrant and thread-safe by default.
 You might need to use special compiler command-line
 options when you compile your application code. Refer to your
 system's documentation for information about how to build
 thread-enabled applications, or look in
 src/Makefile.global for PTHREAD_CFLAGS
 and PTHREAD_LIBS. This function allows the querying of
 libpq's thread-safe status:

	PQisthreadsafe
	
 Returns the thread safety status of the
 libpq library.

int PQisthreadsafe();

 Returns 1 if the libpq is thread-safe
 and 0 if it is not.

 One thread restriction is that no two threads attempt to manipulate
 the same PGconn object at the same time. In particular,
 you cannot issue concurrent commands from different threads through
 the same connection object. (If you need to run concurrent commands,
 use multiple connections.)

 PGresult objects are normally read-only after creation,
 and so can be passed around freely between threads. However, if you use
 any of the PGresult-modifying functions described in
 the section called “Miscellaneous Functions” or the section called “Event System”, it's up
 to you to avoid concurrent operations on the same PGresult,
 too.

 The deprecated functions PQrequestCancel and
 PQoidStatus are not thread-safe and should not be
 used in multithread programs. PQrequestCancel
 can be replaced by PQcancel.
 PQoidStatus can be replaced by
 PQoidValue.

 If you are using Kerberos inside your application (in addition to inside
 libpq), you will need to do locking around
 Kerberos calls because Kerberos functions are not thread-safe. See
 function PQregisterThreadLock in the
 libpq source code for a way to do cooperative
 locking between libpq and your application.

Building libpq Programs

 To build (i.e., compile and link) a program using
 libpq you need to do all of the following
 things:

	
 Include the libpq-fe.h header file:

#include <libpq-fe.h>

 If you failed to do that then you will normally get error messages
 from your compiler similar to:

foo.c: In function `main':
foo.c:34: `PGconn' undeclared (first use in this function)
foo.c:35: `PGresult' undeclared (first use in this function)
foo.c:54: `CONNECTION_BAD' undeclared (first use in this function)
foo.c:68: `PGRES_COMMAND_OK' undeclared (first use in this function)
foo.c:95: `PGRES_TUPLES_OK' undeclared (first use in this function)

	
 Point your compiler to the directory where the PostgreSQL™ header
 files were installed, by supplying the
 -Idirectory option
 to your compiler. (In some cases the compiler will look into
 the directory in question by default, so you can omit this
 option.) For instance, your compile command line could look
 like:

cc -c -I/usr/local/pgsql/include testprog.c

 If you are using makefiles then add the option to the
 CPPFLAGS variable:

CPPFLAGS += -I/usr/local/pgsql/include

 If there is any chance that your program might be compiled by
 other users then you should not hardcode the directory location
 like that. Instead, you can run the utility
 pg_config to find out where the header
 files are on the local system:

$ pg_config --includedir
/usr/local/include

 If you
 have pkg-config installed, you can run instead:

$ pkg-config --cflags libpq
-I/usr/local/include

 Note that this will already include the -I in front of
 the path.

 Failure to specify the correct option to the compiler will
 result in an error message such as:

testlibpq.c:8:22: libpq-fe.h: No such file or directory

	
 When linking the final program, specify the option
 -lpq so that the libpq
 library gets pulled in, as well as the option
 -Ldirectory to point
 the compiler to the directory where the
 libpq library resides. (Again, the
 compiler will search some directories by default.) For maximum
 portability, put the -L option before the
 -lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

 You can find out the library directory using
 pg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

 Or again use pkg-config:

$ pkg-config --libs libpq
-L/usr/local/pgsql/lib -lpq

 Note again that this prints the full options, not only the path.

 Error messages that point to problems in this area could look like
 the following:

testlibpq.o: In function `main':
testlibpq.o(.text+0x60): undefined reference to `PQsetdbLogin'
testlibpq.o(.text+0x71): undefined reference to `PQstatus'
testlibpq.o(.text+0xa4): undefined reference to `PQerrorMessage'

 This means you forgot -lpq.

/usr/bin/ld: cannot find -lpq

 This means you forgot the -L option or did not
 specify the right directory.

Example Programs

 These examples and others can be found in the
 directory src/test/examples in the source code
 distribution.

Example 34.1. libpq Example Program 1

/*
 * src/test/examples/testlibpq.c
 *
 *
 * testlibpq.c
 *
 * Test the C version of libpq, the PostgreSQL frontend library.
 */
#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,
 j;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Our test case here involves using a cursor, for which we must be inside
 * a transaction block. We could do the whole thing with a single
 * PQexec() of "select * from pg_database", but that's too trivial to make
 * a good example.
 */

 /* Start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * Fetch rows from pg_database, the system catalog of databases
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the rows */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* close the portal ... we don't bother to check for errors ... */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

 /* end the transaction */
 res = PQexec(conn, "END");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 34.2. libpq Example Program 2

/*
 * src/test/examples/testlibpq2.c
 *
 *
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 * Repeat four times to get this program to exit.
 *
 * Or, if you want to get fancy, try this:
 * populate a database with the following commands
 * (provided in src/test/examples/testlibpq2.sql):
 *
 * CREATE SCHEMA TESTLIBPQ2;
 * SET search_path = TESTLIBPQ2;
 * CREATE TABLE TBL1 (i int4);
 * CREATE TABLE TBL2 (i int4);
 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
 *
 * Start this program, then from psql do this four times:
 *
 * INSERT INTO TESTLIBPQ2.TBL1 VALUES (10);
 */

#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 PGnotify *notify;
 int nnotifies;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Issue LISTEN command to enable notifications from the rule's NOTIFY.
 */
 res = PQexec(conn, "LISTEN TBL2");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /* Quit after four notifies are received. */
 nnotifies = 0;
 while (nnotifies < 4)
 {
 /*
 * Sleep until something happens on the connection. We use select(2)
 * to wait for input, but you could also use poll() or similar
 * facilities.
 */
 int sock;
 fd_set input_mask;

 sock = PQsocket(conn);

 if (sock < 0)
 break; /* shouldn't happen */

 FD_ZERO(&input_mask);
 FD_SET(sock, &input_mask);

 if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
 {
 fprintf(stderr, "select() failed: %s\n", strerror(errno));
 exit_nicely(conn);
 }

 /* Now check for input */
 PQconsumeInput(conn);
 while ((notify = PQnotifies(conn)) != NULL)
 {
 fprintf(stderr,
 "ASYNC NOTIFY of '%s' received from backend PID %d\n",
 notify->relname, notify->be_pid);
 PQfreemem(notify);
 nnotifies++;
 PQconsumeInput(conn);
 }
 }

 fprintf(stderr, "Done.\n");

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 34.3. libpq Example Program 3

/*
 * src/test/examples/testlibpq3.c
 *
 *
 * testlibpq3.c
 * Test out-of-line parameters and binary I/O.
 *
 * Before running this, populate a database with the following commands
 * (provided in src/test/examples/testlibpq3.sql):
 *
 * CREATE SCHEMA testlibpq3;
 * SET search_path = testlibpq3;
 * SET standard_conforming_strings = ON;
 * CREATE TABLE test1 (i int4, t text, b bytea);
 * INSERT INTO test1 values (1, 'joe''s place', '\000\001\002\003\004');
 * INSERT INTO test1 values (2, 'ho there', '\004\003\002\001\000');
 *
 * The expected output is:
 *
 * tuple 0: got
 * i = (4 bytes) 1
 * t = (11 bytes) 'joe's place'
 * b = (5 bytes) \000\001\002\003\004
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 * b = (5 bytes) \004\003\002\001\000
 */

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include "libpq-fe.h"

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

/*
 * This function prints a query result that is a binary-format fetch from
 * a table defined as in the comment above. We split it out because the
 * main() function uses it twice.
 */
static void
show_binary_results(PGresult *res)
{
 int i,
 j;
 int i_fnum,
 t_fnum,
 b_fnum;

 /* Use PQfnumber to avoid assumptions about field order in result */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");
 b_fnum = PQfnumber(res, "b");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 char *bptr;
 int blen;
 int ival;

 /* Get the field values (we ignore possibility they are null!) */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);
 bptr = PQgetvalue(res, i, b_fnum);

 /*
 * The binary representation of INT4 is in network byte order, which
 * we'd better coerce to the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is, well, text, and since libpq
 * was nice enough to append a zero byte to it, it'll work just fine
 * as a C string.
 *
 * The binary representation of BYTEA is a bunch of bytes, which could
 * include embedded nulls so we have to pay attention to field length.
 */
 blen = PQgetlength(res, i, b_fnum);

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf(" b = (%d bytes) ", blen);
 for (j = 0; j < blen; j++)
 printf("\\%03o", bptr[j]);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn, "SET search_path = testlibpq3");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * The point of this program is to illustrate use of PQexecParams() with
 * out-of-line parameters, as well as binary transmission of data.
 *
 * This first example transmits the parameters as text, but receives the
 * results in binary format. By using out-of-line parameters we can avoid
 * a lot of tedious mucking about with quoting and escaping, even though
 * the data is text. Notice how we don't have to do anything special with
 * the quote mark in the parameter value.
 */

 /* Here is our out-of-line parameter value */
 paramValues[0] = "joe's place";

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE t = $1",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 NULL, /* don't need param lengths since text */
 NULL, /* default to all text params */
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /*
 * In this second example we transmit an integer parameter in binary form,
 * and again retrieve the results in binary form.
 *
 * Although we tell PQexecParams we are letting the backend deduce
 * parameter type, we really force the decision by casting the parameter
 * symbol in the query text. This is a good safety measure when sending
 * binary parameters.
 */

 /* Convert integer value "2" to network byte order */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set up parameter arrays for PQexecParams */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* binary */

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Chapter 35. Large Objects

 PostgreSQL™ has a large object
 facility, which provides stream-style access to user data that is stored
 in a special large-object structure. Streaming access is useful
 when working with data values that are too large to manipulate
 conveniently as a whole.

 This chapter describes the implementation and the programming and
 query language interfaces to PostgreSQL™
 large object data. We use the libpq C
 library for the examples in this chapter, but most programming
 interfaces native to PostgreSQL™ support
 equivalent functionality. Other interfaces might use the large
 object interface internally to provide generic support for large
 values. This is not described here.

Introduction

 All large objects are stored in a single system table named pg_largeobject.
 Each large object also has an entry in the system table pg_largeobject_metadata.
 Large objects can be created, modified, and deleted using a read/write API
 that is similar to standard operations on files.

 PostgreSQL™ also supports a storage system called
 “TOAST”,
 which automatically stores values
 larger than a single database page into a secondary storage area per table.
 This makes the large object facility partially obsolete. One
 remaining advantage of the large object facility is that it allows values
 up to 4 TB in size, whereas TOASTed fields can be at
 most 1 GB. Also, reading and updating portions of a large object can be
 done efficiently, while most operations on a TOASTed
 field will read or write the whole value as a unit.

Implementation Features

 The large object implementation breaks large
 objects up into “chunks” and stores the chunks in
 rows in the database. A B-tree index guarantees fast
 searches for the correct chunk number when doing random
 access reads and writes.

 The chunks stored for a large object do not have to be contiguous.
 For example, if an application opens a new large object, seeks to offset
 1000000, and writes a few bytes there, this does not result in allocation
 of 1000000 bytes worth of storage; only of chunks covering the range of
 data bytes actually written. A read operation will, however, read out
 zeroes for any unallocated locations preceding the last existing chunk.
 This corresponds to the common behavior of “sparsely allocated”
 files in Unix file systems.

 As of PostgreSQL™ 9.0, large objects have an owner
 and a set of access permissions, which can be managed using
 GRANT(7) and
 REVOKE(7).
 SELECT privileges are required to read a large
 object, and
 UPDATE privileges are required to write or
 truncate it.
 Only the large object's owner (or a database superuser) can delete,
 comment on, or change the owner of a large object.
 To adjust this behavior for compatibility with prior releases, see the
 lo_compat_privileges run-time parameter.

Client Interfaces

 This section describes the facilities that
 PostgreSQL™'s libpq
 client interface library provides for accessing large objects.
 The PostgreSQL™ large object interface is
 modeled after the Unix file-system interface, with
 analogues of open, read,
 write,
 lseek, etc.

 All large object manipulation using these functions
 must take place within an SQL transaction block,
 since large object file descriptors are only valid for the duration of
 a transaction. Write operations, including lo_open
 with the INV_WRITE mode, are not allowed in a read-only
 transaction.

 If an error occurs while executing any one of these functions, the
 function will return an otherwise-impossible value, typically 0 or -1.
 A message describing the error is stored in the connection object and
 can be retrieved with PQerrorMessage.

 Client applications that use these functions should include the header file
 libpq/libpq-fs.h and link with the
 libpq library.

 Client applications cannot use these functions while a libpq connection is in pipeline mode.

Creating a Large Object

 The function

Oid lo_create(PGconn *conn, Oid lobjId);

 creates a new large object. The OID to be assigned can be
 specified by lobjId;
 if so, failure occurs if that OID is already in use for some large
 object. If lobjId
 is InvalidOid (zero) then lo_create
 assigns an unused OID.
 The return value is the OID that was assigned to the new large object,
 or InvalidOid (zero) on failure.

 An example:

inv_oid = lo_create(conn, desired_oid);

 The older function

Oid lo_creat(PGconn *conn, int mode);

 also creates a new large object, always assigning an unused OID.
 The return value is the OID that was assigned to the new large object,
 or InvalidOid (zero) on failure.

 In PostgreSQL™ releases 8.1 and later,
 the mode is ignored,
 so that lo_creat is exactly equivalent to
 lo_create with a zero second argument.
 However, there is little reason to use lo_creat
 unless you need to work with servers older than 8.1.
 To work with such an old server, you must
 use lo_creat not lo_create,
 and you must set mode to
 one of INV_READ, INV_WRITE,
 or INV_READ | INV_WRITE.
 (These symbolic constants are defined
 in the header file libpq/libpq-fs.h.)

 An example:

inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

Importing a Large Object

 To import an operating system file as a large object, call

Oid lo_import(PGconn *conn, const char *filename);

 filename
 specifies the operating system name of
 the file to be imported as a large object.
 The return value is the OID that was assigned to the new large object,
 or InvalidOid (zero) on failure.
 Note that the file is read by the client interface library, not by
 the server; so it must exist in the client file system and be readable
 by the client application.

 The function

Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid lobjId);

 also imports a new large object. The OID to be assigned can be
 specified by lobjId;
 if so, failure occurs if that OID is already in use for some large
 object. If lobjId
 is InvalidOid (zero) then lo_import_with_oid assigns an unused
 OID (this is the same behavior as lo_import).
 The return value is the OID that was assigned to the new large object,
 or InvalidOid (zero) on failure.

 lo_import_with_oid is new as of PostgreSQL™
 8.4 and uses lo_create internally which is new in 8.1; if this function is run against 8.0 or before, it will
 fail and return InvalidOid.

Exporting a Large Object

 To export a large object
 into an operating system file, call

int lo_export(PGconn *conn, Oid lobjId, const char *filename);

 The lobjId argument specifies the OID of the large
 object to export and the filename argument
 specifies the operating system name of the file. Note that the file is
 written by the client interface library, not by the server. Returns 1
 on success, -1 on failure.

Opening an Existing Large Object

 To open an existing large object for reading or writing, call

int lo_open(PGconn *conn, Oid lobjId, int mode);

 The lobjId argument specifies the OID of the large
 object to open. The mode bits control whether the
 object is opened for reading (INV_READ), writing
 (INV_WRITE), or both.
 (These symbolic constants are defined
 in the header file libpq/libpq-fs.h.)
 lo_open returns a (non-negative) large object
 descriptor for later use in lo_read,
 lo_write, lo_lseek,
 lo_lseek64, lo_tell,
 lo_tell64, lo_truncate,
 lo_truncate64, and lo_close.
 The descriptor is only valid for
 the duration of the current transaction.
 On failure, -1 is returned.

 The server currently does not distinguish between modes
 INV_WRITE and INV_READ |
 INV_WRITE: you are allowed to read from the descriptor
 in either case. However there is a significant difference between
 these modes and INV_READ alone: with INV_READ
 you cannot write on the descriptor, and the data read from it will
 reflect the contents of the large object at the time of the transaction
 snapshot that was active when lo_open was executed,
 regardless of later writes by this or other transactions. Reading
 from a descriptor opened with INV_WRITE returns
 data that reflects all writes of other committed transactions as well
 as writes of the current transaction. This is similar to the behavior
 of REPEATABLE READ versus READ COMMITTED transaction
 modes for ordinary SQL SELECT commands.

 lo_open will fail if SELECT
 privilege is not available for the large object, or
 if INV_WRITE is specified and UPDATE
 privilege is not available.
 (Prior to PostgreSQL™ 11, these privilege
 checks were instead performed at the first actual read or write call
 using the descriptor.)
 These privilege checks can be disabled with the
 lo_compat_privileges run-time parameter.

 An example:

inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);

Writing Data to a Large Object

 The function

int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

 writes len bytes from buf
 (which must be of size len) to large object
 descriptor fd. The fd argument must
 have been returned by a previous lo_open. The
 number of bytes actually written is returned (in the current
 implementation, this will always equal len unless
 there is an error). In the event of an error, the return value is -1.

 Although the len parameter is declared as
 size_t, this function will reject length values larger than
 INT_MAX. In practice, it's best to transfer data in chunks
 of at most a few megabytes anyway.

Reading Data from a Large Object

 The function

int lo_read(PGconn *conn, int fd, char *buf, size_t len);

 reads up to len bytes from large object descriptor
 fd into buf (which must be
 of size len). The fd
 argument must have been returned by a previous
 lo_open. The number of bytes actually read is
 returned; this will be less than len if the end of
 the large object is reached first. In the event of an error, the return
 value is -1.

 Although the len parameter is declared as
 size_t, this function will reject length values larger than
 INT_MAX. In practice, it's best to transfer data in chunks
 of at most a few megabytes anyway.

Seeking in a Large Object

 To change the current read or write location associated with a
 large object descriptor, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence);

 This function moves the
 current location pointer for the large object descriptor identified by
 fd to the new location specified by
 offset. The valid values for whence
 are SEEK_SET (seek from object start),
 SEEK_CUR (seek from current position), and
 SEEK_END (seek from object end). The return value is
 the new location pointer, or -1 on error.

 When dealing with large objects that might exceed 2GB in size,
 instead use

pg_int64 lo_lseek64(PGconn *conn, int fd, pg_int64 offset, int whence);

 This function has the same behavior
 as lo_lseek, but it can accept an
 offset larger than 2GB and/or deliver a result larger
 than 2GB.
 Note that lo_lseek will fail if the new location
 pointer would be greater than 2GB.

 lo_lseek64 is new as of PostgreSQL™
 9.3. If this function is run against an older server version, it will
 fail and return -1.

Obtaining the Seek Position of a Large Object

 To obtain the current read or write location of a large object descriptor,
 call

int lo_tell(PGconn *conn, int fd);

 If there is an error, the return value is -1.

 When dealing with large objects that might exceed 2GB in size,
 instead use

pg_int64 lo_tell64(PGconn *conn, int fd);

 This function has the same behavior
 as lo_tell, but it can deliver a result larger
 than 2GB.
 Note that lo_tell will fail if the current
 read/write location is greater than 2GB.

 lo_tell64 is new as of PostgreSQL™
 9.3. If this function is run against an older server version, it will
 fail and return -1.

Truncating a Large Object

 To truncate a large object to a given length, call

int lo_truncate(PGconn *conn, int fd, size_t len);

 This function truncates the large object
 descriptor fd to length len. The
 fd argument must have been returned by a
 previous lo_open. If len is
 greater than the large object's current length, the large object
 is extended to the specified length with null bytes ('\0').
 On success, lo_truncate returns
 zero. On error, the return value is -1.

 The read/write location associated with the descriptor
 fd is not changed.

 Although the len parameter is declared as
 size_t, lo_truncate will reject length
 values larger than INT_MAX.

 When dealing with large objects that might exceed 2GB in size,
 instead use

int lo_truncate64(PGconn *conn, int fd, pg_int64 len);

 This function has the same
 behavior as lo_truncate, but it can accept a
 len value exceeding 2GB.

 lo_truncate is new as of PostgreSQL™
 8.3; if this function is run against an older server version, it will
 fail and return -1.

 lo_truncate64 is new as of PostgreSQL™
 9.3; if this function is run against an older server version, it will
 fail and return -1.

Closing a Large Object Descriptor

 A large object descriptor can be closed by calling

int lo_close(PGconn *conn, int fd);

 where fd is a
 large object descriptor returned by lo_open.
 On success, lo_close returns zero. On
 error, the return value is -1.

 Any large object descriptors that remain open at the end of a
 transaction will be closed automatically.

Removing a Large Object

 To remove a large object from the database, call

int lo_unlink(PGconn *conn, Oid lobjId);

 The lobjId argument specifies the OID of the
 large object to remove. Returns 1 if successful, -1 on failure.

Server-Side Functions

 Server-side functions tailored for manipulating large objects from SQL are
 listed in Table 35.1, “SQL-Oriented Large Object Functions”.

Table 35.1. SQL-Oriented Large Object Functions
	
 Function

 Description

 Example(s)

	

 lo_from_bytea (loid oid, data bytea)
 oid

 Creates a large object and stores data in it.
 If loid is zero then the system will choose a
 free OID, otherwise that OID is used (with an error if some large
 object already has that OID). On success, the large object's OID is
 returned.

 lo_from_bytea(0, '\xffffff00')
 24528

	

 lo_put (loid oid, offset bigint, data bytea)
 void

 Writes data starting at the given offset within
 the large object; the large object is enlarged if necessary.

 lo_put(24528, 1, '\xaa')

	

 lo_get (loid oid [, offset bigint, length integer])
 bytea

 Extracts the large object's contents, or a substring thereof.

 lo_get(24528, 0, 3)
 \xffaaff

 There are additional server-side functions corresponding to each of the
 client-side functions described earlier; indeed, for the most part the
 client-side functions are simply interfaces to the equivalent server-side
 functions. The ones just as convenient to call via SQL commands are
 lo_creat,
 lo_create,
 lo_unlink,
 lo_import, and
 lo_export.
 Here are examples of their use:

CREATE TABLE image (
 name text,
 raster oid
);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_create(43213); -- attempts to create large object with OID 43213

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
 VALUES ('beautiful image', lo_import('/etc/motd'));

INSERT INTO image (name, raster) -- same as above, but specify OID to use
 VALUES ('beautiful image', lo_import('/etc/motd', 68583));

SELECT lo_export(image.raster, '/tmp/motd') FROM image
 WHERE name = 'beautiful image';

 The server-side lo_import and
 lo_export functions behave considerably differently
 from their client-side analogs. These two functions read and write files
 in the server's file system, using the permissions of the database's
 owning user. Therefore, by default their use is restricted to superusers.
 In contrast, the client-side import and export functions read and write
 files in the client's file system, using the permissions of the client
 program. The client-side functions do not require any database
 privileges, except the privilege to read or write the large object in
 question.

Caution

 It is possible to GRANT(7) use of the
 server-side lo_import
 and lo_export functions to non-superusers, but
 careful consideration of the security implications is required. A
 malicious user of such privileges could easily parlay them into becoming
 superuser (for example by rewriting server configuration files), or could
 attack the rest of the server's file system without bothering to obtain
 database superuser privileges as such. Access to roles having
 such privilege must therefore be guarded just as carefully as access to
 superuser roles. Nonetheless, if use of
 server-side lo_import
 or lo_export is needed for some routine task, it's
 safer to use a role with such privileges than one with full superuser
 privileges, as that helps to reduce the risk of damage from accidental
 errors.

 The functionality of lo_read and
 lo_write is also available via server-side calls,
 but the names of the server-side functions differ from the client side
 interfaces in that they do not contain underscores. You must call
 these functions as loread and lowrite.

Example Program

 Example 35.1, “Large Objects with libpq Example Program” is a sample program which shows how the large object
 interface
 in libpq can be used. Parts of the program are
 commented out but are left in the source for the reader's
 benefit. This program can also be found in
 src/test/examples/testlo.c in the source distribution.

Example 35.1. Large Objects with libpq Example Program

/*---
 *
 * testlo.c
 * test using large objects with libpq
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 * src/test/examples/testlo.c
 *
 *---
 */
#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
 * importFile -
 * import file "in_filename" into database as large object "lobjOid"
 *
 */
static Oid
importFile(PGconn *conn, char *filename)
{
 Oid lobjId;
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ | INV_WRITE);
 if (lobjId == 0)
 fprintf(stderr, "cannot create large object");

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);

 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
 {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes)
 fprintf(stderr, "error while reading \"%s\"", filename);
 }

 close(fd);
 lo_close(conn, lobj_fd);

 return lobjId;
}

static void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 nread = 0;
 while (len - nread > 0)
 {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = '\0';
 fprintf(stderr, ">>> %s", buf);
 nread += nbytes;
 if (nbytes <= 0)
 break; /* no more data? */
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

static void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nwritten;
 int i;

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 for (i = 0; i < len; i++)
 buf[i] = 'X';
 buf[i] = '\0';

 nwritten = 0;
 while (len - nwritten > 0)
 {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
 nwritten += nbytes;
 if (nbytes <= 0)
 {
 fprintf(stderr, "\nWRITE FAILED!\n");
 break;
 }
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

/*
 * exportFile -
 * export large object "lobjOid" to file "out_filename"
 *
 */
static void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the large object
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"",
 filename);
 }

 /*
 * read in from the inversion file and write to the Unix file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
 {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes)
 {
 fprintf(stderr, "error while writing \"%s\"",
 filename);
 }
 }

 lo_close(conn, lobj_fd);
 close(fd);
}

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 char *in_filename,
 *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

 if (argc != 4)
 {
 fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "begin");
 PQclear(res);
 printf("importing file \"%s\" ...\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);
 if (lobjOid == 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 else
 {
 printf("\tas large object %u.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object with X's\n");
 overwrite(conn, lobjOid, 1000, 1000);

 printf("exporting large object to file \"%s\" ...\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */
 if (lo_export(conn, lobjOid, out_filename) < 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 }

 res = PQexec(conn, "end");
 PQclear(res);
 PQfinish(conn);
 return 0;
}

Chapter 36. ECPG — Embedded SQL in C

 This chapter describes the embedded SQL package
 for PostgreSQL™. It was written by
 Linus Tolke (<linus@epact.se>) and Michael Meskes
 (<meskes@postgresql.org>). Originally it was written to work with
 C. It also works with C++, but
 it does not recognize all C++ constructs yet.

 This documentation is quite incomplete. But since this
 interface is standardized, additional information can be found in
 many resources about SQL.

The Concept

 An embedded SQL program consists of code written in an ordinary
 programming language, in this case C, mixed with SQL commands in
 specially marked sections. To build the program, the source code (*.pgc)
 is first passed through the embedded SQL preprocessor, which converts it
 to an ordinary C program (*.c), and afterwards it can be processed by a C
 compiler. (For details about the compiling and linking see the section called “Processing Embedded SQL Programs”.)
 Converted ECPG applications call functions in the libpq library
 through the embedded SQL library (ecpglib), and communicate with
 the PostgreSQL server using the normal frontend-backend protocol.

 Embedded SQL has advantages over other methods
 for handling SQL commands from C code. First, it
 takes care of the tedious passing of information to and from
 variables in your C program. Second, the SQL
 code in the program is checked at build time for syntactical
 correctness. Third, embedded SQL in C is
 specified in the SQL standard and supported by
 many other SQL database systems. The
 PostgreSQL™ implementation is designed to match this
 standard as much as possible, and it is usually possible to port
 embedded SQL programs written for other SQL
 databases to PostgreSQL™ with relative
 ease.

 As already stated, programs written for the embedded
 SQL interface are normal C programs with special
 code inserted to perform database-related actions. This special
 code always has the form:

EXEC SQL ...;

 These statements syntactically take the place of a C statement.
 Depending on the particular statement, they can appear at the
 global level or within a function.

 Embedded
 SQL statements follow the case-sensitivity rules of
 normal SQL code, and not those of C. Also they allow nested
 C-style comments as per the SQL standard. The C part of the
 program, however, follows the C standard of not accepting nested comments.
 Embedded SQL statements likewise use SQL rules, not
 C rules, for parsing quoted strings and identifiers.
 (See the section called “String Constants” and
 the section called “Identifiers and Key Words” respectively. Note that
 ECPG assumes that standard_conforming_strings
 is on.)
 Of course, the C part of the program follows C quoting rules.

 The following sections explain all the embedded SQL statements.

Managing Database Connections

 This section describes how to open, close, and switch database
 connections.

Connecting to the Database Server

 One connects to a database using the following statement:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

 The target can be specified in the
 following ways:

	
 dbname[@hostname][:port]

	
 tcp:postgresql://hostname[:port][/dbname][?options]

	
 unix:postgresql://localhost[:port][/dbname][?options]

	
 an SQL string literal containing one of the above forms

	
 a reference to a character variable containing one of the above forms (see examples)

	
 DEFAULT

 The connection target DEFAULT initiates a connection
 to the default database under the default user name. No separate
 user name or connection name can be specified in that case.

 If you specify the connection target directly (that is, not as a string
 literal or variable reference), then the components of the target are
 passed through normal SQL parsing; this means that, for example,
 the hostname must look like one or more SQL
 identifiers separated by dots, and those identifiers will be
 case-folded unless double-quoted. Values of
 any options must be SQL identifiers,
 integers, or variable references. Of course, you can put nearly
 anything into an SQL identifier by double-quoting it.
 In practice, it is probably less error-prone to use a (single-quoted)
 string literal or a variable reference than to write the connection
 target directly.

 There are also different ways to specify the user name:

	
 username

	
 username/password

	
 username IDENTIFIED BY password

	
 username USING password

 As above, the parameters username and
 password can be an SQL identifier, an
 SQL string literal, or a reference to a character variable.

 If the connection target includes any options,
 those consist of
 keyword=value
 specifications separated by ampersands (&).
 The allowed key words are the same ones recognized
 by libpq (see
 the section called “Parameter Key Words”). Spaces are ignored before
 any keyword or value,
 though not within or after one. Note that there is no way to
 write & within a value.

 Notice that when specifying a socket connection
 (with the unix: prefix), the host name must be
 exactly localhost. To select a non-default
 socket directory, write the directory's pathname as the value of
 a host option in
 the options part of the target.

 The connection-name is used to handle
 multiple connections in one program. It can be omitted if a
 program uses only one connection. The most recently opened
 connection becomes the current connection, which is used by default
 when an SQL statement is to be executed (see later in this
 chapter).

 Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO tcp:postgresql://sql.mydomain.com/mydb AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
 ...
EXEC SQL CONNECT TO :target USER :user USING :passwd;
/* or EXEC SQL CONNECT TO :target USER :user/:passwd; */

 The last example makes use of the feature referred to above as
 character variable references. You will see in later sections how C
 variables can be used in SQL statements when you prefix them with a
 colon.

 Be advised that the format of the connection target is not
 specified in the SQL standard. So if you want to develop portable
 applications, you might want to use something based on the last
 example above to encapsulate the connection target string
 somewhere.

 If untrusted users have access to a database that has not adopted a
 secure schema usage pattern,
 begin each session by removing publicly-writable schemas
 from search_path. For example,
 add options=-c search_path=
 to options, or
 issue EXEC SQL SELECT pg_catalog.set_config('search_path', '',
 false); after connecting. This consideration is not specific to
 ECPG; it applies to every interface for executing arbitrary SQL commands.

Choosing a Connection

 SQL statements in embedded SQL programs are by default executed on
 the current connection, that is, the most recently opened one. If
 an application needs to manage multiple connections, then there are
 three ways to handle this.

 The first option is to explicitly choose a connection for each SQL
 statement, for example:

EXEC SQL AT connection-name SELECT ...;

 This option is particularly suitable if the application needs to
 use several connections in mixed order.

 If your application uses multiple threads of execution, they cannot share a
 connection concurrently. You must either explicitly control access to the connection
 (using mutexes) or use a connection for each thread.

 The second option is to execute a statement to switch the current
 connection. That statement is:

EXEC SQL SET CONNECTION connection-name;

 This option is particularly convenient if many statements are to be
 executed on the same connection.

 Here is an example program managing multiple database connections:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
EXEC SQL END DECLARE SECTION;

int
main()
{
 EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* This query would be executed in the last opened database "testdb3". */
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb3)\n", dbname);

 /* Using "AT" to run a query in "testdb2" */
 EXEC SQL AT con2 SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb2)\n", dbname);

 /* Switch the current connection to "testdb1". */
 EXEC SQL SET CONNECTION con1;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb1)\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

 This example would produce this output:

current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)

 The third option is to declare an SQL identifier linked to
 the connection, for example:

EXEC SQL AT connection-name DECLARE statement-name STATEMENT;
EXEC SQL PREPARE statement-name FROM :dyn-string;

 Once you link an SQL identifier to a connection, you execute dynamic SQL
 without an AT clause. Note that this option behaves like preprocessor
 directives, therefore the link is enabled only in the file.

 Here is an example program using this option:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
char dbname[128];
char *dyn_sql = "SELECT current_database()";
EXEC SQL END DECLARE SECTION;

int main(){
 EXEC SQL CONNECT TO postgres AS con1;
 EXEC SQL CONNECT TO testdb AS con2;
 EXEC SQL AT con1 DECLARE stmt STATEMENT;
 EXEC SQL PREPARE stmt FROM :dyn_sql;
 EXEC SQL EXECUTE stmt INTO :dbname;
 printf("%s\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

 This example would produce this output, even if the default connection is testdb:

postgres

Closing a Connection

 To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

 The connection can be specified
 in the following ways:

	
 connection-name

	
 CURRENT

	
 ALL

 If no connection name is specified, the current connection is
 closed.

 It is good style that an application always explicitly disconnect
 from every connection it opened.

Running SQL Commands

 Any SQL command can be run from within an embedded SQL application.
 Below are some examples of how to do that.

Executing SQL Statements

 Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

 Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad');
EXEC SQL COMMIT;

 Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

 Updates:

EXEC SQL UPDATE foo
 SET ascii = 'foobar'
 WHERE number = 9999;
EXEC SQL COMMIT;

 SELECT statements that return a single result
 row can also be executed using
 EXEC SQL directly. To handle result sets with
 multiple rows, an application has to use a cursor;
 see the section called “Using Cursors” below. (As a special case, an
 application can fetch multiple rows at once into an array host
 variable; see the section called “Arrays”.)

 Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad';

 Also, a configuration parameter can be retrieved with the
 SHOW command:

EXEC SQL SHOW search_path INTO :var;

 The tokens of the form
 :something are
 host variables, that is, they refer to
 variables in the C program. They are explained in the section called “Using Host Variables”.

Using Cursors

 To retrieve a result set holding multiple rows, an application has
 to declare a cursor and fetch each row from the cursor. The steps
 to use a cursor are the following: declare a cursor, open it, fetch
 a row from the cursor, repeat, and finally close it.

 Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

 For more details about declaring a cursor, see DECLARE; for more details about fetching rows from a
 cursor, see FETCH(7).

Note

 The ECPG DECLARE command does not actually
 cause a statement to be sent to the PostgreSQL backend. The
 cursor is opened in the backend (using the
 backend's DECLARE command) at the point when
 the OPEN command is executed.

Managing Transactions

 In the default mode, statements are committed only when
 EXEC SQL COMMIT is issued. The embedded SQL
 interface also supports autocommit of transactions (similar to
 psql's default behavior) via the -t
 command-line option to ecpg (see ecpg(1)) or via the EXEC SQL SET AUTOCOMMIT TO
 ON statement. In autocommit mode, each command is
 automatically committed unless it is inside an explicit transaction
 block. This mode can be explicitly turned off using EXEC
 SQL SET AUTOCOMMIT TO OFF.

 The following transaction management commands are available:

	EXEC SQL COMMIT
	
 Commit an in-progress transaction.

	EXEC SQL ROLLBACK
	
 Roll back an in-progress transaction.

	EXEC SQL PREPARE TRANSACTION transaction_id
	
 Prepare the current transaction for two-phase commit.

	EXEC SQL COMMIT PREPARED transaction_id
	
 Commit a transaction that is in prepared state.

	EXEC SQL ROLLBACK PREPARED transaction_id
	
 Roll back a transaction that is in prepared state.

	EXEC SQL SET AUTOCOMMIT TO ON
	
 Enable autocommit mode.

	EXEC SQL SET AUTOCOMMIT TO OFF
	
 Disable autocommit mode. This is the default.

Prepared Statements

 When the values to be passed to an SQL statement are not known at
 compile time, or the same statement is going to be used many
 times, then prepared statements can be useful.

 The statement is prepared using the
 command PREPARE. For the values that are not
 known yet, use the
 placeholder “?”:

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?";

 If a statement returns a single row, the application can
 call EXECUTE after
 PREPARE to execute the statement, supplying the
 actual values for the placeholders with a USING
 clause:

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;

 If a statement returns multiple rows, the application can use a
 cursor declared based on the prepared statement. To bind input
 parameters, the cursor must be opened with
 a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)
{
 EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
 ...
}
EXEC SQL CLOSE foo_bar;

 When you don't need the prepared statement anymore, you should
 deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

 For more details about PREPARE,
 see PREPARE. Also
 see the section called “Dynamic SQL” for more details about using
 placeholders and input parameters.

Using Host Variables

 In the section called “Running SQL Commands” you saw how you can execute SQL
 statements from an embedded SQL program. Some of those statements
 only used fixed values and did not provide a way to insert
 user-supplied values into statements or have the program process
 the values returned by the query. Those kinds of statements are
 not really useful in real applications. This section explains in
 detail how you can pass data between your C program and the
 embedded SQL statements using a simple mechanism called
 host variables. In an embedded SQL program we
 consider the SQL statements to be guests in the C
 program code which is the host language. Therefore
 the variables of the C program are called host
 variables.

 Another way to exchange values between PostgreSQL backends and ECPG
 applications is the use of SQL descriptors, described
 in the section called “Using Descriptor Areas”.

Overview

 Passing data between the C program and the SQL statements is
 particularly simple in embedded SQL. Instead of having the
 program paste the data into the statement, which entails various
 complications, such as properly quoting the value, you can simply
 write the name of a C variable into the SQL statement, prefixed by
 a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);

 This statement refers to two C variables named
 v1 and v2 and also uses a
 regular SQL string literal, to illustrate that you are not
 restricted to use one kind of data or the other.

 This style of inserting C variables in SQL statements works
 anywhere a value expression is expected in an SQL statement.

Declare Sections

 To pass data from the program to the database, for example as
 parameters in a query, or to pass data from the database back to
 the program, the C variables that are intended to contain this
 data need to be declared in specially marked sections, so the
 embedded SQL preprocessor is made aware of them.

 This section starts with:

EXEC SQL BEGIN DECLARE SECTION;

 and ends with:

EXEC SQL END DECLARE SECTION;

 Between those lines, there must be normal C variable declarations,
 such as:

int x = 4;
char foo[16], bar[16];

 As you can see, you can optionally assign an initial value to the variable.
 The variable's scope is determined by the location of its declaring
 section within the program.
 You can also declare variables with the following syntax which implicitly
 creates a declare section:

EXEC SQL int i = 4;

 You can have as many declare sections in a program as you like.

 The declarations are also echoed to the output file as normal C
 variables, so there's no need to declare them again. Variables
 that are not intended to be used in SQL commands can be declared
 normally outside these special sections.

 The definition of a structure or union also must be listed inside
 a DECLARE section. Otherwise the preprocessor cannot
 handle these types since it does not know the definition.

Retrieving Query Results

 Now you should be able to pass data generated by your program into
 an SQL command. But how do you retrieve the results of a query?
 For that purpose, embedded SQL provides special variants of the
 usual commands SELECT and
 FETCH. These commands have a special
 INTO clause that specifies which host variables
 the retrieved values are to be stored in.
 SELECT is used for a query that returns only
 single row, and FETCH is used for a query that
 returns multiple rows, using a cursor.

 Here is an example:

/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

 So the INTO clause appears between the select
 list and the FROM clause. The number of
 elements in the select list and the list after
 INTO (also called the target list) must be
 equal.

 Here is an example using the command FETCH:

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
 ...
 EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
 ...
} while (...);

 Here the INTO clause appears after all the
 normal clauses.

Type Mapping

 When ECPG applications exchange values between the PostgreSQL
 server and the C application, such as when retrieving query
 results from the server or executing SQL statements with input
 parameters, the values need to be converted between PostgreSQL
 data types and host language variable types (C language data
 types, concretely). One of the main points of ECPG is that it
 takes care of this automatically in most cases.

 In this respect, there are two kinds of data types: Some simple
 PostgreSQL data types, such as integer
 and text, can be read and written by the application
 directly. Other PostgreSQL data types, such
 as timestamp and numeric can only be
 accessed through special library functions; see
 the section called “Accessing Special Data Types”.

 Table 36.1, “Mapping Between PostgreSQL Data Types and C Variable Types” shows which PostgreSQL
 data types correspond to which C data types. When you wish to
 send or receive a value of a given PostgreSQL data type, you
 should declare a C variable of the corresponding C data type in
 the declare section.

Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types
	PostgreSQL data type	Host variable type
	smallint	short
	integer	int
	bigint	long long int
	decimal	decimal[a]
	numeric	numeric[a]
	real	float
	double precision	double
	smallserial	short
	serial	int
	bigserial	long long int
	oid	unsigned int
	character(n), varchar(n), text	char[n+1], VARCHAR[n+1]
	name	char[NAMEDATALEN]
	timestamp	timestamp[a]
	interval	interval[a]
	date	date[a]
	boolean	bool[b]
	bytea	char *, bytea[n]
	[a] This type can only be accessed through special library functions; see the section called “Accessing Special Data Types”.

[b] declared in ecpglib.h if not native

Handling Character Strings

 To handle SQL character string data types, such
 as varchar and text, there are two
 possible ways to declare the host variables.

 One way is using char[], an array
 of char, which is the most common way to handle
 character data in C.

EXEC SQL BEGIN DECLARE SECTION;
 char str[50];
EXEC SQL END DECLARE SECTION;

 Note that you have to take care of the length yourself. If you
 use this host variable as the target variable of a query which
 returns a string with more than 49 characters, a buffer overflow
 occurs.

 The other way is using the VARCHAR type, which is a
 special type provided by ECPG. The definition on an array of
 type VARCHAR is converted into a
 named struct for every variable. A declaration like:

VARCHAR var[180];

 is converted into:

struct varchar_var { int len; char arr[180]; } var;

 The member arr hosts the string
 including a terminating zero byte. Thus, to store a string in
 a VARCHAR host variable, the host variable has to be
 declared with the length including the zero byte terminator. The
 member len holds the length of the
 string stored in the arr without the
 terminating zero byte. When a host variable is used as input for
 a query, if strlen(arr)
 and len are different, the shorter one
 is used.

 VARCHAR can be written in upper or lower case, but
 not in mixed case.

 char and VARCHAR host variables can
 also hold values of other SQL types, which will be stored in
 their string forms.

Accessing Special Data Types

 ECPG contains some special types that help you to interact easily
 with some special data types from the PostgreSQL server. In
 particular, it has implemented support for the
 numeric, decimal, date, timestamp,
 and interval types. These data types cannot usefully be
 mapped to primitive host variable types (such
 as int, long long int,
 or char[]), because they have a complex internal
 structure. Applications deal with these types by declaring host
 variables in special types and accessing them using functions in
 the pgtypes library. The pgtypes library, described in detail
 in the section called “pgtypes Library” contains basic functions to deal
 with those types, such that you do not need to send a query to
 the SQL server just for adding an interval to a time stamp for
 example.

 The follow subsections describe these special data types. For
 more details about pgtypes library functions,
 see the section called “pgtypes Library”.

timestamp, date

 Here is a pattern for handling timestamp variables
 in the ECPG host application.

 First, the program has to include the header file for the
 timestamp type:

#include <pgtypes_timestamp.h>

 Next, declare a host variable as type timestamp in
 the declare section:

EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;

 And after reading a value into the host variable, process it
 using pgtypes library functions. In following example, the
 timestamp value is converted into text (ASCII) form
 with the PGTYPEStimestamp_to_asc()
 function:

EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));

 This example will show some result like following:

ts = 2010-06-27 18:03:56.949343

 In addition, the DATE type can be handled in the same way. The
 program has to include pgtypes_date.h, declare a host variable
 as the date type and convert a DATE value into a text form using
 PGTYPESdate_to_asc() function. For more details about the
 pgtypes library functions, see the section called “pgtypes Library”.

interval

 The handling of the interval type is also similar
 to the timestamp and date types. It
 is required, however, to allocate memory for
 an interval type value explicitly. In other words,
 the memory space for the variable has to be allocated in the
 heap memory, not in the stack memory.

 Here is an example program:

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 interval *in;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 in = PGTYPESinterval_new();
 EXEC SQL SELECT '1 min'::interval INTO :in;
 printf("interval = %s\n", PGTYPESinterval_to_asc(in));
 PGTYPESinterval_free(in);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

numeric, decimal

 The handling of the numeric
 and decimal types is similar to the
 interval type: It requires defining a pointer,
 allocating some memory space on the heap, and accessing the
 variable using the pgtypes library functions. For more details
 about the pgtypes library functions,
 see the section called “pgtypes Library”.

 No functions are provided specifically for
 the decimal type. An application has to convert it
 to a numeric variable using a pgtypes library
 function to do further processing.

 Here is an example program handling numeric
 and decimal type variables.

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 numeric *num;
 numeric *num2;
 decimal *dec;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 num = PGTYPESnumeric_new();
 dec = PGTYPESdecimal_new();

 EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

 /* Convert decimal to numeric to show a decimal value. */
 num2 = PGTYPESnumeric_new();
 PGTYPESnumeric_from_decimal(dec, num2);

 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

 PGTYPESnumeric_free(num2);
 PGTYPESdecimal_free(dec);
 PGTYPESnumeric_free(num);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

bytea

 The handling of the bytea type is similar to
 that of VARCHAR. The definition on an array of type
 bytea is converted into a named struct for every
 variable. A declaration like:

bytea var[180];

 is converted into:

struct bytea_var { int len; char arr[180]; } var;

 The member arr hosts binary format
 data. It can also handle '\0' as part of
 data, unlike VARCHAR.
 The data is converted from/to hex format and sent/received by
 ecpglib.

Note

 bytea variable can be used only when
 bytea_output is set to hex.

Host Variables with Nonprimitive Types

 As a host variable you can also use arrays, typedefs, structs, and
 pointers.

Arrays

 There are two use cases for arrays as host variables. The first
 is a way to store some text string in char[]
 or VARCHAR[], as
 explained in the section called “Handling Character Strings”. The second use case is to
 retrieve multiple rows from a query result without using a
 cursor. Without an array, to process a query result consisting
 of multiple rows, it is required to use a cursor and
 the FETCH command. But with array host
 variables, multiple rows can be received at once. The length of
 the array has to be defined to be able to accommodate all rows,
 otherwise a buffer overflow will likely occur.

 Following example scans the pg_database
 system table and shows all OIDs and names of the available
 databases:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int dbid[8];
 char dbname[8][16];
 int i;
EXEC SQL END DECLARE SECTION;

 memset(dbname, 0, sizeof(char)* 16 * 8);
 memset(dbid, 0, sizeof(int) * 8);

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* Retrieve multiple rows into arrays at once. */
 EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

 for (i = 0; i < 8; i++)
 printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

 This example shows following result. (The exact values depend on
 local circumstances.)

oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=

Structures

 A structure whose member names match the column names of a query
 result, can be used to retrieve multiple columns at once. The
 structure enables handling multiple column values in a single
 host variable.

 The following example retrieves OIDs, names, and sizes of the
 available databases from the pg_database
 system table and using
 the pg_database_size() function. In this
 example, a structure variable dbinfo_t with
 members whose names match each column in
 the SELECT result is used to retrieve one
 result row without putting multiple host variables in
 the FETCH statement.

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 long long int size;
 } dbinfo_t;

 dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, dbval.size);
 }

 EXEC SQL CLOSE cur1;

 This example shows following result. (The exact values depend on
 local circumstances.)

oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012

 Structure host variables “absorb” as many columns
 as the structure as fields. Additional columns can be assigned
 to other host variables. For example, the above program could
 also be restructured like this, with the size
 variable outside the structure:

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 } dbinfo_t;

 dbinfo_t dbval;
 long long int size;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
 }

 EXEC SQL CLOSE cur1;

Typedefs

 Use the typedef keyword to map new types to already
 existing types.

EXEC SQL BEGIN DECLARE SECTION;
 typedef char mychartype[40];
 typedef long serial_t;
EXEC SQL END DECLARE SECTION;

 Note that you could also use:

EXEC SQL TYPE serial_t IS long;

 This declaration does not need to be part of a declare section;
 that is, you can also write typedefs as normal C statements.

 Any word you declare as a typedef cannot be used as an SQL keyword
 in EXEC SQL commands later in the same program.
 For example, this won't work:

EXEC SQL BEGIN DECLARE SECTION;
 typedef int start;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL START TRANSACTION;

 ECPG will report a syntax error for START
 TRANSACTION, because it no longer
 recognizes START as an SQL keyword,
 only as a typedef.
 (If you have such a conflict, and renaming the typedef
 seems impractical, you could write the SQL command
 using dynamic SQL.)

Note

 In PostgreSQL™ releases before v16, use
 of SQL keywords as typedef names was likely to result in syntax
 errors associated with use of the typedef itself, rather than use
 of the name as an SQL keyword. The new behavior is less likely to
 cause problems when an existing ECPG application is recompiled in
 a new PostgreSQL™ release with new
 keywords.

Pointers

 You can declare pointers to the most common types. Note however
 that you cannot use pointers as target variables of queries
 without auto-allocation. See the section called “Using Descriptor Areas”
 for more information on auto-allocation.

EXEC SQL BEGIN DECLARE SECTION;
 int *intp;
 char **charp;
EXEC SQL END DECLARE SECTION;

Handling Nonprimitive SQL Data Types

 This section contains information on how to handle nonscalar and
 user-defined SQL-level data types in ECPG applications. Note that
 this is distinct from the handling of host variables of
 nonprimitive types, described in the previous section.

Arrays

 Multi-dimensional SQL-level arrays are not directly supported in ECPG.
 One-dimensional SQL-level arrays can be mapped into C array host
 variables and vice-versa. However, when creating a statement ecpg does
 not know the types of the columns, so that it cannot check if a C array
 is input into a corresponding SQL-level array. When processing the
 output of an SQL statement, ecpg has the necessary information and thus
 checks if both are arrays.

 If a query accesses elements of an array
 separately, then this avoids the use of arrays in ECPG. Then, a
 host variable with a type that can be mapped to the element type
 should be used. For example, if a column type is array of
 integer, a host variable of type int
 can be used. Also if the element type is varchar
 or text, a host variable of type char[]
 or VARCHAR[] can be used.

 Here is an example. Assume the following table:

CREATE TABLE t3 (
 ii integer[]
);

testdb=> SELECT * FROM t3;
 ii

 {1,2,3,4,5}
(1 row)

 The following example program retrieves the 4th element of the
 array and stores it into a host variable of
 type int:

EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii ;
 printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;

 This example shows the following result:

ii=4

 To map multiple array elements to the multiple elements in an
 array type host variables each element of array column and each
 element of the host variable array have to be managed separately,
 for example:

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
 ...
}

 Note again that

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* WRONG */
 EXEC SQL FETCH FROM cur1 INTO :ii_a;
 ...
}

 would not work correctly in this case, because you cannot map an
 array type column to an array host variable directly.

 Another workaround is to store arrays in their external string
 representation in host variables of type char[]
 or VARCHAR[]. For more details about this
 representation, see the section called “Array Value Input”. Note that
 this means that the array cannot be accessed naturally as an
 array in the host program (without further processing that parses
 the text representation).

Composite Types

 Composite types are not directly supported in ECPG, but an easy workaround is possible.
 The
 available workarounds are similar to the ones described for
 arrays above: Either access each attribute separately or use the
 external string representation.

 For the following examples, assume the following type and table:

CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ((256, 'PostgreSQL'));

 The most obvious solution is to access each attribute separately.
 The following program retrieves data from the example table by
 selecting each attribute of the type comp_t
 separately:

EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Fetch each element of the composite type column into host variables. */
 EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

 printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;

 To enhance this example, the host variables to store values in
 the FETCH command can be gathered into one
 structure. For more details about the host variable in the
 structure form, see the section called “Structures”.
 To switch to the structure, the example can be modified as below.
 The two host variables, intval
 and textval, become members of
 the comp_t structure, and the structure
 is specified on the FETCH command.

EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
 int intval;
 varchar textval[33];
} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;

 Although a structure is used in the FETCH
 command, the attribute names in the SELECT
 clause are specified one by one. This can be enhanced by using
 a * to ask for all attributes of the composite
 type value.

...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...

 This way, composite types can be mapped into structures almost
 seamlessly, even though ECPG does not understand the composite
 type itself.

 Finally, it is also possible to store composite type values in
 their external string representation in host variables of
 type char[] or VARCHAR[]. But that
 way, it is not easily possible to access the fields of the value
 from the host program.

User-Defined Base Types

 New user-defined base types are not directly supported by ECPG.
 You can use the external string representation and host variables
 of type char[] or VARCHAR[], and this
 solution is indeed appropriate and sufficient for many types.

 Here is an example using the data type complex from
 the example in the section called “User-Defined Types”. The external string
 representation of that type is (%f,%f),
 which is defined in the
 functions complex_in()
 and complex_out()
 in the section called “User-Defined Types”. The following example inserts the
 complex type values (1,1)
 and (3,3) into the
 columns a and b, and select
 them from the table after that.

EXEC SQL BEGIN DECLARE SECTION;
 varchar a[64];
 varchar b[64];
EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
 EXEC SQL OPEN cur1;

 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH FROM cur1 INTO :a, :b;
 printf("a=%s, b=%s\n", a.arr, b.arr);
 }

 EXEC SQL CLOSE cur1;

 This example shows following result:

a=(1,1), b=(3,3)

 Another workaround is avoiding the direct use of the user-defined
 types in ECPG and instead create a function or cast that converts
 between the user-defined type and a primitive type that ECPG can
 handle. Note, however, that type casts, especially implicit
 ones, should be introduced into the type system very carefully.

 For example,

CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;

 After this definition, the following

EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b), create_complex(:c, :d));

 has the same effect as

EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');

Indicators

 The examples above do not handle null values. In fact, the
 retrieval examples will raise an error if they fetch a null value
 from the database. To be able to pass null values to the database
 or retrieve null values from the database, you need to append a
 second host variable specification to each host variable that
 contains data. This second host variable is called the
 indicator and contains a flag that tells
 whether the datum is null, in which case the value of the real
 host variable is ignored. Here is an example that handles the
 retrieval of null values correctly:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

 The indicator variable val_ind will be zero if
 the value was not null, and it will be negative if the value was
 null. (See the section called “Oracle™ Compatibility Mode” to enable
 Oracle-specific behavior.)

 The indicator has another function: if the indicator value is
 positive, it means that the value is not null, but it was
 truncated when it was stored in the host variable.

 If the argument -r no_indicator is passed to
 the preprocessor ecpg, it works in
 “no-indicator” mode. In no-indicator mode, if no
 indicator variable is specified, null values are signaled (on
 input and output) for character string types as empty string and
 for integer types as the lowest possible value for type (for
 example, INT_MIN for int).

Dynamic SQL

 In many cases, the particular SQL statements that an application
 has to execute are known at the time the application is written.
 In some cases, however, the SQL statements are composed at run time
 or provided by an external source. In these cases you cannot embed
 the SQL statements directly into the C source code, but there is a
 facility that allows you to call arbitrary SQL statements that you
 provide in a string variable.

Executing Statements without a Result Set

 The simplest way to execute an arbitrary SQL statement is to use
 the command EXECUTE IMMEDIATE. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

 EXECUTE IMMEDIATE can be used for SQL
 statements that do not return a result set (e.g.,
 DDL, INSERT, UPDATE,
 DELETE). You cannot execute statements that
 retrieve data (e.g., SELECT) this way. The
 next section describes how to do that.

Executing a Statement with Input Parameters

 A more powerful way to execute arbitrary SQL statements is to
 prepare them once and execute the prepared statement as often as
 you like. It is also possible to prepare a generalized version of
 a statement and then execute specific versions of it by
 substituting parameters. When preparing the statement, write
 question marks where you want to substitute parameters later. For
 example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt USING 42, 'foobar';

 When you don't need the prepared statement anymore, you should
 deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

Executing a Statement with a Result Set

 To execute an SQL statement with a single result row,
 EXECUTE can be used. To save the result, add
 an INTO clause.

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;

 An EXECUTE command can have an
 INTO clause, a USING clause,
 both, or neither.

 If a query is expected to return more than one result row, a
 cursor should be used, as in the following example.
 (See the section called “Using Cursors” for more details about the
 cursor.)

EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "
 " FROM pg_database d, pg_user u "
 " WHERE d.datdba = u.usesysid";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;
EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
 printf("dbaname=%s, datname=%s\n", dbaname, datname);
}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

pgtypes Library

 The pgtypes library maps PostgreSQL™ database
 types to C equivalents that can be used in C programs. It also offers
 functions to do basic calculations with those types within C, i.e., without
 the help of the PostgreSQL™ server. See the
 following example:

EXEC SQL BEGIN DECLARE SECTION;
 date date1;
 timestamp ts1, tsout;
 interval iv1;
 char *out;
EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE d=:date1;
PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
PGTYPESchar_free(out);

Character Strings

 Some functions such as PGTYPESnumeric_to_asc return
 a pointer to a freshly allocated character string. These results should be
 freed with PGTYPESchar_free instead of
 free. (This is important only on Windows, where
 memory allocation and release sometimes need to be done by the same
 library.)

The numeric Type

 The numeric type offers to do calculations with arbitrary precision. See
 the section called “Numeric Types” for the equivalent type in the
 PostgreSQL™ server. Because of the arbitrary precision this
 variable needs to be able to expand and shrink dynamically. That's why you
 can only create numeric variables on the heap, by means of the
 PGTYPESnumeric_new and PGTYPESnumeric_free
 functions. The decimal type, which is similar but limited in precision,
 can be created on the stack as well as on the heap.

 The following functions can be used to work with the numeric type:

	PGTYPESnumeric_new
	
 Request a pointer to a newly allocated numeric variable.

numeric *PGTYPESnumeric_new(void);

	PGTYPESnumeric_free
	
 Free a numeric type, release all of its memory.

void PGTYPESnumeric_free(numeric *var);

	PGTYPESnumeric_from_asc
	
 Parse a numeric type from its string notation.

numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);

 Valid formats are for example:
 -2,
 .794,
 +3.44,
 592.49E07 or
 -32.84e-4.
 If the value could be parsed successfully, a valid pointer is returned,
 else the NULL pointer. At the moment ECPG always parses the complete
 string and so it currently does not support to store the address of the
 first invalid character in *endptr. You can safely
 set endptr to NULL.

	PGTYPESnumeric_to_asc
	
 Returns a pointer to a string allocated by malloc that contains the string
 representation of the numeric type num.

char *PGTYPESnumeric_to_asc(numeric *num, int dscale);

 The numeric value will be printed with dscale decimal
 digits, with rounding applied if necessary.
 The result must be freed with PGTYPESchar_free().

	PGTYPESnumeric_add
	
 Add two numeric variables into a third one.

int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric *result);

 The function adds the variables var1 and
 var2 into the result variable
 result.
 The function returns 0 on success and -1 in case of error.

	PGTYPESnumeric_sub
	
 Subtract two numeric variables and return the result in a third one.

int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric *result);

 The function subtracts the variable var2 from
 the variable var1. The result of the operation is
 stored in the variable result.
 The function returns 0 on success and -1 in case of error.

	PGTYPESnumeric_mul
	
 Multiply two numeric variables and return the result in a third one.

int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric *result);

 The function multiplies the variables var1 and
 var2. The result of the operation is stored in the
 variable result.
 The function returns 0 on success and -1 in case of error.

	PGTYPESnumeric_div
	
 Divide two numeric variables and return the result in a third one.

int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric *result);

 The function divides the variables var1 by
 var2. The result of the operation is stored in the
 variable result.
 The function returns 0 on success and -1 in case of error.

	PGTYPESnumeric_cmp
	
 Compare two numeric variables.

int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)

 This function compares two numeric variables. In case of error,
 INT_MAX is returned. On success, the function
 returns one of three possible results:

	
 1, if var1 is bigger than var2

	
 -1, if var1 is smaller than var2

	
 0, if var1 and var2 are equal

	PGTYPESnumeric_from_int
	
 Convert an int variable to a numeric variable.

int PGTYPESnumeric_from_int(signed int int_val, numeric *var);

 This function accepts a variable of type signed int and stores it
 in the numeric variable var. Upon success, 0 is returned and
 -1 in case of a failure.

	PGTYPESnumeric_from_long
	
 Convert a long int variable to a numeric variable.

int PGTYPESnumeric_from_long(signed long int long_val, numeric *var);

 This function accepts a variable of type signed long int and stores it
 in the numeric variable var. Upon success, 0 is returned and
 -1 in case of a failure.

	PGTYPESnumeric_copy
	
 Copy over one numeric variable into another one.

int PGTYPESnumeric_copy(numeric *src, numeric *dst);

 This function copies over the value of the variable that
 src points to into the variable that dst
 points to. It returns 0 on success and -1 if an error occurs.

	PGTYPESnumeric_from_double
	
 Convert a variable of type double to a numeric.

int PGTYPESnumeric_from_double(double d, numeric *dst);

 This function accepts a variable of type double and stores the result
 in the variable that dst points to. It returns 0 on success
 and -1 if an error occurs.

	PGTYPESnumeric_to_double
	
 Convert a variable of type numeric to double.

int PGTYPESnumeric_to_double(numeric *nv, double *dp)

 The function converts the numeric value from the variable that
 nv points to into the double variable that dp points
 to. It returns 0 on success and -1 if an error occurs, including
 overflow. On overflow, the global variable errno will be set
 to PGTYPES_NUM_OVERFLOW additionally.

	PGTYPESnumeric_to_int
	
 Convert a variable of type numeric to int.

int PGTYPESnumeric_to_int(numeric *nv, int *ip);

 The function converts the numeric value from the variable that
 nv points to into the integer variable that ip
 points to. It returns 0 on success and -1 if an error occurs, including
 overflow. On overflow, the global variable errno will be set
 to PGTYPES_NUM_OVERFLOW additionally.

	PGTYPESnumeric_to_long
	
 Convert a variable of type numeric to long.

int PGTYPESnumeric_to_long(numeric *nv, long *lp);

 The function converts the numeric value from the variable that
 nv points to into the long integer variable that
 lp points to. It returns 0 on success and -1 if an error
 occurs, including overflow. On overflow, the global variable
 errno will be set to PGTYPES_NUM_OVERFLOW
 additionally.

	PGTYPESnumeric_to_decimal
	
 Convert a variable of type numeric to decimal.

int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);

 The function converts the numeric value from the variable that
 src points to into the decimal variable that
 dst points to. It returns 0 on success and -1 if an error
 occurs, including overflow. On overflow, the global variable
 errno will be set to PGTYPES_NUM_OVERFLOW
 additionally.

	PGTYPESnumeric_from_decimal
	
 Convert a variable of type decimal to numeric.

int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);

 The function converts the decimal value from the variable that
 src points to into the numeric variable that
 dst points to. It returns 0 on success and -1 if an error
 occurs. Since the decimal type is implemented as a limited version of
 the numeric type, overflow cannot occur with this conversion.

The date Type

 The date type in C enables your programs to deal with data of the SQL type
 date. See the section called “Date/Time Types” for the equivalent type in the
 PostgreSQL™ server.

 The following functions can be used to work with the date type:

	PGTYPESdate_from_timestamp
	
 Extract the date part from a timestamp.

date PGTYPESdate_from_timestamp(timestamp dt);

 The function receives a timestamp as its only argument and returns the
 extracted date part from this timestamp.

	PGTYPESdate_from_asc
	
 Parse a date from its textual representation.

date PGTYPESdate_from_asc(char *str, char **endptr);

 The function receives a C char* string str and a pointer to
 a C char* string endptr. At the moment ECPG always parses
 the complete string and so it currently does not support to store the
 address of the first invalid character in *endptr.
 You can safely set endptr to NULL.

 Note that the function always assumes MDY-formatted dates and there is
 currently no variable to change that within ECPG.

 Table 36.2, “Valid Input Formats for PGTYPESdate_from_asc” shows the allowed input formats.

Table 36.2. Valid Input Formats for PGTYPESdate_from_asc
	Input	Result
	January 8, 1999	January 8, 1999
	1999-01-08	January 8, 1999
	1/8/1999	January 8, 1999
	1/18/1999	January 18, 1999
	01/02/03	February 1, 2003
	1999-Jan-08	January 8, 1999
	Jan-08-1999	January 8, 1999
	08-Jan-1999	January 8, 1999
	99-Jan-08	January 8, 1999
	08-Jan-99	January 8, 1999
	08-Jan-06	January 8, 2006
	Jan-08-99	January 8, 1999
	19990108	ISO 8601; January 8, 1999
	990108	ISO 8601; January 8, 1999
	1999.008	year and day of year
	J2451187	Julian day
	January 8, 99 BC	year 99 before the Common Era

	PGTYPESdate_to_asc
	
 Return the textual representation of a date variable.

char *PGTYPESdate_to_asc(date dDate);

 The function receives the date dDate as its only parameter.
 It will output the date in the form 1999-01-18, i.e., in the
 YYYY-MM-DD format.
 The result must be freed with PGTYPESchar_free().

	PGTYPESdate_julmdy
	
 Extract the values for the day, the month and the year from a variable
 of type date.

void PGTYPESdate_julmdy(date d, int *mdy);

 The function receives the date d and a pointer to an array
 of 3 integer values mdy. The variable name indicates
 the sequential order: mdy[0] will be set to contain the
 number of the month, mdy[1] will be set to the value of the
 day and mdy[2] will contain the year.

	PGTYPESdate_mdyjul
	
 Create a date value from an array of 3 integers that specify the
 day, the month and the year of the date.

void PGTYPESdate_mdyjul(int *mdy, date *jdate);

 The function receives the array of the 3 integers (mdy) as
 its first argument and as its second argument a pointer to a variable
 of type date that should hold the result of the operation.

	PGTYPESdate_dayofweek
	
 Return a number representing the day of the week for a date value.

int PGTYPESdate_dayofweek(date d);

 The function receives the date variable d as its only
 argument and returns an integer that indicates the day of the week for
 this date.

	
 0 - Sunday

	
 1 - Monday

	
 2 - Tuesday

	
 3 - Wednesday

	
 4 - Thursday

	
 5 - Friday

	
 6 - Saturday

	PGTYPESdate_today
	
 Get the current date.

void PGTYPESdate_today(date *d);

 The function receives a pointer to a date variable (d)
 that it sets to the current date.

	PGTYPESdate_fmt_asc
	
 Convert a variable of type date to its textual representation using a
 format mask.

int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);

 The function receives the date to convert (dDate), the
 format mask (fmtstring) and the string that will hold the
 textual representation of the date (outbuf).

 On success, 0 is returned and a negative value if an error occurred.

 The following literals are the field specifiers you can use:

	
 dd - The number of the day of the month.

	
 mm - The number of the month of the year.

	
 yy - The number of the year as a two digit number.

	
 yyyy - The number of the year as a four digit number.

	
 ddd - The name of the day (abbreviated).

	
 mmm - The name of the month (abbreviated).

 All other characters are copied 1:1 to the output string.

 Table 36.3, “Valid Input Formats for PGTYPESdate_fmt_asc” indicates a few possible formats. This will give
 you an idea of how to use this function. All output lines are based on
 the same date: November 23, 1959.

Table 36.3. Valid Input Formats for PGTYPESdate_fmt_asc
	Format	Result
	mmddyy	112359
	ddmmyy	231159
	yymmdd	591123
	yy/mm/dd	59/11/23
	yy mm dd	59 11 23
	yy.mm.dd	59.11.23
	.mm.yyyy.dd.	.11.1959.23.
	mmm. dd, yyyy	Nov. 23, 1959
	mmm dd yyyy	Nov 23 1959
	yyyy dd mm	1959 23 11
	ddd, mmm. dd, yyyy	Mon, Nov. 23, 1959
	(ddd) mmm. dd, yyyy	(Mon) Nov. 23, 1959

	PGTYPESdate_defmt_asc
	
 Use a format mask to convert a C char* string to a value of type
 date.

int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);

 The function receives a pointer to the date value that should hold the
 result of the operation (d), the format mask to use for
 parsing the date (fmt) and the C char* string containing
 the textual representation of the date (str). The textual
 representation is expected to match the format mask. However you do not
 need to have a 1:1 mapping of the string to the format mask. The
 function only analyzes the sequential order and looks for the literals
 yy or yyyy that indicate the
 position of the year, mm to indicate the position of
 the month and dd to indicate the position of the
 day.

 Table 36.4, “Valid Input Formats for rdefmtdate” indicates a few possible formats. This will give
 you an idea of how to use this function.

Table 36.4. Valid Input Formats for rdefmtdate
	Format	String	Result
	ddmmyy	21-2-54	1954-02-21
	ddmmyy	2-12-54	1954-12-02
	ddmmyy	20111954	1954-11-20
	ddmmyy	130464	1964-04-13
	mmm.dd.yyyy	MAR-12-1967	1967-03-12
	yy/mm/dd	1954, February 3rd	1954-02-03
	mmm.dd.yyyy	041269	1969-04-12
	yy/mm/dd	In the year 2525, in the month of July, mankind will be alive on the 28th day	2525-07-28
	dd-mm-yy	I said on the 28th of July in the year 2525	2525-07-28
	mmm.dd.yyyy	9/14/58	1958-09-14
	yy/mm/dd	47/03/29	1947-03-29
	mmm.dd.yyyy	oct 28 1975	1975-10-28
	mmddyy	Nov 14th, 1985	1985-11-14

The timestamp Type

 The timestamp type in C enables your programs to deal with data of the SQL
 type timestamp. See the section called “Date/Time Types” for the equivalent
 type in the PostgreSQL™ server.

 The following functions can be used to work with the timestamp type:

	PGTYPEStimestamp_from_asc
	
 Parse a timestamp from its textual representation into a timestamp
 variable.

timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);

 The function receives the string to parse (str) and a
 pointer to a C char* (endptr).
 At the moment ECPG always parses
 the complete string and so it currently does not support to store the
 address of the first invalid character in *endptr.
 You can safely set endptr to NULL.

 The function returns the parsed timestamp on success. On error,
 PGTYPESInvalidTimestamp is returned and errno is
 set to PGTYPES_TS_BAD_TIMESTAMP. See PGTYPESInvalidTimestamp for important notes on this value.

 In general, the input string can contain any combination of an allowed
 date specification, a whitespace character and an allowed time
 specification. Note that time zones are not supported by ECPG. It can
 parse them but does not apply any calculation as the
 PostgreSQL™ server does for example. Timezone
 specifiers are silently discarded.

 Table 36.5, “Valid Input Formats for PGTYPEStimestamp_from_asc” contains a few examples for input strings.

Table 36.5. Valid Input Formats for PGTYPEStimestamp_from_asc
	Input	Result
	1999-01-08 04:05:06	1999-01-08 04:05:06
	January 8 04:05:06 1999 PST	1999-01-08 04:05:06
	1999-Jan-08 04:05:06.789-8	1999-01-08 04:05:06.789 (time zone specifier ignored)
	J2451187 04:05-08:00	1999-01-08 04:05:00 (time zone specifier ignored)

	PGTYPEStimestamp_to_asc
	
 Converts a date to a C char* string.

char *PGTYPEStimestamp_to_asc(timestamp tstamp);

 The function receives the timestamp tstamp as
 its only argument and returns an allocated string that contains the
 textual representation of the timestamp.
 The result must be freed with PGTYPESchar_free().

	PGTYPEStimestamp_current
	
 Retrieve the current timestamp.

void PGTYPEStimestamp_current(timestamp *ts);

 The function retrieves the current timestamp and saves it into the
 timestamp variable that ts points to.

	PGTYPEStimestamp_fmt_asc
	
 Convert a timestamp variable to a C char* using a format mask.

int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int str_len, char *fmtstr);

 The function receives a pointer to the timestamp to convert as its
 first argument (ts), a pointer to the output buffer
 (output), the maximal length that has been allocated for
 the output buffer (str_len) and the format mask to
 use for the conversion (fmtstr).

 Upon success, the function returns 0 and a negative value if an
 error occurred.

 You can use the following format specifiers for the format mask. The
 format specifiers are the same ones that are used in the
 strftime function in libc™. Any
 non-format specifier will be copied into the output buffer.

	
 %A - is replaced by national representation of
 the full weekday name.

	
 %a - is replaced by national representation of
 the abbreviated weekday name.

	
 %B - is replaced by national representation of
 the full month name.

	
 %b - is replaced by national representation of
 the abbreviated month name.

	
 %C - is replaced by (year / 100) as decimal
 number; single digits are preceded by a zero.

	
 %c - is replaced by national representation of
 time and date.

	
 %D - is equivalent to
 %m/%d/%y.

	
 %d - is replaced by the day of the month as a
 decimal number (01–31).

	
 %E* %O* - POSIX locale
 extensions. The sequences
 %Ec
 %EC
 %Ex
 %EX
 %Ey
 %EY
 %Od
 %Oe
 %OH
 %OI
 %Om
 %OM
 %OS
 %Ou
 %OU
 %OV
 %Ow
 %OW
 %Oy
 are supposed to provide alternative representations.

 Additionally %OB implemented to represent
 alternative months names (used standalone, without day mentioned).

	
 %e - is replaced by the day of month as a decimal
 number (1–31); single digits are preceded by a blank.

	
 %F - is equivalent to %Y-%m-%d.

	
 %G - is replaced by a year as a decimal number
 with century. This year is the one that contains the greater part of
 the week (Monday as the first day of the week).

	
 %g - is replaced by the same year as in
 %G, but as a decimal number without century
 (00–99).

	
 %H - is replaced by the hour (24-hour clock) as a
 decimal number (00–23).

	
 %h - the same as %b.

	
 %I - is replaced by the hour (12-hour clock) as a
 decimal number (01–12).

	
 %j - is replaced by the day of the year as a
 decimal number (001–366).

	
 %k - is replaced by the hour (24-hour clock) as a
 decimal number (0–23); single digits are preceded by a blank.

	
 %l - is replaced by the hour (12-hour clock) as a
 decimal number (1–12); single digits are preceded by a blank.

	
 %M - is replaced by the minute as a decimal
 number (00–59).

	
 %m - is replaced by the month as a decimal number
 (01–12).

	
 %n - is replaced by a newline.

	
 %O* - the same as %E*.

	
 %p - is replaced by national representation of
 either “ante meridiem” or “post meridiem” as appropriate.

	
 %R - is equivalent to %H:%M.

	
 %r - is equivalent to %I:%M:%S
 %p.

	
 %S - is replaced by the second as a decimal
 number (00–60).

	
 %s - is replaced by the number of seconds since
 the Epoch, UTC.

	
 %T - is equivalent to %H:%M:%S

	
 %t - is replaced by a tab.

	
 %U - is replaced by the week number of the year
 (Sunday as the first day of the week) as a decimal number (00–53).

	
 %u - is replaced by the weekday (Monday as the
 first day of the week) as a decimal number (1–7).

	
 %V - is replaced by the week number of the year
 (Monday as the first day of the week) as a decimal number (01–53).
 If the week containing January 1 has four or more days in the new
 year, then it is week 1; otherwise it is the last week of the
 previous year, and the next week is week 1.

	
 %v - is equivalent to
 %e-%b-%Y.

	
 %W - is replaced by the week number of the year
 (Monday as the first day of the week) as a decimal number (00–53).

	
 %w - is replaced by the weekday (Sunday as the
 first day of the week) as a decimal number (0–6).

	
 %X - is replaced by national representation of
 the time.

	
 %x - is replaced by national representation of
 the date.

	
 %Y - is replaced by the year with century as a
 decimal number.

	
 %y - is replaced by the year without century as a
 decimal number (00–99).

	
 %Z - is replaced by the time zone name.

	
 %z - is replaced by the time zone offset from
 UTC; a leading plus sign stands for east of UTC, a minus sign for
 west of UTC, hours and minutes follow with two digits each and no
 delimiter between them (common form for RFC 822 date headers).

	
 %+ - is replaced by national representation of
 the date and time.

	
 %-* - GNU libc extension. Do not do any padding
 when performing numerical outputs.

	
 $_* - GNU libc extension. Explicitly specify space for padding.

	
 %0* - GNU libc extension. Explicitly specify zero
 for padding.

	
 %% - is replaced by %.

	PGTYPEStimestamp_sub
	
 Subtract one timestamp from another one and save the result in a
 variable of type interval.

int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval *iv);

 The function will subtract the timestamp variable that ts2
 points to from the timestamp variable that ts1 points to
 and will store the result in the interval variable that iv
 points to.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

	PGTYPEStimestamp_defmt_asc
	
 Parse a timestamp value from its textual representation using a
 formatting mask.

int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);

 The function receives the textual representation of a timestamp in the
 variable str as well as the formatting mask to use in the
 variable fmt. The result will be stored in the variable
 that d points to.

 If the formatting mask fmt is NULL, the function will fall
 back to the default formatting mask which is %Y-%m-%d
 %H:%M:%S.

 This is the reverse function to PGTYPEStimestamp_fmt_asc. See the documentation there in
 order to find out about the possible formatting mask entries.

	PGTYPEStimestamp_add_interval
	
 Add an interval variable to a timestamp variable.

int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span, timestamp *tout);

 The function receives a pointer to a timestamp variable tin
 and a pointer to an interval variable span. It adds the
 interval to the timestamp and saves the resulting timestamp in the
 variable that tout points to.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

	PGTYPEStimestamp_sub_interval
	
 Subtract an interval variable from a timestamp variable.

int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span, timestamp *tout);

 The function subtracts the interval variable that span
 points to from the timestamp variable that tin points to
 and saves the result into the variable that tout points
 to.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

The interval Type

 The interval type in C enables your programs to deal with data of the SQL
 type interval. See the section called “Date/Time Types” for the equivalent
 type in the PostgreSQL™ server.

 The following functions can be used to work with the interval type:

	PGTYPESinterval_new
	
 Return a pointer to a newly allocated interval variable.

interval *PGTYPESinterval_new(void);

	PGTYPESinterval_free
	
 Release the memory of a previously allocated interval variable.

void PGTYPESinterval_free(interval *intvl);

	PGTYPESinterval_from_asc
	
 Parse an interval from its textual representation.

interval *PGTYPESinterval_from_asc(char *str, char **endptr);

 The function parses the input string str and returns a
 pointer to an allocated interval variable.
 At the moment ECPG always parses
 the complete string and so it currently does not support to store the
 address of the first invalid character in *endptr.
 You can safely set endptr to NULL.

	PGTYPESinterval_to_asc
	
 Convert a variable of type interval to its textual representation.

char *PGTYPESinterval_to_asc(interval *span);

 The function converts the interval variable that span
 points to into a C char*. The output looks like this example:
 @ 1 day 12 hours 59 mins 10 secs.
 The result must be freed with PGTYPESchar_free().

	PGTYPESinterval_copy
	
 Copy a variable of type interval.

int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);

 The function copies the interval variable that intvlsrc
 points to into the variable that intvldest points to. Note
 that you need to allocate the memory for the destination variable
 before.

The decimal Type

 The decimal type is similar to the numeric type. However it is limited to
 a maximum precision of 30 significant digits. In contrast to the numeric
 type which can be created on the heap only, the decimal type can be
 created either on the stack or on the heap (by means of the functions
 PGTYPESdecimal_new and
 PGTYPESdecimal_free).
 There are a lot of other functions that deal with the decimal type in the
 Informix™ compatibility mode described in the section called “Informix™ Compatibility Mode”.

 The following functions can be used to work with the decimal type and are
 not only contained in the libcompat library.

	PGTYPESdecimal_new
	
 Request a pointer to a newly allocated decimal variable.

decimal *PGTYPESdecimal_new(void);

	PGTYPESdecimal_free
	
 Free a decimal type, release all of its memory.

void PGTYPESdecimal_free(decimal *var);

errno Values of pgtypeslib

	PGTYPES_NUM_BAD_NUMERIC
	
 An argument should contain a numeric variable (or point to a numeric
 variable) but in fact its in-memory representation was invalid.

	PGTYPES_NUM_OVERFLOW
	
 An overflow occurred. Since the numeric type can deal with almost
 arbitrary precision, converting a numeric variable into other types
 might cause overflow.

	PGTYPES_NUM_UNDERFLOW
	
 An underflow occurred. Since the numeric type can deal with almost
 arbitrary precision, converting a numeric variable into other types
 might cause underflow.

	PGTYPES_NUM_DIVIDE_ZERO
	
 A division by zero has been attempted.

	PGTYPES_DATE_BAD_DATE
	
 An invalid date string was passed to
 the PGTYPESdate_from_asc function.

	PGTYPES_DATE_ERR_EARGS
	
 Invalid arguments were passed to the
 PGTYPESdate_defmt_asc function.

	PGTYPES_DATE_ERR_ENOSHORTDATE
	
 An invalid token in the input string was found by the
 PGTYPESdate_defmt_asc function.

	PGTYPES_INTVL_BAD_INTERVAL
	
 An invalid interval string was passed to the
 PGTYPESinterval_from_asc function, or an
 invalid interval value was passed to the
 PGTYPESinterval_to_asc function.

	PGTYPES_DATE_ERR_ENOTDMY
	
 There was a mismatch in the day/month/year assignment in the
 PGTYPESdate_defmt_asc function.

	PGTYPES_DATE_BAD_DAY
	
 An invalid day of the month value was found by
 the PGTYPESdate_defmt_asc function.

	PGTYPES_DATE_BAD_MONTH
	
 An invalid month value was found by
 the PGTYPESdate_defmt_asc function.

	PGTYPES_TS_BAD_TIMESTAMP
	
 An invalid timestamp string pass passed to
 the PGTYPEStimestamp_from_asc function,
 or an invalid timestamp value was passed to
 the PGTYPEStimestamp_to_asc function.

	PGTYPES_TS_ERR_EINFTIME
	
 An infinite timestamp value was encountered in a context that
 cannot handle it.

Special Constants of pgtypeslib

	PGTYPESInvalidTimestamp
	
 A value of type timestamp representing an invalid time stamp. This is
 returned by the function PGTYPEStimestamp_from_asc on
 parse error.
 Note that due to the internal representation of the timestamp data type,
 PGTYPESInvalidTimestamp is also a valid timestamp at
 the same time. It is set to 1899-12-31 23:59:59. In order
 to detect errors, make sure that your application does not only test
 for PGTYPESInvalidTimestamp but also for
 errno != 0 after each call to
 PGTYPEStimestamp_from_asc.

Using Descriptor Areas

 An SQL descriptor area is a more sophisticated method for processing
 the result of a SELECT, FETCH or
 a DESCRIBE statement. An SQL descriptor area groups
 the data of one row of data together with metadata items into one
 data structure. The metadata is particularly useful when executing
 dynamic SQL statements, where the nature of the result columns might
 not be known ahead of time. PostgreSQL provides two ways to use
 Descriptor Areas: the named SQL Descriptor Areas and the C-structure
 SQLDAs.

Named SQL Descriptor Areas

 A named SQL descriptor area consists of a header, which contains
 information concerning the entire descriptor, and one or more item
 descriptor areas, which basically each describe one column in the
 result row.

 Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier;

 The identifier serves as the “variable name” of the
 descriptor area.
 When you don't need the descriptor anymore, you should deallocate
 it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier;

 To use a descriptor area, specify it as the storage target in an
 INTO clause, instead of listing host variables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

 If the result set is empty, the Descriptor Area will still contain
 the metadata from the query, i.e., the field names.

 For not yet executed prepared queries, the DESCRIBE
 statement can be used to get the metadata of the result set:

EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

 Before PostgreSQL 9.0, the SQL keyword was optional,
 so using DESCRIPTOR and SQL DESCRIPTOR
 produced named SQL Descriptor Areas. Now it is mandatory, omitting
 the SQL keyword produces SQLDA Descriptor Areas,
 see the section called “SQLDA Descriptor Areas”.

 In DESCRIBE and FETCH statements,
 the INTO and USING keywords can be
 used to similarly: they produce the result set and the metadata in a
 Descriptor Area.

 Now how do you get the data out of the descriptor area? You can
 think of the descriptor area as a structure with named fields. To
 retrieve the value of a field from the header and store it into a
 host variable, use the following command:

EXEC SQL GET DESCRIPTOR name :hostvar = field;

 Currently, there is only one header field defined:
 COUNT, which tells how many item
 descriptor areas exist (that is, how many columns are contained in
 the result). The host variable needs to be of an integer type. To
 get a field from the item descriptor area, use the following
 command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

 num can be a literal integer or a host
 variable containing an integer. Possible fields are:

	CARDINALITY (integer)
	
 number of rows in the result set

	DATA
	
 actual data item (therefore, the data type of this field
 depends on the query)

	DATETIME_INTERVAL_CODE (integer)
	
 When TYPE is 9,
 DATETIME_INTERVAL_CODE will have a value of
 1 for DATE,
 2 for TIME,
 3 for TIMESTAMP,
 4 for TIME WITH TIME ZONE, or
 5 for TIMESTAMP WITH TIME ZONE.

	DATETIME_INTERVAL_PRECISION (integer)
	
 not implemented

	INDICATOR (integer)
	
 the indicator (indicating a null value or a value truncation)

	KEY_MEMBER (integer)
	
 not implemented

	LENGTH (integer)
	
 length of the datum in characters

	NAME (string)
	
 name of the column

	NULLABLE (integer)
	
 not implemented

	OCTET_LENGTH (integer)
	
 length of the character representation of the datum in bytes

	PRECISION (integer)
	
 precision (for type numeric)

	RETURNED_LENGTH (integer)
	
 length of the datum in characters

	RETURNED_OCTET_LENGTH (integer)
	
 length of the character representation of the datum in bytes

	SCALE (integer)
	
 scale (for type numeric)

	TYPE (integer)
	
 numeric code of the data type of the column

 In EXECUTE, DECLARE and OPEN
 statements, the effect of the INTO and USING
 keywords are different. A Descriptor Area can also be manually built to
 provide the input parameters for a query or a cursor and
 USING SQL DESCRIPTOR name
 is the way to pass the input parameters into a parameterized query. The statement
 to build a named SQL Descriptor Area is below:

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

 PostgreSQL supports retrieving more that one record in one FETCH
 statement and storing the data in host variables in this case assumes that the
 variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

SQLDA Descriptor Areas

 An SQLDA Descriptor Area is a C language structure which can be also used
 to get the result set and the metadata of a query. One structure stores one
 record from the result set.

EXEC SQL include sqlda.h;
sqlda_t *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

 Note that the SQL keyword is omitted. The paragraphs about
 the use cases of the INTO and USING
 keywords in the section called “Named SQL Descriptor Areas” also apply here with an addition.
 In a DESCRIBE statement the DESCRIPTOR
 keyword can be completely omitted if the INTO keyword is used:

EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

 The general flow of a program that uses SQLDA is:

	Prepare a query, and declare a cursor for it.

	Declare an SQLDA for the result rows.

	Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter settings).

	Open a cursor with the input SQLDA.

	Fetch rows from the cursor, and store them into an output SQLDA.

	Read values from the output SQLDA into the host variables (with conversion if necessary).

	Close the cursor.

	Free the memory area allocated for the input SQLDA.

SQLDA Data Structure

 SQLDA uses three data structure
 types: sqlda_t, sqlvar_t,
 and struct sqlname.

Tip

 PostgreSQL's SQLDA has a similar data structure to the one in
 IBM DB2 Universal Database, so some technical information on
 DB2's SQLDA could help understanding PostgreSQL's one better.

sqlda_t Structure

 The structure type sqlda_t is the type of the
 actual SQLDA. It holds one record. And two or
 more sqlda_t structures can be connected in a
 linked list with the pointer in
 the desc_next field, thus
 representing an ordered collection of rows. So, when two or
 more rows are fetched, the application can read them by
 following the desc_next pointer in
 each sqlda_t node.

 The definition of sqlda_t is:

struct sqlda_struct
{
 char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlda_struct *desc_next;
 struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;

 The meaning of the fields is:

	sqldaid
	
 It contains the literal string "SQLDA ".

	sqldabc
	
 It contains the size of the allocated space in bytes.

	sqln
	
 It contains the number of input parameters for a parameterized query in
 case it's passed into OPEN, DECLARE or
 EXECUTE statements using the USING
 keyword. In case it's used as output of SELECT,
 EXECUTE or FETCH statements,
 its value is the same as sqld
 statement

	sqld
	
 It contains the number of fields in a result set.

	desc_next
	
 If the query returns more than one record, multiple linked
 SQLDA structures are returned, and desc_next holds
 a pointer to the next entry in the list.

	sqlvar
	
 This is the array of the columns in the result set.

sqlvar_t Structure

 The structure type sqlvar_t holds a column value
 and metadata such as type and length. The definition of the type
 is:

struct sqlvar_struct
{
 short sqltype;
 short sqllen;
 char *sqldata;
 short *sqlind;
 struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;

 The meaning of the fields is:

	sqltype
	
 Contains the type identifier of the field. For values,
 see enum ECPGttype in ecpgtype.h.

	sqllen
	
 Contains the binary length of the field. e.g., 4 bytes for ECPGt_int.

	sqldata
	
 Points to the data. The format of the data is described
 in the section called “Type Mapping”.

	sqlind
	
 Points to the null indicator. 0 means not null, -1 means
 null.

	sqlname
	
 The name of the field.

struct sqlname Structure

 A struct sqlname structure holds a column name. It
 is used as a member of the sqlvar_t structure. The
 definition of the structure is:

#define NAMEDATALEN 64

struct sqlname
{
 short length;
 char data[NAMEDATALEN];
};

 The meaning of the fields is:

	length
	
 Contains the length of the field name.

	data
	
 Contains the actual field name.

Retrieving a Result Set Using an SQLDA

 The general steps to retrieve a query result set through an
 SQLDA are:

	Declare an sqlda_t structure to receive the result set.

	Execute FETCH/EXECUTE/DESCRIBE commands to process a query specifying the declared SQLDA.

	Check the number of records in the result set by looking at sqln, a member of the sqlda_t structure.

	Get the values of each column from sqlvar[0], sqlvar[1], etc., members of the sqlda_t structure.

	Go to next row (sqlda_t structure) by following the desc_next pointer, a member of the sqlda_t structure.

	Repeat above as you need.

 Here is an example retrieving a result set through an SQLDA.

 First, declare a sqlda_t structure to receive the result set.

sqlda_t *sqlda1;

 Next, specify the SQLDA in a command. This is
 a FETCH command example.

EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 Run a loop following the linked list to retrieve the rows.

sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
 cur_sqlda != NULL;
 cur_sqlda = cur_sqlda->desc_next)
{
 ...
}

 Inside the loop, run another loop to retrieve each column data
 (sqlvar_t structure) of the row.

for (i = 0; i < cur_sqlda->sqld; i++)
{
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;
 ...
}

 To get a column value, check the sqltype value,
 a member of the sqlvar_t structure. Then, switch
 to an appropriate way, depending on the column type, to copy
 data from the sqlvar field to a host variable.

char var_buf[1024];

switch (v.sqltype)
{
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...
}

Passing Query Parameters Using an SQLDA

 The general steps to use an SQLDA to pass input
 parameters to a prepared query are:

	Create a prepared query (prepared statement)

	Declare an sqlda_t structure as an input SQLDA.

	Allocate memory area (as sqlda_t structure) for the input SQLDA.

	Set (copy) input values in the allocated memory.

	Open a cursor with specifying the input SQLDA.

 Here is an example.

 First, create a prepared statement.

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

 Next, allocate memory for an SQLDA, and set the number of input
 parameters in sqln, a member variable of
 the sqlda_t structure. When two or more input
 parameters are required for the prepared query, the application
 has to allocate additional memory space which is calculated by
 (nr. of params - 1) * sizeof(sqlvar_t). The example shown here
 allocates memory space for two input parameters.

sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

 After memory allocation, store the parameter values into the
 sqlvar[] array. (This is same array used for
 retrieving column values when the SQLDA is receiving a result
 set.) In this example, the input parameters
 are "postgres", having a string type,
 and 1, having an integer type.

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

 By opening a cursor and specifying the SQLDA that was set up
 beforehand, the input parameters are passed to the prepared
 statement.

EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 Finally, after using input SQLDAs, the allocated memory space
 must be freed explicitly, unlike SQLDAs used for receiving query
 results.

free(sqlda2);

A Sample Application Using SQLDA

 Here is an example program, which describes how to fetch access
 statistics of the databases, specified by the input parameters,
 from the system catalogs.

 This application joins two system tables, pg_database and
 pg_stat_database on the database OID, and also fetches and shows
 the database statistics which are retrieved by two input
 parameters (a database postgres, and OID 1).

 First, declare an SQLDA for input and an SQLDA for output.

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor */

 Next, connect to the database, prepare a statement, and declare a
 cursor for the prepared statement.

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR d.oid=?)";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

 Next, put some values in the input SQLDA for the input
 parameters. Allocate memory for the input SQLDA, and set the
 number of input parameters to sqln. Store
 type, value, and value length into sqltype,
 sqldata, and sqllen in the
 sqlvar structure.

 /* Create SQLDA structure for input parameters. */
 sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *)&intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

 After setting up the input SQLDA, open a cursor with the input
 SQLDA.

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 Fetch rows into the output SQLDA from the opened cursor.
 (Generally, you have to call FETCH repeatedly
 in the loop, to fetch all rows in the result set.)

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 Next, retrieve the fetched records from the SQLDA, by following
 the linked list of the sqlda_t structure.

 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 ...

 Read each columns in the first record. The number of columns is
 stored in sqld, the actual data of the first
 column is stored in sqlvar[0], both members of
 the sqlda_t structure.

 /* Print every column in a row. */
 for (i = 0; i < sqlda1->sqld; i++)
 {
 sqlvar_t v = sqlda1->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

 Now, the column data is stored in the variable v.
 Copy every datum into host variables, looking
 at v.sqltype for the type of the column.

 switch (v.sqltype) {
 int intval;
 double doubleval;
 unsigned long long int longlongval;

 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...

 default:
 ...
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

 Close the cursor after processing all of records, and disconnect
 from the database.

 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

 The whole program is shown
 in Example 36.1, “Example SQLDA Program”.

Example 36.1. Example SQLDA Program

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR d.oid=?)";

 int intval;
 unsigned long long int longlongval;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

 /* Create an SQLDA structure for an input parameter */
 sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* a number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *) &intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 int i;
 char name_buf[1024];
 char var_buf[1024];

 /* Print every column in a row. */
 for (i=0 ; i<cur_sqlda->sqld ; i++)
 {
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

 switch (v.sqltype)
 {
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ? sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 case ECPGt_long_long: /* bigint */
 memcpy(&longlongval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
 break;

 default:
 {
 int i;
 memset(var_buf, 0, sizeof(var_buf));
 for (i = 0; i < sqllen; i++)
 {
 char tmpbuf[16];
 snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char) sqldata[i]);
 strncat(var_buf, tmpbuf, sizeof(var_buf));
 }
 }
 break;
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

 printf("\n");
 }
 }

 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

 return 0;
}

 The output of this example should look something like the
 following (some numbers will vary).

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

Error Handling

 This section describes how you can handle exceptional conditions
 and warnings in an embedded SQL program. There are two
 nonexclusive facilities for this.

	
 Callbacks can be configured to handle warning and error
 conditions using the WHENEVER command.

	
 Detailed information about the error or warning can be obtained
 from the sqlca variable.

Setting Callbacks

 One simple method to catch errors and warnings is to set a
 specific action to be executed whenever a particular condition
 occurs. In general:

EXEC SQL WHENEVER condition action;

 condition can be one of the following:

	SQLERROR
	
 The specified action is called whenever an error occurs during
 the execution of an SQL statement.

	SQLWARNING
	
 The specified action is called whenever a warning occurs
 during the execution of an SQL statement.

	NOT FOUND
	
 The specified action is called whenever an SQL statement
 retrieves or affects zero rows. (This condition is not an
 error, but you might be interested in handling it specially.)

 action can be one of the following:

	CONTINUE
	
 This effectively means that the condition is ignored. This is
 the default.

	GOTO label, GO TO label
	
 Jump to the specified label (using a C goto
 statement).

	SQLPRINT
	
 Print a message to standard error. This is useful for simple
 programs or during prototyping. The details of the message
 cannot be configured.

	STOP
	
 Call exit(1), which will terminate the
 program.

	DO BREAK
	
 Execute the C statement break. This should
 only be used in loops or switch statements.

	DO CONTINUE
	
 Execute the C statement continue. This should
 only be used in loops statements. if executed, will cause the flow
 of control to return to the top of the loop.

	CALL name (args), DO name (args)
	
 Call the specified C functions with the specified arguments. (This
 use is different from the meaning of CALL
 and DO in the normal PostgreSQL grammar.)

 The SQL standard only provides for the actions
 CONTINUE and GOTO (and
 GO TO).

 Here is an example that you might want to use in a simple program.
 It prints a simple message when a warning occurs and aborts the
 program when an error happens:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

 The statement EXEC SQL WHENEVER is a directive
 of the SQL preprocessor, not a C statement. The error or warning
 actions that it sets apply to all embedded SQL statements that
 appear below the point where the handler is set, unless a
 different action was set for the same condition between the first
 EXEC SQL WHENEVER and the SQL statement causing
 the condition, regardless of the flow of control in the C program.
 So neither of the two following C program excerpts will have the
 desired effect:

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 if (verbose) {
 EXEC SQL WHENEVER SQLWARNING SQLPRINT;
 }
 ...
 EXEC SQL SELECT ...;
 ...
}

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 set_error_handler();
 ...
 EXEC SQL SELECT ...;
 ...
}

static void set_error_handler(void)
{
 EXEC SQL WHENEVER SQLERROR STOP;
}

sqlca

 For more powerful error handling, the embedded SQL interface
 provides a global variable with the name sqlca
 (SQL communication area)
 that has the following structure:

struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];
} sqlca;

 (In a multithreaded program, every thread automatically gets its
 own copy of sqlca. This works similarly to the
 handling of the standard C global variable
 errno.)

 sqlca covers both warnings and errors. If
 multiple warnings or errors occur during the execution of a
 statement, then sqlca will only contain
 information about the last one.

 If no error occurred in the last SQL statement,
 sqlca.sqlcode will be 0 and
 sqlca.sqlstate will be
 "00000". If a warning or error occurred, then
 sqlca.sqlcode will be negative and
 sqlca.sqlstate will be different from
 "00000". A positive
 sqlca.sqlcode indicates a harmless condition,
 such as that the last query returned zero rows.
 sqlcode and sqlstate are two
 different error code schemes; details appear below.

 If the last SQL statement was successful, then
 sqlca.sqlerrd[1] contains the OID of the
 processed row, if applicable, and
 sqlca.sqlerrd[2] contains the number of
 processed or returned rows, if applicable to the command.

 In case of an error or warning,
 sqlca.sqlerrm.sqlerrmc will contain a string
 that describes the error. The field
 sqlca.sqlerrm.sqlerrml contains the length of
 the error message that is stored in
 sqlca.sqlerrm.sqlerrmc (the result of
 strlen(), not really interesting for a C
 programmer). Note that some messages are too long to fit in the
 fixed-size sqlerrmc array; they will be truncated.

 In case of a warning, sqlca.sqlwarn[2] is set
 to W. (In all other cases, it is set to
 something different from W.) If
 sqlca.sqlwarn[1] is set to
 W, then a value was truncated when it was
 stored in a host variable. sqlca.sqlwarn[0] is
 set to W if any of the other elements are set
 to indicate a warning.

 The fields sqlcaid,
 sqlabc,
 sqlerrp, and the remaining elements of
 sqlerrd and
 sqlwarn currently contain no useful
 information.

 The structure sqlca is not defined in the SQL
 standard, but is implemented in several other SQL database
 systems. The definitions are similar at the core, but if you want
 to write portable applications, then you should investigate the
 different implementations carefully.

 Here is one example that combines the use of WHENEVER
 and sqlca, printing out the contents
 of sqlca when an error occurs. This is perhaps
 useful for debugging or prototyping applications, before
 installing a more “user-friendly” error handler.

EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()
{
 fprintf(stderr, "==== sqlca ====\n");
 fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
 fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
 fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
 fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n", sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],
 sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
 fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n", sqlca.sqlwarn[0], sqlca.sqlwarn[1], sqlca.sqlwarn[2],
 sqlca.sqlwarn[3], sqlca.sqlwarn[4], sqlca.sqlwarn[5],
 sqlca.sqlwarn[6], sqlca.sqlwarn[7]);
 fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
 fprintf(stderr, "===============\n");
}

 The result could look as follows (here an error due to a
 misspelled table name):

==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============

SQLSTATE vs. SQLCODE

 The fields sqlca.sqlstate and
 sqlca.sqlcode are two different schemes that
 provide error codes. Both are derived from the SQL standard, but
 SQLCODE has been marked deprecated in the SQL-92
 edition of the standard and has been dropped in later editions.
 Therefore, new applications are strongly encouraged to use
 SQLSTATE.

 SQLSTATE is a five-character array. The five
 characters contain digits or upper-case letters that represent
 codes of various error and warning conditions.
 SQLSTATE has a hierarchical scheme: the first
 two characters indicate the general class of the condition, the
 last three characters indicate a subclass of the general
 condition. A successful state is indicated by the code
 00000. The SQLSTATE codes are for
 the most part defined in the SQL standard. The
 PostgreSQL™ server natively supports
 SQLSTATE error codes; therefore a high degree
 of consistency can be achieved by using this error code scheme
 throughout all applications. For further information see
 Appendix A, PostgreSQL™ Error Codes.

 SQLCODE, the deprecated error code scheme, is a
 simple integer. A value of 0 indicates success, a positive value
 indicates success with additional information, a negative value
 indicates an error. The SQL standard only defines the positive
 value +100, which indicates that the last command returned or
 affected zero rows, and no specific negative values. Therefore,
 this scheme can only achieve poor portability and does not have a
 hierarchical code assignment. Historically, the embedded SQL
 processor for PostgreSQL™ has assigned
 some specific SQLCODE values for its use, which
 are listed below with their numeric value and their symbolic name.
 Remember that these are not portable to other SQL implementations.
 To simplify the porting of applications to the
 SQLSTATE scheme, the corresponding
 SQLSTATE is also listed. There is, however, no
 one-to-one or one-to-many mapping between the two schemes (indeed
 it is many-to-many), so you should consult the global
 SQLSTATE listing in Appendix A, PostgreSQL™ Error Codes
 in each case.

 These are the assigned SQLCODE values:

	0 (ECPG_NO_ERROR)
	
 Indicates no error. (SQLSTATE 00000)

	100 (ECPG_NOT_FOUND)
	
 This is a harmless condition indicating that the last command
 retrieved or processed zero rows, or that you are at the end of
 the cursor. (SQLSTATE 02000)

 When processing a cursor in a loop, you could use this code as
 a way to detect when to abort the loop, like this:

while (1)
{
 EXEC SQL FETCH ... ;
 if (sqlca.sqlcode == ECPG_NOT_FOUND)
 break;
}

 But WHENEVER NOT FOUND DO BREAK effectively
 does this internally, so there is usually no advantage in
 writing this out explicitly.

	-12 (ECPG_OUT_OF_MEMORY)
	
 Indicates that your virtual memory is exhausted. The numeric
 value is defined as -ENOMEM. (SQLSTATE
 YE001)

	-200 (ECPG_UNSUPPORTED)
	
 Indicates the preprocessor has generated something that the
 library does not know about. Perhaps you are running
 incompatible versions of the preprocessor and the
 library. (SQLSTATE YE002)

	-201 (ECPG_TOO_MANY_ARGUMENTS)
	
 This means that the command specified more host variables than
 the command expected. (SQLSTATE 07001 or 07002)

	-202 (ECPG_TOO_FEW_ARGUMENTS)
	
 This means that the command specified fewer host variables than
 the command expected. (SQLSTATE 07001 or 07002)

	-203 (ECPG_TOO_MANY_MATCHES)
	
 This means a query has returned multiple rows but the statement
 was only prepared to store one result row (for example, because
 the specified variables are not arrays). (SQLSTATE 21000)

	-204 (ECPG_INT_FORMAT)
	
 The host variable is of type int and the datum in
 the database is of a different type and contains a value that
 cannot be interpreted as an int. The library uses
 strtol() for this conversion. (SQLSTATE
 42804)

	-205 (ECPG_UINT_FORMAT)
	
 The host variable is of type unsigned int and the
 datum in the database is of a different type and contains a
 value that cannot be interpreted as an unsigned
 int. The library uses strtoul()
 for this conversion. (SQLSTATE 42804)

	-206 (ECPG_FLOAT_FORMAT)
	
 The host variable is of type float and the datum
 in the database is of another type and contains a value that
 cannot be interpreted as a float. The library
 uses strtod() for this conversion.
 (SQLSTATE 42804)

	-207 (ECPG_NUMERIC_FORMAT)
	
 The host variable is of type numeric and the datum
 in the database is of another type and contains a value that
 cannot be interpreted as a numeric value.
 (SQLSTATE 42804)

	-208 (ECPG_INTERVAL_FORMAT)
	
 The host variable is of type interval and the datum
 in the database is of another type and contains a value that
 cannot be interpreted as an interval value.
 (SQLSTATE 42804)

	-209 (ECPG_DATE_FORMAT)
	
 The host variable is of type date and the datum in
 the database is of another type and contains a value that
 cannot be interpreted as a date value.
 (SQLSTATE 42804)

	-210 (ECPG_TIMESTAMP_FORMAT)
	
 The host variable is of type timestamp and the
 datum in the database is of another type and contains a value
 that cannot be interpreted as a timestamp value.
 (SQLSTATE 42804)

	-211 (ECPG_CONVERT_BOOL)
	
 This means the host variable is of type bool and
 the datum in the database is neither 't' nor
 'f'. (SQLSTATE 42804)

	-212 (ECPG_EMPTY)
	
 The statement sent to the PostgreSQL™
 server was empty. (This cannot normally happen in an embedded
 SQL program, so it might point to an internal error.) (SQLSTATE
 YE002)

	-213 (ECPG_MISSING_INDICATOR)
	
 A null value was returned and no null indicator variable was
 supplied. (SQLSTATE 22002)

	-214 (ECPG_NO_ARRAY)
	
 An ordinary variable was used in a place that requires an
 array. (SQLSTATE 42804)

	-215 (ECPG_DATA_NOT_ARRAY)
	
 The database returned an ordinary variable in a place that
 requires array value. (SQLSTATE 42804)

	-216 (ECPG_ARRAY_INSERT)
	
 The value could not be inserted into the array. (SQLSTATE
 42804)

	-220 (ECPG_NO_CONN)
	
 The program tried to access a connection that does not exist.
 (SQLSTATE 08003)

	-221 (ECPG_NOT_CONN)
	
 The program tried to access a connection that does exist but is
 not open. (This is an internal error.) (SQLSTATE YE002)

	-230 (ECPG_INVALID_STMT)
	
 The statement you are trying to use has not been prepared.
 (SQLSTATE 26000)

	-239 (ECPG_INFORMIX_DUPLICATE_KEY)
	
 Duplicate key error, violation of unique constraint (Informix
 compatibility mode). (SQLSTATE 23505)

	-240 (ECPG_UNKNOWN_DESCRIPTOR)
	
 The descriptor specified was not found. The statement you are
 trying to use has not been prepared. (SQLSTATE 33000)

	-241 (ECPG_INVALID_DESCRIPTOR_INDEX)
	
 The descriptor index specified was out of range. (SQLSTATE
 07009)

	-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)
	
 An invalid descriptor item was requested. (This is an internal
 error.) (SQLSTATE YE002)

	-243 (ECPG_VAR_NOT_NUMERIC)
	
 During the execution of a dynamic statement, the database
 returned a numeric value and the host variable was not numeric.
 (SQLSTATE 07006)

	-244 (ECPG_VAR_NOT_CHAR)
	
 During the execution of a dynamic statement, the database
 returned a non-numeric value and the host variable was numeric.
 (SQLSTATE 07006)

	-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)
	
 A result of the subquery is not single row (Informix
 compatibility mode). (SQLSTATE 21000)

	-400 (ECPG_PGSQL)
	
 Some error caused by the PostgreSQL™
 server. The message contains the error message from the
 PostgreSQL™ server.

	-401 (ECPG_TRANS)
	
 The PostgreSQL™ server signaled that
 we cannot start, commit, or rollback the transaction.
 (SQLSTATE 08007)

	-402 (ECPG_CONNECT)
	
 The connection attempt to the database did not succeed.
 (SQLSTATE 08001)

	-403 (ECPG_DUPLICATE_KEY)
	
 Duplicate key error, violation of unique constraint. (SQLSTATE
 23505)

	-404 (ECPG_SUBSELECT_NOT_ONE)
	
 A result for the subquery is not single row. (SQLSTATE 21000)

	-602 (ECPG_WARNING_UNKNOWN_PORTAL)
	
 An invalid cursor name was specified. (SQLSTATE 34000)

	-603 (ECPG_WARNING_IN_TRANSACTION)
	
 Transaction is in progress. (SQLSTATE 25001)

	-604 (ECPG_WARNING_NO_TRANSACTION)
	
 There is no active (in-progress) transaction. (SQLSTATE 25P01)

	-605 (ECPG_WARNING_PORTAL_EXISTS)
	
 An existing cursor name was specified. (SQLSTATE 42P03)

Preprocessor Directives

 Several preprocessor directives are available that modify how
 the ecpg preprocessor parses and processes a
 file.

Including Files

 To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";

 The embedded SQL preprocessor will look for a file named
 filename.h,
 preprocess it, and include it in the resulting C output. Thus,
 embedded SQL statements in the included file are handled correctly.

 The ecpg preprocessor will search a file at
 several directories in following order:

	current directory
	/usr/local/include
	PostgreSQL include directory, defined at build time (e.g., /usr/local/pgsql/include)
	/usr/include

 But when EXEC SQL INCLUDE
 "filename" is used, only the
 current directory is searched.

 In each directory, the preprocessor will first look for the file
 name as given, and if not found will append .h
 to the file name and try again (unless the specified file name
 already has that suffix).

 Note that EXEC SQL INCLUDE is not the same as:

#include <filename.h>

 because this file would not be subject to SQL command preprocessing.
 Naturally, you can continue to use the C
 #include directive to include other header
 files.

Note

 The include file name is case-sensitive, even though the rest of
 the EXEC SQL INCLUDE command follows the normal
 SQL case-sensitivity rules.

The define and undef Directives

 Similar to the directive #define that is known from C,
 embedded SQL has a similar concept:

EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;

 So you can define a name:

EXEC SQL DEFINE HAVE_FEATURE;

 And you can also define constants:

EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING 'abc';

 Use undef to remove a previous definition:

EXEC SQL UNDEF MYNUMBER;

 Of course you can continue to use the C versions #define
 and #undef in your embedded SQL program. The difference
 is where your defined values get evaluated. If you use EXEC SQL
 DEFINE then the ecpg preprocessor evaluates the defines and substitutes
 the values. For example if you write:

EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;

 then ecpg will already do the substitution and your C compiler will never
 see any name or identifier MYNUMBER. Note that you cannot use
 #define for a constant that you are going to use in an
 embedded SQL query because in this case the embedded SQL precompiler is not
 able to see this declaration.

 If multiple input files are named on the ecpg
 preprocessor's command line, the effects of EXEC SQL
 DEFINE and EXEC SQL UNDEF do not carry
 across files: each file starts with only the symbols defined
 by -D switches on the command line.

ifdef, ifndef, elif, else, and endif Directives

 You can use the following directives to compile code sections conditionally:

	EXEC SQL ifdef name;
	
 Checks a name and processes subsequent lines if
 name has been defined via EXEC SQL define
 name.

	EXEC SQL ifndef name;
	
 Checks a name and processes subsequent lines if
 name has not been defined via
 EXEC SQL define name.

	EXEC SQL elif name;
	
 Begins an optional alternative section after an
 EXEC SQL ifdef name or
 EXEC SQL ifndef name
 directive. Any number of elif sections can appear.
 Lines following an elif will be processed
 if name has been
 defined and no previous section of the same
 ifdef/ifndef...endif
 construct has been processed.

	EXEC SQL else;
	
 Begins an optional, final alternative section after an
 EXEC SQL ifdef name or
 EXEC SQL ifndef name
 directive. Subsequent lines will be processed if no previous section
 of the same
 ifdef/ifndef...endif
 construct has been processed.

	EXEC SQL endif;
	
 Ends an
 ifdef/ifndef...endif
 construct. Subsequent lines are processed normally.

 ifdef/ifndef...endif
 constructs can be nested, up to 127 levels deep.

 This example will compile exactly one of the three SET
 TIMEZONE commands:

EXEC SQL ifdef TZVAR;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO 'GMT';
EXEC SQL endif;

Processing Embedded SQL Programs

 Now that you have an idea how to form embedded SQL C programs, you
 probably want to know how to compile them. Before compiling you
 run the file through the embedded SQL
 C preprocessor, which converts the
 SQL statements you used to special function
 calls. After compiling, you must link with a special library that
 contains the needed functions. These functions fetch information
 from the arguments, perform the SQL command using
 the libpq interface, and put the result
 in the arguments specified for output.

 The preprocessor program is called ecpg and is
 included in a normal PostgreSQL™ installation.
 Embedded SQL programs are typically named with an extension
 .pgc. If you have a program file called
 prog1.pgc, you can preprocess it by simply
 calling:

ecpg prog1.pgc

 This will create a file called prog1.c. If
 your input files do not follow the suggested naming pattern, you
 can specify the output file explicitly using the
 -o option.

 The preprocessed file can be compiled normally, for example:

cc -c prog1.c

 The generated C source files include header files from the
 PostgreSQL™ installation, so if you installed
 PostgreSQL™ in a location that is not searched by
 default, you have to add an option such as
 -I/usr/local/pgsql/include to the compilation
 command line.

 To link an embedded SQL program, you need to include the
 libecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

 Again, you might have to add an option like
 -L/usr/local/pgsql/lib to that command line.

 You can
 use pg_config
 or pkg-config with package name libecpg to
 get the paths for your installation.

 If you manage the build process of a larger project using
 make, it might be convenient to include
 the following implicit rule to your makefiles:

ECPG = ecpg

%.c: %.pgc
 $(ECPG) $<

 The complete syntax of the ecpg command is
 detailed in ecpg(1).

 The ecpg library is thread-safe by
 default. However, you might need to use some threading
 command-line options to compile your client code.

Library Functions

 The libecpg library primarily contains
 “hidden” functions that are used to implement the
 functionality expressed by the embedded SQL commands. But there
 are some functions that can usefully be called directly. Note that
 this makes your code unportable.

	
 ECPGdebug(int on, FILE
 *stream) turns on debug
 logging if called with the first argument non-zero. Debug logging
 is done on stream. The log contains
 all SQL statements with all the input
 variables inserted, and the results from the
 PostgreSQL™ server. This can be very
 useful when searching for errors in your SQL
 statements.

Note

 On Windows, if the ecpg libraries and an application are
 compiled with different flags, this function call will crash the
 application because the internal representation of the
 FILE pointers differ. Specifically,
 multithreaded/single-threaded, release/debug, and static/dynamic
 flags should be the same for the library and all applications using
 that library.

	
 ECPGget_PGconn(const char *connection_name)
 returns the library database connection handle identified by the given name.
 If connection_name is set to NULL, the current
 connection handle is returned. If no connection handle can be identified, the function returns
 NULL. The returned connection handle can be used to call any other functions
 from libpq, if necessary.

Note

 It is a bad idea to manipulate database connection handles made from ecpg directly
 with libpq routines.

	
 ECPGtransactionStatus(const char *connection_name)
 returns the current transaction status of the given connection identified by connection_name.
 See the section called “Connection Status Functions” and libpq's PQtransactionStatus for details about the returned status codes.

	
 ECPGstatus(int lineno,
 const char* connection_name)
 returns true if you are connected to a database and false if not.
 connection_name can be NULL
 if a single connection is being used.

Large Objects

 Large objects are not directly supported by ECPG, but ECPG
 application can manipulate large objects through the libpq large
 object functions, obtaining the necessary PGconn
 object by calling the ECPGget_PGconn()
 function. (However, use of
 the ECPGget_PGconn() function and touching
 PGconn objects directly should be done very carefully
 and ideally not mixed with other ECPG database access calls.)

 For more details about the ECPGget_PGconn(), see
 the section called “Library Functions”. For information about the large
 object function interface, see Chapter 35, Large Objects.

 Large object functions have to be called in a transaction block, so
 when autocommit is off, BEGIN commands have to
 be issued explicitly.

 Example 36.2, “ECPG Program Accessing Large Objects” shows an example program that
 illustrates how to create, write, and read a large object in an
 ECPG application.

Example 36.2. ECPG Program Accessing Large Objects

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 PGconn *conn;
 Oid loid;
 int fd;
 char buf[256];
 int buflen = 256;
 char buf2[256];
 int rc;

 memset(buf, 1, buflen);

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 conn = ECPGget_PGconn("con1");
 printf("conn = %p\n", conn);

 /* create */
 loid = lo_create(conn, 0);
 if (loid < 0)
 printf("lo_create() failed: %s", PQerrorMessage(conn));

 printf("loid = %d\n", loid);

 /* write test */
 fd = lo_open(conn, loid, INV_READ|INV_WRITE);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_write(conn, fd, buf, buflen);
 if (rc < 0)
 printf("lo_write() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* read test */
 fd = lo_open(conn, loid, INV_READ);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_read(conn, fd, buf2, buflen);
 if (rc < 0)
 printf("lo_read() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* check */
 rc = memcmp(buf, buf2, buflen);
 printf("memcmp() = %d\n", rc);

 /* cleanup */
 rc = lo_unlink(conn, loid);
 if (rc < 0)
 printf("lo_unlink() failed: %s", PQerrorMessage(conn));

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

C++ Applications

 ECPG has some limited support for C++ applications. This section
 describes some caveats.

 The ecpg preprocessor takes an input file
 written in C (or something like C) and embedded SQL commands,
 converts the embedded SQL commands into C language chunks, and
 finally generates a .c file. The header file
 declarations of the library functions used by the C language chunks
 that ecpg generates are wrapped
 in extern "C" { ... } blocks when used under
 C++, so they should work seamlessly in C++.

 In general, however, the ecpg preprocessor only
 understands C; it does not handle the special syntax and reserved
 words of the C++ language. So, some embedded SQL code written in
 C++ application code that uses complicated features specific to C++
 might fail to be preprocessed correctly or might not work as
 expected.

 A safe way to use the embedded SQL code in a C++ application is
 hiding the ECPG calls in a C module, which the C++ application code
 calls into to access the database, and linking that together with
 the rest of the C++ code. See the section called “C++ Application Development with External C Module”
 about that.

Scope for Host Variables

 The ecpg preprocessor understands the scope of
 variables in C. In the C language, this is rather simple because
 the scopes of variables is based on their code blocks. In C++,
 however, the class member variables are referenced in a different
 code block from the declared position, so
 the ecpg preprocessor will not understand the
 scope of the class member variables.

 For example, in the following case, the ecpg
 preprocessor cannot find any declaration for the
 variable dbname in the test
 method, so an error will occur.

class TestCpp
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 public:
 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void Test::test()
{
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

TestCpp::~TestCpp()
{
 EXEC SQL DISCONNECT ALL;
}

 This code will result in an error like this:

ecpg test_cpp.pgc
test_cpp.pgc:28: ERROR: variable "dbname" is not declared

 To avoid this scope issue, the test method
 could be modified to use a local variable as intermediate storage.
 But this approach is only a poor workaround, because it uglifies
 the code and reduces performance.

void TestCpp::test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char tmp[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :tmp;
 strlcpy(dbname, tmp, sizeof(tmp));

 printf("current_database = %s\n", dbname);
}

C++ Application Development with External C Module

 If you understand these technical limitations of
 the ecpg preprocessor in C++, you might come to
 the conclusion that linking C objects and C++ objects at the link
 stage to enable C++ applications to use ECPG features could be
 better than writing some embedded SQL commands in C++ code
 directly. This section describes a way to separate some embedded
 SQL commands from C++ application code with a simple example. In
 this example, the application is implemented in C++, while C and
 ECPG is used to connect to the PostgreSQL server.

 Three kinds of files have to be created: a C file
 (*.pgc), a header file, and a C++ file:

	test_mod.pgc
	
 A sub-routine module to execute SQL commands embedded in C.
 It is going to be converted
 into test_mod.c by the preprocessor.

#include "test_mod.h"
#include <stdio.h>

void
db_connect()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void
db_test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

void
db_disconnect()
{
 EXEC SQL DISCONNECT ALL;
}

	test_mod.h
	
 A header file with declarations of the functions in the C
 module (test_mod.pgc). It is included by
 test_cpp.cpp. This file has to have an
 extern "C" block around the declarations,
 because it will be linked from the C++ module.

#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif

	test_cpp.cpp
	
 The main code for the application, including
 the main routine, and in this example a
 C++ class.

#include "test_mod.h"

class TestCpp
{
 public:
 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 db_connect();
}

void
TestCpp::test()
{
 db_test();
}

TestCpp::~TestCpp()
{
 db_disconnect();
}

int
main(void)
{
 TestCpp *t = new TestCpp();

 t->test();
 return 0;
}

 To build the application, proceed as follows. Convert
 test_mod.pgc into test_mod.c by
 running ecpg, and generate
 test_mod.o by compiling
 test_mod.c with the C compiler:

ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o

 Next, generate test_cpp.o by compiling
 test_cpp.cpp with the C++ compiler:

c++ -c test_cpp.cpp -o test_cpp.o

 Finally, link these object files, test_cpp.o
 and test_mod.o, into one executable, using the C++
 compiler driver:

c++ test_cpp.o test_mod.o -lecpg -o test_cpp

Embedded SQL Commands

 This section describes all SQL commands that are specific to
 embedded SQL. Also refer to the SQL commands listed
 in SQL Commands, which can also be used in
 embedded SQL, unless stated otherwise.

Name
ALLOCATE DESCRIPTOR — allocate an SQL descriptor area

Synopsis

ALLOCATE DESCRIPTOR name

Description

 ALLOCATE DESCRIPTOR allocates a new named SQL
 descriptor area, which can be used to exchange data between the
 PostgreSQL server and the host program.

 Descriptor areas should be freed after use using
 the DEALLOCATE DESCRIPTOR command.

Parameters
	name
	
 A name of SQL descriptor, case sensitive. This can be an SQL
 identifier or a host variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc;

Compatibility

 ALLOCATE DESCRIPTOR is specified in the SQL
 standard.

See Also
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

Name
CONNECT — establish a database connection

Synopsis

CONNECT TO connection_target [AS connection_name] [USER connection_user]
CONNECT TO DEFAULT
CONNECT connection_user
DATABASE connection_target

Description

 The CONNECT command establishes a connection
 between the client and the PostgreSQL server.

Parameters
	connection_target
	
 connection_target
 specifies the target server of the connection on one of
 several forms.

	[database_name] [@host] [:port]
	
 Connect over TCP/IP

	unix:postgresql://host [:port] / [database_name] [?connection_option]
	
 Connect over Unix-domain sockets

	tcp:postgresql://host [:port] / [database_name] [?connection_option]
	
 Connect over TCP/IP

	SQL string constant
	
 containing a value in one of the above forms

	host variable
	
 host variable of type char[]
 or VARCHAR[] containing a value in one of the
 above forms

	connection_name
	
 An optional identifier for the connection, so that it can be
 referred to in other commands. This can be an SQL identifier
 or a host variable.

	connection_user
	
 The user name for the database connection.

 This parameter can also specify user name and password, using one the forms
 user_name/password,
 user_name IDENTIFIED BY password, or
 user_name USING password.

 User name and password can be SQL identifiers, string
 constants, or host variables.

	DEFAULT
	
 Use all default connection parameters, as defined by libpq.

Examples

 Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;
EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO 'connectdb' AS main;
EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER connectuser;

 Here is an example program that illustrates the use of host
 variables to specify connection parameters:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 char *dbname = "testdb"; /* database name */
 char *user = "testuser"; /* connection user name */
 char *connection = "tcp:postgresql://localhost:5432/testdb";
 /* connection string */
 char ver[256]; /* buffer to store the version string */
EXEC SQL END DECLARE SECTION;

 ECPGdebug(1, stderr);

 EXEC SQL CONNECT TO :dbname USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 EXEC SQL CONNECT TO :connection USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 return 0;
}

Compatibility

 CONNECT is specified in the SQL standard, but
 the format of the connection parameters is
 implementation-specific.

See Also
DISCONNECT, SET CONNECTION

Name
DEALLOCATE DESCRIPTOR — deallocate an SQL descriptor area

Synopsis

DEALLOCATE DESCRIPTOR name

Description

 DEALLOCATE DESCRIPTOR deallocates a named SQL
 descriptor area.

Parameters
	name
	
 The name of the descriptor which is going to be deallocated.
 It is case sensitive. This can be an SQL identifier or a host
 variable.

Examples

EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility

 DEALLOCATE DESCRIPTOR is specified in the SQL
 standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

Name
DECLARE — define a cursor

Synopsis

DECLARE cursor_name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT } HOLD] FOR prepared_name
DECLARE cursor_name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description

 DECLARE declares a cursor for iterating over
 the result set of a prepared statement. This command has
 slightly different semantics from the direct SQL
 command DECLARE: Whereas the latter executes a
 query and prepares the result set for retrieval, this embedded
 SQL command merely declares a name as a “loop
 variable” for iterating over the result set of a query;
 the actual execution happens when the cursor is opened with
 the OPEN command.

Parameters
	cursor_name
	
 A cursor name, case sensitive. This can be an SQL identifier
 or a host variable.

	prepared_name
	
 The name of a prepared query, either as an SQL identifier or a
 host variable.

	query
	
 A SELECT(7) or
 VALUES(7) command which will provide the
 rows to be returned by the cursor.

 For the meaning of the cursor options,
 see DECLARE(7).

Examples

 Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT version();

 An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT version();
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Compatibility

 DECLARE is specified in the SQL standard.

See Also
OPEN, CLOSE(7), DECLARE(7)

Name
DECLARE STATEMENT — declare SQL statement identifier

Synopsis

EXEC SQL [AT connection_name] DECLARE statement_name STATEMENT

Description

 DECLARE STATEMENT declares an SQL statement identifier.
 SQL statement identifier can be associated with the connection.
 When the identifier is used by dynamic SQL statements, the statements
 are executed using the associated connection.
 The namespace of the declaration is the precompile unit, and multiple
 declarations to the same SQL statement identifier are not allowed.
 Note that if the precompiler runs in Informix compatibility mode and
 some SQL statement is declared, "database" can not be used as a cursor
 name.

Parameters
	connection_name
	
 A database connection name established by the CONNECT command.

 AT clause can be omitted, but such statement has no meaning.

	statement_name
	
 The name of an SQL statement identifier, either as an SQL identifier or a host variable.

Notes

 This association is valid only if the declaration is physically placed on top of a dynamic statement.

Examples

EXEC SQL CONNECT TO postgres AS con1;
EXEC SQL AT con1 DECLARE sql_stmt STATEMENT;
EXEC SQL DECLARE cursor_name CURSOR FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :dyn_string;
EXEC SQL OPEN cursor_name;
EXEC SQL FETCH cursor_name INTO :column1;
EXEC SQL CLOSE cursor_name;

Compatibility

 DECLARE STATEMENT is an extension of the SQL standard,
 but can be used in famous DBMSs.

See Also
CONNECT, DECLARE, OPEN

Name
DESCRIBE — obtain information about a prepared statement or result set

Synopsis

DESCRIBE [OUTPUT] prepared_name USING [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO sqlda_name

Description

 DESCRIBE retrieves metadata information about
 the result columns contained in a prepared statement, without
 actually fetching a row.

Parameters
	prepared_name
	
 The name of a prepared statement. This can be an SQL
 identifier or a host variable.

	descriptor_name
	
 A descriptor name. It is case sensitive. It can be an SQL
 identifier or a host variable.

	sqlda_name
	
 The name of an SQLDA variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility

 DESCRIBE is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

Name
DISCONNECT — terminate a database connection

Synopsis

DISCONNECT connection_name
DISCONNECT [CURRENT]
DISCONNECT ALL

Description

 DISCONNECT closes a connection (or all
 connections) to the database.

Parameters
	connection_name
	
 A database connection name established by
 the CONNECT command.

	CURRENT
	
 Close the “current” connection, which is either
 the most recently opened connection, or the connection set by
 the SET CONNECTION command. This is also
 the default if no argument is given to
 the DISCONNECT command.

	ALL
	
 Close all open connections.

Examples

int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL CONNECT TO testdb AS con2 USER testuser;
 EXEC SQL CONNECT TO testdb AS con3 USER testuser;

 EXEC SQL DISCONNECT CURRENT; /* close con3 */
 EXEC SQL DISCONNECT ALL; /* close con2 and con1 */

 return 0;
}

Compatibility

 DISCONNECT is specified in the SQL standard.

See Also
CONNECT, SET CONNECTION

Name
EXECUTE IMMEDIATE — dynamically prepare and execute a statement

Synopsis

EXECUTE IMMEDIATE string

Description

 EXECUTE IMMEDIATE immediately prepares and
 executes a dynamically specified SQL statement, without
 retrieving result rows.

Parameters
	string
	
 A literal string or a host variable containing the SQL
 statement to be executed.

Notes

 In typical usage, the string is a host
 variable reference to a string containing a dynamically-constructed
 SQL statement. The case of a literal string is not very useful;
 you might as well just write the SQL statement directly, without
 the extra typing of EXECUTE IMMEDIATE.

 If you do use a literal string, keep in mind that any double quotes
 you might wish to include in the SQL statement must be written as
 octal escapes (\042) not the usual C
 idiom \". This is because the string is inside
 an EXEC SQL section, so the ECPG lexer parses it
 according to SQL rules not C rules. Any embedded backslashes will
 later be handled according to C rules; but \"
 causes an immediate syntax error because it is seen as ending the
 literal.

Examples

 Here is an example that executes an INSERT
 statement using EXECUTE IMMEDIATE and a host
 variable named command:

sprintf(command, "INSERT INTO test (name, amount, letter) VALUES ('db: ''r1''', 1, 'f')");
EXEC SQL EXECUTE IMMEDIATE :command;

Compatibility

 EXECUTE IMMEDIATE is specified in the SQL standard.

Name
GET DESCRIPTOR — get information from an SQL descriptor area

Synopsis

GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item [, ...]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable = descriptor_item [, ...]

Description

 GET DESCRIPTOR retrieves information about a
 query result set from an SQL descriptor area and stores it into
 host variables. A descriptor area is typically populated
 using FETCH or SELECT
 before using this command to transfer the information into host
 language variables.

 This command has two forms: The first form retrieves
 descriptor “header” items, which apply to the result
 set in its entirety. One example is the row count. The second
 form, which requires the column number as additional parameter,
 retrieves information about a particular column. Examples are
 the column name and the actual column value.

Parameters
	descriptor_name
	
 A descriptor name.

	descriptor_header_item
	
 A token identifying which header information item to retrieve.
 Only COUNT, to get the number of columns in the
 result set, is currently supported.

	column_number
	
 The number of the column about which information is to be
 retrieved. The count starts at 1.

	descriptor_item
	
 A token identifying which item of information about a column
 to retrieve. See the section called “Named SQL Descriptor Areas” for
 a list of supported items.

	cvariable
	
 A host variable that will receive the data retrieved from the
 descriptor area.

Examples

 An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT;

 An example to retrieve a data length in the first column:

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;

 An example to retrieve the data body of the second column as a
 string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;

 Here is an example for a whole procedure of
 executing SELECT current_database(); and showing the number of
 columns, the column data length, and the column data:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int d_count;
 char d_data[1024];
 int d_returned_octet_length;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;

 /* Declare, open a cursor, and assign a descriptor to the cursor */
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
 EXEC SQL OPEN cur;
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;

 /* Get a number of total columns */
 EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
 printf("d_count = %d\n", d_count);

 /* Get length of a returned column */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;
 printf("d_returned_octet_length = %d\n", d_returned_octet_length);

 /* Fetch the returned column as a string */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
 printf("d_data = %s\n", d_data);

 /* Closing */
 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

 When the example is executed, the result will look like this:

d_count = 1
d_returned_octet_length = 6
d_data = testdb

Compatibility

 GET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, SET DESCRIPTOR

Name
OPEN — open a dynamic cursor

Synopsis

OPEN cursor_name
OPEN cursor_name USING value [, ...]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

Description

 OPEN opens a cursor and optionally binds
 actual values to the placeholders in the cursor's declaration.
 The cursor must previously have been declared with
 the DECLARE command. The execution
 of OPEN causes the query to start executing on
 the server.

Parameters
	cursor_name
	
 The name of the cursor to be opened. This can be an SQL
 identifier or a host variable.

	value
	
 A value to be bound to a placeholder in the cursor. This can
 be an SQL constant, a host variable, or a host variable with
 indicator.

	descriptor_name
	
 The name of a descriptor containing values to be bound to the
 placeholders in the cursor. This can be an SQL identifier or
 a host variable.

Examples

EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, 'test';
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;

Compatibility

 OPEN is specified in the SQL standard.

See Also
DECLARE, CLOSE(7)

Name
PREPARE — prepare a statement for execution

Synopsis

PREPARE prepared_name FROM string

Description

 PREPARE prepares a statement dynamically
 specified as a string for execution. This is different from the
 direct SQL statement PREPARE(7), which can also
 be used in embedded programs. The EXECUTE(7)
 command is used to execute either kind of prepared statement.

Parameters
	prepared_name
	
 An identifier for the prepared query.

	string
	
 A literal string or a host variable containing a preparable
 SQL statement, one of SELECT, INSERT, UPDATE, or DELETE.
 Use question marks (?) for parameter values
 to be supplied at execution.

Notes

 In typical usage, the string is a host
 variable reference to a string containing a dynamically-constructed
 SQL statement. The case of a literal string is not very useful;
 you might as well just write a direct SQL PREPARE
 statement.

 If you do use a literal string, keep in mind that any double quotes
 you might wish to include in the SQL statement must be written as
 octal escapes (\042) not the usual C
 idiom \". This is because the string is inside
 an EXEC SQL section, so the ECPG lexer parses it
 according to SQL rules not C rules. Any embedded backslashes will
 later be handled according to C rules; but \"
 causes an immediate syntax error because it is seen as ending the
 literal.

Examples

char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc;

Compatibility

 PREPARE is specified in the SQL standard.

See Also
EXECUTE(7)

Name
SET AUTOCOMMIT — set the autocommit behavior of the current session

Synopsis

SET AUTOCOMMIT { = | TO } { ON | OFF }

Description

 SET AUTOCOMMIT sets the autocommit behavior of
 the current database session. By default, embedded SQL programs
 are not in autocommit mode,
 so COMMIT needs to be issued explicitly when
 desired. This command can change the session to autocommit mode,
 where each individual statement is committed implicitly.

Compatibility

 SET AUTOCOMMIT is an extension of PostgreSQL ECPG.

Name
SET CONNECTION — select a database connection

Synopsis

SET CONNECTION [TO | =] connection_name

Description

 SET CONNECTION sets the “current”
 database connection, which is the one that all commands use
 unless overridden.

Parameters
	connection_name
	
 A database connection name established by
 the CONNECT command.

	CURRENT
	
 Set the connection to the current connection (thus, nothing happens).

Examples

EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;

Compatibility

 SET CONNECTION is specified in the SQL standard.

See Also
CONNECT, DISCONNECT

Name
SET DESCRIPTOR — set information in an SQL descriptor area

Synopsis

SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]

Description

 SET DESCRIPTOR populates an SQL descriptor
 area with values. The descriptor area is then typically used to
 bind parameters in a prepared query execution.

 This command has two forms: The first form applies to the
 descriptor “header”, which is independent of a
 particular datum. The second form assigns values to particular
 datums, identified by number.

Parameters
	descriptor_name
	
 A descriptor name.

	descriptor_header_item
	
 A token identifying which header information item to set.
 Only COUNT, to set the number of descriptor
 items, is currently supported.

	number
	
 The number of the descriptor item to set. The count starts at
 1.

	descriptor_item
	
 A token identifying which item of information to set in the
 descriptor. See the section called “Named SQL Descriptor Areas” for a
 list of supported items.

	value
	
 A value to store into the descriptor item. This can be an SQL
 constant or a host variable.

Examples

EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = 'some string';
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2;

Compatibility

 SET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

Name
TYPE — define a new data type

Synopsis

TYPE type_name IS ctype

Description

 The TYPE command defines a new C type. It is
 equivalent to putting a typedef into a declare
 section.

 This command is only recognized when ecpg is
 run with the -c option.

Parameters
	type_name
	
 The name for the new type. It must be a valid C type name.

	ctype
	
 A C type specification.

Examples

EXEC SQL TYPE customer IS
 struct
 {
 varchar name[50];
 int phone;
 };

EXEC SQL TYPE cust_ind IS
 struct ind
 {
 short name_ind;
 short phone_ind;
 };

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];

 Here is an example program that uses EXEC SQL
 TYPE:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS
 struct
 {
 varchar v[256];
 int i;
 };

EXEC SQL TYPE tt_ind IS
 struct ind {
 short v_ind;
 short i_ind;
 };

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 tt t;
 tt_ind t_ind;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

 printf("t.v = %s\n", t.v.arr);
 printf("t.i = %d\n", t.i);

 printf("t_ind.v_ind = %d\n", t_ind.v_ind);
 printf("t_ind.i_ind = %d\n", t_ind.i_ind);

 EXEC SQL DISCONNECT con1;

 return 0;
}

 The output from this program looks like this:

t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0

Compatibility

 The TYPE command is a PostgreSQL extension.

Name
VAR — define a variable

Synopsis

VAR varname IS ctype

Description

 The VAR command assigns a new C data type
 to a host variable. The host variable must be previously
 declared in a declare section.

Parameters
	varname
	
 A C variable name.

	ctype
	
 A C type specification.

Examples

Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;

Compatibility

 The VAR command is a PostgreSQL extension.

Name
WHENEVER — specify the action to be taken when an SQL statement causes a specific class condition to be raised

Synopsis

WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description

 Define a behavior which is called on the special cases (Rows not
 found, SQL warnings or errors) in the result of SQL execution.

Parameters

 See the section called “Setting Callbacks” for a description of the
 parameters.

Examples

EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;

 A typical application is the use of WHENEVER NOT FOUND
 BREAK to handle looping through result sets:

int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge', 256;
 EXEC SQL OPEN cur;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
 ...
 }

 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

Compatibility

 WHENEVER is specified in the SQL standard, but
 most of the actions are PostgreSQL extensions.

Informix™ Compatibility Mode

 ecpg can be run in a so-called Informix compatibility mode. If
 this mode is active, it tries to behave as if it were the Informix™
 precompiler for Informix™ E/SQL. Generally spoken this will allow you to use
 the dollar sign instead of the EXEC SQL primitive to introduce
 embedded SQL commands:

$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;

Note

 There must not be any white space between the $
 and a following preprocessor directive, that is,
 include, define, ifdef,
 etc. Otherwise, the preprocessor will parse the token as a host
 variable.

 There are two compatibility modes: INFORMIX, INFORMIX_SE

 When linking programs that use this compatibility mode, remember to link
 against libcompat that is shipped with ECPG.

 Besides the previously explained syntactic sugar, the Informix™ compatibility
 mode ports some functions for input, output and transformation of data as
 well as embedded SQL statements known from E/SQL to ECPG.

 Informix™ compatibility mode is closely connected to the pgtypeslib library
 of ECPG. pgtypeslib maps SQL data types to data types within the C host
 program and most of the additional functions of the Informix™ compatibility
 mode allow you to operate on those C host program types. Note however that
 the extent of the compatibility is limited. It does not try to copy Informix™
 behavior; it allows you to do more or less the same operations and gives
 you functions that have the same name and the same basic behavior but it is
 no drop-in replacement if you are using Informix™ at the moment. Moreover,
 some of the data types are different. For example,
 PostgreSQL™'s datetime and interval types do not
 know about ranges like for example YEAR TO MINUTE so you won't
 find support in ECPG for that either.

Additional Types

 The Informix-special "string" pseudo-type for storing right-trimmed character string data is now
 supported in Informix-mode without using typedef. In fact, in Informix-mode,
 ECPG refuses to process source files that contain typedef sometype string;

EXEC SQL BEGIN DECLARE SECTION;
string userid; /* this variable will contain trimmed data */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;

Additional/Missing Embedded SQL Statements

	CLOSE DATABASE
	
 This statement closes the current connection. In fact, this is a
 synonym for ECPG's DISCONNECT CURRENT:

$CLOSE DATABASE; /* close the current connection */
EXEC SQL CLOSE DATABASE;

	FREE cursor_name
	
 Due to differences in how ECPG works compared to Informix's ESQL/C (namely, which steps
 are purely grammar transformations and which steps rely on the underlying run-time library)
 there is no FREE cursor_name statement in ECPG. This is because in ECPG,
 DECLARE CURSOR doesn't translate to a function call into
 the run-time library that uses to the cursor name. This means that there's no run-time
 bookkeeping of SQL cursors in the ECPG run-time library, only in the PostgreSQL server.

	FREE statement_name
	
 FREE statement_name is a synonym for DEALLOCATE PREPARE statement_name.

Informix-compatible SQLDA Descriptor Areas

 Informix-compatible mode supports a different structure than the one described in
 the section called “SQLDA Descriptor Areas”. See below:

struct sqlvar_compat
{
 short sqltype;
 int sqllen;
 char *sqldata;
 short *sqlind;
 char *sqlname;
 char *sqlformat;
 short sqlitype;
 short sqlilen;
 char *sqlidata;
 int sqlxid;
 char *sqltypename;
 short sqltypelen;
 short sqlownerlen;
 short sqlsourcetype;
 char *sqlownername;
 int sqlsourceid;
 char *sqlilongdata;
 int sqlflags;
 void *sqlreserved;
};

struct sqlda_compat
{
 short sqld;
 struct sqlvar_compat *sqlvar;
 char desc_name[19];
 short desc_occ;
 struct sqlda_compat *desc_next;
 void *reserved;
};

typedef struct sqlvar_compat sqlvar_t;
typedef struct sqlda_compat sqlda_t;

 The global properties are:

	sqld
	
 The number of fields in the SQLDA descriptor.

	sqlvar
	
 Pointer to the per-field properties.

	desc_name
	
 Unused, filled with zero-bytes.

	desc_occ
	
 Size of the allocated structure.

	desc_next
	
 Pointer to the next SQLDA structure if the result set contains more than one record.

	reserved
	
 Unused pointer, contains NULL. Kept for Informix-compatibility.

 The per-field properties are below, they are stored in the sqlvar array:

	sqltype
	
 Type of the field. Constants are in sqltypes.h

	sqllen
	
 Length of the field data.

	sqldata
	
 Pointer to the field data. The pointer is of char * type,
 the data pointed by it is in a binary format. Example:

int intval;

switch (sqldata->sqlvar[i].sqltype)
{
 case SQLINTEGER:
 intval = *(int *)sqldata->sqlvar[i].sqldata;
 break;
 ...
}

	sqlind
	
 Pointer to the NULL indicator. If returned by DESCRIBE or FETCH then it's always a valid pointer.
 If used as input for EXECUTE ... USING sqlda; then NULL-pointer value means
 that the value for this field is non-NULL. Otherwise a valid pointer and sqlitype
 has to be properly set. Example:

if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
 printf("value is NULL\n");

	sqlname
	
 Name of the field. 0-terminated string.

	sqlformat
	
 Reserved in Informix, value of PQfformat for the field.

	sqlitype
	
 Type of the NULL indicator data. It's always SQLSMINT when returning data from the server.
 When the SQLDA is used for a parameterized query, the data is treated
 according to the set type.

	sqlilen
	
 Length of the NULL indicator data.

	sqlxid
	
 Extended type of the field, result of PQftype.

	sqltypename, sqltypelen, sqlownerlen, sqlsourcetype, sqlownername, sqlsourceid, sqlflags, sqlreserved
	
 Unused.

	sqlilongdata
	
 It equals to sqldata if sqllen is larger than 32kB.

 Example:

EXEC SQL INCLUDE sqlda.h;

 sqlda_t *sqlda; /* This doesn't need to be under embedded DECLARE SECTION */

 EXEC SQL BEGIN DECLARE SECTION;
 char *prep_stmt = "select * from table1";
 int i;
 EXEC SQL END DECLARE SECTION;

 ...

 EXEC SQL PREPARE mystmt FROM :prep_stmt;

 EXEC SQL DESCRIBE mystmt INTO sqlda;

 printf("# of fields: %d\n", sqlda->sqld);
 for (i = 0; i < sqlda->sqld; i++)
 printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

 EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
 EXEC SQL OPEN mycursor;
 EXEC SQL WHENEVER NOT FOUND GOTO out;

 while (1)
 {
 EXEC SQL FETCH mycursor USING sqlda;
 }

 EXEC SQL CLOSE mycursor;

 free(sqlda); /* The main structure is all to be free(),
 * sqlda and sqlda->sqlvar is in one allocated area */

 For more information, see the sqlda.h header and the
 src/interfaces/ecpg/test/compat_informix/sqlda.pgc regression test.

Additional Functions

	decadd
	
 Add two decimal type values.

int decadd(decimal *arg1, decimal *arg2, decimal *sum);

 The function receives a pointer to the first operand of type decimal
 (arg1), a pointer to the second operand of type decimal
 (arg2) and a pointer to a value of type decimal that will
 contain the sum (sum). On success, the function returns 0.
 ECPG_INFORMIX_NUM_OVERFLOW is returned in case of overflow and
 ECPG_INFORMIX_NUM_UNDERFLOW in case of underflow. -1 is returned for
 other failures and errno is set to the respective errno number of the
 pgtypeslib.

	deccmp
	
 Compare two variables of type decimal.

int deccmp(decimal *arg1, decimal *arg2);

 The function receives a pointer to the first decimal value
 (arg1), a pointer to the second decimal value
 (arg2) and returns an integer value that indicates which is
 the bigger value.

	
 1, if the value that arg1 points to is bigger than the
 value that var2 points to

	
 -1, if the value that arg1 points to is smaller than the
 value that arg2 points to

	
 0, if the value that arg1 points to and the value that
 arg2 points to are equal

	deccopy
	
 Copy a decimal value.

void deccopy(decimal *src, decimal *target);

 The function receives a pointer to the decimal value that should be
 copied as the first argument (src) and a pointer to the
 target structure of type decimal (target) as the second
 argument.

	deccvasc
	
 Convert a value from its ASCII representation into a decimal type.

int deccvasc(char *cp, int len, decimal *np);

 The function receives a pointer to string that contains the string
 representation of the number to be converted (cp) as well
 as its length len. np is a pointer to the
 decimal value that saves the result of the operation.

 Valid formats are for example:
 -2,
 .794,
 +3.44,
 592.49E07 or
 -32.84e-4.

 The function returns 0 on success. If overflow or underflow occurred,
 ECPG_INFORMIX_NUM_OVERFLOW or
 ECPG_INFORMIX_NUM_UNDERFLOW is returned. If the ASCII
 representation could not be parsed,
 ECPG_INFORMIX_BAD_NUMERIC is returned or
 ECPG_INFORMIX_BAD_EXPONENT if this problem occurred while
 parsing the exponent.

	deccvdbl
	
 Convert a value of type double to a value of type decimal.

int deccvdbl(double dbl, decimal *np);

 The function receives the variable of type double that should be
 converted as its first argument (dbl). As the second
 argument (np), the function receives a pointer to the
 decimal variable that should hold the result of the operation.

 The function returns 0 on success and a negative value if the
 conversion failed.

	deccvint
	
 Convert a value of type int to a value of type decimal.

int deccvint(int in, decimal *np);

 The function receives the variable of type int that should be
 converted as its first argument (in). As the second
 argument (np), the function receives a pointer to the
 decimal variable that should hold the result of the operation.

 The function returns 0 on success and a negative value if the
 conversion failed.

	deccvlong
	
 Convert a value of type long to a value of type decimal.

int deccvlong(long lng, decimal *np);

 The function receives the variable of type long that should be
 converted as its first argument (lng). As the second
 argument (np), the function receives a pointer to the
 decimal variable that should hold the result of the operation.

 The function returns 0 on success and a negative value if the
 conversion failed.

	decdiv
	
 Divide two variables of type decimal.

int decdiv(decimal *n1, decimal *n2, decimal *result);

 The function receives pointers to the variables that are the first
 (n1) and the second (n2) operands and
 calculates n1/n2. result is a
 pointer to the variable that should hold the result of the operation.

 On success, 0 is returned and a negative value if the division fails.
 If overflow or underflow occurred, the function returns
 ECPG_INFORMIX_NUM_OVERFLOW or
 ECPG_INFORMIX_NUM_UNDERFLOW respectively. If an attempt to
 divide by zero is observed, the function returns
 ECPG_INFORMIX_DIVIDE_ZERO.

	decmul
	
 Multiply two decimal values.

int decmul(decimal *n1, decimal *n2, decimal *result);

 The function receives pointers to the variables that are the first
 (n1) and the second (n2) operands and
 calculates n1*n2. result is a
 pointer to the variable that should hold the result of the operation.

 On success, 0 is returned and a negative value if the multiplication
 fails. If overflow or underflow occurred, the function returns
 ECPG_INFORMIX_NUM_OVERFLOW or
 ECPG_INFORMIX_NUM_UNDERFLOW respectively.

	decsub
	
 Subtract one decimal value from another.

int decsub(decimal *n1, decimal *n2, decimal *result);

 The function receives pointers to the variables that are the first
 (n1) and the second (n2) operands and
 calculates n1-n2. result is a
 pointer to the variable that should hold the result of the operation.

 On success, 0 is returned and a negative value if the subtraction
 fails. If overflow or underflow occurred, the function returns
 ECPG_INFORMIX_NUM_OVERFLOW or
 ECPG_INFORMIX_NUM_UNDERFLOW respectively.

	dectoasc
	
 Convert a variable of type decimal to its ASCII representation in a C
 char* string.

int dectoasc(decimal *np, char *cp, int len, int right)

 The function receives a pointer to a variable of type decimal
 (np) that it converts to its textual representation.
 cp is the buffer that should hold the result of the
 operation. The parameter right specifies, how many digits
 right of the decimal point should be included in the output. The result
 will be rounded to this number of decimal digits. Setting
 right to -1 indicates that all available decimal digits
 should be included in the output. If the length of the output buffer,
 which is indicated by len is not sufficient to hold the
 textual representation including the trailing zero byte, only a
 single * character is stored in the result and -1 is
 returned.

 The function returns either -1 if the buffer cp was too
 small or ECPG_INFORMIX_OUT_OF_MEMORY if memory was
 exhausted.

	dectodbl
	
 Convert a variable of type decimal to a double.

int dectodbl(decimal *np, double *dblp);

 The function receives a pointer to the decimal value to convert
 (np) and a pointer to the double variable that
 should hold the result of the operation (dblp).

 On success, 0 is returned and a negative value if the conversion
 failed.

	dectoint
	
 Convert a variable of type decimal to an integer.

int dectoint(decimal *np, int *ip);

 The function receives a pointer to the decimal value to convert
 (np) and a pointer to the integer variable that
 should hold the result of the operation (ip).

 On success, 0 is returned and a negative value if the conversion
 failed. If an overflow occurred, ECPG_INFORMIX_NUM_OVERFLOW
 is returned.

 Note that the ECPG implementation differs from the Informix™
 implementation. Informix™ limits an integer to the range from -32767 to
 32767, while the limits in the ECPG implementation depend on the
 architecture (INT_MIN .. INT_MAX).

	dectolong
	
 Convert a variable of type decimal to a long integer.

int dectolong(decimal *np, long *lngp);

 The function receives a pointer to the decimal value to convert
 (np) and a pointer to the long variable that
 should hold the result of the operation (lngp).

 On success, 0 is returned and a negative value if the conversion
 failed. If an overflow occurred, ECPG_INFORMIX_NUM_OVERFLOW
 is returned.

 Note that the ECPG implementation differs from the Informix™
 implementation. Informix™ limits a long integer to the range from
 -2,147,483,647 to 2,147,483,647, while the limits in the ECPG
 implementation depend on the architecture (-LONG_MAX ..
 LONG_MAX).

	rdatestr
	
 Converts a date to a C char* string.

int rdatestr(date d, char *str);

 The function receives two arguments, the first one is the date to
 convert (d) and the second one is a pointer to the target
 string. The output format is always yyyy-mm-dd, so you need
 to allocate at least 11 bytes (including the zero-byte terminator) for the
 string.

 The function returns 0 on success and a negative value in case of
 error.

 Note that ECPG's implementation differs from the Informix™
 implementation. In Informix™ the format can be influenced by setting
 environment variables. In ECPG however, you cannot change the output
 format.

	rstrdate
	
 Parse the textual representation of a date.

int rstrdate(char *str, date *d);

 The function receives the textual representation of the date to convert
 (str) and a pointer to a variable of type date
 (d). This function does not allow you to specify a format
 mask. It uses the default format mask of Informix™ which is
 mm/dd/yyyy. Internally, this function is implemented by
 means of rdefmtdate. Therefore, rstrdate is
 not faster and if you have the choice you should opt for
 rdefmtdate which allows you to specify the format mask
 explicitly.

 The function returns the same values as rdefmtdate.

	rtoday
	
 Get the current date.

void rtoday(date *d);

 The function receives a pointer to a date variable (d)
 that it sets to the current date.

 Internally this function uses the PGTYPESdate_today
 function.

	rjulmdy
	
 Extract the values for the day, the month and the year from a variable
 of type date.

int rjulmdy(date d, short mdy[3]);

 The function receives the date d and a pointer to an array
 of 3 short integer values mdy. The variable name indicates
 the sequential order: mdy[0] will be set to contain the
 number of the month, mdy[1] will be set to the value of the
 day and mdy[2] will contain the year.

 The function always returns 0 at the moment.

 Internally the function uses the PGTYPESdate_julmdy
 function.

	rdefmtdate
	
 Use a format mask to convert a character string to a value of type
 date.

int rdefmtdate(date *d, char *fmt, char *str);

 The function receives a pointer to the date value that should hold the
 result of the operation (d), the format mask to use for
 parsing the date (fmt) and the C char* string containing
 the textual representation of the date (str). The textual
 representation is expected to match the format mask. However you do not
 need to have a 1:1 mapping of the string to the format mask. The
 function only analyzes the sequential order and looks for the literals
 yy or yyyy that indicate the
 position of the year, mm to indicate the position of
 the month and dd to indicate the position of the
 day.

 The function returns the following values:

	
 0 - The function terminated successfully.

	
 ECPG_INFORMIX_ENOSHORTDATE - The date does not contain
 delimiters between day, month and year. In this case the input
 string must be exactly 6 or 8 bytes long but isn't.

	
 ECPG_INFORMIX_ENOTDMY - The format string did not
 correctly indicate the sequential order of year, month and day.

	
 ECPG_INFORMIX_BAD_DAY - The input string does not
 contain a valid day.

	
 ECPG_INFORMIX_BAD_MONTH - The input string does not
 contain a valid month.

	
 ECPG_INFORMIX_BAD_YEAR - The input string does not
 contain a valid year.

 Internally this function is implemented to use the PGTYPESdate_defmt_asc function. See the reference there for a
 table of example input.

	rfmtdate
	
 Convert a variable of type date to its textual representation using a
 format mask.

int rfmtdate(date d, char *fmt, char *str);

 The function receives the date to convert (d), the format
 mask (fmt) and the string that will hold the textual
 representation of the date (str).

 On success, 0 is returned and a negative value if an error occurred.

 Internally this function uses the PGTYPESdate_fmt_asc
 function, see the reference there for examples.

	rmdyjul
	
 Create a date value from an array of 3 short integers that specify the
 day, the month and the year of the date.

int rmdyjul(short mdy[3], date *d);

 The function receives the array of the 3 short integers
 (mdy) and a pointer to a variable of type date that should
 hold the result of the operation.

 Currently the function returns always 0.

 Internally the function is implemented to use the function PGTYPESdate_mdyjul.

	rdayofweek
	
 Return a number representing the day of the week for a date value.

int rdayofweek(date d);

 The function receives the date variable d as its only
 argument and returns an integer that indicates the day of the week for
 this date.

	
 0 - Sunday

	
 1 - Monday

	
 2 - Tuesday

	
 3 - Wednesday

	
 4 - Thursday

	
 5 - Friday

	
 6 - Saturday

 Internally the function is implemented to use the function PGTYPESdate_dayofweek.

	dtcurrent
	
 Retrieve the current timestamp.

void dtcurrent(timestamp *ts);

 The function retrieves the current timestamp and saves it into the
 timestamp variable that ts points to.

	dtcvasc
	
 Parses a timestamp from its textual representation
 into a timestamp variable.

int dtcvasc(char *str, timestamp *ts);

 The function receives the string to parse (str) and a
 pointer to the timestamp variable that should hold the result of the
 operation (ts).

 The function returns 0 on success and a negative value in case of
 error.

 Internally this function uses the PGTYPEStimestamp_from_asc function. See the reference there
 for a table with example inputs.

	dtcvfmtasc
	
 Parses a timestamp from its textual representation
 using a format mask into a timestamp variable.

dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)

 The function receives the string to parse (inbuf), the
 format mask to use (fmtstr) and a pointer to the timestamp
 variable that should hold the result of the operation
 (dtvalue).

 This function is implemented by means of the PGTYPEStimestamp_defmt_asc function. See the documentation
 there for a list of format specifiers that can be used.

 The function returns 0 on success and a negative value in case of
 error.

	dtsub
	
 Subtract one timestamp from another and return a variable of type
 interval.

int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);

 The function will subtract the timestamp variable that ts2
 points to from the timestamp variable that ts1 points to
 and will store the result in the interval variable that iv
 points to.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

	dttoasc
	
 Convert a timestamp variable to a C char* string.

int dttoasc(timestamp *ts, char *output);

 The function receives a pointer to the timestamp variable to convert
 (ts) and the string that should hold the result of the
 operation (output). It converts ts to its
 textual representation according to the SQL standard, which is
 be YYYY-MM-DD HH:MM:SS.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

	dttofmtasc
	
 Convert a timestamp variable to a C char* using a format mask.

int dttofmtasc(timestamp *ts, char *output, int str_len, char *fmtstr);

 The function receives a pointer to the timestamp to convert as its
 first argument (ts), a pointer to the output buffer
 (output), the maximal length that has been allocated for
 the output buffer (str_len) and the format mask to
 use for the conversion (fmtstr).

 Upon success, the function returns 0 and a negative value if an
 error occurred.

 Internally, this function uses the PGTYPEStimestamp_fmt_asc function. See the reference there for
 information on what format mask specifiers can be used.

	intoasc
	
 Convert an interval variable to a C char* string.

int intoasc(interval *i, char *str);

 The function receives a pointer to the interval variable to convert
 (i) and the string that should hold the result of the
 operation (str). It converts i to its
 textual representation according to the SQL standard, which is
 be YYYY-MM-DD HH:MM:SS.

 Upon success, the function returns 0 and a negative value if an
 error occurred.

	rfmtlong
	
 Convert a long integer value to its textual representation using a
 format mask.

int rfmtlong(long lng_val, char *fmt, char *outbuf);

 The function receives the long value lng_val, the format
 mask fmt and a pointer to the output buffer
 outbuf. It converts the long value according to the format
 mask to its textual representation.

 The format mask can be composed of the following format specifying
 characters:

	
 * (asterisk) - if this position would be blank
 otherwise, fill it with an asterisk.

	
 & (ampersand) - if this position would be
 blank otherwise, fill it with a zero.

	
 # - turn leading zeroes into blanks.

	
 < - left-justify the number in the string.

	
 , (comma) - group numbers of four or more digits
 into groups of three digits separated by a comma.

	
 . (period) - this character separates the
 whole-number part of the number from the fractional part.

	
 - (minus) - the minus sign appears if the number
 is a negative value.

	
 + (plus) - the plus sign appears if the number is
 a positive value.

	
 (- this replaces the minus sign in front of the
 negative number. The minus sign will not appear.

	
) - this character replaces the minus and is
 printed behind the negative value.

	
 $ - the currency symbol.

	rupshift
	
 Convert a string to upper case.

void rupshift(char *str);

 The function receives a pointer to the string and transforms every
 lower case character to upper case.

	byleng
	
 Return the number of characters in a string without counting trailing
 blanks.

int byleng(char *str, int len);

 The function expects a fixed-length string as its first argument
 (str) and its length as its second argument
 (len). It returns the number of significant characters,
 that is the length of the string without trailing blanks.

	ldchar
	
 Copy a fixed-length string into a null-terminated string.

void ldchar(char *src, int len, char *dest);

 The function receives the fixed-length string to copy
 (src), its length (len) and a pointer to the
 destination memory (dest). Note that you need to reserve at
 least len+1 bytes for the string that dest
 points to. The function copies at most len bytes to the new
 location (less if the source string has trailing blanks) and adds the
 null-terminator.

	rgetmsg
	

int rgetmsg(int msgnum, char *s, int maxsize);

 This function exists but is not implemented at the moment!

	rtypalign
	

int rtypalign(int offset, int type);

 This function exists but is not implemented at the moment!

	rtypmsize
	

int rtypmsize(int type, int len);

 This function exists but is not implemented at the moment!

	rtypwidth
	

int rtypwidth(int sqltype, int sqllen);

 This function exists but is not implemented at the moment!

	rsetnull
	
 Set a variable to NULL.

int rsetnull(int t, char *ptr);

 The function receives an integer that indicates the type of the
 variable and a pointer to the variable itself that is cast to a C
 char* pointer.

 The following types exist:

	
 CCHARTYPE - For a variable of type char or char*

	
 CSHORTTYPE - For a variable of type short int

	
 CINTTYPE - For a variable of type int

	
 CBOOLTYPE - For a variable of type boolean

	
 CFLOATTYPE - For a variable of type float

	
 CLONGTYPE - For a variable of type long

	
 CDOUBLETYPE - For a variable of type double

	
 CDECIMALTYPE - For a variable of type decimal

	
 CDATETYPE - For a variable of type date

	
 CDTIMETYPE - For a variable of type timestamp

 Here is an example of a call to this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);

	risnull
	
 Test if a variable is NULL.

int risnull(int t, char *ptr);

 The function receives the type of the variable to test (t)
 as well a pointer to this variable (ptr). Note that the
 latter needs to be cast to a char*. See the function rsetnull for a list of possible variable types.

 Here is an example of how to use this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);

Additional Constants

 Note that all constants here describe errors and all of them are defined
 to represent negative values. In the descriptions of the different
 constants you can also find the value that the constants represent in the
 current implementation. However you should not rely on this number. You can
 however rely on the fact all of them are defined to represent negative
 values.

	ECPG_INFORMIX_NUM_OVERFLOW
	
 Functions return this value if an overflow occurred in a
 calculation. Internally it is defined as -1200 (the Informix™
 definition).

	ECPG_INFORMIX_NUM_UNDERFLOW
	
 Functions return this value if an underflow occurred in a calculation.
 Internally it is defined as -1201 (the Informix™ definition).

	ECPG_INFORMIX_DIVIDE_ZERO
	
 Functions return this value if an attempt to divide by zero is
 observed. Internally it is defined as -1202 (the Informix™ definition).

	ECPG_INFORMIX_BAD_YEAR
	
 Functions return this value if a bad value for a year was found while
 parsing a date. Internally it is defined as -1204 (the Informix™
 definition).

	ECPG_INFORMIX_BAD_MONTH
	
 Functions return this value if a bad value for a month was found while
 parsing a date. Internally it is defined as -1205 (the Informix™
 definition).

	ECPG_INFORMIX_BAD_DAY
	
 Functions return this value if a bad value for a day was found while
 parsing a date. Internally it is defined as -1206 (the Informix™
 definition).

	ECPG_INFORMIX_ENOSHORTDATE
	
 Functions return this value if a parsing routine needs a short date
 representation but did not get the date string in the right length.
 Internally it is defined as -1209 (the Informix™ definition).

	ECPG_INFORMIX_DATE_CONVERT
	
 Functions return this value if an error occurred during date
 formatting. Internally it is defined as -1210 (the
 Informix™ definition).

	ECPG_INFORMIX_OUT_OF_MEMORY
	
 Functions return this value if memory was exhausted during
 their operation. Internally it is defined as -1211 (the
 Informix™ definition).

	ECPG_INFORMIX_ENOTDMY
	
 Functions return this value if a parsing routine was supposed to get a
 format mask (like mmddyy) but not all fields were listed
 correctly. Internally it is defined as -1212 (the Informix™ definition).

	ECPG_INFORMIX_BAD_NUMERIC
	
 Functions return this value either if a parsing routine cannot parse
 the textual representation for a numeric value because it contains
 errors or if a routine cannot complete a calculation involving numeric
 variables because at least one of the numeric variables is invalid.
 Internally it is defined as -1213 (the Informix™ definition).

	ECPG_INFORMIX_BAD_EXPONENT
	
 Functions return this value if a parsing routine cannot parse
 an exponent. Internally it is defined as -1216 (the
 Informix™ definition).

	ECPG_INFORMIX_BAD_DATE
	
 Functions return this value if a parsing routine cannot parse
 a date. Internally it is defined as -1218 (the
 Informix™ definition).

	ECPG_INFORMIX_EXTRA_CHARS
	
 Functions return this value if a parsing routine is passed extra
 characters it cannot parse. Internally it is defined as -1264 (the
 Informix™ definition).

Oracle™ Compatibility Mode

 ecpg can be run in a so-called Oracle
 compatibility mode. If this mode is active, it tries to
 behave as if it were Oracle Pro*C™.

 Specifically, this mode changes ecpg in three ways:

	
 Pad character arrays receiving character string types with
 trailing spaces to the specified length

	
 Zero byte terminate these character arrays, and set the indicator
 variable if truncation occurs

	
 Set the null indicator to -1 when character
 arrays receive empty character string types

Internals

 This section explains how ECPG works
 internally. This information can occasionally be useful to help
 users understand how to use ECPG.

 The first four lines written by ecpg to the
 output are fixed lines. Two are comments and two are include
 lines necessary to interface to the library. Then the
 preprocessor reads through the file and writes output. Normally
 it just echoes everything to the output.

 When it sees an EXEC SQL statement, it
 intervenes and changes it. The command starts with EXEC
 SQL and ends with ;. Everything in
 between is treated as an SQL statement and
 parsed for variable substitution.

 Variable substitution occurs when a symbol starts with a colon
 (:). The variable with that name is looked up
 among the variables that were previously declared within a
 EXEC SQL DECLARE section.

 The most important function in the library is
 ECPGdo, which takes care of executing most
 commands. It takes a variable number of arguments. This can easily
 add up to 50 or so arguments, and we hope this will not be a
 problem on any platform.

 The arguments are:

	A line number
	
 This is the line number of the original line; used in error
 messages only.

	A string
	
 This is the SQL command that is to be issued.
 It is modified by the input variables, i.e., the variables that
 where not known at compile time but are to be entered in the
 command. Where the variables should go the string contains
 ?.

	Input variables
	
 Every input variable causes ten arguments to be created. (See below.)

	ECPGt_EOIT
	
 An enum telling that there are no more input
 variables.

	Output variables
	
 Every output variable causes ten arguments to be created.
 (See below.) These variables are filled by the function.

	ECPGt_EORT
	
 An enum telling that there are no more variables.

 For every variable that is part of the SQL
 command, the function gets ten arguments:

	
 The type as a special symbol.

	
 A pointer to the value or a pointer to the pointer.

	
 The size of the variable if it is a char or varchar.

	
 The number of elements in the array (for array fetches).

	
 The offset to the next element in the array (for array fetches).

	
 The type of the indicator variable as a special symbol.

	
 A pointer to the indicator variable.

	
 0

	
 The number of elements in the indicator array (for array fetches).

	
 The offset to the next element in the indicator array (for
 array fetches).

 Note that not all SQL commands are treated in this way. For
 instance, an open cursor statement like:

EXEC SQL OPEN cursor;

 is not copied to the output. Instead, the cursor's
 DECLARE command is used at the position of the OPEN command
 because it indeed opens the cursor.

 Here is a complete example describing the output of the
 preprocessor of a file foo.pgc (details might
 change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

 is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

 (The indentation here is added for readability and not
 something the preprocessor does.)

Chapter 37. The Information Schema

 The information schema consists of a set of views that contain
 information about the objects defined in the current database. The
 information schema is defined in the SQL standard and can therefore
 be expected to be portable and remain stable — unlike the system
 catalogs, which are specific to
 PostgreSQL™ and are modeled after
 implementation concerns. The information schema views do not,
 however, contain information about
 PostgreSQL™-specific features; to inquire
 about those you need to query the system catalogs or other
 PostgreSQL™-specific views.

Note

 When querying the database for constraint information, it is possible
 for a standard-compliant query that expects to return one row to
 return several. This is because the SQL standard requires constraint
 names to be unique within a schema, but
 PostgreSQL™ does not enforce this
 restriction. PostgreSQL™
 automatically-generated constraint names avoid duplicates in the
 same schema, but users can specify such duplicate names.

 This problem can appear when querying information schema views such
 as check_constraint_routine_usage,
 check_constraints, domain_constraints, and
 referential_constraints. Some other views have similar
 issues but contain the table name to help distinguish duplicate
 rows, e.g., constraint_column_usage,
 constraint_table_usage, table_constraints.

The Schema

 The information schema itself is a schema named
 information_schema. This schema automatically
 exists in all databases. The owner of this schema is the initial
 database user in the cluster, and that user naturally has all the
 privileges on this schema, including the ability to drop it (but
 the space savings achieved by that are minuscule).

 By default, the information schema is not in the schema search
 path, so you need to access all objects in it through qualified
 names. Since the names of some of the objects in the information
 schema are generic names that might occur in user applications, you
 should be careful if you want to put the information schema in the
 path.

Data Types

 The columns of the information schema views use special data types
 that are defined in the information schema. These are defined as
 simple domains over ordinary built-in types. You should not use
 these types for work outside the information schema, but your
 applications must be prepared for them if they select from the
 information schema.

 These types are:

	cardinal_number
	
 A nonnegative integer.

	character_data
	
 A character string (without specific maximum length).

	sql_identifier
	
 A character string. This type is used for SQL identifiers, the
 type character_data is used for any other kind of
 text data.

	time_stamp
	
 A domain over the type timestamp with time zone

	yes_or_no
	
 A character string domain that contains
 either YES or NO. This
 is used to represent Boolean (true/false) data in the
 information schema. (The information schema was invented
 before the type boolean was added to the SQL
 standard, so this convention is necessary to keep the
 information schema backward compatible.)

 Every column in the information schema has one of these five types.

information_schema_catalog_name

 information_schema_catalog_name is a table that
 always contains one row and one column containing the name of the
 current database (current catalog, in SQL terminology).

Table 37.1. information_schema_catalog_name Columns
	
 Column Type

 Description

	
 catalog_name sql_identifier

 Name of the database that contains this information schema

administrable_role_​authorizations

 The view administrable_role_authorizations
 identifies all roles that the current user has the admin option
 for.

Table 37.2. administrable_role_authorizations Columns
	
 Column Type

 Description

	
 grantee sql_identifier

 Name of the role to which this role membership was granted (can
 be the current user, or a different role in case of nested role
 memberships)

	
 role_name sql_identifier

 Name of a role

	
 is_grantable yes_or_no

 Always YES

applicable_roles

 The view applicable_roles identifies all roles
 whose privileges the current user can use. This means there is
 some chain of role grants from the current user to the role in
 question. The current user itself is also an applicable role. The
 set of applicable roles is generally used for permission checking.

Table 37.3. applicable_roles Columns
	
 Column Type

 Description

	
 grantee sql_identifier

 Name of the role to which this role membership was granted (can
 be the current user, or a different role in case of nested role
 memberships)

	
 role_name sql_identifier

 Name of a role

	
 is_grantable yes_or_no

 YES if the grantee has the admin option on
 the role, NO if not

attributes

 The view attributes contains information about
 the attributes of composite data types defined in the database.
 (Note that the view does not give information about table columns,
 which are sometimes called attributes in PostgreSQL contexts.)
 Only those attributes are shown that the current user has access to (by way
 of being the owner of or having some privilege on the type).

Table 37.4. attributes Columns
	
 Column Type

 Description

	
 udt_catalog sql_identifier

 Name of the database containing the data type (always the current database)

	
 udt_schema sql_identifier

 Name of the schema containing the data type

	
 udt_name sql_identifier

 Name of the data type

	
 attribute_name sql_identifier

 Name of the attribute

	
 ordinal_position cardinal_number

 Ordinal position of the attribute within the data type (count starts at 1)

	
 attribute_default character_data

 Default expression of the attribute

	
 is_nullable yes_or_no

 YES if the attribute is possibly nullable,
 NO if it is known not nullable.

	
 data_type character_data

 Data type of the attribute, if it is a built-in type, or
 ARRAY if it is some array (in that case, see
 the view element_types), else
 USER-DEFINED (in that case, the type is
 identified in attribute_udt_name and
 associated columns).

	
 character_maximum_length cardinal_number

 If data_type identifies a character or bit
 string type, the declared maximum length; null for all other
 data types or if no maximum length was declared.

	
 character_octet_length cardinal_number

 If data_type identifies a character type,
 the maximum possible length in octets (bytes) of a datum; null
 for all other data types. The maximum octet length depends on
 the declared character maximum length (see above) and the
 server encoding.

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Name of the database containing the collation of the attribute
 (always the current database), null if default or the data type
 of the attribute is not collatable

	
 collation_schema sql_identifier

 Name of the schema containing the collation of the attribute,
 null if default or the data type of the attribute is not
 collatable

	
 collation_name sql_identifier

 Name of the collation of the attribute, null if default or the
 data type of the attribute is not collatable

	
 numeric_precision cardinal_number

 If data_type identifies a numeric type, this
 column contains the (declared or implicit) precision of the
 type for this attribute. The precision indicates the number of
 significant digits. It can be expressed in decimal (base 10)
 or binary (base 2) terms, as specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 numeric_precision_radix cardinal_number

 If data_type identifies a numeric type, this
 column indicates in which base the values in the columns
 numeric_precision and
 numeric_scale are expressed. The value is
 either 2 or 10. For all other data types, this column is null.

	
 numeric_scale cardinal_number

 If data_type identifies an exact numeric
 type, this column contains the (declared or implicit) scale of
 the type for this attribute. The scale indicates the number of
 significant digits to the right of the decimal point. It can
 be expressed in decimal (base 10) or binary (base 2) terms, as
 specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 datetime_precision cardinal_number

 If data_type identifies a date, time,
 timestamp, or interval type, this column contains the (declared
 or implicit) fractional seconds precision of the type for this
 attribute, that is, the number of decimal digits maintained
 following the decimal point in the seconds value. For all
 other data types, this column is null.

	
 interval_type character_data

 If data_type identifies an interval type,
 this column contains the specification which fields the
 intervals include for this attribute, e.g., YEAR TO
 MONTH, DAY TO SECOND, etc. If no
 field restrictions were specified (that is, the interval
 accepts all fields), and for all other data types, this field
 is null.

	
 interval_precision cardinal_number

 Applies to a feature not available
 in PostgreSQL™
 (see datetime_precision for the fractional
 seconds precision of interval type attributes)

	
 attribute_udt_catalog sql_identifier

 Name of the database that the attribute data type is defined in
 (always the current database)

	
 attribute_udt_schema sql_identifier

 Name of the schema that the attribute data type is defined in

	
 attribute_udt_name sql_identifier

 Name of the attribute data type

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the attribute, unique
 among the data type descriptors pertaining to the composite type. This
 is mainly useful for joining with other instances of such
 identifiers. (The specific format of the identifier is not
 defined and not guaranteed to remain the same in future
 versions.)

	
 is_derived_reference_attribute yes_or_no

 Applies to a feature not available in PostgreSQL™

 See also under the section called “columns”, a similarly
 structured view, for further information on some of the columns.

character_sets

 The view character_sets identifies the character
 sets available in the current database. Since PostgreSQL does not
 support multiple character sets within one database, this view only
 shows one, which is the database encoding.

 Take note of how the following terms are used in the SQL standard:

	character repertoire
	
 An abstract collection of characters, for
 example UNICODE, UCS, or
 LATIN1. Not exposed as an SQL object, but
 visible in this view.

	character encoding form
	
 An encoding of some character repertoire. Most older character
 repertoires only use one encoding form, and so there are no
 separate names for them (e.g., LATIN2 is an
 encoding form applicable to the LATIN2
 repertoire). But for example Unicode has the encoding forms
 UTF8, UTF16, etc. (not
 all supported by PostgreSQL). Encoding forms are not exposed
 as an SQL object, but are visible in this view.

	character set
	
 A named SQL object that identifies a character repertoire, a
 character encoding, and a default collation. A predefined
 character set would typically have the same name as an encoding
 form, but users could define other names. For example, the
 character set UTF8 would typically identify
 the character repertoire UCS, encoding
 form UTF8, and some default collation.

 You can think of an “encoding” in PostgreSQL either as
 a character set or a character encoding form. They will have the
 same name, and there can only be one in one database.

Table 37.5. character_sets Columns
	
 Column Type

 Description

	
 character_set_catalog sql_identifier

 Character sets are currently not implemented as schema objects, so this column is null.

	
 character_set_schema sql_identifier

 Character sets are currently not implemented as schema objects, so this column is null.

	
 character_set_name sql_identifier

 Name of the character set, currently implemented as showing the name of the database encoding

	
 character_repertoire sql_identifier

 Character repertoire, showing UCS if the encoding is UTF8, else just the encoding name

	
 form_of_use sql_identifier

 Character encoding form, same as the database encoding

	
 default_collate_catalog sql_identifier

 Name of the database containing the default collation (always the current database, if any collation is identified)

	
 default_collate_schema sql_identifier

 Name of the schema containing the default collation

	
 default_collate_name sql_identifier

 Name of the default collation. The default collation is
 identified as the collation that matches
 the COLLATE and CTYPE
 settings of the current database. If there is no such
 collation, then this column and the associated schema and
 catalog columns are null.

check_constraint_routine_usage

 The view check_constraint_routine_usage
 identifies routines (functions and procedures) that are used by a
 check constraint. Only those routines are shown that are owned by
 a currently enabled role.

Table 37.6. check_constraint_routine_usage Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database containing the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema containing the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

check_constraints

 The view check_constraints contains all check
 constraints, either defined on a table or on a domain, that are
 owned by a currently enabled role. (The owner of the table or
 domain is the owner of the constraint.)

Table 37.7. check_constraints Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database containing the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema containing the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 check_clause character_data

 The check expression of the check constraint

collations

 The view collations contains the collations
 available in the current database.

Table 37.8. collations Columns
	
 Column Type

 Description

	
 collation_catalog sql_identifier

 Name of the database containing the collation (always the current database)

	
 collation_schema sql_identifier

 Name of the schema containing the collation

	
 collation_name sql_identifier

 Name of the default collation

	
 pad_attribute character_data

 Always NO PAD (The alternative PAD
 SPACE is not supported by PostgreSQL.)

collation_character_set_​applicability

 The view collation_character_set_applicability
 identifies which character set the available collations are
 applicable to. In PostgreSQL, there is only one character set per
 database (see explanation
 in the section called “character_sets”), so this view does
 not provide much useful information.

Table 37.9. collation_character_set_applicability Columns
	
 Column Type

 Description

	
 collation_catalog sql_identifier

 Name of the database containing the collation (always the current database)

	
 collation_schema sql_identifier

 Name of the schema containing the collation

	
 collation_name sql_identifier

 Name of the default collation

	
 character_set_catalog sql_identifier

 Character sets are currently not implemented as schema objects, so this column is null

	
 character_set_schema sql_identifier

 Character sets are currently not implemented as schema objects, so this column is null

	
 character_set_name sql_identifier

 Name of the character set

column_column_usage

 The view column_column_usage identifies all generated
 columns that depend on another base column in the same table. Only tables
 owned by a currently enabled role are included.

Table 37.10. column_column_usage Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database containing the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema containing the table

	
 table_name sql_identifier

 Name of the table

	
 column_name sql_identifier

 Name of the base column that a generated column depends on

	
 dependent_column sql_identifier

 Name of the generated column

column_domain_usage

 The view column_domain_usage identifies all
 columns (of a table or a view) that make use of some domain defined
 in the current database and owned by a currently enabled role.

Table 37.11. column_domain_usage Columns
	
 Column Type

 Description

	
 domain_catalog sql_identifier

 Name of the database containing the domain (always the current database)

	
 domain_schema sql_identifier

 Name of the schema containing the domain

	
 domain_name sql_identifier

 Name of the domain

	
 table_catalog sql_identifier

 Name of the database containing the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema containing the table

	
 table_name sql_identifier

 Name of the table

	
 column_name sql_identifier

 Name of the column

column_options

 The view column_options contains all the
 options defined for foreign table columns in the current database. Only
 those foreign table columns are shown that the current user has access to
 (by way of being the owner or having some privilege).

Table 37.12. column_options Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database that contains the foreign table (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the foreign table

	
 table_name sql_identifier

 Name of the foreign table

	
 column_name sql_identifier

 Name of the column

	
 option_name sql_identifier

 Name of an option

	
 option_value character_data

 Value of the option

column_privileges

 The view column_privileges identifies all
 privileges granted on columns to a currently enabled role or by a
 currently enabled role. There is one row for each combination of
 column, grantor, and grantee.

 If a privilege has been granted on an entire table, it will show up in
 this view as a grant for each column, but only for the
 privilege types where column granularity is possible:
 SELECT, INSERT,
 UPDATE, REFERENCES.

Table 37.13. column_privileges Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 table_catalog sql_identifier

 Name of the database that contains the table that contains the column (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that contains the column

	
 table_name sql_identifier

 Name of the table that contains the column

	
 column_name sql_identifier

 Name of the column

	
 privilege_type character_data

 Type of the privilege: SELECT,
 INSERT, UPDATE, or
 REFERENCES

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

column_udt_usage

 The view column_udt_usage identifies all columns
 that use data types owned by a currently enabled role. Note that in
 PostgreSQL™, built-in data types behave
 like user-defined types, so they are included here as well. See
 also the section called “columns” for details.

Table 37.14. column_udt_usage Columns
	
 Column Type

 Description

	
 udt_catalog sql_identifier

 Name of the database that the column data type (the underlying
 type of the domain, if applicable) is defined in (always the
 current database)

	
 udt_schema sql_identifier

 Name of the schema that the column data type (the underlying
 type of the domain, if applicable) is defined in

	
 udt_name sql_identifier

 Name of the column data type (the underlying type of the
 domain, if applicable)

	
 table_catalog sql_identifier

 Name of the database containing the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema containing the table

	
 table_name sql_identifier

 Name of the table

	
 column_name sql_identifier

 Name of the column

columns

 The view columns contains information about all
 table columns (or view columns) in the database. System columns
 (ctid, etc.) are not included. Only those columns are
 shown that the current user has access to (by way of being the
 owner or having some privilege).

Table 37.15. columns Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database containing the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema containing the table

	
 table_name sql_identifier

 Name of the table

	
 column_name sql_identifier

 Name of the column

	
 ordinal_position cardinal_number

 Ordinal position of the column within the table (count starts at 1)

	
 column_default character_data

 Default expression of the column

	
 is_nullable yes_or_no

 YES if the column is possibly nullable,
 NO if it is known not nullable. A not-null
 constraint is one way a column can be known not nullable, but
 there can be others.

	
 data_type character_data

 Data type of the column, if it is a built-in type, or
 ARRAY if it is some array (in that case, see
 the view element_types), else
 USER-DEFINED (in that case, the type is
 identified in udt_name and associated
 columns). If the column is based on a domain, this column
 refers to the type underlying the domain (and the domain is
 identified in domain_name and associated
 columns).

	
 character_maximum_length cardinal_number

 If data_type identifies a character or bit
 string type, the declared maximum length; null for all other
 data types or if no maximum length was declared.

	
 character_octet_length cardinal_number

 If data_type identifies a character type,
 the maximum possible length in octets (bytes) of a datum; null
 for all other data types. The maximum octet length depends on
 the declared character maximum length (see above) and the
 server encoding.

	
 numeric_precision cardinal_number

 If data_type identifies a numeric type, this
 column contains the (declared or implicit) precision of the
 type for this column. The precision indicates the number of
 significant digits. It can be expressed in decimal (base 10)
 or binary (base 2) terms, as specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 numeric_precision_radix cardinal_number

 If data_type identifies a numeric type, this
 column indicates in which base the values in the columns
 numeric_precision and
 numeric_scale are expressed. The value is
 either 2 or 10. For all other data types, this column is null.

	
 numeric_scale cardinal_number

 If data_type identifies an exact numeric
 type, this column contains the (declared or implicit) scale of
 the type for this column. The scale indicates the number of
 significant digits to the right of the decimal point. It can
 be expressed in decimal (base 10) or binary (base 2) terms, as
 specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 datetime_precision cardinal_number

 If data_type identifies a date, time,
 timestamp, or interval type, this column contains the (declared
 or implicit) fractional seconds precision of the type for this
 column, that is, the number of decimal digits maintained
 following the decimal point in the seconds value. For all
 other data types, this column is null.

	
 interval_type character_data

 If data_type identifies an interval type,
 this column contains the specification which fields the
 intervals include for this column, e.g., YEAR TO
 MONTH, DAY TO SECOND, etc. If no
 field restrictions were specified (that is, the interval
 accepts all fields), and for all other data types, this field
 is null.

	
 interval_precision cardinal_number

 Applies to a feature not available
 in PostgreSQL™
 (see datetime_precision for the fractional
 seconds precision of interval type columns)

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Name of the database containing the collation of the column
 (always the current database), null if default or the data type
 of the column is not collatable

	
 collation_schema sql_identifier

 Name of the schema containing the collation of the column, null
 if default or the data type of the column is not collatable

	
 collation_name sql_identifier

 Name of the collation of the column, null if default or the
 data type of the column is not collatable

	
 domain_catalog sql_identifier

 If the column has a domain type, the name of the database that
 the domain is defined in (always the current database), else
 null.

	
 domain_schema sql_identifier

 If the column has a domain type, the name of the schema that
 the domain is defined in, else null.

	
 domain_name sql_identifier

 If the column has a domain type, the name of the domain, else null.

	
 udt_catalog sql_identifier

 Name of the database that the column data type (the underlying
 type of the domain, if applicable) is defined in (always the
 current database)

	
 udt_schema sql_identifier

 Name of the schema that the column data type (the underlying
 type of the domain, if applicable) is defined in

	
 udt_name sql_identifier

 Name of the column data type (the underlying type of the
 domain, if applicable)

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the column, unique
 among the data type descriptors pertaining to the table. This
 is mainly useful for joining with other instances of such
 identifiers. (The specific format of the identifier is not
 defined and not guaranteed to remain the same in future
 versions.)

	
 is_self_referencing yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 is_identity yes_or_no

 If the column is an identity column, then YES,
 else NO.

	
 identity_generation character_data

 If the column is an identity column, then ALWAYS
 or BY DEFAULT, reflecting the definition of the
 column.

	
 identity_start character_data

 If the column is an identity column, then the start value of the
 internal sequence, else null.

	
 identity_increment character_data

 If the column is an identity column, then the increment of the internal
 sequence, else null.

	
 identity_maximum character_data

 If the column is an identity column, then the maximum value of the
 internal sequence, else null.

	
 identity_minimum character_data

 If the column is an identity column, then the minimum value of the
 internal sequence, else null.

	
 identity_cycle yes_or_no

 If the column is an identity column, then YES if the
 internal sequence cycles or NO if it does not;
 otherwise null.

	
 is_generated character_data

 If the column is a generated column, then ALWAYS,
 else NEVER.

	
 generation_expression character_data

 If the column is a generated column, then the generation expression,
 else null.

	
 is_updatable yes_or_no

 YES if the column is updatable,
 NO if not (Columns in base tables are always
 updatable, columns in views not necessarily)

 Since data types can be defined in a variety of ways in SQL, and
 PostgreSQL™ contains additional ways to
 define data types, their representation in the information schema
 can be somewhat difficult. The column data_type
 is supposed to identify the underlying built-in type of the column.
 In PostgreSQL™, this means that the type
 is defined in the system catalog schema
 pg_catalog. This column might be useful if the
 application can handle the well-known built-in types specially (for
 example, format the numeric types differently or use the data in
 the precision columns). The columns udt_name,
 udt_schema, and udt_catalog
 always identify the underlying data type of the column, even if the
 column is based on a domain. (Since
 PostgreSQL™ treats built-in types like
 user-defined types, built-in types appear here as well. This is an
 extension of the SQL standard.) These columns should be used if an
 application wants to process data differently according to the
 type, because in that case it wouldn't matter if the column is
 really based on a domain. If the column is based on a domain, the
 identity of the domain is stored in the columns
 domain_name, domain_schema,
 and domain_catalog. If you want to pair up
 columns with their associated data types and treat domains as
 separate types, you could write coalesce(domain_name,
 udt_name), etc.

constraint_column_usage

 The view constraint_column_usage identifies all
 columns in the current database that are used by some constraint.
 Only those columns are shown that are contained in a table owned by
 a currently enabled role. For a check constraint, this view
 identifies the columns that are used in the check expression. For
 a foreign key constraint, this view identifies the columns that the
 foreign key references. For a unique or primary key constraint,
 this view identifies the constrained columns.

Table 37.16. constraint_column_usage Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database that contains the table that contains the
 column that is used by some constraint (always the current
 database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that contains the
 column that is used by some constraint

	
 table_name sql_identifier

 Name of the table that contains the column that is used by some
 constraint

	
 column_name sql_identifier

 Name of the column that is used by some constraint

	
 constraint_catalog sql_identifier

 Name of the database that contains the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema that contains the constraint

	
 constraint_name sql_identifier

 Name of the constraint

constraint_table_usage

 The view constraint_table_usage identifies all
 tables in the current database that are used by some constraint and
 are owned by a currently enabled role. (This is different from the
 view table_constraints, which identifies all
 table constraints along with the table they are defined on.) For a
 foreign key constraint, this view identifies the table that the
 foreign key references. For a unique or primary key constraint,
 this view simply identifies the table the constraint belongs to.
 Check constraints and not-null constraints are not included in this
 view.

Table 37.17. constraint_table_usage Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database that contains the table that is used by
 some constraint (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that is used by some
 constraint

	
 table_name sql_identifier

 Name of the table that is used by some constraint

	
 constraint_catalog sql_identifier

 Name of the database that contains the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema that contains the constraint

	
 constraint_name sql_identifier

 Name of the constraint

data_type_privileges

 The view data_type_privileges identifies all
 data type descriptors that the current user has access to, by way
 of being the owner of the described object or having some privilege
 for it. A data type descriptor is generated whenever a data type
 is used in the definition of a table column, a domain, or a
 function (as parameter or return type) and stores some information
 about how the data type is used in that instance (for example, the
 declared maximum length, if applicable). Each data type
 descriptor is assigned an arbitrary identifier that is unique
 among the data type descriptor identifiers assigned for one object
 (table, domain, function). This view is probably not useful for
 applications, but it is used to define some other views in the
 information schema.

Table 37.18. data_type_privileges Columns
	
 Column Type

 Description

	
 object_catalog sql_identifier

 Name of the database that contains the described object (always the current database)

	
 object_schema sql_identifier

 Name of the schema that contains the described object

	
 object_name sql_identifier

 Name of the described object

	
 object_type character_data

 The type of the described object: one of
 TABLE (the data type descriptor pertains to
 a column of that table), DOMAIN (the data
 type descriptors pertains to that domain),
 ROUTINE (the data type descriptor pertains
 to a parameter or the return data type of that function).

	
 dtd_identifier sql_identifier

 The identifier of the data type descriptor, which is unique
 among the data type descriptors for that same object.

domain_constraints

 The view domain_constraints contains all constraints
 belonging to domains defined in the current database. Only those domains
 are shown that the current user has access to (by way of being the owner or
 having some privilege).

Table 37.19. domain_constraints Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database that contains the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema that contains the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 domain_catalog sql_identifier

 Name of the database that contains the domain (always the current database)

	
 domain_schema sql_identifier

 Name of the schema that contains the domain

	
 domain_name sql_identifier

 Name of the domain

	
 is_deferrable yes_or_no

 YES if the constraint is deferrable, NO if not

	
 initially_deferred yes_or_no

 YES if the constraint is deferrable and initially deferred, NO if not

domain_udt_usage

 The view domain_udt_usage identifies all domains
 that are based on data types owned by a currently enabled role.
 Note that in PostgreSQL™, built-in data
 types behave like user-defined types, so they are included here as
 well.

Table 37.20. domain_udt_usage Columns
	
 Column Type

 Description

	
 udt_catalog sql_identifier

 Name of the database that the domain data type is defined in (always the current database)

	
 udt_schema sql_identifier

 Name of the schema that the domain data type is defined in

	
 udt_name sql_identifier

 Name of the domain data type

	
 domain_catalog sql_identifier

 Name of the database that contains the domain (always the current database)

	
 domain_schema sql_identifier

 Name of the schema that contains the domain

	
 domain_name sql_identifier

 Name of the domain

domains

 The view domains contains all
 domains defined in the
 current database. Only those domains are shown that the current user has
 access to (by way of being the owner or having some privilege).

Table 37.21. domains Columns
	
 Column Type

 Description

	
 domain_catalog sql_identifier

 Name of the database that contains the domain (always the current database)

	
 domain_schema sql_identifier

 Name of the schema that contains the domain

	
 domain_name sql_identifier

 Name of the domain

	
 data_type character_data

 Data type of the domain, if it is a built-in type, or
 ARRAY if it is some array (in that case, see
 the view element_types), else
 USER-DEFINED (in that case, the type is
 identified in udt_name and associated
 columns).

	
 character_maximum_length cardinal_number

 If the domain has a character or bit string type, the declared
 maximum length; null for all other data types or if no maximum
 length was declared.

	
 character_octet_length cardinal_number

 If the domain has a character type, the maximum possible length
 in octets (bytes) of a datum; null for all other data types.
 The maximum octet length depends on the declared character
 maximum length (see above) and the server encoding.

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Name of the database containing the collation of the domain
 (always the current database), null if default or the data type
 of the domain is not collatable

	
 collation_schema sql_identifier

 Name of the schema containing the collation of the domain, null
 if default or the data type of the domain is not collatable

	
 collation_name sql_identifier

 Name of the collation of the domain, null if default or the
 data type of the domain is not collatable

	
 numeric_precision cardinal_number

 If the domain has a numeric type, this column contains the
 (declared or implicit) precision of the type for this domain.
 The precision indicates the number of significant digits. It
 can be expressed in decimal (base 10) or binary (base 2) terms,
 as specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 numeric_precision_radix cardinal_number

 If the domain has a numeric type, this column indicates in
 which base the values in the columns
 numeric_precision and
 numeric_scale are expressed. The value is
 either 2 or 10. For all other data types, this column is null.

	
 numeric_scale cardinal_number

 If the domain has an exact numeric type, this column contains
 the (declared or implicit) scale of the type for this domain.
 The scale indicates the number of significant digits to the
 right of the decimal point. It can be expressed in decimal
 (base 10) or binary (base 2) terms, as specified in the column
 numeric_precision_radix. For all other data
 types, this column is null.

	
 datetime_precision cardinal_number

 If data_type identifies a date, time,
 timestamp, or interval type, this column contains the (declared
 or implicit) fractional seconds precision of the type for this
 domain, that is, the number of decimal digits maintained
 following the decimal point in the seconds value. For all
 other data types, this column is null.

	
 interval_type character_data

 If data_type identifies an interval type,
 this column contains the specification which fields the
 intervals include for this domain, e.g., YEAR TO
 MONTH, DAY TO SECOND, etc. If no
 field restrictions were specified (that is, the interval
 accepts all fields), and for all other data types, this field
 is null.

	
 interval_precision cardinal_number

 Applies to a feature not available
 in PostgreSQL™
 (see datetime_precision for the fractional
 seconds precision of interval type domains)

	
 domain_default character_data

 Default expression of the domain

	
 udt_catalog sql_identifier

 Name of the database that the domain data type is defined in (always the current database)

	
 udt_schema sql_identifier

 Name of the schema that the domain data type is defined in

	
 udt_name sql_identifier

 Name of the domain data type

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the domain, unique
 among the data type descriptors pertaining to the domain (which
 is trivial, because a domain only contains one data type
 descriptor). This is mainly useful for joining with other
 instances of such identifiers. (The specific format of the
 identifier is not defined and not guaranteed to remain the same
 in future versions.)

element_types

 The view element_types contains the data type
 descriptors of the elements of arrays. When a table column, composite-type attribute,
 domain, function parameter, or function return value is defined to
 be of an array type, the respective information schema view only
 contains ARRAY in the column
 data_type. To obtain information on the element
 type of the array, you can join the respective view with this view.
 For example, to show the columns of a table with data types and
 array element types, if applicable, you could do:

SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e
 ON ((c.table_catalog, c.table_schema, c.table_name, 'TABLE', c.dtd_identifier)
 = (e.object_catalog, e.object_schema, e.object_name, e.object_type, e.collection_type_identifier))
WHERE c.table_schema = '...' AND c.table_name = '...'
ORDER BY c.ordinal_position;

 This view only includes objects that the current user has access
 to, by way of being the owner or having some privilege.

Table 37.22. element_types Columns
	
 Column Type

 Description

	
 object_catalog sql_identifier

 Name of the database that contains the object that uses the
 array being described (always the current database)

	
 object_schema sql_identifier

 Name of the schema that contains the object that uses the array
 being described

	
 object_name sql_identifier

 Name of the object that uses the array being described

	
 object_type character_data

 The type of the object that uses the array being described: one
 of TABLE (the array is used by a column of
 that table), USER-DEFINED TYPE (the array is
 used by an attribute of that composite type),
 DOMAIN (the array is used by that domain),
 ROUTINE (the array is used by a parameter or
 the return data type of that function).

	
 collection_type_identifier sql_identifier

 The identifier of the data type descriptor of the array being
 described. Use this to join with the
 dtd_identifier columns of other information
 schema views.

	
 data_type character_data

 Data type of the array elements, if it is a built-in type, else
 USER-DEFINED (in that case, the type is
 identified in udt_name and associated
 columns).

	
 character_maximum_length cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 character_octet_length cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Name of the database containing the collation of the element
 type (always the current database), null if default or the data
 type of the element is not collatable

	
 collation_schema sql_identifier

 Name of the schema containing the collation of the element
 type, null if default or the data type of the element is not
 collatable

	
 collation_name sql_identifier

 Name of the collation of the element type, null if default or
 the data type of the element is not collatable

	
 numeric_precision cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 numeric_precision_radix cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 numeric_scale cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 datetime_precision cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 interval_type character_data

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 interval_precision cardinal_number

 Always null, since this information is not applied to array element data types in PostgreSQL™

	
 domain_default character_data

 Not yet implemented

	
 udt_catalog sql_identifier

 Name of the database that the data type of the elements is
 defined in (always the current database)

	
 udt_schema sql_identifier

 Name of the schema that the data type of the elements is
 defined in

	
 udt_name sql_identifier

 Name of the data type of the elements

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the element. This
 is currently not useful.

enabled_roles

 The view enabled_roles identifies the currently
 “enabled roles”. The enabled roles are recursively
 defined as the current user together with all roles that have been
 granted to the enabled roles with automatic inheritance. In other
 words, these are all roles that the current user has direct or
 indirect, automatically inheriting membership in.

 For permission checking, the set of “applicable roles”
 is applied, which can be broader than the set of enabled roles. So
 generally, it is better to use the view
 applicable_roles instead of this one; See
 the section called “applicable_roles” for details on
 applicable_roles view.

Table 37.23. enabled_roles Columns
	
 Column Type

 Description

	
 role_name sql_identifier

 Name of a role

foreign_data_wrapper_options

 The view foreign_data_wrapper_options contains
 all the options defined for foreign-data wrappers in the current
 database. Only those foreign-data wrappers are shown that the
 current user has access to (by way of being the owner or having
 some privilege).

Table 37.24. foreign_data_wrapper_options Columns
	
 Column Type

 Description

	
 foreign_data_wrapper_catalog sql_identifier

 Name of the database that the foreign-data wrapper is defined in (always the current database)

	
 foreign_data_wrapper_name sql_identifier

 Name of the foreign-data wrapper

	
 option_name sql_identifier

 Name of an option

	
 option_value character_data

 Value of the option

foreign_data_wrappers

 The view foreign_data_wrappers contains all
 foreign-data wrappers defined in the current database. Only those
 foreign-data wrappers are shown that the current user has access to
 (by way of being the owner or having some privilege).

Table 37.25. foreign_data_wrappers Columns
	
 Column Type

 Description

	
 foreign_data_wrapper_catalog sql_identifier

 Name of the database that contains the foreign-data
 wrapper (always the current database)

	
 foreign_data_wrapper_name sql_identifier

 Name of the foreign-data wrapper

	
 authorization_identifier sql_identifier

 Name of the owner of the foreign server

	
 library_name character_data

 File name of the library that implementing this foreign-data wrapper

	
 foreign_data_wrapper_language character_data

 Language used to implement this foreign-data wrapper

foreign_server_options

 The view foreign_server_options contains all the
 options defined for foreign servers in the current database. Only
 those foreign servers are shown that the current user has access to
 (by way of being the owner or having some privilege).

Table 37.26. foreign_server_options Columns
	
 Column Type

 Description

	
 foreign_server_catalog sql_identifier

 Name of the database that the foreign server is defined in (always the current database)

	
 foreign_server_name sql_identifier

 Name of the foreign server

	
 option_name sql_identifier

 Name of an option

	
 option_value character_data

 Value of the option

foreign_servers

 The view foreign_servers contains all foreign
 servers defined in the current database. Only those foreign
 servers are shown that the current user has access to (by way of
 being the owner or having some privilege).

Table 37.27. foreign_servers Columns
	
 Column Type

 Description

	
 foreign_server_catalog sql_identifier

 Name of the database that the foreign server is defined in (always the current database)

	
 foreign_server_name sql_identifier

 Name of the foreign server

	
 foreign_data_wrapper_catalog sql_identifier

 Name of the database that contains the foreign-data
 wrapper used by the foreign server (always the current database)

	
 foreign_data_wrapper_name sql_identifier

 Name of the foreign-data wrapper used by the foreign server

	
 foreign_server_type character_data

 Foreign server type information, if specified upon creation

	
 foreign_server_version character_data

 Foreign server version information, if specified upon creation

	
 authorization_identifier sql_identifier

 Name of the owner of the foreign server

foreign_table_options

 The view foreign_table_options contains all the
 options defined for foreign tables in the current database. Only
 those foreign tables are shown that the current user has access to
 (by way of being the owner or having some privilege).

Table 37.28. foreign_table_options Columns
	
 Column Type

 Description

	
 foreign_table_catalog sql_identifier

 Name of the database that contains the foreign table (always the current database)

	
 foreign_table_schema sql_identifier

 Name of the schema that contains the foreign table

	
 foreign_table_name sql_identifier

 Name of the foreign table

	
 option_name sql_identifier

 Name of an option

	
 option_value character_data

 Value of the option

foreign_tables

 The view foreign_tables contains all foreign
 tables defined in the current database. Only those foreign
 tables are shown that the current user has access to (by way of
 being the owner or having some privilege).

Table 37.29. foreign_tables Columns
	
 Column Type

 Description

	
 foreign_table_catalog sql_identifier

 Name of the database that the foreign table is defined in (always the current database)

	
 foreign_table_schema sql_identifier

 Name of the schema that contains the foreign table

	
 foreign_table_name sql_identifier

 Name of the foreign table

	
 foreign_server_catalog sql_identifier

 Name of the database that the foreign server is defined in (always the current database)

	
 foreign_server_name sql_identifier

 Name of the foreign server

key_column_usage

 The view key_column_usage identifies all columns
 in the current database that are restricted by some unique, primary
 key, or foreign key constraint. Check constraints are not included
 in this view. Only those columns are shown that the current user
 has access to, by way of being the owner or having some privilege.

Table 37.30. key_column_usage Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database that contains the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema that contains the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 table_catalog sql_identifier

 Name of the database that contains the table that contains the
 column that is restricted by this constraint (always the
 current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that contains the
 column that is restricted by this constraint

	
 table_name sql_identifier

 Name of the table that contains the column that is restricted
 by this constraint

	
 column_name sql_identifier

 Name of the column that is restricted by this constraint

	
 ordinal_position cardinal_number

 Ordinal position of the column within the constraint key (count
 starts at 1)

	
 position_in_unique_constraint cardinal_number

 For a foreign-key constraint, ordinal position of the referenced
 column within its unique constraint (count starts at 1);
 otherwise null

parameters

 The view parameters contains information about
 the parameters (arguments) of all functions in the current database.
 Only those functions are shown that the current user has access to
 (by way of being the owner or having some privilege).

Table 37.31. parameters Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 ordinal_position cardinal_number

 Ordinal position of the parameter in the argument list of the
 function (count starts at 1)

	
 parameter_mode character_data

 IN for input parameter,
 OUT for output parameter,
 and INOUT for input/output parameter.

	
 is_result yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 as_locator yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 parameter_name sql_identifier

 Name of the parameter, or null if the parameter has no name

	
 data_type character_data

 Data type of the parameter, if it is a built-in type, or
 ARRAY if it is some array (in that case, see
 the view element_types), else
 USER-DEFINED (in that case, the type is
 identified in udt_name and associated
 columns).

	
 character_maximum_length cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 character_octet_length cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 collation_schema sql_identifier

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 collation_name sql_identifier

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 numeric_precision cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 numeric_precision_radix cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 numeric_scale cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 datetime_precision cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 interval_type character_data

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 interval_precision cardinal_number

 Always null, since this information is not applied to parameter data types in PostgreSQL™

	
 udt_catalog sql_identifier

 Name of the database that the data type of the parameter is
 defined in (always the current database)

	
 udt_schema sql_identifier

 Name of the schema that the data type of the parameter is
 defined in

	
 udt_name sql_identifier

 Name of the data type of the parameter

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the parameter,
 unique among the data type descriptors pertaining to the
 function. This is mainly useful for joining with other
 instances of such identifiers. (The specific format of the
 identifier is not defined and not guaranteed to remain the same
 in future versions.)

	
 parameter_default character_data

 The default expression of the parameter, or null if none or if the
 function is not owned by a currently enabled role.

referential_constraints

 The view referential_constraints contains all
 referential (foreign key) constraints in the current database.
 Only those constraints are shown for which the current user has
 write access to the referencing table (by way of being the
 owner or having some privilege other than SELECT).

Table 37.32. referential_constraints Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database containing the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema containing the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 unique_constraint_catalog sql_identifier

 Name of the database that contains the unique or primary key
 constraint that the foreign key constraint references (always
 the current database)

	
 unique_constraint_schema sql_identifier

 Name of the schema that contains the unique or primary key
 constraint that the foreign key constraint references

	
 unique_constraint_name sql_identifier

 Name of the unique or primary key constraint that the foreign
 key constraint references

	
 match_option character_data

 Match option of the foreign key constraint:
 FULL, PARTIAL, or
 NONE.

	
 update_rule character_data

 Update rule of the foreign key constraint:
 CASCADE, SET NULL,
 SET DEFAULT, RESTRICT, or
 NO ACTION.

	
 delete_rule character_data

 Delete rule of the foreign key constraint:
 CASCADE, SET NULL,
 SET DEFAULT, RESTRICT, or
 NO ACTION.

role_column_grants

 The view role_column_grants identifies all
 privileges granted on columns where the grantor or grantee is a
 currently enabled role. Further information can be found under
 column_privileges. The only effective
 difference between this view
 and column_privileges is that this view omits
 columns that have been made accessible to the current user by way
 of a grant to PUBLIC.

Table 37.33. role_column_grants Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 table_catalog sql_identifier

 Name of the database that contains the table that contains the column (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that contains the column

	
 table_name sql_identifier

 Name of the table that contains the column

	
 column_name sql_identifier

 Name of the column

	
 privilege_type character_data

 Type of the privilege: SELECT,
 INSERT, UPDATE, or
 REFERENCES

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

role_routine_grants

 The view role_routine_grants identifies all
 privileges granted on functions where the grantor or grantee is a
 currently enabled role. Further information can be found under
 routine_privileges. The only effective
 difference between this view
 and routine_privileges is that this view omits
 functions that have been made accessible to the current user by way
 of a grant to PUBLIC.

Table 37.34. role_routine_grants Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 privilege_type character_data

 Always EXECUTE (the only privilege type for functions)

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

role_table_grants

 The view role_table_grants identifies all
 privileges granted on tables or views where the grantor or grantee
 is a currently enabled role. Further information can be found
 under table_privileges. The only effective
 difference between this view
 and table_privileges is that this view omits
 tables that have been made accessible to the current user by way of
 a grant to PUBLIC.

Table 37.35. role_table_grants Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 table_catalog sql_identifier

 Name of the database that contains the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table

	
 table_name sql_identifier

 Name of the table

	
 privilege_type character_data

 Type of the privilege: SELECT,
 INSERT, UPDATE,
 DELETE, TRUNCATE,
 REFERENCES, or TRIGGER

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

	
 with_hierarchy yes_or_no

 In the SQL standard, WITH HIERARCHY OPTION
 is a separate (sub-)privilege allowing certain operations on
 table inheritance hierarchies. In PostgreSQL, this is included
 in the SELECT privilege, so this column
 shows YES if the privilege
 is SELECT, else NO.

role_udt_grants

 The view role_udt_grants is intended to identify
 USAGE privileges granted on user-defined types
 where the grantor or grantee is a currently enabled role. Further
 information can be found under
 udt_privileges. The only effective difference
 between this view and udt_privileges is that
 this view omits objects that have been made accessible to the
 current user by way of a grant to PUBLIC. Since
 data types do not have real privileges in PostgreSQL, but only an
 implicit grant to PUBLIC, this view is empty.

Table 37.36. role_udt_grants Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 The name of the role that granted the privilege

	
 grantee sql_identifier

 The name of the role that the privilege was granted to

	
 udt_catalog sql_identifier

 Name of the database containing the type (always the current database)

	
 udt_schema sql_identifier

 Name of the schema containing the type

	
 udt_name sql_identifier

 Name of the type

	
 privilege_type character_data

 Always TYPE USAGE

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

role_usage_grants

 The view role_usage_grants identifies
 USAGE privileges granted on various kinds of
 objects where the grantor or grantee is a currently enabled role.
 Further information can be found under
 usage_privileges. The only effective difference
 between this view and usage_privileges is that
 this view omits objects that have been made accessible to the
 current user by way of a grant to PUBLIC.

Table 37.37. role_usage_grants Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 The name of the role that granted the privilege

	
 grantee sql_identifier

 The name of the role that the privilege was granted to

	
 object_catalog sql_identifier

 Name of the database containing the object (always the current database)

	
 object_schema sql_identifier

 Name of the schema containing the object, if applicable,
 else an empty string

	
 object_name sql_identifier

 Name of the object

	
 object_type character_data

 COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

	
 privilege_type character_data

 Always USAGE

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

routine_column_usage

 The view routine_column_usage identifies all columns
 that are used by a function or procedure, either in the SQL body or in
 parameter default expressions. (This only works for unquoted SQL bodies,
 not quoted bodies or functions in other languages.) A column is only
 included if its table is owned by a currently enabled role.

Table 37.38. routine_column_usage Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 table_catalog sql_identifier

 Name of the database that contains the table that is used by the
 function (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that is used by the function

	
 table_name sql_identifier

 Name of the table that is used by the function

	
 column_name sql_identifier

 Name of the column that is used by the function

routine_privileges

 The view routine_privileges identifies all
 privileges granted on functions to a currently enabled role or by a
 currently enabled role. There is one row for each combination of function,
 grantor, and grantee.

Table 37.39. routine_privileges Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 privilege_type character_data

 Always EXECUTE (the only privilege type for functions)

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

routine_routine_usage

 The view routine_routine_usage identifies all functions
 or procedures that are used by another (or the same) function or procedure,
 either in the SQL body or in parameter default expressions. (This only
 works for unquoted SQL bodies, not quoted bodies or functions in other
 languages.) An entry is included here only if the used function is owned
 by a currently enabled role. (There is no such restriction on the using
 function.)

 Note that the entries for both functions in the view refer to the
 “specific” name of the routine, even though the column names
 are used in a way that is inconsistent with other information schema views
 about routines. This is per SQL standard, although it is arguably a
 misdesign. See the section called “routines” for more information
 about specific names.

Table 37.40. routine_routine_usage Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the using function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the using function

	
 specific_name sql_identifier

 The “specific name” of the using function.

	
 routine_catalog sql_identifier

 Name of the database that contains the function that is used by the
 first function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema that contains the function that is used by the first
 function

	
 routine_name sql_identifier

 The “specific name” of the function that is used by the
 first function.

routine_sequence_usage

 The view routine_sequence_usage identifies all sequences
 that are used by a function or procedure, either in the SQL body or in
 parameter default expressions. (This only works for unquoted SQL bodies,
 not quoted bodies or functions in other languages.) A sequence is only
 included if that sequence is owned by a currently enabled role.

Table 37.41. routine_sequence_usage Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 schema_catalog sql_identifier

 Name of the database that contains the sequence that is used by the
 function (always the current database)

	
 sequence_schema sql_identifier

 Name of the schema that contains the sequence that is used by the function

	
 sequence_name sql_identifier

 Name of the sequence that is used by the function

routine_table_usage

 The view routine_table_usage is meant to identify all
 tables that are used by a function or procedure. This information is
 currently not tracked by PostgreSQL™.

Table 37.42. routine_table_usage Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 table_catalog sql_identifier

 Name of the database that contains the table that is used by the
 function (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that is used by the function

	
 table_name sql_identifier

 Name of the table that is used by the function

routines

 The view routines contains all functions and procedures in the
 current database. Only those functions and procedures are shown that the current
 user has access to (by way of being the owner or having some
 privilege).

Table 37.43. routines Columns
	
 Column Type

 Description

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. This is a
 name that uniquely identifies the function in the schema, even
 if the real name of the function is overloaded. The format of
 the specific name is not defined, it should only be used to
 compare it to other instances of specific routine names.

	
 routine_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 routine_schema sql_identifier

 Name of the schema containing the function

	
 routine_name sql_identifier

 Name of the function (might be duplicated in case of overloading)

	
 routine_type character_data

 FUNCTION for a
 function, PROCEDURE for a procedure

	
 module_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 module_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 module_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 udt_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 udt_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 udt_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 data_type character_data

 Return data type of the function, if it is a built-in type, or
 ARRAY if it is some array (in that case, see
 the view element_types), else
 USER-DEFINED (in that case, the type is
 identified in type_udt_name and associated
 columns). Null for a procedure.

	
 character_maximum_length cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 character_octet_length cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 collation_schema sql_identifier

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 collation_name sql_identifier

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 numeric_precision cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 numeric_precision_radix cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 numeric_scale cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 datetime_precision cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 interval_type character_data

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 interval_precision cardinal_number

 Always null, since this information is not applied to return data types in PostgreSQL™

	
 type_udt_catalog sql_identifier

 Name of the database that the return data type of the function
 is defined in (always the current database). Null for a procedure.

	
 type_udt_schema sql_identifier

 Name of the schema that the return data type of the function is
 defined in. Null for a procedure.

	
 type_udt_name sql_identifier

 Name of the return data type of the function. Null for a procedure.

	
 scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 maximum_cardinality cardinal_number

 Always null, because arrays always have unlimited maximum cardinality in PostgreSQL™

	
 dtd_identifier sql_identifier

 An identifier of the data type descriptor of the return data
 type of this function, unique among the data type descriptors
 pertaining to the function. This is mainly useful for joining
 with other instances of such identifiers. (The specific format
 of the identifier is not defined and not guaranteed to remain
 the same in future versions.)

	
 routine_body character_data

 If the function is an SQL function, then
 SQL, else EXTERNAL.

	
 routine_definition character_data

 The source text of the function (null if the function is not
 owned by a currently enabled role). (According to the SQL
 standard, this column is only applicable if
 routine_body is SQL, but
 in PostgreSQL™ it will contain
 whatever source text was specified when the function was
 created.)

	
 external_name character_data

 If this function is a C function, then the external name (link
 symbol) of the function; else null. (This works out to be the
 same value that is shown in
 routine_definition.)

	
 external_language character_data

 The language the function is written in

	
 parameter_style character_data

 Always GENERAL (The SQL standard defines
 other parameter styles, which are not available in PostgreSQL™.)

	
 is_deterministic yes_or_no

 If the function is declared immutable (called deterministic in
 the SQL standard), then YES, else
 NO. (You cannot query the other volatility
 levels available in PostgreSQL™ through the information schema.)

	
 sql_data_access character_data

 Always MODIFIES, meaning that the function
 possibly modifies SQL data. This information is not useful for
 PostgreSQL™.

	
 is_null_call yes_or_no

 If the function automatically returns null if any of its
 arguments are null, then YES, else
 NO. Null for a procedure.

	
 sql_path character_data

 Applies to a feature not available in PostgreSQL™

	
 schema_level_routine yes_or_no

 Always YES (The opposite would be a method
 of a user-defined type, which is a feature not available in
 PostgreSQL™.)

	
 max_dynamic_result_sets cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 is_user_defined_cast yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 is_implicitly_invocable yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 security_type character_data

 If the function runs with the privileges of the current user,
 then INVOKER, if the function runs with the
 privileges of the user who defined it, then
 DEFINER.

	
 to_sql_specific_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 to_sql_specific_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 to_sql_specific_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 as_locator yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 created time_stamp

 Applies to a feature not available in PostgreSQL™

	
 last_altered time_stamp

 Applies to a feature not available in PostgreSQL™

	
 new_savepoint_level yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 is_udt_dependent yes_or_no

 Currently always NO. The alternative
 YES applies to a feature not available in
 PostgreSQL™.

	
 result_cast_from_data_type character_data

 Applies to a feature not available in PostgreSQL™

	
 result_cast_as_locator yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 result_cast_char_max_length cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_char_octet_length cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_char_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_char_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_char_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_collation_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_collation_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_collation_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_numeric_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_numeric_precision_radix cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_numeric_scale cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_datetime_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_interval_type character_data

 Applies to a feature not available in PostgreSQL™

	
 result_cast_interval_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_type_udt_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_type_udt_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_type_udt_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_scope_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_scope_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_scope_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 result_cast_maximum_cardinality cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 result_cast_dtd_identifier sql_identifier

 Applies to a feature not available in PostgreSQL™

schemata

 The view schemata contains all schemas in the current
 database that the current user has access to (by way of being the owner or
 having some privilege).

Table 37.44. schemata Columns
	
 Column Type

 Description

	
 catalog_name sql_identifier

 Name of the database that the schema is contained in (always the current database)

	
 schema_name sql_identifier

 Name of the schema

	
 schema_owner sql_identifier

 Name of the owner of the schema

	
 default_character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 default_character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 default_character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 sql_path character_data

 Applies to a feature not available in PostgreSQL™

sequences

 The view sequences contains all sequences
 defined in the current database. Only those sequences are shown
 that the current user has access to (by way of being the owner or
 having some privilege).

Table 37.45. sequences Columns
	
 Column Type

 Description

	
 sequence_catalog sql_identifier

 Name of the database that contains the sequence (always the current database)

	
 sequence_schema sql_identifier

 Name of the schema that contains the sequence

	
 sequence_name sql_identifier

 Name of the sequence

	
 data_type character_data

 The data type of the sequence.

	
 numeric_precision cardinal_number

 This column contains the (declared or implicit) precision of
 the sequence data type (see above). The precision indicates
 the number of significant digits. It can be expressed in
 decimal (base 10) or binary (base 2) terms, as specified in the
 column numeric_precision_radix.

	
 numeric_precision_radix cardinal_number

 This column indicates in which base the values in the columns
 numeric_precision and
 numeric_scale are expressed. The value is
 either 2 or 10.

	
 numeric_scale cardinal_number

 This column contains the (declared or implicit) scale of the
 sequence data type (see above). The scale indicates the number
 of significant digits to the right of the decimal point. It
 can be expressed in decimal (base 10) or binary (base 2) terms,
 as specified in the column
 numeric_precision_radix.

	
 start_value character_data

 The start value of the sequence

	
 minimum_value character_data

 The minimum value of the sequence

	
 maximum_value character_data

 The maximum value of the sequence

	
 increment character_data

 The increment of the sequence

	
 cycle_option yes_or_no

 YES if the sequence cycles, else NO

 Note that in accordance with the SQL standard, the start, minimum,
 maximum, and increment values are returned as character strings.

sql_features

 The table sql_features contains information
 about which formal features defined in the SQL standard are
 supported by PostgreSQL™. This is the
 same information that is presented in Appendix D, SQL Conformance.
 There you can also find some additional background information.

Table 37.46. sql_features Columns
	
 Column Type

 Description

	
 feature_id character_data

 Identifier string of the feature

	
 feature_name character_data

 Descriptive name of the feature

	
 sub_feature_id character_data

 Identifier string of the subfeature, or a zero-length string if not a subfeature

	
 sub_feature_name character_data

 Descriptive name of the subfeature, or a zero-length string if not a subfeature

	
 is_supported yes_or_no

 YES if the feature is fully supported by the
 current version of PostgreSQL™, NO if not

	
 is_verified_by character_data

 Always null, since the PostgreSQL™ development group does not
 perform formal testing of feature conformance

	
 comments character_data

 Possibly a comment about the supported status of the feature

sql_implementation_info

 The table sql_implementation_info contains
 information about various aspects that are left
 implementation-defined by the SQL standard. This information is
 primarily intended for use in the context of the ODBC interface;
 users of other interfaces will probably find this information to be
 of little use. For this reason, the individual implementation
 information items are not described here; you will find them in the
 description of the ODBC interface.

Table 37.47. sql_implementation_info Columns
	
 Column Type

 Description

	
 implementation_info_id character_data

 Identifier string of the implementation information item

	
 implementation_info_name character_data

 Descriptive name of the implementation information item

	
 integer_value cardinal_number

 Value of the implementation information item, or null if the
 value is contained in the column
 character_value

	
 character_value character_data

 Value of the implementation information item, or null if the
 value is contained in the column
 integer_value

	
 comments character_data

 Possibly a comment pertaining to the implementation information item

sql_parts

 The table sql_parts contains information about
 which of the several parts of the SQL standard are supported by
 PostgreSQL™.

Table 37.48. sql_parts Columns
	
 Column Type

 Description

	
 feature_id character_data

 An identifier string containing the number of the part

	
 feature_name character_data

 Descriptive name of the part

	
 is_supported yes_or_no

 YES if the part is fully supported by the
 current version of PostgreSQL™,
 NO if not

	
 is_verified_by character_data

 Always null, since the PostgreSQL™ development group does not
 perform formal testing of feature conformance

	
 comments character_data

 Possibly a comment about the supported status of the part

sql_sizing

 The table sql_sizing contains information about
 various size limits and maximum values in
 PostgreSQL™. This information is
 primarily intended for use in the context of the ODBC interface;
 users of other interfaces will probably find this information to be
 of little use. For this reason, the individual sizing items are
 not described here; you will find them in the description of the
 ODBC interface.

Table 37.49. sql_sizing Columns
	
 Column Type

 Description

	
 sizing_id cardinal_number

 Identifier of the sizing item

	
 sizing_name character_data

 Descriptive name of the sizing item

	
 supported_value cardinal_number

 Value of the sizing item, or 0 if the size is unlimited or
 cannot be determined, or null if the features for which the
 sizing item is applicable are not supported

	
 comments character_data

 Possibly a comment pertaining to the sizing item

table_constraints

 The view table_constraints contains all
 constraints belonging to tables that the current user owns or has
 some privilege other than SELECT on.

Table 37.50. table_constraints Columns
	
 Column Type

 Description

	
 constraint_catalog sql_identifier

 Name of the database that contains the constraint (always the current database)

	
 constraint_schema sql_identifier

 Name of the schema that contains the constraint

	
 constraint_name sql_identifier

 Name of the constraint

	
 table_catalog sql_identifier

 Name of the database that contains the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table

	
 table_name sql_identifier

 Name of the table

	
 constraint_type character_data

 Type of the constraint: CHECK,
 FOREIGN KEY, PRIMARY KEY,
 or UNIQUE

	
 is_deferrable yes_or_no

 YES if the constraint is deferrable, NO if not

	
 initially_deferred yes_or_no

 YES if the constraint is deferrable and initially deferred, NO if not

	
 enforced yes_or_no

 Applies to a feature not available in
 PostgreSQL™ (currently always
 YES)

	
 nulls_distinct yes_or_no

 If the constraint is a unique constraint, then YES
 if the constraint treats nulls as distinct or NO if
 it treats nulls as not distinct, otherwise null for other types of
 constraints.

table_privileges

 The view table_privileges identifies all
 privileges granted on tables or views to a currently enabled role
 or by a currently enabled role. There is one row for each
 combination of table, grantor, and grantee.

Table 37.51. table_privileges Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 table_catalog sql_identifier

 Name of the database that contains the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table

	
 table_name sql_identifier

 Name of the table

	
 privilege_type character_data

 Type of the privilege: SELECT,
 INSERT, UPDATE,
 DELETE, TRUNCATE,
 REFERENCES, or TRIGGER

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

	
 with_hierarchy yes_or_no

 In the SQL standard, WITH HIERARCHY OPTION
 is a separate (sub-)privilege allowing certain operations on
 table inheritance hierarchies. In PostgreSQL, this is included
 in the SELECT privilege, so this column
 shows YES if the privilege
 is SELECT, else NO.

tables

 The view tables contains all tables and views
 defined in the current database. Only those tables and views are
 shown that the current user has access to (by way of being the
 owner or having some privilege).

Table 37.52. tables Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database that contains the table (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table

	
 table_name sql_identifier

 Name of the table

	
 table_type character_data

 Type of the table: BASE TABLE for a
 persistent base table (the normal table type),
 VIEW for a view, FOREIGN
 for a foreign table, or
 LOCAL TEMPORARY for a temporary table

	
 self_referencing_column_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 reference_generation character_data

 Applies to a feature not available in PostgreSQL™

	
 user_defined_type_catalog sql_identifier

 If the table is a typed table, the name of the database that
 contains the underlying data type (always the current
 database), else null.

	
 user_defined_type_schema sql_identifier

 If the table is a typed table, the name of the schema that
 contains the underlying data type, else null.

	
 user_defined_type_name sql_identifier

 If the table is a typed table, the name of the underlying data
 type, else null.

	
 is_insertable_into yes_or_no

 YES if the table is insertable into,
 NO if not (Base tables are always insertable
 into, views not necessarily.)

	
 is_typed yes_or_no

 YES if the table is a typed table, NO if not

	
 commit_action character_data

 Not yet implemented

transforms

 The view transforms contains information about the
 transforms defined in the current database. More precisely, it contains a
 row for each function contained in a transform (the “from SQL”
 or “to SQL” function).

Table 37.53. transforms Columns
	
 Column Type

 Description

	
 udt_catalog sql_identifier

 Name of the database that contains the type the transform is for (always the current database)

	
 udt_schema sql_identifier

 Name of the schema that contains the type the transform is for

	
 udt_name sql_identifier

 Name of the type the transform is for

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

	
 group_name sql_identifier

 The SQL standard allows defining transforms in “groups”,
 and selecting a group at run time. PostgreSQL does not support this.
 Instead, transforms are specific to a language. As a compromise, this
 field contains the language the transform is for.

	
 transform_type character_data

 FROM SQL or TO SQL

triggered_update_columns

 For triggers in the current database that specify a column list
 (like UPDATE OF column1, column2), the
 view triggered_update_columns identifies these
 columns. Triggers that do not specify a column list are not
 included in this view. Only those columns are shown that the
 current user owns or has some privilege other than
 SELECT on.

Table 37.54. triggered_update_columns Columns
	
 Column Type

 Description

	
 trigger_catalog sql_identifier

 Name of the database that contains the trigger (always the current database)

	
 trigger_schema sql_identifier

 Name of the schema that contains the trigger

	
 trigger_name sql_identifier

 Name of the trigger

	
 event_object_catalog sql_identifier

 Name of the database that contains the table that the trigger
 is defined on (always the current database)

	
 event_object_schema sql_identifier

 Name of the schema that contains the table that the trigger is defined on

	
 event_object_table sql_identifier

 Name of the table that the trigger is defined on

	
 event_object_column sql_identifier

 Name of the column that the trigger is defined on

triggers

 The view triggers contains all triggers defined
 in the current database on tables and views that the current user owns
 or has some privilege other than SELECT on.

Table 37.55. triggers Columns
	
 Column Type

 Description

	
 trigger_catalog sql_identifier

 Name of the database that contains the trigger (always the current database)

	
 trigger_schema sql_identifier

 Name of the schema that contains the trigger

	
 trigger_name sql_identifier

 Name of the trigger

	
 event_manipulation character_data

 Event that fires the trigger (INSERT,
 UPDATE, or DELETE)

	
 event_object_catalog sql_identifier

 Name of the database that contains the table that the trigger
 is defined on (always the current database)

	
 event_object_schema sql_identifier

 Name of the schema that contains the table that the trigger is defined on

	
 event_object_table sql_identifier

 Name of the table that the trigger is defined on

	
 action_order cardinal_number

 Firing order among triggers on the same table having the same
 event_manipulation,
 action_timing, and
 action_orientation. In
 PostgreSQL™, triggers are fired in name
 order, so this column reflects that.

	
 action_condition character_data

 WHEN condition of the trigger, null if none
 (also null if the table is not owned by a currently enabled
 role)

	
 action_statement character_data

 Statement that is executed by the trigger (currently always
 EXECUTE FUNCTION
 function(...))

	
 action_orientation character_data

 Identifies whether the trigger fires once for each processed
 row or once for each statement (ROW or
 STATEMENT)

	
 action_timing character_data

 Time at which the trigger fires (BEFORE,
 AFTER, or INSTEAD OF)

	
 action_reference_old_table sql_identifier

 Name of the “old” transition table, or null if none

	
 action_reference_new_table sql_identifier

 Name of the “new” transition table, or null if none

	
 action_reference_old_row sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 action_reference_new_row sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 created time_stamp

 Applies to a feature not available in PostgreSQL™

 Triggers in PostgreSQL™ have two
 incompatibilities with the SQL standard that affect the
 representation in the information schema. First, trigger names are
 local to each table in PostgreSQL™, rather
 than being independent schema objects. Therefore there can be duplicate
 trigger names defined in one schema, so long as they belong to
 different tables. (trigger_catalog and
 trigger_schema are really the values pertaining
 to the table that the trigger is defined on.) Second, triggers can
 be defined to fire on multiple events in
 PostgreSQL™ (e.g., ON INSERT OR
 UPDATE), whereas the SQL standard only allows one. If a
 trigger is defined to fire on multiple events, it is represented as
 multiple rows in the information schema, one for each type of
 event. As a consequence of these two issues, the primary key of
 the view triggers is really
 (trigger_catalog, trigger_schema, event_object_table,
 trigger_name, event_manipulation) instead of
 (trigger_catalog, trigger_schema, trigger_name),
 which is what the SQL standard specifies. Nonetheless, if you
 define your triggers in a manner that conforms with the SQL
 standard (trigger names unique in the schema and only one event
 type per trigger), this will not affect you.

Note

 Prior to PostgreSQL™ 9.1, this view's columns
 action_timing,
 action_reference_old_table,
 action_reference_new_table,
 action_reference_old_row, and
 action_reference_new_row
 were named
 condition_timing,
 condition_reference_old_table,
 condition_reference_new_table,
 condition_reference_old_row, and
 condition_reference_new_row
 respectively.
 That was how they were named in the SQL:1999 standard.
 The new naming conforms to SQL:2003 and later.

udt_privileges

 The view udt_privileges identifies
 USAGE privileges granted on user-defined types to a
 currently enabled role or by a currently enabled role. There is one row for
 each combination of type, grantor, and grantee. This view shows only
 composite types (see under the section called “user_defined_types”
 for why); see
 the section called “usage_privileges” for domain privileges.

Table 37.56. udt_privileges Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 udt_catalog sql_identifier

 Name of the database containing the type (always the current database)

	
 udt_schema sql_identifier

 Name of the schema containing the type

	
 udt_name sql_identifier

 Name of the type

	
 privilege_type character_data

 Always TYPE USAGE

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

usage_privileges

 The view usage_privileges identifies
 USAGE privileges granted on various kinds of
 objects to a currently enabled role or by a currently enabled role.
 In PostgreSQL™, this currently applies to
 collations, domains, foreign-data wrappers, foreign servers, and sequences. There is one
 row for each combination of object, grantor, and grantee.

 Since collations do not have real privileges
 in PostgreSQL™, this view shows implicit
 non-grantable USAGE privileges granted by the
 owner to PUBLIC for all collations. The other
 object types, however, show real privileges.

 In PostgreSQL, sequences also support SELECT
 and UPDATE privileges in addition to
 the USAGE privilege. These are nonstandard and therefore
 not visible in the information schema.

Table 37.57. usage_privileges Columns
	
 Column Type

 Description

	
 grantor sql_identifier

 Name of the role that granted the privilege

	
 grantee sql_identifier

 Name of the role that the privilege was granted to

	
 object_catalog sql_identifier

 Name of the database containing the object (always the current database)

	
 object_schema sql_identifier

 Name of the schema containing the object, if applicable,
 else an empty string

	
 object_name sql_identifier

 Name of the object

	
 object_type character_data

 COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

	
 privilege_type character_data

 Always USAGE

	
 is_grantable yes_or_no

 YES if the privilege is grantable, NO if not

user_defined_types

 The view user_defined_types currently contains
 all composite types defined in the current database.
 Only those types are shown that the current user has access to (by way
 of being the owner or having some privilege).

 SQL knows about two kinds of user-defined types: structured types
 (also known as composite types
 in PostgreSQL™) and distinct types (not
 implemented in PostgreSQL™). To be
 future-proof, use the
 column user_defined_type_category to
 differentiate between these. Other user-defined types such as base
 types and enums, which are PostgreSQL™
 extensions, are not shown here. For domains,
 see the section called “domains” instead.

Table 37.58. user_defined_types Columns
	
 Column Type

 Description

	
 user_defined_type_catalog sql_identifier

 Name of the database that contains the type (always the current database)

	
 user_defined_type_schema sql_identifier

 Name of the schema that contains the type

	
 user_defined_type_name sql_identifier

 Name of the type

	
 user_defined_type_category character_data

 Currently always STRUCTURED

	
 is_instantiable yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 is_final yes_or_no

 Applies to a feature not available in PostgreSQL™

	
 ordering_form character_data

 Applies to a feature not available in PostgreSQL™

	
 ordering_category character_data

 Applies to a feature not available in PostgreSQL™

	
 ordering_routine_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 ordering_routine_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 ordering_routine_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 reference_type character_data

 Applies to a feature not available in PostgreSQL™

	
 data_type character_data

 Applies to a feature not available in PostgreSQL™

	
 character_maximum_length cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 character_octet_length cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 character_set_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 character_set_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_catalog sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_schema sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 collation_name sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 numeric_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 numeric_precision_radix cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 numeric_scale cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 datetime_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 interval_type character_data

 Applies to a feature not available in PostgreSQL™

	
 interval_precision cardinal_number

 Applies to a feature not available in PostgreSQL™

	
 source_dtd_identifier sql_identifier

 Applies to a feature not available in PostgreSQL™

	
 ref_dtd_identifier sql_identifier

 Applies to a feature not available in PostgreSQL™

user_mapping_options

 The view user_mapping_options contains all the
 options defined for user mappings in the current database. Only
 those user mappings are shown where the current user has access to
 the corresponding foreign server (by way of being the owner or
 having some privilege).

Table 37.59. user_mapping_options Columns
	
 Column Type

 Description

	
 authorization_identifier sql_identifier

 Name of the user being mapped,
 or PUBLIC if the mapping is public

	
 foreign_server_catalog sql_identifier

 Name of the database that the foreign server used by this
 mapping is defined in (always the current database)

	
 foreign_server_name sql_identifier

 Name of the foreign server used by this mapping

	
 option_name sql_identifier

 Name of an option

	
 option_value character_data

 Value of the option. This column will show as null
 unless the current user is the user being mapped, or the mapping
 is for PUBLIC and the current user is the
 server owner, or the current user is a superuser. The intent is
 to protect password information stored as user mapping
 option.

user_mappings

 The view user_mappings contains all user
 mappings defined in the current database. Only those user mappings
 are shown where the current user has access to the corresponding
 foreign server (by way of being the owner or having some
 privilege).

Table 37.60. user_mappings Columns
	
 Column Type

 Description

	
 authorization_identifier sql_identifier

 Name of the user being mapped,
 or PUBLIC if the mapping is public

	
 foreign_server_catalog sql_identifier

 Name of the database that the foreign server used by this
 mapping is defined in (always the current database)

	
 foreign_server_name sql_identifier

 Name of the foreign server used by this mapping

view_column_usage

 The view view_column_usage identifies all
 columns that are used in the query expression of a view (the
 SELECT statement that defines the view). A
 column is only included if the table that contains the column is
 owned by a currently enabled role.

Note

 Columns of system tables are not included. This should be fixed
 sometime.

Table 37.61. view_column_usage Columns
	
 Column Type

 Description

	
 view_catalog sql_identifier

 Name of the database that contains the view (always the current database)

	
 view_schema sql_identifier

 Name of the schema that contains the view

	
 view_name sql_identifier

 Name of the view

	
 table_catalog sql_identifier

 Name of the database that contains the table that contains the
 column that is used by the view (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that contains the
 column that is used by the view

	
 table_name sql_identifier

 Name of the table that contains the column that is used by the
 view

	
 column_name sql_identifier

 Name of the column that is used by the view

view_routine_usage

 The view view_routine_usage identifies all
 routines (functions and procedures) that are used in the query
 expression of a view (the SELECT statement that
 defines the view). A routine is only included if that routine is
 owned by a currently enabled role.

Table 37.62. view_routine_usage Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database containing the view (always the current database)

	
 table_schema sql_identifier

 Name of the schema containing the view

	
 table_name sql_identifier

 Name of the view

	
 specific_catalog sql_identifier

 Name of the database containing the function (always the current database)

	
 specific_schema sql_identifier

 Name of the schema containing the function

	
 specific_name sql_identifier

 The “specific name” of the function. See the section called “routines” for more information.

view_table_usage

 The view view_table_usage identifies all tables
 that are used in the query expression of a view (the
 SELECT statement that defines the view). A
 table is only included if that table is owned by a currently
 enabled role.

Note

 System tables are not included. This should be fixed sometime.

Table 37.63. view_table_usage Columns
	
 Column Type

 Description

	
 view_catalog sql_identifier

 Name of the database that contains the view (always the current database)

	
 view_schema sql_identifier

 Name of the schema that contains the view

	
 view_name sql_identifier

 Name of the view

	
 table_catalog sql_identifier

 Name of the database that contains the table that is
 used by the view (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the table that is used by the
 view

	
 table_name sql_identifier

 Name of the table that is used by the view

views

 The view views contains all views defined in the
 current database. Only those views are shown that the current user
 has access to (by way of being the owner or having some privilege).

Table 37.64. views Columns
	
 Column Type

 Description

	
 table_catalog sql_identifier

 Name of the database that contains the view (always the current database)

	
 table_schema sql_identifier

 Name of the schema that contains the view

	
 table_name sql_identifier

 Name of the view

	
 view_definition character_data

 Query expression defining the view (null if the view is not
 owned by a currently enabled role)

	
 check_option character_data

 CASCADED or LOCAL if the view
 has a CHECK OPTION defined on it,
 NONE if not

	
 is_updatable yes_or_no

 YES if the view is updatable (allows
 UPDATE and DELETE),
 NO if not

	
 is_insertable_into yes_or_no

 YES if the view is insertable into (allows
 INSERT), NO if not

	
 is_trigger_updatable yes_or_no

 YES if the view has an INSTEAD OF
 UPDATE trigger defined on it, NO if not

	
 is_trigger_deletable yes_or_no

 YES if the view has an INSTEAD OF
 DELETE trigger defined on it, NO if not

	
 is_trigger_insertable_into yes_or_no

 YES if the view has an INSTEAD OF
 INSERT trigger defined on it, NO if not

Part V. Server Programming

 This part is about extending the server functionality with
 user-defined functions, data types, triggers, etc. These are
 advanced topics which should probably be approached only after all
 the other user documentation about PostgreSQL™ has
 been understood. Later chapters in this part describe the server-side
 programming languages available in the
 PostgreSQL™ distribution as well as
 general issues concerning server-side programming languages. It
 is essential to read at least the earlier sections of Chapter 38, Extending SQL (covering functions) before diving into the
 material about server-side programming languages.

Chapter 38. Extending SQL

 In the sections that follow, we will discuss how you
 can extend the PostgreSQL™
 SQL query language by adding:

	
 functions (starting in the section called “User-Defined Functions”)

	
 aggregates (starting in the section called “User-Defined Aggregates”)

	
 data types (starting in the section called “User-Defined Types”)

	
 operators (starting in the section called “User-Defined Operators”)

	
 operator classes for indexes (starting in the section called “Interfacing Extensions to Indexes”)

	
 packages of related objects (starting in the section called “Packaging Related Objects into an Extension”)

How Extensibility Works

 PostgreSQL™ is extensible because its operation is
 catalog-driven. If you are familiar with standard
 relational database systems, you know that they store information
 about databases, tables, columns, etc., in what are
 commonly known as system catalogs. (Some systems call
 this the data dictionary.) The catalogs appear to the
 user as tables like any other, but the DBMS stores
 its internal bookkeeping in them. One key difference
 between PostgreSQL™ and standard relational database systems is
 that PostgreSQL™ stores much more information in its
 catalogs: not only information about tables and columns,
 but also information about data types, functions, access
 methods, and so on. These tables can be modified by
 the user, and since PostgreSQL™ bases its operation
 on these tables, this means that PostgreSQL™ can be
 extended by users. By comparison, conventional
 database systems can only be extended by changing hardcoded
 procedures in the source code or by loading modules
 specially written by the DBMS vendor.

 The PostgreSQL™ server can moreover
 incorporate user-written code into itself through dynamic loading.
 That is, the user can specify an object code file (e.g., a shared
 library) that implements a new type or function, and
 PostgreSQL™ will load it as required.
 Code written in SQL is even more trivial to add
 to the server. This ability to modify its operation “on the
 fly” makes PostgreSQL™ uniquely
 suited for rapid prototyping of new applications and storage
 structures.

The PostgreSQL™ Type System

 PostgreSQL™ data types can be divided into base
 types, container types, domains, and pseudo-types.

Base Types

 Base types are those, like integer, that are
 implemented below the level of the SQL language
 (typically in a low-level language such as C). They generally
 correspond to what are often known as abstract data types.
 PostgreSQL™ can only operate on such
 types through functions provided by the user and only understands
 the behavior of such types to the extent that the user describes
 them.
 The built-in base types are described in Chapter 8, Data Types.

 Enumerated (enum) types can be considered as a subcategory of base
 types. The main difference is that they can be created using
 just SQL commands, without any low-level programming.
 Refer to the section called “Enumerated Types” for more information.

Container Types

 PostgreSQL™ has three kinds
 of “container” types, which are types that contain multiple
 values of other types. These are arrays, composites, and ranges.

 Arrays can hold multiple values that are all of the same type. An array
 type is automatically created for each base type, composite type, range
 type, and domain type. But there are no arrays of arrays. So far as
 the type system is concerned, multi-dimensional arrays are the same as
 one-dimensional arrays. Refer to the section called “Arrays” for more
 information.

 Composite types, or row types, are created whenever the user
 creates a table. It is also possible to use CREATE TYPE(7) to
 define a “stand-alone” composite type with no associated
 table. A composite type is simply a list of types with
 associated field names. A value of a composite type is a row or
 record of field values. Refer to the section called “Composite Types”
 for more information.

 A range type can hold two values of the same type, which are the lower
 and upper bounds of the range. Range types are user-created, although
 a few built-in ones exist. Refer to the section called “Range Types”
 for more information.

Domains

 A domain is based on a particular underlying type and for many purposes
 is interchangeable with its underlying type. However, a domain can have
 constraints that restrict its valid values to a subset of what the
 underlying type would allow. Domains are created using
 the SQL command CREATE DOMAIN(7).
 Refer to the section called “Domain Types” for more information.

Pseudo-Types

 There are a few “pseudo-types” for special purposes.
 Pseudo-types cannot appear as columns of tables or components of
 container types, but they can be used to declare the argument and
 result types of functions. This provides a mechanism within the
 type system to identify special classes of functions. Table 8.27, “Pseudo-Types” lists the existing
 pseudo-types.

Polymorphic Types

 Some pseudo-types of special interest are the polymorphic
 types, which are used to declare polymorphic
 functions. This powerful feature allows a single function
 definition to operate on many different data types, with the specific
 data type(s) being determined by the data types actually passed to it
 in a particular call. The polymorphic types are shown in
 Table 38.1, “Polymorphic Types”. Some examples of
 their use appear in the section called “Polymorphic SQL Functions”.

Table 38.1. Polymorphic Types
	Name	Family	Description
	anyelement	Simple	Indicates that a function accepts any data type
	anyarray	Simple	Indicates that a function accepts any array data type
	anynonarray	Simple	Indicates that a function accepts any non-array data type
	anyenum	Simple	Indicates that a function accepts any enum data type
 (see the section called “Enumerated Types”)

	anyrange	Simple	Indicates that a function accepts any range data type
 (see the section called “Range Types”)

	anymultirange	Simple	Indicates that a function accepts any multirange data type
 (see the section called “Range Types”)

	anycompatible	Common	Indicates that a function accepts any data type,
 with automatic promotion of multiple arguments to a common data type

	anycompatiblearray	Common	Indicates that a function accepts any array data type,
 with automatic promotion of multiple arguments to a common data type

	anycompatiblenonarray	Common	Indicates that a function accepts any non-array data type,
 with automatic promotion of multiple arguments to a common data type

	anycompatiblerange	Common	Indicates that a function accepts any range data type,
 with automatic promotion of multiple arguments to a common data type

	anycompatiblemultirange	Common	Indicates that a function accepts any multirange data type,
 with automatic promotion of multiple arguments to a common data type

 Polymorphic arguments and results are tied to each other and are resolved
 to specific data types when a query calling a polymorphic function is
 parsed. When there is more than one polymorphic argument, the actual
 data types of the input values must match up as described below. If the
 function's result type is polymorphic, or it has output parameters of
 polymorphic types, the types of those results are deduced from the
 actual types of the polymorphic inputs as described below.

 For the “simple” family of polymorphic types, the
 matching and deduction rules work like this:

 Each position (either argument or return value) declared as
 anyelement is allowed to have any specific actual
 data type, but in any given call they must all be the
 same actual type. Each
 position declared as anyarray can have any array data type,
 but similarly they must all be the same type. And similarly,
 positions declared as anyrange must all be the same range
 type. Likewise for anymultirange.

 Furthermore, if there are
 positions declared anyarray and others declared
 anyelement, the actual array type in the
 anyarray positions must be an array whose elements are
 the same type appearing in the anyelement positions.
 anynonarray is treated exactly the same as anyelement,
 but adds the additional constraint that the actual type must not be
 an array type.
 anyenum is treated exactly the same as anyelement,
 but adds the additional constraint that the actual type must
 be an enum type.

 Similarly, if there are positions declared anyrange
 and others declared anyelement or anyarray,
 the actual range type in the anyrange positions must be a
 range whose subtype is the same type appearing in
 the anyelement positions and the same as the element type
 of the anyarray positions.
 If there are positions declared anymultirange,
 their actual multirange type must contain ranges matching parameters declared
 anyrange and base elements matching parameters declared
 anyelement and anyarray.

 Thus, when more than one argument position is declared with a polymorphic
 type, the net effect is that only certain combinations of actual argument
 types are allowed. For example, a function declared as
 equal(anyelement, anyelement) will take any two input values,
 so long as they are of the same data type.

 When the return value of a function is declared as a polymorphic type,
 there must be at least one argument position that is also polymorphic,
 and the actual data type(s) supplied for the polymorphic arguments
 determine the actual
 result type for that call. For example, if there were not already
 an array subscripting mechanism, one could define a function that
 implements subscripting as subscript(anyarray, integer)
 returns anyelement. This declaration constrains the actual first
 argument to be an array type, and allows the parser to infer the correct
 result type from the actual first argument's type. Another example
 is that a function declared as f(anyarray) returns anyenum
 will only accept arrays of enum types.

 In most cases, the parser can infer the actual data type for a
 polymorphic result type from arguments that are of a different
 polymorphic type in the same family; for example anyarray
 can be deduced from anyelement or vice versa.
 An exception is that a
 polymorphic result of type anyrange requires an argument
 of type anyrange; it cannot be deduced
 from anyarray or anyelement arguments. This
 is because there could be multiple range types with the same subtype.

 Note that anynonarray and anyenum do not represent
 separate type variables; they are the same type as
 anyelement, just with an additional constraint. For
 example, declaring a function as f(anyelement, anyenum)
 is equivalent to declaring it as f(anyenum, anyenum):
 both actual arguments have to be the same enum type.

 For the “common” family of polymorphic types, the
 matching and deduction rules work approximately the same as for
 the “simple” family, with one major difference: the
 actual types of the arguments need not be identical, so long as they
 can be implicitly cast to a single common type. The common type is
 selected following the same rules as for UNION and
 related constructs (see the section called “UNION, CASE, and Related Constructs”).
 Selection of the common type considers the actual types
 of anycompatible and anycompatiblenonarray
 inputs, the array element types of anycompatiblearray
 inputs, the range subtypes of anycompatiblerange inputs,
 and the multirange subtypes of anycompatiblemultirange
 inputs. If anycompatiblenonarray is present then the
 common type is required to be a non-array type. Once a common type is
 identified, arguments in anycompatible
 and anycompatiblenonarray positions are automatically
 cast to that type, and arguments in anycompatiblearray
 positions are automatically cast to the array type for that type.

 Since there is no way to select a range type knowing only its subtype,
 use of anycompatiblerange and/or
 anycompatiblemultirange requires that all arguments declared
 with that type have the same actual range and/or multirange type, and that
 that type's subtype agree with the selected common type, so that no casting
 of the range values is required. As with anyrange and
 anymultirange, use of anycompatiblerange and
 anymultirange as a function result type requires that there be
 an anycompatiblerange or anycompatiblemultirange
 argument.

 Notice that there is no anycompatibleenum type. Such a
 type would not be very useful, since there normally are not any
 implicit casts to enum types, meaning that there would be no way to
 resolve a common type for dissimilar enum inputs.

 The “simple” and “common” polymorphic
 families represent two independent sets of type variables. Consider
 for example

CREATE FUNCTION myfunc(a anyelement, b anyelement,
 c anycompatible, d anycompatible)
RETURNS anycompatible AS ...

 In an actual call of this function, the first two inputs must have
 exactly the same type. The last two inputs must be promotable to a
 common type, but this type need not have anything to do with the type
 of the first two inputs. The result will have the common type of the
 last two inputs.

 A variadic function (one taking a variable number of arguments, as in
 the section called “SQL Functions with Variable Numbers of Arguments”) can be
 polymorphic: this is accomplished by declaring its last parameter as
 VARIADIC anyarray or
 VARIADIC anycompatiblearray.
 For purposes of argument
 matching and determining the actual result type, such a function behaves
 the same as if you had written the appropriate number of
 anynonarray or anycompatiblenonarray
 parameters.

User-Defined Functions

 PostgreSQL™ provides four kinds of
 functions:

	
 query language functions (functions written in
 SQL) (the section called “Query Language (SQL) Functions”)

	
 procedural language functions (functions written in, for
 example, PL/pgSQL or PL/Tcl)
 (the section called “Procedural Language Functions”)

	
 internal functions (the section called “Internal Functions”)

	
 C-language functions (the section called “C-Language Functions”)

 Every kind
 of function can take base types, composite types, or
 combinations of these as arguments (parameters). In addition,
 every kind of function can return a base type or
 a composite type. Functions can also be defined to return
 sets of base or composite values.

 Many kinds of functions can take or return certain pseudo-types
 (such as polymorphic types), but the available facilities vary.
 Consult the description of each kind of function for more details.

 It's easiest to define SQL
 functions, so we'll start by discussing those.
 Most of the concepts presented for SQL functions
 will carry over to the other types of functions.

 Throughout this chapter, it can be useful to look at the reference
 page of the CREATE
 FUNCTION command to
 understand the examples better. Some examples from this chapter
 can be found in funcs.sql and
 funcs.c in the src/tutorial
 directory in the PostgreSQL™ source
 distribution.

User-Defined Procedures

 A procedure is a database object similar to a function.
 The key differences are:

	
 Procedures are defined with
 the CREATE
 PROCEDURE command, not CREATE
 FUNCTION.

	
 Procedures do not return a function value; hence CREATE
 PROCEDURE lacks a RETURNS clause.
 However, procedures can instead return data to their callers via
 output parameters.

	
 While a function is called as part of a query or DML command, a
 procedure is called in isolation using
 the CALL command.

	
 A procedure can commit or roll back transactions during its
 execution (then automatically beginning a new transaction), so long
 as the invoking CALL command is not part of an
 explicit transaction block. A function cannot do that.

	
 Certain function attributes, such as strictness, don't apply to
 procedures. Those attributes control how the function is
 used in a query, which isn't relevant to procedures.

 The explanations in the following sections about how to define
 user-defined functions apply to procedures as well, except for the
 points made above.

 Collectively, functions and procedures are also known
 as routines.
 There are commands such as ALTER ROUTINE
 and DROP ROUTINE that can operate on functions and
 procedures without having to know which kind it is. Note, however, that
 there is no CREATE ROUTINE command.

Query Language (SQL) Functions

 SQL functions execute an arbitrary list of SQL statements, returning
 the result of the last query in the list.
 In the simple (non-set)
 case, the first row of the last query's result will be returned.
 (Bear in mind that “the first row” of a multirow
 result is not well-defined unless you use ORDER BY.)
 If the last query happens
 to return no rows at all, the null value will be returned.

 Alternatively, an SQL function can be declared to return a set (that is,
 multiple rows) by specifying the function's return type as SETOF
 sometype, or equivalently by declaring it as
 RETURNS TABLE(columns). In this case
 all rows of the last query's result are returned. Further details appear
 below.

 The body of an SQL function must be a list of SQL
 statements separated by semicolons. A semicolon after the last
 statement is optional. Unless the function is declared to return
 void, the last statement must be a SELECT,
 or an INSERT, UPDATE, or DELETE
 that has a RETURNING clause.

 Any collection of commands in the SQL
 language can be packaged together and defined as a function.
 Besides SELECT queries, the commands can include data
 modification queries (INSERT,
 UPDATE, DELETE, and
 MERGE), as well as
 other SQL commands. (You cannot use transaction control commands, e.g.,
 COMMIT, SAVEPOINT, and some utility
 commands, e.g., VACUUM, in SQL functions.)
 However, the final command
 must be a SELECT or have a RETURNING
 clause that returns whatever is
 specified as the function's return type. Alternatively, if you
 want to define an SQL function that performs actions but has no
 useful value to return, you can define it as returning void.
 For example, this function removes rows with negative salaries from
 the emp table:

CREATE FUNCTION clean_emp() RETURNS void AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

SELECT clean_emp();

 clean_emp

(1 row)

 You can also write this as a procedure, thus avoiding the issue of the
 return type. For example:

CREATE PROCEDURE clean_emp() AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

CALL clean_emp();

 In simple cases like this, the difference between a function returning
 void and a procedure is mostly stylistic. However,
 procedures offer additional functionality such as transaction control
 that is not available in functions. Also, procedures are SQL standard
 whereas returning void is a PostgreSQL extension.

Note

 The entire body of an SQL function is parsed before any of it is
 executed. While an SQL function can contain commands that alter
 the system catalogs (e.g., CREATE TABLE), the effects
 of such commands will not be visible during parse analysis of
 later commands in the function. Thus, for example,
 CREATE TABLE foo (...); INSERT INTO foo VALUES(...);
 will not work as desired if packaged up into a single SQL function,
 since foo won't exist yet when the INSERT
 command is parsed. It's recommended to use PL/pgSQL
 instead of an SQL function in this type of situation.

 The syntax of the CREATE FUNCTION command requires
 the function body to be written as a string constant. It is usually
 most convenient to use dollar quoting (see the section called “Dollar-Quoted String Constants”) for the string constant.
 If you choose to use regular single-quoted string constant syntax,
 you must double single quote marks (') and backslashes
 (\) (assuming escape string syntax) in the body of
 the function (see the section called “String Constants”).

Arguments for SQL Functions

 Arguments of an SQL function can be referenced in the function
 body using either names or numbers. Examples of both methods appear
 below.

 To use a name, declare the function argument as having a name, and
 then just write that name in the function body. If the argument name
 is the same as any column name in the current SQL command within the
 function, the column name will take precedence. To override this,
 qualify the argument name with the name of the function itself, that is
 function_name.argument_name.
 (If this would conflict with a qualified column name, again the column
 name wins. You can avoid the ambiguity by choosing a different alias for
 the table within the SQL command.)

 In the older numeric approach, arguments are referenced using the syntax
 $n: $1 refers to the first input
 argument, $2 to the second, and so on. This will work
 whether or not the particular argument was declared with a name.

 If an argument is of a composite type, then the dot notation,
 e.g., argname.fieldname or
 $1.fieldname, can be used to access attributes of the
 argument. Again, you might need to qualify the argument's name with the
 function name to make the form with an argument name unambiguous.

 SQL function arguments can only be used as data values,
 not as identifiers. Thus for example this is reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

Note

 The ability to use names to reference SQL function arguments was added
 in PostgreSQL™ 9.2. Functions to be used in
 older servers must use the $n notation.

SQL Functions on Base Types

 The simplest possible SQL function has no arguments and
 simply returns a base type, such as integer:

CREATE FUNCTION one() RETURNS integer AS $$
 SELECT 1 AS result;
$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
 SELECT 1 AS result;
' LANGUAGE SQL;

SELECT one();

 one

 1

 Notice that we defined a column alias within the function body for the result of the function
 (with the name result), but this column alias is not visible
 outside the function. Hence, the result is labeled one
 instead of result.

 It is almost as easy to define SQL functions
 that take base types as arguments:

CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
 SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

 Alternatively, we could dispense with names for the arguments and
 use numbers:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

 Here is a more useful function, which might be used to debit a
 bank account:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT 1;
$$ LANGUAGE SQL;

 A user could execute this function to debit account 17 by $100.00 as
 follows:

SELECT tf1(17, 100.0);

 In this example, we chose the name accountno for the first
 argument, but this is the same as the name of a column in the
 bank table. Within the UPDATE command,
 accountno refers to the column bank.accountno,
 so tf1.accountno must be used to refer to the argument.
 We could of course avoid this by using a different name for the argument.

 In practice one would probably like a more useful result from the
 function than a constant 1, so a more likely definition
 is:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;

 which adjusts the balance and returns the new balance.
 The same thing could be done in one command using RETURNING:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

 If the final SELECT or RETURNING
 clause in an SQL function does not return exactly
 the function's declared result
 type, PostgreSQL™ will automatically cast
 the value to the required type, if that is possible with an implicit
 or assignment cast. Otherwise, you must write an explicit cast.
 For example, suppose we wanted the
 previous add_em function to return
 type float8 instead. It's sufficient to write

CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

 since the integer sum can be implicitly cast
 to float8.
 (See Chapter 10, Type Conversion or CREATE CAST(7)
 for more about casts.)

SQL Functions on Composite Types

 When writing functions with arguments of composite types, we must not
 only specify which argument we want but also the desired attribute
 (field) of that argument. For example, suppose that
 emp is a table containing employee data, and therefore
 also the name of the composite type of each row of the table. Here
 is a function double_salary that computes what someone's
 salary would be if it were doubled:

CREATE TABLE emp (
 name text,
 salary numeric,
 age integer,
 cubicle point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
 SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill | 8400

 Notice the use of the syntax $1.salary
 to select one field of the argument row value. Also notice
 how the calling SELECT command
 uses table_name.* to select
 the entire current row of a table as a composite value. The table
 row can alternatively be referenced using just the table name,
 like this:

SELECT name, double_salary(emp) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

 but this usage is deprecated since it's easy to get confused.
 (See the section called “Using Composite Types in Queries” for details about these
 two notations for the composite value of a table row.)

 Sometimes it is handy to construct a composite argument value
 on-the-fly. This can be done with the ROW construct.
 For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
 FROM emp;

 It is also possible to build a function that returns a composite type.
 This is an example of a function
 that returns a single emp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT text 'None' AS name,
 1000.0 AS salary,
 25 AS age,
 point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;

 In this example we have specified each of the attributes
 with a constant value, but any computation
 could have been substituted for these constants.

 Note two important things about defining the function:

	
 The select list order in the query must be exactly the same as
 that in which the columns appear in the composite type.
 (Naming the columns, as we did above,
 is irrelevant to the system.)

	
 We must ensure each expression's type can be cast to that of
 the corresponding column of the composite type.
 Otherwise we'll get errors like this:

ERROR: return type mismatch in function declared to return emp
DETAIL: Final statement returns text instead of point at column 4.

 As with the base-type case, the system will not insert explicit
 casts automatically, only implicit or assignment casts.

 A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;

 Here we wrote a SELECT that returns just a single
 column of the correct composite type. This isn't really better
 in this situation, but it is a handy alternative in some cases
 — for example, if we need to compute the result by calling
 another function that returns the desired composite value.
 Another example is that if we are trying to write a function that
 returns a domain over composite, rather than a plain composite type,
 it is always necessary to write it as returning a single column,
 since there is no way to cause a coercion of the whole row result.

 We could call this function directly either by using it in
 a value expression:

SELECT new_emp();

 new_emp

 (None,1000.0,25,"(2,2)")

 or by calling it as a table function:

SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 | 25 | (2,2)

 The second way is described more fully in the section called “SQL Functions as Table Sources”.

 When you use a function that returns a composite type,
 you might want only one field (attribute) from its result.
 You can do that with syntax like this:

SELECT (new_emp()).name;

 name

 None

 The extra parentheses are needed to keep the parser from getting
 confused. If you try to do it without them, you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;
 ^

 Another option is to use functional notation for extracting an attribute:

SELECT name(new_emp());

 name

 None

 As explained in the section called “Using Composite Types in Queries”, the field notation and
 functional notation are equivalent.

 Another way to use a function returning a composite type is to pass the
 result to another function that accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
 SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname

 None
(1 row)

SQL Functions with Output Parameters

 An alternative way of describing a function's results is to define it
 with output parameters, as in this example:

CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em

 10
(1 row)

 This is not essentially different from the version of add_em
 shown in the section called “SQL Functions on Base Types”. The real value of
 output parameters is that they provide a convenient way of defining
 functions that return several columns. For example,

CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product
-----+---------
 53 | 462
(1 row)

 What has essentially happened here is that we have created an anonymous
 composite type for the result of the function. The above example has
 the same end result as

CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;

 but not having to bother with the separate composite type definition
 is often handy. Notice that the names attached to the output parameters
 are not just decoration, but determine the column names of the anonymous
 composite type. (If you omit a name for an output parameter, the
 system will choose a name on its own.)

 Notice that output parameters are not included in the calling argument
 list when invoking such a function from SQL. This is because
 PostgreSQL™ considers only the input
 parameters to define the function's calling signature. That means
 also that only the input parameters matter when referencing the function
 for purposes such as dropping it. We could drop the above function
 with either of

DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);

 Parameters can be marked as IN (the default),
 OUT, INOUT, or VARIADIC.
 An INOUT
 parameter serves as both an input parameter (part of the calling
 argument list) and an output parameter (part of the result record type).
 VARIADIC parameters are input parameters, but are treated
 specially as described below.

SQL Procedures with Output Parameters

 Output parameters are also supported in procedures, but they work a bit
 differently from functions. In CALL commands,
 output parameters must be included in the argument list.
 For example, the bank account debiting routine from earlier could be
 written like this:

CREATE PROCEDURE tp1 (accountno integer, debit numeric, OUT new_balance numeric) AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tp1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

 To call this procedure, an argument matching the OUT
 parameter must be included. It's customary to write
 NULL:

CALL tp1(17, 100.0, NULL);

 If you write something else, it must be an expression that is implicitly
 coercible to the declared type of the parameter, just as for input
 parameters. Note however that such an expression will not be evaluated.

 When calling a procedure from PL/pgSQL,
 instead of writing NULL you must write a variable
 that will receive the procedure's output. See the section called “Calling a Procedure” for details.

SQL Functions with Variable Numbers of Arguments

 SQL functions can be declared to accept
 variable numbers of arguments, so long as all the “optional”
 arguments are of the same data type. The optional arguments will be
 passed to the function as an array. The function is declared by
 marking the last parameter as VARIADIC; this parameter
 must be declared as being of an array type. For example:

CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast

 -1
(1 row)

 Effectively, all the actual arguments at or beyond the
 VARIADIC position are gathered up into a one-dimensional
 array, as if you had written

SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work

 You can't actually write that, though — or at least, it will
 not match this function definition. A parameter marked
 VARIADIC matches one or more occurrences of its element
 type, not of its own type.

 Sometimes it is useful to be able to pass an already-constructed array
 to a variadic function; this is particularly handy when one variadic
 function wants to pass on its array parameter to another one. Also,
 this is the only secure way to call a variadic function found in a schema
 that permits untrusted users to create objects; see
 the section called “Functions”. You can do this by
 specifying VARIADIC in the call:

SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);

 This prevents expansion of the function's variadic parameter into its
 element type, thereby allowing the array argument value to match
 normally. VARIADIC can only be attached to the last
 actual argument of a function call.

 Specifying VARIADIC in the call is also the only way to
 pass an empty array to a variadic function, for example:

SELECT mleast(VARIADIC ARRAY[]::numeric[]);

 Simply writing SELECT mleast() does not work because a
 variadic parameter must match at least one actual argument.
 (You could define a second function also named mleast,
 with no parameters, if you wanted to allow such calls.)

 The array element parameters generated from a variadic parameter are
 treated as not having any names of their own. This means it is not
 possible to call a variadic function using named arguments (the section called “Calling Functions”), except when you specify
 VARIADIC. For example, this will work:

SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);

 but not these:

SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);

SQL Functions with Default Values for Arguments

 Functions can be declared with default values for some or all input
 arguments. The default values are inserted whenever the function is
 called with insufficiently many actual arguments. Since arguments
 can only be omitted from the end of the actual argument list, all
 parameters after a parameter with a default value have to have
 default values as well. (Although the use of named argument notation
 could allow this restriction to be relaxed, it's still enforced so that
 positional argument notation works sensibly.) Whether or not you use it,
 this capability creates a need for precautions when calling functions in
 databases where some users mistrust other users; see
 the section called “Functions”.

 For example:

CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
 SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo

 60
(1 row)

SELECT foo(10, 20);
 foo

 33
(1 row)

SELECT foo(10);
 foo

 15
(1 row)

SELECT foo(); -- fails since there is no default for the first argument
ERROR: function foo() does not exist

 The = sign can also be used in place of the
 key word DEFAULT.

SQL Functions as Table Sources

 All SQL functions can be used in the FROM clause of a query,
 but it is particularly useful for functions returning composite types.
 If the function is defined to return a base type, the table function
 produces a one-column table. If the function is defined to return
 a composite type, the table function produces a column for each attribute
 of the composite type.

 Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
 1 | 1 | Joe | JOE
(1 row)

 As the example shows, we can work with the columns of the function's
 result just the same as if they were columns of a regular table.

 Note that we only got one row out of the function. This is because
 we did not use SETOF. That is described in the next section.

SQL Functions Returning Sets

 When an SQL function is declared as returning SETOF
 sometype, the function's final
 query is executed to completion, and each row it
 outputs is returned as an element of the result set.

 This feature is normally used when calling the function in the FROM
 clause. In this case each row returned by the function becomes
 a row of the table seen by the query. For example, assume that
 table foo has the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

 Then we would get:

 fooid | foosubid | fooname
-------+----------+---------
 1 | 1 | Joe
 1 | 2 | Ed
(2 rows)

 It is also possible to return multiple rows with the columns defined by
 output parameters, like this:

CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
 11 | 10
 13 | 30
 15 | 50
 17 | 70
(4 rows)

 The key point here is that you must write RETURNS SETOF record
 to indicate that the function returns multiple rows instead of just one.
 If there is only one output parameter, write that parameter's type
 instead of record.

 It is frequently useful to construct a query's result by invoking a
 set-returning function multiple times, with the parameters for each
 invocation coming from successive rows of a table or subquery. The
 preferred way to do this is to use the LATERAL key word,
 which is described in the section called “LATERAL Subqueries”.
 Here is an example using a set-returning function to enumerate
 elements of a tree structure:

SELECT * FROM nodes;
 name | parent
-----------+--------
 Top |
 Child1 | Top
 Child2 | Top
 Child3 | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
 SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
 name | child
--------+-----------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

 This example does not do anything that we couldn't have done with a
 simple join, but in more complex calculations the option to put
 some of the work into a function can be quite convenient.

 Functions returning sets can also be called in the select list
 of a query. For each row that the query
 generates by itself, the set-returning function is invoked, and an output
 row is generated for each element of the function's result set.
 The previous example could also be done with queries like
 these:

SELECT listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
 name | listchildren
--------+--------------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

 In the last SELECT,
 notice that no output row appears for Child2, Child3, etc.
 This happens because listchildren returns an empty set
 for those arguments, so no result rows are generated. This is the same
 behavior as we got from an inner join to the function result when using
 the LATERAL syntax.

 PostgreSQL™'s behavior for a set-returning function in a
 query's select list is almost exactly the same as if the set-returning
 function had been written in a LATERAL FROM-clause item
 instead. For example,

SELECT x, generate_series(1,5) AS g FROM tab;

 is almost equivalent to

SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;

 It would be exactly the same, except that in this specific example,
 the planner could choose to put g on the outside of the
 nested-loop join, since g has no actual lateral dependency
 on tab. That would result in a different output row
 order. Set-returning functions in the select list are always evaluated
 as though they are on the inside of a nested-loop join with the rest of
 the FROM clause, so that the function(s) are run to
 completion before the next row from the FROM clause is
 considered.

 If there is more than one set-returning function in the query's select
 list, the behavior is similar to what you get from putting the functions
 into a single LATERAL ROWS FROM(...) FROM-clause
 item. For each row from the underlying query, there is an output row
 using the first result from each function, then an output row using the
 second result, and so on. If some of the set-returning functions
 produce fewer outputs than others, null values are substituted for the
 missing data, so that the total number of rows emitted for one
 underlying row is the same as for the set-returning function that
 produced the most outputs. Thus the set-returning functions
 run “in lockstep” until they are all exhausted, and then
 execution continues with the next underlying row.

 Set-returning functions can be nested in a select list, although that is
 not allowed in FROM-clause items. In such cases, each level
 of nesting is treated separately, as though it were
 a separate LATERAL ROWS FROM(...) item. For example, in

SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;

 the set-returning functions srf2, srf3,
 and srf5 would be run in lockstep for each row
 of tab, and then srf1 and srf4
 would be applied in lockstep to each row produced by the lower
 functions.

 Set-returning functions cannot be used within conditional-evaluation
 constructs, such as CASE or COALESCE. For
 example, consider

SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;

 It might seem that this should produce five repetitions of input rows
 that have x > 0, and a single repetition of those that do
 not; but actually, because generate_series(1, 5) would be
 run in an implicit LATERAL FROM item before
 the CASE expression is ever evaluated, it would produce five
 repetitions of every input row. To reduce confusion, such cases produce
 a parse-time error instead.

Note

 If a function's last command is INSERT, UPDATE,
 or DELETE with RETURNING, that command will
 always be executed to completion, even if the function is not declared
 with SETOF or the calling query does not fetch all the
 result rows. Any extra rows produced by the RETURNING
 clause are silently dropped, but the commanded table modifications
 still happen (and are all completed before returning from the function).

Note

 Before PostgreSQL™ 10, putting more than one
 set-returning function in the same select list did not behave very
 sensibly unless they always produced equal numbers of rows. Otherwise,
 what you got was a number of output rows equal to the least common
 multiple of the numbers of rows produced by the set-returning
 functions. Also, nested set-returning functions did not work as
 described above; instead, a set-returning function could have at most
 one set-returning argument, and each nest of set-returning functions
 was run independently. Also, conditional execution (set-returning
 functions inside CASE etc.) was previously allowed,
 complicating things even more.
 Use of the LATERAL syntax is recommended when writing
 queries that need to work in older PostgreSQL™ versions,
 because that will give consistent results across different versions.
 If you have a query that is relying on conditional execution of a
 set-returning function, you may be able to fix it by moving the
 conditional test into a custom set-returning function. For example,

SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END FROM tab;

 could become

CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
 RETURNS SETOF int AS $$
BEGIN
 IF cond THEN
 RETURN QUERY SELECT generate_series(start, fin);
 ELSE
 RETURN QUERY SELECT els;
 END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;

 This formulation will work the same in all versions
 of PostgreSQL™.

SQL Functions Returning TABLE

 There is another way to declare a function as returning a set,
 which is to use the syntax
 RETURNS TABLE(columns).
 This is equivalent to using one or more OUT parameters plus
 marking the function as returning SETOF record (or
 SETOF a single output parameter's type, as appropriate).
 This notation is specified in recent versions of the SQL standard, and
 thus may be more portable than using SETOF.

 For example, the preceding sum-and-product example could also be
 done this way:

CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

 It is not allowed to use explicit OUT or INOUT
 parameters with the RETURNS TABLE notation — you must
 put all the output columns in the TABLE list.

Polymorphic SQL Functions

 SQL functions can be declared to accept and
 return the polymorphic types described in the section called “Polymorphic Types”. Here is a polymorphic
 function make_array that builds up an array
 from two arbitrary data type elements:

CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
 intarray | textarray
----------+-----------
 {1,2} | {a,b}
(1 row)

 Notice the use of the typecast 'a'::text
 to specify that the argument is of type text. This is
 required if the argument is just a string literal, since otherwise
 it would be treated as type
 unknown, and array of unknown is not a valid
 type.
 Without the typecast, you will get errors like this:

ERROR: could not determine polymorphic type because input has type unknown

 With make_array declared as above, you must
 provide two arguments that are of exactly the same data type; the
 system will not attempt to resolve any type differences. Thus for
 example this does not work:

SELECT make_array(1, 2.5) AS numericarray;
ERROR: function make_array(integer, numeric) does not exist

 An alternative approach is to use the “common” family of
 polymorphic types, which allows the system to try to identify a
 suitable common type:

CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array2(1, 2.5) AS numericarray;
 numericarray

 {1,2.5}
(1 row)

 Because the rules for common type resolution default to choosing
 type text when all inputs are of unknown types, this
 also works:

SELECT make_array2('a', 'b') AS textarray;
 textarray

 {a,b}
(1 row)

 It is permitted to have polymorphic arguments with a fixed
 return type, but the converse is not. For example:

CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
 SELECT $1 > $2;
$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
 is_greater

 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
 SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A result of type anyelement requires at least one input of type anyelement, anyarray, anynonarray, anyenum, or anyrange.

 Polymorphism can be used with functions that have output arguments.
 For example:

CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 | f3
----+---------
 22 | {22,22}
(1 row)

 Polymorphism can also be used with variadic functions.
 For example:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
 anyleast

 -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast

 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
 SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values

 1|4|2
(1 row)

SQL Functions with Collations

 When an SQL function has one or more parameters of collatable data types,
 a collation is identified for each function call depending on the
 collations assigned to the actual arguments, as described in the section called “Collation Support”. If a collation is successfully identified
 (i.e., there are no conflicts of implicit collations among the arguments)
 then all the collatable parameters are treated as having that collation
 implicitly. This will affect the behavior of collation-sensitive
 operations within the function. For example, using the
 anyleast function described above, the result of

SELECT anyleast('abc'::text, 'ABC');

 will depend on the database's default collation. In C locale
 the result will be ABC, but in many other locales it will
 be abc. The collation to use can be forced by adding
 a COLLATE clause to any of the arguments, for example

SELECT anyleast('abc'::text, 'ABC' COLLATE "C");

 Alternatively, if you wish a function to operate with a particular
 collation regardless of what it is called with, insert
 COLLATE clauses as needed in the function definition.
 This version of anyleast would always use en_US
 locale to compare strings:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

 But note that this will throw an error if applied to a non-collatable
 data type.

 If no common collation can be identified among the actual arguments,
 then an SQL function treats its parameters as having their data types'
 default collation (which is usually the database's default collation,
 but could be different for parameters of domain types).

 The behavior of collatable parameters can be thought of as a limited
 form of polymorphism, applicable only to textual data types.

Function Overloading

 More than one function can be defined with the same SQL name, so long
 as the arguments they take are different. In other words,
 function names can be overloaded. Whether or not
 you use it, this capability entails security precautions when calling
 functions in databases where some users mistrust other users; see
 the section called “Functions”. When a query is executed, the server
 will determine which function to call from the data types and the number
 of the provided arguments. Overloading can also be used to simulate
 functions with a variable number of arguments, up to a finite maximum
 number.

 When creating a family of overloaded functions, one should be
 careful not to create ambiguities. For instance, given the
 functions:

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

 it is not immediately clear which function would be called with
 some trivial input like test(1, 1.5). The
 currently implemented resolution rules are described in
 Chapter 10, Type Conversion, but it is unwise to design a system that subtly
 relies on this behavior.

 A function that takes a single argument of a composite type should
 generally not have the same name as any attribute (field) of that type.
 Recall that attribute(table)
 is considered equivalent
 to table.attribute.
 In the case that there is an
 ambiguity between a function on a composite type and an attribute of
 the composite type, the attribute will always be used. It is possible
 to override that choice by schema-qualifying the function name
 (that is, schema.func(table)
) but it's better to
 avoid the problem by not choosing conflicting names.

 Another possible conflict is between variadic and non-variadic functions.
 For instance, it is possible to create both foo(numeric) and
 foo(VARIADIC numeric[]). In this case it is unclear which one
 should be matched to a call providing a single numeric argument, such as
 foo(10.1). The rule is that the function appearing
 earlier in the search path is used, or if the two functions are in the
 same schema, the non-variadic one is preferred.

 When overloading C-language functions, there is an additional
 constraint: The C name of each function in the family of
 overloaded functions must be different from the C names of all
 other functions, either internal or dynamically loaded. If this
 rule is violated, the behavior is not portable. You might get a
 run-time linker error, or one of the functions will get called
 (usually the internal one). The alternative form of the
 AS clause for the SQL CREATE
 FUNCTION command decouples the SQL function name from
 the function name in the C source code. For instance:

CREATE FUNCTION test(int) RETURNS int
 AS 'filename', 'test_1arg'
 LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
 AS 'filename', 'test_2arg'
 LANGUAGE C;

 The names of the C functions here reflect one of many possible conventions.

Function Volatility Categories

 Every function has a volatility classification, with
 the possibilities being VOLATILE, STABLE, or
 IMMUTABLE. VOLATILE is the default if the
 CREATE FUNCTION
 command does not specify a category. The volatility category is a
 promise to the optimizer about the behavior of the function:

	
 A VOLATILE function can do anything, including modifying
 the database. It can return different results on successive calls with
 the same arguments. The optimizer makes no assumptions about the
 behavior of such functions. A query using a volatile function will
 re-evaluate the function at every row where its value is needed.

	
 A STABLE function cannot modify the database and is
 guaranteed to return the same results given the same arguments
 for all rows within a single statement. This category allows the
 optimizer to optimize multiple calls of the function to a single
 call. In particular, it is safe to use an expression containing
 such a function in an index scan condition. (Since an index scan
 will evaluate the comparison value only once, not once at each
 row, it is not valid to use a VOLATILE function in an
 index scan condition.)

	
 An IMMUTABLE function cannot modify the database and is
 guaranteed to return the same results given the same arguments forever.
 This category allows the optimizer to pre-evaluate the function when
 a query calls it with constant arguments. For example, a query like
 SELECT ... WHERE x = 2 + 2 can be simplified on sight to
 SELECT ... WHERE x = 4, because the function underlying
 the integer addition operator is marked IMMUTABLE.

 For best optimization results, you should label your functions with the
 strictest volatility category that is valid for them.

 Any function with side-effects must be labeled
 VOLATILE, so that calls to it cannot be optimized away.
 Even a function with no side-effects needs to be labeled
 VOLATILE if its value can change within a single query;
 some examples are random(), currval(),
 timeofday().

 Another important example is that the current_timestamp
 family of functions qualify as STABLE, since their values do
 not change within a transaction.

 There is relatively little difference between STABLE and
 IMMUTABLE categories when considering simple interactive
 queries that are planned and immediately executed: it doesn't matter
 a lot whether a function is executed once during planning or once during
 query execution startup. But there is a big difference if the plan is
 saved and reused later. Labeling a function IMMUTABLE when
 it really isn't might allow it to be prematurely folded to a constant during
 planning, resulting in a stale value being re-used during subsequent uses
 of the plan. This is a hazard when using prepared statements or when
 using function languages that cache plans (such as
 PL/pgSQL).

 For functions written in SQL or in any of the standard procedural
 languages, there is a second important property determined by the
 volatility category, namely the visibility of any data changes that have
 been made by the SQL command that is calling the function. A
 VOLATILE function will see such changes, a STABLE
 or IMMUTABLE function will not. This behavior is implemented
 using the snapshotting behavior of MVCC (see Chapter 13, Concurrency Control):
 STABLE and IMMUTABLE functions use a snapshot
 established as of the start of the calling query, whereas
 VOLATILE functions obtain a fresh snapshot at the start of
 each query they execute.

Note

 Functions written in C can manage snapshots however they want, but it's
 usually a good idea to make C functions work this way too.

 Because of this snapshotting behavior,
 a function containing only SELECT commands can safely be
 marked STABLE, even if it selects from tables that might be
 undergoing modifications by concurrent queries.
 PostgreSQL™ will execute all commands of a
 STABLE function using the snapshot established for the
 calling query, and so it will see a fixed view of the database throughout
 that query.

 The same snapshotting behavior is used for SELECT commands
 within IMMUTABLE functions. It is generally unwise to select
 from database tables within an IMMUTABLE function at all,
 since the immutability will be broken if the table contents ever change.
 However, PostgreSQL™ does not enforce that you
 do not do that.

 A common error is to label a function IMMUTABLE when its
 results depend on a configuration parameter. For example, a function
 that manipulates timestamps might well have results that depend on the
 TimeZone setting. For safety, such functions should
 be labeled STABLE instead.

Note

 PostgreSQL™ requires that STABLE
 and IMMUTABLE functions contain no SQL commands other
 than SELECT to prevent data modification.
 (This is not a completely bulletproof test, since such functions could
 still call VOLATILE functions that modify the database.
 If you do that, you will find that the STABLE or
 IMMUTABLE function does not notice the database changes
 applied by the called function, since they are hidden from its snapshot.)

Procedural Language Functions

 PostgreSQL™ allows user-defined functions
 to be written in other languages besides SQL and C. These other
 languages are generically called procedural
 languages (PLs).
 Procedural languages aren't built into the
 PostgreSQL™ server; they are offered
 by loadable modules.
 See Chapter 42, Procedural Languages and following chapters for more
 information.

Internal Functions

 Internal functions are functions written in C that have been statically
 linked into the PostgreSQL™ server.
 The “body” of the function definition
 specifies the C-language name of the function, which need not be the
 same as the name being declared for SQL use.
 (For reasons of backward compatibility, an empty body
 is accepted as meaning that the C-language function name is the
 same as the SQL name.)

 Normally, all internal functions present in the
 server are declared during the initialization of the database cluster
 (see the section called “Creating a Database Cluster”),
 but a user could use CREATE FUNCTION
 to create additional alias names for an internal function.
 Internal functions are declared in CREATE FUNCTION
 with language name internal. For instance, to
 create an alias for the sqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
 AS 'dsqrt'
 LANGUAGE internal
 STRICT;

 (Most internal functions expect to be declared “strict”.)

Note

 Not all “predefined” functions are
 “internal” in the above sense. Some predefined
 functions are written in SQL.

C-Language Functions

 User-defined functions can be written in C (or a language that can
 be made compatible with C, such as C++). Such functions are
 compiled into dynamically loadable objects (also called shared
 libraries) and are loaded by the server on demand. The dynamic
 loading feature is what distinguishes “C language” functions
 from “internal” functions — the actual coding conventions
 are essentially the same for both. (Hence, the standard internal
 function library is a rich source of coding examples for user-defined
 C functions.)

 Currently only one calling convention is used for C functions
 (“version 1”). Support for that calling convention is
 indicated by writing a PG_FUNCTION_INFO_V1() macro
 call for the function, as illustrated below.

Dynamic Loading

 The first time a user-defined function in a particular
 loadable object file is called in a session,
 the dynamic loader loads that object file into memory so that the
 function can be called. The CREATE FUNCTION
 for a user-defined C function must therefore specify two pieces of
 information for the function: the name of the loadable
 object file, and the C name (link symbol) of the specific function to call
 within that object file. If the C name is not explicitly specified then
 it is assumed to be the same as the SQL function name.

 The following algorithm is used to locate the shared object file
 based on the name given in the CREATE FUNCTION
 command:

	
 If the name is an absolute path, the given file is loaded.

	
 If the name starts with the string $libdir,
 that part is replaced by the PostgreSQL™ package
 library directory
 name, which is determined at build time.

	
 If the name does not contain a directory part, the file is
 searched for in the path specified by the configuration variable
 dynamic_library_path.

	
 Otherwise (the file was not found in the path, or it contains a
 non-absolute directory part), the dynamic loader will try to
 take the name as given, which will most likely fail. (It is
 unreliable to depend on the current working directory.)

 If this sequence does not work, the platform-specific shared
 library file name extension (often .so) is
 appended to the given name and this sequence is tried again. If
 that fails as well, the load will fail.

 It is recommended to locate shared libraries either relative to
 $libdir or through the dynamic library path.
 This simplifies version upgrades if the new installation is at a
 different location. The actual directory that
 $libdir stands for can be found out with the
 command pg_config --pkglibdir.

 The user ID the PostgreSQL™ server runs
 as must be able to traverse the path to the file you intend to
 load. Making the file or a higher-level directory not readable
 and/or not executable by the postgres
 user is a common mistake.

 In any case, the file name that is given in the
 CREATE FUNCTION command is recorded literally
 in the system catalogs, so if the file needs to be loaded again
 the same procedure is applied.

Note

 PostgreSQL™ will not compile a C function
 automatically. The object file must be compiled before it is referenced
 in a CREATE
 FUNCTION command. See the section called “Compiling and Linking Dynamically-Loaded Functions” for additional
 information.

 To ensure that a dynamically loaded object file is not loaded into an
 incompatible server, PostgreSQL™ checks that the
 file contains a “magic block” with the appropriate contents.
 This allows the server to detect obvious incompatibilities, such as code
 compiled for a different major version of
 PostgreSQL™. To include a magic block,
 write this in one (and only one) of the module source files, after having
 included the header fmgr.h:

PG_MODULE_MAGIC;

 After it is used for the first time, a dynamically loaded object
 file is retained in memory. Future calls in the same session to
 the function(s) in that file will only incur the small overhead of
 a symbol table lookup. If you need to force a reload of an object
 file, for example after recompiling it, begin a fresh session.

 Optionally, a dynamically loaded file can contain an initialization
 function. If the file includes a function named
 _PG_init, that function will be called immediately after
 loading the file. The function receives no parameters and should
 return void. There is presently no way to unload a dynamically loaded file.

Base Types in C-Language Functions

 To know how to write C-language functions, you need to know how
 PostgreSQL™ internally represents base
 data types and how they can be passed to and from functions.
 Internally, PostgreSQL™ regards a base
 type as a “blob of memory”. The user-defined
 functions that you define over a type in turn define the way that
 PostgreSQL™ can operate on it. That
 is, PostgreSQL™ will only store and
 retrieve the data from disk and use your user-defined functions
 to input, process, and output the data.

 Base types can have one of three internal formats:

	
 pass by value, fixed-length

	
 pass by reference, fixed-length

	
 pass by reference, variable-length

 By-value types can only be 1, 2, or 4 bytes in length
 (also 8 bytes, if sizeof(Datum) is 8 on your machine).
 You should be careful to define your types such that they will be the
 same size (in bytes) on all architectures. For example, the
 long type is dangerous because it is 4 bytes on some
 machines and 8 bytes on others, whereas int type is 4 bytes
 on most Unix machines. A reasonable implementation of the
 int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

 (The actual PostgreSQL C code calls this type int32, because
 it is a convention in C that intXX
 means XX bits. Note
 therefore also that the C type int8 is 1 byte in size. The
 SQL type int8 is called int64 in C. See also
 Table 38.2, “Equivalent C Types for Built-in SQL Types”.)

 On the other hand, fixed-length types of any size can
 be passed by-reference. For example, here is a sample
 implementation of a PostgreSQL™ type:

/* 16-byte structure, passed by reference */
typedef struct
{
 double x, y;
} Point;

 Only pointers to such types can be used when passing
 them in and out of PostgreSQL™ functions.
 To return a value of such a type, allocate the right amount of
 memory with palloc, fill in the allocated memory,
 and return a pointer to it. (Also, if you just want to return the
 same value as one of your input arguments that's of the same data type,
 you can skip the extra palloc and just return the
 pointer to the input value.)

 Finally, all variable-length types must also be passed
 by reference. All variable-length types must begin
 with an opaque length field of exactly 4 bytes, which will be set
 by SET_VARSIZE; never set this field directly! All data to
 be stored within that type must be located in the memory
 immediately following that length field. The
 length field contains the total length of the structure,
 that is, it includes the size of the length field
 itself.

 Another important point is to avoid leaving any uninitialized bits
 within data type values; for example, take care to zero out any
 alignment padding bytes that might be present in structs. Without
 this, logically-equivalent constants of your data type might be
 seen as unequal by the planner, leading to inefficient (though not
 incorrect) plans.

Warning

 Never modify the contents of a pass-by-reference input
 value. If you do so you are likely to corrupt on-disk data, since
 the pointer you are given might point directly into a disk buffer.
 The sole exception to this rule is explained in
 the section called “User-Defined Aggregates”.

 As an example, we can define the type text as
 follows:

typedef struct {
 int32 length;
 char data[FLEXIBLE_ARRAY_MEMBER];
} text;

 The [FLEXIBLE_ARRAY_MEMBER] notation means that the actual
 length of the data part is not specified by this declaration.

 When manipulating
 variable-length types, we must be careful to allocate
 the correct amount of memory and set the length field correctly.
 For example, if we wanted to store 40 bytes in a text
 structure, we might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...

 VARHDRSZ is the same as sizeof(int32), but
 it's considered good style to use the macro VARHDRSZ
 to refer to the size of the overhead for a variable-length type.
 Also, the length field must be set using the
 SET_VARSIZE macro, not by simple assignment.

 Table 38.2, “Equivalent C Types for Built-in SQL Types” shows the C types
 corresponding to many of the built-in SQL data types
 of PostgreSQL™.
 The “Defined In” column gives the header file that
 needs to be included to get the type definition. (The actual
 definition might be in a different file that is included by the
 listed file. It is recommended that users stick to the defined
 interface.) Note that you should always include
 postgres.h first in any source file of server
 code, because it declares a number of things that you will need
 anyway, and because including other headers first can cause
 portability issues.

Table 38.2. Equivalent C Types for Built-in SQL Types
	
 SQL Type
 	
 C Type
 	
 Defined In

	boolean	bool	postgres.h (maybe compiler built-in)
	box	BOX*	utils/geo_decls.h
	bytea	bytea*	postgres.h
	"char"	char	(compiler built-in)
	character	BpChar*	postgres.h
	cid	CommandId	postgres.h
	date	DateADT	utils/date.h
	float4 (real)	float4	postgres.h
	float8 (double precision)	float8	postgres.h
	int2 (smallint)	int16	postgres.h
	int4 (integer)	int32	postgres.h
	int8 (bigint)	int64	postgres.h
	interval	Interval*	datatype/timestamp.h
	lseg	LSEG*	utils/geo_decls.h
	name	Name	postgres.h
	numeric	Numeric	utils/numeric.h
	oid	Oid	postgres.h
	oidvector	oidvector*	postgres.h
	path	PATH*	utils/geo_decls.h
	point	POINT*	utils/geo_decls.h
	regproc	RegProcedure	postgres.h
	text	text*	postgres.h
	tid	ItemPointer	storage/itemptr.h
	time	TimeADT	utils/date.h
	time with time zone	TimeTzADT	utils/date.h
	timestamp	Timestamp	datatype/timestamp.h
	timestamp with time zone	TimestampTz	datatype/timestamp.h
	varchar	VarChar*	postgres.h
	xid	TransactionId	postgres.h

 Now that we've gone over all of the possible structures
 for base types, we can show some examples of real functions.

Version 1 Calling Conventions

 The version-1 calling convention relies on macros to suppress most
 of the complexity of passing arguments and results. The C declaration
 of a version-1 function is always:

Datum funcname(PG_FUNCTION_ARGS)

 In addition, the macro call:

PG_FUNCTION_INFO_V1(funcname);

 must appear in the same source file. (Conventionally, it's
 written just before the function itself.) This macro call is not
 needed for internal-language functions, since
 PostgreSQL™ assumes that all internal functions
 use the version-1 convention. It is, however, required for
 dynamically-loaded functions.

 In a version-1 function, each actual argument is fetched using a
 PG_GETARG_xxx()
 macro that corresponds to the argument's data type. (In non-strict
 functions there needs to be a previous check about argument null-ness
 using PG_ARGISNULL(); see below.)
 The result is returned using a
 PG_RETURN_xxx()
 macro for the return type.
 PG_GETARG_xxx()
 takes as its argument the number of the function argument to
 fetch, where the count starts at 0.
 PG_RETURN_xxx()
 takes as its argument the actual value to return.

 Here are some examples using the version-1 calling convention:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"
#include "varatt.h"

PG_MODULE_MAGIC;

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_INT32(0);

 PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
 /* The macros for FLOAT8 hide its pass-by-reference nature. */
 float8 arg = PG_GETARG_FLOAT8(0);

 PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
 /* Here, the pass-by-reference nature of Point is not hidden. */
 Point *pointx = PG_GETARG_POINT_P(0);
 Point *pointy = PG_GETARG_POINT_P(1);
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

 PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
 text *t = PG_GETARG_TEXT_PP(0);

 /*
 * VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
 * VARHDRSZ or VARHDRSZ_SHORT of its header. Construct the copy with a
 * full-length header.
 */
 text *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
 SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

 /*
 * VARDATA is a pointer to the data region of the new struct. The source
 * could be a short datum, so retrieve its data through VARDATA_ANY.
 */
 memcpy(VARDATA(new_t), /* destination */
 VARDATA_ANY(t), /* source */
 VARSIZE_ANY_EXHDR(t)); /* how many bytes */
 PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
 text *arg1 = PG_GETARG_TEXT_PP(0);
 text *arg2 = PG_GETARG_TEXT_PP(1);
 int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
 int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
 int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 SET_VARSIZE(new_text, new_text_size);
 memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
 memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
 PG_RETURN_TEXT_P(new_text);
}

 Supposing that the above code has been prepared in file
 funcs.c and compiled into a shared object,
 we could define the functions to PostgreSQL™
 with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
 AS 'DIRECTORY/funcs', 'add_one'
 LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision
 AS 'DIRECTORY/funcs', 'add_one_float8'
 LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
 AS 'DIRECTORY/funcs', 'makepoint'
 LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
 AS 'DIRECTORY/funcs', 'copytext'
 LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
 AS 'DIRECTORY/funcs', 'concat_text'
 LANGUAGE C STRICT;

 Here, DIRECTORY stands for the
 directory of the shared library file (for instance the
 PostgreSQL™ tutorial directory, which
 contains the code for the examples used in this section).
 (Better style would be to use just 'funcs' in the
 AS clause, after having added
 DIRECTORY to the search path. In any
 case, we can omit the system-specific extension for a shared
 library, commonly .so.)

 Notice that we have specified the functions as “strict”,
 meaning that
 the system should automatically assume a null result if any input
 value is null. By doing this, we avoid having to check for null inputs
 in the function code. Without this, we'd have to check for null values
 explicitly, using PG_ARGISNULL().

 The macro PG_ARGISNULL(n)
 allows a function to test whether each input is null. (Of course, doing
 this is only necessary in functions not declared “strict”.)
 As with the
 PG_GETARG_xxx() macros,
 the input arguments are counted beginning at zero. Note that one
 should refrain from executing
 PG_GETARG_xxx() until
 one has verified that the argument isn't null.
 To return a null result, execute PG_RETURN_NULL();
 this works in both strict and nonstrict functions.

 At first glance, the version-1 coding conventions might appear
 to be just pointless obscurantism, compared to using
 plain C calling conventions. They do however allow
 us to deal with NULLable arguments/return values,
 and “toasted” (compressed or out-of-line) values.

 Other options provided by the version-1 interface are two
 variants of the
 PG_GETARG_xxx()
 macros. The first of these,
 PG_GETARG_xxx_COPY(),
 guarantees to return a copy of the specified argument that is
 safe for writing into. (The normal macros will sometimes return a
 pointer to a value that is physically stored in a table, which
 must not be written to. Using the
 PG_GETARG_xxx_COPY()
 macros guarantees a writable result.)
 The second variant consists of the
 PG_GETARG_xxx_SLICE()
 macros which take three arguments. The first is the number of the
 function argument (as above). The second and third are the offset and
 length of the segment to be returned. Offsets are counted from
 zero, and a negative length requests that the remainder of the
 value be returned. These macros provide more efficient access to
 parts of large values in the case where they have storage type
 “external”. (The storage type of a column can be specified using
 ALTER TABLE tablename ALTER
 COLUMN colname SET STORAGE
 storagetype. storagetype is one of
 plain, external, extended,
 or main.)

 Finally, the version-1 function call conventions make it possible
 to return set results (the section called “Returning Sets”) and
 implement trigger functions (Chapter 39, Triggers) and
 procedural-language call handlers (Chapter 58, Writing a Procedural Language Handler). For more details
 see src/backend/utils/fmgr/README in the
 source distribution.

Writing Code

 Before we turn to the more advanced topics, we should discuss
 some coding rules for PostgreSQL™
 C-language functions. While it might be possible to load functions
 written in languages other than C into
 PostgreSQL™, this is usually difficult
 (when it is possible at all) because other languages, such as
 C++, FORTRAN, or Pascal often do not follow the same calling
 convention as C. That is, other languages do not pass argument
 and return values between functions in the same way. For this
 reason, we will assume that your C-language functions are
 actually written in C.

 The basic rules for writing and building C functions are as follows:

	
 Use pg_config
 --includedir-server
 to find out where the PostgreSQL™ server header
 files are installed on your system (or the system that your
 users will be running on).

	
 Compiling and linking your code so that it can be dynamically
 loaded into PostgreSQL™ always
 requires special flags. See the section called “Compiling and Linking Dynamically-Loaded Functions” for a
 detailed explanation of how to do it for your particular
 operating system.

	
 Remember to define a “magic block” for your shared library,
 as described in the section called “Dynamic Loading”.

	
 When allocating memory, use the
 PostgreSQL™ functions
 palloc and pfree
 instead of the corresponding C library functions
 malloc and free.
 The memory allocated by palloc will be
 freed automatically at the end of each transaction, preventing
 memory leaks.

	
 Always zero the bytes of your structures using memset
 (or allocate them with palloc0 in the first place).
 Even if you assign to each field of your structure, there might be
 alignment padding (holes in the structure) that contain
 garbage values. Without this, it's difficult to
 support hash indexes or hash joins, as you must pick out only
 the significant bits of your data structure to compute a hash.
 The planner also sometimes relies on comparing constants via
 bitwise equality, so you can get undesirable planning results if
 logically-equivalent values aren't bitwise equal.

	
 Most of the internal PostgreSQL™
 types are declared in postgres.h, while
 the function manager interfaces
 (PG_FUNCTION_ARGS, etc.) are in
 fmgr.h, so you will need to include at
 least these two files. For portability reasons it's best to
 include postgres.h first,
 before any other system or user header files. Including
 postgres.h will also include
 elog.h and palloc.h
 for you.

	
 Symbol names defined within object files must not conflict
 with each other or with symbols defined in the
 PostgreSQL™ server executable. You
 will have to rename your functions or variables if you get
 error messages to this effect.

Compiling and Linking Dynamically-Loaded Functions

 Before you are able to use your
 PostgreSQL™ extension functions written in
 C, they must be compiled and linked in a special way to produce a
 file that can be dynamically loaded by the server. To be precise, a
 shared library needs to be
 created.

 For information beyond what is contained in this section
 you should read the documentation of your
 operating system, in particular the manual pages for the C compiler,
 cc, and the link editor, ld.
 In addition, the PostgreSQL™ source code
 contains several working examples in the
 contrib directory. If you rely on these
 examples you will make your modules dependent on the availability
 of the PostgreSQL™ source code, however.

 Creating shared libraries is generally analogous to linking
 executables: first the source files are compiled into object files,
 then the object files are linked together. The object files need to
 be created as position-independent code
 (PIC), which
 conceptually means that they can be placed at an arbitrary location
 in memory when they are loaded by the executable. (Object files
 intended for executables are usually not compiled that way.) The
 command to link a shared library contains special flags to
 distinguish it from linking an executable (at least in theory
 — on some systems the practice is much uglier).

 In the following examples we assume that your source code is in a
 file foo.c and we will create a shared library
 foo.so. The intermediate object file will be
 called foo.o unless otherwise noted. A shared
 library can contain more than one object file, but we only use one
 here.

	
 FreeBSD

	
 The compiler flag to create PIC is
 -fPIC. To create shared libraries the compiler
 flag is -shared.

gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

 This is applicable as of version 3.0 of
 FreeBSD.

	
 Linux

	
 The compiler flag to create PIC is
 -fPIC.
 The compiler flag to create a shared library is
 -shared. A complete example looks like this:

cc -fPIC -c foo.c
cc -shared -o foo.so foo.o

	
 macOS

	
 Here is an example. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

	
 NetBSD

	
 The compiler flag to create PIC is
 -fPIC. For ELF systems, the
 compiler with the flag -shared is used to link
 shared libraries. On the older non-ELF systems, ld
 -Bshareable is used.

gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

	
 OpenBSD

	
 The compiler flag to create PIC is
 -fPIC. ld -Bshareable is
 used to link shared libraries.

gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o

	
 Solaris

	
 The compiler flag to create PIC is
 -KPIC with the Sun compiler and
 -fPIC with GCC. To
 link shared libraries, the compiler option is
 -G with either compiler or alternatively
 -shared with GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

 or

gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o

Tip

 If this is too complicated for you, you should consider using

 GNU Libtool™,
 which hides the platform differences behind a uniform interface.

 The resulting shared library file can then be loaded into
 PostgreSQL™. When specifying the file name
 to the CREATE FUNCTION command, one must give it
 the name of the shared library file, not the intermediate object file.
 Note that the system's standard shared-library extension (usually
 .so or .sl) can be omitted from
 the CREATE FUNCTION command, and normally should
 be omitted for best portability.

 Refer back to the section called “Dynamic Loading” about where the
 server expects to find the shared library files.

Composite-Type Arguments

 Composite types do not have a fixed layout like C structures.
 Instances of a composite type can contain null fields. In
 addition, composite types that are part of an inheritance
 hierarchy can have different fields than other members of the
 same inheritance hierarchy. Therefore,
 PostgreSQL™ provides a function
 interface for accessing fields of composite types from C.

 Suppose we want to write a function to answer the query:

SELECT name, c_overpaid(emp, 1500) AS overpaid
 FROM emp
 WHERE name = 'Bill' OR name = 'Sam';

 Using the version-1 calling conventions, we can define
 c_overpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
 HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
 int32 limit = PG_GETARG_INT32(1);
 bool isnull;
 Datum salary;

 salary = GetAttributeByName(t, "salary", &isnull);
 if (isnull)
 PG_RETURN_BOOL(false);
 /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

 PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

 GetAttributeByName is the
 PostgreSQL™ system function that
 returns attributes out of the specified row. It has
 three arguments: the argument of type HeapTupleHeader passed
 into
 the function, the name of the desired attribute, and a
 return parameter that tells whether the attribute
 is null. GetAttributeByName returns a Datum
 value that you can convert to the proper data type by using the
 appropriate DatumGetXXX()
 function. Note that the return value is meaningless if the null flag is
 set; always check the null flag before trying to do anything with the
 result.

 There is also GetAttributeByNum, which selects
 the target attribute by column number instead of name.

 The following command declares the function
 c_overpaid in SQL:

CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
 AS 'DIRECTORY/funcs', 'c_overpaid'
 LANGUAGE C STRICT;

 Notice we have used STRICT so that we did not have to
 check whether the input arguments were NULL.

Returning Rows (Composite Types)

 To return a row or composite-type value from a C-language
 function, you can use a special API that provides macros and
 functions to hide most of the complexity of building composite
 data types. To use this API, the source file must include:

#include "funcapi.h"

 There are two ways you can build a composite data value (henceforth
 a “tuple”): you can build it from an array of Datum values,
 or from an array of C strings that can be passed to the input
 conversion functions of the tuple's column data types. In either
 case, you first need to obtain or construct a TupleDesc
 descriptor for the tuple structure. When working with Datums, you
 pass the TupleDesc to BlessTupleDesc,
 and then call heap_form_tuple for each row. When working
 with C strings, you pass the TupleDesc to
 TupleDescGetAttInMetadata, and then call
 BuildTupleFromCStrings for each row. In the case of a
 function returning a set of tuples, the setup steps can all be done
 once during the first call of the function.

 Several helper functions are available for setting up the needed
 TupleDesc. The recommended way to do this in most
 functions returning composite values is to call:

TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
 Oid *resultTypeId,
 TupleDesc *resultTupleDesc)

 passing the same fcinfo struct passed to the calling function
 itself. (This of course requires that you use the version-1
 calling conventions.) resultTypeId can be specified
 as NULL or as the address of a local variable to receive the
 function's result type OID. resultTupleDesc should be the
 address of a local TupleDesc variable. Check that the
 result is TYPEFUNC_COMPOSITE; if so,
 resultTupleDesc has been filled with the needed
 TupleDesc. (If it is not, you can report an error along
 the lines of “function returning record called in context that
 cannot accept type record”.)

Tip

 get_call_result_type can resolve the actual type of a
 polymorphic function result; so it is useful in functions that return
 scalar polymorphic results, not only functions that return composites.
 The resultTypeId output is primarily useful for functions
 returning polymorphic scalars.

Note

 get_call_result_type has a sibling
 get_expr_result_type, which can be used to resolve the
 expected output type for a function call represented by an expression
 tree. This can be used when trying to determine the result type from
 outside the function itself. There is also
 get_func_result_type, which can be used when only the
 function's OID is available. However these functions are not able
 to deal with functions declared to return record, and
 get_func_result_type cannot resolve polymorphic types,
 so you should preferentially use get_call_result_type.

 Older, now-deprecated functions for obtaining
 TupleDescs are:

TupleDesc RelationNameGetTupleDesc(const char *relname)

 to get a TupleDesc for the row type of a named relation,
 and:

TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

 to get a TupleDesc based on a type OID. This can
 be used to get a TupleDesc for a base or
 composite type. It will not work for a function that returns
 record, however, and it cannot resolve polymorphic
 types.

 Once you have a TupleDesc, call:

TupleDesc BlessTupleDesc(TupleDesc tupdesc)

 if you plan to work with Datums, or:

AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

 if you plan to work with C strings. If you are writing a function
 returning set, you can save the results of these functions in the
 FuncCallContext structure — use the
 tuple_desc or attinmeta field
 respectively.

 When working with Datums, use:

HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)

 to build a HeapTuple given user data in Datum form.

 When working with C strings, use:

HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)

 to build a HeapTuple given user data
 in C string form. values is an array of C strings,
 one for each attribute of the return row. Each C string should be in
 the form expected by the input function of the attribute data
 type. In order to return a null value for one of the attributes,
 the corresponding pointer in the values array
 should be set to NULL. This function will need to
 be called again for each row you return.

 Once you have built a tuple to return from your function, it
 must be converted into a Datum. Use:

HeapTupleGetDatum(HeapTuple tuple)

 to convert a HeapTuple into a valid Datum. This
 Datum can be returned directly if you intend to return
 just a single row, or it can be used as the current return value
 in a set-returning function.

 An example appears in the next section.

Returning Sets

 C-language functions have two options for returning sets (multiple
 rows). In one method, called ValuePerCall
 mode, a set-returning function is called repeatedly (passing the same
 arguments each time) and it returns one new row on each call, until
 it has no more rows to return and signals that by returning NULL.
 The set-returning function (SRF) must therefore
 save enough state across calls to remember what it was doing and
 return the correct next item on each call.
 In the other method, called Materialize mode,
 an SRF fills and returns a tuplestore object containing its
 entire result; then only one call occurs for the whole result, and
 no inter-call state is needed.

 When using ValuePerCall mode, it is important to remember that the
 query is not guaranteed to be run to completion; that is, due to
 options such as LIMIT, the executor might stop
 making calls to the set-returning function before all rows have been
 fetched. This means it is not safe to perform cleanup activities in
 the last call, because that might not ever happen. It's recommended
 to use Materialize mode for functions that need access to external
 resources, such as file descriptors.

 The remainder of this section documents a set of helper macros that
 are commonly used (though not required to be used) for SRFs using
 ValuePerCall mode. Additional details about Materialize mode can be
 found in src/backend/utils/fmgr/README. Also,
 the contrib modules in
 the PostgreSQL™ source distribution contain
 many examples of SRFs using both ValuePerCall and Materialize mode.

 To use the ValuePerCall support macros described here,
 include funcapi.h. These macros work with a
 structure FuncCallContext that contains the
 state that needs to be saved across calls. Within the calling
 SRF, fcinfo->flinfo->fn_extra is used to
 hold a pointer to FuncCallContext across
 calls. The macros automatically fill that field on first use,
 and expect to find the same pointer there on subsequent uses.

typedef struct FuncCallContext
{
 /*
 * Number of times we've been called before
 *
 * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
 * incremented for you every time SRF_RETURN_NEXT() is called.
 */
 uint64 call_cntr;

 /*
 * OPTIONAL maximum number of calls
 *
 * max_calls is here for convenience only and setting it is optional.
 * If not set, you must provide alternative means to know when the
 * function is done.
 */
 uint64 max_calls;

 /*
 * OPTIONAL pointer to miscellaneous user-provided context information
 *
 * user_fctx is for use as a pointer to your own data to retain
 * arbitrary context information between calls of your function.
 */
 void *user_fctx;

 /*
 * OPTIONAL pointer to struct containing attribute type input metadata
 *
 * attinmeta is for use when returning tuples (i.e., composite data types)
 * and is not used when returning base data types. It is only needed
 * if you intend to use BuildTupleFromCStrings() to create the return
 * tuple.
 */
 AttInMetadata *attinmeta;

 /*
 * memory context used for structures that must live for multiple calls
 *
 * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
 * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
 * context for any memory that is to be reused across multiple calls
 * of the SRF.
 */
 MemoryContext multi_call_memory_ctx;

 /*
 * OPTIONAL pointer to struct containing tuple description
 *
 * tuple_desc is for use when returning tuples (i.e., composite data types)
 * and is only needed if you are going to build the tuples with
 * heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that
 * the TupleDesc pointer stored here should usually have been run through
 * BlessTupleDesc() first.
 */
 TupleDesc tuple_desc;

} FuncCallContext;

 The macros to be used by an SRF using this
 infrastructure are:

SRF_IS_FIRSTCALL()

 Use this to determine if your function is being called for the first or a
 subsequent time. On the first call (only), call:

SRF_FIRSTCALL_INIT()

 to initialize the FuncCallContext. On every function call,
 including the first, call:

SRF_PERCALL_SETUP()

 to set up for using the FuncCallContext.

 If your function has data to return in the current call, use:

SRF_RETURN_NEXT(funcctx, result)

 to return it to the caller. (result must be of type
 Datum, either a single value or a tuple prepared as
 described above.) Finally, when your function is finished
 returning data, use:

SRF_RETURN_DONE(funcctx)

 to clean up and end the SRF.

 The memory context that is current when the SRF is called is
 a transient context that will be cleared between calls. This means
 that you do not need to call pfree on everything
 you allocated using palloc; it will go away anyway. However, if you want to allocate
 any data structures to live across calls, you need to put them somewhere
 else. The memory context referenced by
 multi_call_memory_ctx is a suitable location for any
 data that needs to survive until the SRF is finished running. In most
 cases, this means that you should switch into
 multi_call_memory_ctx while doing the
 first-call setup.
 Use funcctx->user_fctx to hold a pointer to
 any such cross-call data structures.
 (Data you allocate
 in multi_call_memory_ctx will go away
 automatically when the query ends, so it is not necessary to free
 that data manually, either.)

Warning

 While the actual arguments to the function remain unchanged between
 calls, if you detoast the argument values (which is normally done
 transparently by the
 PG_GETARG_xxx macro)
 in the transient context then the detoasted copies will be freed on
 each cycle. Accordingly, if you keep references to such values in
 your user_fctx, you must either copy them into the
 multi_call_memory_ctx after detoasting, or ensure
 that you detoast the values only in that context.

 A complete pseudo-code example looks like the following:

Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 Datum result;
 further declarations as needed

 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 funcctx = SRF_FIRSTCALL_INIT();
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
 /* One-time setup code appears here: */
 user code
 if returning composite
 build TupleDesc, and perhaps AttInMetadata
 endif returning composite
 user code
 MemoryContextSwitchTo(oldcontext);
 }

 /* Each-time setup code appears here: */
 user code
 funcctx = SRF_PERCALL_SETUP();
 user code

 /* this is just one way we might test whether we are done: */
 if (funcctx->call_cntr < funcctx->max_calls)
 {
 /* Here we want to return another item: */
 user code
 obtain result Datum
 SRF_RETURN_NEXT(funcctx, result);
 }
 else
 {
 /* Here we are done returning items, so just report that fact. */
 /* (Resist the temptation to put cleanup code here.) */
 SRF_RETURN_DONE(funcctx);
 }
}

 A complete example of a simple SRF returning a composite type
 looks like:

PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 int call_cntr;
 int max_calls;
 TupleDesc tupdesc;
 AttInMetadata *attinmeta;

 /* stuff done only on the first call of the function */
 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 /* create a function context for cross-call persistence */
 funcctx = SRF_FIRSTCALL_INIT();

 /* switch to memory context appropriate for multiple function calls */
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

 /* total number of tuples to be returned */
 funcctx->max_calls = PG_GETARG_INT32(0);

 /* Build a tuple descriptor for our result type */
 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
 ereport(ERROR,
 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
 errmsg("function returning record called in context "
 "that cannot accept type record")));

 /*
 * generate attribute metadata needed later to produce tuples from raw
 * C strings
 */
 attinmeta = TupleDescGetAttInMetadata(tupdesc);
 funcctx->attinmeta = attinmeta;

 MemoryContextSwitchTo(oldcontext);
 }

 /* stuff done on every call of the function */
 funcctx = SRF_PERCALL_SETUP();

 call_cntr = funcctx->call_cntr;
 max_calls = funcctx->max_calls;
 attinmeta = funcctx->attinmeta;

 if (call_cntr < max_calls) /* do when there is more left to send */
 {
 char **values;
 HeapTuple tuple;
 Datum result;

 /*
 * Prepare a values array for building the returned tuple.
 * This should be an array of C strings which will
 * be processed later by the type input functions.
 */
 values = (char **) palloc(3 * sizeof(char *));
 values[0] = (char *) palloc(16 * sizeof(char));
 values[1] = (char *) palloc(16 * sizeof(char));
 values[2] = (char *) palloc(16 * sizeof(char));

 snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
 snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
 snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

 /* build a tuple */
 tuple = BuildTupleFromCStrings(attinmeta, values);

 /* make the tuple into a datum */
 result = HeapTupleGetDatum(tuple);

 /* clean up (this is not really necessary) */
 pfree(values[0]);
 pfree(values[1]);
 pfree(values[2]);
 pfree(values);

 SRF_RETURN_NEXT(funcctx, result);
 }
 else /* do when there is no more left */
 {
 SRF_RETURN_DONE(funcctx);
 }
}

 One way to declare this function in SQL is:

CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
 RETURNS SETOF __retcomposite
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

 A different way is to use OUT parameters:

CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
 OUT f1 integer, OUT f2 integer, OUT f3 integer)
 RETURNS SETOF record
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

 Notice that in this method the output type of the function is formally
 an anonymous record type.

Polymorphic Arguments and Return Types

 C-language functions can be declared to accept and
 return the polymorphic types described in the section called “Polymorphic Types”.
 When a function's arguments or return types
 are defined as polymorphic types, the function author cannot know
 in advance what data type it will be called with, or
 need to return. There are two routines provided in fmgr.h
 to allow a version-1 C function to discover the actual data types
 of its arguments and the type it is expected to return. The routines are
 called get_fn_expr_rettype(FmgrInfo *flinfo) and
 get_fn_expr_argtype(FmgrInfo *flinfo, int argnum).
 They return the result or argument type OID, or InvalidOid if the
 information is not available.
 The structure flinfo is normally accessed as
 fcinfo->flinfo. The parameter argnum
 is zero based. get_call_result_type can also be used
 as an alternative to get_fn_expr_rettype.
 There is also get_fn_expr_variadic, which can be used to
 find out whether variadic arguments have been merged into an array.
 This is primarily useful for VARIADIC "any" functions,
 since such merging will always have occurred for variadic functions
 taking ordinary array types.

 For example, suppose we want to write a function to accept a single
 element of any type, and return a one-dimensional array of that type:

PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
 ArrayType *result;
 Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
 Datum element;
 bool isnull;
 int16 typlen;
 bool typbyval;
 char typalign;
 int ndims;
 int dims[MAXDIM];
 int lbs[MAXDIM];

 if (!OidIsValid(element_type))
 elog(ERROR, "could not determine data type of input");

 /* get the provided element, being careful in case it's NULL */
 isnull = PG_ARGISNULL(0);
 if (isnull)
 element = (Datum) 0;
 else
 element = PG_GETARG_DATUM(0);

 /* we have one dimension */
 ndims = 1;
 /* and one element */
 dims[0] = 1;
 /* and lower bound is 1 */
 lbs[0] = 1;

 /* get required info about the element type */
 get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

 /* now build the array */
 result = construct_md_array(&element, &isnull, ndims, dims, lbs,
 element_type, typlen, typbyval, typalign);

 PG_RETURN_ARRAYTYPE_P(result);
}

 The following command declares the function
 make_array in SQL:

CREATE FUNCTION make_array(anyelement) RETURNS anyarray
 AS 'DIRECTORY/funcs', 'make_array'
 LANGUAGE C IMMUTABLE;

 There is a variant of polymorphism that is only available to C-language
 functions: they can be declared to take parameters of type
 "any". (Note that this type name must be double-quoted,
 since it's also an SQL reserved word.) This works like
 anyelement except that it does not constrain different
 "any" arguments to be the same type, nor do they help
 determine the function's result type. A C-language function can also
 declare its final parameter to be VARIADIC "any". This will
 match one or more actual arguments of any type (not necessarily the same
 type). These arguments will not be gathered into an array
 as happens with normal variadic functions; they will just be passed to
 the function separately. The PG_NARGS() macro and the
 methods described above must be used to determine the number of actual
 arguments and their types when using this feature. Also, users of such
 a function might wish to use the VARIADIC keyword in their
 function call, with the expectation that the function would treat the
 array elements as separate arguments. The function itself must implement
 that behavior if wanted, after using get_fn_expr_variadic to
 detect that the actual argument was marked with VARIADIC.

Shared Memory and LWLocks

 Add-ins can reserve LWLocks and an allocation of shared memory on server
 startup. The add-in's shared library must be preloaded by specifying
 it in
 shared_preload_libraries.
 The shared library should register a shmem_request_hook
 in its _PG_init function. This
 shmem_request_hook can reserve LWLocks or shared memory.
 Shared memory is reserved by calling:

void RequestAddinShmemSpace(int size)

 from your shmem_request_hook.

 LWLocks are reserved by calling:

void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)

 from your shmem_request_hook. This will ensure that an array of
 num_lwlocks LWLocks is available under the name
 tranche_name. Use GetNamedLWLockTranche
 to get a pointer to this array.

 An example of a shmem_request_hook can be found in
 contrib/pg_stat_statements/pg_stat_statements.c in the
 PostgreSQL™ source tree.

 To avoid possible race-conditions, each backend should use the LWLock
 AddinShmemInitLock when connecting to and initializing
 its allocation of shared memory, as shown here:

static mystruct *ptr = NULL;

if (!ptr)
{
 bool found;

 LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
 ptr = ShmemInitStruct("my struct name", size, &found);
 if (!found)
 {
 initialize contents of shmem area;
 acquire any requested LWLocks using:
 ptr->locks = GetNamedLWLockTranche("my tranche name");
 }
 LWLockRelease(AddinShmemInitLock);
}

Using C++ for Extensibility

 Although the PostgreSQL™ backend is written in
 C, it is possible to write extensions in C++ if these guidelines are
 followed:

	
 All functions accessed by the backend must present a C interface
 to the backend; these C functions can then call C++ functions.
 For example, extern C linkage is required for
 backend-accessed functions. This is also necessary for any
 functions that are passed as pointers between the backend and
 C++ code.

	
 Free memory using the appropriate deallocation method. For example,
 most backend memory is allocated using palloc(), so use
 pfree() to free it. Using C++
 delete in such cases will fail.

	
 Prevent exceptions from propagating into the C code (use a catch-all
 block at the top level of all extern C functions). This
 is necessary even if the C++ code does not explicitly throw any
 exceptions, because events like out-of-memory can still throw
 exceptions. Any exceptions must be caught and appropriate errors
 passed back to the C interface. If possible, compile C++ with
 -fno-exceptions to eliminate exceptions entirely; in such
 cases, you must check for failures in your C++ code, e.g., check for
 NULL returned by new().

	
 If calling backend functions from C++ code, be sure that the
 C++ call stack contains only plain old data structures
 (POD). This is necessary because backend errors
 generate a distant longjmp() that does not properly
 unroll a C++ call stack with non-POD objects.

 In summary, it is best to place C++ code behind a wall of
 extern C functions that interface to the backend,
 and avoid exception, memory, and call stack leakage.

Function Optimization Information

 By default, a function is just a “black box” that the
 database system knows very little about the behavior of. However,
 that means that queries using the function may be executed much less
 efficiently than they could be. It is possible to supply additional
 knowledge that helps the planner optimize function calls.

 Some basic facts can be supplied by declarative annotations provided in
 the CREATE FUNCTION command. Most important of
 these is the function's volatility
 category (IMMUTABLE, STABLE,
 or VOLATILE); one should always be careful to
 specify this correctly when defining a function.
 The parallel safety property (PARALLEL
 UNSAFE, PARALLEL RESTRICTED, or
 PARALLEL SAFE) must also be specified if you hope
 to use the function in parallelized queries.
 It can also be useful to specify the function's estimated execution
 cost, and/or the number of rows a set-returning function is estimated
 to return. However, the declarative way of specifying those two
 facts only allows specifying a constant value, which is often
 inadequate.

 It is also possible to attach a planner support
 function to an SQL-callable function (called
 its target function), and thereby provide
 knowledge about the target function that is too complex to be
 represented declaratively. Planner support functions have to be
 written in C (although their target functions might not be), so this is
 an advanced feature that relatively few people will use.

 A planner support function must have the SQL signature

supportfn(internal) returns internal

 It is attached to its target function by specifying
 the SUPPORT clause when creating the target function.

 The details of the API for planner support functions can be found in
 file src/include/nodes/supportnodes.h in the
 PostgreSQL™ source code. Here we provide
 just an overview of what planner support functions can do.
 The set of possible requests to a support function is extensible,
 so more things might be possible in future versions.

 Some function calls can be simplified during planning based on
 properties specific to the function. For example,
 int4mul(n, 1) could be simplified to
 just n. This type of transformation can be
 performed by a planner support function, by having it implement
 the SupportRequestSimplify request type.
 The support function will be called for each instance of its target
 function found in a query parse tree. If it finds that the particular
 call can be simplified into some other form, it can build and return a
 parse tree representing that expression. This will automatically work
 for operators based on the function, too — in the example just
 given, n * 1 would also be simplified to
 n.
 (But note that this is just an example; this particular
 optimization is not actually performed by
 standard PostgreSQL™.)
 We make no guarantee that PostgreSQL™ will
 never call the target function in cases that the support function could
 simplify. Ensure rigorous equivalence between the simplified
 expression and an actual execution of the target function.

 For target functions that return boolean, it is often useful to estimate
 the fraction of rows that will be selected by a WHERE clause using that
 function. This can be done by a support function that implements
 the SupportRequestSelectivity request type.

 If the target function's run time is highly dependent on its inputs,
 it may be useful to provide a non-constant cost estimate for it.
 This can be done by a support function that implements
 the SupportRequestCost request type.

 For target functions that return sets, it is often useful to provide
 a non-constant estimate for the number of rows that will be returned.
 This can be done by a support function that implements
 the SupportRequestRows request type.

 For target functions that return boolean, it may be possible to
 convert a function call appearing in WHERE into an indexable operator
 clause or clauses. The converted clauses might be exactly equivalent
 to the function's condition, or they could be somewhat weaker (that is,
 they might accept some values that the function condition does not).
 In the latter case the index condition is said to
 be lossy; it can still be used to scan an index,
 but the function call will have to be executed for each row returned by
 the index to see if it really passes the WHERE condition or not.
 To create such conditions, the support function must implement
 the SupportRequestIndexCondition request type.

User-Defined Aggregates

 Aggregate functions in PostgreSQL™
 are defined in terms of state values
 and state transition functions.
 That is, an aggregate operates using a state value that is updated
 as each successive input row is processed.
 To define a new aggregate
 function, one selects a data type for the state value,
 an initial value for the state, and a state transition
 function. The state transition function takes the previous state
 value and the aggregate's input value(s) for the current row, and
 returns a new state value.
 A final function
 can also be specified, in case the desired result of the aggregate
 is different from the data that needs to be kept in the running
 state value. The final function takes the ending state value
 and returns whatever is wanted as the aggregate result.
 In principle, the transition and final functions are just ordinary
 functions that could also be used outside the context of the
 aggregate. (In practice, it's often helpful for performance reasons
 to create specialized transition functions that can only work when
 called as part of an aggregate.)

 Thus, in addition to the argument and result data types seen by a user
 of the aggregate, there is an internal state-value data type that
 might be different from both the argument and result types.

 If we define an aggregate that does not use a final function,
 we have an aggregate that computes a running function of
 the column values from each row. sum is an
 example of this kind of aggregate. sum starts at
 zero and always adds the current row's value to
 its running total. For example, if we want to make a sum
 aggregate to work on a data type for complex numbers,
 we only need the addition function for that data type.
 The aggregate definition would be:

CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)'
);

 which we might use like this:

SELECT sum(a) FROM test_complex;

 sum

 (34,53.9)

 (Notice that we are relying on function overloading: there is more than
 one aggregate named sum, but
 PostgreSQL™ can figure out which kind
 of sum applies to a column of type complex.)

 The above definition of sum will return zero
 (the initial state value) if there are no nonnull input values.
 Perhaps we want to return null in that case instead — the SQL standard
 expects sum to behave that way. We can do this simply by
 omitting the initcond phrase, so that the initial state
 value is null. Ordinarily this would mean that the sfunc
 would need to check for a null state-value input. But for
 sum and some other simple aggregates like
 max and min,
 it is sufficient to insert the first nonnull input value into
 the state variable and then start applying the transition function
 at the second nonnull input value. PostgreSQL™
 will do that automatically if the initial state value is null and
 the transition function is marked “strict” (i.e., not to be called
 for null inputs).

 Another bit of default behavior for a “strict” transition function
 is that the previous state value is retained unchanged whenever a
 null input value is encountered. Thus, null values are ignored. If you
 need some other behavior for null inputs, do not declare your
 transition function as strict; instead code it to test for null inputs and
 do whatever is needed.

 avg (average) is a more complex example of an aggregate.
 It requires
 two pieces of running state: the sum of the inputs and the count
 of the number of inputs. The final result is obtained by dividing
 these quantities. Average is typically implemented by using an
 array as the state value. For example,
 the built-in implementation of avg(float8)
 looks like:

CREATE AGGREGATE avg (float8)
(
 sfunc = float8_accum,
 stype = float8[],
 finalfunc = float8_avg,
 initcond = '{0,0,0}'
);

Note

 float8_accum requires a three-element array, not just
 two elements, because it accumulates the sum of squares as well as
 the sum and count of the inputs. This is so that it can be used for
 some other aggregates as well as avg.

 Aggregate function calls in SQL allow DISTINCT
 and ORDER BY options that control which rows are fed
 to the aggregate's transition function and in what order. These
 options are implemented behind the scenes and are not the concern
 of the aggregate's support functions.

 For further details see the
 CREATE AGGREGATE(7)
 command.

Moving-Aggregate Mode

 Aggregate functions can optionally support moving-aggregate
 mode, which allows substantially faster execution of aggregate
 functions within windows with moving frame starting points.
 (See the section called “Window Functions”
 and the section called “Window Function Calls” for information about use of
 aggregate functions as window functions.)
 The basic idea is that in addition to a normal “forward”
 transition function, the aggregate provides an inverse
 transition function, which allows rows to be removed from the
 aggregate's running state value when they exit the window frame.
 For example a sum aggregate, which uses addition as the
 forward transition function, would use subtraction as the inverse
 transition function. Without an inverse transition function, the window
 function mechanism must recalculate the aggregate from scratch each time
 the frame starting point moves, resulting in run time proportional to the
 number of input rows times the average frame length. With an inverse
 transition function, the run time is only proportional to the number of
 input rows.

 The inverse transition function is passed the current state value and the
 aggregate input value(s) for the earliest row included in the current
 state. It must reconstruct what the state value would have been if the
 given input row had never been aggregated, but only the rows following
 it. This sometimes requires that the forward transition function keep
 more state than is needed for plain aggregation mode. Therefore, the
 moving-aggregate mode uses a completely separate implementation from the
 plain mode: it has its own state data type, its own forward transition
 function, and its own final function if needed. These can be the same as
 the plain mode's data type and functions, if there is no need for extra
 state.

 As an example, we could extend the sum aggregate given above
 to support moving-aggregate mode like this:

CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)',
 msfunc = complex_add,
 minvfunc = complex_sub,
 mstype = complex,
 minitcond = '(0,0)'
);

 The parameters whose names begin with m define the
 moving-aggregate implementation. Except for the inverse transition
 function minvfunc, they correspond to the plain-aggregate
 parameters without m.

 The forward transition function for moving-aggregate mode is not allowed
 to return null as the new state value. If the inverse transition
 function returns null, this is taken as an indication that the inverse
 function cannot reverse the state calculation for this particular input,
 and so the aggregate calculation will be redone from scratch for the
 current frame starting position. This convention allows moving-aggregate
 mode to be used in situations where there are some infrequent cases that
 are impractical to reverse out of the running state value. The inverse
 transition function can “punt” on these cases, and yet still come
 out ahead so long as it can work for most cases. As an example, an
 aggregate working with floating-point numbers might choose to punt when
 a NaN (not a number) input has to be removed from the running
 state value.

 When writing moving-aggregate support functions, it is important to be
 sure that the inverse transition function can reconstruct the correct
 state value exactly. Otherwise there might be user-visible differences
 in results depending on whether the moving-aggregate mode is used.
 An example of an aggregate for which adding an inverse transition
 function seems easy at first, yet where this requirement cannot be met
 is sum over float4 or float8 inputs. A
 naive declaration of sum(float8) could be

CREATE AGGREGATE unsafe_sum (float8)
(
 stype = float8,
 sfunc = float8pl,
 mstype = float8,
 msfunc = float8pl,
 minvfunc = float8mi
);

 This aggregate, however, can give wildly different results than it would
 have without the inverse transition function. For example, consider

SELECT
 unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
 (2, 1.0::float8)) AS v (n,x);

 This query returns 0 as its second result, rather than the
 expected answer of 1. The cause is the limited precision of
 floating-point values: adding 1 to 1e20 results
 in 1e20 again, and so subtracting 1e20 from that
 yields 0, not 1. Note that this is a limitation
 of floating-point arithmetic in general, not a limitation
 of PostgreSQL™.

Polymorphic and Variadic Aggregates

 Aggregate functions can use polymorphic
 state transition functions or final functions, so that the same functions
 can be used to implement multiple aggregates.
 See the section called “Polymorphic Types”
 for an explanation of polymorphic functions.
 Going a step further, the aggregate function itself can be specified
 with polymorphic input type(s) and state type, allowing a single
 aggregate definition to serve for multiple input data types.
 Here is an example of a polymorphic aggregate:

CREATE AGGREGATE array_accum (anycompatible)
(
 sfunc = array_append,
 stype = anycompatiblearray,
 initcond = '{}'
);

 Here, the actual state type for any given aggregate call is the array type
 having the actual input type as elements. The behavior of the aggregate
 is to concatenate all the inputs into an array of that type.
 (Note: the built-in aggregate array_agg provides similar
 functionality, with better performance than this definition would have.)

 Here's the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)

 Ordinarily, an aggregate function with a polymorphic result type has a
 polymorphic state type, as in the above example. This is necessary
 because otherwise the final function cannot be declared sensibly: it
 would need to have a polymorphic result type but no polymorphic argument
 type, which CREATE FUNCTION will reject on the grounds that
 the result type cannot be deduced from a call. But sometimes it is
 inconvenient to use a polymorphic state type. The most common case is
 where the aggregate support functions are to be written in C and the
 state type should be declared as internal because there is
 no SQL-level equivalent for it. To address this case, it is possible to
 declare the final function as taking extra “dummy” arguments
 that match the input arguments of the aggregate. Such dummy arguments
 are always passed as null values since no specific value is available when the
 final function is called. Their only use is to allow a polymorphic
 final function's result type to be connected to the aggregate's input
 type(s). For example, the definition of the built-in
 aggregate array_agg is equivalent to

CREATE FUNCTION array_agg_transfn(internal, anynonarray)
 RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
 RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
 sfunc = array_agg_transfn,
 stype = internal,
 finalfunc = array_agg_finalfn,
 finalfunc_extra
);

 Here, the finalfunc_extra option specifies that the final
 function receives, in addition to the state value, extra dummy
 argument(s) corresponding to the aggregate's input argument(s).
 The extra anynonarray argument allows the declaration
 of array_agg_finalfn to be valid.

 An aggregate function can be made to accept a varying number of arguments
 by declaring its last argument as a VARIADIC array, in much
 the same fashion as for regular functions; see
 the section called “SQL Functions with Variable Numbers of Arguments”. The aggregate's transition
 function(s) must have the same array type as their last argument. The
 transition function(s) typically would also be marked VARIADIC,
 but this is not strictly required.

Note

 Variadic aggregates are easily misused in connection with
 the ORDER BY option (see the section called “Aggregate Expressions”),
 since the parser cannot tell whether the wrong number of actual arguments
 have been given in such a combination. Keep in mind that everything to
 the right of ORDER BY is a sort key, not an argument to the
 aggregate. For example, in

SELECT myaggregate(a ORDER BY a, b, c) FROM ...

 the parser will see this as a single aggregate function argument and
 three sort keys. However, the user might have intended

SELECT myaggregate(a, b, c ORDER BY a) FROM ...

 If myaggregate is variadic, both these calls could be
 perfectly valid.

 For the same reason, it's wise to think twice before creating aggregate
 functions with the same names and different numbers of regular arguments.

Ordered-Set Aggregates

 The aggregates we have been describing so far are “normal”
 aggregates. PostgreSQL™ also
 supports ordered-set aggregates, which differ from
 normal aggregates in two key ways. First, in addition to ordinary
 aggregated arguments that are evaluated once per input row, an
 ordered-set aggregate can have “direct” arguments that are
 evaluated only once per aggregation operation. Second, the syntax
 for the ordinary aggregated arguments specifies a sort ordering
 for them explicitly. An ordered-set aggregate is usually
 used to implement a computation that depends on a specific row
 ordering, for instance rank or percentile, so that the sort ordering
 is a required aspect of any call. For example, the built-in
 definition of percentile_disc is equivalent to:

CREATE FUNCTION ordered_set_transition(internal, anyelement)
 RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
 RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
 sfunc = ordered_set_transition,
 stype = internal,
 finalfunc = percentile_disc_final,
 finalfunc_extra
);

 This aggregate takes a float8 direct argument (the percentile
 fraction) and an aggregated input that can be of any sortable data type.
 It could be used to obtain a median household income like this:

SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_disc

 50489

 Here, 0.5 is a direct argument; it would make no sense
 for the percentile fraction to be a value varying across rows.

 Unlike the case for normal aggregates, the sorting of input rows for
 an ordered-set aggregate is not done behind the scenes,
 but is the responsibility of the aggregate's support functions.
 The typical implementation approach is to keep a reference to
 a “tuplesort” object in the aggregate's state value, feed the
 incoming rows into that object, and then complete the sorting and
 read out the data in the final function. This design allows the
 final function to perform special operations such as injecting
 additional “hypothetical” rows into the data to be sorted.
 While normal aggregates can often be implemented with support
 functions written in PL/pgSQL or another
 PL language, ordered-set aggregates generally have to be written in
 C, since their state values aren't definable as any SQL data type.
 (In the above example, notice that the state value is declared as
 type internal — this is typical.)
 Also, because the final function performs the sort, it is not possible
 to continue adding input rows by executing the transition function again
 later. This means the final function is not READ_ONLY;
 it must be declared in CREATE AGGREGATE
 as READ_WRITE, or as SHAREABLE if
 it's possible for additional final-function calls to make use of the
 already-sorted state.

 The state transition function for an ordered-set aggregate receives
 the current state value plus the aggregated input values for
 each row, and returns the updated state value. This is the
 same definition as for normal aggregates, but note that the direct
 arguments (if any) are not provided. The final function receives
 the last state value, the values of the direct arguments if any,
 and (if finalfunc_extra is specified) null values
 corresponding to the aggregated input(s). As with normal
 aggregates, finalfunc_extra is only really useful if the
 aggregate is polymorphic; then the extra dummy argument(s) are needed
 to connect the final function's result type to the aggregate's input
 type(s).

 Currently, ordered-set aggregates cannot be used as window functions,
 and therefore there is no need for them to support moving-aggregate mode.

Partial Aggregation

 Optionally, an aggregate function can support partial
 aggregation. The idea of partial aggregation is to run the aggregate's
 state transition function over different subsets of the input data
 independently, and then to combine the state values resulting from those
 subsets to produce the same state value that would have resulted from
 scanning all the input in a single operation. This mode can be used for
 parallel aggregation by having different worker processes scan different
 portions of a table. Each worker produces a partial state value, and at
 the end those state values are combined to produce a final state value.
 (In the future this mode might also be used for purposes such as combining
 aggregations over local and remote tables; but that is not implemented
 yet.)

 To support partial aggregation, the aggregate definition must provide
 a combine function, which takes two values of the
 aggregate's state type (representing the results of aggregating over two
 subsets of the input rows) and produces a new value of the state type,
 representing what the state would have been after aggregating over the
 combination of those sets of rows. It is unspecified what the relative
 order of the input rows from the two sets would have been. This means
 that it's usually impossible to define a useful combine function for
 aggregates that are sensitive to input row order.

 As simple examples, MAX and MIN aggregates can be
 made to support partial aggregation by specifying the combine function as
 the same greater-of-two or lesser-of-two comparison function that is used
 as their transition function. SUM aggregates just need an
 addition function as combine function. (Again, this is the same as their
 transition function, unless the state value is wider than the input data
 type.)

 The combine function is treated much like a transition function that
 happens to take a value of the state type, not of the underlying input
 type, as its second argument. In particular, the rules for dealing
 with null values and strict functions are similar. Also, if the aggregate
 definition specifies a non-null initcond, keep in mind that
 that will be used not only as the initial state for each partial
 aggregation run, but also as the initial state for the combine function,
 which will be called to combine each partial result into that state.

 If the aggregate's state type is declared as internal, it is
 the combine function's responsibility that its result is allocated in
 the correct memory context for aggregate state values. This means in
 particular that when the first input is NULL it's invalid
 to simply return the second input, as that value will be in the wrong
 context and will not have sufficient lifespan.

 When the aggregate's state type is declared as internal, it is
 usually also appropriate for the aggregate definition to provide a
 serialization function and a deserialization
 function, which allow such a state value to be copied from one process
 to another. Without these functions, parallel aggregation cannot be
 performed, and future applications such as local/remote aggregation will
 probably not work either.

 A serialization function must take a single argument of
 type internal and return a result of type bytea, which
 represents the state value packaged up into a flat blob of bytes.
 Conversely, a deserialization function reverses that conversion. It must
 take two arguments of types bytea and internal, and
 return a result of type internal. (The second argument is unused
 and is always zero, but it is required for type-safety reasons.) The
 result of the deserialization function should simply be allocated in the
 current memory context, as unlike the combine function's result, it is not
 long-lived.

 Worth noting also is that for an aggregate to be executed in parallel,
 the aggregate itself must be marked PARALLEL SAFE. The
 parallel-safety markings on its support functions are not consulted.

Support Functions for Aggregates

 A function written in C can detect that it is being called as an
 aggregate support function by calling
 AggCheckCallContext, for example:

if (AggCheckCallContext(fcinfo, NULL))

 One reason for checking this is that when it is true, the first input
 must be a temporary state value and can therefore safely be modified
 in-place rather than allocating a new copy.
 See int8inc() for an example.
 (While aggregate transition functions are always allowed to modify
 the transition value in-place, aggregate final functions are generally
 discouraged from doing so; if they do so, the behavior must be declared
 when creating the aggregate. See CREATE AGGREGATE(7)
 for more detail.)

 The second argument of AggCheckCallContext can be used to
 retrieve the memory context in which aggregate state values are being kept.
 This is useful for transition functions that wish to use “expanded”
 objects (see the section called “TOAST Considerations”) as their state values.
 On first call, the transition function should return an expanded object
 whose memory context is a child of the aggregate state context, and then
 keep returning the same expanded object on subsequent calls. See
 array_append() for an example. (array_append()
 is not the transition function of any built-in aggregate, but it is written
 to behave efficiently when used as transition function of a custom
 aggregate.)

 Another support routine available to aggregate functions written in C
 is AggGetAggref, which returns the Aggref
 parse node that defines the aggregate call. This is mainly useful
 for ordered-set aggregates, which can inspect the substructure of
 the Aggref node to find out what sort ordering they are
 supposed to implement. Examples can be found
 in orderedsetaggs.c in the PostgreSQL™
 source code.

User-Defined Types

 As described in the section called “The PostgreSQL™ Type System”,
 PostgreSQL™ can be extended to support new
 data types. This section describes how to define new base types,
 which are data types defined below the level of the SQL
 language. Creating a new base type requires implementing functions
 to operate on the type in a low-level language, usually C.

 The examples in this section can be found in
 complex.sql and complex.c
 in the src/tutorial directory of the source distribution.
 See the README file in that directory for instructions
 about running the examples.

 A user-defined type must always have input and output functions.
 These functions determine how the type appears in strings (for input
 by the user and output to the user) and how the type is organized in
 memory. The input function takes a null-terminated character string
 as its argument and returns the internal (in memory) representation
 of the type. The output function takes the internal representation
 of the type as argument and returns a null-terminated character
 string. If we want to do anything more with the type than merely
 store it, we must provide additional functions to implement whatever
 operations we'd like to have for the type.

 Suppose we want to define a type complex that represents
 complex numbers. A natural way to represent a complex number in
 memory would be the following C structure:

typedef struct Complex {
 double x;
 double y;
} Complex;

 We will need to make this a pass-by-reference type, since it's too
 large to fit into a single Datum value.

 As the external string representation of the type, we choose a
 string of the form (x,y).

 The input and output functions are usually not hard to write,
 especially the output function. But when defining the external
 string representation of the type, remember that you must eventually
 write a complete and robust parser for that representation as your
 input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
 char *str = PG_GETARG_CSTRING(0);
 double x,
 y;
 Complex *result;

 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
 errmsg("invalid input syntax for type %s: \"%s\"",
 "complex", str)));

 result = (Complex *) palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 PG_RETURN_POINTER(result);
}

 The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 char *result;

 result = psprintf("(%g,%g)", complex->x, complex->y);
 PG_RETURN_CSTRING(result);
}

 You should be careful to make the input and output functions inverses of
 each other. If you do not, you will have severe problems when you
 need to dump your data into a file and then read it back in. This
 is a particularly common problem when floating-point numbers are
 involved.

 Optionally, a user-defined type can provide binary input and output
 routines. Binary I/O is normally faster but less portable than textual
 I/O. As with textual I/O, it is up to you to define exactly what the
 external binary representation is. Most of the built-in data types
 try to provide a machine-independent binary representation. For
 complex, we will piggy-back on the binary I/O converters
 for type float8:

PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
 StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
 Complex *result;

 result = (Complex *) palloc(sizeof(Complex));
 result->x = pq_getmsgfloat8(buf);
 result->y = pq_getmsgfloat8(buf);
 PG_RETURN_POINTER(result);
}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 StringInfoData buf;

 pq_begintypsend(&buf);
 pq_sendfloat8(&buf, complex->x);
 pq_sendfloat8(&buf, complex->y);
 PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

 Once we have written the I/O functions and compiled them into a shared
 library, we can define the complex type in SQL.
 First we declare it as a shell type:

CREATE TYPE complex;

 This serves as a placeholder that allows us to reference the type while
 defining its I/O functions. Now we can define the I/O functions:

CREATE FUNCTION complex_in(cstring)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
 RETURNS cstring
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
 RETURNS bytea
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

 Finally, we can provide the full definition of the data type:

CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out,
 receive = complex_recv,
 send = complex_send,
 alignment = double
);

 When you define a new base type,
 PostgreSQL™ automatically provides support
 for arrays of that type. The array type typically
 has the same name as the base type with the underscore character
 (_) prepended.

 Once the data type exists, we can declare additional functions to
 provide useful operations on the data type. Operators can then be
 defined atop the functions, and if needed, operator classes can be
 created to support indexing of the data type. These additional
 layers are discussed in following sections.

 If the internal representation of the data type is variable-length, the
 internal representation must follow the standard layout for variable-length
 data: the first four bytes must be a char[4] field which is
 never accessed directly (customarily named vl_len_). You
 must use the SET_VARSIZE() macro to store the total
 size of the datum (including the length field itself) in this field
 and VARSIZE() to retrieve it. (These macros exist
 because the length field may be encoded depending on platform.)

 For further details see the description of the
 CREATE TYPE(7) command.

TOAST Considerations

 If the values of your data type vary in size (in internal form), it's
 usually desirable to make the data type TOAST-able (see the section called “TOAST”). You should do this even if the values are always
 too small to be compressed or stored externally, because
 TOAST can save space on small data too, by reducing header
 overhead.

 To support TOAST storage, the C functions operating on the data
 type must always be careful to unpack any toasted values they are handed
 by using PG_DETOAST_DATUM. (This detail is customarily hidden
 by defining type-specific GETARG_DATATYPE_P macros.)
 Then, when running the CREATE TYPE command, specify the
 internal length as variable and select some appropriate storage
 option other than plain.

 If data alignment is unimportant (either just for a specific function or
 because the data type specifies byte alignment anyway) then it's possible
 to avoid some of the overhead of PG_DETOAST_DATUM. You can use
 PG_DETOAST_DATUM_PACKED instead (customarily hidden by
 defining a GETARG_DATATYPE_PP macro) and using the macros
 VARSIZE_ANY_EXHDR and VARDATA_ANY to access
 a potentially-packed datum.
 Again, the data returned by these macros is not aligned even if the data
 type definition specifies an alignment. If the alignment is important you
 must go through the regular PG_DETOAST_DATUM interface.

Note

 Older code frequently declares vl_len_ as an
 int32 field instead of char[4]. This is OK as long as
 the struct definition has other fields that have at least int32
 alignment. But it is dangerous to use such a struct definition when
 working with a potentially unaligned datum; the compiler may take it as
 license to assume the datum actually is aligned, leading to core dumps on
 architectures that are strict about alignment.

 Another feature that's enabled by TOAST support is the
 possibility of having an expanded in-memory data
 representation that is more convenient to work with than the format that
 is stored on disk. The regular or “flat” varlena storage format
 is ultimately just a blob of bytes; it cannot for example contain
 pointers, since it may get copied to other locations in memory.
 For complex data types, the flat format may be quite expensive to work
 with, so PostgreSQL™ provides a way to “expand”
 the flat format into a representation that is more suited to computation,
 and then pass that format in-memory between functions of the data type.

 To use expanded storage, a data type must define an expanded format that
 follows the rules given in src/include/utils/expandeddatum.h,
 and provide functions to “expand” a flat varlena value into
 expanded format and “flatten” the expanded format back to the
 regular varlena representation. Then ensure that all C functions for
 the data type can accept either representation, possibly by converting
 one into the other immediately upon receipt. This does not require fixing
 all existing functions for the data type at once, because the standard
 PG_DETOAST_DATUM macro is defined to convert expanded inputs
 into regular flat format. Therefore, existing functions that work with
 the flat varlena format will continue to work, though slightly
 inefficiently, with expanded inputs; they need not be converted until and
 unless better performance is important.

 C functions that know how to work with an expanded representation
 typically fall into two categories: those that can only handle expanded
 format, and those that can handle either expanded or flat varlena inputs.
 The former are easier to write but may be less efficient overall, because
 converting a flat input to expanded form for use by a single function may
 cost more than is saved by operating on the expanded format.
 When only expanded format need be handled, conversion of flat inputs to
 expanded form can be hidden inside an argument-fetching macro, so that
 the function appears no more complex than one working with traditional
 varlena input.
 To handle both types of input, write an argument-fetching function that
 will detoast external, short-header, and compressed varlena inputs, but
 not expanded inputs. Such a function can be defined as returning a
 pointer to a union of the flat varlena format and the expanded format.
 Callers can use the VARATT_IS_EXPANDED_HEADER() macro to
 determine which format they received.

 The TOAST infrastructure not only allows regular varlena
 values to be distinguished from expanded values, but also
 distinguishes “read-write” and “read-only” pointers to
 expanded values. C functions that only need to examine an expanded
 value, or will only change it in safe and non-semantically-visible ways,
 need not care which type of pointer they receive. C functions that
 produce a modified version of an input value are allowed to modify an
 expanded input value in-place if they receive a read-write pointer, but
 must not modify the input if they receive a read-only pointer; in that
 case they have to copy the value first, producing a new value to modify.
 A C function that has constructed a new expanded value should always
 return a read-write pointer to it. Also, a C function that is modifying
 a read-write expanded value in-place should take care to leave the value
 in a sane state if it fails partway through.

 For examples of working with expanded values, see the standard array
 infrastructure, particularly
 src/backend/utils/adt/array_expanded.c.

User-Defined Operators

 Every operator is “syntactic sugar” for a call to an
 underlying function that does the real work; so you must
 first create the underlying function before you can create
 the operator. However, an operator is not merely
 syntactic sugar, because it carries additional information
 that helps the query planner optimize queries that use the
 operator. The next section will be devoted to explaining
 that additional information.

 PostgreSQL™ supports prefix
 and infix operators. Operators can be
 overloaded;
 that is, the same operator name can be used for different operators
 that have different numbers and types of operands. When a query is
 executed, the system determines the operator to call from the
 number and types of the provided operands.

 Here is an example of creating an operator for adding two complex
 numbers. We assume we've already created the definition of type
 complex (see the section called “User-Defined Types”). First we need a
 function that does the work, then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS 'filename', 'complex_add'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 function = complex_add,
 commutator = +
);

 Now we could execute a query like this:

SELECT (a + b) AS c FROM test_complex;

 c

 (5.2,6.05)
 (133.42,144.95)

 We've shown how to create a binary operator here. To create a prefix
 operator, just omit the leftarg.
 The function
 clause and the argument clauses are the only required items in
 CREATE OPERATOR. The commutator
 clause shown in the example is an optional hint to the query
 optimizer. Further details about commutator and other
 optimizer hints appear in the next section.

Operator Optimization Information

 A PostgreSQL™ operator definition can include
 several optional clauses that tell the system useful things about how
 the operator behaves. These clauses should be provided whenever
 appropriate, because they can make for considerable speedups in execution
 of queries that use the operator. But if you provide them, you must be
 sure that they are right! Incorrect use of an optimization clause can
 result in slow queries, subtly wrong output, or other Bad Things.
 You can always leave out an optimization clause if you are not sure
 about it; the only consequence is that queries might run slower than
 they need to.

 Additional optimization clauses might be added in future versions of
 PostgreSQL™. The ones described here are all
 the ones that release 16.12 understands.

 It is also possible to attach a planner support function to the function
 that underlies an operator, providing another way of telling the system
 about the behavior of the operator.
 See the section called “Function Optimization Information” for more information.

COMMUTATOR

 The COMMUTATOR clause, if provided, names an operator that is the
 commutator of the operator being defined. We say that operator A is the
 commutator of operator B if (x A y) equals (y B x) for all possible input
 values x, y. Notice that B is also the commutator of A. For example,
 operators < and > for a particular data type are usually each others'
 commutators, and operator + is usually commutative with itself.
 But operator - is usually not commutative with anything.

 The left operand type of a commutable operator is the same as the
 right operand type of its commutator, and vice versa. So the name of
 the commutator operator is all that PostgreSQL™
 needs to be given to look up the commutator, and that's all that needs to
 be provided in the COMMUTATOR clause.

 It's critical to provide commutator information for operators that
 will be used in indexes and join clauses, because this allows the
 query optimizer to “flip around” such a clause to the forms
 needed for different plan types. For example, consider a query with
 a WHERE clause like tab1.x = tab2.y, where tab1.x
 and tab2.y are of a user-defined type, and suppose that
 tab2.y is indexed. The optimizer cannot generate an
 index scan unless it can determine how to flip the clause around to
 tab2.y = tab1.x, because the index-scan machinery expects
 to see the indexed column on the left of the operator it is given.
 PostgreSQL™ will not simply
 assume that this is a valid transformation — the creator of the
 = operator must specify that it is valid, by marking the
 operator with commutator information.

 When you are defining a self-commutative operator, you just do it.
 When you are defining a pair of commutative operators, things are
 a little trickier: how can the first one to be defined refer to the
 other one, which you haven't defined yet? There are two solutions
 to this problem:

	
 One way is to omit the COMMUTATOR clause in the first operator that
 you define, and then provide one in the second operator's definition.
 Since PostgreSQL™ knows that commutative
 operators come in pairs, when it sees the second definition it will
 automatically go back and fill in the missing COMMUTATOR clause in
 the first definition.

	
 The other, more straightforward way is just to include COMMUTATOR clauses
 in both definitions. When PostgreSQL™ processes
 the first definition and realizes that COMMUTATOR refers to a nonexistent
 operator, the system will make a dummy entry for that operator in the
 system catalog. This dummy entry will have valid data only
 for the operator name, left and right operand types, and result type,
 since that's all that PostgreSQL™ can deduce
 at this point. The first operator's catalog entry will link to this
 dummy entry. Later, when you define the second operator, the system
 updates the dummy entry with the additional information from the second
 definition. If you try to use the dummy operator before it's been filled
 in, you'll just get an error message.

NEGATOR

 The NEGATOR clause, if provided, names an operator that is the
 negator of the operator being defined. We say that operator A
 is the negator of operator B if both return Boolean results and
 (x A y) equals NOT (x B y) for all possible inputs x, y.
 Notice that B is also the negator of A.
 For example, < and >= are a negator pair for most data types.
 An operator can never validly be its own negator.

 Unlike commutators, a pair of unary operators could validly be marked
 as each other's negators; that would mean (A x) equals NOT (B x)
 for all x.

 An operator's negator must have the same left and/or right operand types
 as the operator to be defined, so just as with COMMUTATOR, only the operator
 name need be given in the NEGATOR clause.

 Providing a negator is very helpful to the query optimizer since
 it allows expressions like NOT (x = y) to be simplified into
 x <> y. This comes up more often than you might think, because
 NOT operations can be inserted as a consequence of other rearrangements.

 Pairs of negator operators can be defined using the same methods
 explained above for commutator pairs.

RESTRICT

 The RESTRICT clause, if provided, names a restriction selectivity
 estimation function for the operator. (Note that this is a function
 name, not an operator name.) RESTRICT clauses only make sense for
 binary operators that return boolean. The idea behind a restriction
 selectivity estimator is to guess what fraction of the rows in a
 table will satisfy a WHERE-clause condition of the form:

column OP constant

 for the current operator and a particular constant value.
 This assists the optimizer by
 giving it some idea of how many rows will be eliminated by WHERE
 clauses that have this form. (What happens if the constant is on
 the left, you might be wondering? Well, that's one of the things that
 COMMUTATOR is for...)

 Writing new restriction selectivity estimation functions is far beyond
 the scope of this chapter, but fortunately you can usually just use
 one of the system's standard estimators for many of your own operators.
 These are the standard restriction estimators:

	eqsel for =
	neqsel for <>
	scalarltsel for <
	scalarlesel for <=
	scalargtsel for >
	scalargesel for >=

 You can frequently get away with using either eqsel or neqsel for
 operators that have very high or very low selectivity, even if they
 aren't really equality or inequality. For example, the
 approximate-equality geometric operators use eqsel on the assumption that
 they'll usually only match a small fraction of the entries in a table.

 You can use scalarltsel, scalarlesel,
 scalargtsel and scalargesel for comparisons on
 data types that have some sensible means of being converted into numeric
 scalars for range comparisons. If possible, add the data type to those
 understood by the function convert_to_scalar() in
 src/backend/utils/adt/selfuncs.c.
 (Eventually, this function should be replaced by per-data-type functions
 identified through a column of the pg_type system catalog; but that hasn't happened
 yet.) If you do not do this, things will still work, but the optimizer's
 estimates won't be as good as they could be.

 Another useful built-in selectivity estimation function
 is matchingsel, which will work for almost any
 binary operator, if standard MCV and/or histogram statistics are
 collected for the input data type(s). Its default estimate is set to
 twice the default estimate used in eqsel, making
 it most suitable for comparison operators that are somewhat less
 strict than equality. (Or you could call the
 underlying generic_restriction_selectivity
 function, providing a different default estimate.)

 There are additional selectivity estimation functions designed for geometric
 operators in src/backend/utils/adt/geo_selfuncs.c: areasel, positionsel,
 and contsel. At this writing these are just stubs, but you might want
 to use them (or even better, improve them) anyway.

JOIN

 The JOIN clause, if provided, names a join selectivity
 estimation function for the operator. (Note that this is a function
 name, not an operator name.) JOIN clauses only make sense for
 binary operators that return boolean. The idea behind a join
 selectivity estimator is to guess what fraction of the rows in a
 pair of tables will satisfy a WHERE-clause condition of the form:

table1.column1 OP table2.column2

 for the current operator. As with the RESTRICT clause, this helps
 the optimizer very substantially by letting it figure out which
 of several possible join sequences is likely to take the least work.

 As before, this chapter will make no attempt to explain how to write
 a join selectivity estimator function, but will just suggest that
 you use one of the standard estimators if one is applicable:

	eqjoinsel for =
	neqjoinsel for <>
	scalarltjoinsel for <
	scalarlejoinsel for <=
	scalargtjoinsel for >
	scalargejoinsel for >=
	matchingjoinsel for generic matching operators
	areajoinsel for 2D area-based comparisons
	positionjoinsel for 2D position-based comparisons
	contjoinsel for 2D containment-based comparisons

HASHES

 The HASHES clause, if present, tells the system that
 it is permissible to use the hash join method for a join based on this
 operator. HASHES only makes sense for a binary operator that
 returns boolean, and in practice the operator must represent
 equality for some data type or pair of data types.

 The assumption underlying hash join is that the join operator can
 only return true for pairs of left and right values that hash to the
 same hash code. If two values get put in different hash buckets, the
 join will never compare them at all, implicitly assuming that the
 result of the join operator must be false. So it never makes sense
 to specify HASHES for operators that do not represent
 some form of equality. In most cases it is only practical to support
 hashing for operators that take the same data type on both sides.
 However, sometimes it is possible to design compatible hash functions
 for two or more data types; that is, functions that will generate the
 same hash codes for “equal” values, even though the values
 have different representations. For example, it's fairly simple
 to arrange this property when hashing integers of different widths.

 To be marked HASHES, the join operator must appear
 in a hash index operator family. This is not enforced when you create
 the operator, since of course the referencing operator family couldn't
 exist yet. But attempts to use the operator in hash joins will fail
 at run time if no such operator family exists. The system needs the
 operator family to find the data-type-specific hash function(s) for the
 operator's input data type(s). Of course, you must also create suitable
 hash functions before you can create the operator family.

 Care should be exercised when preparing a hash function, because there
 are machine-dependent ways in which it might fail to do the right thing.
 For example, if your data type is a structure in which there might be
 uninteresting pad bits, you cannot simply pass the whole structure to
 hash_any. (Unless you write your other operators and
 functions to ensure that the unused bits are always zero, which is the
 recommended strategy.)
 Another example is that on machines that meet the IEEE
 floating-point standard, negative zero and positive zero are different
 values (different bit patterns) but they are defined to compare equal.
 If a float value might contain negative zero then extra steps are needed
 to ensure it generates the same hash value as positive zero.

 A hash-joinable operator must have a commutator (itself if the two
 operand data types are the same, or a related equality operator
 if they are different) that appears in the same operator family.
 If this is not the case, planner errors might occur when the operator
 is used. Also, it is a good idea (but not strictly required) for
 a hash operator family that supports multiple data types to provide
 equality operators for every combination of the data types; this
 allows better optimization.

Note

 The function underlying a hash-joinable operator must be marked
 immutable or stable. If it is volatile, the system will never
 attempt to use the operator for a hash join.

Note

 If a hash-joinable operator has an underlying function that is marked
 strict, the
 function must also be complete: that is, it should return true or
 false, never null, for any two nonnull inputs. If this rule is
 not followed, hash-optimization of IN operations might
 generate wrong results. (Specifically, IN might return
 false where the correct answer according to the standard would be null;
 or it might yield an error complaining that it wasn't prepared for a
 null result.)

MERGES

 The MERGES clause, if present, tells the system that
 it is permissible to use the merge-join method for a join based on this
 operator. MERGES only makes sense for a binary operator that
 returns boolean, and in practice the operator must represent
 equality for some data type or pair of data types.

 Merge join is based on the idea of sorting the left- and right-hand tables
 into order and then scanning them in parallel. So, both data types must
 be capable of being fully ordered, and the join operator must be one
 that can only succeed for pairs of values that fall at the
 “same place”
 in the sort order. In practice this means that the join operator must
 behave like equality. But it is possible to merge-join two
 distinct data types so long as they are logically compatible. For
 example, the smallint-versus-integer
 equality operator is merge-joinable.
 We only need sorting operators that will bring both data types into a
 logically compatible sequence.

 To be marked MERGES, the join operator must appear
 as an equality member of a btree index operator family.
 This is not enforced when you create
 the operator, since of course the referencing operator family couldn't
 exist yet. But the operator will not actually be used for merge joins
 unless a matching operator family can be found. The
 MERGES flag thus acts as a hint to the planner that
 it's worth looking for a matching operator family.

 A merge-joinable operator must have a commutator (itself if the two
 operand data types are the same, or a related equality operator
 if they are different) that appears in the same operator family.
 If this is not the case, planner errors might occur when the operator
 is used. Also, it is a good idea (but not strictly required) for
 a btree operator family that supports multiple data types to provide
 equality operators for every combination of the data types; this
 allows better optimization.

Note

 The function underlying a merge-joinable operator must be marked
 immutable or stable. If it is volatile, the system will never
 attempt to use the operator for a merge join.

Interfacing Extensions to Indexes

 The procedures described thus far let you define new types, new
 functions, and new operators. However, we cannot yet define an
 index on a column of a new data type. To do this, we must define an
 operator class for the new data type. Later in this
 section, we will illustrate this concept in an example: a new
 operator class for the B-tree index method that stores and sorts
 complex numbers in ascending absolute value order.

 Operator classes can be grouped into operator families
 to show the relationships between semantically compatible classes.
 When only a single data type is involved, an operator class is sufficient,
 so we'll focus on that case first and then return to operator families.

Index Methods and Operator Classes

 The pg_am table contains one row for every
 index method (internally known as access method). Support for
 regular access to tables is built into
 PostgreSQL™, but all index methods are
 described in pg_am. It is possible to add a
 new index access method by writing the necessary code and
 then creating an entry in pg_am — but that is
 beyond the scope of this chapter (see Chapter 64, Index Access Method Interface Definition).

 The routines for an index method do not directly know anything
 about the data types that the index method will operate on.
 Instead, an operator
 class
 identifies the set of operations that the index method needs to use
 to work with a particular data type. Operator classes are so
 called because one thing they specify is the set of
 WHERE-clause operators that can be used with an index
 (i.e., can be converted into an index-scan qualification). An
 operator class can also specify some support
 function that are needed by the internal operations of the
 index method, but do not directly correspond to any
 WHERE-clause operator that can be used with the index.

 It is possible to define multiple operator classes for the same
 data type and index method. By doing this, multiple
 sets of indexing semantics can be defined for a single data type.
 For example, a B-tree index requires a sort ordering to be defined
 for each data type it works on.
 It might be useful for a complex-number data type
 to have one B-tree operator class that sorts the data by complex
 absolute value, another that sorts by real part, and so on.
 Typically, one of the operator classes will be deemed most commonly
 useful and will be marked as the default operator class for that
 data type and index method.

 The same operator class name
 can be used for several different index methods (for example, both B-tree
 and hash index methods have operator classes named
 int4_ops), but each such class is an independent
 entity and must be defined separately.

Index Method Strategies

 The operators associated with an operator class are identified by
 “strategy numbers”, which serve to identify the semantics of
 each operator within the context of its operator class.
 For example, B-trees impose a strict ordering on keys, lesser to greater,
 and so operators like “less than” and “greater than or equal
 to” are interesting with respect to a B-tree.
 Because
 PostgreSQL™ allows the user to define operators,
 PostgreSQL™ cannot look at the name of an operator
 (e.g., < or >=) and tell what kind of
 comparison it is. Instead, the index method defines a set of
 “strategies”, which can be thought of as generalized operators.
 Each operator class specifies which actual operator corresponds to each
 strategy for a particular data type and interpretation of the index
 semantics.

 The B-tree index method defines five strategies, shown in Table 38.3, “B-Tree Strategies”.

Table 38.3. B-Tree Strategies
	Operation	Strategy Number
	less than	1
	less than or equal	2
	equal	3
	greater than or equal	4
	greater than	5

 Hash indexes support only equality comparisons, and so they use only one
 strategy, shown in Table 38.4, “Hash Strategies”.

Table 38.4. Hash Strategies
	Operation	Strategy Number
	equal	1

 GiST indexes are more flexible: they do not have a fixed set of
 strategies at all. Instead, the “consistency” support routine
 of each particular GiST operator class interprets the strategy numbers
 however it likes. As an example, several of the built-in GiST index
 operator classes index two-dimensional geometric objects, providing
 the “R-tree” strategies shown in
 Table 38.5, “GiST Two-Dimensional “R-tree” Strategies”. Four of these are true
 two-dimensional tests (overlaps, same, contains, contained by);
 four of them consider only the X direction; and the other four
 provide the same tests in the Y direction.

Table 38.5. GiST Two-Dimensional “R-tree” Strategies
	Operation	Strategy Number
	strictly left of	1
	does not extend to right of	2
	overlaps	3
	does not extend to left of	4
	strictly right of	5
	same	6
	contains	7
	contained by	8
	does not extend above	9
	strictly below	10
	strictly above	11
	does not extend below	12

 SP-GiST indexes are similar to GiST indexes in flexibility: they don't have
 a fixed set of strategies. Instead the support routines of each operator
 class interpret the strategy numbers according to the operator class's
 definition. As an example, the strategy numbers used by the built-in
 operator classes for points are shown in Table 38.6, “SP-GiST Point Strategies”.

Table 38.6. SP-GiST Point Strategies
	Operation	Strategy Number
	strictly left of	1
	strictly right of	5
	same	6
	contained by	8
	strictly below	10
	strictly above	11

 GIN indexes are similar to GiST and SP-GiST indexes, in that they don't
 have a fixed set of strategies either. Instead the support routines of
 each operator class interpret the strategy numbers according to the
 operator class's definition. As an example, the strategy numbers used by
 the built-in operator class for arrays are shown in
 Table 38.7, “GIN Array Strategies”.

Table 38.7. GIN Array Strategies
	Operation	Strategy Number
	overlap	1
	contains	2
	is contained by	3
	equal	4

 BRIN indexes are similar to GiST, SP-GiST and GIN indexes in that they
 don't have a fixed set of strategies either. Instead the support routines
 of each operator class interpret the strategy numbers according to the
 operator class's definition. As an example, the strategy numbers used by
 the built-in Minmax operator classes are shown in
 Table 38.8, “BRIN Minmax Strategies”.

Table 38.8. BRIN Minmax Strategies
	Operation	Strategy Number
	less than	1
	less than or equal	2
	equal	3
	greater than or equal	4
	greater than	5

 Notice that all the operators listed above return Boolean values. In
 practice, all operators defined as index method search operators must
 return type boolean, since they must appear at the top
 level of a WHERE clause to be used with an index.
 (Some index access methods also support ordering operators,
 which typically don't return Boolean values; that feature is discussed
 in the section called “Ordering Operators”.)

Index Method Support Routines

 Strategies aren't usually enough information for the system to figure
 out how to use an index. In practice, the index methods require
 additional support routines in order to work. For example, the B-tree
 index method must be able to compare two keys and determine whether one
 is greater than, equal to, or less than the other. Similarly, the
 hash index method must be able to compute hash codes for key values.
 These operations do not correspond to operators used in qualifications in
 SQL commands; they are administrative routines used by
 the index methods, internally.

 Just as with strategies, the operator class identifies which specific
 functions should play each of these roles for a given data type and
 semantic interpretation. The index method defines the set
 of functions it needs, and the operator class identifies the correct
 functions to use by assigning them to the “support function numbers”
 specified by the index method.

 Additionally, some opclasses allow users to specify parameters which
 control their behavior. Each builtin index access method has an optional
 options support function, which defines a set of
 opclass-specific parameters.

 B-trees require a comparison support function,
 and allow four additional support functions to be
 supplied at the operator class author's option, as shown in Table 38.9, “B-Tree Support Functions”.
 The requirements for these support functions are explained further in
 the section called “B-Tree Support Functions”.

Table 38.9. B-Tree Support Functions
	Function	Support Number
	
 Compare two keys and return an integer less than zero, zero, or
 greater than zero, indicating whether the first key is less than,
 equal to, or greater than the second
 	1
	
 Return the addresses of C-callable sort support function(s)
 (optional)
 	2
	
 Compare a test value to a base value plus/minus an offset, and return
 true or false according to the comparison result (optional)
 	3
	
 Determine if it is safe for indexes that use the operator
 class to apply the btree deduplication optimization (optional)
 	4
	
 Define options that are specific to this operator class
 (optional)
 	5

 Hash indexes require one support function, and allow two additional ones to
 be supplied at the operator class author's option, as shown in Table 38.10, “Hash Support Functions”.

Table 38.10. Hash Support Functions
	Function	Support Number
	Compute the 32-bit hash value for a key	1
	
 Compute the 64-bit hash value for a key given a 64-bit salt; if
 the salt is 0, the low 32 bits of the result must match the value
 that would have been computed by function 1
 (optional)
 	2
	
 Define options that are specific to this operator class
 (optional)
 	3

 GiST indexes have eleven support functions, six of which are optional,
 as shown in Table 38.11, “GiST Support Functions”.
 (For more information see Chapter 68, GiST Indexes.)

Table 38.11. GiST Support Functions
	Function	Description	Support Number
	consistent	determine whether key satisfies the
 query qualifier	1
	union	compute union of a set of keys	2
	compress	compute a compressed representation of a key or value
 to be indexed (optional)	3
	decompress	compute a decompressed representation of a
 compressed key (optional)	4
	penalty	compute penalty for inserting new key into subtree
 with given subtree's key	5
	picksplit	determine which entries of a page are to be moved
 to the new page and compute the union keys for resulting pages	6
	same	compare two keys and return true if they are equal	7
	distance	determine distance from key to query value (optional)	8
	fetch	compute original representation of a compressed key for
 index-only scans (optional)	9
	options	define options that are specific to this operator class
 (optional)	10
	sortsupport	provide a sort comparator to be used in fast index builds
 (optional)	11

 SP-GiST indexes have six support functions, one of which is optional, as
 shown in Table 38.12, “SP-GiST Support Functions”.
 (For more information see Chapter 69, SP-GiST Indexes.)

Table 38.12. SP-GiST Support Functions
	Function	Description	Support Number
	config	provide basic information about the operator class	1
	choose	determine how to insert a new value into an inner tuple	2
	picksplit	determine how to partition a set of values	3
	inner_consistent	determine which sub-partitions need to be searched for a
 query	4
	leaf_consistent	determine whether key satisfies the
 query qualifier	5
	options	define options that are specific to this operator class
 (optional)	6

 GIN indexes have seven support functions, four of which are optional,
 as shown in Table 38.13, “GIN Support Functions”.
 (For more information see Chapter 70, GIN Indexes.)

Table 38.13. GIN Support Functions
	Function	Description	Support Number
	compare	
 compare two keys and return an integer less than zero, zero,
 or greater than zero, indicating whether the first key is less than,
 equal to, or greater than the second
 	1
	extractValue	extract keys from a value to be indexed	2
	extractQuery	extract keys from a query condition	3
	consistent	
 determine whether value matches query condition (Boolean variant)
 (optional if support function 6 is present)
 	4
	comparePartial	
 compare partial key from
 query and key from index, and return an integer less than zero, zero,
 or greater than zero, indicating whether GIN should ignore this index
 entry, treat the entry as a match, or stop the index scan (optional)
 	5
	triConsistent	
 determine whether value matches query condition (ternary variant)
 (optional if support function 4 is present)
 	6
	options	
 define options that are specific to this operator class
 (optional)
 	7

 BRIN indexes have five basic support functions, one of which is optional,
 as shown in Table 38.14, “BRIN Support Functions”. Some versions of
 the basic functions require additional support functions to be provided.
 (For more information see the section called “Extensibility”.)

Table 38.14. BRIN Support Functions
	Function	Description	Support Number
	opcInfo	
 return internal information describing the indexed columns'
 summary data
 	1
	add_value	add a new value to an existing summary index tuple	2
	consistent	determine whether value matches query condition	3
	union	
 compute union of two summary tuples
 	4
	options	
 define options that are specific to this operator class
 (optional)
 	5

 Unlike search operators, support functions return whichever data
 type the particular index method expects; for example in the case
 of the comparison function for B-trees, a signed integer. The number
 and types of the arguments to each support function are likewise
 dependent on the index method. For B-tree and hash the comparison and
 hashing support functions take the same input data types as do the
 operators included in the operator class, but this is not the case for
 most GiST, SP-GiST, GIN, and BRIN support functions.

An Example

 Now that we have seen the ideas, here is the promised example of
 creating a new operator class.
 (You can find a working copy of this example in
 src/tutorial/complex.c and
 src/tutorial/complex.sql in the source
 distribution.)
 The operator class encapsulates
 operators that sort complex numbers in absolute value order, so we
 choose the name complex_abs_ops. First, we need
 a set of operators. The procedure for defining operators was
 discussed in the section called “User-Defined Operators”. For an operator class on
 B-trees, the operators we require are:

	absolute-value less-than (strategy 1)
	absolute-value less-than-or-equal (strategy 2)
	absolute-value equal (strategy 3)
	absolute-value greater-than-or-equal (strategy 4)
	absolute-value greater-than (strategy 5)

 The least error-prone way to define a related set of comparison operators
 is to write the B-tree comparison support function first, and then write the
 other functions as one-line wrappers around the support function. This
 reduces the odds of getting inconsistent results for corner cases.
 Following this approach, we first write:

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
 double amag = Mag(a),
 bmag = Mag(b);

 if (amag < bmag)
 return -1;
 if (amag > bmag)
 return 1;
 return 0;
}

 Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
 Complex *a = (Complex *) PG_GETARG_POINTER(0);
 Complex *b = (Complex *) PG_GETARG_POINTER(1);

 PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

 The other four functions differ only in how they compare the internal
 function's result to zero.

 Next we declare the functions and the operators based on the functions
 to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
 AS 'filename', 'complex_abs_lt'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
 leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
 commutator = > , negator = >= ,
 restrict = scalarltsel, join = scalarltjoinsel
);

 It is important to specify the correct commutator and negator operators,
 as well as suitable restriction and join selectivity
 functions, otherwise the optimizer will be unable to make effective
 use of the index.

 Other things worth noting are happening here:

	
 There can only be one operator named, say, =
 and taking type complex for both operands. In this
 case we don't have any other operator = for
 complex, but if we were building a practical data
 type we'd probably want = to be the ordinary
 equality operation for complex numbers (and not the equality of
 the absolute values). In that case, we'd need to use some other
 operator name for complex_abs_eq.

	
 Although PostgreSQL™ can cope with
 functions having the same SQL name as long as they have different
 argument data types, C can only cope with one global function
 having a given name. So we shouldn't name the C function
 something simple like abs_eq. Usually it's
 a good practice to include the data type name in the C function
 name, so as not to conflict with functions for other data types.

	
 We could have made the SQL name
 of the function abs_eq, relying on
 PostgreSQL™ to distinguish it by
 argument data types from any other SQL function of the same name.
 To keep the example simple, we make the function have the same
 names at the C level and SQL level.

 The next step is the registration of the support routine required
 by B-trees. The example C code that implements this is in the same
 file that contains the operator functions. This is how we declare
 the function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS integer
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

 Now that we have the required operators and support routine,
 we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
 DEFAULT FOR TYPE complex USING btree AS
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 complex_abs_cmp(complex, complex);

 And we're done! It should now be possible to create
 and use B-tree indexes on complex columns.

 We could have written the operator entries more verbosely, as in:

 OPERATOR 1 < (complex, complex) ,

 but there is no need to do so when the operators take the same data type
 we are defining the operator class for.

 The above example assumes that you want to make this new operator class the
 default B-tree operator class for the complex data type.
 If you don't, just leave out the word DEFAULT.

Operator Classes and Operator Families

 So far we have implicitly assumed that an operator class deals with
 only one data type. While there certainly can be only one data type in
 a particular index column, it is often useful to index operations that
 compare an indexed column to a value of a different data type. Also,
 if there is use for a cross-data-type operator in connection with an
 operator class, it is often the case that the other data type has a
 related operator class of its own. It is helpful to make the connections
 between related classes explicit, because this can aid the planner in
 optimizing SQL queries (particularly for B-tree operator classes, since
 the planner contains a great deal of knowledge about how to work with them).

 To handle these needs, PostgreSQL™
 uses the concept of an operator
 family.
 An operator family contains one or more operator classes, and can also
 contain indexable operators and corresponding support functions that
 belong to the family as a whole but not to any single class within the
 family. We say that such operators and functions are “loose”
 within the family, as opposed to being bound into a specific class.
 Typically each operator class contains single-data-type operators
 while cross-data-type operators are loose in the family.

 All the operators and functions in an operator family must have compatible
 semantics, where the compatibility requirements are set by the index
 method. You might therefore wonder why bother to single out particular
 subsets of the family as operator classes; and indeed for many purposes
 the class divisions are irrelevant and the family is the only interesting
 grouping. The reason for defining operator classes is that they specify
 how much of the family is needed to support any particular index.
 If there is an index using an operator class, then that operator class
 cannot be dropped without dropping the index — but other parts of
 the operator family, namely other operator classes and loose operators,
 could be dropped. Thus, an operator class should be specified to contain
 the minimum set of operators and functions that are reasonably needed
 to work with an index on a specific data type, and then related but
 non-essential operators can be added as loose members of the operator
 family.

 As an example, PostgreSQL™ has a built-in
 B-tree operator family integer_ops, which includes operator
 classes int8_ops, int4_ops, and
 int2_ops for indexes on bigint (int8),
 integer (int4), and smallint (int2)
 columns respectively. The family also contains cross-data-type comparison
 operators allowing any two of these types to be compared, so that an index
 on one of these types can be searched using a comparison value of another
 type. The family could be duplicated by these definitions:

CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
 -- standard int8 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint8cmp(int8, int8) ,
 FUNCTION 2 btint8sortsupport(internal) ,
 FUNCTION 3 in_range(int8, int8, int8, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
 -- standard int4 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint4cmp(int4, int4) ,
 FUNCTION 2 btint4sortsupport(internal) ,
 FUNCTION 3 in_range(int4, int4, int4, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
 -- standard int2 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint2cmp(int2, int2) ,
 FUNCTION 2 btint2sortsupport(internal) ,
 FUNCTION 3 in_range(int2, int2, int2, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
 -- cross-type comparisons int8 vs int2
 OPERATOR 1 < (int8, int2) ,
 OPERATOR 2 <= (int8, int2) ,
 OPERATOR 3 = (int8, int2) ,
 OPERATOR 4 >= (int8, int2) ,
 OPERATOR 5 > (int8, int2) ,
 FUNCTION 1 btint82cmp(int8, int2) ,

 -- cross-type comparisons int8 vs int4
 OPERATOR 1 < (int8, int4) ,
 OPERATOR 2 <= (int8, int4) ,
 OPERATOR 3 = (int8, int4) ,
 OPERATOR 4 >= (int8, int4) ,
 OPERATOR 5 > (int8, int4) ,
 FUNCTION 1 btint84cmp(int8, int4) ,

 -- cross-type comparisons int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- cross-type comparisons int4 vs int8
 OPERATOR 1 < (int4, int8) ,
 OPERATOR 2 <= (int4, int8) ,
 OPERATOR 3 = (int4, int8) ,
 OPERATOR 4 >= (int4, int8) ,
 OPERATOR 5 > (int4, int8) ,
 FUNCTION 1 btint48cmp(int4, int8) ,

 -- cross-type comparisons int2 vs int8
 OPERATOR 1 < (int2, int8) ,
 OPERATOR 2 <= (int2, int8) ,
 OPERATOR 3 = (int2, int8) ,
 OPERATOR 4 >= (int2, int8) ,
 OPERATOR 5 > (int2, int8) ,
 FUNCTION 1 btint28cmp(int2, int8) ,

 -- cross-type comparisons int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ,

 -- cross-type in_range functions
 FUNCTION 3 in_range(int4, int4, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int4, int4, int2, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int4, boolean, boolean) ;

 Notice that this definition “overloads” the operator strategy and
 support function numbers: each number occurs multiple times within the
 family. This is allowed so long as each instance of a
 particular number has distinct input data types. The instances that have
 both input types equal to an operator class's input type are the
 primary operators and support functions for that operator class,
 and in most cases should be declared as part of the operator class rather
 than as loose members of the family.

 In a B-tree operator family, all the operators in the family must sort
 compatibly, as is specified in detail in the section called “Behavior of B-Tree Operator Classes”.
 For each
 operator in the family there must be a support function having the same
 two input data types as the operator. It is recommended that a family be
 complete, i.e., for each combination of data types, all operators are
 included. Each operator class should include just the non-cross-type
 operators and support function for its data type.

 To build a multiple-data-type hash operator family, compatible hash
 support functions must be created for each data type supported by the
 family. Here compatibility means that the functions are guaranteed to
 return the same hash code for any two values that are considered equal
 by the family's equality operators, even when the values are of different
 types. This is usually difficult to accomplish when the types have
 different physical representations, but it can be done in some cases.
 Furthermore, casting a value from one data type represented in the operator
 family to another data type also represented in the operator family via
 an implicit or binary coercion cast must not change the computed hash value.
 Notice that there is only one support function per data type, not one
 per equality operator. It is recommended that a family be complete, i.e.,
 provide an equality operator for each combination of data types.
 Each operator class should include just the non-cross-type equality
 operator and the support function for its data type.

 GiST, SP-GiST, and GIN indexes do not have any explicit notion of
 cross-data-type operations. The set of operators supported is just
 whatever the primary support functions for a given operator class can
 handle.

 In BRIN, the requirements depends on the framework that provides the
 operator classes. For operator classes based on minmax,
 the behavior required is the same as for B-tree operator families:
 all the operators in the family must sort compatibly, and casts must
 not change the associated sort ordering.

Note

 Prior to PostgreSQL™ 8.3, there was no concept
 of operator families, and so any cross-data-type operators intended to be
 used with an index had to be bound directly into the index's operator
 class. While this approach still works, it is deprecated because it
 makes an index's dependencies too broad, and because the planner can
 handle cross-data-type comparisons more effectively when both data types
 have operators in the same operator family.

System Dependencies on Operator Classes

 PostgreSQL™ uses operator classes to infer the
 properties of operators in more ways than just whether they can be used
 with indexes. Therefore, you might want to create operator classes
 even if you have no intention of indexing any columns of your data type.

 In particular, there are SQL features such as ORDER BY and
 DISTINCT that require comparison and sorting of values.
 To implement these features on a user-defined data type,
 PostgreSQL™ looks for the default B-tree operator
 class for the data type. The “equals” member of this operator
 class defines the system's notion of equality of values for
 GROUP BY and DISTINCT, and the sort ordering
 imposed by the operator class defines the default ORDER BY
 ordering.

 If there is no default B-tree operator class for a data type, the system
 will look for a default hash operator class. But since that kind of
 operator class only provides equality, it is only able to support grouping
 not sorting.

 When there is no default operator class for a data type, you will get
 errors like “could not identify an ordering operator” if you
 try to use these SQL features with the data type.

Note

 In PostgreSQL™ versions before 7.4,
 sorting and grouping operations would implicitly use operators named
 =, <, and >. The new
 behavior of relying on default operator classes avoids having to make
 any assumption about the behavior of operators with particular names.

 Sorting by a non-default B-tree operator class is possible by specifying
 the class's less-than operator in a USING option,
 for example

SELECT * FROM mytable ORDER BY somecol USING ~<~;

 Alternatively, specifying the class's greater-than operator
 in USING selects a descending-order sort.

 Comparison of arrays of a user-defined type also relies on the semantics
 defined by the type's default B-tree operator class. If there is no
 default B-tree operator class, but there is a default hash operator class,
 then array equality is supported, but not ordering comparisons.

 Another SQL feature that requires even more data-type-specific knowledge
 is the RANGE offset
 PRECEDING/FOLLOWING framing option
 for window functions (see the section called “Window Function Calls”).
 For a query such as

SELECT sum(x) OVER (ORDER BY x RANGE BETWEEN 5 PRECEDING AND 10 FOLLOWING)
 FROM mytable;

 it is not sufficient to know how to order by x;
 the database must also understand how to “subtract 5” or
 “add 10” to the current row's value of x
 to identify the bounds of the current window frame. Comparing the
 resulting bounds to other rows' values of x is
 possible using the comparison operators provided by the B-tree operator
 class that defines the ORDER BY ordering — but
 addition and subtraction operators are not part of the operator class, so
 which ones should be used? Hard-wiring that choice would be undesirable,
 because different sort orders (different B-tree operator classes) might
 need different behavior. Therefore, a B-tree operator class can specify
 an in_range support function that encapsulates the
 addition and subtraction behaviors that make sense for its sort order.
 It can even provide more than one in_range support function, in case
 there is more than one data type that makes sense to use as the offset
 in RANGE clauses.
 If the B-tree operator class associated with the window's ORDER
 BY clause does not have a matching in_range support function,
 the RANGE offset
 PRECEDING/FOLLOWING
 option is not supported.

 Another important point is that an equality operator that
 appears in a hash operator family is a candidate for hash joins,
 hash aggregation, and related optimizations. The hash operator family
 is essential here since it identifies the hash function(s) to use.

Ordering Operators

 Some index access methods (currently, only GiST and SP-GiST) support the concept of
 ordering operators. What we have been discussing so far
 are search operators. A search operator is one for which
 the index can be searched to find all rows satisfying
 WHERE
 indexed_column
 operator
 constant.
 Note that nothing is promised about the order in which the matching rows
 will be returned. In contrast, an ordering operator does not restrict the
 set of rows that can be returned, but instead determines their order.
 An ordering operator is one for which the index can be scanned to return
 rows in the order represented by
 ORDER BY
 indexed_column
 operator
 constant.
 The reason for defining ordering operators that way is that it supports
 nearest-neighbor searches, if the operator is one that measures distance.
 For example, a query like

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

 finds the ten places closest to a given target point. A GiST index
 on the location column can do this efficiently because
 <-> is an ordering operator.

 While search operators have to return Boolean results, ordering operators
 usually return some other type, such as float or numeric for distances.
 This type is normally not the same as the data type being indexed.
 To avoid hard-wiring assumptions about the behavior of different data
 types, the definition of an ordering operator is required to name
 a B-tree operator family that specifies the sort ordering of the result
 data type. As was stated in the previous section, B-tree operator families
 define PostgreSQL™'s notion of ordering, so
 this is a natural representation. Since the point <->
 operator returns float8, it could be specified in an operator
 class creation command like this:

OPERATOR 15 <-> (point, point) FOR ORDER BY float_ops

 where float_ops is the built-in operator family that includes
 operations on float8. This declaration states that the index
 is able to return rows in order of increasing values of the
 <-> operator.

Special Features of Operator Classes

 There are two special features of operator classes that we have
 not discussed yet, mainly because they are not useful
 with the most commonly used index methods.

 Normally, declaring an operator as a member of an operator class
 (or family) means that the index method can retrieve exactly the set of rows
 that satisfy a WHERE condition using the operator. For example:

SELECT * FROM table WHERE integer_column < 4;

 can be satisfied exactly by a B-tree index on the integer column.
 But there are cases where an index is useful as an inexact guide to
 the matching rows. For example, if a GiST index stores only bounding boxes
 for geometric objects, then it cannot exactly satisfy a WHERE
 condition that tests overlap between nonrectangular objects such as
 polygons. Yet we could use the index to find objects whose bounding
 box overlaps the bounding box of the target object, and then do the
 exact overlap test only on the objects found by the index. If this
 scenario applies, the index is said to be “lossy” for the
 operator. Lossy index searches are implemented by having the index
 method return a recheck flag when a row might or might
 not really satisfy the query condition. The core system will then
 test the original query condition on the retrieved row to see whether
 it should be returned as a valid match. This approach works if
 the index is guaranteed to return all the required rows, plus perhaps
 some additional rows, which can be eliminated by performing the original
 operator invocation. The index methods that support lossy searches
 (currently, GiST, SP-GiST and GIN) allow the support functions of individual
 operator classes to set the recheck flag, and so this is essentially an
 operator-class feature.

 Consider again the situation where we are storing in the index only
 the bounding box of a complex object such as a polygon. In this
 case there's not much value in storing the whole polygon in the index
 entry — we might as well store just a simpler object of type
 box. This situation is expressed by the STORAGE
 option in CREATE OPERATOR CLASS: we'd write something like:

CREATE OPERATOR CLASS polygon_ops
 DEFAULT FOR TYPE polygon USING gist AS
 ...
 STORAGE box;

 At present, only the GiST, SP-GiST, GIN and BRIN index methods support a
 STORAGE type that's different from the column data type.
 The GiST compress and decompress support
 routines must deal with data-type conversion when STORAGE
 is used. SP-GiST likewise requires a compress
 support function to convert to the storage type, when that is different;
 if an SP-GiST opclass also supports retrieving data, the reverse
 conversion must be handled by the consistent function.
 In GIN, the STORAGE type identifies the type of
 the “key” values, which normally is different from the type
 of the indexed column — for example, an operator class for
 integer-array columns might have keys that are just integers. The
 GIN extractValue and extractQuery support
 routines are responsible for extracting keys from indexed values.
 BRIN is similar to GIN: the STORAGE type identifies the
 type of the stored summary values, and operator classes' support
 procedures are responsible for interpreting the summary values
 correctly.

Packaging Related Objects into an Extension

 A useful extension to PostgreSQL™ typically includes
 multiple SQL objects; for example, a new data type will require new
 functions, new operators, and probably new index operator classes.
 It is helpful to collect all these objects into a single package
 to simplify database management. PostgreSQL™ calls
 such a package an extension. To define an extension,
 you need at least a script file that contains the
 SQL commands to create the extension's objects, and a
 control file that specifies a few basic properties
 of the extension itself. If the extension includes C code, there
 will typically also be a shared library file into which the C code
 has been built. Once you have these files, a simple
 CREATE EXTENSION command loads the objects into
 your database.

 The main advantage of using an extension, rather than just running the
 SQL script to load a bunch of “loose” objects
 into your database, is that PostgreSQL™ will then
 understand that the objects of the extension go together. You can
 drop all the objects with a single DROP EXTENSION
 command (no need to maintain a separate “uninstall” script).
 Even more useful, pg_dump knows that it should not
 dump the individual member objects of the extension — it will
 just include a CREATE EXTENSION command in dumps, instead.
 This vastly simplifies migration to a new version of the extension
 that might contain more or different objects than the old version.
 Note however that you must have the extension's control, script, and
 other files available when loading such a dump into a new database.

 PostgreSQL™ will not let you drop an individual object
 contained in an extension, except by dropping the whole extension.
 Also, while you can change the definition of an extension member object
 (for example, via CREATE OR REPLACE FUNCTION for a
 function), bear in mind that the modified definition will not be dumped
 by pg_dump. Such a change is usually only sensible if
 you concurrently make the same change in the extension's script file.
 (But there are special provisions for tables containing configuration
 data; see the section called “Extension Configuration Tables”.)
 In production situations, it's generally better to create an extension
 update script to perform changes to extension member objects.

 The extension script may set privileges on objects that are part of the
 extension, using GRANT and REVOKE
 statements. The final set of privileges for each object (if any are set)
 will be stored in the
 pg_init_privs
 system catalog. When pg_dump is used, the
 CREATE EXTENSION command will be included in the dump, followed
 by the set of GRANT and REVOKE
 statements necessary to set the privileges on the objects to what they were
 at the time the dump was taken.

 PostgreSQL™ does not currently support extension scripts
 issuing CREATE POLICY or SECURITY LABEL
 statements. These are expected to be set after the extension has been
 created. All RLS policies and security labels on extension objects will be
 included in dumps created by pg_dump.

 The extension mechanism also has provisions for packaging modification
 scripts that adjust the definitions of the SQL objects contained in an
 extension. For example, if version 1.1 of an extension adds one function
 and changes the body of another function compared to 1.0, the extension
 author can provide an update script that makes just those
 two changes. The ALTER EXTENSION UPDATE command can then
 be used to apply these changes and track which version of the extension
 is actually installed in a given database.

 The kinds of SQL objects that can be members of an extension are shown in
 the description of ALTER EXTENSION. Notably, objects
 that are database-cluster-wide, such as databases, roles, and tablespaces,
 cannot be extension members since an extension is only known within one
 database. (Although an extension script is not prohibited from creating
 such objects, if it does so they will not be tracked as part of the
 extension.) Also notice that while a table can be a member of an
 extension, its subsidiary objects such as indexes are not directly
 considered members of the extension.
 Another important point is that schemas can belong to extensions, but not
 vice versa: an extension as such has an unqualified name and does not
 exist “within” any schema. The extension's member objects,
 however, will belong to schemas whenever appropriate for their object
 types. It may or may not be appropriate for an extension to own the
 schema(s) its member objects are within.

 If an extension's script creates any temporary objects (such as temp
 tables), those objects are treated as extension members for the
 remainder of the current session, but are automatically dropped at
 session end, as any temporary object would be. This is an exception
 to the rule that extension member objects cannot be dropped without
 dropping the whole extension.

Extension Files

 The CREATE EXTENSION command relies on a control
 file for each extension, which must be named the same as the extension
 with a suffix of .control, and must be placed in the
 installation's SHAREDIR/extension directory. There
 must also be at least one SQL script file, which follows the
 naming pattern
 extension--version.sql
 (for example, foo--1.0.sql for version 1.0 of
 extension foo). By default, the script file(s) are also
 placed in the SHAREDIR/extension directory; but the
 control file can specify a different directory for the script file(s).

 The file format for an extension control file is the same as for the
 postgresql.conf file, namely a list of
 parameter_name = value
 assignments, one per line. Blank lines and comments introduced by
 # are allowed. Be sure to quote any value that is not
 a single word or number.

 A control file can set the following parameters:

	directory (string)
	
 The directory containing the extension's SQL script
 file(s). Unless an absolute path is given, the name is relative to
 the installation's SHAREDIR directory. The
 default behavior is equivalent to specifying
 directory = 'extension'.

	default_version (string)
	
 The default version of the extension (the one that will be installed
 if no version is specified in CREATE EXTENSION). Although
 this can be omitted, that will result in CREATE EXTENSION
 failing if no VERSION option appears, so you generally
 don't want to do that.

	comment (string)
	
 A comment (any string) about the extension. The comment is applied
 when initially creating an extension, but not during extension updates
 (since that might override user-added comments). Alternatively,
 the extension's comment can be set by writing
 a COMMENT(7) command in the script file.

	encoding (string)
	
 The character set encoding used by the script file(s). This should
 be specified if the script files contain any non-ASCII characters.
 Otherwise the files will be assumed to be in the database encoding.

	module_pathname (string)
	
 The value of this parameter will be substituted for each occurrence
 of MODULE_PATHNAME in the script file(s). If it is not
 set, no substitution is made. Typically, this is set to
 $libdir/shared_library_name and
 then MODULE_PATHNAME is used in CREATE
 FUNCTION commands for C-language functions, so that the script
 files do not need to hard-wire the name of the shared library.

	requires (string)
	
 A list of names of extensions that this extension depends on,
 for example requires = 'foo, bar'. Those
 extensions must be installed before this one can be installed.

	no_relocate (string)
	
 A list of names of extensions that this extension depends on that
 should be barred from changing their schemas via ALTER
 EXTENSION ... SET SCHEMA.
 This is needed if this extension's script references the name
 of a required extension's schema (using
 the @extschema:name@
 syntax) in a way that cannot track renames.

	superuser (boolean)
	
 If this parameter is true (which is the default),
 only superusers can create the extension or update it to a new
 version (but see also trusted, below).
 If it is set to false, just the privileges
 required to execute the commands in the installation or update script
 are required.
 This should normally be set to true if any of the
 script commands require superuser privileges. (Such commands would
 fail anyway, but it's more user-friendly to give the error up front.)

	trusted (boolean)
	
 This parameter, if set to true (which is not the
 default), allows some non-superusers to install an extension that
 has superuser set to true.
 Specifically, installation will be permitted for anyone who has
 CREATE privilege on the current database.
 When the user executing CREATE EXTENSION is not
 a superuser but is allowed to install by virtue of this parameter,
 then the installation or update script is run as the bootstrap
 superuser, not as the calling user.
 This parameter is irrelevant if superuser is
 false.
 Generally, this should not be set true for extensions that could
 allow access to otherwise-superuser-only abilities, such as
 file system access.
 Also, marking an extension trusted requires significant extra effort
 to write the extension's installation and update script(s) securely;
 see the section called “Security Considerations for Extensions”.

	relocatable (boolean)
	
 An extension is relocatable if it is possible to move
 its contained objects into a different schema after initial creation
 of the extension. The default is false, i.e., the
 extension is not relocatable.
 See the section called “Extension Relocatability” for more information.

	schema (string)
	
 This parameter can only be set for non-relocatable extensions.
 It forces the extension to be loaded into exactly the named schema
 and not any other.
 The schema parameter is consulted only when
 initially creating an extension, not during extension updates.
 See the section called “Extension Relocatability” for more information.

 In addition to the primary control file
 extension.control,
 an extension can have secondary control files named in the style
 extension--version.control.
 If supplied, these must be located in the script file directory.
 Secondary control files follow the same format as the primary control
 file. Any parameters set in a secondary control file override the
 primary control file when installing or updating to that version of
 the extension. However, the parameters directory and
 default_version cannot be set in a secondary control file.

 An extension's SQL script files can contain any SQL commands,
 except for transaction control commands (BEGIN,
 COMMIT, etc.) and commands that cannot be executed inside a
 transaction block (such as VACUUM). This is because the
 script files are implicitly executed within a transaction block.

 An extension's SQL script files can also contain lines
 beginning with \echo, which will be ignored (treated as
 comments) by the extension mechanism. This provision is commonly used
 to throw an error if the script file is fed to psql
 rather than being loaded via CREATE EXTENSION (see example
 script in the section called “Extension Example”).
 Without that, users might accidentally load the
 extension's contents as “loose” objects rather than as an
 extension, a state of affairs that's a bit tedious to recover from.

 If the extension script contains the
 string @extowner@, that string is replaced with the
 (suitably quoted) name of the user calling CREATE
 EXTENSION or ALTER EXTENSION. Typically
 this feature is used by extensions that are marked trusted to assign
 ownership of selected objects to the calling user rather than the
 bootstrap superuser. (One should be careful about doing so, however.
 For example, assigning ownership of a C-language function to a
 non-superuser would create a privilege escalation path for that user.)

 While the script files can contain any characters allowed by the specified
 encoding, control files should contain only plain ASCII, because there
 is no way for PostgreSQL™ to know what encoding a
 control file is in. In practice this is only an issue if you want to
 use non-ASCII characters in the extension's comment. Recommended
 practice in that case is to not use the control file comment
 parameter, but instead use COMMENT ON EXTENSION
 within a script file to set the comment.

Extension Relocatability

 Users often wish to load the objects contained in an extension into a
 different schema than the extension's author had in mind. There are
 three supported levels of relocatability:

	
 A fully relocatable extension can be moved into another schema
 at any time, even after it's been loaded into a database.
 This is done with the ALTER EXTENSION SET SCHEMA
 command, which automatically renames all the member objects into
 the new schema. Normally, this is only possible if the extension
 contains no internal assumptions about what schema any of its
 objects are in. Also, the extension's objects must all be in one
 schema to begin with (ignoring objects that do not belong to any
 schema, such as procedural languages). Mark a fully relocatable
 extension by setting relocatable = true in its control
 file.

	
 An extension might be relocatable during installation but not
 afterwards. This is typically the case if the extension's script
 file needs to reference the target schema explicitly, for example
 in setting search_path properties for SQL functions.
 For such an extension, set relocatable = false in its
 control file, and use @extschema@ to refer to the target
 schema in the script file. All occurrences of this string will be
 replaced by the actual target schema's name (double-quoted if
 necessary) before the script is executed. The user can set the
 target schema using the
 SCHEMA option of CREATE EXTENSION.

	
 If the extension does not support relocation at all, set
 relocatable = false in its control file, and also set
 schema to the name of the intended target schema. This
 will prevent use of the SCHEMA option of CREATE
 EXTENSION, unless it specifies the same schema named in the control
 file. This choice is typically necessary if the extension contains
 internal assumptions about its schema name that can't be replaced by
 uses of @extschema@. The @extschema@
 substitution mechanism is available in this case too, although it is
 of limited use since the schema name is determined by the control file.

 In all cases, the script file will be executed with
 search_path initially set to point to the target
 schema; that is, CREATE EXTENSION does the equivalent of
 this:

SET LOCAL search_path TO @extschema@, pg_temp;

 This allows the objects created by the script file to go into the target
 schema. The script file can change search_path if it wishes,
 but that is generally undesirable. search_path is restored
 to its previous setting upon completion of CREATE EXTENSION.

 The target schema is determined by the schema parameter in
 the control file if that is given, otherwise by the SCHEMA
 option of CREATE EXTENSION if that is given, otherwise the
 current default object creation schema (the first one in the caller's
 search_path). When the control file schema
 parameter is used, the target schema will be created if it doesn't
 already exist, but in the other two cases it must already exist.

 If any prerequisite extensions are listed in requires
 in the control file, their target schemas are added to the initial
 setting of search_path, following the new
 extension's target schema. This allows their objects to be visible to
 the new extension's script file.

 For security, pg_temp is automatically appended to
 the end of search_path in all cases.

 Although a non-relocatable extension can contain objects spread across
 multiple schemas, it is usually desirable to place all the objects meant
 for external use into a single schema, which is considered the extension's
 target schema. Such an arrangement works conveniently with the default
 setting of search_path during creation of dependent
 extensions.

 If an extension references objects belonging to another extension,
 it is recommended to schema-qualify those references. To do that,
 write @extschema:name@
 in the extension's script file, where name
 is the name of the other extension (which must be listed in this
 extension's requires list). This string will be
 replaced by the name (double-quoted if necessary) of that extension's
 target schema.
 Although this notation avoids the need to make hard-wired assumptions
 about schema names in the extension's script file, its use may embed
 the other extension's schema name into the installed objects of this
 extension. (Typically, that happens
 when @extschema:name@ is
 used inside a string literal, such as a function body or
 a search_path setting. In other cases, the object
 reference is reduced to an OID during parsing and does not require
 subsequent lookups.) If the other extension's schema name is so
 embedded, you should prevent the other extension from being relocated
 after yours is installed, by adding the name of the other extension to
 this one's no_relocate list.

Extension Configuration Tables

 Some extensions include configuration tables, which contain data that
 might be added or changed by the user after installation of the
 extension. Ordinarily, if a table is part of an extension, neither
 the table's definition nor its content will be dumped by
 pg_dump. But that behavior is undesirable for a
 configuration table; any data changes made by the user need to be
 included in dumps, or the extension will behave differently after a dump
 and restore.

 To solve this problem, an extension's script file can mark a table
 or a sequence it has created as a configuration relation, which will
 cause pg_dump to include the table's or the sequence's
 contents (not its definition) in dumps. To do that, call the function
 pg_extension_config_dump(regclass, text) after creating the
 table or the sequence, for example

CREATE TABLE my_config (key text, value text);
CREATE SEQUENCE my_config_seq;

SELECT pg_catalog.pg_extension_config_dump('my_config', '');
SELECT pg_catalog.pg_extension_config_dump('my_config_seq', '');

 Any number of tables or sequences can be marked this way. Sequences
 associated with serial or bigserial columns can
 be marked as well.

 When the second argument of pg_extension_config_dump is
 an empty string, the entire contents of the table are dumped by
 pg_dump. This is usually only correct if the table
 is initially empty as created by the extension script. If there is
 a mixture of initial data and user-provided data in the table,
 the second argument of pg_extension_config_dump provides
 a WHERE condition that selects the data to be dumped.
 For example, you might do

CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump('my_config', 'WHERE NOT standard_entry');

 and then make sure that standard_entry is true only
 in the rows created by the extension's script.

 For sequences, the second argument of pg_extension_config_dump
 has no effect.

 More complicated situations, such as initially-provided rows that might
 be modified by users, can be handled by creating triggers on the
 configuration table to ensure that modified rows are marked correctly.

 You can alter the filter condition associated with a configuration table
 by calling pg_extension_config_dump again. (This would
 typically be useful in an extension update script.) The only way to mark
 a table as no longer a configuration table is to dissociate it from the
 extension with ALTER EXTENSION ... DROP TABLE.

 Note that foreign key relationships between these tables will dictate the
 order in which the tables are dumped out by pg_dump. Specifically, pg_dump
 will attempt to dump the referenced-by table before the referencing table.
 As the foreign key relationships are set up at CREATE EXTENSION time (prior
 to data being loaded into the tables) circular dependencies are not
 supported. When circular dependencies exist, the data will still be dumped
 out but the dump will not be able to be restored directly and user
 intervention will be required.

 Sequences associated with serial or bigserial columns
 need to be directly marked to dump their state. Marking their parent
 relation is not enough for this purpose.

Extension Updates

 One advantage of the extension mechanism is that it provides convenient
 ways to manage updates to the SQL commands that define an extension's
 objects. This is done by associating a version name or number with
 each released version of the extension's installation script.
 In addition, if you want users to be able to update their databases
 dynamically from one version to the next, you should provide
 update scripts that make the necessary changes to go from
 one version to the next. Update scripts have names following the pattern
 extension--old_version--target_version.sql
 (for example, foo--1.0--1.1.sql contains the commands to modify
 version 1.0 of extension foo into version
 1.1).

 Given that a suitable update script is available, the command
 ALTER EXTENSION UPDATE will update an installed extension
 to the specified new version. The update script is run in the same
 environment that CREATE EXTENSION provides for installation
 scripts: in particular, search_path is set up in the same
 way, and any new objects created by the script are automatically added
 to the extension. Also, if the script chooses to drop extension member
 objects, they are automatically dissociated from the extension.

 If an extension has secondary control files, the control parameters
 that are used for an update script are those associated with the script's
 target (new) version.

 ALTER EXTENSION is able to execute sequences of update
 script files to achieve a requested update. For example, if only
 foo--1.0--1.1.sql and foo--1.1--2.0.sql are
 available, ALTER EXTENSION will apply them in sequence if an
 update to version 2.0 is requested when 1.0 is
 currently installed.

 PostgreSQL™ doesn't assume anything about the properties
 of version names: for example, it does not know whether 1.1
 follows 1.0. It just matches up the available version names
 and follows the path that requires applying the fewest update scripts.
 (A version name can actually be any string that doesn't contain
 -- or leading or trailing -.)

 Sometimes it is useful to provide “downgrade” scripts, for
 example foo--1.1--1.0.sql to allow reverting the changes
 associated with version 1.1. If you do that, be careful
 of the possibility that a downgrade script might unexpectedly
 get applied because it yields a shorter path. The risky case is where
 there is a “fast path” update script that jumps ahead several
 versions as well as a downgrade script to the fast path's start point.
 It might take fewer steps to apply the downgrade and then the fast
 path than to move ahead one version at a time. If the downgrade script
 drops any irreplaceable objects, this will yield undesirable results.

 To check for unexpected update paths, use this command:

SELECT * FROM pg_extension_update_paths('extension_name');

 This shows each pair of distinct known version names for the specified
 extension, together with the update path sequence that would be taken to
 get from the source version to the target version, or NULL if
 there is no available update path. The path is shown in textual form
 with -- separators. You can use
 regexp_split_to_array(path,'--') if you prefer an array
 format.

Installing Extensions Using Update Scripts

 An extension that has been around for awhile will probably exist in
 several versions, for which the author will need to write update scripts.
 For example, if you have released a foo extension in
 versions 1.0, 1.1, and 1.2, there
 should be update scripts foo--1.0--1.1.sql
 and foo--1.1--1.2.sql.
 Before PostgreSQL™ 10, it was necessary to also create
 new script files foo--1.1.sql and foo--1.2.sql
 that directly build the newer extension versions, or else the newer
 versions could not be installed directly, only by
 installing 1.0 and then updating. That was tedious and
 duplicative, but now it's unnecessary, because CREATE
 EXTENSION can follow update chains automatically.
 For example, if only the script
 files foo--1.0.sql, foo--1.0--1.1.sql,
 and foo--1.1--1.2.sql are available then a request to
 install version 1.2 is honored by running those three
 scripts in sequence. The processing is the same as if you'd first
 installed 1.0 and then updated to 1.2.
 (As with ALTER EXTENSION UPDATE, if multiple pathways are
 available then the shortest is preferred.) Arranging an extension's
 script files in this style can reduce the amount of maintenance effort
 needed to produce small updates.

 If you use secondary (version-specific) control files with an extension
 maintained in this style, keep in mind that each version needs a control
 file even if it has no stand-alone installation script, as that control
 file will determine how the implicit update to that version is performed.
 For example, if foo--1.0.control specifies requires
 = 'bar' but foo's other control files do not, the
 extension's dependency on bar will be dropped when updating
 from 1.0 to another version.

Security Considerations for Extensions

 Widely-distributed extensions should assume little about the database
 they occupy. Therefore, it's appropriate to write functions provided
 by an extension in a secure style that cannot be compromised by
 search-path-based attacks.

 An extension that has the superuser property set to
 true must also consider security hazards for the actions taken within
 its installation and update scripts. It is not terribly difficult for
 a malicious user to create trojan-horse objects that will compromise
 later execution of a carelessly-written extension script, allowing that
 user to acquire superuser privileges.

 If an extension is marked trusted, then its
 installation schema can be selected by the installing user, who might
 intentionally use an insecure schema in hopes of gaining superuser
 privileges. Therefore, a trusted extension is extremely exposed from a
 security standpoint, and all its script commands must be carefully
 examined to ensure that no compromise is possible.

 Advice about writing functions securely is provided in
 the section called “Security Considerations for Extension Functions” below, and advice
 about writing installation scripts securely is provided in
 the section called “Security Considerations for Extension Scripts”.

Security Considerations for Extension Functions

 SQL-language and PL-language functions provided by extensions are at
 risk of search-path-based attacks when they are executed, since
 parsing of these functions occurs at execution time not creation time.

 The CREATE
 FUNCTION reference page contains advice about
 writing SECURITY DEFINER functions safely. It's
 good practice to apply those techniques for any function provided by
 an extension, since the function might be called by a high-privilege
 user.

 If you cannot set the search_path to contain only
 secure schemas, assume that each unqualified name could resolve to an
 object that a malicious user has defined. Beware of constructs that
 depend on search_path implicitly; for
 example, IN
 and CASE expression WHEN
 always select an operator using the search path. In their place, use
 OPERATOR(schema.=) ANY
 and CASE WHEN expression.

 A general-purpose extension usually should not assume that it's been
 installed into a secure schema, which means that even schema-qualified
 references to its own objects are not entirely risk-free. For
 example, if the extension has defined a
 function myschema.myfunc(bigint) then a call such
 as myschema.myfunc(42) could be captured by a
 hostile function myschema.myfunc(integer). Be
 careful that the data types of function and operator parameters exactly
 match the declared argument types, using explicit casts where necessary.

Security Considerations for Extension Scripts

 An extension installation or update script should be written to guard
 against search-path-based attacks occurring when the script executes.
 If an object reference in the script can be made to resolve to some
 other object than the script author intended, then a compromise might
 occur immediately, or later when the mis-defined extension object is
 used.

 DDL commands such as CREATE FUNCTION
 and CREATE OPERATOR CLASS are generally secure,
 but beware of any command having a general-purpose expression as a
 component. For example, CREATE VIEW needs to be
 vetted, as does a DEFAULT expression
 in CREATE FUNCTION.

 Sometimes an extension script might need to execute general-purpose
 SQL, for example to make catalog adjustments that aren't possible via
 DDL. Be careful to execute such commands with a
 secure search_path; do not
 trust the path provided by CREATE/ALTER EXTENSION
 to be secure. Best practice is to temporarily
 set search_path to pg_catalog,
 pg_temp and insert references to the extension's
 installation schema explicitly where needed. (This practice might
 also be helpful for creating views.) Examples can be found in
 the contrib modules in
 the PostgreSQL™ source code distribution.

 Cross-extension references are extremely difficult to make fully
 secure, partially because of uncertainty about which schema the other
 extension is in. The hazards are reduced if both extensions are
 installed in the same schema, because then a hostile object cannot be
 placed ahead of the referenced extension in the installation-time
 search_path. However, no mechanism currently exists
 to require that. For now, best practice is to not mark an extension
 trusted if it depends on another one, unless that other one is always
 installed in pg_catalog.

Extension Example

 Here is a complete example of an SQL-only
 extension, a two-element composite type that can store any type of value
 in its slots, which are named “k” and “v”. Non-text
 values are automatically coerced to text for storage.

 The script file pair--1.0.sql looks like this:

-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pair" to load this file. \quit

CREATE TYPE pair AS (k text, v text);

CREATE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS 'SELECT ROW($1, $2)::@extschema@.pair;';

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, FUNCTION = pair);

-- "SET search_path" is easy to get right, but qualified names perform better.
CREATE FUNCTION lower(pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW(lower($1.k), lower($1.v))::@extschema@.pair;'
SET search_path = pg_temp;

CREATE FUNCTION pair_concat(pair, pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW($1.k OPERATOR(pg_catalog.||) $2.k,
 $1.v OPERATOR(pg_catalog.||) $2.v)::@extschema@.pair;';

 The control file pair.control looks like this:

pair extension
comment = 'A key/value pair data type'
default_version = '1.0'
cannot be relocatable because of use of @extschema@
relocatable = false

 While you hardly need a makefile to install these two files into the
 correct directory, you could use a Makefile containing this:

EXTENSION = pair
DATA = pair--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

 This makefile relies on PGXS, which is described
 in the section called “Extension Building Infrastructure”. The command make install
 will install the control and script files into the correct
 directory as reported by pg_config.

 Once the files are installed, use the
 CREATE EXTENSION command to load the objects into
 any particular database.

Extension Building Infrastructure

 If you are thinking about distributing your
 PostgreSQL™ extension modules, setting up a
 portable build system for them can be fairly difficult. Therefore
 the PostgreSQL™ installation provides a build
 infrastructure for extensions, called PGXS, so
 that simple extension modules can be built simply against an
 already installed server. PGXS is mainly intended
 for extensions that include C code, although it can be used for
 pure-SQL extensions too. Note that PGXS is not
 intended to be a universal build system framework that can be used
 to build any software interfacing to PostgreSQL™;
 it simply automates common build rules for simple server extension
 modules. For more complicated packages, you might need to write your
 own build system.

 To use the PGXS infrastructure for your extension,
 you must write a simple makefile.
 In the makefile, you need to set some variables
 and include the global PGXS makefile.
 Here is an example that builds an extension module named
 isbn_issn, consisting of a shared library containing
 some C code, an extension control file, an SQL script, an include file
 (only needed if other modules might need to access the extension functions
 without going via SQL), and a documentation text file:

MODULES = isbn_issn
EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn
HEADERS_isbn_issn = isbn_issn.h

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

 The last three lines should always be the same. Earlier in the
 file, you assign variables or add custom
 make rules.

 Set one of these three variables to specify what is built:

	MODULES
	
 list of shared-library objects to be built from source files with same
 stem (do not include library suffixes in this list)

	MODULE_big
	
 a shared library to build from multiple source files
 (list object files in OBJS)

	PROGRAM
	
 an executable program to build
 (list object files in OBJS)

 The following variables can also be set:

	EXTENSION
	
 extension name(s); for each name you must provide an
 extension.control file,
 which will be installed into
 prefix/share/extension

	MODULEDIR
	
 subdirectory of prefix/share
 into which DATA and DOCS files should be installed
 (if not set, default is extension if
 EXTENSION is set,
 or contrib if not)

	DATA
	
 random files to install into prefix/share/$MODULEDIR

	DATA_built
	
 random files to install into
 prefix/share/$MODULEDIR,
 which need to be built first

	DATA_TSEARCH
	
 random files to install under
 prefix/share/tsearch_data

	DOCS
	
 random files to install under
 prefix/doc/$MODULEDIR

	HEADERS, HEADERS_built
	
 Files to (optionally build and) install under
 prefix/include/server/$MODULEDIR/$MODULE_big.

 Unlike DATA_built, files in HEADERS_built
 are not removed by the clean target; if you want them removed,
 also add them to EXTRA_CLEAN or add your own rules to do it.

	HEADERS_$MODULE, HEADERS_built_$MODULE
	
 Files to install (after building if specified) under
 prefix/include/server/$MODULEDIR/$MODULE,
 where $MODULE must be a module name used
 in MODULES or MODULE_big.

 Unlike DATA_built, files in HEADERS_built_$MODULE
 are not removed by the clean target; if you want them removed,
 also add them to EXTRA_CLEAN or add your own rules to do it.

 It is legal to use both variables for the same module, or any
 combination, unless you have two module names in the
 MODULES list that differ only by the presence of a
 prefix built_, which would cause ambiguity. In
 that (hopefully unlikely) case, you should use only the
 HEADERS_built_$MODULE variables.

	SCRIPTS
	
 script files (not binaries) to install into
 prefix/bin

	SCRIPTS_built
	
 script files (not binaries) to install into
 prefix/bin,
 which need to be built first

	REGRESS
	
 list of regression test cases (without suffix), see below

	REGRESS_OPTS
	
 additional switches to pass to pg_regress

	ISOLATION
	
 list of isolation test cases, see below for more details

	ISOLATION_OPTS
	
 additional switches to pass to
 pg_isolation_regress

	TAP_TESTS
	
 switch defining if TAP tests need to be run, see below

	NO_INSTALL
	
 don't define an install target, useful for test
 modules that don't need their build products to be installed

	NO_INSTALLCHECK
	
 don't define an installcheck target, useful e.g., if tests require special configuration, or don't use pg_regress

	EXTRA_CLEAN
	
 extra files to remove in make clean

	PG_CPPFLAGS
	
 will be prepended to CPPFLAGS

	PG_CFLAGS
	
 will be appended to CFLAGS

	PG_CXXFLAGS
	
 will be appended to CXXFLAGS

	PG_LDFLAGS
	
 will be prepended to LDFLAGS

	PG_LIBS
	
 will be added to PROGRAM link line

	SHLIB_LINK
	
 will be added to MODULE_big link line

	PG_CONFIG
	
 path to pg_config program for the
 PostgreSQL™ installation to build against
 (typically just pg_config to use the first one in your
 PATH)

 Put this makefile as Makefile in the directory
 which holds your extension. Then you can do
 make to compile, and then make
 install to install your module. By default, the extension is
 compiled and installed for the
 PostgreSQL™ installation that
 corresponds to the first pg_config program
 found in your PATH. You can use a different installation by
 setting PG_CONFIG to point to its
 pg_config program, either within the makefile
 or on the make command line.

 You can also run make in a directory outside the source
 tree of your extension, if you want to keep the build directory separate.
 This procedure is also called a
 VPATH
 build. Here's how:

mkdir build_dir
cd build_dir
make -f /path/to/extension/source/tree/Makefile
make -f /path/to/extension/source/tree/Makefile install

 Alternatively, you can set up a directory for a VPATH build in a similar
 way to how it is done for the core code. One way to do this is using the
 core script config/prep_buildtree. Once this has been done
 you can build by setting the make variable
 VPATH like this:

make VPATH=/path/to/extension/source/tree
make VPATH=/path/to/extension/source/tree install

 This procedure can work with a greater variety of directory layouts.

 The scripts listed in the REGRESS variable are used for
 regression testing of your module, which can be invoked by make
 installcheck after doing make install. For this to
 work you must have a running PostgreSQL™ server.
 The script files listed in REGRESS must appear in a
 subdirectory named sql/ in your extension's directory.
 These files must have extension .sql, which must not be
 included in the REGRESS list in the makefile. For each
 test there should also be a file containing the expected output in a
 subdirectory named expected/, with the same stem and
 extension .out. make installcheck
 executes each test script with psql, and compares the
 resulting output to the matching expected file. Any differences will be
 written to the file regression.diffs in diff
 -c format. Note that trying to run a test that is missing its
 expected file will be reported as “trouble”, so make sure you
 have all expected files.

 The scripts listed in the ISOLATION variable are used
 for tests stressing behavior of concurrent session with your module, which
 can be invoked by make installcheck after doing
 make install. For this to work you must have a
 running PostgreSQL™ server. The script files
 listed in ISOLATION must appear in a subdirectory
 named specs/ in your extension's directory. These files
 must have extension .spec, which must not be included
 in the ISOLATION list in the makefile. For each test
 there should also be a file containing the expected output in a
 subdirectory named expected/, with the same stem and
 extension .out. make installcheck
 executes each test script, and compares the resulting output to the
 matching expected file. Any differences will be written to the file
 output_iso/regression.diffs in
 diff -c format. Note that trying to run a test that is
 missing its expected file will be reported as “trouble”, so
 make sure you have all expected files.

 TAP_TESTS enables the use of TAP tests. Data from each
 run is present in a subdirectory named tmp_check/.
 See also the section called “TAP Tests” for more details.

Tip

 The easiest way to create the expected files is to create empty files,
 then do a test run (which will of course report differences). Inspect
 the actual result files found in the results/
 directory (for tests in REGRESS), or
 output_iso/results/ directory (for tests in
 ISOLATION), then copy them to
 expected/ if they match what you expect from the test.

Chapter 39. Triggers

 This chapter provides general information about writing trigger functions.
 Trigger functions can be written in most of the available procedural
 languages, including
 PL/pgSQL (Chapter 43, PL/pgSQL — SQL Procedural Language),
 PL/Tcl (Chapter 44, PL/Tcl — Tcl Procedural Language),
 PL/Perl (Chapter 45, PL/Perl — Perl Procedural Language), and
 PL/Python (Chapter 46, PL/Python — Python Procedural Language).
 After reading this chapter, you should consult the chapter for
 your favorite procedural language to find out the language-specific
 details of writing a trigger in it.

 It is also possible to write a trigger function in C, although
 most people find it easier to use one of the procedural languages.
 It is not currently possible to write a trigger function in the
 plain SQL function language.

Overview of Trigger Behavior

 A trigger is a specification that the database should automatically
 execute a particular function whenever a certain type of operation is
 performed. Triggers can be attached to tables (partitioned or not),
 views, and foreign tables.

 On tables and foreign tables, triggers can be defined to execute either
 before or after any INSERT, UPDATE,
 or DELETE operation, either once per modified row,
 or once per SQL statement.
 UPDATE triggers can moreover be set to fire only if
 certain columns are mentioned in the SET clause of
 the UPDATE statement. Triggers can also fire
 for TRUNCATE statements. If a trigger event occurs,
 the trigger's function is called at the appropriate time to handle the
 event.

 On views, triggers can be defined to execute instead of
 INSERT, UPDATE, or
 DELETE operations.
 Such INSTEAD OF triggers
 are fired once for each row that needs to be modified in the view.
 It is the responsibility of the
 trigger's function to perform the necessary modifications to the view's
 underlying base table(s) and, where appropriate, return the modified
 row as it will appear in the view. Triggers on views can also be defined
 to execute once per SQL statement, before or after
 INSERT, UPDATE, or
 DELETE operations.
 However, such triggers are fired only if there is also
 an INSTEAD OF trigger on the view. Otherwise,
 any statement targeting the view must be rewritten into a statement
 affecting its underlying base table(s), and then the triggers
 that will be fired are the ones attached to the base table(s).

 The trigger function must be defined before the trigger itself can be
 created. The trigger function must be declared as a
 function taking no arguments and returning type trigger.
 (The trigger function receives its input through a specially-passed
 TriggerData structure, not in the form of ordinary function
 arguments.)

 Once a suitable trigger function has been created, the trigger is
 established with
 CREATE TRIGGER(7).
 The same trigger function can be used for multiple triggers.

 PostgreSQL™ offers both per-row
 triggers and per-statement triggers. With a per-row
 trigger, the trigger function
 is invoked once for each row that is affected by the statement
 that fired the trigger. In contrast, a per-statement trigger is
 invoked only once when an appropriate statement is executed,
 regardless of the number of rows affected by that statement. In
 particular, a statement that affects zero rows will still result
 in the execution of any applicable per-statement triggers. These
 two types of triggers are sometimes called row-level
 triggers and statement-level triggers,
 respectively. Triggers on TRUNCATE may only be
 defined at statement level, not per-row.

 Triggers are also classified according to whether they fire
 before, after, or
 instead of the operation. These are referred to
 as BEFORE triggers, AFTER triggers, and
 INSTEAD OF triggers respectively.
 Statement-level BEFORE triggers naturally fire before the
 statement starts to do anything, while statement-level AFTER
 triggers fire at the very end of the statement. These types of
 triggers may be defined on tables, views, or foreign tables. Row-level
 BEFORE triggers fire immediately before a particular row is
 operated on, while row-level AFTER triggers fire at the end of
 the statement (but before any statement-level AFTER triggers).
 These types of triggers may only be defined on tables and
 foreign tables, not views.
 INSTEAD OF triggers may only be
 defined on views, and only at row level; they fire immediately as each
 row in the view is identified as needing to be operated on.

 The execution of an AFTER trigger can be deferred
 to the end of the transaction, rather than the end of the statement,
 if it was defined as a constraint trigger.
 In all cases, a trigger is executed as part of the same transaction as
 the statement that triggered it, so if either the statement or the
 trigger causes an error, the effects of both will be rolled back.

 A statement that targets a parent table in an inheritance or partitioning
 hierarchy does not cause the statement-level triggers of affected child
 tables to be fired; only the parent table's statement-level triggers are
 fired. However, row-level triggers of any affected child tables will be
 fired.

 If an INSERT contains an ON CONFLICT
 DO UPDATE clause, it is possible that the effects of
 row-level BEFORE INSERT triggers and
 row-level BEFORE UPDATE triggers can
 both be applied in a way that is apparent from the final state of
 the updated row, if an EXCLUDED column is referenced.
 There need not be an EXCLUDED column reference for
 both sets of row-level BEFORE triggers to execute,
 though. The
 possibility of surprising outcomes should be considered when there
 are both BEFORE INSERT and
 BEFORE UPDATE row-level triggers
 that change a row being inserted/updated (this can be
 problematic even if the modifications are more or less equivalent, if
 they're not also idempotent). Note that statement-level
 UPDATE triggers are executed when ON
 CONFLICT DO UPDATE is specified, regardless of whether or not
 any rows were affected by the UPDATE (and
 regardless of whether the alternative UPDATE
 path was ever taken). An INSERT with an
 ON CONFLICT DO UPDATE clause will execute
 statement-level BEFORE INSERT
 triggers first, then statement-level BEFORE
 UPDATE triggers, followed by statement-level
 AFTER UPDATE triggers and finally
 statement-level AFTER INSERT
 triggers.

 If an UPDATE on a partitioned table causes a row to move
 to another partition, it will be performed as a DELETE
 from the original partition followed by an INSERT into
 the new partition. In this case, all row-level BEFORE
 UPDATE triggers and all row-level
 BEFORE DELETE triggers are fired on
 the original partition. Then all row-level BEFORE
 INSERT triggers are fired on the destination partition.
 The possibility of surprising outcomes should be considered when all these
 triggers affect the row being moved. As far as AFTER ROW
 triggers are concerned, AFTER DELETE
 and AFTER INSERT triggers are
 applied; but AFTER UPDATE triggers
 are not applied because the UPDATE has been converted to
 a DELETE and an INSERT. As far as
 statement-level triggers are concerned, none of the
 DELETE or INSERT triggers are fired,
 even if row movement occurs; only the UPDATE triggers
 defined on the target table used in the UPDATE statement
 will be fired.

 No separate triggers are defined for MERGE. Instead,
 statement-level or row-level UPDATE,
 DELETE, and INSERT triggers are fired
 depending on (for statement-level triggers) what actions are specified in
 the MERGE query and (for row-level triggers) what
 actions are performed.

 While running a MERGE command, statement-level
 BEFORE and AFTER triggers are
 fired for events specified in the actions of the MERGE
 command, irrespective of whether or not the action is ultimately performed.
 This is the same as an UPDATE statement that updates
 no rows, yet statement-level triggers are fired.
 The row-level triggers are fired only when a row is actually updated,
 inserted or deleted. So it's perfectly legal that while statement-level
 triggers are fired for certain types of action, no row-level triggers
 are fired for the same kind of action.

 Trigger functions invoked by per-statement triggers should always
 return NULL. Trigger functions invoked by per-row
 triggers can return a table row (a value of
 type HeapTuple) to the calling executor,
 if they choose. A row-level trigger fired before an operation has
 the following choices:

	
 It can return NULL to skip the operation for the
 current row. This instructs the executor to not perform the
 row-level operation that invoked the trigger (the insertion,
 modification, or deletion of a particular table row).

	
 For row-level INSERT
 and UPDATE triggers only, the returned row
 becomes the row that will be inserted or will replace the row
 being updated. This allows the trigger function to modify the
 row being inserted or updated.

 A row-level BEFORE trigger that does not intend to cause
 either of these behaviors must be careful to return as its result the same
 row that was passed in (that is, the NEW row
 for INSERT and UPDATE
 triggers, the OLD row for
 DELETE triggers).

 A row-level INSTEAD OF trigger should either return
 NULL to indicate that it did not modify any data from
 the view's underlying base tables, or it should return the view
 row that was passed in (the NEW row
 for INSERT and UPDATE
 operations, or the OLD row for
 DELETE operations). A nonnull return value is
 used to signal that the trigger performed the necessary data
 modifications in the view. This will cause the count of the number
 of rows affected by the command to be incremented. For
 INSERT and UPDATE operations only, the trigger
 may modify the NEW row before returning it. This will
 change the data returned by
 INSERT RETURNING or UPDATE RETURNING,
 and is useful when the view will not show exactly the same data
 that was provided.

 The return value is ignored for row-level triggers fired after an
 operation, and so they can return NULL.

 Some considerations apply for generated
 columns. Stored generated columns are computed after
 BEFORE triggers and before AFTER
 triggers. Therefore, the generated value can be inspected in
 AFTER triggers. In BEFORE triggers,
 the OLD row contains the old generated value, as one
 would expect, but the NEW row does not yet contain the
 new generated value and should not be accessed. In the C language
 interface, the content of the column is undefined at this point; a
 higher-level programming language should prevent access to a stored
 generated column in the NEW row in a
 BEFORE trigger. Changes to the value of a generated
 column in a BEFORE trigger are ignored and will be
 overwritten.

 If more than one trigger is defined for the same event on the same
 relation, the triggers will be fired in alphabetical order by
 trigger name. In the case of BEFORE and
 INSTEAD OF triggers, the possibly-modified row returned by
 each trigger becomes the input to the next trigger. If any
 BEFORE or INSTEAD OF trigger returns
 NULL, the operation is abandoned for that row and subsequent
 triggers are not fired (for that row).

 A trigger definition can also specify a Boolean WHEN
 condition, which will be tested to see whether the trigger should
 be fired. In row-level triggers the WHEN condition can
 examine the old and/or new values of columns of the row. (Statement-level
 triggers can also have WHEN conditions, although the feature
 is not so useful for them.) In a BEFORE trigger, the
 WHEN
 condition is evaluated just before the function is or would be executed,
 so using WHEN is not materially different from testing the
 same condition at the beginning of the trigger function. However, in
 an AFTER trigger, the WHEN condition is evaluated
 just after the row update occurs, and it determines whether an event is
 queued to fire the trigger at the end of statement. So when an
 AFTER trigger's
 WHEN condition does not return true, it is not necessary
 to queue an event nor to re-fetch the row at end of statement. This
 can result in significant speedups in statements that modify many
 rows, if the trigger only needs to be fired for a few of the rows.
 INSTEAD OF triggers do not support
 WHEN conditions.

 Typically, row-level BEFORE triggers are used for checking or
 modifying the data that will be inserted or updated. For example,
 a BEFORE trigger might be used to insert the current time into a
 timestamp column, or to check that two elements of the row are
 consistent. Row-level AFTER triggers are most sensibly
 used to propagate the updates to other tables, or make consistency
 checks against other tables. The reason for this division of labor is
 that an AFTER trigger can be certain it is seeing the final
 value of the row, while a BEFORE trigger cannot; there might
 be other BEFORE triggers firing after it. If you have no
 specific reason to make a trigger BEFORE or
 AFTER, the BEFORE case is more efficient, since
 the information about
 the operation doesn't have to be saved until end of statement.

 If a trigger function executes SQL commands then these
 commands might fire triggers again. This is known as cascading
 triggers. There is no direct limitation on the number of cascade
 levels. It is possible for cascades to cause a recursive invocation
 of the same trigger; for example, an INSERT
 trigger might execute a command that inserts an additional row
 into the same table, causing the INSERT trigger
 to be fired again. It is the trigger programmer's responsibility
 to avoid infinite recursion in such scenarios.

 When a trigger is being defined, arguments can be specified for
 it. The purpose of including arguments in the
 trigger definition is to allow different triggers with similar
 requirements to call the same function. As an example, there
 could be a generalized trigger function that takes as its
 arguments two column names and puts the current user in one and
 the current time stamp in the other. Properly written, this
 trigger function would be independent of the specific table it is
 triggering on. So the same function could be used for
 INSERT events on any table with suitable
 columns, to automatically track creation of records in a
 transaction table for example. It could also be used to track
 last-update events if defined as an UPDATE
 trigger.

 Each programming language that supports triggers has its own method
 for making the trigger input data available to the trigger function.
 This input data includes the type of trigger event (e.g.,
 INSERT or UPDATE) as well as any
 arguments that were listed in CREATE TRIGGER.
 For a row-level trigger, the input data also includes the
 NEW row for INSERT and
 UPDATE triggers, and/or the OLD row
 for UPDATE and DELETE triggers.

 By default, statement-level triggers do not have any way to examine the
 individual row(s) modified by the statement. But an AFTER
 STATEMENT trigger can request that transition tables
 be created to make the sets of affected rows available to the trigger.
 AFTER ROW triggers can also request transition tables, so
 that they can see the total changes in the table as well as the change in
 the individual row they are currently being fired for. The method for
 examining the transition tables again depends on the programming language
 that is being used, but the typical approach is to make the transition
 tables act like read-only temporary tables that can be accessed by SQL
 commands issued within the trigger function.

Visibility of Data Changes

 If you execute SQL commands in your trigger function, and these
 commands access the table that the trigger is for, then
 you need to be aware of the data visibility rules, because they determine
 whether these SQL commands will see the data change that the trigger
 is fired for. Briefly:

	
 Statement-level triggers follow simple visibility rules: none of
 the changes made by a statement are visible to statement-level
 BEFORE triggers, whereas all
 modifications are visible to statement-level AFTER
 triggers.

	
 The data change (insertion, update, or deletion) causing the
 trigger to fire is naturally not visible
 to SQL commands executed in a row-level BEFORE trigger,
 because it hasn't happened yet.

	
 However, SQL commands executed in a row-level BEFORE
 trigger will see the effects of data
 changes for rows previously processed in the same outer
 command. This requires caution, since the ordering of these
 change events is not in general predictable; an SQL command that
 affects multiple rows can visit the rows in any order.

	
 Similarly, a row-level INSTEAD OF trigger will see the
 effects of data changes made by previous firings of INSTEAD
 OF triggers in the same outer command.

	
 When a row-level AFTER trigger is fired, all data
 changes made
 by the outer command are already complete, and are visible to
 the invoked trigger function.

 If your trigger function is written in any of the standard procedural
 languages, then the above statements apply only if the function is
 declared VOLATILE. Functions that are declared
 STABLE or IMMUTABLE will not see changes made by
 the calling command in any case.

 Further information about data visibility rules can be found in
 the section called “Visibility of Data Changes”. The example in the section called “A Complete Trigger Example” contains a demonstration of these rules.

Writing Trigger Functions in C

 This section describes the low-level details of the interface to a
 trigger function. This information is only needed when writing
 trigger functions in C. If you are using a higher-level language then
 these details are handled for you. In most cases you should consider
 using a procedural language before writing your triggers in C. The
 documentation of each procedural language explains how to write a
 trigger in that language.

 Trigger functions must use the “version 1” function manager
 interface.

 When a function is called by the trigger manager, it is not passed
 any normal arguments, but it is passed a “context”
 pointer pointing to a TriggerData structure. C
 functions can check whether they were called from the trigger
 manager or not by executing the macro:

CALLED_AS_TRIGGER(fcinfo)

 which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

 If this returns true, then it is safe to cast
 fcinfo->context to type TriggerData
 * and make use of the pointed-to
 TriggerData structure. The function must
 not alter the TriggerData
 structure or any of the data it points to.

 struct TriggerData is defined in
 commands/trigger.h:

typedef struct TriggerData
{
 NodeTag type;
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;
 Trigger *tg_trigger;
 TupleTableSlot *tg_trigslot;
 TupleTableSlot *tg_newslot;
 Tuplestorestate *tg_oldtable;
 Tuplestorestate *tg_newtable;
 const Bitmapset *tg_updatedcols;
} TriggerData;

 where the members are defined as follows:

	type
	
 Always T_TriggerData.

	tg_event
	
 Describes the event for which the function is called. You can use the
 following macros to examine tg_event:

	TRIGGER_FIRED_BEFORE(tg_event)
	
 Returns true if the trigger fired before the operation.

	TRIGGER_FIRED_AFTER(tg_event)
	
 Returns true if the trigger fired after the operation.

	TRIGGER_FIRED_INSTEAD(tg_event)
	
 Returns true if the trigger fired instead of the operation.

	TRIGGER_FIRED_FOR_ROW(tg_event)
	
 Returns true if the trigger fired for a row-level event.

	TRIGGER_FIRED_FOR_STATEMENT(tg_event)
	
 Returns true if the trigger fired for a statement-level event.

	TRIGGER_FIRED_BY_INSERT(tg_event)
	
 Returns true if the trigger was fired by an INSERT command.

	TRIGGER_FIRED_BY_UPDATE(tg_event)
	
 Returns true if the trigger was fired by an UPDATE command.

	TRIGGER_FIRED_BY_DELETE(tg_event)
	
 Returns true if the trigger was fired by a DELETE command.

	TRIGGER_FIRED_BY_TRUNCATE(tg_event)
	
 Returns true if the trigger was fired by a TRUNCATE command.

	tg_relation
	
 A pointer to a structure describing the relation that the trigger fired for.
 Look at utils/rel.h for details about
 this structure. The most interesting things are
 tg_relation->rd_att (descriptor of the relation
 tuples) and tg_relation->rd_rel->relname
 (relation name; the type is not char* but
 NameData; use
 SPI_getrelname(tg_relation) to get a char* if you
 need a copy of the name).

	tg_trigtuple
	
 A pointer to the row for which the trigger was fired. This is
 the row being inserted, updated, or deleted. If this trigger
 was fired for an INSERT or
 DELETE then this is what you should return
 from the function if you don't want to replace the row with
 a different one (in the case of INSERT) or
 skip the operation. For triggers on foreign tables, values of system
 columns herein are unspecified.

	tg_newtuple
	
 A pointer to the new version of the row, if the trigger was
 fired for an UPDATE, and NULL if
 it is for an INSERT or a
 DELETE. This is what you have to return
 from the function if the event is an UPDATE
 and you don't want to replace this row by a different one or
 skip the operation. For triggers on foreign tables, values of system
 columns herein are unspecified.

	tg_trigger
	
 A pointer to a structure of type Trigger,
 defined in utils/reltrigger.h:

typedef struct Trigger
{
 Oid tgoid;
 char *tgname;
 Oid tgfoid;
 int16 tgtype;
 char tgenabled;
 bool tgisinternal;
 bool tgisclone;
 Oid tgconstrrelid;
 Oid tgconstrindid;
 Oid tgconstraint;
 bool tgdeferrable;
 bool tginitdeferred;
 int16 tgnargs;
 int16 tgnattr;
 int16 *tgattr;
 char **tgargs;
 char *tgqual;
 char *tgoldtable;
 char *tgnewtable;
} Trigger;

 where tgname is the trigger's name,
 tgnargs is the number of arguments in
 tgargs, and tgargs is an array of
 pointers to the arguments specified in the CREATE
 TRIGGER statement. The other members are for internal use
 only.

	tg_trigslot
	
 The slot containing tg_trigtuple,
 or a NULL pointer if there is no such tuple.

	tg_newslot
	
 The slot containing tg_newtuple,
 or a NULL pointer if there is no such tuple.

	tg_oldtable
	
 A pointer to a structure of type Tuplestorestate
 containing zero or more rows in the format specified by
 tg_relation, or a NULL pointer
 if there is no OLD TABLE transition relation.

	tg_newtable
	
 A pointer to a structure of type Tuplestorestate
 containing zero or more rows in the format specified by
 tg_relation, or a NULL pointer
 if there is no NEW TABLE transition relation.

	tg_updatedcols
	
 For UPDATE triggers, a bitmap set indicating the
 columns that were updated by the triggering command. Generic trigger
 functions can use this to optimize actions by not having to deal with
 columns that were not changed.

 As an example, to determine whether a column with attribute number
 attnum (1-based) is a member of this bitmap set,
 call bms_is_member(attnum -
 FirstLowInvalidHeapAttributeNumber,
 trigdata->tg_updatedcols)).

 For triggers other than UPDATE triggers, this will
 be NULL.

 To allow queries issued through SPI to reference transition tables, see
 SPI_register_trigger_data(3).

 A trigger function must return either a
 HeapTuple pointer or a NULL pointer
 (not an SQL null value, that is, do not set isNull true).
 Be careful to return either
 tg_trigtuple or tg_newtuple,
 as appropriate, if you don't want to modify the row being operated on.

A Complete Trigger Example

 Here is a very simple example of a trigger function written in C.
 (Examples of triggers written in procedural languages can be found
 in the documentation of the procedural languages.)

 The function trigf reports the number of rows in the
 table ttest and skips the actual operation if the
 command attempts to insert a null value into the column
 x. (So the trigger acts as a not-null constraint but
 doesn't abort the transaction.)

 First, the table definition:

CREATE TABLE ttest (
 x integer
);

 This is the source code of the trigger function:

#include "postgres.h"
#include "fmgr.h"
#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* ... triggers ... */
#include "utils/rel.h" /* ... and relations */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
 TriggerData *trigdata = (TriggerData *) fcinfo->context;
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

 /* make sure it's called as a trigger at all */
 if (!CALLED_AS_TRIGGER(fcinfo))
 elog(ERROR, "trigf: not called by trigger manager");

 /* tuple to return to executor */
 if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
 rettuple = trigdata->tg_newtuple;
 else
 rettuple = trigdata->tg_trigtuple;

 /* check for null values */
 if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
 && TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 checknull = true;

 if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = trigdata->tg_relation->rd_att;

 /* connect to SPI manager */
 if ((ret = SPI_connect()) < 0)
 elog(ERROR, "trigf (fired %s): SPI_connect returned %d", when, ret);

 /* get number of rows in table */
 ret = SPI_exec("SELECT count(*) FROM ttest", 0);

 if (ret < 0)
 elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when, ret);

 /* count(*) returns int8, so be careful to convert */
 i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
 SPI_tuptable->tupdesc,
 1,
 &isnull));

 elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

 SPI_finish();

 if (checknull)
 {
 SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return PointerGetDatum(rettuple);
}

 After you have compiled the source code (see the section called “Compiling and Linking Dynamically-Loaded Functions”), declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
 AS 'filename'
 LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

 Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

=> SELECT * FROM ttest;
 x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1
vac=> SELECT * FROM ttest;
 x

 1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
 ^^^^^^
 remember what we said about visibility.
INSERT 167794 1
=> SELECT * FROM ttest;
 x

 1
 2
(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
 x

 1
 4
(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
 ^^^^^^
 remember what we said about visibility.
DELETE 2
=> SELECT * FROM ttest;
 x

(0 rows)

 There are more complex examples in
 src/test/regress/regress.c and
 in spi.

Chapter 40. Event Triggers

 To supplement the trigger mechanism discussed in Chapter 39, Triggers,
 PostgreSQL™ also provides event triggers. Unlike regular
 triggers, which are attached to a single table and capture only DML events,
 event triggers are global to a particular database and are capable of
 capturing DDL events.

 Like regular triggers, event triggers can be written in any procedural
 language that includes event trigger support, or in C, but not in plain
 SQL.

Overview of Event Trigger Behavior

 An event trigger fires whenever the event with which it is associated
 occurs in the database in which it is defined. Currently, the only
 supported events are
 ddl_command_start,
 ddl_command_end,
 table_rewrite
 and sql_drop.
 Support for additional events may be added in future releases.

 The ddl_command_start event occurs just before the
 execution of a CREATE, ALTER, DROP,
 SECURITY LABEL,
 COMMENT, GRANT or REVOKE
 command. No check whether the affected object exists or doesn't exist is
 performed before the event trigger fires.
 As an exception, however, this event does not occur for
 DDL commands targeting shared objects — databases, roles, and tablespaces
 — or for commands targeting event triggers themselves. The event trigger
 mechanism does not support these object types.
 ddl_command_start also occurs just before the execution of a
 SELECT INTO command, since this is equivalent to
 CREATE TABLE AS.

 The ddl_command_end event occurs just after the execution of
 this same set of commands. To obtain more details on the DDL
 operations that took place, use the set-returning function
 pg_event_trigger_ddl_commands() from the
 ddl_command_end event trigger code (see
 the section called “Event Trigger Functions”). Note that the trigger fires
 after the actions have taken place (but before the transaction commits),
 and thus the system catalogs can be read as already changed.

 The sql_drop event occurs just before the
 ddl_command_end event trigger for any operation that drops
 database objects. To list the objects that have been dropped, use the
 set-returning function pg_event_trigger_dropped_objects() from the
 sql_drop event trigger code (see
 the section called “Event Trigger Functions”). Note that
 the trigger is executed after the objects have been deleted from the
 system catalogs, so it's not possible to look them up anymore.

 The table_rewrite event occurs just before a table is
 rewritten by some actions of the commands ALTER TABLE and
 ALTER TYPE. While other
 control statements are available to rewrite a table,
 like CLUSTER and VACUUM,
 the table_rewrite event is not triggered by them.
 To find the OID of the table that was rewritten, use the function
 pg_event_trigger_table_rewrite_oid() (see
 the section called “Event Trigger Functions”). To discover the reason(s)
 for the rewrite, use the function
 pg_event_trigger_table_rewrite_reason().

 Event triggers (like other functions) cannot be executed in an aborted
 transaction. Thus, if a DDL command fails with an error, any associated
 ddl_command_end triggers will not be executed. Conversely,
 if a ddl_command_start trigger fails with an error, no
 further event triggers will fire, and no attempt will be made to execute
 the command itself. Similarly, if a ddl_command_end trigger
 fails with an error, the effects of the DDL statement will be rolled
 back, just as they would be in any other case where the containing
 transaction aborts.

 For a complete list of commands supported by the event trigger mechanism,
 see the section called “Event Trigger Firing Matrix”.

 Event triggers are created using the command CREATE EVENT TRIGGER(7).
 In order to create an event trigger, you must first create a function with
 the special return type event_trigger. This function
 need not (and may not) return a value; the return type serves merely as
 a signal that the function is to be invoked as an event trigger.

 If more than one event trigger is defined for a particular event, they will
 fire in alphabetical order by trigger name.

 A trigger definition can also specify a WHEN
 condition so that, for example, a ddl_command_start
 trigger can be fired only for particular commands which the user wishes
 to intercept. A common use of such triggers is to restrict the range of
 DDL operations which users may perform.

Event Trigger Firing Matrix

 Table 40.1, “Event Trigger Support by Command Tag” lists all commands
 for which event triggers are supported.

Table 40.1. Event Trigger Support by Command Tag
	Command Tag	ddl_​command_​start	ddl_​command_​end	sql_​drop	table_​rewrite	Notes
	ALTER AGGREGATE	X	X	-	-	
	ALTER COLLATION	X	X	-	-	
	ALTER CONVERSION	X	X	-	-	
	ALTER DOMAIN	X	X	-	-	
	ALTER DEFAULT PRIVILEGES	X	X	-	-	
	ALTER EXTENSION	X	X	-	-	
	ALTER FOREIGN DATA WRAPPER	X	X	-	-	
	ALTER FOREIGN TABLE	X	X	X	-	
	ALTER FUNCTION	X	X	-	-	
	ALTER LANGUAGE	X	X	-	-	
	ALTER LARGE OBJECT	X	X	-	-	
	ALTER MATERIALIZED VIEW	X	X	-	X	
	ALTER OPERATOR	X	X	-	-	
	ALTER OPERATOR CLASS	X	X	-	-	
	ALTER OPERATOR FAMILY	X	X	-	-	
	ALTER POLICY	X	X	-	-	
	ALTER PROCEDURE	X	X	-	-	
	ALTER PUBLICATION	X	X	-	-	
	ALTER ROUTINE	X	X	-	-	
	ALTER SCHEMA	X	X	-	-	
	ALTER SEQUENCE	X	X	-	-	
	ALTER SERVER	X	X	-	-	
	ALTER STATISTICS	X	X	-	-	
	ALTER SUBSCRIPTION	X	X	-	-	
	ALTER TABLE	X	X	X	X	
	ALTER TEXT SEARCH CONFIGURATION	X	X	-	-	
	ALTER TEXT SEARCH DICTIONARY	X	X	-	-	
	ALTER TEXT SEARCH PARSER	X	X	-	-	
	ALTER TEXT SEARCH TEMPLATE	X	X	-	-	
	ALTER TRIGGER	X	X	-	-	
	ALTER TYPE	X	X	-	X	
	ALTER USER MAPPING	X	X	-	-	
	ALTER VIEW	X	X	-	-	
	COMMENT	X	X	-	-	Only for local objects
	CREATE ACCESS METHOD	X	X	-	-	
	CREATE AGGREGATE	X	X	-	-	
	CREATE CAST	X	X	-	-	
	CREATE COLLATION	X	X	-	-	
	CREATE CONVERSION	X	X	-	-	
	CREATE DOMAIN	X	X	-	-	
	CREATE EXTENSION	X	X	-	-	
	CREATE FOREIGN DATA WRAPPER	X	X	-	-	
	CREATE FOREIGN TABLE	X	X	-	-	
	CREATE FUNCTION	X	X	-	-	
	CREATE INDEX	X	X	-	-	
	CREATE LANGUAGE	X	X	-	-	
	CREATE MATERIALIZED VIEW	X	X	-	-	
	CREATE OPERATOR	X	X	-	-	
	CREATE OPERATOR CLASS	X	X	-	-	
	CREATE OPERATOR FAMILY	X	X	-	-	
	CREATE POLICY	X	X	-	-	
	CREATE PROCEDURE	X	X	-	-	
	CREATE PUBLICATION	X	X	-	-	
	CREATE RULE	X	X	-	-	
	CREATE SCHEMA	X	X	-	-	
	CREATE SEQUENCE	X	X	-	-	
	CREATE SERVER	X	X	-	-	
	CREATE STATISTICS	X	X	-	-	
	CREATE SUBSCRIPTION	X	X	-	-	
	CREATE TABLE	X	X	-	-	
	CREATE TABLE AS	X	X	-	-	
	CREATE TEXT SEARCH CONFIGURATION	X	X	-	-	
	CREATE TEXT SEARCH DICTIONARY	X	X	-	-	
	CREATE TEXT SEARCH PARSER	X	X	-	-	
	CREATE TEXT SEARCH TEMPLATE	X	X	-	-	
	CREATE TRIGGER	X	X	-	-	
	CREATE TYPE	X	X	-	-	
	CREATE USER MAPPING	X	X	-	-	
	CREATE VIEW	X	X	-	-	
	DROP ACCESS METHOD	X	X	X	-	
	DROP AGGREGATE	X	X	X	-	
	DROP CAST	X	X	X	-	
	DROP COLLATION	X	X	X	-	
	DROP CONVERSION	X	X	X	-	
	DROP DOMAIN	X	X	X	-	
	DROP EXTENSION	X	X	X	-	
	DROP FOREIGN DATA WRAPPER	X	X	X	-	
	DROP FOREIGN TABLE	X	X	X	-	
	DROP FUNCTION	X	X	X	-	
	DROP INDEX	X	X	X	-	
	DROP LANGUAGE	X	X	X	-	
	DROP MATERIALIZED VIEW	X	X	X	-	
	DROP OPERATOR	X	X	X	-	
	DROP OPERATOR CLASS	X	X	X	-	
	DROP OPERATOR FAMILY	X	X	X	-	
	DROP OWNED	X	X	X	-	
	DROP POLICY	X	X	X	-	
	DROP PROCEDURE	X	X	X	-	
	DROP PUBLICATION	X	X	X	-	
	DROP ROUTINE	X	X	X	-	
	DROP RULE	X	X	X	-	
	DROP SCHEMA	X	X	X	-	
	DROP SEQUENCE	X	X	X	-	
	DROP SERVER	X	X	X	-	
	DROP STATISTICS	X	X	X	-	
	DROP SUBSCRIPTION	X	X	X	-	
	DROP TABLE	X	X	X	-	
	DROP TEXT SEARCH CONFIGURATION	X	X	X	-	
	DROP TEXT SEARCH DICTIONARY	X	X	X	-	
	DROP TEXT SEARCH PARSER	X	X	X	-	
	DROP TEXT SEARCH TEMPLATE	X	X	X	-	
	DROP TRIGGER	X	X	X	-	
	DROP TYPE	X	X	X	-	
	DROP USER MAPPING	X	X	X	-	
	DROP VIEW	X	X	X	-	
	GRANT	X	X	-	-	Only for local objects
	IMPORT FOREIGN SCHEMA	X	X	-	-	
	REFRESH MATERIALIZED VIEW	X	X	-	-	
	REVOKE	X	X	-	-	Only for local objects
	SECURITY LABEL	X	X	-	-	Only for local objects
	SELECT INTO	X	X	-	-	

Writing Event Trigger Functions in C

 This section describes the low-level details of the interface to an
 event trigger function. This information is only needed when writing
 event trigger functions in C. If you are using a higher-level language
 then these details are handled for you. In most cases you should
 consider using a procedural language before writing your event triggers
 in C. The documentation of each procedural language explains how to
 write an event trigger in that language.

 Event trigger functions must use the “version 1” function
 manager interface.

 When a function is called by the event trigger manager, it is not passed
 any normal arguments, but it is passed a “context” pointer
 pointing to a EventTriggerData structure. C functions can
 check whether they were called from the event trigger manager or not by
 executing the macro:

CALLED_AS_EVENT_TRIGGER(fcinfo)

 which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context, EventTriggerData))

 If this returns true, then it is safe to cast
 fcinfo->context to type EventTriggerData
 * and make use of the pointed-to
 EventTriggerData structure. The function must
 not alter the EventTriggerData
 structure or any of the data it points to.

 struct EventTriggerData is defined in
 commands/event_trigger.h:

typedef struct EventTriggerData
{
 NodeTag type;
 const char *event; /* event name */
 Node *parsetree; /* parse tree */
 CommandTag tag; /* command tag */
} EventTriggerData;

 where the members are defined as follows:

	type
	
 Always T_EventTriggerData.

	event
	
 Describes the event for which the function is called, one of
 "ddl_command_start", "ddl_command_end",
 "sql_drop", "table_rewrite".
 See the section called “Overview of Event Trigger Behavior” for the meaning of these
 events.

	parsetree
	
 A pointer to the parse tree of the command. Check the PostgreSQL
 source code for details. The parse tree structure is subject to change
 without notice.

	tag
	
 The command tag associated with the event for which the event trigger
 is run, for example "CREATE FUNCTION".

 An event trigger function must return a NULL pointer
 (not an SQL null value, that is, do not
 set isNull true).

A Complete Event Trigger Example

 Here is a very simple example of an event trigger function written in C.
 (Examples of triggers written in procedural languages can be found in
 the documentation of the procedural languages.)

 The function noddl raises an exception each time it is called.
 The event trigger definition associated the function with
 the ddl_command_start event. The effect is that all DDL
 commands (with the exceptions mentioned
 in the section called “Overview of Event Trigger Behavior”) are prevented from running.

 This is the source code of the trigger function:

#include "postgres.h"
#include "commands/event_trigger.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(noddl);

Datum
noddl(PG_FUNCTION_ARGS)
{
 EventTriggerData *trigdata;

 if (!CALLED_AS_EVENT_TRIGGER(fcinfo)) /* internal error */
 elog(ERROR, "not fired by event trigger manager");

 trigdata = (EventTriggerData *) fcinfo->context;

 ereport(ERROR,
 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
 errmsg("command \"%s\" denied",
 GetCommandTagName(trigdata->tag))));

 PG_RETURN_NULL();
}

 After you have compiled the source code (see the section called “Compiling and Linking Dynamically-Loaded Functions”),
 declare the function and the triggers:

CREATE FUNCTION noddl() RETURNS event_trigger
 AS 'noddl' LANGUAGE C;

CREATE EVENT TRIGGER noddl ON ddl_command_start
 EXECUTE FUNCTION noddl();

 Now you can test the operation of the trigger:

=# \dy
 List of event triggers
 Name | Event | Owner | Enabled | Function | Tags
-------+-------------------+-------+---------+----------+------
 noddl | ddl_command_start | dim | enabled | noddl |
(1 row)

=# CREATE TABLE foo(id serial);
ERROR: command "CREATE TABLE" denied

 In this situation, in order to be able to run some DDL commands when you
 need to do so, you have to either drop the event trigger or disable it. It
 can be convenient to disable the trigger for only the duration of a
 transaction:

BEGIN;
ALTER EVENT TRIGGER noddl DISABLE;
CREATE TABLE foo (id serial);
ALTER EVENT TRIGGER noddl ENABLE;
COMMIT;

 (Recall that DDL commands on event triggers themselves are not affected by
 event triggers.)

A Table Rewrite Event Trigger Example

 Thanks to the table_rewrite event, it is possible to implement
 a table rewriting policy only allowing the rewrite in maintenance windows.

 Here's an example implementing such a policy.

CREATE OR REPLACE FUNCTION no_rewrite()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$

--- Implement local Table Rewriting policy:
--- public.foo is not allowed rewriting, ever
--- other tables are only allowed rewriting between 1am and 6am
--- unless they have more than 100 blocks

DECLARE
 table_oid oid := pg_event_trigger_table_rewrite_oid();
 current_hour integer := extract('hour' from current_time);
 pages integer;
 max_pages integer := 100;
BEGIN
 IF pg_event_trigger_table_rewrite_oid() = 'public.foo'::regclass
 THEN
 RAISE EXCEPTION 'you''re not allowed to rewrite the table %',
 table_oid::regclass;
 END IF;

 SELECT INTO pages relpages FROM pg_class WHERE oid = table_oid;
 IF pages > max_pages
 THEN
 RAISE EXCEPTION 'rewrites only allowed for table with less than % pages',
 max_pages;
 END IF;

 IF current_hour NOT BETWEEN 1 AND 6
 THEN
 RAISE EXCEPTION 'rewrites only allowed between 1am and 6am';
 END IF;
END;
$$;

CREATE EVENT TRIGGER no_rewrite_allowed
 ON table_rewrite
 EXECUTE FUNCTION no_rewrite();

Chapter 41. The Rule System

 This chapter discusses the rule system in
 PostgreSQL™. Production rule systems
 are conceptually simple, but there are many subtle points
 involved in actually using them.

 Some other database systems define active database rules, which
 are usually stored procedures and triggers. In
 PostgreSQL™, these can be implemented
 using functions and triggers as well.

 The rule system (more precisely speaking, the query rewrite rule
 system) is totally different from stored procedures and triggers.
 It modifies queries to take rules into consideration, and then
 passes the modified query to the query planner for planning and
 execution. It is very powerful, and can be used for many things
 such as query language procedures, views, and versions. The
 theoretical foundations and the power of this rule system are
 also discussed in [ston90b] and [ong90].

The Query Tree

 To understand how the rule system works it is necessary to know
 when it is invoked and what its input and results are.

 The rule system is located between the parser and the planner.
 It takes the output of the parser, one query tree, and the user-defined
 rewrite rules, which are also
 query trees with some extra information, and creates zero or more
 query trees as result. So its input and output are always things
 the parser itself could have produced and thus, anything it sees
 is basically representable as an SQL statement.

 Now what is a query tree? It is an internal representation of an
 SQL statement where the single parts that it is
 built from are stored separately. These query trees can be shown
 in the server log if you set the configuration parameters
 debug_print_parse,
 debug_print_rewritten, or
 debug_print_plan. The rule actions are also
 stored as query trees, in the system catalog
 pg_rewrite. They are not formatted like
 the log output, but they contain exactly the same information.

 Reading a raw query tree requires some experience. But since
 SQL representations of query trees are
 sufficient to understand the rule system, this chapter will not
 teach how to read them.

 When reading the SQL representations of the
 query trees in this chapter it is necessary to be able to identify
 the parts the statement is broken into when it is in the query tree
 structure. The parts of a query tree are

	
 the command type

	
 This is a simple value telling which command
 (SELECT, INSERT,
 UPDATE, DELETE) produced
 the query tree.

	
 the range table

	
 The range table is a list of relations that are used in the query.
 In a SELECT statement these are the relations given after
 the FROM key word.

 Every range table entry identifies a table or view and tells
 by which name it is called in the other parts of the query.
 In the query tree, the range table entries are referenced by
 number rather than by name, so here it doesn't matter if there
 are duplicate names as it would in an SQL
 statement. This can happen after the range tables of rules
 have been merged in. The examples in this chapter will not have
 this situation.

	
 the result relation

	
 This is an index into the range table that identifies the
 relation where the results of the query go.

 SELECT queries don't have a result
 relation. (The special case of SELECT INTO is
 mostly identical to CREATE TABLE followed by
 INSERT ... SELECT, and is not discussed
 separately here.)

 For INSERT, UPDATE, and
 DELETE commands, the result relation is the table
 (or view!) where the changes are to take effect.

	
 the target list

	
 The target list is a list of expressions that define the
 result of the query. In the case of a
 SELECT, these expressions are the ones that
 build the final output of the query. They correspond to the
 expressions between the key words SELECT
 and FROM. (* is just an
 abbreviation for all the column names of a relation. It is
 expanded by the parser into the individual columns, so the
 rule system never sees it.)

 DELETE commands don't need a normal target list
 because they don't produce any result. Instead, the planner
 adds a special CTID entry to the empty target list,
 to allow the executor to find the row to be deleted.
 (CTID is added when the result relation is an ordinary
 table. If it is a view, a whole-row variable is added instead, by
 the rule system, as described in the section called “Updating a View”.)

 For INSERT commands, the target list describes
 the new rows that should go into the result relation. It consists of the
 expressions in the VALUES clause or the ones from the
 SELECT clause in INSERT
 ... SELECT. The first step of the rewrite process adds
 target list entries for any columns that were not assigned to by
 the original command but have defaults. Any remaining columns (with
 neither a given value nor a default) will be filled in by the
 planner with a constant null expression.

 For UPDATE commands, the target list
 describes the new rows that should replace the old ones. In the
 rule system, it contains just the expressions from the SET
 column = expression part of the command. The planner will
 handle missing columns by inserting expressions that copy the values
 from the old row into the new one. Just as for DELETE,
 a CTID or whole-row variable is added so that
 the executor can identify the old row to be updated.

 Every entry in the target list contains an expression that can
 be a constant value, a variable pointing to a column of one
 of the relations in the range table, a parameter, or an expression
 tree made of function calls, constants, variables, operators, etc.

	
 the qualification

	
 The query's qualification is an expression much like one of
 those contained in the target list entries. The result value of
 this expression is a Boolean that tells whether the operation
 (INSERT, UPDATE,
 DELETE, or SELECT) for the
 final result row should be executed or not. It corresponds to the WHERE clause
 of an SQL statement.

	
 the join tree

	
 The query's join tree shows the structure of the FROM clause.
 For a simple query like SELECT ... FROM a, b, c, the join tree is just
 a list of the FROM items, because we are allowed to join them in
 any order. But when JOIN expressions, particularly outer joins,
 are used, we have to join in the order shown by the joins.
 In that case, the join tree shows the structure of the JOIN expressions. The
 restrictions associated with particular JOIN clauses (from ON or
 USING expressions) are stored as qualification expressions attached
 to those join-tree nodes. It turns out to be convenient to store
 the top-level WHERE expression as a qualification attached to the
 top-level join-tree item, too. So really the join tree represents
 both the FROM and WHERE clauses of a SELECT.

	
 the others

	
 The other parts of the query tree like the ORDER BY
 clause aren't of interest here. The rule system
 substitutes some entries there while applying rules, but that
 doesn't have much to do with the fundamentals of the rule
 system.

Views and the Rule System

 Views in PostgreSQL™ are implemented
 using the rule system. A view is basically an empty table (having no
 actual storage) with an ON SELECT DO INSTEAD rule.
 Conventionally, that rule is named _RETURN.
 So a view like

CREATE VIEW myview AS SELECT * FROM mytab;

 is very nearly the same thing as

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

 although you can't actually write that, because tables are not
 allowed to have ON SELECT rules.

 A view can also have other kinds of DO INSTEAD
 rules, allowing INSERT, UPDATE,
 or DELETE commands to be performed on the view
 despite its lack of underlying storage.
 This is discussed further below, in
 the section called “Updating a View”.

How SELECT Rules Work

 Rules ON SELECT are applied to all queries as the last step, even
 if the command given is an INSERT,
 UPDATE or DELETE. And they
 have different semantics from rules on the other command types in that they modify the
 query tree in place instead of creating a new one. So
 SELECT rules are described first.

 Currently, there can be only one action in an ON SELECT rule, and it must
 be an unconditional SELECT action that is INSTEAD. This restriction was
 required to make rules safe enough to open them for ordinary users, and
 it restricts ON SELECT rules to act like views.

 The examples for this chapter are two join views that do some
 calculations and some more views using them in turn. One of the
 two first views is customized later by adding rules for
 INSERT, UPDATE, and
 DELETE operations so that the final result will
 be a view that behaves like a real table with some magic
 functionality. This is not such a simple example to start from and
 this makes things harder to get into. But it's better to have one
 example that covers all the points discussed step by step rather
 than having many different ones that might mix up in mind.

 The real tables we need in the first two rule system descriptions
 are these:

CREATE TABLE shoe_data (
 shoename text, -- primary key
 sh_avail integer, -- available number of pairs
 slcolor text, -- preferred shoelace color
 slminlen real, -- minimum shoelace length
 slmaxlen real, -- maximum shoelace length
 slunit text -- length unit
);

CREATE TABLE shoelace_data (
 sl_name text, -- primary key
 sl_avail integer, -- available number of pairs
 sl_color text, -- shoelace color
 sl_len real, -- shoelace length
 sl_unit text -- length unit
);

CREATE TABLE unit (
 un_name text, -- primary key
 un_fact real -- factor to transform to cm
);

 As you can see, they represent shoe-store data.

 The views are created as:

CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

 The CREATE VIEW command for the
 shoelace view (which is the simplest one we
 have) will create a relation shoelace and an entry in
 pg_rewrite that tells that there is a
 rewrite rule that must be applied whenever the relation shoelace
 is referenced in a query's range table. The rule has no rule
 qualification (discussed later, with the non-SELECT rules, since
 SELECT rules currently cannot have them) and it is INSTEAD. Note
 that rule qualifications are not the same as query qualifications.
 The action of our rule has a query qualification.
 The action of the rule is one query tree that is a copy of the
 SELECT statement in the view creation command.

Note

 The two extra range
 table entries for NEW and OLD that you can see in
 the pg_rewrite entry aren't of interest
 for SELECT rules.

 Now we populate unit, shoe_data
 and shoelace_data and run a simple query on a view:

INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 7 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

 This is the simplest SELECT you can do on our
 views, so we take this opportunity to explain the basics of view
 rules. The SELECT * FROM shoelace was
 interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace;

 and this is given to the rule system. The rule system walks through the
 range table and checks if there are rules
 for any relation. When processing the range table entry for
 shoelace (the only one up to now) it finds the
 _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len, s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

 To expand the view, the rewriter simply creates a subquery range-table
 entry containing the rule's action query tree, and substitutes this
 range table entry for the original one that referenced the view. The
 resulting rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) shoelace;

 There is one difference however: the subquery's range table has two
 extra entries shoelace old and shoelace new. These entries don't
 participate directly in the query, since they aren't referenced by
 the subquery's join tree or target list. The rewriter uses them
 to store the access privilege check information that was originally present
 in the range-table entry that referenced the view. In this way, the
 executor will still check that the user has proper privileges to access
 the view, even though there's no direct use of the view in the rewritten
 query.

 That was the first rule applied. The rule system will continue checking
 the remaining range-table entries in the top query (in this example there
 are no more), and it will recursively check the range-table entries in
 the added subquery to see if any of them reference views. (But it
 won't expand old or new — otherwise we'd have infinite recursion!)
 In this example, there are no rewrite rules for shoelace_data or unit,
 so rewriting is complete and the above is the final result given to
 the planner.

 Now we want to write a query that finds out for which shoes currently in the store
 we have the matching shoelaces (color and length) and where the
 total number of exactly matching pairs is greater than or equal to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1 | 2 | sl1 | 5 | 2
 sh3 | 4 | sl7 | 7 | 4
(2 rows)

 The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

 The first rule applied will be the one for the
 shoe_ready view and it results in the
 query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

 Similarly, the rules for shoe and
 shoelace are substituted into the range table of
 the subquery, leading to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM (SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name) rsh,
 (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

 This might look inefficient, but the planner will collapse this into a
 single-level query tree by “pulling up” the subqueries,
 and then it will plan the joins just as if we'd written them out
 manually. So collapsing the query tree is an optimization that the
 rewrite system doesn't have to concern itself with.

View Rules in Non-SELECT Statements

 Two details of the query tree aren't touched in the description of
 view rules above. These are the command type and the result relation.
 In fact, the command type is not needed by view rules, but the result
 relation may affect the way in which the query rewriter works, because
 special care needs to be taken if the result relation is a view.

 There are only a few differences between a query tree for a
 SELECT and one for any other
 command. Obviously, they have a different command type and for a
 command other than a SELECT, the result
 relation points to the range-table entry where the result should
 go. Everything else is absolutely the same. So having two tables
 t1 and t2 with columns a and
 b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

 are nearly identical. In particular:

	
 The range tables contain entries for the tables t1 and t2.

	
 The target lists contain one variable that points to column
 b of the range table entry for table t2.

	
 The qualification expressions compare the columns a of both
 range-table entries for equality.

	
 The join trees show a simple join between t1 and t2.

 The consequence is, that both query trees result in similar
 execution plans: They are both joins over the two tables. For the
 UPDATE the missing columns from t1 are added to
 the target list by the planner and the final query tree will read
 as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

 and thus the executor run over the join will produce exactly the
 same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

 But there is a little problem in
 UPDATE: the part of the executor plan that does
 the join does not care what the results from the join are
 meant for. It just produces a result set of rows. The fact that
 one is a SELECT command and the other is an
 UPDATE is handled higher up in the executor, where
 it knows that this is an UPDATE, and it knows that
 this result should go into table t1. But which of the rows
 that are there has to be replaced by the new row?

 To resolve this problem, another entry is added to the target list
 in UPDATE (and also in
 DELETE) statements: the current tuple ID
 (CTID).
 This is a system column containing the
 file block number and position in the block for the row. Knowing
 the table, the CTID can be used to retrieve the
 original row of t1 to be updated. After adding the
 CTID to the target list, the query actually looks like:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

 Now another detail of PostgreSQL™ enters
 the stage. Old table rows aren't overwritten, and this
 is why ROLLBACK is fast. In an UPDATE,
 the new result row is inserted into the table (after stripping the
 CTID) and in the row header of the old row, which the
 CTID pointed to, the cmax and
 xmax entries are set to the current command counter
 and current transaction ID. Thus the old row is hidden, and after
 the transaction commits the vacuum cleaner can eventually remove
 the dead row.

 Knowing all that, we can simply apply view rules in absolutely
 the same way to any command. There is no difference.

The Power of Views in PostgreSQL™

 The above demonstrates how the rule system incorporates view
 definitions into the original query tree. In the second example, a
 simple SELECT from one view created a final
 query tree that is a join of 4 tables (unit was used twice with
 different names).

 The benefit of implementing views with the rule system is
 that the planner has all
 the information about which tables have to be scanned plus the
 relationships between these tables plus the restrictive
 qualifications from the views plus the qualifications from
 the original query
 in one single query tree. And this is still the situation
 when the original query is already a join over views.
 The planner has to decide which is
 the best path to execute the query, and the more information
 the planner has, the better this decision can be. And
 the rule system as implemented in PostgreSQL™
 ensures that this is all information available about the query
 up to that point.

Updating a View

 What happens if a view is named as the target relation for an
 INSERT, UPDATE, or
 DELETE? Doing the substitutions
 described above would give a query tree in which the result
 relation points at a subquery range-table entry, which will not
 work. There are several ways in which PostgreSQL™
 can support the appearance of updating a view, however.
 In order of user-experienced complexity those are: automatically substitute
 in the underlying table for the view, execute a user-defined trigger,
 or rewrite the query per a user-defined rule.
 These options are discussed below.

 If the subquery selects from a single base relation and is simple
 enough, the rewriter can automatically replace the subquery with the
 underlying base relation so that the INSERT,
 UPDATE, or DELETE is applied to
 the base relation in the appropriate way. Views that are
 “simple enough” for this are called automatically
 updatable. For detailed information on the kinds of view that can
 be automatically updated, see CREATE VIEW(7).

 Alternatively, the operation may be handled by a user-provided
 INSTEAD OF trigger on the view
 (see CREATE TRIGGER(7)).
 Rewriting works slightly differently
 in this case. For INSERT, the rewriter does
 nothing at all with the view, leaving it as the result relation
 for the query. For UPDATE and
 DELETE, it's still necessary to expand the
 view query to produce the “old” rows that the command will
 attempt to update or delete. So the view is expanded as normal,
 but another unexpanded range-table entry is added to the query
 to represent the view in its capacity as the result relation.

 The problem that now arises is how to identify the rows to be
 updated in the view. Recall that when the result relation
 is a table, a special CTID entry is added to the target
 list to identify the physical locations of the rows to be updated.
 This does not work if the result relation is a view, because a view
 does not have any CTID, since its rows do not have
 actual physical locations. Instead, for an UPDATE
 or DELETE operation, a special wholerow
 entry is added to the target list, which expands to include all
 columns from the view. The executor uses this value to supply the
 “old” row to the INSTEAD OF trigger. It is
 up to the trigger to work out what to update based on the old and
 new row values.

 Another possibility is for the user to define INSTEAD
 rules that specify substitute actions for INSERT,
 UPDATE, and DELETE commands on
 a view. These rules will rewrite the command, typically into a command
 that updates one or more tables, rather than views. That is the topic
 of the section called “Rules on INSERT, UPDATE, and DELETE”.

 Note that rules are evaluated first, rewriting the original query
 before it is planned and executed. Therefore, if a view has
 INSTEAD OF triggers as well as rules on INSERT,
 UPDATE, or DELETE, then the rules will be
 evaluated first, and depending on the result, the triggers may not be
 used at all.

 Automatic rewriting of an INSERT,
 UPDATE, or DELETE query on a
 simple view is always tried last. Therefore, if a view has rules or
 triggers, they will override the default behavior of automatically
 updatable views.

 If there are no INSTEAD rules or INSTEAD OF
 triggers for the view, and the rewriter cannot automatically rewrite
 the query as an update on the underlying base relation, an error will
 be thrown because the executor cannot update a view as such.

Materialized Views

 Materialized views in PostgreSQL™ use the
 rule system like views do, but persist the results in a table-like form.
 The main differences between:

CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

 and:

CREATE TABLE mymatview AS SELECT * FROM mytab;

 are that the materialized view cannot subsequently be directly updated
 and that the query used to create the materialized view is stored in
 exactly the same way that a view's query is stored, so that fresh data
 can be generated for the materialized view with:

REFRESH MATERIALIZED VIEW mymatview;

 The information about a materialized view in the
 PostgreSQL™ system catalogs is exactly
 the same as it is for a table or view. So for the parser, a
 materialized view is a relation, just like a table or a view. When
 a materialized view is referenced in a query, the data is returned
 directly from the materialized view, like from a table; the rule is
 only used for populating the materialized view.

 While access to the data stored in a materialized view is often much
 faster than accessing the underlying tables directly or through a view,
 the data is not always current; yet sometimes current data is not needed.
 Consider a table which records sales:

CREATE TABLE invoice (
 invoice_no integer PRIMARY KEY,
 seller_no integer, -- ID of salesperson
 invoice_date date, -- date of sale
 invoice_amt numeric(13,2) -- amount of sale
);

 If people want to be able to quickly graph historical sales data, they
 might want to summarize, and they may not care about the incomplete data
 for the current date:

CREATE MATERIALIZED VIEW sales_summary AS
 SELECT
 seller_no,
 invoice_date,
 sum(invoice_amt)::numeric(13,2) as sales_amt
 FROM invoice
 WHERE invoice_date < CURRENT_DATE
 GROUP BY
 seller_no,
 invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, invoice_date);

 This materialized view might be useful for displaying a graph in the
 dashboard created for salespeople. A job could be scheduled to update
 the statistics each night using this SQL statement:

REFRESH MATERIALIZED VIEW sales_summary;

 Another use for a materialized view is to allow faster access to data
 brought across from a remote system through a foreign data wrapper.
 A simple example using file_fdw is below, with timings,
 but since this is using cache on the local system the performance
 difference compared to access to a remote system would usually be greater
 than shown here. Notice we are also exploiting the ability to put an
 index on the materialized view, whereas file_fdw does
 not support indexes; this advantage might not apply for other sorts of
 foreign data access.

 Setup:

CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
 SERVER local_file
 OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

 Now let's spell-check a word. Using file_fdw directly:

SELECT count(*) FROM words WHERE word = 'caterpiler';

 count

 0
(1 row)

 With EXPLAIN ANALYZE, we see:

 Aggregate (cost=21763.99..21764.00 rows=1 width=0) (actual time=188.180..188.181 rows=1 loops=1)
 -> Foreign Scan on words (cost=0.00..21761.41 rows=1032 width=0) (actual time=188.177..188.177 rows=0 loops=1)
 Filter: (word = 'caterpiler'::text)
 Rows Removed by Filter: 479829
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms

 If the materialized view is used instead, the query is much faster:

 Aggregate (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042 rows=1 loops=1)
 -> Index Only Scan using wrd_word on wrd (cost=0.42..4.44 rows=1 width=0) (actual time=0.039..0.039 rows=0 loops=1)
 Index Cond: (word = 'caterpiler'::text)
 Heap Fetches: 0
 Planning time: 0.164 ms
 Execution time: 0.117 ms

 Either way, the word is spelled wrong, so let's look for what we might
 have wanted. Again using file_fdw and
 pg_trgm:

SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

 word

 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)

 Limit (cost=11583.61..11583.64 rows=10 width=32) (actual time=1431.591..1431.594 rows=10 loops=1)
 -> Sort (cost=11583.61..11804.76 rows=88459 width=32) (actual time=1431.589..1431.591 rows=10 loops=1)
 Sort Key: ((word <-> 'caterpiler'::text))
 Sort Method: top-N heapsort Memory: 25kB
 -> Foreign Scan on words (cost=0.00..9672.05 rows=88459 width=32) (actual time=0.057..1286.455 rows=479829 loops=1)
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms

 Using the materialized view:

 Limit (cost=0.29..1.06 rows=10 width=10) (actual time=187.222..188.257 rows=10 loops=1)
 -> Index Scan using wrd_trgm on wrd (cost=0.29..37020.87 rows=479829 width=10) (actual time=187.219..188.252 rows=10 loops=1)
 Order By: (word <-> 'caterpiler'::text)
 Planning time: 0.196 ms
 Execution time: 198.640 ms

 If you can tolerate periodic update of the remote data to the local
 database, the performance benefit can be substantial.

Rules on INSERT, UPDATE, and DELETE

 Rules that are defined on INSERT, UPDATE,
 and DELETE are significantly different from the view rules
 described in the previous sections. First, their CREATE
 RULE command allows more:

	
 They are allowed to have no action.

	
 They can have multiple actions.

	
 They can be INSTEAD or ALSO (the default).

	
 The pseudorelations NEW and OLD become useful.

	
 They can have rule qualifications.

 Second, they don't modify the query tree in place. Instead they
 create zero or more new query trees and can throw away the
 original one.

Caution

 In many cases, tasks that could be performed by rules
 on INSERT/UPDATE/DELETE are better done
 with triggers. Triggers are notationally a bit more complicated, but their
 semantics are much simpler to understand. Rules tend to have surprising
 results when the original query contains volatile functions: volatile
 functions may get executed more times than expected in the process of
 carrying out the rules.

 Also, there are some cases that are not supported by these types of rules at
 all, notably including WITH clauses in the original query and
 multiple-assignment sub-SELECTs in the SET list
 of UPDATE queries. This is because copying these constructs
 into a rule query would result in multiple evaluations of the sub-query,
 contrary to the express intent of the query's author.

How Update Rules Work

 Keep the syntax:

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

 in mind.
 In the following, update rules means rules that are defined
 on INSERT, UPDATE, or DELETE.

 Update rules get applied by the rule system when the result
 relation and the command type of a query tree are equal to the
 object and event given in the CREATE RULE command.
 For update rules, the rule system creates a list of query trees.
 Initially the query-tree list is empty.
 There can be zero (NOTHING key word), one, or multiple actions.
 To simplify, we will look at a rule with one action. This rule
 can have a qualification or not and it can be INSTEAD or
 ALSO (the default).

 What is a rule qualification? It is a restriction that tells
 when the actions of the rule should be done and when not. This
 qualification can only reference the pseudorelations NEW and/or OLD,
 which basically represent the relation that was given as object (but with a
 special meaning).

 So we have three cases that produce the following query trees for
 a one-action rule.

	No qualification, with either ALSO or
 INSTEAD
	
 the query tree from the rule action with the original query
 tree's qualification added

	Qualification given and ALSO
	
 the query tree from the rule action with the rule
 qualification and the original query tree's qualification
 added

	Qualification given and INSTEAD
	
 the query tree from the rule action with the rule
 qualification and the original query tree's qualification; and
 the original query tree with the negated rule qualification
 added

 Finally, if the rule is ALSO, the unchanged original query tree is
 added to the list. Since only qualified INSTEAD rules already add the
 original query tree, we end up with either one or two output query trees
 for a rule with one action.

 For ON INSERT rules, the original query (if not suppressed by INSTEAD)
 is done before any actions added by rules. This allows the actions to
 see the inserted row(s). But for ON UPDATE and ON
 DELETE rules, the original query is done after the actions added by rules.
 This ensures that the actions can see the to-be-updated or to-be-deleted
 rows; otherwise, the actions might do nothing because they find no rows
 matching their qualifications.

 The query trees generated from rule actions are thrown into the
 rewrite system again, and maybe more rules get applied resulting
 in additional or fewer query trees.
 So a rule's actions must have either a different
 command type or a different result relation than the rule itself is
 on, otherwise this recursive process will end up in an infinite loop.
 (Recursive expansion of a rule will be detected and reported as an
 error.)

 The query trees found in the actions of the
 pg_rewrite system catalog are only
 templates. Since they can reference the range-table entries for
 NEW and OLD, some substitutions have to be made before they can be
 used. For any reference to NEW, the target list of the original
 query is searched for a corresponding entry. If found, that
 entry's expression replaces the reference. Otherwise, NEW means the
 same as OLD (for an UPDATE) or is replaced by
 a null value (for an INSERT). Any reference to OLD is
 replaced by a reference to the range-table entry that is the
 result relation.

 After the system is done applying update rules, it applies view rules to the
 produced query tree(s). Views cannot insert new update actions so
 there is no need to apply update rules to the output of view rewriting.

A First Rule Step by Step

 Say we want to trace changes to the sl_avail column in the
 shoelace_data relation. So we set up a log table
 and a rule that conditionally writes a log entry when an
 UPDATE is performed on
 shoelace_data.

CREATE TABLE shoelace_log (
 sl_name text, -- shoelace changed
 sl_avail integer, -- new available value
 log_who text, -- who did it
 log_when timestamp -- when
);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail <> OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 current_user,
 current_timestamp
);

 Now someone does:

UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = 'sl7';

 and we look at the log table:

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST
(1 row)

 That's what we expected. What happened in the background is the following.
 The parser created the query tree:

UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE shoelace_data.sl_name = 'sl7';

 There is a rule log_shoelace that is ON UPDATE with the rule
 qualification expression:

NEW.sl_avail <> OLD.sl_avail

 and the action:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old;

 (This looks a little strange since you cannot normally write
 INSERT ... VALUES ... FROM. The FROM
 clause here is just to indicate that there are range-table entries
 in the query tree for new and old.
 These are needed so that they can be referenced by variables in
 the INSERT command's query tree.)

 The rule is a qualified ALSO rule, so the rule system
 has to return two query trees: the modified rule action and the original
 query tree. In step 1, the range table of the original query is
 incorporated into the rule's action query tree. This results in:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data;

 In step 2, the rule qualification is added to it, so the result set
 is restricted to rows where sl_avail changes:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail;

 (This looks even stranger, since INSERT ... VALUES doesn't have
 a WHERE clause either, but the planner and executor will have no
 difficulty with it. They need to support this same functionality
 anyway for INSERT ... SELECT.)

 In step 3, the original query tree's qualification is added,
 restricting the result set further to only the rows that would have been touched
 by the original query:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

 Step 4 replaces references to NEW by the target list entries from the
 original query tree or by the matching variable references
 from the result relation:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

 Step 5 changes OLD references into result relation references:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

 That's it. Since the rule is ALSO, we also output the
 original query tree. In short, the output from the rule system
 is a list of two query trees that correspond to these statements:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = 'sl7';

 These are executed in this order, and that is exactly what
 the rule was meant to do.

 The substitutions and the added qualifications
 ensure that, if the original query would be, say:

UPDATE shoelace_data SET sl_color = 'green'
 WHERE sl_name = 'sl7';

 no log entry would get written. In that case, the original query
 tree does not contain a target list entry for
 sl_avail, so NEW.sl_avail will get
 replaced by shoelace_data.sl_avail. Thus, the extra
 command generated by the rule is:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, shoelace_data.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

 and that qualification will never be true.

 It will also work if the original query modifies multiple rows. So
 if someone issued the command:

UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = 'black';

 four rows in fact get updated (sl1, sl2, sl3, and sl4).
 But sl3 already has sl_avail = 0. In this case, the original
 query trees qualification is different and that results
 in the extra query tree:

INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 0 <> shoelace_data.sl_avail
 AND shoelace_data.sl_color = 'black';

 being generated by the rule. This query tree will surely insert
 three new log entries. And that's absolutely correct.

 Here we can see why it is important that the original query tree
 is executed last. If the UPDATE had been
 executed first, all the rows would have already been set to zero, so the
 logging INSERT would not find any row where
 0 <> shoelace_data.sl_avail.

Cooperation with Views

 A simple way to protect view relations from the mentioned
 possibility that someone can try to run INSERT,
 UPDATE, or DELETE on them is
 to let those query trees get thrown away. So we could create the rules:

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

 If someone now tries to do any of these operations on the view
 relation shoe, the rule system will
 apply these rules. Since the rules have
 no actions and are INSTEAD, the resulting list of
 query trees will be empty and the whole query will become
 nothing because there is nothing left to be optimized or
 executed after the rule system is done with it.

 A more sophisticated way to use the rule system is to
 create rules that rewrite the query tree into one that
 does the right operation on the real tables. To do that
 on the shoelace view, we create
 the following rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
 DO INSTEAD
 UPDATE shoelace_data
 SET sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

 If you want to support RETURNING queries on the view,
 you need to make the rules include RETURNING clauses that
 compute the view rows. This is usually pretty trivial for views on a
 single table, but it's a bit tedious for join views such as
 shoelace. An example for the insert case is:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
)
 RETURNING
 shoelace_data.*,
 (SELECT shoelace_data.sl_len * u.un_fact
 FROM unit u WHERE shoelace_data.sl_unit = u.un_name);

 Note that this one rule supports both INSERT and
 INSERT RETURNING queries on the view — the
 RETURNING clause is simply ignored for INSERT.

 Now assume that once in a while, a pack of shoelaces arrives at
 the shop and a big parts list along with it. But you don't want
 to manually update the shoelace view every
 time. Instead we set up two little tables: one where you can
 insert the items from the part list, and one with a special
 trick. The creation commands for these are:

CREATE TABLE shoelace_arrive (
 arr_name text,
 arr_quant integer
);

CREATE TABLE shoelace_ok (
 ok_name text,
 ok_quant integer
);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace
 SET sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

 Now you can fill the table shoelace_arrive with
 the data from the parts list:

SELECT * FROM shoelace_arrive;

 arr_name | arr_quant
----------+-----------
 sl3 | 10
 sl6 | 20
 sl8 | 20
(3 rows)

 Take a quick look at the current data:

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

 Now move the arrived shoelaces in:

INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

 and check the results:

SELECT * FROM shoelace ORDER BY sl_name;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(8 rows)

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

 It's a long way from the one INSERT ... SELECT
 to these results. And the description of the query-tree
 transformation will be the last in this chapter. First, there is
 the parser's output:

INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

 Now the first rule shoelace_ok_ins is applied and turns this
 into:

UPDATE shoelace
 SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace
 WHERE shoelace.sl_name = shoelace_arrive.arr_name;

 and throws away the original INSERT on
 shoelace_ok. This rewritten query is passed to
 the rule system again, and the second applied rule
 shoelace_upd produces:

UPDATE shoelace_data
 SET sl_name = shoelace.sl_name,
 sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data
 WHERE shoelace.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = shoelace.sl_name;

 Again it's an INSTEAD rule and the previous query tree is trashed.
 Note that this query still uses the view shoelace.
 But the rule system isn't finished with this step, so it continues
 and applies the _RETURN rule on it, and we get:

UPDATE shoelace_data
 SET sl_name = s.sl_name,
 sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name;

 Finally, the rule log_shoelace gets applied,
 producing the extra query tree:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u,
 shoelace_data old, shoelace_data new
 shoelace_log shoelace_log
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

 After that the rule system runs out of rules and returns the
 generated query trees.

 So we end up with two final query trees that are equivalent to the
 SQL statements:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
 SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

 The result is that data coming from one relation inserted into another,
 changed into updates on a third, changed into updating
 a fourth plus logging that final update in a fifth
 gets reduced into two queries.

 There is a little detail that's a bit ugly. Looking at the two
 queries, it turns out that the shoelace_data
 relation appears twice in the range table where it could
 definitely be reduced to one. The planner does not handle it and
 so the execution plan for the rule systems output of the
 INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

 while omitting the extra range table entry would result in a

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

 which produces exactly the same entries in the log table. Thus,
 the rule system caused one extra scan on the table
 shoelace_data that is absolutely not
 necessary. And the same redundant scan is done once more in the
 UPDATE. But it was a really hard job to make
 that all possible at all.

 Now we make a final demonstration of the
 PostgreSQL™ rule system and its power.
 Say you add some shoelaces with extraordinary colors to your
 database:

INSERT INTO shoelace VALUES ('sl9', 0, 'pink', 35.0, 'inch', 0.0);
INSERT INTO shoelace VALUES ('sl10', 1000, 'magenta', 40.0, 'inch', 0.0);

 We would like to make a view to check which
 shoelace entries do not fit any shoe in color.
 The view for this is:

CREATE VIEW shoelace_mismatch AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

 Its output is:

SELECT * FROM shoelace_mismatch;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl9 | 0 | pink | 35 | inch | 88.9
 sl10 | 1000 | magenta | 40 | inch | 101.6

 Now we want to set it up so that mismatching shoelaces that are
 not in stock are deleted from the database.
 To make it a little harder for PostgreSQL™,
 we don't delete it directly. Instead we create one more view:

CREATE VIEW shoelace_can_delete AS
 SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

 and do it this way:

DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_can_delete
 WHERE sl_name = shoelace.sl_name);

 The results are:

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl10 | 1000 | magenta | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(9 rows)

 A DELETE on a view, with a subquery qualification that
 in total uses 4 nesting/joined views, where one of them
 itself has a subquery qualification containing a view
 and where calculated view columns are used,
 gets rewritten into
 one single query tree that deletes the requested data
 from a real table.

 There are probably only a few situations out in the real world
 where such a construct is necessary. But it makes you feel
 comfortable that it works.

Rules and Privileges

 Due to rewriting of queries by the PostgreSQL™
 rule system, other tables/views than those used in the original
 query get accessed. When update rules are used, this can include write access
 to tables.

 Rewrite rules don't have a separate owner. The owner of
 a relation (table or view) is automatically the owner of the
 rewrite rules that are defined for it.
 The PostgreSQL™ rule system changes the
 behavior of the default access control system. With the exception of
 SELECT rules associated with security invoker views
 (see CREATE VIEW),
 all relations that are used due to rules get checked against the
 privileges of the rule owner, not the user invoking the rule.
 This means that, except for security invoker views, users only need the
 required privileges for the tables/views that are explicitly named in
 their queries.

 For example: A user has a list of phone numbers where some of
 them are private, the others are of interest for the assistant of the office.
 The user can construct the following:

CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS
 SELECT person, CASE WHEN NOT private THEN phone END AS phone
 FROM phone_data;
GRANT SELECT ON phone_number TO assistant;

 Nobody except that user (and the database superusers) can access the
 phone_data table. But because of the GRANT,
 the assistant can run a SELECT on the
 phone_number view. The rule system will rewrite the
 SELECT from phone_number into a
 SELECT from phone_data.
 Since the user is the owner of
 phone_number and therefore the owner of the rule, the
 read access to phone_data is now checked against the user's
 privileges and the query is permitted. The check for accessing
 phone_number is also performed, but this is done
 against the invoking user, so nobody but the user and the
 assistant can use it.

 The privileges are checked rule by rule. So the assistant is for now the
 only one who can see the public phone numbers. But the assistant can set up
 another view and grant access to that to the public. Then, anyone
 can see the phone_number data through the assistant's view.
 What the assistant cannot do is to create a view that directly
 accesses phone_data. (Actually the assistant can, but it will not work since
 every access will be denied during the permission checks.)
 And as soon as the user notices that the assistant opened
 their phone_number view, the user can revoke the assistant's access. Immediately, any
 access to the assistant's view would fail.

 One might think that this rule-by-rule checking is a security
 hole, but in fact it isn't. But if it did not work this way, the assistant
 could set up a table with the same columns as phone_number and
 copy the data to there once per day. Then it's the assistant's own data and
 the assistant can grant access to everyone they want. A
 GRANT command means, “I trust you”.
 If someone you trust does the thing above, it's time to
 think it over and then use REVOKE.

 Note that while views can be used to hide the contents of certain
 columns using the technique shown above, they cannot be used to reliably
 conceal the data in unseen rows unless the
 security_barrier flag has been set. For example,
 the following view is insecure:

CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

 This view might seem secure, since the rule system will rewrite any
 SELECT from phone_number into a
 SELECT from phone_data and add the
 qualification that only entries where phone does not begin
 with 412 are wanted. But if the user can create their own functions,
 it is not difficult to convince the planner to execute the user-defined
 function prior to the NOT LIKE expression.
 For example:

CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN
 RAISE NOTICE '% => %', $1, $2;
 RETURN true;
END;
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);

 Every person and phone number in the phone_data table will be
 printed as a NOTICE, because the planner will choose to
 execute the inexpensive tricky function before the
 more expensive NOT LIKE. Even if the user is
 prevented from defining new functions, built-in functions can be used in
 similar attacks. (For example, most casting functions include their
 input values in the error messages they produce.)

 Similar considerations apply to update rules. In the examples of
 the previous section, the owner of the tables in the example
 database could grant the privileges SELECT,
 INSERT, UPDATE, and DELETE on
 the shoelace view to someone else, but only
 SELECT on shoelace_log. The rule action to
 write log entries will still be executed successfully, and that
 other user could see the log entries. But they could not create fake
 entries, nor could they manipulate or remove existing ones. In this
 case, there is no possibility of subverting the rules by convincing
 the planner to alter the order of operations, because the only rule
 which references shoelace_log is an unqualified
 INSERT. This might not be true in more complex scenarios.

 When it is necessary for a view to provide row-level security, the
 security_barrier attribute should be applied to
 the view. This prevents maliciously-chosen functions and operators from
 being passed values from rows until after the view has done its work. For
 example, if the view shown above had been created like this, it would
 be secure:

CREATE VIEW phone_number WITH (security_barrier) AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

 Views created with the security_barrier may perform
 far worse than views created without this option. In general, there is
 no way to avoid this: the fastest possible plan must be rejected
 if it may compromise security. For this reason, this option is not
 enabled by default.

 The query planner has more flexibility when dealing with functions that
 have no side effects. Such functions are referred to as LEAKPROOF, and
 include many simple, commonly used operators, such as many equality
 operators. The query planner can safely allow such functions to be evaluated
 at any point in the query execution process, since invoking them on rows
 invisible to the user will not leak any information about the unseen rows.
 Further, functions which do not take arguments or which are not passed any
 arguments from the security barrier view do not have to be marked as
 LEAKPROOF to be pushed down, as they never receive data
 from the view. In contrast, a function that might throw an error depending
 on the values received as arguments (such as one that throws an error in the
 event of overflow or division by zero) is not leak-proof, and could provide
 significant information about the unseen rows if applied before the security
 view's row filters.

 It is important to understand that even a view created with the
 security_barrier option is intended to be secure only
 in the limited sense that the contents of the invisible tuples will not be
 passed to possibly-insecure functions. The user may well have other means
 of making inferences about the unseen data; for example, they can see the
 query plan using EXPLAIN, or measure the run time of
 queries against the view. A malicious attacker might be able to infer
 something about the amount of unseen data, or even gain some information
 about the data distribution or most common values (since these things may
 affect the run time of the plan; or even, since they are also reflected in
 the optimizer statistics, the choice of plan). If these types of "covert
 channel" attacks are of concern, it is probably unwise to grant any access
 to the data at all.

Rules and Command Status

 The PostgreSQL™ server returns a command
 status string, such as INSERT 149592 1, for each
 command it receives. This is simple enough when there are no rules
 involved, but what happens when the query is rewritten by rules?

 Rules affect the command status as follows:

	
 If there is no unconditional INSTEAD rule for the query, then
 the originally given query will be executed, and its command
 status will be returned as usual. (But note that if there were
 any conditional INSTEAD rules, the negation of their qualifications
 will have been added to the original query. This might reduce the
 number of rows it processes, and if so the reported status will
 be affected.)

	
 If there is any unconditional INSTEAD rule for the query, then
 the original query will not be executed at all. In this case,
 the server will return the command status for the last query
 that was inserted by an INSTEAD rule (conditional or
 unconditional) and is of the same command type
 (INSERT, UPDATE, or
 DELETE) as the original query. If no query
 meeting those requirements is added by any rule, then the
 returned command status shows the original query type and
 zeroes for the row-count and OID fields.

 The programmer can ensure that any desired INSTEAD rule is the one
 that sets the command status in the second case, by giving it the
 alphabetically last rule name among the active rules, so that it
 gets applied last.

Rules Versus Triggers

 Many things that can be done using triggers can also be
 implemented using the PostgreSQL™
 rule system. One of the things that cannot be implemented by
 rules are some kinds of constraints, especially foreign keys. It is possible
 to place a qualified rule that rewrites a command to NOTHING
 if the value of a column does not appear in another table.
 But then the data is silently thrown away and that's
 not a good idea. If checks for valid values are required,
 and in the case of an invalid value an error message should
 be generated, it must be done by a trigger.

 In this chapter, we focused on using rules to update views. All of
 the update rule examples in this chapter can also be implemented
 using INSTEAD OF triggers on the views. Writing such
 triggers is often easier than writing rules, particularly if complex
 logic is required to perform the update.

 For the things that can be implemented by both, which is best
 depends on the usage of the database.
 A trigger is fired once for each affected row. A rule modifies
 the query or generates an additional query. So if many
 rows are affected in one statement, a rule issuing one extra
 command is likely to be faster than a trigger that is
 called for every single row and must re-determine what to do
 many times. However, the trigger approach is conceptually far
 simpler than the rule approach, and is easier for novices to get right.

 Here we show an example of how the choice of rules versus triggers
 plays out in one situation. There are two tables:

CREATE TABLE computer (
 hostname text, -- indexed
 manufacturer text -- indexed
);

CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

 Both tables have many thousands of rows and the indexes on
 hostname are unique. The rule or trigger should
 implement a constraint that deletes rows from software
 that reference a deleted computer. The trigger would use this command:

DELETE FROM software WHERE hostname = $1;

 Since the trigger is called for each individual row deleted from
 computer, it can prepare and save the plan for this
 command and pass the hostname value in the
 parameter. The rule would be written as:

CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

 Now we look at different types of deletes. In the case of a:

DELETE FROM computer WHERE hostname = 'mypc.local.net';

 the table computer is scanned by index (fast), and the
 command issued by the trigger would also use an index scan (also fast).
 The extra command from the rule would be:

DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
 AND software.hostname = computer.hostname;

 Since there are appropriate indexes set up, the planner
 will create a plan of

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 So there would be not that much difference in speed between
 the trigger and the rule implementation.

 With the next delete we want to get rid of all the 2000 computers
 where the hostname starts with
 old. There are two possible commands to do that. One
 is:

DELETE FROM computer WHERE hostname >= 'old'
 AND hostname < 'ole'

 The command added by the rule will be:

DELETE FROM software WHERE computer.hostname >= 'old' AND computer.hostname < 'ole'
 AND software.hostname = computer.hostname;

 with the plan

Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

 The other possible command is:

DELETE FROM computer WHERE hostname ~ '^old';

 which results in the following executing plan for the command
 added by the rule:

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 This shows, that the planner does not realize that the
 qualification for hostname in
 computer could also be used for an index scan on
 software when there are multiple qualification
 expressions combined with AND, which is what it does
 in the regular-expression version of the command. The trigger will
 get invoked once for each of the 2000 old computers that have to be
 deleted, and that will result in one index scan over
 computer and 2000 index scans over
 software. The rule implementation will do it with two
 commands that use indexes. And it depends on the overall size of
 the table software whether the rule will still be faster in the
 sequential scan situation. 2000 command executions from the trigger over the SPI
 manager take some time, even if all the index blocks will soon be in the cache.

 The last command we look at is:

DELETE FROM computer WHERE manufacturer = 'bim';

 Again this could result in many rows to be deleted from
 computer. So the trigger will again run many commands
 through the executor. The command generated by the rule will be:

DELETE FROM software WHERE computer.manufacturer = 'bim'
 AND software.hostname = computer.hostname;

 The plan for that command will again be the nested loop over two
 index scans, only using a different index on computer:

Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

 In any of these cases, the extra commands from the rule system
 will be more or less independent from the number of affected rows
 in a command.

 The summary is, rules will only be significantly slower than
 triggers if their actions result in large and badly qualified
 joins, a situation where the planner fails.

Chapter 42. Procedural Languages

 PostgreSQL™ allows user-defined functions
 to be written in other languages besides SQL and C. These other
 languages are generically called procedural
 languages (PLs). For a function
 written in a procedural language, the database server has
 no built-in knowledge about how to interpret the function's source
 text. Instead, the task is passed to a special handler that knows
 the details of the language. The handler could either do all the
 work of parsing, syntax analysis, execution, etc. itself, or it
 could serve as “glue” between
 PostgreSQL™ and an existing implementation
 of a programming language. The handler itself is a
 C language function compiled into a shared object and
 loaded on demand, just like any other C function.

 There are currently four procedural languages available in the
 standard PostgreSQL™ distribution:
 PL/pgSQL (Chapter 43, PL/pgSQL — SQL Procedural Language),
 PL/Tcl (Chapter 44, PL/Tcl — Tcl Procedural Language),
 PL/Perl (Chapter 45, PL/Perl — Perl Procedural Language), and
 PL/Python (Chapter 46, PL/Python — Python Procedural Language).
 There are additional procedural languages available that are not
 included in the core distribution. Appendix H, External Projects
 has information about finding them. In addition other languages can
 be defined by users; the basics of developing a new procedural
 language are covered in Chapter 58, Writing a Procedural Language Handler.

Installing Procedural Languages

 A procedural language must be “installed” into each
 database where it is to be used. But procedural languages installed in
 the database template1 are automatically available in all
 subsequently created databases, since their entries in
 template1 will be copied by CREATE DATABASE.
 So the database administrator can
 decide which languages are available in which databases and can make
 some languages available by default if desired.

 For the languages supplied with the standard distribution, it is
 only necessary to execute CREATE EXTENSION
 language_name to install the language into the
 current database.
 The manual procedure described below is only recommended for
 installing languages that have not been packaged as extensions.

Procedure 42.1. Manual Procedural Language Installation

 A procedural language is installed in a database in five steps,
 which must be carried out by a database superuser. In most cases
 the required SQL commands should be packaged as the installation script
 of an “extension”, so that CREATE EXTENSION can be
 used to execute them.

	
 The shared object for the language handler must be compiled and
 installed into an appropriate library directory. This works in the same
 way as building and installing modules with regular user-defined C
 functions does; see the section called “Compiling and Linking Dynamically-Loaded Functions”. Often, the language
 handler will depend on an external library that provides the actual
 programming language engine; if so, that must be installed as well.

	
 The handler must be declared with the command

CREATE FUNCTION handler_function_name()
 RETURNS language_handler
 AS 'path-to-shared-object'
 LANGUAGE C;

 The special return type of language_handler tells
 the database system that this function does not return one of
 the defined SQL data types and is not directly usable
 in SQL statements.

	
 Optionally, the language handler can provide an “inline”
 handler function that executes anonymous code blocks
 (DO commands)
 written in this language. If an inline handler function
 is provided by the language, declare it with a command like

CREATE FUNCTION inline_function_name(internal)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C;

	
 Optionally, the language handler can provide a “validator”
 function that checks a function definition for correctness without
 actually executing it. The validator function is called by
 CREATE FUNCTION if it exists. If a validator function
 is provided by the language, declare it with a command like

CREATE FUNCTION validator_function_name(oid)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C STRICT;

	
 Finally, the PL must be declared with the command

CREATE [TRUSTED] LANGUAGE language_name
 HANDLER handler_function_name
 [INLINE inline_function_name]
 [VALIDATOR validator_function_name] ;

 The optional key word TRUSTED specifies that
 the language does not grant access to data that the user would
 not otherwise have. Trusted languages are designed for ordinary
 database users (those without superuser privilege) and allows them
 to safely create functions and
 procedures. Since PL functions are executed inside the database
 server, the TRUSTED flag should only be given
 for languages that do not allow access to database server
 internals or the file system. The languages
 PL/pgSQL,
 PL/Tcl, and
 PL/Perl
 are considered trusted; the languages
 PL/TclU,
 PL/PerlU, and
 PL/PythonU
 are designed to provide unlimited functionality and should
 not be marked trusted.

 Example 42.1, “Manual Installation of PL/Perl” shows how the manual
 installation procedure would work with the language
 PL/Perl.

Example 42.1. Manual Installation of PL/Perl

 The following command tells the database server where to find the
 shared object for the PL/Perl language's call
 handler function:

CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
 '$libdir/plperl' LANGUAGE C;

 PL/Perl has an inline handler function
 and a validator function, so we declare those too:

CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

 The command:

CREATE TRUSTED LANGUAGE plperl
 HANDLER plperl_call_handler
 INLINE plperl_inline_handler
 VALIDATOR plperl_validator;

 then defines that the previously declared functions
 should be invoked for functions and procedures where the
 language attribute is plperl.

 In a default PostgreSQL™ installation,
 the handler for the PL/pgSQL language
 is built and installed into the “library”
 directory; furthermore, the PL/pgSQL language
 itself is installed in all databases.
 If Tcl support is configured in, the handlers for
 PL/Tcl and PL/TclU are built and installed
 in the library directory, but the language itself is not installed in any
 database by default.
 Likewise, the PL/Perl and PL/PerlU
 handlers are built and installed if Perl support is configured, and the
 PL/PythonU handler is installed if Python support is
 configured, but these languages are not installed by default.

Chapter 43. PL/pgSQL — SQL Procedural Language

Overview

 PL/pgSQL is a loadable procedural
 language for the PostgreSQL™ database
 system. The design goals of PL/pgSQL were to create
 a loadable procedural language that

	
 can be used to create functions, procedures, and triggers,

	
 adds control structures to the SQL language,

	
 can perform complex computations,

	
 inherits all user-defined types, functions, procedures, and operators,

	
 can be defined to be trusted by the server,

	
 is easy to use.

 Functions created with PL/pgSQL can be
 used anywhere that built-in functions could be used.
 For example, it is possible to
 create complex conditional computation functions and later use
 them to define operators or use them in index expressions.

 In PostgreSQL™ 9.0 and later,
 PL/pgSQL is installed by default.
 However it is still a loadable module, so especially security-conscious
 administrators could choose to remove it.

Advantages of Using PL/pgSQL

 SQL is the language PostgreSQL™
 and most other relational databases use as query language. It's
 portable and easy to learn. But every SQL
 statement must be executed individually by the database server.

 That means that your client application must send each query to
 the database server, wait for it to be processed, receive and
 process the results, do some computation, then send further
 queries to the server. All this incurs interprocess
 communication and will also incur network overhead if your client
 is on a different machine than the database server.

 With PL/pgSQL you can group a block of
 computation and a series of queries inside
 the database server, thus having the power of a procedural
 language and the ease of use of SQL, but with considerable
 savings of client/server communication overhead.

	 Extra round trips between
 client and server are eliminated

	 Intermediate results that the client does not
 need do not have to be marshaled or transferred between server
 and client

	 Multiple rounds of query
 parsing can be avoided

 This can result in a considerable performance increase as
 compared to an application that does not use stored functions.

 Also, with PL/pgSQL you can use all
 the data types, operators and functions of SQL.

Supported Argument and Result Data Types

 Functions written in PL/pgSQL can accept
 as arguments any scalar or array data type supported by the server,
 and they can return a result of any of these types. They can also
 accept or return any composite type (row type) specified by name.
 It is also possible to declare a PL/pgSQL
 function as accepting record, which means that any
 composite type will do as input, or
 as returning record, which means that the result
 is a row type whose columns are determined by specification in the
 calling query, as discussed in the section called “Table Functions”.

 PL/pgSQL functions can be declared to accept a variable
 number of arguments by using the VARIADIC marker. This
 works exactly the same way as for SQL functions, as discussed in
 the section called “SQL Functions with Variable Numbers of Arguments”.

 PL/pgSQL functions can also be declared to
 accept and return the polymorphic types described in
 the section called “Polymorphic Types”, thus allowing the actual data
 types handled by the function to vary from call to call.
 Examples appear in the section called “Declaring Function Parameters”.

 PL/pgSQL functions can also be declared to return
 a “set” (or table) of any data type that can be returned as
 a single instance. Such a function generates its output by executing
 RETURN NEXT for each desired element of the result
 set, or by using RETURN QUERY to output the result of
 evaluating a query.

 Finally, a PL/pgSQL function can be declared to return
 void if it has no useful return value. (Alternatively, it
 could be written as a procedure in that case.)

 PL/pgSQL functions can also be declared with output
 parameters in place of an explicit specification of the return type.
 This does not add any fundamental capability to the language, but
 it is often convenient, especially for returning multiple values.
 The RETURNS TABLE notation can also be used in place
 of RETURNS SETOF.

 Specific examples appear in
 the section called “Declaring Function Parameters” and
 the section called “Returning from a Function”.

Structure of PL/pgSQL

 Functions written in PL/pgSQL are defined
 to the server by executing CREATE FUNCTION(7) commands.
 Such a command would normally look like, say,

CREATE FUNCTION somefunc(integer, text) RETURNS integer
AS 'function body text'
LANGUAGE plpgsql;

 The function body is simply a string literal so far as CREATE
 FUNCTION is concerned. It is often helpful to use dollar quoting
 (see the section called “Dollar-Quoted String Constants”) to write the function
 body, rather than the normal single quote syntax. Without dollar quoting,
 any single quotes or backslashes in the function body must be escaped by
 doubling them. Almost all the examples in this chapter use dollar-quoted
 literals for their function bodies.

 PL/pgSQL is a block-structured language.
 The complete text of a function body must be a
 block. A block is defined as:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END [label];

 Each declaration and each statement within a block is terminated
 by a semicolon. A block that appears within another block must
 have a semicolon after END, as shown above;
 however the final END that
 concludes a function body does not require a semicolon.

Tip

 A common mistake is to write a semicolon immediately after
 BEGIN. This is incorrect and will result in a syntax error.

 A label is only needed if you want to
 identify the block for use
 in an EXIT statement, or to qualify the names of the
 variables declared in the block. If a label is given after
 END, it must match the label at the block's beginning.

 All key words are case-insensitive.
 Identifiers are implicitly converted to lower case
 unless double-quoted, just as they are in ordinary SQL commands.

 Comments work the same way in PL/pgSQL code as in
 ordinary SQL. A double dash (--) starts a comment
 that extends to the end of the line. A /* starts a
 block comment that extends to the matching occurrence of
 */. Block comments nest.

 Any statement in the statement section of a block
 can be a subblock. Subblocks can be used for
 logical grouping or to localize variables to a small group
 of statements. Variables declared in a subblock mask any
 similarly-named variables of outer blocks for the duration
 of the subblock; but you can access the outer variables anyway
 if you qualify their names with their block's label. For example:

CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>
DECLARE
 quantity integer := 30;
BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 30
 quantity := 50;
 --
 -- Create a subblock
 --
 DECLARE
 quantity integer := 80;
 BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 80
 RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; -- Prints 50
 END;

 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 50

 RETURN quantity;
END;
$$ LANGUAGE plpgsql;

Note

 There is actually a hidden “outer block” surrounding the body
 of any PL/pgSQL function. This block provides the
 declarations of the function's parameters (if any), as well as some
 special variables such as FOUND (see
 the section called “Obtaining the Result Status”). The outer block is
 labeled with the function's name, meaning that parameters and special
 variables can be qualified with the function's name.

 It is important not to confuse the use of
 BEGIN/END for grouping statements in
 PL/pgSQL with the similarly-named SQL commands
 for transaction
 control. PL/pgSQL's BEGIN/END
 are only for grouping; they do not start or end a transaction.
 See the section called “Transaction Management” for information on managing
 transactions in PL/pgSQL.
 Also, a block containing an EXCEPTION clause effectively
 forms a subtransaction that can be rolled back without affecting the
 outer transaction. For more about that see the section called “Trapping Errors”.

Declarations

 All variables used in a block must be declared in the
 declarations section of the block.
 (The only exceptions are that the loop variable of a FOR loop
 iterating over a range of integer values is automatically declared as an
 integer variable, and likewise the loop variable of a FOR loop
 iterating over a cursor's result is automatically declared as a
 record variable.)

 PL/pgSQL variables can have any SQL data type, such as
 integer, varchar, and
 char.

 Here are some examples of variable declarations:

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

 The general syntax of a variable declaration is:

name [CONSTANT] type [COLLATE collation_name] [NOT NULL] [{ DEFAULT | := | = } expression];

 The DEFAULT clause, if given, specifies the initial value assigned
 to the variable when the block is entered. If the DEFAULT clause
 is not given then the variable is initialized to the
 SQL null value.
 The CONSTANT option prevents the variable from being
 assigned to after initialization, so that its value will remain constant
 for the duration of the block.
 The COLLATE option specifies a collation to use for the
 variable (see the section called “Collation of PL/pgSQL Variables”).
 If NOT NULL
 is specified, an assignment of a null value results in a run-time
 error. All variables declared as NOT NULL
 must have a nonnull default value specified.
 Equal (=) can be used instead of PL/SQL-compliant
 :=.

 A variable's default value is evaluated and assigned to the variable
 each time the block is entered (not just once per function call).
 So, for example, assigning now() to a variable of type
 timestamp causes the variable to have the
 time of the current function call, not the time when the function was
 precompiled.

 Examples:

quantity integer DEFAULT 32;
url varchar := 'http://mysite.com';
transaction_time CONSTANT timestamp with time zone := now();

 Once declared, a variable's value can be used in later initialization
 expressions in the same block, for example:

DECLARE
 x integer := 1;
 y integer := x + 1;

Declaring Function Parameters

 Parameters passed to functions are named with the identifiers
 $1, $2,
 etc. Optionally, aliases can be declared for
 $n
 parameter names for increased readability. Either the alias or the
 numeric identifier can then be used to refer to the parameter value.

 There are two ways to create an alias. The preferred way is to give a
 name to the parameter in the CREATE FUNCTION command,
 for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

 The other way is to explicitly declare an alias, using the
 declaration syntax

name ALIAS FOR $n;

 The same example in this style looks like:

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE
 subtotal ALIAS FOR $1;
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Note

 These two examples are not perfectly equivalent. In the first case,
 subtotal could be referenced as
 sales_tax.subtotal, but in the second case it could not.
 (Had we attached a label to the inner block, subtotal could
 be qualified with that label, instead.)

 Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE
 v_string ALIAS FOR $1;
 index ALIAS FOR $2;
BEGIN
 -- some computations using v_string and index here
END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS text AS $$
BEGIN
 RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;

 When a PL/pgSQL function is declared
 with output parameters, the output parameters are given
 $n names and optional
 aliases in just the same way as the normal input parameters. An
 output parameter is effectively a variable that starts out NULL;
 it should be assigned to during the execution of the function.
 The final value of the parameter is what is returned. For instance,
 the sales-tax example could also be done this way:

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN
 tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

 Notice that we omitted RETURNS real — we could have
 included it, but it would be redundant.

 To call a function with OUT parameters, omit the
 output parameter(s) in the function call:

SELECT sales_tax(100.00);

 Output parameters are most useful when returning multiple values.
 A trivial example is:

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

SELECT * FROM sum_n_product(2, 4);
 sum | prod
-----+------
 6 | 8

 As discussed in the section called “SQL Functions with Output Parameters”, this
 effectively creates an anonymous record type for the function's
 results. If a RETURNS clause is given, it must say
 RETURNS record.

 This also works with procedures, for example:

CREATE PROCEDURE sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

 In a call to a procedure, all the parameters must be specified. For
 output parameters, NULL may be specified when
 calling the procedure from plain SQL:

CALL sum_n_product(2, 4, NULL, NULL);
 sum | prod
-----+------
 6 | 8

 However, when calling a procedure
 from PL/pgSQL, you should instead write a
 variable for any output parameter; the variable will receive the result
 of the call. See the section called “Calling a Procedure”
 for details.

 Another way to declare a PL/pgSQL function
 is with RETURNS TABLE, for example:

CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN
 RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS s
 WHERE s.itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;

 This is exactly equivalent to declaring one or more OUT
 parameters and specifying RETURNS SETOF
 sometype.

 When the return type of a PL/pgSQL function
 is declared as a polymorphic type (see
 the section called “Polymorphic Types”), a special
 parameter $0 is created. Its data type is the actual
 return type of the function, as deduced from the actual input types.
 This allows the function to access its actual return type
 as shown in the section called “Copying Types”.
 $0 is initialized to null and can be modified by
 the function, so it can be used to hold the return value if desired,
 though that is not required. $0 can also be
 given an alias. For example, this function works on any data type
 that has a + operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)
RETURNS anyelement AS $$
DECLARE
 result ALIAS FOR $0;
BEGIN
 result := v1 + v2 + v3;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

 The same effect can be obtained by declaring one or more output parameters as
 polymorphic types. In this case the
 special $0 parameter is not used; the output
 parameters themselves serve the same purpose. For example:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement,
 OUT sum anyelement)
AS $$
BEGIN
 sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

 In practice it might be more useful to declare a polymorphic function
 using the anycompatible family of types, so that automatic
 promotion of the input arguments to a common type will occur.
 For example:

CREATE FUNCTION add_three_values(v1 anycompatible, v2 anycompatible, v3 anycompatible)
RETURNS anycompatible AS $$
BEGIN
 RETURN v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

 With this example, a call such as

SELECT add_three_values(1, 2, 4.7);

 will work, automatically promoting the integer inputs to numeric.
 The function using anyelement would require you to
 cast the three inputs to the same type manually.

ALIAS

newname ALIAS FOR oldname;

 The ALIAS syntax is more general than is suggested in the
 previous section: you can declare an alias for any variable, not just
 function parameters. The main practical use for this is to assign
 a different name for variables with predetermined names, such as
 NEW or OLD within
 a trigger function.

 Examples:

DECLARE
 prior ALIAS FOR old;
 updated ALIAS FOR new;

 Since ALIAS creates two different ways to name the same
 object, unrestricted use can be confusing. It's best to use it only
 for the purpose of overriding predetermined names.

Copying Types

variable%TYPE

 %TYPE provides the data type of a variable or
 table column. You can use this to declare variables that will hold
 database values. For example, let's say you have a column named
 user_id in your users
 table. To declare a variable with the same data type as
 users.user_id you write:

user_id users.user_id%TYPE;

 By using %TYPE you don't need to know the data
 type of the structure you are referencing, and most importantly,
 if the data type of the referenced item changes in the future (for
 instance: you change the type of user_id
 from integer to real), you might not need
 to change your function definition.

 %TYPE is particularly valuable in polymorphic
 functions, since the data types needed for internal variables can
 change from one call to the next. Appropriate variables can be
 created by applying %TYPE to the function's
 arguments or result placeholders.

Row Types

name table_name%ROWTYPE;
name composite_type_name;

 A variable of a composite type is called a row
 variable (or row-type variable). Such a variable
 can hold a whole row of a SELECT or FOR
 query result, so long as that query's column set matches the
 declared type of the variable.
 The individual fields of the row value
 are accessed using the usual dot notation, for example
 rowvar.field.

 A row variable can be declared to have the same type as the rows of
 an existing table or view, by using the
 table_name%ROWTYPE
 notation; or it can be declared by giving a composite type's name.
 (Since every table has an associated composite type of the same name,
 it actually does not matter in PostgreSQL™ whether you
 write %ROWTYPE or not. But the form with
 %ROWTYPE is more portable.)

 Parameters to a function can be
 composite types (complete table rows). In that case, the
 corresponding identifier $n will be a row variable, and fields can
 be selected from it, for example $1.user_id.

 Here is an example of using composite types. table1
 and table2 are existing tables having at least the
 mentioned fields:

CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE
 t2_row table2%ROWTYPE;
BEGIN
 SELECT * INTO t2_row FROM table2 WHERE ... ;
 RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;
END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

Record Types

name RECORD;

 Record variables are similar to row-type variables, but they have no
 predefined structure. They take on the actual row structure of the
 row they are assigned during a SELECT or FOR command. The substructure
 of a record variable can change each time it is assigned to.
 A consequence of this is that until a record variable is first assigned
 to, it has no substructure, and any attempt to access a
 field in it will draw a run-time error.

 Note that RECORD is not a true data type, only a placeholder.
 One should also realize that when a PL/pgSQL
 function is declared to return type record, this is not quite the
 same concept as a record variable, even though such a function might
 use a record variable to hold its result. In both cases the actual row
 structure is unknown when the function is written, but for a function
 returning record the actual structure is determined when the
 calling query is parsed, whereas a record variable can change its row
 structure on-the-fly.

Collation of PL/pgSQL Variables

 When a PL/pgSQL function has one or more
 parameters of collatable data types, a collation is identified for each
 function call depending on the collations assigned to the actual
 arguments, as described in the section called “Collation Support”. If a collation is
 successfully identified (i.e., there are no conflicts of implicit
 collations among the arguments) then all the collatable parameters are
 treated as having that collation implicitly. This will affect the
 behavior of collation-sensitive operations within the function.
 For example, consider

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;

 The first use of less_than will use the common collation
 of text_field_1 and text_field_2 for
 the comparison, while the second use will use C collation.

 Furthermore, the identified collation is also assumed as the collation of
 any local variables that are of collatable types. Thus this function
 would not work any differently if it were written as

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE
 local_a text := a;
 local_b text := b;
BEGIN
 RETURN local_a < local_b;
END;
$$ LANGUAGE plpgsql;

 If there are no parameters of collatable data types, or no common
 collation can be identified for them, then parameters and local variables
 use the default collation of their data type (which is usually the
 database's default collation, but could be different for variables of
 domain types).

 A local variable of a collatable data type can have a different collation
 associated with it by including the COLLATE option in its
 declaration, for example

DECLARE
 local_a text COLLATE "en_US";

 This option overrides the collation that would otherwise be
 given to the variable according to the rules above.

 Also, of course explicit COLLATE clauses can be written inside
 a function if it is desired to force a particular collation to be used in
 a particular operation. For example,

CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b COLLATE "C";
END;
$$ LANGUAGE plpgsql;

 This overrides the collations associated with the table columns,
 parameters, or local variables used in the expression, just as would
 happen in a plain SQL command.

Expressions

 All expressions used in PL/pgSQL
 statements are processed using the server's main
 SQL executor. For example, when you write
 a PL/pgSQL statement like

IF expression THEN ...

 PL/pgSQL will evaluate the expression by
 feeding a query like

SELECT expression

 to the main SQL engine. While forming the SELECT command,
 any occurrences of PL/pgSQL variable names
 are replaced by query parameters, as discussed in detail in
 the section called “Variable Substitution”.
 This allows the query plan for the SELECT to
 be prepared just once and then reused for subsequent
 evaluations with different values of the variables. Thus, what
 really happens on first use of an expression is essentially a
 PREPARE command. For example, if we have declared
 two integer variables x and y, and we write

IF x < y THEN ...

 what happens behind the scenes is equivalent to

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;

 and then this prepared statement is EXECUTEd for each
 execution of the IF statement, with the current values
 of the PL/pgSQL variables supplied as
 parameter values. Normally these details are
 not important to a PL/pgSQL user, but
 they are useful to know when trying to diagnose a problem.
 More information appears in the section called “Plan Caching”.

 Since an expression is converted to a
 SELECT command, it can contain the same clauses
 that an ordinary SELECT would, except that it
 cannot include a top-level UNION,
 INTERSECT, or EXCEPT clause.
 Thus for example one could test whether a table is non-empty with

IF count(*) > 0 FROM my_table THEN ...

 since the expression
 between IF and THEN is parsed as
 though it were SELECT count(*) > 0 FROM my_table.
 The SELECT must produce a single column, and not
 more than one row. (If it produces no rows, the result is taken as
 NULL.)

Basic Statements

 In this section and the following ones, we describe all the statement
 types that are explicitly understood by
 PL/pgSQL.
 Anything not recognized as one of these statement types is presumed
 to be an SQL command and is sent to the main database engine to execute,
 as described in the section called “Executing SQL Commands”.

Assignment

 An assignment of a value to a PL/pgSQL
 variable is written as:

variable { := | = } expression;

 As explained previously, the expression in such a statement is evaluated
 by means of an SQL SELECT command sent to the main
 database engine. The expression must yield a single value (possibly
 a row value, if the variable is a row or record variable). The target
 variable can be a simple variable (optionally qualified with a block
 name), a field of a row or record target, or an element or slice of
 an array target. Equal (=) can be
 used instead of PL/SQL-compliant :=.

 If the expression's result data type doesn't match the variable's
 data type, the value will be coerced as though by an assignment cast
 (see the section called “Value Storage”). If no assignment cast is known
 for the pair of data types involved, the PL/pgSQL
 interpreter will attempt to convert the result value textually, that is
 by applying the result type's output function followed by the variable
 type's input function. Note that this could result in run-time errors
 generated by the input function, if the string form of the result value
 is not acceptable to the input function.

 Examples:

tax := subtotal * 0.06;
my_record.user_id := 20;
my_array[j] := 20;
my_array[1:3] := array[1,2,3];
complex_array[n].realpart = 12.3;

Executing SQL Commands

 In general, any SQL command that does not return rows can be executed
 within a PL/pgSQL function just by writing
 the command. For example, you could create and fill a table by writing

CREATE TABLE mytable (id int primary key, data text);
INSERT INTO mytable VALUES (1,'one'), (2,'two');

 If the command does return rows (for example SELECT,
 or INSERT/UPDATE/DELETE
 with RETURNING), there are two ways to proceed.
 When the command will return at most one row, or you only care about
 the first row of output, write the command as usual but add
 an INTO clause to capture the output, as described
 in the section called “Executing a Command with a Single-Row Result”.
 To process all of the output rows, write the command as the data
 source for a FOR loop, as described in
 the section called “Looping through Query Results”.

 Usually it is not sufficient just to execute statically-defined SQL
 commands. Typically you'll want a command to use varying data values,
 or even to vary in more fundamental ways such as by using different
 table names at different times. Again, there are two ways to proceed
 depending on the situation.

 PL/pgSQL variable values can be
 automatically inserted into optimizable SQL commands, which
 are SELECT, INSERT,
 UPDATE, DELETE,
 MERGE, and certain
 utility commands that incorporate one of these, such
 as EXPLAIN and CREATE TABLE ... AS
 SELECT. In these commands,
 any PL/pgSQL variable name appearing
 in the command text is replaced by a query parameter, and then the
 current value of the variable is provided as the parameter value
 at run time. This is exactly like the processing described earlier
 for expressions; for details see the section called “Variable Substitution”.

 When executing an optimizable SQL command in this way,
 PL/pgSQL may cache and re-use the execution
 plan for the command, as discussed in
 the section called “Plan Caching”.

 Non-optimizable SQL commands (also called utility commands) are not
 capable of accepting query parameters. So automatic substitution
 of PL/pgSQL variables does not work in such
 commands. To include non-constant text in a utility command executed
 from PL/pgSQL, you must build the utility
 command as a string and then EXECUTE it, as
 discussed in the section called “Executing Dynamic Commands”.

 EXECUTE must also be used if you want to modify
 the command in some other way than supplying a data value, for example
 by changing a table name.

 Sometimes it is useful to evaluate an expression or SELECT
 query but discard the result, for example when calling a function
 that has side-effects but no useful result value. To do
 this in PL/pgSQL, use the
 PERFORM statement:

PERFORM query;

 This executes query and discards the
 result. Write the query the same
 way you would write an SQL SELECT command, but replace the
 initial keyword SELECT with PERFORM.
 For WITH queries, use PERFORM and then
 place the query in parentheses. (In this case, the query can only
 return one row.)
 PL/pgSQL variables will be
 substituted into the query just as described above,
 and the plan is cached in the same way. Also, the special variable
 FOUND is set to true if the query produced at
 least one row, or false if it produced no rows (see
 the section called “Obtaining the Result Status”).

Note

 One might expect that writing SELECT directly
 would accomplish this result, but at
 present the only accepted way to do it is
 PERFORM. An SQL command that can return rows,
 such as SELECT, will be rejected as an error
 unless it has an INTO clause as discussed in the
 next section.

 An example:

PERFORM create_mv('cs_session_page_requests_mv', my_query);

Executing a Command with a Single-Row Result

 The result of an SQL command yielding a single row (possibly of multiple
 columns) can be assigned to a record variable, row-type variable, or list
 of scalar variables. This is done by writing the base SQL command and
 adding an INTO clause. For example,

SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;

 where target can be a record variable, a row
 variable, or a comma-separated list of simple variables and
 record/row fields.
 PL/pgSQL variables will be
 substituted into the rest of the command (that is, everything but the
 INTO clause) just as described above,
 and the plan is cached in the same way.
 This works for SELECT,
 INSERT/UPDATE/DELETE with
 RETURNING, and certain utility commands
 that return row sets, such as EXPLAIN.
 Except for the INTO clause, the SQL command is the same
 as it would be written outside PL/pgSQL.

Tip

 Note that this interpretation of SELECT with INTO
 is quite different from PostgreSQL™'s regular
 SELECT INTO command, wherein the INTO
 target is a newly created table. If you want to create a table from a
 SELECT result inside a
 PL/pgSQL function, use the syntax
 CREATE TABLE ... AS SELECT.

 If a row variable or a variable list is used as target,
 the command's result columns
 must exactly match the structure of the target as to number and data
 types, or else a run-time error
 occurs. When a record variable is the target, it automatically
 configures itself to the row type of the command's result columns.

 The INTO clause can appear almost anywhere in the SQL
 command. Customarily it is written either just before or just after
 the list of select_expressions in a
 SELECT command, or at the end of the command for other
 command types. It is recommended that you follow this convention
 in case the PL/pgSQL parser becomes
 stricter in future versions.

 If STRICT is not specified in the INTO
 clause, then target will be set to the first
 row returned by the command, or to nulls if the command returned no rows.
 (Note that “the first row” is not
 well-defined unless you've used ORDER BY.) Any result rows
 after the first row are discarded.
 You can check the special FOUND variable (see
 the section called “Obtaining the Result Status”) to
 determine whether a row was returned:

SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
END IF;

 If the STRICT option is specified, the command must
 return exactly one row or a run-time error will be reported, either
 NO_DATA_FOUND (no rows) or TOO_MANY_ROWS
 (more than one row). You can use an exception block if you wish
 to catch the error, for example:

BEGIN
 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
 WHEN TOO_MANY_ROWS THEN
 RAISE EXCEPTION 'employee % not unique', myname;
END;

 Successful execution of a command with STRICT
 always sets FOUND to true.

 For INSERT/UPDATE/DELETE with
 RETURNING, PL/pgSQL reports
 an error for more than one returned row, even when
 STRICT is not specified. This is because there
 is no option such as ORDER BY with which to determine
 which affected row should be returned.

 If print_strict_params is enabled for the function,
 then when an error is thrown because the requirements
 of STRICT are not met, the DETAIL part of
 the error message will include information about the parameters
 passed to the command.
 You can change the print_strict_params
 setting for all functions by setting
 plpgsql.print_strict_params, though only subsequent
 function compilations will be affected. You can also enable it
 on a per-function basis by using a compiler option, for example:

CREATE FUNCTION get_userid(username text) RETURNS int
AS $$
#print_strict_params on
DECLARE
userid int;
BEGIN
 SELECT users.userid INTO STRICT userid
 FROM users WHERE users.username = get_userid.username;
 RETURN userid;
END;
$$ LANGUAGE plpgsql;

 On failure, this function might produce an error message such as

ERROR: query returned no rows
DETAIL: parameters: username = 'nosuchuser'
CONTEXT: PL/pgSQL function get_userid(text) line 6 at SQL statement

Note

 The STRICT option matches the behavior of
 Oracle PL/SQL's SELECT INTO and related statements.

Executing Dynamic Commands

 Oftentimes you will want to generate dynamic commands inside your
 PL/pgSQL functions, that is, commands
 that will involve different tables or different data types each
 time they are executed. PL/pgSQL's
 normal attempts to cache plans for commands (as discussed in
 the section called “Plan Caching”) will not work in such
 scenarios. To handle this sort of problem, the
 EXECUTE statement is provided:

EXECUTE command-string [INTO [STRICT] target] [USING expression [, ...]];

 where command-string is an expression
 yielding a string (of type text) containing the
 command to be executed. The optional target
 is a record variable, a row variable, or a comma-separated list of
 simple variables and record/row fields, into which the results of
 the command will be stored. The optional USING expressions
 supply values to be inserted into the command.

 No substitution of PL/pgSQL variables is done on the
 computed command string. Any required variable values must be inserted
 in the command string as it is constructed; or you can use parameters
 as described below.

 Also, there is no plan caching for commands executed via
 EXECUTE. Instead, the command is always planned
 each time the statement is run. Thus the command
 string can be dynamically created within the function to perform
 actions on different tables and columns.

 The INTO clause specifies where the results of
 an SQL command returning rows should be assigned. If a row variable
 or variable list is provided, it must exactly match the structure
 of the command's results; if a
 record variable is provided, it will configure itself to match the
 result structure automatically. If multiple rows are returned,
 only the first will be assigned to the INTO
 variable(s). If no rows are returned, NULL is assigned to the
 INTO variable(s). If no INTO
 clause is specified, the command results are discarded.

 If the STRICT option is given, an error is reported
 unless the command produces exactly one row.

 The command string can use parameter values, which are referenced
 in the command as $1, $2, etc.
 These symbols refer to values supplied in the USING
 clause. This method is often preferable to inserting data values
 into the command string as text: it avoids run-time overhead of
 converting the values to text and back, and it is much less prone
 to SQL-injection attacks since there is no need for quoting or escaping.
 An example is:

EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

 Note that parameter symbols can only be used for data values
 — if you want to use dynamically determined table or column
 names, you must insert them into the command string textually.
 For example, if the preceding query needed to be done against a
 dynamically selected table, you could do this:

EXECUTE 'SELECT count(*) FROM '
 || quote_ident(tabname)
 || ' WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

 A cleaner approach is to use format()'s %I
 specification to insert table or column names with automatic quoting:

EXECUTE format('SELECT count(*) FROM %I '
 'WHERE inserted_by = $1 AND inserted <= $2', tabname)
 INTO c
 USING checked_user, checked_date;

 (This example relies on the SQL rule that string literals separated by a
 newline are implicitly concatenated.)

 Another restriction on parameter symbols is that they only work in
 optimizable SQL commands
 (SELECT, INSERT, UPDATE,
 DELETE, MERGE, and certain commands containing one of these).
 In other statement
 types (generically called utility statements), you must insert
 values textually even if they are just data values.

 An EXECUTE with a simple constant command string and some
 USING parameters, as in the first example above, is
 functionally equivalent to just writing the command directly in
 PL/pgSQL and allowing replacement of
 PL/pgSQL variables to happen automatically.
 The important difference is that EXECUTE will re-plan
 the command on each execution, generating a plan that is specific
 to the current parameter values; whereas
 PL/pgSQL may otherwise create a generic plan
 and cache it for re-use. In situations where the best plan depends
 strongly on the parameter values, it can be helpful to use
 EXECUTE to positively ensure that a generic plan is not
 selected.

 SELECT INTO is not currently supported within
 EXECUTE; instead, execute a plain SELECT
 command and specify INTO as part of the EXECUTE
 itself.

Note

 The PL/pgSQL
 EXECUTE statement is not related to the
 EXECUTE SQL
 statement supported by the
 PostgreSQL™ server. The server's
 EXECUTE statement cannot be used directly within
 PL/pgSQL functions (and is not needed).

Example 43.1. Quoting Values in Dynamic Queries

 When working with dynamic commands you will often have to handle escaping
 of single quotes. The recommended method for quoting fixed text in your
 function body is dollar quoting. (If you have legacy code that does
 not use dollar quoting, please refer to the
 overview in the section called “Handling of Quotation Marks”, which can save you
 some effort when translating said code to a more reasonable scheme.)

 Dynamic values require careful handling since they might contain
 quote characters.
 An example using format() (this assumes that you are
 dollar quoting the function body so quote marks need not be doubled):

EXECUTE format('UPDATE tbl SET %I = $1 '
 'WHERE key = $2', colname) USING newvalue, keyvalue;

 It is also possible to call the quoting functions directly:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_literal(newvalue)
 || ' WHERE key = '
 || quote_literal(keyvalue);

 This example demonstrates the use of the
 quote_ident and
 quote_literal functions (see the section called “String Functions and Operators”). For safety, expressions containing column
 or table identifiers should be passed through
 quote_ident before insertion in a dynamic query.
 Expressions containing values that should be literal strings in the
 constructed command should be passed through quote_literal.
 These functions take the appropriate steps to return the input text
 enclosed in double or single quotes respectively, with any embedded
 special characters properly escaped.

 Because quote_literal is labeled
 STRICT, it will always return null when called with a
 null argument. In the above example, if newvalue or
 keyvalue were null, the entire dynamic query string would
 become null, leading to an error from EXECUTE.
 You can avoid this problem by using the quote_nullable
 function, which works the same as quote_literal except that
 when called with a null argument it returns the string NULL.
 For example,

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_nullable(newvalue)
 || ' WHERE key = '
 || quote_nullable(keyvalue);

 If you are dealing with values that might be null, you should usually
 use quote_nullable in place of quote_literal.

 As always, care must be taken to ensure that null values in a query do
 not deliver unintended results. For example the WHERE clause

'WHERE key = ' || quote_nullable(keyvalue)

 will never succeed if keyvalue is null, because the
 result of using the equality operator = with a null operand
 is always null. If you wish null to work like an ordinary key value,
 you would need to rewrite the above as

'WHERE key IS NOT DISTINCT FROM ' || quote_nullable(keyvalue)

 (At present, IS NOT DISTINCT FROM is handled much less
 efficiently than =, so don't do this unless you must.
 See the section called “Comparison Functions and Operators” for
 more information on nulls and IS DISTINCT.)

 Note that dollar quoting is only useful for quoting fixed text.
 It would be a very bad idea to try to write this example as:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = $$'
 || newvalue
 || '$$ WHERE key = '
 || quote_literal(keyvalue);

 because it would break if the contents of newvalue
 happened to contain $$. The same objection would
 apply to any other dollar-quoting delimiter you might pick.
 So, to safely quote text that is not known in advance, you
 must use quote_literal,
 quote_nullable, or quote_ident, as appropriate.

 Dynamic SQL statements can also be safely constructed using the
 format function (see the section called “format”). For example:

EXECUTE format('UPDATE tbl SET %I = %L '
 'WHERE key = %L', colname, newvalue, keyvalue);

 %I is equivalent to quote_ident, and
 %L is equivalent to quote_nullable.
 The format function can be used in conjunction with
 the USING clause:

EXECUTE format('UPDATE tbl SET %I = $1 WHERE key = $2', colname)
 USING newvalue, keyvalue;

 This form is better because the variables are handled in their native
 data type format, rather than unconditionally converting them to
 text and quoting them via %L. It is also more efficient.

 A much larger example of a dynamic command and
 EXECUTE can be seen in Example 43.10, “Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL”, which builds and executes a
 CREATE FUNCTION command to define a new function.

Obtaining the Result Status

 There are several ways to determine the effect of a command. The
 first method is to use the GET DIAGNOSTICS
 command, which has the form:

GET [CURRENT] DIAGNOSTICS variable { = | := } item [, ...];

 This command allows retrieval of system status indicators.
 CURRENT is a noise word (but see also GET STACKED
 DIAGNOSTICS in the section called “Obtaining Information about an Error”).
 Each item is a key word identifying a status
 value to be assigned to the specified variable
 (which should be of the right data type to receive it). The currently
 available status items are shown
 in Table 43.1, “Available Diagnostics Items”. Colon-equal
 (:=) can be used instead of the SQL-standard =
 token. An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

Table 43.1. Available Diagnostics Items
	Name	Type	Description
	ROW_COUNT	bigint	the number of rows processed by the most
 recent SQL command
	PG_CONTEXT	text	line(s) of text describing the current call stack
 (see the section called “Obtaining Execution Location Information”)
	PG_ROUTINE_OID	oid	OID of the current function

 The second method to determine the effects of a command is to check the
 special variable named FOUND, which is of
 type boolean. FOUND starts out
 false within each PL/pgSQL function call.
 It is set by each of the following types of statements:

	
 A SELECT INTO statement sets
 FOUND true if a row is assigned, false if no
 row is returned.

	
 A PERFORM statement sets FOUND
 true if it produces (and discards) one or more rows, false if
 no row is produced.

	
 UPDATE, INSERT, DELETE,
 and MERGE
 statements set FOUND true if at least one
 row is affected, false if no row is affected.

	
 A FETCH statement sets FOUND
 true if it returns a row, false if no row is returned.

	
 A MOVE statement sets FOUND
 true if it successfully repositions the cursor, false otherwise.

	
 A FOR or FOREACH statement sets
 FOUND true
 if it iterates one or more times, else false.
 FOUND is set this way when the
 loop exits; inside the execution of the loop,
 FOUND is not modified by the
 loop statement, although it might be changed by the
 execution of other statements within the loop body.

	
 RETURN QUERY and RETURN QUERY
 EXECUTE statements set FOUND
 true if the query returns at least one row, false if no row
 is returned.

 Other PL/pgSQL statements do not change
 the state of FOUND.
 Note in particular that EXECUTE
 changes the output of GET DIAGNOSTICS, but
 does not change FOUND.

 FOUND is a local variable within each
 PL/pgSQL function; any changes to it
 affect only the current function.

Doing Nothing At All

 Sometimes a placeholder statement that does nothing is useful.
 For example, it can indicate that one arm of an if/then/else
 chain is deliberately empty. For this purpose, use the
 NULL statement:

NULL;

 For example, the following two fragments of code are equivalent:

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 NULL; -- ignore the error
END;

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN -- ignore the error
END;

 Which is preferable is a matter of taste.

Note

 In Oracle's PL/SQL, empty statement lists are not allowed, and so
 NULL statements are required for situations
 such as this. PL/pgSQL allows you to
 just write nothing, instead.

Control Structures

 Control structures are probably the most useful (and
 important) part of PL/pgSQL. With
 PL/pgSQL's control structures,
 you can manipulate PostgreSQL™ data in a very
 flexible and powerful way.

Returning from a Function

 There are two commands available that allow you to return data
 from a function: RETURN and RETURN
 NEXT.

RETURN

RETURN expression;

 RETURN with an expression terminates the
 function and returns the value of
 expression to the caller. This form
 is used for PL/pgSQL functions that do
 not return a set.

 In a function that returns a scalar type, the expression's result will
 automatically be cast into the function's return type as described for
 assignments. But to return a composite (row) value, you must write an
 expression delivering exactly the requested column set. This may
 require use of explicit casting.

 If you declared the function with output parameters, write just
 RETURN with no expression. The current values
 of the output parameter variables will be returned.

 If you declared the function to return void, a
 RETURN statement can be used to exit the function
 early; but do not write an expression following
 RETURN.

 The return value of a function cannot be left undefined. If
 control reaches the end of the top-level block of the function
 without hitting a RETURN statement, a run-time
 error will occur. This restriction does not apply to functions
 with output parameters and functions returning void,
 however. In those cases a RETURN statement is
 automatically executed if the top-level block finishes.

 Some examples:

-- functions returning a scalar type
RETURN 1 + 2;
RETURN scalar_var;

-- functions returning a composite type
RETURN composite_type_var;
RETURN (1, 2, 'three'::text); -- must cast columns to correct types

RETURN NEXT and RETURN QUERY

RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [USING expression [, ...]];

 When a PL/pgSQL function is declared to return
 SETOF sometype, the procedure
 to follow is slightly different. In that case, the individual
 items to return are specified by a sequence of RETURN
 NEXT or RETURN QUERY commands, and
 then a final RETURN command with no argument
 is used to indicate that the function has finished executing.
 RETURN NEXT can be used with both scalar and
 composite data types; with a composite result type, an entire
 “table” of results will be returned.
 RETURN QUERY appends the results of executing
 a query to the function's result set. RETURN
 NEXT and RETURN QUERY can be freely
 intermixed in a single set-returning function, in which case
 their results will be concatenated.

 RETURN NEXT and RETURN
 QUERY do not actually return from the function —
 they simply append zero or more rows to the function's result
 set. Execution then continues with the next statement in the
 PL/pgSQL function. As successive
 RETURN NEXT or RETURN
 QUERY commands are executed, the result set is built
 up. A final RETURN, which should have no
 argument, causes control to exit the function (or you can just
 let control reach the end of the function).

 RETURN QUERY has a variant
 RETURN QUERY EXECUTE, which specifies the
 query to be executed dynamically. Parameter expressions can
 be inserted into the computed query string via USING,
 in just the same way as in the EXECUTE command.

 If you declared the function with output parameters, write just
 RETURN NEXT with no expression. On each
 execution, the current values of the output parameter
 variable(s) will be saved for eventual return as a row of the
 result. Note that you must declare the function as returning
 SETOF record when there are multiple output
 parameters, or SETOF sometype
 when there is just one output parameter of type
 sometype, in order to create a set-returning
 function with output parameters.

 Here is an example of a function using RETURN
 NEXT:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
 r foo%rowtype;
BEGIN
 FOR r IN
 SELECT * FROM foo WHERE fooid > 0
 LOOP
 -- can do some processing here
 RETURN NEXT r; -- return current row of SELECT
 END LOOP;
 RETURN;
END;
$BODY$
LANGUAGE plpgsql;

SELECT * FROM get_all_foo();

 Here is an example of a function using RETURN
 QUERY:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$
BEGIN
 RETURN QUERY SELECT flightid
 FROM flight
 WHERE flightdate >= $1
 AND flightdate < ($1 + 1);

 -- Since execution is not finished, we can check whether rows were returned
 -- and raise exception if not.
 IF NOT FOUND THEN
 RAISE EXCEPTION 'No flight at %.', $1;
 END IF;

 RETURN;
 END;
$BODY$
LANGUAGE plpgsql;

-- Returns available flights or raises exception if there are no
-- available flights.
SELECT * FROM get_available_flightid(CURRENT_DATE);

Note

 The current implementation of RETURN NEXT
 and RETURN QUERY stores the entire result set
 before returning from the function, as discussed above. That
 means that if a PL/pgSQL function produces a
 very large result set, performance might be poor: data will be
 written to disk to avoid memory exhaustion, but the function
 itself will not return until the entire result set has been
 generated. A future version of PL/pgSQL might
 allow users to define set-returning functions
 that do not have this limitation. Currently, the point at
 which data begins being written to disk is controlled by the
 work_mem
 configuration variable. Administrators who have sufficient
 memory to store larger result sets in memory should consider
 increasing this parameter.

Returning from a Procedure

 A procedure does not have a return value. A procedure can therefore end
 without a RETURN statement. If you wish to use
 a RETURN statement to exit the code early, write
 just RETURN with no expression.

 If the procedure has output parameters, the final values of the output
 parameter variables will be returned to the caller.

Calling a Procedure

 A PL/pgSQL function, procedure,
 or DO block can call a procedure
 using CALL. Output parameters are handled
 differently from the way that CALL works in plain
 SQL. Each OUT or INOUT
 parameter of the procedure must
 correspond to a variable in the CALL statement, and
 whatever the procedure returns is assigned back to that variable after
 it returns. For example:

CREATE PROCEDURE triple(INOUT x int)
LANGUAGE plpgsql
AS $$
BEGIN
 x := x * 3;
END;
$$;

DO $$
DECLARE myvar int := 5;
BEGIN
 CALL triple(myvar);
 RAISE NOTICE 'myvar = %', myvar; -- prints 15
END;
$$;

 The variable corresponding to an output parameter can be a simple
 variable or a field of a composite-type variable. Currently,
 it cannot be an element of an array.

Conditionals

 IF and CASE statements let you execute
 alternative commands based on certain conditions.
 PL/pgSQL has three forms of IF:

	IF ... THEN ... END IF

	IF ... THEN ... ELSE ... END IF

	IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF

 and two forms of CASE:

	CASE ... WHEN ... THEN ... ELSE ... END CASE

	CASE WHEN ... THEN ... ELSE ... END CASE

IF-THEN

IF boolean-expression THEN
 statements
END IF;

 IF-THEN statements are the simplest form of
 IF. The statements between
 THEN and END IF will be
 executed if the condition is true. Otherwise, they are
 skipped.

 Example:

IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

IF-THEN-ELSE

IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

 IF-THEN-ELSE statements add to
 IF-THEN by letting you specify an
 alternative set of statements that should be executed if the
 condition is not true. (Note this includes the case where the
 condition evaluates to NULL.)

 Examples:

IF parentid IS NULL OR parentid = ''
THEN
 RETURN fullname;
ELSE
 RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;

IF v_count > 0 THEN
 INSERT INTO users_count (count) VALUES (v_count);
 RETURN 't';
ELSE
 RETURN 'f';
END IF;

IF-THEN-ELSIF

IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
 ...
]
]
[ELSE
 statements]
END IF;

 Sometimes there are more than just two alternatives.
 IF-THEN-ELSIF provides a convenient
 method of checking several alternatives in turn.
 The IF conditions are tested successively
 until the first one that is true is found. Then the
 associated statement(s) are executed, after which control
 passes to the next statement after END IF.
 (Any subsequent IF conditions are not
 tested.) If none of the IF conditions is true,
 then the ELSE block (if any) is executed.

 Here is an example:

IF number = 0 THEN
 result := 'zero';
ELSIF number > 0 THEN
 result := 'positive';
ELSIF number < 0 THEN
 result := 'negative';
ELSE
 -- hmm, the only other possibility is that number is null
 result := 'NULL';
END IF;

 The key word ELSIF can also be spelled
 ELSEIF.

 An alternative way of accomplishing the same task is to nest
 IF-THEN-ELSE statements, as in the
 following example:

IF demo_row.sex = 'm' THEN
 pretty_sex := 'man';
ELSE
 IF demo_row.sex = 'f' THEN
 pretty_sex := 'woman';
 END IF;
END IF;

 However, this method requires writing a matching END IF
 for each IF, so it is much more cumbersome than
 using ELSIF when there are many alternatives.

Simple CASE

CASE search-expression
 WHEN expression [, expression [...]] THEN
 statements
 [WHEN expression [, expression [...]] THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

 The simple form of CASE provides conditional execution
 based on equality of operands. The search-expression
 is evaluated (once) and successively compared to each
 expression in the WHEN clauses.
 If a match is found, then the corresponding
 statements are executed, and then control
 passes to the next statement after END CASE. (Subsequent
 WHEN expressions are not evaluated.) If no match is
 found, the ELSE statements are
 executed; but if ELSE is not present, then a
 CASE_NOT_FOUND exception is raised.

 Here is a simple example:

CASE x
 WHEN 1, 2 THEN
 msg := 'one or two';
 ELSE
 msg := 'other value than one or two';
END CASE;

Searched CASE

CASE
 WHEN boolean-expression THEN
 statements
 [WHEN boolean-expression THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

 The searched form of CASE provides conditional execution
 based on truth of Boolean expressions. Each WHEN clause's
 boolean-expression is evaluated in turn,
 until one is found that yields true. Then the
 corresponding statements are executed, and
 then control passes to the next statement after END CASE.
 (Subsequent WHEN expressions are not evaluated.)
 If no true result is found, the ELSE
 statements are executed;
 but if ELSE is not present, then a
 CASE_NOT_FOUND exception is raised.

 Here is an example:

CASE
 WHEN x BETWEEN 0 AND 10 THEN
 msg := 'value is between zero and ten';
 WHEN x BETWEEN 11 AND 20 THEN
 msg := 'value is between eleven and twenty';
END CASE;

 This form of CASE is entirely equivalent to
 IF-THEN-ELSIF, except for the rule that reaching
 an omitted ELSE clause results in an error rather
 than doing nothing.

Simple Loops

 With the LOOP, EXIT,
 CONTINUE, WHILE, FOR,
 and FOREACH statements, you can arrange for your
 PL/pgSQL function to repeat a series of commands.

LOOP

[<<label>>]
LOOP
 statements
END LOOP [label];

 LOOP defines an unconditional loop that is repeated
 indefinitely until terminated by an EXIT or
 RETURN statement. The optional
 label can be used by EXIT
 and CONTINUE statements within nested loops to
 specify which loop those statements refer to.

EXIT

EXIT [label] [WHEN boolean-expression];

 If no label is given, the innermost
 loop is terminated and the statement following END
 LOOP is executed next. If label
 is given, it must be the label of the current or some outer
 level of nested loop or block. Then the named loop or block is
 terminated and control continues with the statement after the
 loop's/block's corresponding END.

 If WHEN is specified, the loop exit occurs only if
 boolean-expression is true. Otherwise, control passes
 to the statement after EXIT.

 EXIT can be used with all types of loops; it is
 not limited to use with unconditional loops.

 When used with a
 BEGIN block, EXIT passes
 control to the next statement after the end of the block.
 Note that a label must be used for this purpose; an unlabeled
 EXIT is never considered to match a
 BEGIN block. (This is a change from
 pre-8.4 releases of PostgreSQL™, which
 would allow an unlabeled EXIT to match
 a BEGIN block.)

 Examples:

LOOP
 -- some computations
 IF count > 0 THEN
 EXIT; -- exit loop
 END IF;
END LOOP;

LOOP
 -- some computations
 EXIT WHEN count > 0; -- same result as previous example
END LOOP;

<<ablock>>
BEGIN
 -- some computations
 IF stocks > 100000 THEN
 EXIT ablock; -- causes exit from the BEGIN block
 END IF;
 -- computations here will be skipped when stocks > 100000
END;

CONTINUE

CONTINUE [label] [WHEN boolean-expression];

 If no label is given, the next iteration of
 the innermost loop is begun. That is, all statements remaining
 in the loop body are skipped, and control returns
 to the loop control expression (if any) to determine whether
 another loop iteration is needed.
 If label is present, it
 specifies the label of the loop whose execution will be
 continued.

 If WHEN is specified, the next iteration of the
 loop is begun only if boolean-expression is
 true. Otherwise, control passes to the statement after
 CONTINUE.

 CONTINUE can be used with all types of loops; it
 is not limited to use with unconditional loops.

 Examples:

LOOP
 -- some computations
 EXIT WHEN count > 100;
 CONTINUE WHEN count < 50;
 -- some computations for count IN [50 .. 100]
END LOOP;

WHILE

[<<label>>]
WHILE boolean-expression LOOP
 statements
END LOOP [label];

 The WHILE statement repeats a
 sequence of statements so long as the
 boolean-expression
 evaluates to true. The expression is checked just before
 each entry to the loop body.

 For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT done LOOP
 -- some computations here
END LOOP;

FOR (Integer Variant)

[<<label>>]
FOR name IN [REVERSE] expression .. expression [BY expression] LOOP
 statements
END LOOP [label];

 This form of FOR creates a loop that iterates over a range
 of integer values. The variable
 name is automatically defined as type
 integer and exists only inside the loop (any existing
 definition of the variable name is ignored within the loop).
 The two expressions giving
 the lower and upper bound of the range are evaluated once when entering
 the loop. If the BY clause isn't specified the iteration
 step is 1, otherwise it's the value specified in the BY
 clause, which again is evaluated once on loop entry.
 If REVERSE is specified then the step value is
 subtracted, rather than added, after each iteration.

 Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
 -- i will take on the values 10,8,6,4,2 within the loop
END LOOP;

 If the lower bound is greater than the upper bound (or less than,
 in the REVERSE case), the loop body is not
 executed at all. No error is raised.

 If a label is attached to the
 FOR loop then the integer loop variable can be
 referenced with a qualified name, using that
 label.

Looping through Query Results

 Using a different type of FOR loop, you can iterate through
 the results of a query and manipulate that data
 accordingly. The syntax is:

[<<label>>]
FOR target IN query LOOP
 statements
END LOOP [label];

 The target is a record variable, row variable,
 or comma-separated list of scalar variables.
 The target is successively assigned each row
 resulting from the query and the loop body is
 executed for each row. Here is an example:

CREATE FUNCTION refresh_mviews() RETURNS integer AS $$
DECLARE
 mviews RECORD;
BEGIN
 RAISE NOTICE 'Refreshing all materialized views...';

 FOR mviews IN
 SELECT n.nspname AS mv_schema,
 c.relname AS mv_name,
 pg_catalog.pg_get_userbyid(c.relowner) AS owner
 FROM pg_catalog.pg_class c
 LEFT JOIN pg_catalog.pg_namespace n ON (n.oid = c.relnamespace)
 WHERE c.relkind = 'm'
 ORDER BY 1
 LOOP

 -- Now "mviews" has one record with information about the materialized view

 RAISE NOTICE 'Refreshing materialized view %.% (owner: %)...',
 quote_ident(mviews.mv_schema),
 quote_ident(mviews.mv_name),
 quote_ident(mviews.owner);
 EXECUTE format('REFRESH MATERIALIZED VIEW %I.%I', mviews.mv_schema, mviews.mv_name);
 END LOOP;

 RAISE NOTICE 'Done refreshing materialized views.';
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

 If the loop is terminated by an EXIT statement, the last
 assigned row value is still accessible after the loop.

 The query used in this type of FOR
 statement can be any SQL command that returns rows to the caller:
 SELECT is the most common case,
 but you can also use INSERT, UPDATE, or
 DELETE with a RETURNING clause. Some utility
 commands such as EXPLAIN will work too.

 PL/pgSQL variables are replaced by query parameters,
 and the query plan is cached for possible re-use, as discussed in
 detail in the section called “Variable Substitution” and
 the section called “Plan Caching”.

 The FOR-IN-EXECUTE statement is another way to iterate over
 rows:

[<<label>>]
FOR target IN EXECUTE text_expression [USING expression [, ...]] LOOP
 statements
END LOOP [label];

 This is like the previous form, except that the source query
 is specified as a string expression, which is evaluated and replanned
 on each entry to the FOR loop. This allows the programmer to
 choose the speed of a preplanned query or the flexibility of a dynamic
 query, just as with a plain EXECUTE statement.
 As with EXECUTE, parameter values can be inserted
 into the dynamic command via USING.

 Another way to specify the query whose results should be iterated
 through is to declare it as a cursor. This is described in
 the section called “Looping through a Cursor's Result”.

Looping through Arrays

 The FOREACH loop is much like a FOR loop,
 but instead of iterating through the rows returned by an SQL query,
 it iterates through the elements of an array value.
 (In general, FOREACH is meant for looping through
 components of a composite-valued expression; variants for looping
 through composites besides arrays may be added in future.)
 The FOREACH statement to loop over an array is:

[<<label>>]
FOREACH target [SLICE number] IN ARRAY expression LOOP
 statements
END LOOP [label];

 Without SLICE, or if SLICE 0 is specified,
 the loop iterates through individual elements of the array produced
 by evaluating the expression.
 The target variable is assigned each
 element value in sequence, and the loop body is executed for each element.
 Here is an example of looping through the elements of an integer
 array:

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
 s int8 := 0;
 x int;
BEGIN
 FOREACH x IN ARRAY $1
 LOOP
 s := s + x;
 END LOOP;
 RETURN s;
END;
$$ LANGUAGE plpgsql;

 The elements are visited in storage order, regardless of the number of
 array dimensions. Although the target is
 usually just a single variable, it can be a list of variables when
 looping through an array of composite values (records). In that case,
 for each array element, the variables are assigned from successive
 columns of the composite value.

 With a positive SLICE value, FOREACH
 iterates through slices of the array rather than single elements.
 The SLICE value must be an integer constant not larger
 than the number of dimensions of the array. The
 target variable must be an array,
 and it receives successive slices of the array value, where each slice
 is of the number of dimensions specified by SLICE.
 Here is an example of iterating through one-dimensional slices:

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
 x int[];
BEGIN
 FOREACH x SLICE 1 IN ARRAY $1
 LOOP
 RAISE NOTICE 'row = %', x;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE: row = {1,2,3}
NOTICE: row = {4,5,6}
NOTICE: row = {7,8,9}
NOTICE: row = {10,11,12}

Trapping Errors

 By default, any error occurring in a PL/pgSQL
 function aborts execution of the function and the
 surrounding transaction. You can trap errors and recover
 from them by using a BEGIN block with an
 EXCEPTION clause. The syntax is an extension of the
 normal syntax for a BEGIN block:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

 If no error occurs, this form of block simply executes all the
 statements, and then control passes
 to the next statement after END. But if an error
 occurs within the statements, further
 processing of the statements is
 abandoned, and control passes to the EXCEPTION list.
 The list is searched for the first condition
 matching the error that occurred. If a match is found, the
 corresponding handler_statements are
 executed, and then control passes to the next statement after
 END. If no match is found, the error propagates out
 as though the EXCEPTION clause were not there at all:
 the error can be caught by an enclosing block with
 EXCEPTION, or if there is none it aborts processing
 of the function.

 The condition names can be any of
 those shown in Appendix A, PostgreSQL™ Error Codes. A category
 name matches any error within its category. The special
 condition name OTHERS matches every error type except
 QUERY_CANCELED and ASSERT_FAILURE.
 (It is possible, but often unwise, to trap those two error types
 by name.) Condition names are
 not case-sensitive. Also, an error condition can be specified
 by SQLSTATE code; for example these are equivalent:

WHEN division_by_zero THEN ...
WHEN SQLSTATE '22012' THEN ...

 If a new error occurs within the selected
 handler_statements, it cannot be caught
 by this EXCEPTION clause, but is propagated out.
 A surrounding EXCEPTION clause could catch it.

 When an error is caught by an EXCEPTION clause,
 the local variables of the PL/pgSQL function
 remain as they were when the error occurred, but all changes
 to persistent database state within the block are rolled back.
 As an example, consider this fragment:

INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
BEGIN
 UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
 x := x + 1;
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'caught division_by_zero';
 RETURN x;
END;

 When control reaches the assignment to y, it will
 fail with a division_by_zero error. This will be caught by
 the EXCEPTION clause. The value returned in the
 RETURN statement will be the incremented value of
 x, but the effects of the UPDATE command will
 have been rolled back. The INSERT command preceding the
 block is not rolled back, however, so the end result is that the database
 contains Tom Jones not Joe Jones.

Tip

 A block containing an EXCEPTION clause is significantly
 more expensive to enter and exit than a block without one. Therefore,
 don't use EXCEPTION without need.

Example 43.2. Exceptions with UPDATE/INSERT

 This example uses exception handling to perform either
 UPDATE or INSERT, as appropriate. It is
 recommended that applications use INSERT with
 ON CONFLICT DO UPDATE rather than actually using
 this pattern. This example serves primarily to illustrate use of
 PL/pgSQL control flow structures:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
 LOOP
 -- first try to update the key
 UPDATE db SET b = data WHERE a = key;
 IF found THEN
 RETURN;
 END IF;
 -- not there, so try to insert the key
 -- if someone else inserts the same key concurrently,
 -- we could get a unique-key failure
 BEGIN
 INSERT INTO db(a,b) VALUES (key, data);
 RETURN;
 EXCEPTION WHEN unique_violation THEN
 -- Do nothing, and loop to try the UPDATE again.
 END;
 END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

 This coding assumes the unique_violation error is caused by
 the INSERT, and not by, say, an INSERT in a
 trigger function on the table. It might also misbehave if there is
 more than one unique index on the table, since it will retry the
 operation regardless of which index caused the error.
 More safety could be had by using the
 features discussed next to check that the trapped error was the one
 expected.

Obtaining Information about an Error

 Exception handlers frequently need to identify the specific error that
 occurred. There are two ways to get information about the current
 exception in PL/pgSQL: special variables and the
 GET STACKED DIAGNOSTICS command.

 Within an exception handler, the special variable
 SQLSTATE contains the error code that corresponds to
 the exception that was raised (refer to Table A.1, “PostgreSQL™ Error Codes”
 for a list of possible error codes). The special variable
 SQLERRM contains the error message associated with the
 exception. These variables are undefined outside exception handlers.

 Within an exception handler, one may also retrieve
 information about the current exception by using the
 GET STACKED DIAGNOSTICS command, which has the form:

GET STACKED DIAGNOSTICS variable { = | := } item [, ...];

 Each item is a key word identifying a status
 value to be assigned to the specified variable
 (which should be of the right data type to receive it). The currently
 available status items are shown
 in Table 43.2, “Error Diagnostics Items”.

Table 43.2. Error Diagnostics Items
	Name	Type	Description
	RETURNED_SQLSTATE	text	the SQLSTATE error code of the exception
	COLUMN_NAME	text	the name of the column related to exception
	CONSTRAINT_NAME	text	the name of the constraint related to exception
	PG_DATATYPE_NAME	text	the name of the data type related to exception
	MESSAGE_TEXT	text	the text of the exception's primary message
	TABLE_NAME	text	the name of the table related to exception
	SCHEMA_NAME	text	the name of the schema related to exception
	PG_EXCEPTION_DETAIL	text	the text of the exception's detail message, if any
	PG_EXCEPTION_HINT	text	the text of the exception's hint message, if any
	PG_EXCEPTION_CONTEXT	text	line(s) of text describing the call stack at the time of the
 exception (see the section called “Obtaining Execution Location Information”)

 If the exception did not set a value for an item, an empty string
 will be returned.

 Here is an example:

DECLARE
 text_var1 text;
 text_var2 text;
 text_var3 text;
BEGIN
 -- some processing which might cause an exception
 ...
EXCEPTION WHEN OTHERS THEN
 GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,
 text_var2 = PG_EXCEPTION_DETAIL,
 text_var3 = PG_EXCEPTION_HINT;
END;

Obtaining Execution Location Information

 The GET DIAGNOSTICS command, previously described
 in the section called “Obtaining the Result Status”, retrieves information
 about current execution state (whereas the GET STACKED
 DIAGNOSTICS command discussed above reports information about
 the execution state as of a previous error). Its PG_CONTEXT
 status item is useful for identifying the current execution
 location. PG_CONTEXT returns a text string with line(s)
 of text describing the call stack. The first line refers to the current
 function and currently executing GET DIAGNOSTICS
 command. The second and any subsequent lines refer to calling functions
 further up the call stack. For example:

CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$
BEGIN
 RETURN inner_func();
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$
DECLARE
 stack text;
BEGIN
 GET DIAGNOSTICS stack = PG_CONTEXT;
 RAISE NOTICE E'--- Call Stack ---\n%', stack;
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

SELECT outer_func();

NOTICE: --- Call Stack ---
PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS
PL/pgSQL function outer_func() line 3 at RETURN
CONTEXT: PL/pgSQL function outer_func() line 3 at RETURN
 outer_func

 1
(1 row)

 GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXT
 returns the same sort of stack trace, but describing the location
 at which an error was detected, rather than the current location.

Cursors

 Rather than executing a whole query at once, it is possible to set
 up a cursor that encapsulates the query, and then read
 the query result a few rows at a time. One reason for doing this is
 to avoid memory overrun when the result contains a large number of
 rows. (However, PL/pgSQL users do not normally need
 to worry about that, since FOR loops automatically use a cursor
 internally to avoid memory problems.) A more interesting usage is to
 return a reference to a cursor that a function has created, allowing the
 caller to read the rows. This provides an efficient way to return
 large row sets from functions.

Declaring Cursor Variables

 All access to cursors in PL/pgSQL goes through
 cursor variables, which are always of the special data type
 refcursor. One way to create a cursor variable
 is just to declare it as a variable of type refcursor.
 Another way is to use the cursor declaration syntax,
 which in general is:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

 (FOR can be replaced by IS for
 Oracle™ compatibility.)
 If SCROLL is specified, the cursor will be capable of
 scrolling backward; if NO SCROLL is specified, backward
 fetches will be rejected; if neither specification appears, it is
 query-dependent whether backward fetches will be allowed.
 arguments, if specified, is a
 comma-separated list of pairs name
 datatype that define names to be
 replaced by parameter values in the given query. The actual
 values to substitute for these names will be specified later,
 when the cursor is opened.

 Some examples:

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;

 All three of these variables have the data type refcursor,
 but the first can be used with any query, while the second has
 a fully specified query already bound to it, and the last
 has a parameterized query bound to it. (key will be
 replaced by an integer parameter value when the cursor is opened.)
 The variable curs1
 is said to be unbound since it is not bound to
 any particular query.

 The SCROLL option cannot be used when the cursor's
 query uses FOR UPDATE/SHARE. Also, it is
 best to use NO SCROLL with a query that involves
 volatile functions. The implementation of SCROLL
 assumes that re-reading the query's output will give consistent
 results, which a volatile function might not do.

Opening Cursors

 Before a cursor can be used to retrieve rows, it must be
 opened. (This is the equivalent action to the SQL
 command DECLARE
 CURSOR.)
 PL/pgSQL has
 three forms of the OPEN statement, two of which use unbound
 cursor variables while the third uses a bound cursor variable.

Note

 Bound cursor variables can also be used without explicitly opening the cursor,
 via the FOR statement described in
 the section called “Looping through a Cursor's Result”.
 A FOR loop will open the cursor and then
 close it again when the loop completes.

 Opening a cursor involves creating a server-internal data structure
 called a portal, which holds the execution
 state for the cursor's query. A portal has a name, which must be
 unique within the session for the duration of the portal's existence.
 By default, PL/pgSQL will assign a unique
 name to each portal it creates. However, if you assign a non-null
 string value to a cursor variable, that string will be used as its
 portal name. This feature can be used as described in
 the section called “Returning Cursors”.

OPEN FOR query

OPEN unbound_cursorvar [[NO] SCROLL] FOR query;

 The cursor variable is opened and given the specified query to
 execute. The cursor cannot be open already, and it must have been
 declared as an unbound cursor variable (that is, as a simple
 refcursor variable). The query must be a
 SELECT, or something else that returns rows
 (such as EXPLAIN). The query
 is treated in the same way as other SQL commands in
 PL/pgSQL: PL/pgSQL
 variable names are substituted, and the query plan is cached for
 possible reuse. When a PL/pgSQL
 variable is substituted into the cursor query, the value that is
 substituted is the one it has at the time of the OPEN;
 subsequent changes to the variable will not affect the cursor's
 behavior.
 The SCROLL and NO SCROLL
 options have the same meanings as for a bound cursor.

 An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

OPEN FOR EXECUTE

OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string
 [USING expression [, ...]];

 The cursor variable is opened and given the specified query to
 execute. The cursor cannot be open already, and it must have been
 declared as an unbound cursor variable (that is, as a simple
 refcursor variable). The query is specified as a string
 expression, in the same way as in the EXECUTE
 command. As usual, this gives flexibility so the query plan can vary
 from one run to the next (see the section called “Plan Caching”),
 and it also means that variable substitution is not done on the
 command string. As with EXECUTE, parameter values
 can be inserted into the dynamic command via
 format() and USING.
 The SCROLL and
 NO SCROLL options have the same meanings as for a bound
 cursor.

 An example:

OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USING keyvalue;

 In this example, the table name is inserted into the query via
 format(). The comparison value for col1
 is inserted via a USING parameter, so it needs
 no quoting.

Opening a Bound Cursor

OPEN bound_cursorvar [([argument_name :=] argument_value [, ...])];

 This form of OPEN is used to open a cursor
 variable whose query was bound to it when it was declared. The
 cursor cannot be open already. A list of actual argument value
 expressions must appear if and only if the cursor was declared to
 take arguments. These values will be substituted in the query.

 The query plan for a bound cursor is always considered cacheable;
 there is no equivalent of EXECUTE in this case.
 Notice that SCROLL and NO SCROLL cannot be
 specified in OPEN, as the cursor's scrolling
 behavior was already determined.

 Argument values can be passed using either positional
 or named notation. In positional
 notation, all arguments are specified in order. In named notation,
 each argument's name is specified using := to
 separate it from the argument expression. Similar to calling
 functions, described in the section called “Calling Functions”, it
 is also allowed to mix positional and named notation.

 Examples (these use the cursor declaration examples above):

OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);

 Because variable substitution is done on a bound cursor's query,
 there are really two ways to pass values into the cursor: either
 with an explicit argument to OPEN, or implicitly by
 referencing a PL/pgSQL variable in the query.
 However, only variables declared before the bound cursor was
 declared will be substituted into it. In either case the value to
 be passed is determined at the time of the OPEN.
 For example, another way to get the same effect as the
 curs3 example above is

DECLARE
 key integer;
 curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;
BEGIN
 key := 42;
 OPEN curs4;

Using Cursors

 Once a cursor has been opened, it can be manipulated with the
 statements described here.

 These manipulations need not occur in the same function that
 opened the cursor to begin with. You can return a refcursor
 value out of a function and let the caller operate on the cursor.
 (Internally, a refcursor value is simply the string name
 of the portal containing the active query for the cursor. This name
 can be passed around, assigned to other refcursor variables,
 and so on, without disturbing the portal.)

 All portals are implicitly closed at transaction end. Therefore
 a refcursor value is usable to reference an open cursor
 only until the end of the transaction.

FETCH

FETCH [direction { FROM | IN }] cursor INTO target;

 FETCH retrieves the next row (in the indicated
 direction) from the
 cursor into a target, which might be a row variable, a record
 variable, or a comma-separated list of simple variables, just like
 SELECT INTO. If there is no suitable row, the
 target is set to NULL(s). As with SELECT
 INTO, the special variable FOUND can
 be checked to see whether a row was obtained or not. If no row is
 obtained, the cursor is positioned after the last row or before the
 first row, depending on the movement direction.

 The direction clause can be any of the
 variants allowed in the SQL FETCH(7)
 command except the ones that can fetch
 more than one row; namely, it can be
 NEXT,
 PRIOR,
 FIRST,
 LAST,
 ABSOLUTE count,
 RELATIVE count,
 FORWARD, or
 BACKWARD.
 Omitting direction is the same
 as specifying NEXT.
 In the forms using a count,
 the count can be any integer-valued
 expression (unlike the SQL FETCH command,
 which only allows an integer constant).
 direction values that require moving
 backward are likely to fail unless the cursor was declared or opened
 with the SCROLL option.

 cursor must be the name of a refcursor
 variable that references an open cursor portal.

 Examples:

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;
FETCH RELATIVE -2 FROM curs4 INTO x;

MOVE

MOVE [direction { FROM | IN }] cursor;

 MOVE repositions a cursor without retrieving
 any data. MOVE works like the
 FETCH command, except it only repositions the
 cursor and does not return the row moved to.
 The direction clause can be any of the
 variants allowed in the SQL FETCH(7)
 command, including those that can fetch more than one row;
 the cursor is positioned to the last such row.
 (However, the case in which the direction
 clause is simply a count expression with
 no key word is deprecated in PL/pgSQL.
 That syntax is ambiguous with the case where
 the direction clause is omitted
 altogether, and hence it may fail if
 the count is not a constant.)
 As with SELECT
 INTO, the special variable FOUND can
 be checked to see whether there was a row to move to. If there is no
 such row, the cursor is positioned after the last row or before the
 first row, depending on the movement direction.

 Examples:

MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;

UPDATE/DELETE WHERE CURRENT OF

UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;

 When a cursor is positioned on a table row, that row can be updated
 or deleted using the cursor to identify the row. There are
 restrictions on what the cursor's query can be (in particular,
 no grouping) and it's best to use FOR UPDATE in the
 cursor. For more information see the
 DECLARE(7)
 reference page.

 An example:

UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;

CLOSE

CLOSE cursor;

 CLOSE closes the portal underlying an open
 cursor. This can be used to release resources earlier than end of
 transaction, or to free up the cursor variable to be opened again.

 An example:

CLOSE curs1;

Returning Cursors

 PL/pgSQL functions can return cursors to the
 caller. This is useful to return multiple rows or columns,
 especially with very large result sets. To do this, the function
 opens the cursor and returns the cursor name to the caller (or simply
 opens the cursor using a portal name specified by or otherwise known
 to the caller). The caller can then fetch rows from the cursor. The
 cursor can be closed by the caller, or it will be closed automatically
 when the transaction closes.

 The portal name used for a cursor can be specified by the
 programmer or automatically generated. To specify a portal name,
 simply assign a string to the refcursor variable before
 opening it. The string value of the refcursor variable
 will be used by OPEN as the name of the underlying portal.
 However, if the refcursor variable's value is null
 (as it will be by default), then
 OPEN automatically generates a name that does not
 conflict with any existing portal, and assigns it to the
 refcursor variable.

Note

 Prior to PostgreSQL™ 16, bound cursor
 variables were initialized to contain their own names, rather
 than being left as null, so that the underlying portal name would
 be the same as the cursor variable's name by default. This was
 changed because it created too much risk of conflicts between
 similarly-named cursors in different functions.

 The following example shows one way a cursor name can be supplied by
 the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES ('123');

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '
BEGIN
 OPEN $1 FOR SELECT col FROM test;
 RETURN $1;
END;
' LANGUAGE plpgsql;

BEGIN;
SELECT reffunc('funccursor');
FETCH ALL IN funccursor;
COMMIT;

 The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS '
DECLARE
 ref refcursor;
BEGIN
 OPEN ref FOR SELECT col FROM test;
 RETURN ref;
END;
' LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;
SELECT reffunc2();

 reffunc2

 <unnamed cursor 1>
(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;

 The following example shows one way to return multiple cursors
 from a single function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN
 OPEN $1 FOR SELECT * FROM table_1;
 RETURN NEXT $1;
 OPEN $2 FOR SELECT * FROM table_2;
 RETURN NEXT $2;
END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

Looping through a Cursor's Result

 There is a variant of the FOR statement that allows
 iterating through the rows returned by a cursor. The syntax is:

[<<label>>]
FOR recordvar IN bound_cursorvar [([argument_name :=] argument_value [, ...])] LOOP
 statements
END LOOP [label];

 The cursor variable must have been bound to some query when it was
 declared, and it cannot be open already. The
 FOR statement automatically opens the cursor, and it closes
 the cursor again when the loop exits. A list of actual argument value
 expressions must appear if and only if the cursor was declared to take
 arguments. These values will be substituted in the query, in just
 the same way as during an OPEN (see the section called “Opening a Bound Cursor”).

 The variable recordvar is automatically
 defined as type record and exists only inside the loop (any
 existing definition of the variable name is ignored within the loop).
 Each row returned by the cursor is successively assigned to this
 record variable and the loop body is executed.

Transaction Management

 In procedures invoked by the CALL command
 as well as in anonymous code blocks (DO command),
 it is possible to end transactions using the
 commands COMMIT and ROLLBACK. A new
 transaction is started automatically after a transaction is ended using
 these commands, so there is no separate START
 TRANSACTION command. (Note that BEGIN and
 END have different meanings in PL/pgSQL.)

 Here is a simple example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpgsql
AS $$
BEGIN
 FOR i IN 0..9 LOOP
 INSERT INTO test1 (a) VALUES (i);
 IF i % 2 = 0 THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 END LOOP;
END;
$$;

CALL transaction_test1();

 A new transaction starts out with default transaction characteristics such
 as transaction isolation level. In cases where transactions are committed
 in a loop, it might be desirable to start new transactions automatically
 with the same characteristics as the previous one. The commands
 COMMIT AND CHAIN and ROLLBACK AND
 CHAIN accomplish this.

 Transaction control is only possible in CALL or
 DO invocations from the top level or nested
 CALL or DO invocations without any
 other intervening command. For example, if the call stack is
 CALL proc1() → CALL proc2()
 → CALL proc3(), then the second and third
 procedures can perform transaction control actions. But if the call stack
 is CALL proc1() → SELECT
 func2() → CALL proc3(), then the last
 procedure cannot do transaction control, because of the
 SELECT in between.

 Special considerations apply to cursor loops. Consider this example:

CREATE PROCEDURE transaction_test2()
LANGUAGE plpgsql
AS $$
DECLARE
 r RECORD;
BEGIN
 FOR r IN SELECT * FROM test2 ORDER BY x LOOP
 INSERT INTO test1 (a) VALUES (r.x);
 COMMIT;
 END LOOP;
END;
$$;

CALL transaction_test2();

 Normally, cursors are automatically closed at transaction commit.
 However, a cursor created as part of a loop like this is automatically
 converted to a holdable cursor by the first COMMIT or
 ROLLBACK. That means that the cursor is fully
 evaluated at the first COMMIT or
 ROLLBACK rather than row by row. The cursor is still
 removed automatically after the loop, so this is mostly invisible to the
 user.

 Transaction commands are not allowed in cursor loops driven by commands
 that are not read-only (for example UPDATE
 ... RETURNING).

 A transaction cannot be ended inside a block with exception handlers.

Errors and Messages

Reporting Errors and Messages

 Use the RAISE statement to report messages and
 raise errors.

RAISE [level] 'format' [, expression [, ...]] [USING option = expression [, ...]];
RAISE [level] condition_name [USING option = expression [, ...]];
RAISE [level] SQLSTATE 'sqlstate' [USING option = expression [, ...]];
RAISE [level] USING option = expression [, ...];
RAISE ;

 The level option specifies
 the error severity. Allowed levels are DEBUG,
 LOG, INFO,
 NOTICE, WARNING,
 and EXCEPTION, with EXCEPTION
 being the default.
 EXCEPTION raises an error (which normally aborts the
 current transaction); the other levels only generate messages of different
 priority levels.
 Whether messages of a particular priority are reported to the client,
 written to the server log, or both is controlled by the
 log_min_messages and
 client_min_messages configuration
 variables. See Chapter 20, Server Configuration for more
 information.

 After level if any,
 you can specify a format string
 (which must be a simple string literal, not an expression). The
 format string specifies the error message text to be reported.
 The format string can be followed
 by optional argument expressions to be inserted into the message.
 Inside the format string, % is replaced by the
 string representation of the next optional argument's value. Write
 %% to emit a literal %.
 The number of arguments must match the number of %
 placeholders in the format string, or an error is raised during
 the compilation of the function.

 In this example, the value of v_job_id will replace the
 % in the string:

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

 You can attach additional information to the error report by writing
 USING followed by option = expression items. Each
 expression can be any
 string-valued expression. The allowed option key words are:

	MESSAGE
	Sets the error message text. This option can't be used in the
 form of RAISE that includes a format string
 before USING.

	DETAIL
	Supplies an error detail message.

	HINT
	Supplies a hint message.

	ERRCODE
	Specifies the error code (SQLSTATE) to report, either by condition
 name, as shown in Appendix A, PostgreSQL™ Error Codes, or directly as a
 five-character SQLSTATE code.

	COLUMN, CONSTRAINT, DATATYPE, TABLE, SCHEMA
	Supplies the name of a related object.

 This example will abort the transaction with the given error message
 and hint:

RAISE EXCEPTION 'Nonexistent ID --> %', user_id
 USING HINT = 'Please check your user ID';

 These two examples show equivalent ways of setting the SQLSTATE:

RAISE 'Duplicate user ID: %', user_id USING ERRCODE = 'unique_violation';
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';

 There is a second RAISE syntax in which the main argument
 is the condition name or SQLSTATE to be reported, for example:

RAISE division_by_zero;
RAISE SQLSTATE '22012';

 In this syntax, USING can be used to supply a custom
 error message, detail, or hint. Another way to do the earlier
 example is

RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;

 Still another variant is to write RAISE USING or RAISE
 level USING and put
 everything else into the USING list.

 The last variant of RAISE has no parameters at all.
 This form can only be used inside a BEGIN block's
 EXCEPTION clause;
 it causes the error currently being handled to be re-thrown.

Note

 Before PostgreSQL™ 9.1, RAISE without
 parameters was interpreted as re-throwing the error from the block
 containing the active exception handler. Thus an EXCEPTION
 clause nested within that handler could not catch it, even if the
 RAISE was within the nested EXCEPTION clause's
 block. This was deemed surprising as well as being incompatible with
 Oracle's PL/SQL.

 If no condition name nor SQLSTATE is specified in a
 RAISE EXCEPTION command, the default is to use
 raise_exception (P0001).
 If no message text is specified, the default is to use the condition
 name or SQLSTATE as message text.

Note

 When specifying an error code by SQLSTATE code, you are not
 limited to the predefined error codes, but can select any
 error code consisting of five digits and/or upper-case ASCII
 letters, other than 00000. It is recommended that
 you avoid throwing error codes that end in three zeroes, because
 these are category codes and can only be trapped by trapping
 the whole category.

Checking Assertions

 The ASSERT statement is a convenient shorthand for
 inserting debugging checks into PL/pgSQL
 functions.

ASSERT condition [, message];

 The condition is a Boolean
 expression that is expected to always evaluate to true; if it does,
 the ASSERT statement does nothing further. If the
 result is false or null, then an ASSERT_FAILURE exception
 is raised. (If an error occurs while evaluating
 the condition, it is
 reported as a normal error.)

 If the optional message is
 provided, it is an expression whose result (if not null) replaces the
 default error message text “assertion failed”, should
 the condition fail.
 The message expression is
 not evaluated in the normal case where the assertion succeeds.

 Testing of assertions can be enabled or disabled via the configuration
 parameter plpgsql.check_asserts, which takes a Boolean
 value; the default is on. If this parameter
 is off then ASSERT statements do nothing.

 Note that ASSERT is meant for detecting program
 bugs, not for reporting ordinary error conditions. Use
 the RAISE statement, described above, for that.

Trigger Functions

 PL/pgSQL can be used to define trigger
 functions on data changes or database events.
 A trigger function is created with the CREATE FUNCTION
 command, declaring it as a function with no arguments and a return type of
 trigger (for data change triggers) or
 event_trigger (for database event triggers).
 Special local variables named TG_something are
 automatically defined to describe the condition that triggered the call.

Triggers on Data Changes

 A data change trigger is declared as a
 function with no arguments and a return type of trigger.
 Note that the function must be declared with no arguments even if it
 expects to receive some arguments specified in CREATE TRIGGER
 — such arguments are passed via TG_ARGV, as described
 below.

 When a PL/pgSQL function is called as a
 trigger, several special variables are created automatically in the
 top-level block. They are:

	NEW record
	
 new database row for INSERT/UPDATE operations in row-level
 triggers. This variable is null in statement-level triggers
 and for DELETE operations.

	OLD record
	
 old database row for UPDATE/DELETE operations in row-level
 triggers. This variable is null in statement-level triggers
 and for INSERT operations.

	TG_NAME name
	
 name of the trigger which fired.

	TG_WHEN text
	
 BEFORE, AFTER, or
 INSTEAD OF, depending on the trigger's definition.

	TG_LEVEL text
	
 ROW or STATEMENT,
 depending on the trigger's definition.

	TG_OP text
	
 operation for which the trigger was fired:
 INSERT, UPDATE,
 DELETE, or TRUNCATE.

	TG_RELID oid (references pg_class.oid)
	
 object ID of the table that caused the trigger invocation.

	TG_RELNAME name
	
 table that caused the trigger
 invocation. This is now deprecated, and could disappear in a future
 release. Use TG_TABLE_NAME instead.

	TG_TABLE_NAME name
	
 table that caused the trigger invocation.

	TG_TABLE_SCHEMA name
	
 schema of the table that caused the trigger invocation.

	TG_NARGS integer
	
 number of arguments given to the trigger
 function in the CREATE TRIGGER statement.

	TG_ARGV text[]
	
 arguments from
 the CREATE TRIGGER statement.
 The index counts from 0. Invalid
 indexes (less than 0 or greater than or equal to tg_nargs)
 result in a null value.

 A trigger function must return either NULL or a
 record/row value having exactly the structure of the table the
 trigger was fired for.

 Row-level triggers fired BEFORE can return null to signal the
 trigger manager to skip the rest of the operation for this row
 (i.e., subsequent triggers are not fired, and the
 INSERT/UPDATE/DELETE does not occur
 for this row). If a nonnull
 value is returned then the operation proceeds with that row value.
 Returning a row value different from the original value
 of NEW alters the row that will be inserted or
 updated. Thus, if the trigger function wants the triggering
 action to succeed normally without altering the row
 value, NEW (or a value equal thereto) has to be
 returned. To alter the row to be stored, it is possible to
 replace single values directly in NEW and return the
 modified NEW, or to build a complete new record/row to
 return. In the case of a before-trigger
 on DELETE, the returned value has no direct
 effect, but it has to be nonnull to allow the trigger action to
 proceed. Note that NEW is null
 in DELETE triggers, so returning that is
 usually not sensible. The usual idiom in DELETE
 triggers is to return OLD.

 INSTEAD OF triggers (which are always row-level triggers,
 and may only be used on views) can return null to signal that they did
 not perform any updates, and that the rest of the operation for this
 row should be skipped (i.e., subsequent triggers are not fired, and the
 row is not counted in the rows-affected status for the surrounding
 INSERT/UPDATE/DELETE).
 Otherwise a nonnull value should be returned, to signal
 that the trigger performed the requested operation. For
 INSERT and UPDATE operations, the return value
 should be NEW, which the trigger function may modify to
 support INSERT RETURNING and UPDATE RETURNING
 (this will also affect the row value passed to any subsequent triggers,
 or passed to a special EXCLUDED alias reference within
 an INSERT statement with an ON CONFLICT DO
 UPDATE clause). For DELETE operations, the return
 value should be OLD.

 The return value of a row-level trigger
 fired AFTER or a statement-level trigger
 fired BEFORE or AFTER is
 always ignored; it might as well be null. However, any of these types of
 triggers might still abort the entire operation by raising an error.

 Example 43.3, “A PL/pgSQL Trigger Function” shows an example of a
 trigger function in PL/pgSQL.

Example 43.3. A PL/pgSQL Trigger Function

 This example trigger ensures that any time a row is inserted or updated
 in the table, the current user name and time are stamped into the
 row. And it checks that an employee's name is given and that the
 salary is a positive value.

CREATE TABLE emp (
 empname text,
 salary integer,
 last_date timestamp,
 last_user text
);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname IS NULL THEN
 RAISE EXCEPTION 'empname cannot be null';
 END IF;
 IF NEW.salary IS NULL THEN
 RAISE EXCEPTION '% cannot have null salary', NEW.empname;
 END IF;

 -- Who works for us when they must pay for it?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE FUNCTION emp_stamp();

 Another way to log changes to a table involves creating a new table that
 holds a row for each insert, update, or delete that occurs. This approach
 can be thought of as auditing changes to a table.
 Example 43.4, “A PL/pgSQL Trigger Function for Auditing” shows an example of an
 audit trigger function in PL/pgSQL.

Example 43.4. A PL/pgSQL Trigger Function for Auditing

 This example trigger ensures that any insert, update or delete of a row
 in the emp table is recorded (i.e., audited) in the emp_audit table.
 The current time and user name are stamped into the row, together with
 the type of operation performed on it.

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create a row in emp_audit to reflect the operation performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit SELECT 'D', now(), current_user, OLD.*;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit SELECT 'U', now(), current_user, NEW.*;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit SELECT 'I', now(), current_user, NEW.*;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW EXECUTE FUNCTION process_emp_audit();

 A variation of the previous example uses a view joining the main table
 to the audit table, to show when each entry was last modified. This
 approach still records the full audit trail of changes to the table,
 but also presents a simplified view of the audit trail, showing just
 the last modified timestamp derived from the audit trail for each entry.
 Example 43.5, “A PL/pgSQL View Trigger Function for Auditing” shows an example
 of an audit trigger on a view in PL/pgSQL.

Example 43.5. A PL/pgSQL View Trigger Function for Auditing

 This example uses a trigger on the view to make it updatable, and
 ensure that any insert, update or delete of a row in the view is
 recorded (i.e., audited) in the emp_audit table. The current time
 and user name are recorded, together with the type of operation
 performed, and the view displays the last modified time of each row.

CREATE TABLE emp (
 empname text PRIMARY KEY,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer,
 stamp timestamp NOT NULL
);

CREATE VIEW emp_view AS
 SELECT e.empname,
 e.salary,
 max(ea.stamp) AS last_updated
 FROM emp e
 LEFT JOIN emp_audit ea ON ea.empname = e.empname
 GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
 BEGIN
 --
 -- Perform the required operation on emp, and create a row in emp_audit
 -- to reflect the change made to emp.
 --
 IF (TG_OP = 'DELETE') THEN
 DELETE FROM emp WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 OLD.last_updated = now();
 INSERT INTO emp_audit VALUES('D', current_user, OLD.*);
 RETURN OLD;
 ELSIF (TG_OP = 'UPDATE') THEN
 UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('U', current_user, NEW.*);
 RETURN NEW;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp VALUES(NEW.empname, NEW.salary);

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('I', current_user, NEW.*);
 RETURN NEW;
 END IF;
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view
 FOR EACH ROW EXECUTE FUNCTION update_emp_view();

 One use of triggers is to maintain a summary table
 of another table. The resulting summary can be used in place of the
 original table for certain queries — often with vastly reduced run
 times.
 This technique is commonly used in Data Warehousing, where the tables
 of measured or observed data (called fact tables) might be extremely large.
 Example 43.6, “A PL/pgSQL Trigger Function for Maintaining a Summary Table” shows an example of a
 trigger function in PL/pgSQL that maintains
 a summary table for a fact table in a data warehouse.

Example 43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Table

 The schema detailed here is partly based on the Grocery Store
 example from The Data Warehouse Toolkit
 by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (
 time_key integer NOT NULL,
 day_of_week integer NOT NULL,
 day_of_month integer NOT NULL,
 month integer NOT NULL,
 quarter integer NOT NULL,
 year integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
 time_key integer NOT NULL,
 product_key integer NOT NULL,
 store_key integer NOT NULL,
 amount_sold numeric(12,2) NOT NULL,
 units_sold integer NOT NULL,
 amount_cost numeric(12,2) NOT NULL
);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (
 time_key integer NOT NULL,
 amount_sold numeric(15,2) NOT NULL,
 units_sold numeric(12) NOT NULL,
 amount_cost numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER
AS $maint_sales_summary_bytime$
 DECLARE
 delta_time_key integer;
 delta_amount_sold numeric(15,2);
 delta_units_sold numeric(12);
 delta_amount_cost numeric(15,2);
 BEGIN

 -- Work out the increment/decrement amount(s).
 IF (TG_OP = 'DELETE') THEN

 delta_time_key = OLD.time_key;
 delta_amount_sold = -1 * OLD.amount_sold;
 delta_units_sold = -1 * OLD.units_sold;
 delta_amount_cost = -1 * OLD.amount_cost;

 ELSIF (TG_OP = 'UPDATE') THEN

 -- forbid updates that change the time_key -
 -- (probably not too onerous, as DELETE + INSERT is how most
 -- changes will be made).
 IF (OLD.time_key != NEW.time_key) THEN
 RAISE EXCEPTION 'Update of time_key : % -> % not allowed',
 OLD.time_key, NEW.time_key;
 END IF;

 delta_time_key = OLD.time_key;
 delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
 delta_units_sold = NEW.units_sold - OLD.units_sold;
 delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

 ELSIF (TG_OP = 'INSERT') THEN

 delta_time_key = NEW.time_key;
 delta_amount_sold = NEW.amount_sold;
 delta_units_sold = NEW.units_sold;
 delta_amount_cost = NEW.amount_cost;

 END IF;

 -- Insert or update the summary row with the new values.
 <<insert_update>>
 LOOP
 UPDATE sales_summary_bytime
 SET amount_sold = amount_sold + delta_amount_sold,
 units_sold = units_sold + delta_units_sold,
 amount_cost = amount_cost + delta_amount_cost
 WHERE time_key = delta_time_key;

 EXIT insert_update WHEN found;

 BEGIN
 INSERT INTO sales_summary_bytime (
 time_key,
 amount_sold,
 units_sold,
 amount_cost)
 VALUES (
 delta_time_key,
 delta_amount_sold,
 delta_units_sold,
 delta_amount_cost
);

 EXIT insert_update;

 EXCEPTION
 WHEN UNIQUE_VIOLATION THEN
 -- do nothing
 END;
 END LOOP insert_update;

 RETURN NULL;

 END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
 FOR EACH ROW EXECUTE FUNCTION maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;

 AFTER triggers can also make use of transition
 tables to inspect the entire set of rows changed by the triggering
 statement. The CREATE TRIGGER command assigns names to one
 or both transition tables, and then the function can refer to those names
 as though they were read-only temporary tables.
 Example 43.7, “Auditing with Transition Tables” shows an example.

Example 43.7. Auditing with Transition Tables

 This example produces the same results as
 Example 43.4, “A PL/pgSQL Trigger Function for Auditing”, but instead of using a
 trigger that fires for every row, it uses a trigger that fires once
 per statement, after collecting the relevant information in a transition
 table. This can be significantly faster than the row-trigger approach
 when the invoking statement has modified many rows. Notice that we must
 make a separate trigger declaration for each kind of event, since the
 REFERENCING clauses must be different for each case. But
 this does not stop us from using a single trigger function if we choose.
 (In practice, it might be better to use three separate functions and
 avoid the run-time tests on TG_OP.)

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create rows in emp_audit to reflect the operations performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit
 SELECT 'D', now(), current_user, o.* FROM old_table o;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit
 SELECT 'U', now(), current_user, n.* FROM new_table n;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit
 SELECT 'I', now(), current_user, n.* FROM new_table n;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit_ins
 AFTER INSERT ON emp
 REFERENCING NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_upd
 AFTER UPDATE ON emp
 REFERENCING OLD TABLE AS old_table NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_del
 AFTER DELETE ON emp
 REFERENCING OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();

Triggers on Events

 PL/pgSQL can be used to define
 event triggers.
 PostgreSQL™ requires that a function that
 is to be called as an event trigger must be declared as a function with
 no arguments and a return type of event_trigger.

 When a PL/pgSQL function is called as an
 event trigger, several special variables are created automatically
 in the top-level block. They are:

	TG_EVENT text
	
 event the trigger is fired for.

	TG_TAG text
	
 command tag for which the trigger is fired.

 Example 43.8, “A PL/pgSQL Event Trigger Function” shows an example of an
 event trigger function in PL/pgSQL.

Example 43.8. A PL/pgSQL Event Trigger Function

 This example trigger simply raises a NOTICE message
 each time a supported command is executed.

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$
BEGIN
 RAISE NOTICE 'snitch: % %', tg_event, tg_tag;
END;
$$ LANGUAGE plpgsql;

CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE FUNCTION snitch();

PL/pgSQL under the Hood

 This section discusses some implementation details that are
 frequently important for PL/pgSQL users to know.

Variable Substitution

 SQL statements and expressions within a PL/pgSQL function
 can refer to variables and parameters of the function. Behind the scenes,
 PL/pgSQL substitutes query parameters for such references.
 Query parameters will only be substituted in places where they are
 syntactically permissible. As an extreme case, consider
 this example of poor programming style:

INSERT INTO foo (foo) VALUES (foo(foo));

 The first occurrence of foo must syntactically be a table
 name, so it will not be substituted, even if the function has a variable
 named foo. The second occurrence must be the name of a
 column of that table, so it will not be substituted either. Likewise
 the third occurrence must be a function name, so it also will not be
 substituted for. Only the last occurrence is a candidate to be a
 reference to a variable of the PL/pgSQL
 function.

 Another way to understand this is that variable substitution can only
 insert data values into an SQL command; it cannot dynamically change which
 database objects are referenced by the command. (If you want to do
 that, you must build a command string dynamically, as explained in
 the section called “Executing Dynamic Commands”.)

 Since the names of variables are syntactically no different from the names
 of table columns, there can be ambiguity in statements that also refer to
 tables: is a given name meant to refer to a table column, or a variable?
 Let's change the previous example to

INSERT INTO dest (col) SELECT foo + bar FROM src;

 Here, dest and src must be table names, and
 col must be a column of dest, but foo
 and bar might reasonably be either variables of the function
 or columns of src.

 By default, PL/pgSQL will report an error if a name
 in an SQL statement could refer to either a variable or a table column.
 You can fix such a problem by renaming the variable or column,
 or by qualifying the ambiguous reference, or by telling
 PL/pgSQL which interpretation to prefer.

 The simplest solution is to rename the variable or column.
 A common coding rule is to use a
 different naming convention for PL/pgSQL
 variables than you use for column names. For example,
 if you consistently name function variables
 v_something while none of your
 column names start with v_, no conflicts will occur.

 Alternatively you can qualify ambiguous references to make them clear.
 In the above example, src.foo would be an unambiguous reference
 to the table column. To create an unambiguous reference to a variable,
 declare it in a labeled block and use the block's label
 (see the section called “Structure of PL/pgSQL”). For example,

<<block>>
DECLARE
 foo int;
BEGIN
 foo := ...;
 INSERT INTO dest (col) SELECT block.foo + bar FROM src;

 Here block.foo means the variable even if there is a column
 foo in src. Function parameters, as well as
 special variables such as FOUND, can be qualified by the
 function's name, because they are implicitly declared in an outer block
 labeled with the function's name.

 Sometimes it is impractical to fix all the ambiguous references in a
 large body of PL/pgSQL code. In such cases you can
 specify that PL/pgSQL should resolve ambiguous references
 as the variable (which is compatible with PL/pgSQL's
 behavior before PostgreSQL™ 9.0), or as the
 table column (which is compatible with some other systems such as
 Oracle™).

 To change this behavior on a system-wide basis, set the configuration
 parameter plpgsql.variable_conflict to one of
 error, use_variable, or
 use_column (where error is the factory default).
 This parameter affects subsequent compilations
 of statements in PL/pgSQL functions, but not statements
 already compiled in the current session.
 Because changing this setting
 can cause unexpected changes in the behavior of PL/pgSQL
 functions, it can only be changed by a superuser.

 You can also set the behavior on a function-by-function basis, by
 inserting one of these special commands at the start of the function
 text:

#variable_conflict error
#variable_conflict use_variable
#variable_conflict use_column

 These commands affect only the function they are written in, and override
 the setting of plpgsql.variable_conflict. An example is

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 #variable_conflict use_variable
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = curtime, comment = comment
 WHERE users.id = id;
 END;
$$ LANGUAGE plpgsql;

 In the UPDATE command, curtime, comment,
 and id will refer to the function's variable and parameters
 whether or not users has columns of those names. Notice
 that we had to qualify the reference to users.id in the
 WHERE clause to make it refer to the table column.
 But we did not have to qualify the reference to comment
 as a target in the UPDATE list, because syntactically
 that must be a column of users. We could write the same
 function without depending on the variable_conflict setting
 in this way:

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 <<fn>>
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = fn.curtime, comment = stamp_user.comment
 WHERE users.id = stamp_user.id;
 END;
$$ LANGUAGE plpgsql;

 Variable substitution does not happen in a command string given
 to EXECUTE or one of its variants. If you need to
 insert a varying value into such a command, do so as part of
 constructing the string value, or use USING, as illustrated in
 the section called “Executing Dynamic Commands”.

 Variable substitution currently works only in SELECT,
 INSERT, UPDATE,
 DELETE, MERGE and commands
 containing one of these (such as EXPLAIN and
 CREATE TABLE ... AS SELECT), because the main SQL
 engine allows query parameters only in these commands. To use a
 non-constant name or value in other statement types (generically called
 utility statements), you must construct the utility statement as a string
 and EXECUTE it.

Plan Caching

 The PL/pgSQL interpreter parses the function's source
 text and produces an internal binary instruction tree the first time the
 function is called (within each session). The instruction tree
 fully translates the
 PL/pgSQL statement structure, but individual
 SQL expressions and SQL commands
 used in the function are not translated immediately.

 As each expression and SQL command is first
 executed in the function, the PL/pgSQL interpreter
 parses and analyzes the command to create a prepared statement,
 using the SPI manager's
 SPI_prepare function.
 Subsequent visits to that expression or command
 reuse the prepared statement. Thus, a function with conditional code
 paths that are seldom visited will never incur the overhead of
 analyzing those commands that are never executed within the current
 session. A disadvantage is that errors
 in a specific expression or command cannot be detected until that
 part of the function is reached in execution. (Trivial syntax
 errors will be detected during the initial parsing pass, but
 anything deeper will not be detected until execution.)

 PL/pgSQL (or more precisely, the SPI manager) can
 furthermore attempt to cache the execution plan associated with any
 particular prepared statement. If a cached plan is not used, then
 a fresh execution plan is generated on each visit to the statement,
 and the current parameter values (that is, PL/pgSQL
 variable values) can be used to optimize the selected plan. If the
 statement has no parameters, or is executed many times, the SPI manager
 will consider creating a generic plan that is not dependent
 on specific parameter values, and caching that for re-use. Typically
 this will happen only if the execution plan is not very sensitive to
 the values of the PL/pgSQL variables referenced in it.
 If it is, generating a plan each time is a net win. See PREPARE(7) for more information about the behavior of
 prepared statements.

 Because PL/pgSQL saves prepared statements
 and sometimes execution plans in this way,
 SQL commands that appear directly in a
 PL/pgSQL function must refer to the
 same tables and columns on every execution; that is, you cannot use
 a parameter as the name of a table or column in an SQL command. To get
 around this restriction, you can construct dynamic commands using
 the PL/pgSQL EXECUTE
 statement — at the price of performing new parse analysis and
 constructing a new execution plan on every execution.

 The mutable nature of record variables presents another problem in this
 connection. When fields of a record variable are used in
 expressions or statements, the data types of the fields must not
 change from one call of the function to the next, since each
 expression will be analyzed using the data type that is present
 when the expression is first reached. EXECUTE can be
 used to get around this problem when necessary.

 If the same function is used as a trigger for more than one table,
 PL/pgSQL prepares and caches statements
 independently for each such table — that is, there is a cache
 for each trigger function and table combination, not just for each
 function. This alleviates some of the problems with varying
 data types; for instance, a trigger function will be able to work
 successfully with a column named key even if it happens
 to have different types in different tables.

 Likewise, functions having polymorphic argument types have a separate
 statement cache for each combination of actual argument types they have
 been invoked for, so that data type differences do not cause unexpected
 failures.

 Statement caching can sometimes have surprising effects on the
 interpretation of time-sensitive values. For example there
 is a difference between what these two functions do:

CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
 BEGIN
 INSERT INTO logtable VALUES (logtxt, 'now');
 END;
$$ LANGUAGE plpgsql;

 and:

CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
 DECLARE
 curtime timestamp;
 BEGIN
 curtime := 'now';
 INSERT INTO logtable VALUES (logtxt, curtime);
 END;
$$ LANGUAGE plpgsql;

 In the case of logfunc1, the
 PostgreSQL™ main parser knows when
 analyzing the INSERT that the
 string 'now' should be interpreted as
 timestamp, because the target column of
 logtable is of that type. Thus,
 'now' will be converted to a timestamp
 constant when the
 INSERT is analyzed, and then used in all
 invocations of logfunc1 during the lifetime
 of the session. Needless to say, this isn't what the programmer
 wanted. A better idea is to use the now() or
 current_timestamp function.

 In the case of logfunc2, the
 PostgreSQL™ main parser does not know
 what type 'now' should become and therefore
 it returns a data value of type text containing the string
 now. During the ensuing assignment
 to the local variable curtime, the
 PL/pgSQL interpreter casts this
 string to the timestamp type by calling the
 textout and timestamp_in
 functions for the conversion. So, the computed time stamp is updated
 on each execution as the programmer expects. Even though this
 happens to work as expected, it's not terribly efficient, so
 use of the now() function would still be a better idea.

Tips for Developing in PL/pgSQL

 One good way to develop in
 PL/pgSQL is to use the text editor of your
 choice to create your functions, and in another window, use
 psql to load and test those functions.
 If you are doing it this way, it
 is a good idea to write the function using CREATE OR
 REPLACE FUNCTION. That way you can just reload the file to update
 the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$

$$ LANGUAGE plpgsql;

 While running psql, you can load or reload such
 a function definition file with:

\i filename.sql

 and then immediately issue SQL commands to test the function.

 Another good way to develop in PL/pgSQL is with a
 GUI database access tool that facilitates development in a
 procedural language. One example of such a tool is
 pgAdmin, although others exist. These tools often
 provide convenient features such as escaping single quotes and
 making it easier to recreate and debug functions.

Handling of Quotation Marks

 The code of a PL/pgSQL function is specified in
 CREATE FUNCTION as a string literal. If you
 write the string literal in the ordinary way with surrounding
 single quotes, then any single quotes inside the function body
 must be doubled; likewise any backslashes must be doubled (assuming
 escape string syntax is used).
 Doubling quotes is at best tedious, and in more complicated cases
 the code can become downright incomprehensible, because you can
 easily find yourself needing half a dozen or more adjacent quote marks.
 It's recommended that you instead write the function body as a
 “dollar-quoted” string literal (see the section called “Dollar-Quoted String Constants”). In the dollar-quoting
 approach, you never double any quote marks, but instead take care to
 choose a different dollar-quoting delimiter for each level of
 nesting you need. For example, you might write the CREATE
 FUNCTION command as:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$

$PROC$ LANGUAGE plpgsql;

 Within this, you might use quote marks for simple literal strings in
 SQL commands and $$ to delimit fragments of SQL commands
 that you are assembling as strings. If you need to quote text that
 includes $$, you could use Q, and so on.

 The following chart shows what you have to do when writing quote
 marks without dollar quoting. It might be useful when translating
 pre-dollar quoting code into something more comprehensible.

	1 quotation mark
	
 To begin and end the function body, for example:

CREATE FUNCTION foo() RETURNS integer AS '

' LANGUAGE plpgsql;

 Anywhere within a single-quoted function body, quote marks
 must appear in pairs.

	2 quotation marks
	
 For string literals inside the function body, for example:

a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';

 In the dollar-quoting approach, you'd just write:

a_output := 'Blah';
SELECT * FROM users WHERE f_name='foobar';

 which is exactly what the PL/pgSQL parser would see
 in either case.

	4 quotation marks
	
 When you need a single quotation mark in a string constant inside the
 function body, for example:

a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''

 The value actually appended to a_output would be:
 AND name LIKE 'foobar' AND xyz.

 In the dollar-quoting approach, you'd write:

a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$

 being careful that any dollar-quote delimiters around this are not
 just $$.

	6 quotation marks
	
 When a single quotation mark in a string inside the function body is
 adjacent to the end of that string constant, for example:

a_output := a_output || '' AND name LIKE ''''foobar''''''

 The value appended to a_output would then be:
 AND name LIKE 'foobar'.

 In the dollar-quoting approach, this becomes:

a_output := a_output || $$ AND name LIKE 'foobar'$$

	10 quotation marks
	
 When you want two single quotation marks in a string constant (which
 accounts for 8 quotation marks) and this is adjacent to the end of that
 string constant (2 more). You will probably only need that if
 you are writing a function that generates other functions, as in
 Example 43.10, “Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL”.
 For example:

a_output := a_output || '' if v_'' ||
 referrer_keys.kind || '' like ''''''''''
 || referrer_keys.key_string || ''''''''''
 then return '''''' || referrer_keys.referrer_type
 || ''''''; end if;'';

 The value of a_output would then be:

if v_... like ''...'' then return ''...''; end if;

 In the dollar-quoting approach, this becomes:

a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like '$$
 || referrer_keys.key_string || $$'
 then return '$$ || referrer_keys.referrer_type
 || $$'; end if;$$;

 where we assume we only need to put single quote marks into
 a_output, because it will be re-quoted before use.

Additional Compile-Time and Run-Time Checks

 To aid the user in finding instances of simple but common problems before
 they cause harm, PL/pgSQL provides additional
 checks. When enabled, depending on the configuration, they
 can be used to emit either a WARNING or an ERROR
 during the compilation of a function. A function which has received
 a WARNING can be executed without producing further messages,
 so you are advised to test in a separate development environment.

 Setting plpgsql.extra_warnings, or
 plpgsql.extra_errors, as appropriate, to "all"
 is encouraged in development and/or testing environments.

 These additional checks are enabled through the configuration variables
 plpgsql.extra_warnings for warnings and
 plpgsql.extra_errors for errors. Both can be set either to
 a comma-separated list of checks, "none" or
 "all". The default is "none". Currently
 the list of available checks includes:

	shadowed_variables
	
 Checks if a declaration shadows a previously defined variable.

	strict_multi_assignment
	
 Some PL/pgSQL commands allow assigning
 values to more than one variable at a time, such as
 SELECT INTO. Typically, the number of target
 variables and the number of source variables should match, though
 PL/pgSQL will use NULL
 for missing values and extra variables are ignored. Enabling this
 check will cause PL/pgSQL to throw a
 WARNING or ERROR whenever the
 number of target variables and the number of source variables are
 different.

	too_many_rows
	
 Enabling this check will cause PL/pgSQL to
 check if a given query returns more than one row when an
 INTO clause is used. As an INTO
 statement will only ever use one row, having a query return multiple
 rows is generally either inefficient and/or nondeterministic and
 therefore is likely an error.

 The following example shows the effect of plpgsql.extra_warnings
 set to shadowed_variables:

SET plpgsql.extra_warnings TO 'shadowed_variables';

CREATE FUNCTION foo(f1 int) RETURNS int AS $$
DECLARE
f1 int;
BEGIN
RETURN f1;
END;
$$ LANGUAGE plpgsql;
WARNING: variable "f1" shadows a previously defined variable
LINE 3: f1 int;
 ^
CREATE FUNCTION

 The below example shows the effects of setting
 plpgsql.extra_warnings to
 strict_multi_assignment:

SET plpgsql.extra_warnings TO 'strict_multi_assignment';

CREATE OR REPLACE FUNCTION public.foo()
 RETURNS void
 LANGUAGE plpgsql
AS $$
DECLARE
 x int;
 y int;
BEGIN
 SELECT 1 INTO x, y;
 SELECT 1, 2 INTO x, y;
 SELECT 1, 2, 3 INTO x, y;
END;
$$;

SELECT foo();
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.

 foo

(1 row)

Porting from Oracle™ PL/SQL

 This section explains differences between
 PostgreSQL™'s PL/pgSQL
 language and Oracle's PL/SQL language,
 to help developers who port applications from
 Oracle® to PostgreSQL™.

 PL/pgSQL is similar to PL/SQL in many
 aspects. It is a block-structured, imperative language, and all
 variables have to be declared. Assignments, loops, and conditionals
 are similar. The main differences you should keep in mind when
 porting from PL/SQL to
 PL/pgSQL are:

	
 If a name used in an SQL command could be either a column name of a
 table used in the command or a reference to a variable of the function,
 PL/SQL treats it as a column name.
 By default, PL/pgSQL will throw an error
 complaining that the name is ambiguous. You can specify
 plpgsql.variable_conflict = use_column
 to change this behavior to match PL/SQL,
 as explained in the section called “Variable Substitution”.
 It's often best to avoid such ambiguities in the first place,
 but if you have to port a large amount of code that depends on
 this behavior, setting variable_conflict may be the
 best solution.

	
 In PostgreSQL™ the function body must be written as
 a string literal. Therefore you need to use dollar quoting or escape
 single quotes in the function body. (See the section called “Handling of Quotation Marks”.)

	
 Data type names often need translation. For example, in Oracle string
 values are commonly declared as being of type varchar2, which
 is a non-SQL-standard type. In PostgreSQL™,
 use type varchar or text instead. Similarly, replace
 type number with numeric, or use some other numeric
 data type if there's a more appropriate one.

	
 Instead of packages, use schemas to organize your functions
 into groups.

	
 Since there are no packages, there are no package-level variables
 either. This is somewhat annoying. You can keep per-session state
 in temporary tables instead.

	
 Integer FOR loops with REVERSE work
 differently: PL/SQL counts down from the second
 number to the first, while PL/pgSQL counts down
 from the first number to the second, requiring the loop bounds
 to be swapped when porting. This incompatibility is unfortunate
 but is unlikely to be changed. (See the section called “FOR (Integer Variant)”.)

	
 FOR loops over queries (other than cursors) also work
 differently: the target variable(s) must have been declared,
 whereas PL/SQL always declares them implicitly.
 An advantage of this is that the variable values are still accessible
 after the loop exits.

	
 There are various notational differences for the use of cursor
 variables.

Porting Examples

 Example 43.9, “Porting a Simple Function from PL/SQL to PL/pgSQL” shows how to port a simple
 function from PL/SQL to PL/pgSQL.

Example 43.9. Porting a Simple Function from PL/SQL to PL/pgSQL

 Here is an Oracle™ PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
 v_version varchar2)
RETURN varchar2 IS
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
/
show errors;

 Let's go through this function and see the differences compared to
 PL/pgSQL:

	
 The type name varchar2 has to be changed to varchar
 or text. In the examples in this section, we'll
 use varchar, but text is often a better choice if
 you do not need specific string length limits.

	
 The RETURN key word in the function
 prototype (not the function body) becomes
 RETURNS in
 PostgreSQL™.
 Also, IS becomes AS, and you need to
 add a LANGUAGE clause because PL/pgSQL
 is not the only possible function language.

	
 In PostgreSQL™, the function body is considered
 to be a string literal, so you need to use quote marks or dollar
 quotes around it. This substitutes for the terminating /
 in the Oracle approach.

	
 The show errors command does not exist in
 PostgreSQL™, and is not needed since errors are
 reported automatically.

 This is how this function would look when ported to
 PostgreSQL™:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
 v_version varchar)
RETURNS varchar AS $$
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;

 Example 43.10, “Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL” shows how to port a
 function that creates another function and how to handle the
 ensuing quoting problems.

Example 43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

 The following procedure grabs rows from a
 SELECT statement and builds a large function
 with the results in IF statements, for the
 sake of efficiency.

 This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
 CURSOR referrer_keys IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_cmd VARCHAR(4000);
BEGIN
 func_cmd := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR2,
 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN VARCHAR2 IS BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_cmd := func_cmd ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ''' || referrer_key.key_string
 || ''' THEN RETURN ''' || referrer_key.referrer_type
 || '''; END IF;';
 END LOOP;

 func_cmd := func_cmd || ' RETURN NULL; END;';

 EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

 Here is how this function would end up in PostgreSQL™:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
 referrer_keys CURSOR IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_body text;
 func_cmd text;
BEGIN
 func_body := 'BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_body := func_body ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ' || quote_literal(referrer_key.key_string)
 || ' THEN RETURN ' || quote_literal(referrer_key.referrer_type)
 || '; END IF;' ;
 END LOOP;

 func_body := func_body || ' RETURN NULL; END;';

 func_cmd :=
 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,
 v_domain varchar,
 v_url varchar)
 RETURNS varchar AS '
 || quote_literal(func_body)
 || ' LANGUAGE plpgsql;' ;

 EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

 Notice how the body of the function is built separately and passed
 through quote_literal to double any quote marks in it. This
 technique is needed because we cannot safely use dollar quoting for
 defining the new function: we do not know for sure what strings will
 be interpolated from the referrer_key.key_string field.
 (We are assuming here that referrer_key.kind can be
 trusted to always be host, domain, or
 url, but referrer_key.key_string might be
 anything, in particular it might contain dollar signs.) This function
 is actually an improvement on the Oracle original, because it will
 not generate broken code when referrer_key.key_string or
 referrer_key.referrer_type contain quote marks.

 Example 43.11, “Porting a Procedure With String Manipulation and
 OUT Parameters from PL/SQL to
 PL/pgSQL” shows how to port a function
 with OUT parameters and string manipulation.
 PostgreSQL™ does not have a built-in
 instr function, but you can create one
 using a combination of other
 functions. In the section called “Appendix” there is a
 PL/pgSQL implementation of
 instr that you can use to make your porting
 easier.

Example 43.11. Porting a Procedure With String Manipulation and
 OUT Parameters from PL/SQL to
 PL/pgSQL

 The following Oracle™ PL/SQL procedure is used
 to parse a URL and return several elements (host, path, and query).

 This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
 v_url IN VARCHAR2,
 v_host OUT VARCHAR2, -- This will be passed back
 v_path OUT VARCHAR2, -- This one too
 v_query OUT VARCHAR2) -- And this one
IS
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;

 Here is a possible translation into PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_parse_url(
 v_url IN VARCHAR,
 v_host OUT VARCHAR, -- This will be passed back
 v_path OUT VARCHAR, -- This one too
 v_query OUT VARCHAR) -- And this one
AS $$
DECLARE
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;

 This function could be used like this:

SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');

 Example 43.12, “Porting a Procedure from PL/SQL to PL/pgSQL” shows how to port a procedure
 that uses numerous features that are specific to Oracle.

Example 43.12. Porting a Procedure from PL/SQL to PL/pgSQL

 The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
 a_running_job_count INTEGER;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 raise_application_error(-20000,
 'Unable to create a new job: a job is currently running.');
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
 EXCEPTION
 WHEN dup_val_on_index THEN NULL; -- don't worry if it already exists
 END;
 COMMIT;
END;
/
show errors

 This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
 a_running_job_count integer;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 RAISE EXCEPTION 'Unable to create a new job: a job is currently running'; -- [image: 1]
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
 EXCEPTION
 WHEN unique_violation THEN -- [image: 2]
 -- don't worry if it already exists
 END;
 COMMIT;
END;
$$ LANGUAGE plpgsql;

	[image: 1]
	
 The syntax of RAISE is considerably different from
 Oracle's statement, although the basic case RAISE
 exception_name works
 similarly.

	[image: 2]
	
 The exception names supported by PL/pgSQL are
 different from Oracle's. The set of built-in exception names
 is much larger (see Appendix A, PostgreSQL™ Error Codes). There
 is not currently a way to declare user-defined exception names,
 although you can throw user-chosen SQLSTATE values instead.

Other Things to Watch For

 This section explains a few other things to watch for when porting
 Oracle PL/SQL functions to
 PostgreSQL™.

Implicit Rollback after Exceptions

 In PL/pgSQL, when an exception is caught by an
 EXCEPTION clause, all database changes since the block's
 BEGIN are automatically rolled back. That is, the behavior
 is equivalent to what you'd get in Oracle with:

BEGIN
 SAVEPOINT s1;
 ... code here ...
EXCEPTION
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
END;

 If you are translating an Oracle procedure that uses
 SAVEPOINT and ROLLBACK TO in this style,
 your task is easy: just omit the SAVEPOINT and
 ROLLBACK TO. If you have a procedure that uses
 SAVEPOINT and ROLLBACK TO in a different way
 then some actual thought will be required.

EXECUTE

 The PL/pgSQL version of
 EXECUTE works similarly to the
 PL/SQL version, but you have to remember to use
 quote_literal and
 quote_ident as described in the section called “Executing Dynamic Commands”. Constructs of the
 type EXECUTE 'SELECT * FROM $1'; will not work
 reliably unless you use these functions.

Optimizing PL/pgSQL Functions

 PostgreSQL™ gives you two function creation
 modifiers to optimize execution: “volatility” (whether
 the function always returns the same result when given the same
 arguments) and “strictness” (whether the function
 returns null if any argument is null). Consult the CREATE FUNCTION(7)
 reference page for details.

 When making use of these optimization attributes, your
 CREATE FUNCTION statement might look something
 like this:

CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

Appendix

 This section contains the code for a set of Oracle-compatible
 instr functions that you can use to simplify
 your porting efforts.

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.
--
-- Search string1, beginning at the nth character, for the mth occurrence
-- of string2. If n is negative, search backwards, starting at the abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is not found.
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
 RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN
 temp_str := substring(string FROM beg_index);
 pos := position(string_to_search_for IN temp_str);

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN pos + beg_index - 1;
 END IF;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 RETURN beg;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 occur_number integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 i integer;
 length integer;
 ss_length integer;
BEGIN
 IF occur_index <= 0 THEN
 RAISE 'argument ''%'' is out of range', occur_index
 USING ERRCODE = '22003';
 END IF;

 IF beg_index > 0 THEN
 beg := beg_index - 1;
 FOR i IN 1..occur_index LOOP
 temp_str := substring(string FROM beg + 1);
 pos := position(string_to_search_for IN temp_str);
 IF pos = 0 THEN
 RETURN 0;
 END IF;
 beg := beg + pos;
 END LOOP;

 RETURN beg;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 occur_number := occur_number + 1;
 IF occur_number = occur_index THEN
 RETURN beg;
 END IF;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

Chapter 44. PL/Tcl — Tcl Procedural Language

 PL/Tcl is a loadable procedural language for the
 PostgreSQL™ database system
 that enables the
 Tcl language to be used to write
 PostgreSQL™ functions and procedures.

Overview

 PL/Tcl offers most of the capabilities a function writer has in
 the C language, with a few restrictions, and with the addition of
 the powerful string processing libraries that are available for
 Tcl.

 One compelling good restriction is that
 everything is executed from within the safety of the context of a
 Tcl interpreter. In addition to the limited command set of safe
 Tcl, only a few commands are available to access the database via
 SPI and to raise messages via elog(). PL/Tcl
 provides no way to access internals of the database server or to
 gain OS-level access under the permissions of the
 PostgreSQL™ server process, as a C
 function can do. Thus, unprivileged database users can be trusted
 to use this language; it does not give them unlimited authority.

 The other notable implementation restriction is that Tcl functions
 cannot be used to create input/output functions for new data
 types.

 Sometimes it is desirable to write Tcl functions that are not restricted
 to safe Tcl. For example, one might want a Tcl function that sends
 email. To handle these cases, there is a variant of PL/Tcl called PL/TclU
 (for untrusted Tcl). This is exactly the same language except that a full
 Tcl interpreter is used. If PL/TclU is used, it must be
 installed as an untrusted procedural language so that only
 database superusers can create functions in it. The writer of a PL/TclU
 function must take care that the function cannot be used to do anything
 unwanted, since it will be able to do anything that could be done by
 a user logged in as the database administrator.

 The shared object code for the PL/Tcl and
 PL/TclU call handlers is automatically built and
 installed in the PostgreSQL™ library
 directory if Tcl support is specified in the configuration step of
 the installation procedure. To install PL/Tcl
 and/or PL/TclU in a particular database, use the
 CREATE EXTENSION command, for example
 CREATE EXTENSION pltcl or
 CREATE EXTENSION pltclu.

PL/Tcl Functions and Arguments

 To create a function in the PL/Tcl language, use
 the standard CREATE FUNCTION(7) syntax:

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
 # PL/Tcl function body
$$ LANGUAGE pltcl;

 PL/TclU is the same, except that the language has to be specified as
 pltclu.

 The body of the function is simply a piece of Tcl script.
 When the function is called, the argument values are passed to the
 Tcl script as variables named 1
 ... n. The result is
 returned from the Tcl code in the usual way, with
 a return statement. In a procedure, the return value
 from the Tcl code is ignored.

 For example, a function
 returning the greater of two integer values could be defined as:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl STRICT;

 Note the clause STRICT, which saves us from
 having to think about null input values: if a null value is passed, the
 function will not be called at all, but will just return a null
 result automatically.

 In a nonstrict function,
 if the actual value of an argument is null, the corresponding
 $n variable will be set to an empty string.
 To detect whether a particular argument is null, use the function
 argisnull. For example, suppose that we wanted tcl_max
 with one null and one nonnull argument to return the nonnull
 argument, rather than null:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {[argisnull 1]} {
 if {[argisnull 2]} { return_null }
 return $2
 }
 if {[argisnull 2]} { return $1 }
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl;

 As shown above,
 to return a null value from a PL/Tcl function, execute
 return_null. This can be done whether the
 function is strict or not.

 Composite-type arguments are passed to the function as Tcl
 arrays. The element names of the array are the attribute names
 of the composite type. If an attribute in the passed row has the
 null value, it will not appear in the array. Here is an example:

CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
$$ LANGUAGE pltcl;

 PL/Tcl functions can return composite-type results, too. To do this,
 the Tcl code must return a list of column name/value pairs matching
 the expected result type. Any column names omitted from the list
 are returned as nulls, and an error is raised if there are unexpected
 column names. Here is an example:

CREATE FUNCTION square_cube(in int, out squared int, out cubed int) AS $$
 return [list squared [expr {$1 * $1}] cubed [expr {$1 * $1 * $1}]]
$$ LANGUAGE pltcl;

 Output arguments of procedures are returned in the same way, for example:

CREATE PROCEDURE tcl_triple(INOUT a integer, INOUT b integer) AS $$
 return [list a [expr {$1 * 3}] b [expr {$2 * 3}]]
$$ LANGUAGE pltcl;

CALL tcl_triple(5, 10);

Tip

 The result list can be made from an array representation of the
 desired tuple with the array get Tcl command. For example:

CREATE FUNCTION raise_pay(employee, delta int) RETURNS employee AS $$
 set 1(salary) [expr {$1(salary) + $2}]
 return [array get 1]
$$ LANGUAGE pltcl;

 PL/Tcl functions can return sets. To do this, the Tcl code should
 call return_next once per row to be returned,
 passing either the appropriate value when returning a scalar type,
 or a list of column name/value pairs when returning a composite type.
 Here is an example returning a scalar type:

CREATE FUNCTION sequence(int, int) RETURNS SETOF int AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next $i
 }
$$ LANGUAGE pltcl;

 and here is one returning a composite type:

CREATE FUNCTION table_of_squares(int, int) RETURNS TABLE (x int, x2 int) AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next [list x $i x2 [expr {$i * $i}]]
 }
$$ LANGUAGE pltcl;

Data Values in PL/Tcl

 The argument values supplied to a PL/Tcl function's code are simply
 the input arguments converted to text form (just as if they had been
 displayed by a SELECT statement). Conversely, the
 return and return_next commands will accept
 any string that is acceptable input format for the function's declared
 result type, or for the specified column of a composite result type.

Global Data in PL/Tcl

 Sometimes it
 is useful to have some global data that is held between two
 calls to a function or is shared between different functions.
 This is easily done in PL/Tcl, but there are some restrictions that
 must be understood.

 For security reasons, PL/Tcl executes functions called by any one SQL
 role in a separate Tcl interpreter for that role. This prevents
 accidental or malicious interference by one user with the behavior of
 another user's PL/Tcl functions. Each such interpreter will have its own
 values for any “global” Tcl variables. Thus, two PL/Tcl
 functions will share the same global variables if and only if they are
 executed by the same SQL role. In an application wherein a single
 session executes code under multiple SQL roles (via SECURITY
 DEFINER functions, use of SET ROLE, etc.) you may need to
 take explicit steps to ensure that PL/Tcl functions can share data. To
 do that, make sure that functions that should communicate are owned by
 the same user, and mark them SECURITY DEFINER. You must of
 course take care that such functions can't be used to do anything
 unintended.

 All PL/TclU functions used in a session execute in the same Tcl
 interpreter, which of course is distinct from the interpreter(s)
 used for PL/Tcl functions. So global data is automatically shared
 between PL/TclU functions. This is not considered a security risk
 because all PL/TclU functions execute at the same trust level,
 namely that of a database superuser.

 To help protect PL/Tcl functions from unintentionally interfering
 with each other, a global
 array is made available to each function via the upvar
 command. The global name of this variable is the function's internal
 name, and the local name is GD. It is recommended that
 GD be used
 for persistent private data of a function. Use regular Tcl global
 variables only for values that you specifically intend to be shared among
 multiple functions. (Note that the GD arrays are only
 global within a particular interpreter, so they do not bypass the
 security restrictions mentioned above.)

 An example of using GD appears in the
 spi_execp example below.

Database Access from PL/Tcl

 In this section, we follow the usual Tcl convention of using question
 marks, rather than brackets, to indicate an optional element in a
 syntax synopsis. The following commands are available to access
 the database from the body of a PL/Tcl function:

	spi_exec [-count n] [-array name] command [loop-body]
	
 Executes an SQL command given as a string. An error in the command
 causes an error to be raised. Otherwise, the return value of spi_exec
 is the number of rows processed (selected, inserted, updated, or
 deleted) by the command, or zero if the command is a utility
 statement. In addition, if the command is a SELECT statement, the
 values of the selected columns are placed in Tcl variables as
 described below.

 The optional -count value tells
 spi_exec to stop
 once n rows have been retrieved,
 much as if the query included a LIMIT clause.
 If n is zero, the query is run to
 completion, the same as when -count is omitted.

 If the command is a SELECT statement, the values of the
 result columns are placed into Tcl variables named after the columns.
 If the -array option is given, the column values are
 instead stored into elements of the named associative array, with the
 column names used as array indexes. In addition, the current row
 number within the result (counting from zero) is stored into the array
 element named “.tupno”, unless that name is
 in use as a column name in the result.

 If the command is a SELECT statement and no loop-body
 script is given, then only the first row of results are stored into
 Tcl variables or array elements; remaining rows, if any, are ignored.
 No storing occurs if the query returns no rows. (This case can be
 detected by checking the result of spi_exec.)
 For example:

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

 will set the Tcl variable $cnt to the number of rows in
 the pg_proc system catalog.

 If the optional loop-body argument is given, it is
 a piece of Tcl script that is executed once for each row in the
 query result. (loop-body is ignored if the given
 command is not a SELECT.)
 The values of the current row's columns
 are stored into Tcl variables or array elements before each iteration.
 For example:

spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

 will print a log message for every row of pg_class. This
 feature works similarly to other Tcl looping constructs; in
 particular continue and break work in the
 usual way inside the loop body.

 If a column of a query result is null, the target
 variable for it is “unset” rather than being set.

	spi_prepare query typelist
	
 Prepares and saves a query plan for later execution. The
 saved plan will be retained for the life of the current
 session.

 The query can use parameters, that is, placeholders for
 values to be supplied whenever the plan is actually executed.
 In the query string, refer to parameters
 by the symbols $1 ... $n.
 If the query uses parameters, the names of the parameter types
 must be given as a Tcl list. (Write an empty list for
 typelist if no parameters are used.)

 The return value from spi_prepare is a query ID
 to be used in subsequent calls to spi_execp. See
 spi_execp for an example.

	spi_execp [-count n] [-array name] [-nulls string] queryid [value-list] [loop-body]
	
 Executes a query previously prepared with spi_prepare.
 queryid is the ID returned by
 spi_prepare. If the query references parameters,
 a value-list must be supplied. This
 is a Tcl list of actual values for the parameters. The list must be
 the same length as the parameter type list previously given to
 spi_prepare. Omit value-list
 if the query has no parameters.

 The optional value for -nulls is a string of spaces and
 'n' characters telling spi_execp
 which of the parameters are null values. If given, it must have exactly the
 same length as the value-list. If it
 is not given, all the parameter values are nonnull.

 Except for the way in which the query and its parameters are specified,
 spi_execp works just like spi_exec.
 The -count, -array, and
 loop-body options are the same,
 and so is the result value.

 Here's an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \
 "SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
 [list int4 int4]]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
$$ LANGUAGE pltcl;

 We need backslashes inside the query string given to
 spi_prepare to ensure that the
 $n markers will be passed
 through to spi_prepare as-is, and not replaced by Tcl
 variable substitution.

	subtransaction command
	
 The Tcl script contained in command is
 executed within an SQL subtransaction. If the script returns an
 error, that entire subtransaction is rolled back before returning the
 error out to the surrounding Tcl code.
 See the section called “Explicit Subtransactions in PL/Tcl” for more details and an
 example.

	quote string
	
 Doubles all occurrences of single quote and backslash characters
 in the given string. This can be used to safely quote strings
 that are to be inserted into SQL commands given
 to spi_exec or
 spi_prepare.
 For example, think about an SQL command string like:

"SELECT '$val' AS ret"

 where the Tcl variable val actually contains
 doesn't. This would result
 in the final command string:

SELECT 'doesn't' AS ret

 which would cause a parse error during
 spi_exec or
 spi_prepare.
 To work properly, the submitted command should contain:

SELECT 'doesn''t' AS ret

 which can be formed in PL/Tcl using:

"SELECT '[quote $val]' AS ret"

 One advantage of spi_execp is that you don't
 have to quote parameter values like this, since the parameters are never
 parsed as part of an SQL command string.

	
 elog level msg

	
 Emits a log or error message. Possible levels are
 DEBUG, LOG, INFO,
 NOTICE, WARNING, ERROR, and
 FATAL. ERROR
 raises an error condition; if this is not trapped by the surrounding
 Tcl code, the error propagates out to the calling query, causing
 the current transaction or subtransaction to be aborted. This
 is effectively the same as the Tcl error command.
 FATAL aborts the transaction and causes the current
 session to shut down. (There is probably no good reason to use
 this error level in PL/Tcl functions, but it's provided for
 completeness.) The other levels only generate messages of different
 priority levels.
 Whether messages of a particular priority are reported to the client,
 written to the server log, or both is controlled by the
 log_min_messages and
 client_min_messages configuration
 variables. See Chapter 20, Server Configuration
 and the section called “Error Handling in PL/Tcl”
 for more information.

Trigger Functions in PL/Tcl

 Trigger functions can be written in PL/Tcl.
 PostgreSQL™ requires that a function that is to be called
 as a trigger must be declared as a function with no arguments
 and a return type of trigger.

 The information from the trigger manager is passed to the function body
 in the following variables:

	$TG_name
	
 The name of the trigger from the CREATE TRIGGER statement.

	$TG_relid
	
 The object ID of the table that caused the trigger function
 to be invoked.

	$TG_table_name
	
 The name of the table that caused the trigger function
 to be invoked.

	$TG_table_schema
	
 The schema of the table that caused the trigger function
 to be invoked.

	$TG_relatts
	
 A Tcl list of the table column names, prefixed with an empty list
 element. So looking up a column name in the list with Tcl's
 lsearch command returns the element's number starting
 with 1 for the first column, the same way the columns are customarily
 numbered in PostgreSQL™. (Empty list
 elements also appear in the positions of columns that have been
 dropped, so that the attribute numbering is correct for columns
 to their right.)

	$TG_when
	
 The string BEFORE, AFTER, or
 INSTEAD OF, depending on the type of trigger event.

	$TG_level
	
 The string ROW or STATEMENT depending on the
 type of trigger event.

	$TG_op
	
 The string INSERT, UPDATE,
 DELETE, or TRUNCATE depending on the type of
 trigger event.

	$NEW
	
 An associative array containing the values of the new table
 row for INSERT or UPDATE actions, or
 empty for DELETE. The array is indexed by column
 name. Columns that are null will not appear in the array.
 This is not set for statement-level triggers.

	$OLD
	
 An associative array containing the values of the old table
 row for UPDATE or DELETE actions, or
 empty for INSERT. The array is indexed by column
 name. Columns that are null will not appear in the array.
 This is not set for statement-level triggers.

	$args
	
 A Tcl list of the arguments to the function as given in the
 CREATE TRIGGER statement. These arguments are also accessible as
 $1 ... $n in the function body.

 The return value from a trigger function can be one of the strings
 OK or SKIP, or a list of column name/value pairs.
 If the return value is OK,
 the operation (INSERT/UPDATE/DELETE)
 that fired the trigger will proceed
 normally. SKIP tells the trigger manager to silently suppress
 the operation for this row. If a list is returned, it tells PL/Tcl to
 return a modified row to the trigger manager; the contents of the
 modified row are specified by the column names and values in the list.
 Any columns not mentioned in the list are set to null.
 Returning a modified row is only meaningful
 for row-level BEFORE INSERT or UPDATE
 triggers, for which the modified row will be inserted instead of the one
 given in $NEW; or for row-level INSTEAD OF
 INSERT or UPDATE triggers where the returned row
 is used as the source data for INSERT RETURNING or
 UPDATE RETURNING clauses.
 In row-level BEFORE DELETE or INSTEAD
 OF DELETE triggers, returning a modified row has the same
 effect as returning OK, that is the operation proceeds.
 The trigger return value is ignored for all other types of triggers.

Tip

 The result list can be made from an array representation of the
 modified tuple with the array get Tcl command.

 Here's a little example trigger function that forces an integer value
 in a table to keep track of the number of updates that are performed on the
 row. For new rows inserted, the value is initialized to 0 and then
 incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE FUNCTION trigfunc_modcount('modcnt');

 Notice that the trigger function itself does not know the column
 name; that's supplied from the trigger arguments. This lets the
 trigger function be reused with different tables.

Event Trigger Functions in PL/Tcl

 Event trigger functions can be written in PL/Tcl.
 PostgreSQL™ requires that a function that is
 to be called as an event trigger must be declared as a function with no
 arguments and a return type of event_trigger.

 The information from the trigger manager is passed to the function body
 in the following variables:

	$TG_event
	
 The name of the event the trigger is fired for.

	$TG_tag
	
 The command tag for which the trigger is fired.

 The return value of the trigger function is ignored.

 Here's a little example event trigger function that simply raises
 a NOTICE message each time a supported command is
 executed:

CREATE OR REPLACE FUNCTION tclsnitch() RETURNS event_trigger AS $$
 elog NOTICE "tclsnitch: $TG_event $TG_tag"
$$ LANGUAGE pltcl;

CREATE EVENT TRIGGER tcl_a_snitch ON ddl_command_start EXECUTE FUNCTION tclsnitch();

Error Handling in PL/Tcl

 Tcl code within or called from a PL/Tcl function can raise an error,
 either by executing some invalid operation or by generating an error
 using the Tcl error command or
 PL/Tcl's elog command. Such errors can be caught
 within Tcl using the Tcl catch command. If an
 error is not caught but is allowed to propagate out to the top level of
 execution of the PL/Tcl function, it is reported as an SQL error in the
 function's calling query.

 Conversely, SQL errors that occur within PL/Tcl's
 spi_exec, spi_prepare,
 and spi_execp commands are reported as Tcl errors,
 so they are catchable by Tcl's catch command.
 (Each of these PL/Tcl commands runs its SQL operation in a
 subtransaction, which is rolled back on error, so that any
 partially-completed operation is automatically cleaned up.)
 Again, if an error propagates out to the top level without being caught,
 it turns back into an SQL error.

 Tcl provides an errorCode variable that can represent
 additional information about an error in a form that is easy for Tcl
 programs to interpret. The contents are in Tcl list format, and the
 first word identifies the subsystem or library reporting the error;
 beyond that the contents are left to the individual subsystem or
 library. For database errors reported by PL/Tcl commands, the first
 word is POSTGRES, the second word is the PostgreSQL
 version number, and additional words are field name/value pairs
 providing detailed information about the error.
 Fields SQLSTATE, condition,
 and message are always supplied
 (the first two represent the error code and condition name as shown
 in Appendix A, PostgreSQL™ Error Codes).
 Fields that may be present include
 detail, hint, context,
 schema, table, column,
 datatype, constraint,
 statement, cursor_position,
 filename, lineno, and
 funcname.

 A convenient way to work with PL/Tcl's errorCode
 information is to load it into an array, so that the field names become
 array subscripts. Code for doing that might look like

if {[catch { spi_exec $sql_command }]} {
 if {[lindex $::errorCode 0] == "POSTGRES"} {
 array set errorArray $::errorCode
 if {$errorArray(condition) == "undefined_table"} {
 # deal with missing table
 } else {
 # deal with some other type of SQL error
 }
 }
}

 (The double colons explicitly specify that errorCode
 is a global variable.)

Explicit Subtransactions in PL/Tcl

 Recovering from errors caused by database access as described in
 the section called “Error Handling in PL/Tcl” can lead to an undesirable
 situation where some operations succeed before one of them fails,
 and after recovering from that error the data is left in an
 inconsistent state. PL/Tcl offers a solution to this problem in
 the form of explicit subtransactions.

 Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
 if [catch {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'"
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

 If the second UPDATE statement results in an
 exception being raised, this function will log the failure, but
 the result of the first UPDATE will
 nevertheless be committed. In other words, the funds will be
 withdrawn from Joe's account, but will not be transferred to
 Mary's account. This happens because each spi_exec
 is a separate subtransaction, and only one of those subtransactions
 got rolled back.

 To handle such cases, you can wrap multiple database operations in an
 explicit subtransaction, which will succeed or roll back as a whole.
 PL/Tcl provides a subtransaction command to manage
 this. We can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
 if [catch {
 subtransaction {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'"
 }
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

 Note that use of catch is still required for this
 purpose. Otherwise the error would propagate to the top level of the
 function, preventing the desired insertion into
 the operations table.
 The subtransaction command does not trap errors, it
 only assures that all database operations executed inside its scope will
 be rolled back together when an error is reported.

 A rollback of an explicit subtransaction occurs on any error reported
 by the contained Tcl code, not only errors originating from database
 access. Thus a regular Tcl exception raised inside
 a subtransaction command will also cause the
 subtransaction to be rolled back. However, non-error exits out of the
 contained Tcl code (for instance, due to return) do
 not cause a rollback.

Transaction Management

 In a procedure called from the top level or an anonymous code block
 (DO command) called from the top level it is possible
 to control transactions. To commit the current transaction, call the
 commit command. To roll back the current transaction,
 call the rollback command. (Note that it is not
 possible to run the SQL commands COMMIT or
 ROLLBACK via spi_exec or similar.
 It has to be done using these functions.) After a transaction is ended,
 a new transaction is automatically started, so there is no separate
 command for that.

 Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE pltcl
AS $$
for {set i 0} {$i < 10} {incr i} {
 spi_exec "INSERT INTO test1 (a) VALUES ($i)"
 if {$i % 2 == 0} {
 commit
 } else {
 rollback
 }
}
$$;

CALL transaction_test1();

 Transactions cannot be ended when an explicit subtransaction is active.

PL/Tcl Configuration

 This section lists configuration parameters that
 affect PL/Tcl.

	
 pltcl.start_proc (string)

	
 This parameter, if set to a nonempty string, specifies the name
 (possibly schema-qualified) of a parameterless PL/Tcl function that
 is to be executed whenever a new Tcl interpreter is created for
 PL/Tcl. Such a function can perform per-session initialization, such
 as loading additional Tcl code. A new Tcl interpreter is created
 when a PL/Tcl function is first executed in a database session, or
 when an additional interpreter has to be created because a PL/Tcl
 function is called by a new SQL role.

 The referenced function must be written in the pltcl
 language, and must not be marked SECURITY DEFINER.
 (These restrictions ensure that it runs in the interpreter it's
 supposed to initialize.) The current user must have permission to
 call it, too.

 If the function fails with an error it will abort the function call
 that caused the new interpreter to be created and propagate out to
 the calling query, causing the current transaction or subtransaction
 to be aborted. Any actions already done within Tcl won't be undone;
 however, that interpreter won't be used again. If the language is
 used again the initialization will be attempted again within a fresh
 Tcl interpreter.

 Only superusers can change this setting. Although this setting
 can be changed within a session, such changes will not affect Tcl
 interpreters that have already been created.

	
 pltclu.start_proc (string)

	
 This parameter is exactly like pltcl.start_proc,
 except that it applies to PL/TclU. The referenced function must
 be written in the pltclu language.

Tcl Procedure Names

 In PostgreSQL™, the same function name can be used for
 different function definitions as long as the number of arguments or their types
 differ. Tcl, however, requires all procedure names to be distinct.
 PL/Tcl deals with this by making the internal Tcl procedure names contain
 the object
 ID of the function from the system table pg_proc as part of their name. Thus,
 PostgreSQL™ functions with the same name
 and different argument types will be different Tcl procedures, too. This
 is not normally a concern for a PL/Tcl programmer, but it might be visible
 when debugging.

Chapter 45. PL/Perl — Perl Procedural Language

 PL/Perl is a loadable procedural language that enables you to write
 PostgreSQL™ functions and procedures in the
 Perl programming language.

 The main advantage to using PL/Perl is that this allows use,
 within stored functions and procedures, of the manyfold “string
 munging” operators and functions available for Perl. Parsing
 complex strings might be easier using Perl than it is with the
 string functions and control structures provided in PL/pgSQL.

 To install PL/Perl in a particular database, use
 CREATE EXTENSION plperl.

Tip

 If a language is installed into template1, all subsequently
 created databases will have the language installed automatically.

Note

 Users of source packages must specially enable the build of
 PL/Perl during the installation process. (Refer to Chapter 17, Installation from Source Code for more information.) Users of
 binary packages might find PL/Perl in a separate subpackage.

PL/Perl Functions and Arguments

 To create a function in the PL/Perl language, use the standard
 CREATE FUNCTION(7)
 syntax:

CREATE FUNCTION funcname (argument-types)
RETURNS return-type
-- function attributes can go here
AS $$
 # PL/Perl function body goes here
$$ LANGUAGE plperl;

 The body of the function is ordinary Perl code. In fact, the PL/Perl
 glue code wraps it inside a Perl subroutine. A PL/Perl function is
 called in a scalar context, so it can't return a list. You can return
 non-scalar values (arrays, records, and sets) by returning a reference,
 as discussed below.

 In a PL/Perl procedure, any return value from the Perl code is ignored.

 PL/Perl also supports anonymous code blocks called with the
 DO(7) statement:

DO $$
 # PL/Perl code
$$ LANGUAGE plperl;

 An anonymous code block receives no arguments, and whatever value it
 might return is discarded. Otherwise it behaves just like a function.

Note

 The use of named nested subroutines is dangerous in Perl, especially if
 they refer to lexical variables in the enclosing scope. Because a PL/Perl
 function is wrapped in a subroutine, any named subroutine you place inside
 one will be nested. In general, it is far safer to create anonymous
 subroutines which you call via a coderef. For more information, see the
 entries for Variable "%s" will not stay shared and
 Variable "%s" is not available in the
 perldiag man page, or
 search the Internet for “perl nested named subroutine”.

 The syntax of the CREATE FUNCTION command requires
 the function body to be written as a string constant. It is usually
 most convenient to use dollar quoting (see the section called “Dollar-Quoted String Constants”) for the string constant.
 If you choose to use escape string syntax E'',
 you must double any single quote marks (') and backslashes
 (\) used in the body of the function
 (see the section called “String Constants”).

 Arguments and results are handled as in any other Perl subroutine:
 arguments are passed in @_, and a result value
 is returned with return or as the last expression
 evaluated in the function.

 For example, a function returning the greater of two integer values
 could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 if ($_[0] > $_[1]) { return $_[0]; }
 return $_[1];
$$ LANGUAGE plperl;

Note

 Arguments will be converted from the database's encoding to UTF-8
 for use inside PL/Perl, and then converted from UTF-8 back to the
 database encoding upon return.

 If an SQL null value is passed to a function,
 the argument value will appear as “undefined” in Perl. The
 above function definition will not behave very nicely with null
 inputs (in fact, it will act as though they are zeroes). We could
 add STRICT to the function definition to make
 PostgreSQL™ do something more reasonable:
 if a null value is passed, the function will not be called at all,
 but will just return a null result automatically. Alternatively,
 we could check for undefined inputs in the function body. For
 example, suppose that we wanted perl_max with
 one null and one nonnull argument to return the nonnull argument,
 rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 my ($x, $y) = @_;
 if (not defined $x) {
 return undef if not defined $y;
 return $y;
 }
 return $x if not defined $y;
 return $x if $x > $y;
 return $y;
$$ LANGUAGE plperl;

 As shown above, to return an SQL null value from a PL/Perl
 function, return an undefined value. This can be done whether the
 function is strict or not.

 Anything in a function argument that is not a reference is
 a string, which is in the standard PostgreSQL™
 external text representation for the relevant data type. In the case of
 ordinary numeric or text types, Perl will just do the right thing and
 the programmer will normally not have to worry about it. However, in
 other cases the argument will need to be converted into a form that is
 more usable in Perl. For example, the decode_bytea
 function can be used to convert an argument of
 type bytea into unescaped binary.

 Similarly, values passed back to PostgreSQL™
 must be in the external text representation format. For example, the
 encode_bytea function can be used to
 escape binary data for a return value of type bytea.

 One case that is particularly important is boolean values. As just
 stated, the default behavior for bool values is that they
 are passed to Perl as text, thus either 't'
 or 'f'. This is problematic, since Perl will not
 treat 'f' as false! It is possible to improve matters
 by using a “transform” (see
 CREATE TRANSFORM(7)). Suitable transforms are provided
 by the bool_plperl extension. To use it, install
 the extension:

CREATE EXTENSION bool_plperl; -- or bool_plperlu for PL/PerlU

 Then use the TRANSFORM function attribute for a
 PL/Perl function that takes or returns bool, for example:

CREATE FUNCTION perl_and(bool, bool) RETURNS bool
TRANSFORM FOR TYPE bool
AS $$
 my ($a, $b) = @_;
 return $a && $b;
$$ LANGUAGE plperl;

 When this transform is applied, bool arguments will be seen
 by Perl as being 1 or empty, thus properly true or
 false. If the function result is type bool, it will be true
 or false according to whether Perl would evaluate the returned value as
 true.
 Similar transformations are also performed for boolean query arguments
 and results of SPI queries performed inside the function
 (the section called “Database Access from PL/Perl”).

 Perl can return PostgreSQL™ arrays as
 references to Perl arrays. Here is an example:

CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$
 return [['a"b','c,d'],['e\\f','g']];
$$ LANGUAGE plperl;

select returns_array();

 Perl passes PostgreSQL™ arrays as a blessed
 PostgreSQL::InServer::ARRAY object. This object may be treated as an array
 reference or a string, allowing for backward compatibility with Perl
 code written for PostgreSQL™ versions below 9.1 to
 run. For example:

CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT AS $$
 my $arg = shift;
 my $result = "";
 return undef if (!defined $arg);

 # as an array reference
 for (@$arg) {
 $result .= $_;
 }

 # also works as a string
 $result .= $arg;

 return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY['PL','/','Perl']);

Note

 Multidimensional arrays are represented as references to
 lower-dimensional arrays of references in a way common to every Perl
 programmer.

 Composite-type arguments are passed to the function as references
 to hashes. The keys of the hash are the attribute names of the
 composite type. Here is an example:

CREATE TABLE employee (
 name text,
 basesalary integer,
 bonus integer
);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
 my ($emp) = @_;
 return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

 A PL/Perl function can return a composite-type result using the same
 approach: return a reference to a hash that has the required attributes.
 For example:

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
 return {f2 => 'hello', f1 => 1, f3 => 'world'};
$$ LANGUAGE plperl;

SELECT * FROM perl_row();

 Any columns in the declared result data type that are not present in the
 hash will be returned as null values.

 Similarly, output arguments of procedures can be returned as a hash
 reference:

CREATE PROCEDURE perl_triple(INOUT a integer, INOUT b integer) AS $$
 my ($a, $b) = @_;
 return {a => $a * 3, b => $b * 3};
$$ LANGUAGE plperl;

CALL perl_triple(5, 10);

 PL/Perl functions can also return sets of either scalar or
 composite types. Usually you'll want to return rows one at a
 time, both to speed up startup time and to keep from queuing up
 the entire result set in memory. You can do this with
 return_next as illustrated below. Note that
 after the last return_next, you must put
 either return or (better) return
 undef.

CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$
 foreach (0..$_[0]) {
 return_next($_);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$
 return_next({ f1 => 1, f2 => 'Hello', f3 => 'World' });
 return_next({ f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' });
 return_next({ f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' });
 return undef;
$$ LANGUAGE plperl;

 For small result sets, you can return a reference to an array that
 contains either scalars, references to arrays, or references to
 hashes for simple types, array types, and composite types,
 respectively. Here are some simple examples of returning the entire
 result set as an array reference:

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
 return [0..$_[0]];
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$
 return [
 { f1 => 1, f2 => 'Hello', f3 => 'World' },
 { f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' },
 { f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' }
];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

 If you wish to use the strict pragma with your code you
 have a few options. For temporary global use you can SET
 plperl.use_strict to true.
 This will affect subsequent compilations of PL/Perl
 functions, but not functions already compiled in the current session.
 For permanent global use you can set plperl.use_strict
 to true in the postgresql.conf file.

 For permanent use in specific functions you can simply put:

use strict;

 at the top of the function body.

 The feature pragma is also available to use if your Perl is version 5.10.0 or higher.

Data Values in PL/Perl

 The argument values supplied to a PL/Perl function's code are
 simply the input arguments converted to text form (just as if they
 had been displayed by a SELECT statement).
 Conversely, the return and return_next
 commands will accept any string that is acceptable input format
 for the function's declared return type.

 If this behavior is inconvenient for a particular case, it can be
 improved by using a transform, as already illustrated
 for bool values. Several examples of transform modules
 are included in the PostgreSQL™ distribution.

Built-in Functions

Database Access from PL/Perl

 Access to the database itself from your Perl function can be done
 via the following functions:

	
 spi_exec_query(query [, limit])

	
 spi_exec_query executes an SQL command and
returns the entire row set as a reference to an array of hash references.
If limit is specified and is greater than zero,
then spi_exec_query retrieves at
most limit rows, much as if the query included
a LIMIT clause. Omitting limit
or specifying it as zero results in no row limit.

You should only use this command when you know
that the result set will be relatively small. Here is an
example of a query (SELECT command) with the
optional maximum number of rows:

$rv = spi_exec_query('SELECT * FROM my_table', 5);

 This returns up to 5 rows from the table
 my_table. If my_table
 has a column my_column, you can get that
 value from row $i of the result like this:

$foo = $rv->{rows}[$i]->{my_column};

 The total number of rows returned from a SELECT
 query can be accessed like this:

$nrows = $rv->{processed}

 Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, 'test')";
$rv = spi_exec_query($query);

 You can then access the command status (e.g.,
 SPI_OK_INSERT) like this:

$res = $rv->{status};

 To get the number of rows affected, do:

$nrows = $rv->{processed};

 Here is a complete example:

CREATE TABLE test (
 i int,
 v varchar
);

INSERT INTO test (i, v) VALUES (1, 'first line');
INSERT INTO test (i, v) VALUES (2, 'second line');
INSERT INTO test (i, v) VALUES (3, 'third line');
INSERT INTO test (i, v) VALUES (4, 'immortal');

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
 my $rv = spi_exec_query('select i, v from test;');
 my $status = $rv->{status};
 my $nrows = $rv->{processed};
 foreach my $rn (0 .. $nrows - 1) {
 my $row = $rv->{rows}[$rn];
 $row->{i} += 200 if defined($row->{i});
 $row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
 return_next($row);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM test_munge();

	
 spi_query(command)

 ,
 spi_fetchrow(cursor)

 ,
 spi_cursor_close(cursor)

	
 spi_query and spi_fetchrow
 work together as a pair for row sets which might be large, or for cases
 where you wish to return rows as they arrive.
 spi_fetchrow works only with
 spi_query. The following example illustrates how
 you use them together:

CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF foo_type AS $$
 use Digest::MD5 qw(md5_hex);
 my $file = '/usr/share/dict/words';
 my $t = localtime;
 elog(NOTICE, "opening file $file at $t");
 open my $fh, '<', $file # ooh, it's a file access!
 or elog(ERROR, "cannot open $file for reading: $!");
 my @words = <$fh>;
 close $fh;
 $t = localtime;
 elog(NOTICE, "closed file $file at $t");
 chomp(@words);
 my $row;
 my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS b(a)");
 while (defined ($row = spi_fetchrow($sth))) {
 return_next({
 the_num => $row->{a},
 the_text => md5_hex($words[rand @words])
 });
 }
 return;
$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);

 Normally, spi_fetchrow should be repeated until it
 returns undef, indicating that there are no more
 rows to read. The cursor returned by spi_query
 is automatically freed when
 spi_fetchrow returns undef.
 If you do not wish to read all the rows, instead call
 spi_cursor_close to free the cursor.
 Failure to do so will result in memory leaks.

	
 spi_prepare(command, argument types)

 ,
 spi_query_prepared(plan, arguments)

 ,
 spi_exec_prepared(plan [, attributes], arguments)

 ,
 spi_freeplan(plan)

	
 spi_prepare, spi_query_prepared, spi_exec_prepared,
 and spi_freeplan implement the same functionality but for prepared queries.
 spi_prepare accepts a query string with numbered argument placeholders ($1, $2, etc.)
 and a string list of argument types:

$plan = spi_prepare('SELECT * FROM test WHERE id > $1 AND name = $2',
 'INTEGER', 'TEXT');

 Once a query plan is prepared by a call to spi_prepare, the plan can be used instead
 of the string query, either in spi_exec_prepared, where the result is the same as returned
 by spi_exec_query, or in spi_query_prepared which returns a cursor
 exactly as spi_query does, which can be later passed to spi_fetchrow.
 The optional second parameter to spi_exec_prepared is a hash reference of attributes;
 the only attribute currently supported is limit, which
 sets the maximum number of rows returned from the query.
 Omitting limit or specifying it as zero results in no
 row limit.

 The advantage of prepared queries is that is it possible to use one prepared plan for more
 than one query execution. After the plan is not needed anymore, it can be freed with
 spi_freeplan:

CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
 $_SHARED{my_plan} = spi_prepare('SELECT (now() + $1)::date AS now',
 'INTERVAL');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time(INTERVAL) RETURNS TEXT AS $$
 return spi_exec_prepared(
 $_SHARED{my_plan},
 $_[0]
)->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
 spi_freeplan($_SHARED{my_plan});
 undef $_SHARED{my_plan};
$$ LANGUAGE plperl;

SELECT init();
SELECT add_time('1 day'), add_time('2 days'), add_time('3 days');
SELECT done();

 add_time | add_time | add_time
------------+------------+------------
 2005-12-10 | 2005-12-11 | 2005-12-12

 Note that the parameter subscript in spi_prepare is defined via
 $1, $2, $3, etc., so avoid declaring query strings in double quotes that might easily
 lead to hard-to-catch bugs.

 Another example illustrates usage of an optional parameter in spi_exec_prepared:

CREATE TABLE hosts AS SELECT id, ('192.168.1.'||id)::inet AS address
 FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
 $_SHARED{plan} = spi_prepare('SELECT * FROM hosts
 WHERE address << $1', 'inet');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS $$
 return spi_exec_prepared(
 $_SHARED{plan},
 {limit => 2},
 $_[0]
)->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
 spi_freeplan($_SHARED{plan});
 undef $_SHARED{plan};
$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts('192.168.1.0/30');
SELECT release_hosts_query();

 query_hosts

 (1,192.168.1.1)
 (2,192.168.1.2)
(2 rows)

	
 spi_commit()

 ,
 spi_rollback()

	
 Commit or roll back the current transaction. This can only be called
 in a procedure or anonymous code block (DO command)
 called from the top level. (Note that it is not possible to run the
 SQL commands COMMIT or ROLLBACK
 via spi_exec_query or similar. It has to be done
 using these functions.) After a transaction is ended, a new
 transaction is automatically started, so there is no separate function
 for that.

 Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plperl
AS $$
foreach my $i (0..9) {
 spi_exec_query("INSERT INTO test1 (a) VALUES ($i)");
 if ($i % 2 == 0) {
 spi_commit();
 } else {
 spi_rollback();
 }
}
$$;

CALL transaction_test1();

Utility Functions in PL/Perl

	
 elog(level, msg)

	
 Emit a log or error message. Possible levels are
 DEBUG, LOG, INFO,
 NOTICE, WARNING, and ERROR.
 ERROR
 raises an error condition; if this is not trapped by the surrounding
 Perl code, the error propagates out to the calling query, causing
 the current transaction or subtransaction to be aborted. This
 is effectively the same as the Perl die command.
 The other levels only generate messages of different
 priority levels.
 Whether messages of a particular priority are reported to the client,
 written to the server log, or both is controlled by the
 log_min_messages and
 client_min_messages configuration
 variables. See Chapter 20, Server Configuration for more
 information.

	
 quote_literal(string)

	
 Return the given string suitably quoted to be used as a string literal in an SQL
 statement string. Embedded single-quotes and backslashes are properly doubled.
 Note that quote_literal returns undef on undef input; if the argument
 might be undef, quote_nullable is often more suitable.

	
 quote_nullable(string)

	
 Return the given string suitably quoted to be used as a string literal in an SQL
 statement string; or, if the argument is undef, return the unquoted string "NULL".
 Embedded single-quotes and backslashes are properly doubled.

	
 quote_ident(string)

	
 Return the given string suitably quoted to be used as an identifier in
 an SQL statement string. Quotes are added only if necessary (i.e., if
 the string contains non-identifier characters or would be case-folded).
 Embedded quotes are properly doubled.

	
 decode_bytea(string)

	
 Return the unescaped binary data represented by the contents of the given string,
 which should be bytea encoded.

	
 encode_bytea(string)

	
 Return the bytea encoded form of the binary data contents of the given string.

	
 encode_array_literal(array)

 ,
 encode_array_literal(array, delimiter)

	
 Returns the contents of the referenced array as a string in array literal format
 (see the section called “Array Value Input”).
 Returns the argument value unaltered if it's not a reference to an array.
 The delimiter used between elements of the array literal defaults to ", "
 if a delimiter is not specified or is undef.

	
 encode_typed_literal(value, typename)

	
 Converts a Perl variable to the value of the data type passed as a
 second argument and returns a string representation of this value.
 Correctly handles nested arrays and values of composite types.

	
 encode_array_constructor(array)

	
 Returns the contents of the referenced array as a string in array constructor format
 (see the section called “Array Constructors”).
 Individual values are quoted using quote_nullable.
 Returns the argument value, quoted using quote_nullable,
 if it's not a reference to an array.

	
 looks_like_number(string)

	
 Returns a true value if the content of the given string looks like a
 number, according to Perl, returns false otherwise.
 Returns undef if the argument is undef. Leading and trailing space is
 ignored. Inf and Infinity are regarded as numbers.

	
 is_array_ref(argument)

	
 Returns a true value if the given argument may be treated as an
 array reference, that is, if ref of the argument is ARRAY or
 PostgreSQL::InServer::ARRAY. Returns false otherwise.

Global Values in PL/Perl

 You can use the global hash %_SHARED to store
 data, including code references, between function calls for the
 lifetime of the current session.

 Here is a simple example for shared data:

CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
 if ($_SHARED{$_[0]} = $_[1]) {
 return 'ok';
 } else {
 return "cannot set shared variable $_[0] to $_[1]";
 }
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
 return $_SHARED{$_[0]};
$$ LANGUAGE plperl;

SELECT set_var('sample', 'Hello, PL/Perl! How''s tricks?');
SELECT get_var('sample');

 Here is a slightly more complicated example using a code reference:

CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
 $_SHARED{myquote} = sub {
 my $arg = shift;
 $arg =~ s/(['\\])/\\$1/g;
 return "'$arg'";
 };
$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

 (You could have replaced the above with the one-liner
 return $_SHARED{myquote}->($_[0]);
 at the expense of readability.)

 For security reasons, PL/Perl executes functions called by any one SQL role
 in a separate Perl interpreter for that role. This prevents accidental or
 malicious interference by one user with the behavior of another user's
 PL/Perl functions. Each such interpreter has its own value of the
 %_SHARED variable and other global state. Thus, two
 PL/Perl functions will share the same value of %_SHARED
 if and only if they are executed by the same SQL role. In an application
 wherein a single session executes code under multiple SQL roles (via
 SECURITY DEFINER functions, use of SET ROLE, etc.)
 you may need to take explicit steps to ensure that PL/Perl functions can
 share data via %_SHARED. To do that, make sure that
 functions that should communicate are owned by the same user, and mark
 them SECURITY DEFINER. You must of course take care that
 such functions can't be used to do anything unintended.

Trusted and Untrusted PL/Perl

 Normally, PL/Perl is installed as a “trusted” programming
 language named plperl. In this setup, certain Perl
 operations are disabled to preserve security. In general, the
 operations that are restricted are those that interact with the
 environment. This includes file handle operations,
 require, and use (for
 external modules). There is no way to access internals of the
 database server process or to gain OS-level access with the
 permissions of the server process,
 as a C function can do. Thus, any unprivileged database user can
 be permitted to use this language.

Warning

 Trusted PL/Perl relies on the Perl Opcode module to
 preserve security.
 Perl
 documents
 that the module is not effective for the trusted PL/Perl use case. If
 your security needs are incompatible with the uncertainty in that warning,
 consider executing REVOKE USAGE ON LANGUAGE plperl FROM
 PUBLIC.

 Here is an example of a function that will not work because file
 system operations are not allowed for security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS $$
 my $tmpfile = "/tmp/badfile";
 open my $fh, '>', $tmpfile
 or elog(ERROR, qq{could not open the file "$tmpfile": $!});
 print $fh "Testing writing to a file\n";
 close $fh or elog(ERROR, qq{could not close the file "$tmpfile": $!});
 return 1;
$$ LANGUAGE plperl;

 The creation of this function will fail as its use of a forbidden
 operation will be caught by the validator.

 Sometimes it is desirable to write Perl functions that are not
 restricted. For example, one might want a Perl function that sends
 mail. To handle these cases, PL/Perl can also be installed as an
 “untrusted” language (usually called
 PL/PerlU).
 In this case the full Perl language is available. When installing the
 language, the language name plperlu will select
 the untrusted PL/Perl variant.

 The writer of a PL/PerlU function must take care that the function
 cannot be used to do anything unwanted, since it will be able to do
 anything that could be done by a user logged in as the database
 administrator. Note that the database system allows only database
 superusers to create functions in untrusted languages.

 If the above function was created by a superuser using the language
 plperlu, execution would succeed.

 In the same way, anonymous code blocks written in Perl can use
 restricted operations if the language is specified as
 plperlu rather than plperl, but the caller
 must be a superuser.

Note

 While PL/Perl functions run in a separate Perl
 interpreter for each SQL role, all PL/PerlU functions
 executed in a given session run in a single Perl interpreter (which is
 not any of the ones used for PL/Perl functions).
 This allows PL/PerlU functions to share data freely,
 but no communication can occur between PL/Perl and
 PL/PerlU functions.

Note

 Perl cannot support multiple interpreters within one process unless
 it was built with the appropriate flags, namely either
 usemultiplicity or useithreads.
 (usemultiplicity is preferred unless you actually need
 to use threads. For more details, see the
 perlembed man page.)
 If PL/Perl is used with a copy of Perl that was not built
 this way, then it is only possible to have one Perl interpreter per
 session, and so any one session can only execute either
 PL/PerlU functions, or PL/Perl functions
 that are all called by the same SQL role.

PL/Perl Triggers

 PL/Perl can be used to write trigger functions. In a trigger function,
 the hash reference $_TD contains information about the
 current trigger event. $_TD is a global variable,
 which gets a separate local value for each invocation of the trigger.
 The fields of the $_TD hash reference are:

	$_TD->{new}{foo}
	
 NEW value of column foo

	$_TD->{old}{foo}
	
 OLD value of column foo

	$_TD->{name}
	
 Name of the trigger being called

	$_TD->{event}
	
 Trigger event: INSERT, UPDATE,
 DELETE, TRUNCATE, or UNKNOWN

	$_TD->{when}
	
 When the trigger was called: BEFORE,
 AFTER, INSTEAD OF, or
 UNKNOWN

	$_TD->{level}
	
 The trigger level: ROW, STATEMENT, or UNKNOWN

	$_TD->{relid}
	
 OID of the table on which the trigger fired

	$_TD->{table_name}
	
 Name of the table on which the trigger fired

	$_TD->{relname}
	
 Name of the table on which the trigger fired. This has been deprecated,
 and could be removed in a future release.
 Please use $_TD->{table_name} instead.

	$_TD->{table_schema}
	
 Name of the schema in which the table on which the trigger fired, is

	$_TD->{argc}
	
 Number of arguments of the trigger function

	@{$_TD->{args}}
	
 Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

 Row-level triggers can return one of the following:

	return;
	
 Execute the operation

	"SKIP"
	
 Don't execute the operation

	"MODIFY"
	
 Indicates that the NEW row was modified by
 the trigger function

 Here is an example of a trigger function, illustrating some of the
 above:

CREATE TABLE test (
 i int,
 v varchar
);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
 if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {
 return "SKIP"; # skip INSERT/UPDATE command
 } elsif ($_TD->{new}{v} ne "immortal") {
 $_TD->{new}{v} .= "(modified by trigger)";
 return "MODIFY"; # modify row and execute INSERT/UPDATE command
 } else {
 return; # execute INSERT/UPDATE command
 }
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
 BEFORE INSERT OR UPDATE ON test
 FOR EACH ROW EXECUTE FUNCTION valid_id();

PL/Perl Event Triggers

 PL/Perl can be used to write event trigger functions. In an event trigger
 function, the hash reference $_TD contains information
 about the current trigger event. $_TD is a global variable,
 which gets a separate local value for each invocation of the trigger. The
 fields of the $_TD hash reference are:

	$_TD->{event}
	
 The name of the event the trigger is fired for.

	$_TD->{tag}
	
 The command tag for which the trigger is fired.

 The return value of the trigger function is ignored.

 Here is an example of an event trigger function, illustrating some of the
 above:

CREATE OR REPLACE FUNCTION perlsnitch() RETURNS event_trigger AS $$
 elog(NOTICE, "perlsnitch: " . $_TD->{event} . " " . $_TD->{tag} . " ");
$$ LANGUAGE plperl;

CREATE EVENT TRIGGER perl_a_snitch
 ON ddl_command_start
 EXECUTE FUNCTION perlsnitch();

PL/Perl Under the Hood

Configuration

 This section lists configuration parameters that affect PL/Perl.

	
 plperl.on_init (string)

	
 Specifies Perl code to be executed when a Perl interpreter is first
 initialized, before it is specialized for use by plperl or
 plperlu.
 The SPI functions are not available when this code is executed.
 If the code fails with an error it will abort the initialization of
 the interpreter and propagate out to the calling query, causing the
 current transaction or subtransaction to be aborted.

 The Perl code is limited to a single string. Longer code can be placed
 into a module and loaded by the on_init string.
 Examples:

plperl.on_init = 'require "plperlinit.pl"'
plperl.on_init = 'use lib "/my/app"; use MyApp::PgInit;'

 Any modules loaded by plperl.on_init, either directly or
 indirectly, will be available for use by plperl. This may
 create a security risk. To see what modules have been loaded you can use:

DO 'elog(WARNING, join ", ", sort keys %INC)' LANGUAGE plperl;

 Initialization will happen in the postmaster if the plperl library is
 included in shared_preload_libraries, in which
 case extra consideration should be given to the risk of destabilizing
 the postmaster. The principal reason for making use of this feature
 is that Perl modules loaded by plperl.on_init need be
 loaded only at postmaster start, and will be instantly available
 without loading overhead in individual database sessions. However,
 keep in mind that the overhead is avoided only for the first Perl
 interpreter used by a database session — either PL/PerlU, or
 PL/Perl for the first SQL role that calls a PL/Perl function. Any
 additional Perl interpreters created in a database session will have
 to execute plperl.on_init afresh. Also, on Windows there
 will be no savings whatsoever from preloading, since the Perl
 interpreter created in the postmaster process does not propagate to
 child processes.

 This parameter can only be set in the postgresql.conf file or on the server command line.

	
 plperl.on_plperl_init (string)

 ,
 plperl.on_plperlu_init (string)

	
 These parameters specify Perl code to be executed when a Perl
 interpreter is specialized for plperl or
 plperlu respectively. This will happen when a PL/Perl or
 PL/PerlU function is first executed in a database session, or when
 an additional interpreter has to be created because the other language
 is called or a PL/Perl function is called by a new SQL role. This
 follows any initialization done by plperl.on_init.
 The SPI functions are not available when this code is executed.
 The Perl code in plperl.on_plperl_init is executed after
 “locking down” the interpreter, and thus it can only perform
 trusted operations.

 If the code fails with an error it will abort the initialization and
 propagate out to the calling query, causing the current transaction or
 subtransaction to be aborted. Any actions already done within Perl
 won't be undone; however, that interpreter won't be used again.
 If the language is used again the initialization will be attempted
 again within a fresh Perl interpreter.

 Only superusers can change these settings. Although these settings
 can be changed within a session, such changes will not affect Perl
 interpreters that have already been used to execute functions.

	
 plperl.use_strict (boolean)

	
 When set true subsequent compilations of PL/Perl functions will have
 the strict pragma enabled. This parameter does not affect
 functions already compiled in the current session.

Limitations and Missing Features

 The following features are currently missing from PL/Perl, but they
 would make welcome contributions.

	
 PL/Perl functions cannot call each other directly.

	
 SPI is not yet fully implemented.

	
 If you are fetching very large data sets using
 spi_exec_query, you should be aware that
 these will all go into memory. You can avoid this by using
 spi_query/spi_fetchrow as
 illustrated earlier.

 A similar problem occurs if a set-returning function passes a
 large set of rows back to PostgreSQL via return. You
 can avoid this problem too by instead using
 return_next for each row returned, as shown
 previously.

	
 When a session ends normally, not due to a fatal error, any
 END blocks that have been defined are executed.
 Currently no other actions are performed. Specifically,
 file handles are not automatically flushed and objects are
 not automatically destroyed.

Chapter 46. PL/Python — Python Procedural Language

 The PL/Python procedural language allows
 PostgreSQL™ functions and procedures to be written in the
 Python language.

 To install PL/Python in a particular database, use
 CREATE EXTENSION plpython3u.

Tip

 If a language is installed into template1, all subsequently
 created databases will have the language installed automatically.

 PL/Python is only available as an “untrusted” language, meaning
 it does not offer any way of restricting what users can do in it and
 is therefore named plpython3u. A trusted
 variant plpython might become available in the future
 if a secure execution mechanism is developed in Python. The
 writer of a function in untrusted PL/Python must take care that the
 function cannot be used to do anything unwanted, since it will be
 able to do anything that could be done by a user logged in as the
 database administrator. Only superusers can create functions in
 untrusted languages such as plpython3u.

Note

 Users of source packages must specially enable the build of
 PL/Python during the installation process. (Refer to the
 installation instructions for more information.) Users of binary
 packages might find PL/Python in a separate subpackage.

PL/Python Functions

 Functions in PL/Python are declared via the
 standard CREATE FUNCTION(7) syntax:

CREATE FUNCTION funcname (argument-list)
 RETURNS return-type
AS $$
 # PL/Python function body
$$ LANGUAGE plpython3u;

 The body of a function is simply a Python script. When the function
 is called, its arguments are passed as elements of the list
 args; named arguments are also passed as
 ordinary variables to the Python script. Use of named arguments is
 usually more readable. The result is returned from the Python code
 in the usual way, with return or
 yield (in case of a result-set statement). If
 you do not provide a return value, Python returns the default
 None. PL/Python translates
 Python's None into the SQL null value. In a procedure,
 the result from the Python code must be None (typically
 achieved by ending the procedure without a return
 statement or by using a return statement without
 argument); otherwise, an error will be raised.

 For example, a function to return the greater of two integers can be
 defined as:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if a > b:
 return a
 return b
$$ LANGUAGE plpython3u;

 The Python code that is given as the body of the function definition
 is transformed into a Python function. For example, the above results in:

def __plpython_procedure_pymax_23456():
 if a > b:
 return a
 return b

 assuming that 23456 is the OID assigned to the function by
 PostgreSQL™.

 The arguments are set as global variables. Because of the scoping
 rules of Python, this has the subtle consequence that an argument
 variable cannot be reassigned inside the function to the value of
 an expression that involves the variable name itself, unless the
 variable is redeclared as global in the block. For example, the
 following won't work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 x = x.strip() # error
 return x
$$ LANGUAGE plpython3u;

 because assigning to x
 makes x a local variable for the entire block,
 and so the x on the right-hand side of the
 assignment refers to a not-yet-assigned local
 variable x, not the PL/Python function
 parameter. Using the global statement, this can
 be made to work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 global x
 x = x.strip() # ok now
 return x
$$ LANGUAGE plpython3u;

 But it is advisable not to rely on this implementation detail of
 PL/Python. It is better to treat the function parameters as
 read-only.

Data Values

 Generally speaking, the aim of PL/Python is to provide
 a “natural” mapping between the PostgreSQL and the
 Python worlds. This informs the data mapping rules described
 below.

Data Type Mapping

 When a PL/Python function is called, its arguments are converted from
 their PostgreSQL data type to a corresponding Python type:

	
 PostgreSQL boolean is converted to Python bool.

	
 PostgreSQL smallint, int, bigint
 and oid are converted to Python int.

	
 PostgreSQL real and double are converted to
 Python float.

	
 PostgreSQL numeric is converted to
 Python Decimal. This type is imported from
 the cdecimal package if that is available.
 Otherwise,
 decimal.Decimal from the standard library will be
 used. cdecimal is significantly faster
 than decimal. In Python 3.3 and up,
 however, cdecimal has been integrated into the
 standard library under the name decimal, so there is
 no longer any difference.

	
 PostgreSQL bytea is converted to Python bytes.

	
 All other data types, including the PostgreSQL character string types,
 are converted to a Python str (in Unicode like all Python
 strings).

	
 For nonscalar data types, see below.

 When a PL/Python function returns, its return value is converted to the
 function's declared PostgreSQL return data type as follows:

	
 When the PostgreSQL return type is boolean, the
 return value will be evaluated for truth according to the
 Python rules. That is, 0 and empty string
 are false, but notably 'f' is true.

	
 When the PostgreSQL return type is bytea, the return value
 will be converted to Python bytes using the respective
 Python built-ins, with the result being converted to
 bytea.

	
 For all other PostgreSQL return types, the return value is converted
 to a string using the Python built-in str, and the
 result is passed to the input function of the PostgreSQL data type.
 (If the Python value is a float, it is converted using
 the repr built-in instead of str, to
 avoid loss of precision.)

 Strings are automatically converted to the PostgreSQL server encoding
 when they are passed to PostgreSQL.

	
 For nonscalar data types, see below.

 Note that logical mismatches between the declared PostgreSQL
 return type and the Python data type of the actual return object
 are not flagged; the value will be converted in any case.

Null, None

 If an SQL null value is passed to a
 function, the argument value will appear as None in
 Python. For example, the function definition of pymax
 shown in the section called “PL/Python Functions” will return the wrong answer for null
 inputs. We could add STRICT to the function definition
 to make PostgreSQL™ do something more reasonable:
 if a null value is passed, the function will not be called at all,
 but will just return a null result automatically. Alternatively,
 we could check for null inputs in the function body:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if (a is None) or (b is None):
 return None
 if a > b:
 return a
 return b
$$ LANGUAGE plpython3u;

 As shown above, to return an SQL null value from a PL/Python
 function, return the value None. This can be done whether the
 function is strict or not.

Arrays, Lists

 SQL array values are passed into PL/Python as a Python list. To
 return an SQL array value out of a PL/Python function, return a
 Python list:

CREATE FUNCTION return_arr()
 RETURNS int[]
AS $$
return [1, 2, 3, 4, 5]
$$ LANGUAGE plpython3u;

SELECT return_arr();
 return_arr

 {1,2,3,4,5}
(1 row)

 Multidimensional arrays are passed into PL/Python as nested Python lists.
 A 2-dimensional array is a list of lists, for example. When returning
 a multi-dimensional SQL array out of a PL/Python function, the inner
 lists at each level must all be of the same size. For example:

CREATE FUNCTION test_type_conversion_array_int4(x int4[]) RETURNS int4[] AS $$
plpy.info(x, type(x))
return x
$$ LANGUAGE plpython3u;

SELECT * FROM test_type_conversion_array_int4(ARRAY[[1,2,3],[4,5,6]]);
INFO: ([[1, 2, 3], [4, 5, 6]], <type 'list'>)
 test_type_conversion_array_int4

 {{1,2,3},{4,5,6}}
(1 row)

 Other Python sequences, like tuples, are also accepted for
 backwards-compatibility with PostgreSQL versions 9.6 and below, when
 multi-dimensional arrays were not supported. However, they are always
 treated as one-dimensional arrays, because they are ambiguous with
 composite types. For the same reason, when a composite type is used in a
 multi-dimensional array, it must be represented by a tuple, rather than a
 list.

 Note that in Python, strings are sequences, which can have
 undesirable effects that might be familiar to Python programmers:

CREATE FUNCTION return_str_arr()
 RETURNS varchar[]
AS $$
return "hello"
$$ LANGUAGE plpython3u;

SELECT return_str_arr();
 return_str_arr

 {h,e,l,l,o}
(1 row)

Composite Types

 Composite-type arguments are passed to the function as Python mappings. The
 element names of the mapping are the attribute names of the composite type.
 If an attribute in the passed row has the null value, it has the value
 None in the mapping. Here is an example:

CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid (e employee)
 RETURNS boolean
AS $$
 if e["salary"] > 200000:
 return True
 if (e["age"] < 30) and (e["salary"] > 100000):
 return True
 return False
$$ LANGUAGE plpython3u;

 There are multiple ways to return row or composite types from a Python
 function. The following examples assume we have:

CREATE TYPE named_value AS (
 name text,
 value integer
);

 A composite result can be returned as a:

	Sequence type (a tuple or list, but not a set because
 it is not indexable)
	
 Returned sequence objects must have the same number of items as the
 composite result type has fields. The item with index 0 is assigned to
 the first field of the composite type, 1 to the second and so on. For
 example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return (name, value)
 # or alternatively, as list: return [name, value]
$$ LANGUAGE plpython3u;

 To return an SQL null for any column, insert None at
 the corresponding position.

 When an array of composite types is returned, it cannot be returned as a list,
 because it is ambiguous whether the Python list represents a composite type,
 or another array dimension.

	Mapping (dictionary)
	
 The value for each result type column is retrieved from the mapping
 with the column name as key. Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return { "name": name, "value": value }
$$ LANGUAGE plpython3u;

 Any extra dictionary key/value pairs are ignored. Missing keys are
 treated as errors.
 To return an SQL null value for any column, insert
 None with the corresponding column name as the key.

	Object (any object providing method __getattr__)
	
 This works the same as a mapping.
 Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 class named_value:
 def __init__ (self, n, v):
 self.name = n
 self.value = v
 return named_value(name, value)

 # or simply
 class nv: pass
 nv.name = name
 nv.value = value
 return nv
$$ LANGUAGE plpython3u;

 Functions with OUT parameters are also supported. For example:

CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple();

 Output parameters of procedures are passed back the same way. For example:

CREATE PROCEDURE python_triple(INOUT a integer, INOUT b integer) AS $$
return (a * 3, b * 3)
$$ LANGUAGE plpython3u;

CALL python_triple(5, 10);

Set-Returning Functions

 A PL/Python function can also return sets of
 scalar or composite types. There are several ways to achieve this because
 the returned object is internally turned into an iterator. The following
 examples assume we have composite type:

CREATE TYPE greeting AS (
 how text,
 who text
);

 A set result can be returned from a:

	Sequence type (tuple, list, set)
	

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 # return tuple containing lists as composite types
 # all other combinations work also
 return ([how, "World"], [how, "PostgreSQL"], [how, "PL/Python"])
$$ LANGUAGE plpython3u;

	Iterator (any object providing __iter__ and
 __next__ methods)
	

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 class producer:
 def __init__ (self, how, who):
 self.how = how
 self.who = who
 self.ndx = -1

 def __iter__ (self):
 return self

 def __next__(self):
 self.ndx += 1
 if self.ndx == len(self.who):
 raise StopIteration
 return (self.how, self.who[self.ndx])

 return producer(how, ["World", "PostgreSQL", "PL/Python"])
$$ LANGUAGE plpython3u;

	Generator (yield)
	

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 for who in ["World", "PostgreSQL", "PL/Python"]:
 yield (how, who)
$$ LANGUAGE plpython3u;

 Set-returning functions with OUT parameters
 (using RETURNS SETOF record) are also
 supported. For example:

CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) RETURNS SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple_setof(3);

Sharing Data

 The global dictionary SD is available to store
 private data between repeated calls to the same function.
 The global dictionary GD is public data,
 that is available to all Python functions within a session; use with
 care.

 Each function gets its own execution environment in the
 Python interpreter, so that global data and function arguments from
 myfunc are not available to
 myfunc2. The exception is the data in the
 GD dictionary, as mentioned above.

Anonymous Code Blocks

 PL/Python also supports anonymous code blocks called with the
 DO(7) statement:

DO $$
 # PL/Python code
$$ LANGUAGE plpython3u;

 An anonymous code block receives no arguments, and whatever value it
 might return is discarded. Otherwise it behaves just like a function.

Trigger Functions

 When a function is used as a trigger, the dictionary
 TD contains trigger-related values:

	TD["event"]
	
 contains the event as a string:
 INSERT, UPDATE,
 DELETE, or TRUNCATE.

	TD["when"]
	
 contains one of BEFORE, AFTER, or
 INSTEAD OF.

	TD["level"]
	
 contains ROW or STATEMENT.

	TD["new"], TD["old"]
	
 For a row-level trigger, one or both of these fields contain
 the respective trigger rows, depending on the trigger event.

	TD["name"]
	
 contains the trigger name.

	TD["table_name"]
	
 contains the name of the table on which the trigger occurred.

	TD["table_schema"]
	
 contains the schema of the table on which the trigger occurred.

	TD["relid"]
	
 contains the OID of the table on which the trigger occurred.

	TD["args"]
	
 If the CREATE TRIGGER command
 included arguments, they are available in TD["args"][0] to
 TD["args"][n-1].

 If TD["when"] is BEFORE or
 INSTEAD OF and
 TD["level"] is ROW, you can
 return None or "OK" from the
 Python function to indicate the row is unmodified,
 "SKIP" to abort the event, or if TD["event"]
 is INSERT or UPDATE you can return
 "MODIFY" to indicate you've modified the new row.
 Otherwise the return value is ignored.

Database Access

 The PL/Python language module automatically imports a Python module
 called plpy. The functions and constants in
 this module are available to you in the Python code as
 plpy.foo.

Database Access Functions

 The plpy module provides several functions to execute
 database commands:

	plpy.execute(query [, limit])
	
 Calling plpy.execute with a query string and an
 optional row limit argument causes that query to be run and the result to
 be returned in a result object.

 If limit is specified and is greater than
 zero, then plpy.execute retrieves at
 most limit rows, much as if the query
 included a LIMIT
 clause. Omitting limit or specifying it as
 zero results in no row limit.

 The result object emulates a list or dictionary object. The result
 object can be accessed by row number and column name. For example:

rv = plpy.execute("SELECT * FROM my_table", 5)

 returns up to 5 rows from my_table. If
 my_table has a column
 my_column, it would be accessed as:

foo = rv[i]["my_column"]

 The number of rows returned can be obtained using the built-in
 len function.

 The result object has these additional methods:

	nrows()
	
 Returns the number of rows processed by the command. Note that this
 is not necessarily the same as the number of rows returned. For
 example, an UPDATE command will set this value but
 won't return any rows (unless RETURNING is used).

	status()
	
 The SPI_execute() return value.

	colnames(), coltypes(), coltypmods()
	
 Return a list of column names, list of column type OIDs, and list of
 type-specific type modifiers for the columns, respectively.

 These methods raise an exception when called on a result object from
 a command that did not produce a result set, e.g.,
 UPDATE without RETURNING, or
 DROP TABLE. But it is OK to use these methods on
 a result set containing zero rows.

	__str__()
	
 The standard __str__ method is defined so that it
 is possible for example to debug query execution results
 using plpy.debug(rv).

 The result object can be modified.

 Note that calling plpy.execute will cause the entire
 result set to be read into memory. Only use that function when you are
 sure that the result set will be relatively small. If you don't want to
 risk excessive memory usage when fetching large results,
 use plpy.cursor rather
 than plpy.execute.

	plpy.prepare(query [, argtypes]), plpy.execute(plan [, arguments [, limit]])
	

 plpy.prepare prepares the execution plan for a
 query. It is called with a query string and a list of parameter types,
 if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])

 text is the type of the variable you will be passing
 for $1. The second argument is optional if you don't
 want to pass any parameters to the query.

 After preparing a statement, you use a variant of the
 function plpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

 Pass the plan as the first argument (instead of the query string), and a
 list of values to substitute into the query as the second argument. The
 second argument is optional if the query does not expect any parameters.
 The third argument is the optional row limit as before.

 Alternatively, you can call the execute method on
 the plan object:

rv = plan.execute(["name"], 5)

 Query parameters and result row fields are converted between PostgreSQL
 and Python data types as described in the section called “Data Values”.

 When you prepare a plan using the PL/Python module it is automatically
 saved. Read the SPI documentation (Chapter 47, Server Programming Interface) for a
 description of what this means. In order to make effective use of this
 across function calls one needs to use one of the persistent storage
 dictionaries SD or GD (see
 the section called “Sharing Data”). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
 if "plan" in SD:
 plan = SD["plan"]
 else:
 plan = plpy.prepare("SELECT 1")
 SD["plan"] = plan
 # rest of function
$$ LANGUAGE plpython3u;

	plpy.cursor(query), plpy.cursor(plan [, arguments])
	
 The plpy.cursor function accepts the same arguments
 as plpy.execute (except for the row limit) and returns
 a cursor object, which allows you to process large result sets in smaller
 chunks. As with plpy.execute, either a query string
 or a plan object along with a list of arguments can be used, or
 the cursor function can be called as a method of
 the plan object.

 The cursor object provides a fetch method that accepts
 an integer parameter and returns a result object. Each time you
 call fetch, the returned object will contain the next
 batch of rows, never larger than the parameter value. Once all rows are
 exhausted, fetch starts returning an empty result
 object. Cursor objects also provide an
 iterator
 interface, yielding one row at a time until all rows are
 exhausted. Data fetched that way is not returned as result objects, but
 rather as dictionaries, each dictionary corresponding to a single result
 row.

 An example of two ways of processing data from a large table is:

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:
 rows = cursor.fetch(batch_size)
 if not rows:
 break
 for row in rows:
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"])
rows = list(plpy.cursor(plan, [2])) # or: = list(plan.cursor([2]))

return len(rows)
$$ LANGUAGE plpython3u;

 Cursors are automatically disposed of. But if you want to explicitly
 release all resources held by a cursor, use the close
 method. Once closed, a cursor cannot be fetched from anymore.

Tip

 Do not confuse objects created by plpy.cursor with
 DB-API cursors as defined by
 the Python
 Database API specification. They don't have anything in common
 except for the name.

Trapping Errors

 Functions accessing the database might encounter errors, which
 will cause them to abort and raise an exception. Both
 plpy.execute and
 plpy.prepare can raise an instance of a subclass of
 plpy.SPIError, which by default will terminate
 the function. This error can be handled just like any other
 Python exception, by using the try/except
 construct. For example:

CREATE FUNCTION try_adding_joe() RETURNS text AS $$
 try:
 plpy.execute("INSERT INTO users(username) VALUES ('joe')")
 except plpy.SPIError:
 return "something went wrong"
 else:
 return "Joe added"
$$ LANGUAGE plpython3u;

 The actual class of the exception being raised corresponds to the
 specific condition that caused the error. Refer
 to Table A.1, “PostgreSQL™ Error Codes” for a list of possible
 conditions. The module
 plpy.spiexceptions defines an exception class
 for each PostgreSQL™ condition, deriving
 their names from the condition name. For
 instance, division_by_zero
 becomes DivisionByZero, unique_violation
 becomes UniqueViolation, fdw_error
 becomes FdwError, and so on. Each of these
 exception classes inherits from SPIError. This
 separation makes it easier to handle specific errors, for
 instance:

CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$
from plpy import spiexceptions
try:
 plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int", "int"])
 plpy.execute(plan, [numerator, denominator])
except spiexceptions.DivisionByZero:
 return "denominator cannot equal zero"
except spiexceptions.UniqueViolation:
 return "already have that fraction"
except plpy.SPIError as e:
 return "other error, SQLSTATE %s" % e.sqlstate
else:
 return "fraction inserted"
$$ LANGUAGE plpython3u;

 Note that because all exceptions from
 the plpy.spiexceptions module inherit
 from SPIError, an except
 clause handling it will catch any database access error.

 As an alternative way of handling different error conditions, you
 can catch the SPIError exception and determine
 the specific error condition inside the except
 block by looking at the sqlstate attribute of
 the exception object. This attribute is a string value containing
 the “SQLSTATE” error code. This approach provides
 approximately the same functionality

Explicit Subtransactions

 Recovering from errors caused by database access as described in
 the section called “Trapping Errors” can lead to an undesirable
 situation where some operations succeed before one of them fails,
 and after recovering from that error the data is left in an
 inconsistent state. PL/Python offers a solution to this problem in
 the form of explicit subtransactions.

Subtransaction Context Managers

 Consider a function that implements a transfer between two
 accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;

 If the second UPDATE statement results in an
 exception being raised, this function will report the error, but
 the result of the first UPDATE will
 nevertheless be committed. In other words, the funds will be
 withdrawn from Joe's account, but will not be transferred to
 Mary's account.

 To avoid such issues, you can wrap your
 plpy.execute calls in an explicit
 subtransaction. The plpy module provides a
 helper object to manage explicit subtransactions that gets created
 with the plpy.subtransaction() function.
 Objects created by this function implement the

 context manager interface. Using explicit subtransactions
 we can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
 with plpy.subtransaction():
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;

 Note that the use of try/except is still
 required. Otherwise the exception would propagate to the top of
 the Python stack and would cause the whole function to abort with
 a PostgreSQL™ error, so that the
 operations table would not have any row
 inserted into it. The subtransaction context manager does not
 trap errors, it only assures that all database operations executed
 inside its scope will be atomically committed or rolled back. A
 rollback of the subtransaction block occurs on any kind of
 exception exit, not only ones caused by errors originating from
 database access. A regular Python exception raised inside an
 explicit subtransaction block would also cause the subtransaction
 to be rolled back.

Transaction Management

 In a procedure called from the top level or an anonymous code block
 (DO command) called from the top level it is possible to
 control transactions. To commit the current transaction, call
 plpy.commit(). To roll back the current transaction,
 call plpy.rollback(). (Note that it is not possible to
 run the SQL commands COMMIT or
 ROLLBACK via plpy.execute or
 similar. It has to be done using these functions.) After a transaction is
 ended, a new transaction is automatically started, so there is no separate
 function for that.

 Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpython3u
AS $$
for i in range(0, 10):
 plpy.execute("INSERT INTO test1 (a) VALUES (%d)" % i)
 if i % 2 == 0:
 plpy.commit()
 else:
 plpy.rollback()
$$;

CALL transaction_test1();

 Transactions cannot be ended when an explicit subtransaction is active.

Utility Functions

 The plpy module also provides the functions

	plpy.debug(msg, **kwargs)
	plpy.log(msg, **kwargs)
	plpy.info(msg, **kwargs)
	plpy.notice(msg, **kwargs)
	plpy.warning(msg, **kwargs)
	plpy.error(msg, **kwargs)
	plpy.fatal(msg, **kwargs)

 plpy.error and plpy.fatal
 actually raise a Python exception which, if uncaught, propagates out to
 the calling query, causing the current transaction or subtransaction to
 be aborted. raise plpy.Error(msg) and
 raise plpy.Fatal(msg) are
 equivalent to calling plpy.error(msg) and
 plpy.fatal(msg), respectively but
 the raise form does not allow passing keyword arguments.
 The other functions only generate messages of different priority levels.
 Whether messages of a particular priority are reported to the client,
 written to the server log, or both is controlled by the
 log_min_messages and
 client_min_messages configuration
 variables. See Chapter 20, Server Configuration for more information.

 The msg argument is given as a positional argument. For
 backward compatibility, more than one positional argument can be given. In
 that case, the string representation of the tuple of positional arguments
 becomes the message reported to the client.

 The following keyword-only arguments are accepted:

	detail
	hint
	sqlstate
	schema_name
	table_name
	column_name
	datatype_name
	constraint_name

 The string representation of the objects passed as keyword-only arguments
 is used to enrich the messages reported to the client. For example:

CREATE FUNCTION raise_custom_exception() RETURNS void AS $$
plpy.error("custom exception message",
 detail="some info about exception",
 hint="hint for users")
$$ LANGUAGE plpython3u;

=# SELECT raise_custom_exception();
ERROR: plpy.Error: custom exception message
DETAIL: some info about exception
HINT: hint for users
CONTEXT: Traceback (most recent call last):
 PL/Python function "raise_custom_exception", line 4, in <module>
 hint="hint for users")
PL/Python function "raise_custom_exception"

 Another set of utility functions are
 plpy.quote_literal(string),
 plpy.quote_nullable(string), and
 plpy.quote_ident(string). They
 are equivalent to the built-in quoting functions described in the section called “String Functions and Operators”. They are useful when constructing
 ad-hoc queries. A PL/Python equivalent of dynamic SQL from Example 43.1, “Quoting Values in Dynamic Queries” would be:

plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
 plpy.quote_ident(colname),
 plpy.quote_nullable(newvalue),
 plpy.quote_literal(keyvalue)))

Python 2 vs. Python 3

 PL/Python supports only Python 3. Past versions of
 PostgreSQL™ supported Python 2, using the
 plpythonu and plpython2u language
 names.

Environment Variables

 Some of the environment variables that are accepted by the Python
 interpreter can also be used to affect PL/Python behavior. They
 would need to be set in the environment of the main PostgreSQL
 server process, for example in a start script. The available
 environment variables depend on the version of Python; see the
 Python documentation for details. At the time of this writing, the
 following environment variables have an affect on PL/Python,
 assuming an adequate Python version:

	PYTHONHOME

	PYTHONPATH

	PYTHONY2K

	PYTHONOPTIMIZE

	PYTHONDEBUG

	PYTHONVERBOSE

	PYTHONCASEOK

	PYTHONDONTWRITEBYTECODE

	PYTHONIOENCODING

	PYTHONUSERBASE

	PYTHONHASHSEED

 (It appears to be a Python implementation detail beyond the control
 of PL/Python that some of the environment variables listed on
 the python man page are only effective in a
 command-line interpreter and not an embedded Python interpreter.)

Chapter 47. Server Programming Interface

 The Server Programming Interface
 (SPI) gives writers of user-defined
 C functions the ability to run
 SQL commands inside their functions or procedures.
 SPI is a set of
 interface functions to simplify access to the parser, planner,
 and executor. SPI also does some
 memory management.

Note

 The available procedural languages provide various means to
 execute SQL commands from functions. Most of these facilities are
 based on SPI, so this documentation might be of use for users
 of those languages as well.

 Note that if a command invoked via SPI fails, then control will not be
 returned to your C function. Rather, the
 transaction or subtransaction in which your C function executes will be
 rolled back. (This might seem surprising given that the SPI functions mostly
 have documented error-return conventions. Those conventions only apply
 for errors detected within the SPI functions themselves, however.)
 It is possible to recover control after an error by establishing your own
 subtransaction surrounding SPI calls that might fail.

 SPI functions return a nonnegative result on
 success (either via a returned integer value or in the global
 variable SPI_result, as described below). On
 error, a negative result or NULL will be returned.

 Source code files that use SPI must include the header file
 executor/spi.h.

Interface Functions

Interface Support Functions

 The functions described here provide an interface for extracting
 information from result sets returned by SPI_execute and
 other SPI functions.

 All functions described in this section can be used by both
 connected and unconnected C functions.

Name
SPI_fname — determine the column name for the specified column number

Synopsis

char * SPI_fname(TupleDesc rowdesc, int colnumber)

Description

 SPI_fname returns a copy of the column name of the
 specified column. (You can use pfree to
 release the copy of the name when you don't need it anymore.)

Arguments
	TupleDesc rowdesc
	
 input row description

	int colnumber
	
 column number (count starts at 1)

Return Value

 The column name; NULL if
 colnumber is out of range.
 SPI_result set to
 SPI_ERROR_NOATTRIBUTE on error.

Name
SPI_fnumber — determine the column number for the specified column name

Synopsis

int SPI_fnumber(TupleDesc rowdesc, const char * colname)

Description

 SPI_fnumber returns the column number for the
 column with the specified name.

 If colname refers to a system column (e.g.,
 ctid) then the appropriate negative column number will
 be returned. The caller should be careful to test the return value
 for exact equality to SPI_ERROR_NOATTRIBUTE to
 detect an error; testing the result for less than or equal to 0 is
 not correct unless system columns should be rejected.

Arguments
	TupleDesc rowdesc
	
 input row description

	const char * colname
	
 column name

Return Value

 Column number (count starts at 1 for user-defined columns), or
 SPI_ERROR_NOATTRIBUTE if the named column was not
 found.

Name
SPI_getvalue — return the string value of the specified column

Synopsis

char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)

Description

 SPI_getvalue returns the string representation
 of the value of the specified column.

 The result is returned in memory allocated using
 palloc. (You can use
 pfree to release the memory when you don't
 need it anymore.)

Arguments
	HeapTuple row
	
 input row to be examined

	TupleDesc rowdesc
	
 input row description

	int colnumber
	
 column number (count starts at 1)

Return Value

 Column value, or NULL if the column is null,
 colnumber is out of range
 (SPI_result is set to
 SPI_ERROR_NOATTRIBUTE), or no output function is
 available (SPI_result is set to
 SPI_ERROR_NOOUTFUNC).

Name
SPI_getbinval — return the binary value of the specified column

Synopsis

Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,
 bool * isnull)

Description

 SPI_getbinval returns the value of the
 specified column in the internal form (as type Datum).

 This function does not allocate new space for the datum. In the
 case of a pass-by-reference data type, the return value will be a
 pointer into the passed row.

Arguments
	HeapTuple row
	
 input row to be examined

	TupleDesc rowdesc
	
 input row description

	int colnumber
	
 column number (count starts at 1)

	bool * isnull
	
 flag for a null value in the column

Return Value

 The binary value of the column is returned. The variable pointed
 to by isnull is set to true if the column is
 null, else to false.

 SPI_result is set to
 SPI_ERROR_NOATTRIBUTE on error.

Name
SPI_gettype — return the data type name of the specified column

Synopsis

char * SPI_gettype(TupleDesc rowdesc, int colnumber)

Description

 SPI_gettype returns a copy of the data type name of the
 specified column. (You can use pfree to
 release the copy of the name when you don't need it anymore.)

Arguments
	TupleDesc rowdesc
	
 input row description

	int colnumber
	
 column number (count starts at 1)

Return Value

 The data type name of the specified column, or
 NULL on error. SPI_result is
 set to SPI_ERROR_NOATTRIBUTE on error.

Name
SPI_gettypeid — return the data type OID of the specified column

Synopsis

Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)

Description

 SPI_gettypeid returns the
 OID of the data type of the specified column.

Arguments
	TupleDesc rowdesc
	
 input row description

	int colnumber
	
 column number (count starts at 1)

Return Value

 The OID of the data type of the specified column
 or InvalidOid on error. On error,
 SPI_result is set to
 SPI_ERROR_NOATTRIBUTE.

Name
SPI_getrelname — return the name of the specified relation

Synopsis

char * SPI_getrelname(Relation rel)

Description

 SPI_getrelname returns a copy of the name of the
 specified relation. (You can use pfree to
 release the copy of the name when you don't need it anymore.)

Arguments
	Relation rel
	
 input relation

Return Value

 The name of the specified relation.

Name
SPI_getnspname — return the namespace of the specified relation

Synopsis

char * SPI_getnspname(Relation rel)

Description

 SPI_getnspname returns a copy of the name of
 the namespace that the specified Relation
 belongs to. This is equivalent to the relation's schema. You should
 pfree the return value of this function when
 you are finished with it.

Arguments
	Relation rel
	
 input relation

Return Value

 The name of the specified relation's namespace.

Name
SPI_result_code_string — return error code as string

Synopsis

const char * SPI_result_code_string(int code);

Description

 SPI_result_code_string returns a string representation
 of the result code returned by various SPI functions or stored
 in SPI_result.

Arguments
	int code
	
 result code

Return Value

 A string representation of the result code.

Memory Management

 PostgreSQL™ allocates memory within
 memory contexts, which provide a convenient method of
 managing allocations made in many different places that need to
 live for differing amounts of time. Destroying a context releases
 all the memory that was allocated in it. Thus, it is not necessary
 to keep track of individual objects to avoid memory leaks; instead
 only a relatively small number of contexts have to be managed.
 palloc and related functions allocate memory
 from the “current” context.

 SPI_connect creates a new memory context and
 makes it current. SPI_finish restores the
 previous current memory context and destroys the context created by
 SPI_connect. These actions ensure that
 transient memory allocations made inside your C function are
 reclaimed at C function exit, avoiding memory leakage.

 However, if your C function needs to return an object in allocated
 memory (such as a value of a pass-by-reference data type), you
 cannot allocate that memory using palloc, at
 least not while you are connected to SPI. If you try, the object
 will be deallocated by SPI_finish, and your
 C function will not work reliably. To solve this problem, use
 SPI_palloc to allocate memory for your return
 object. SPI_palloc allocates memory in the
 “upper executor context”, that is, the memory context
 that was current when SPI_connect was called,
 which is precisely the right context for a value returned from your
 C function. Several of the other utility functions described in
 this section also return objects created in the upper executor context.

 When SPI_connect is called, the private
 context of the C function, which is created by
 SPI_connect, is made the current context. All
 allocations made by palloc,
 repalloc, or SPI utility functions (except as
 described in this section) are made in this context. When a
 C function disconnects from the SPI manager (via
 SPI_finish) the current context is restored to
 the upper executor context, and all allocations made in the
 C function memory context are freed and cannot be used any more.

Name
SPI_palloc — allocate memory in the upper executor context

Synopsis

void * SPI_palloc(Size size)

Description

 SPI_palloc allocates memory in the upper
 executor context.

 This function can only be used while connected to SPI.
 Otherwise, it throws an error.

Arguments
	Size size
	
 size in bytes of storage to allocate

Return Value

 pointer to new storage space of the specified size

Name
SPI_repalloc — reallocate memory in the upper executor context

Synopsis

void * SPI_repalloc(void * pointer, Size size)

Description

 SPI_repalloc changes the size of a memory
 segment previously allocated using SPI_palloc.

 This function is no longer different from plain
 repalloc. It's kept just for backward
 compatibility of existing code.

Arguments
	void * pointer
	
 pointer to existing storage to change

	Size size
	
 size in bytes of storage to allocate

Return Value

 pointer to new storage space of specified size with the contents
 copied from the existing area

Name
SPI_pfree — free memory in the upper executor context

Synopsis

void SPI_pfree(void * pointer)

Description

 SPI_pfree frees memory previously allocated
 using SPI_palloc or
 SPI_repalloc.

 This function is no longer different from plain
 pfree. It's kept just for backward
 compatibility of existing code.

Arguments
	void * pointer
	
 pointer to existing storage to free

Name
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis

HeapTuple SPI_copytuple(HeapTuple row)

Description

 SPI_copytuple makes a copy of a row in the
 upper executor context. This is normally used to return a modified
 row from a trigger. In a function declared to return a composite
 type, use SPI_returntuple instead.

 This function can only be used while connected to SPI.
 Otherwise, it returns NULL and sets SPI_result to
 SPI_ERROR_UNCONNECTED.

Arguments
	HeapTuple row
	
 row to be copied

Return Value

 the copied row, or NULL on error
 (see SPI_result for an error indication)

Name
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis

HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)

Description

 SPI_returntuple makes a copy of a row in
 the upper executor context, returning it in the form of a row type Datum.
 The returned pointer need only be converted to Datum via PointerGetDatum
 before returning.

 This function can only be used while connected to SPI.
 Otherwise, it returns NULL and sets SPI_result to
 SPI_ERROR_UNCONNECTED.

 Note that this should be used for functions that are declared to return
 composite types. It is not used for triggers; use
 SPI_copytuple for returning a modified row in a trigger.

Arguments
	HeapTuple row
	
 row to be copied

	TupleDesc rowdesc
	
 descriptor for row (pass the same descriptor each time for most
 effective caching)

Return Value

 HeapTupleHeader pointing to copied row,
 or NULL on error
 (see SPI_result for an error indication)

Name
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis

HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,
 int * colnum, Datum * values, const char * nulls)

Description

 SPI_modifytuple creates a new row by
 substituting new values for selected columns, copying the original
 row's columns at other positions. The input row is not modified.
 The new row is returned in the upper executor context.

 This function can only be used while connected to SPI.
 Otherwise, it returns NULL and sets SPI_result to
 SPI_ERROR_UNCONNECTED.

Arguments
	Relation rel
	
 Used only as the source of the row descriptor for the row.
 (Passing a relation rather than a row descriptor is a
 misfeature.)

	HeapTuple row
	
 row to be modified

	int ncols
	
 number of columns to be changed

	int * colnum
	
 an array of length ncols, containing the numbers
 of the columns that are to be changed (column numbers start at 1)

	Datum * values
	
 an array of length ncols, containing the
 new values for the specified columns

	const char * nulls
	
 an array of length ncols, describing which
 new values are null

 If nulls is NULL then
 SPI_modifytuple assumes that no new values
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding new value is
 non-null, or 'n' if the corresponding new value is
 null. (In the latter case, the actual value in the corresponding
 values entry doesn't matter.) Note that
 nulls is not a text string, just an array: it
 does not need a '\0' terminator.

Return Value

 new row with modifications, allocated in the upper executor
 context, or NULL on error
 (see SPI_result for an error indication)

 On error, SPI_result is set as follows:

	SPI_ERROR_ARGUMENT
	
 if rel is NULL, or if
 row is NULL, or if ncols
 is less than or equal to 0, or if colnum is
 NULL, or if values is NULL.

	SPI_ERROR_NOATTRIBUTE
	
 if colnum contains an invalid column number (less
 than or equal to 0 or greater than the number of columns in
 row)

	SPI_ERROR_UNCONNECTED
	
 if SPI is not active

Name
SPI_freetuple — free a row allocated in the upper executor context

Synopsis

void SPI_freetuple(HeapTuple row)

Description

 SPI_freetuple frees a row previously allocated
 in the upper executor context.

 This function is no longer different from plain
 heap_freetuple. It's kept just for backward
 compatibility of existing code.

Arguments
	HeapTuple row
	
 row to free

Name
SPI_freetuptable — free a row set created by SPI_execute or a similar
 function

Synopsis

void SPI_freetuptable(SPITupleTable * tuptable)

Description

 SPI_freetuptable frees a row set created by a
 prior SPI command execution function, such as
 SPI_execute. Therefore, this function is often called
 with the global variable SPI_tuptable as
 argument.

 This function is useful if an SPI-using C function needs to execute
 multiple commands and does not want to keep the results of earlier
 commands around until it ends. Note that any unfreed row sets will
 be freed anyway at SPI_finish.
 Also, if a subtransaction is started and then aborted within execution
 of an SPI-using C function, SPI automatically frees any row sets created while
 the subtransaction was running.

 Beginning in PostgreSQL™ 9.3,
 SPI_freetuptable contains guard logic to protect
 against duplicate deletion requests for the same row set. In previous
 releases, duplicate deletions would lead to crashes.

Arguments
	SPITupleTable * tuptable
	
 pointer to row set to free, or NULL to do nothing

Name
SPI_freeplan — free a previously saved prepared statement

Synopsis

int SPI_freeplan(SPIPlanPtr plan)

Description

 SPI_freeplan releases a prepared statement
 previously returned by SPI_prepare or saved by
 SPI_keepplan or SPI_saveplan.

Arguments
	SPIPlanPtr plan
	
 pointer to statement to free

Return Value

 0 on success;
 SPI_ERROR_ARGUMENT if plan
 is NULL or invalid

Transaction Management

 It is not possible to run transaction control commands such
 as COMMIT and ROLLBACK through SPI
 functions such as SPI_execute. There are, however,
 separate interface functions that allow transaction control through SPI.

 It is not generally safe and sensible to start and end transactions in
 arbitrary user-defined SQL-callable functions without taking into account
 the context in which they are called. For example, a transaction boundary
 in the middle of a function that is part of a complex SQL expression that
 is part of some SQL command will probably result in obscure internal errors
 or crashes. The interface functions presented here are primarily intended
 to be used by procedural language implementations to support transaction
 management in SQL-level procedures that are invoked by the CALL
 command, taking the context of the CALL invocation into
 account. SPI-using procedures implemented in C can implement the same logic, but
 the details of that are beyond the scope of this documentation.

Name
SPI_commit, SPI_commit_and_chain — commit the current transaction

Synopsis

void SPI_commit(void)

void SPI_commit_and_chain(void)

Description

 SPI_commit commits the current transaction. It is
 approximately equivalent to running the SQL
 command COMMIT. After the transaction is committed, a
 new transaction is automatically started using default transaction
 characteristics, so that the caller can continue using SPI facilities.
 If there is a failure during commit, the current transaction is instead
 rolled back and a new transaction is started, after which the error is
 thrown in the usual way.

 SPI_commit_and_chain is the same, but the new
 transaction is started with the same transaction
 characteristics as the just finished one, like with the SQL command
 COMMIT AND CHAIN.

 These functions can only be executed if the SPI connection has been set as
 nonatomic in the call to SPI_connect_ext.

Name
SPI_rollback, SPI_rollback_and_chain — abort the current transaction

Synopsis

void SPI_rollback(void)

void SPI_rollback_and_chain(void)

Description

 SPI_rollback rolls back the current transaction. It
 is approximately equivalent to running the SQL
 command ROLLBACK. After the transaction is rolled back,
 a new transaction is automatically started using default transaction
 characteristics, so that the caller can continue using SPI facilities.

 SPI_rollback_and_chain is the same, but the new
 transaction is started with the same transaction
 characteristics as the just finished one, like with the SQL command
 ROLLBACK AND CHAIN.

 These functions can only be executed if the SPI connection has been set as
 nonatomic in the call to SPI_connect_ext.

Name
SPI_start_transaction — obsolete function

Synopsis

void SPI_start_transaction(void)

Description

 SPI_start_transaction does nothing, and exists
 only for code compatibility with
 earlier PostgreSQL™ releases. It used to
 be required after calling SPI_commit
 or SPI_rollback, but now those functions start
 a new transaction automatically.

Visibility of Data Changes

 The following rules govern the visibility of data changes in
 functions that use SPI (or any other C function):

	
 During the execution of an SQL command, any data changes made by
 the command are invisible to the command itself. For
 example, in:

INSERT INTO a SELECT * FROM a;

 the inserted rows are invisible to the SELECT
 part.

	
 Changes made by a command C are visible to all commands that are
 started after C, no matter whether they are started inside C
 (during the execution of C) or after C is done.

	
 Commands executed via SPI inside a function called by an SQL command
 (either an ordinary function or a trigger) follow one or the
 other of the above rules depending on the read/write flag passed
 to SPI. Commands executed in read-only mode follow the first
 rule: they cannot see changes of the calling command. Commands executed
 in read-write mode follow the second rule: they can see all changes made
 so far.

	
 All standard procedural languages set the SPI read-write mode
 depending on the volatility attribute of the function. Commands of
 STABLE and IMMUTABLE functions are done in
 read-only mode, while commands of VOLATILE functions are
 done in read-write mode. While authors of C functions are able to
 violate this convention, it's unlikely to be a good idea to do so.

 The next section contains an example that illustrates the
 application of these rules.

Examples

 This section contains a very simple example of SPI usage. The
 C function execq takes an SQL command as its
 first argument and a row count as its second, executes the command
 using SPI_exec and returns the number of rows
 that were processed by the command. You can find more complex
 examples for SPI in the source tree in
 src/test/regress/regress.c and in the
 spi module.

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(execq);

Datum
execq(PG_FUNCTION_ARGS)
{
 char *command;
 int cnt;
 int ret;
 uint64 proc;

 /* Convert given text object to a C string */
 command = text_to_cstring(PG_GETARG_TEXT_PP(0));
 cnt = PG_GETARG_INT32(1);

 SPI_connect();

 ret = SPI_exec(command, cnt);

 proc = SPI_processed;

 /*
 * If some rows were fetched, print them via elog(INFO).
 */
 if (ret > 0 && SPI_tuptable != NULL)
 {
 SPITupleTable *tuptable = SPI_tuptable;
 TupleDesc tupdesc = tuptable->tupdesc;
 char buf[8192];
 uint64 j;

 for (j = 0; j < tuptable->numvals; j++)
 {
 HeapTuple tuple = tuptable->vals[j];
 int i;

 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " %s%s",
 SPI_getvalue(tuple, tupdesc, i),
 (i == tupdesc->natts) ? " " : " |");
 elog(INFO, "EXECQ: %s", buf);
 }
 }

 SPI_finish();
 pfree(command);

 PG_RETURN_INT64(proc);
}

 This is how you declare the function after having compiled it into
 a shared library (details are in the section called “Compiling and Linking Dynamically-Loaded Functions”.):

CREATE FUNCTION execq(text, integer) RETURNS int8
 AS 'filename'
 LANGUAGE C STRICT;

 Here is a sample session:

=> SELECT execq('CREATE TABLE a (x integer)', 0);
 execq

 0
(1 row)

=> INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0));
INSERT 0 1
=> SELECT execq('SELECT * FROM a', 0);
INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

 execq

 2
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 2 FROM a RETURNING *', 1);
INFO: EXECQ: 2 -- 0 + 2, then execution was stopped by count
 execq

 1
(1 row)

=> SELECT execq('SELECT * FROM a', 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2

 execq

 3 -- 10 is the max value only, 3 is the real number of rows
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 10 FROM a', 1);
 execq

 3 -- all rows processed; count does not stop it, because nothing is returned
(1 row)

=> SELECT * FROM a;
 x

 0
 1
 2
 10
 11
 12
(6 rows)

=> DELETE FROM a;
DELETE 6
=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
 x

 1 -- 0 (no rows in a) + 1
(1 row)

=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INFO: EXECQ: 1
INSERT 0 1
=> SELECT * FROM a;
 x

 1
 2 -- 1 (there was one row in a) + 1
(2 rows)

-- This demonstrates the data changes visibility rule.
-- execq is called twice and sees different numbers of rows each time:

=> INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a;
INFO: EXECQ: 1 -- results from first execq
INFO: EXECQ: 2
INFO: EXECQ: 1 -- results from second execq
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;
 x

 1
 2
 2 -- 2 rows * 1 (x in first row)
 6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row)
(4 rows)

Chapter 48. Background Worker Processes

 PostgreSQL can be extended to run user-supplied code in separate processes.
 Such processes are started, stopped and monitored by postgres,
 which permits them to have a lifetime closely linked to the server's status.
 These processes are attached to PostgreSQL™'s
 shared memory area and have the option to connect to databases internally; they can also run
 multiple transactions serially, just like a regular client-connected server
 process. Also, by linking to libpq they can connect to the
 server and behave like a regular client application.

Warning

 There are considerable robustness and security risks in using background
 worker processes because, being written in the C language,
 they have unrestricted access to data. Administrators wishing to enable
 modules that include background worker processes should exercise extreme
 caution. Only carefully audited modules should be permitted to run
 background worker processes.

 Background workers can be initialized at the time that
 PostgreSQL™ is started by including the module name in
 shared_preload_libraries. A module wishing to run a background
 worker can register it by calling
 RegisterBackgroundWorker(BackgroundWorker
 *worker)
 from its _PG_init() function.
 Background workers can also be started
 after the system is up and running by calling
 RegisterDynamicBackgroundWorker(BackgroundWorker
 *worker, BackgroundWorkerHandle
 **handle). Unlike
 RegisterBackgroundWorker, which can only be called from
 within the postmaster process,
 RegisterDynamicBackgroundWorker must be called
 from a regular backend or another background worker.

 The structure BackgroundWorker is defined thus:

typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker
{
 char bgw_name[BGW_MAXLEN];
 char bgw_type[BGW_MAXLEN];
 int bgw_flags;
 BgWorkerStartTime bgw_start_time;
 int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART */
 char bgw_library_name[BGW_MAXLEN];
 char bgw_function_name[BGW_MAXLEN];
 Datum bgw_main_arg;
 char bgw_extra[BGW_EXTRALEN];
 pid_t bgw_notify_pid;
} BackgroundWorker;

 bgw_name and bgw_type are
 strings to be used in log messages, process listings and similar contexts.
 bgw_type should be the same for all background
 workers of the same type, so that it is possible to group such workers in a
 process listing, for example. bgw_name on the
 other hand can contain additional information about the specific process.
 (Typically, the string for bgw_name will contain
 the type somehow, but that is not strictly required.)

 bgw_flags is a bitwise-or'd bit mask indicating the
 capabilities that the module wants. Possible values are:

	BGWORKER_SHMEM_ACCESS
	

 Requests shared memory access. This flag is required.

	BGWORKER_BACKEND_DATABASE_CONNECTION
	

 Requests the ability to establish a database connection through which it
 can later run transactions and queries. A background worker using
 BGWORKER_BACKEND_DATABASE_CONNECTION to connect to a
 database must also attach shared memory using
 BGWORKER_SHMEM_ACCESS, or worker start-up will fail.

 bgw_start_time is the server state during which
 postgres should start the process; it can be one of
 BgWorkerStart_PostmasterStart (start as soon as
 postgres itself has finished its own initialization; processes
 requesting this are not eligible for database connections),
 BgWorkerStart_ConsistentState (start as soon as a consistent state
 has been reached in a hot standby, allowing processes to connect to
 databases and run read-only queries), and
 BgWorkerStart_RecoveryFinished (start as soon as the system has
 entered normal read-write state). Note the last two values are equivalent
 in a server that's not a hot standby. Note that this setting only indicates
 when the processes are to be started; they do not stop when a different state
 is reached.

 bgw_restart_time is the interval, in seconds, that
 postgres should wait before restarting the process in
 the event that it crashes. It can be any positive value,
 or BGW_NEVER_RESTART, indicating not to restart the
 process in case of a crash.

 bgw_library_name is the name of a library in
 which the initial entry point for the background worker should be sought.
 The named library will be dynamically loaded by the worker process and
 bgw_function_name will be used to identify the
 function to be called. If calling a function in the core code, this must
 be set to "postgres".

 bgw_function_name is the name of the function
 to use as the initial entry point for the new background worker. If
 this function is in a dynamically loaded library, it must be marked
 PGDLLEXPORT (and not static).

 bgw_main_arg is the Datum argument
 to the background worker main function. This main function should take a
 single argument of type Datum and return void.
 bgw_main_arg will be passed as the argument.
 In addition, the global variable MyBgworkerEntry
 points to a copy of the BackgroundWorker structure
 passed at registration time; the worker may find it helpful to examine
 this structure.

 On Windows (and anywhere else where EXEC_BACKEND is
 defined) or in dynamic background workers it is not safe to pass a
 Datum by reference, only by value. If an argument is required, it
 is safest to pass an int32 or other small value and use that as an index
 into an array allocated in shared memory. If a value like a cstring
 or text is passed then the pointer won't be valid from the
 new background worker process.

 bgw_extra can contain extra data to be passed
 to the background worker. Unlike bgw_main_arg, this data
 is not passed as an argument to the worker's main function, but it can be
 accessed via MyBgworkerEntry, as discussed above.

 bgw_notify_pid is the PID of a PostgreSQL
 backend process to which the postmaster should send SIGUSR1
 when the process is started or exits. It should be 0 for workers registered
 at postmaster startup time, or when the backend registering the worker does
 not wish to wait for the worker to start up. Otherwise, it should be
 initialized to MyProcPid.

Once running, the process can connect to a database by calling
 BackgroundWorkerInitializeConnection(char *dbname, char *username, uint32 flags) or
 BackgroundWorkerInitializeConnectionByOid(Oid dboid, Oid useroid, uint32 flags).
 This allows the process to run transactions and queries using the
 SPI interface. If dbname is NULL or
 dboid is InvalidOid, the session is not connected
 to any particular database, but shared catalogs can be accessed.
 If username is NULL or useroid is
 InvalidOid, the process will run as the superuser created
 during initdb. If BGWORKER_BYPASS_ALLOWCONN
 is specified as flags it is possible to bypass the restriction
 to connect to databases not allowing user connections.
 A background worker can only call one of these two functions, and only
 once. It is not possible to switch databases.

 Signals are initially blocked when control reaches the
 background worker's main function, and must be unblocked by it; this is to
 allow the process to customize its signal handlers, if necessary.
 Signals can be unblocked in the new process by calling
 BackgroundWorkerUnblockSignals and blocked by calling
 BackgroundWorkerBlockSignals.

 If bgw_restart_time for a background worker is
 configured as BGW_NEVER_RESTART, or if it exits with an exit
 code of 0 or is terminated by TerminateBackgroundWorker,
 it will be automatically unregistered by the postmaster on exit.
 Otherwise, it will be restarted after the time period configured via
 bgw_restart_time, or immediately if the postmaster
 reinitializes the cluster due to a backend failure. Backends which need
 to suspend execution only temporarily should use an interruptible sleep
 rather than exiting; this can be achieved by calling
 WaitLatch(). Make sure the
 WL_POSTMASTER_DEATH flag is set when calling that function, and
 verify the return code for a prompt exit in the emergency case that
 postgres itself has terminated.

 When a background worker is registered using the
 RegisterDynamicBackgroundWorker function, it is
 possible for the backend performing the registration to obtain information
 regarding the status of the worker. Backends wishing to do this should
 pass the address of a BackgroundWorkerHandle * as the second
 argument to RegisterDynamicBackgroundWorker. If the
 worker is successfully registered, this pointer will be initialized with an
 opaque handle that can subsequently be passed to
 GetBackgroundWorkerPid(BackgroundWorkerHandle *, pid_t *) or
 TerminateBackgroundWorker(BackgroundWorkerHandle *).
 GetBackgroundWorkerPid can be used to poll the status of the
 worker: a return value of BGWH_NOT_YET_STARTED indicates that
 the worker has not yet been started by the postmaster;
 BGWH_STOPPED indicates that it has been started but is
 no longer running; and BGWH_STARTED indicates that it is
 currently running. In this last case, the PID will also be returned via the
 second argument.
 TerminateBackgroundWorker causes the postmaster to send
 SIGTERM to the worker if it is running, and to unregister it
 as soon as it is not.

 In some cases, a process which registers a background worker may wish to
 wait for the worker to start up. This can be accomplished by initializing
 bgw_notify_pid to MyProcPid and
 then passing the BackgroundWorkerHandle * obtained at
 registration time to
 WaitForBackgroundWorkerStartup(BackgroundWorkerHandle
 *handle, pid_t *) function.
 This function will block until the postmaster has attempted to start the
 background worker, or until the postmaster dies. If the background worker
 is running, the return value will be BGWH_STARTED, and
 the PID will be written to the provided address. Otherwise, the return
 value will be BGWH_STOPPED or
 BGWH_POSTMASTER_DIED.

 A process can also wait for a background worker to shut down, by using the
 WaitForBackgroundWorkerShutdown(BackgroundWorkerHandle
 *handle) function and passing the
 BackgroundWorkerHandle * obtained at registration. This
 function will block until the background worker exits, or postmaster dies.
 When the background worker exits, the return value is
 BGWH_STOPPED, if postmaster dies it will return
 BGWH_POSTMASTER_DIED.

 Background workers can send asynchronous notification messages, either by
 using the NOTIFY command via SPI,
 or directly via Async_Notify(). Such notifications
 will be sent at transaction commit.
 Background workers should not register to receive asynchronous
 notifications with the LISTEN command, as there is no
 infrastructure for a worker to consume such notifications.

 The src/test/modules/worker_spi module
 contains a working example,
 which demonstrates some useful techniques.

 The maximum number of registered background workers is limited by
 max_worker_processes.

Chapter 49. Logical Decoding

 PostgreSQL provides infrastructure to stream the modifications performed
 via SQL to external consumers. This functionality can be used for a
 variety of purposes, including replication solutions and auditing.

 Changes are sent out in streams identified by logical replication slots.

 The format in which those changes are streamed is determined by the output
 plugin used. An example plugin is provided in the PostgreSQL distribution.
 Additional plugins can be
 written to extend the choice of available formats without modifying any
 core code.
 Every output plugin has access to each individual new row produced
 by INSERT and the new row version created
 by UPDATE. Availability of old row versions for
 UPDATE and DELETE depends on
 the configured replica identity (see REPLICA IDENTITY).

 Changes can be consumed either using the streaming replication protocol
 (see the section called “Streaming Replication Protocol” and
 the section called “Streaming Replication Protocol Interface”), or by calling functions
 via SQL (see the section called “Logical Decoding SQL Interface”). It is also possible
 to write additional methods of consuming the output of a replication slot
 without modifying core code
 (see the section called “Logical Decoding Output Writers”).

Logical Decoding Examples

 The following example demonstrates controlling logical decoding using the
 SQL interface.

 Before you can use logical decoding, you must set
 wal_level to logical and
 max_replication_slots to at least 1. Then, you
 should connect to the target database (in the example
 below, postgres) as a superuser.

postgres=# -- Create a slot named 'regression_slot' using the output plugin 'test_decoding'
postgres=# SELECT * FROM pg_create_logical_replication_slot('regression_slot', 'test_decoding', false, true);
 slot_name | lsn
-----------------+-----------
 regression_slot | 0/16B1970
(1 row)

postgres=# SELECT slot_name, plugin, slot_type, database, active, restart_lsn, confirmed_flush_lsn FROM pg_replication_slots;
 slot_name | plugin | slot_type | database | active | restart_lsn | confirmed_flush_lsn
-----------------+---------------+-----------+----------+--------+-------------+-----------------
 regression_slot | test_decoding | logical | postgres | f | 0/16A4408 | 0/16A4440
(1 row)

postgres=# -- There are no changes to see yet
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# CREATE TABLE data(id serial primary key, data text);
CREATE TABLE

postgres=# -- DDL isn't replicated, so all you'll see is the transaction
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+--------------
 0/BA2DA58 | 10297 | BEGIN 10297
 0/BA5A5A0 | 10297 | COMMIT 10297
(2 rows)

postgres=# -- Once changes are read, they're consumed and not emitted
postgres=# -- in a subsequent call:
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('1');
postgres=*# INSERT INTO data(data) VALUES('2');
postgres=*# COMMIT;

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A688 | 10298 | BEGIN 10298
 0/BA5A6F0 | 10298 | table public.data: INSERT: id[integer]:1 data[text]:'1'
 0/BA5A7F8 | 10298 | table public.data: INSERT: id[integer]:2 data[text]:'2'
 0/BA5A8A8 | 10298 | COMMIT 10298
(4 rows)

postgres=# INSERT INTO data(data) VALUES('3');

postgres=# -- You can also peek ahead in the change stream without consuming changes
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- The next call to pg_logical_slot_peek_changes() returns the same changes again
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- options can be passed to output plugin, to influence the formatting
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL, 'include-timestamp', 'on');
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299 (at 2017-05-10 12:07:21.272494-04)
(3 rows)

postgres=# -- Remember to destroy a slot you no longer need to stop it consuming
postgres=# -- server resources:
postgres=# SELECT pg_drop_replication_slot('regression_slot');
 pg_drop_replication_slot

(1 row)

 The following examples shows how logical decoding is controlled over the
 streaming replication protocol, using the
 program pg_recvlogical(1) included in the PostgreSQL
 distribution. This requires that client authentication is set up to allow
 replication connections
 (see the section called “Authentication”) and
 that max_wal_senders is set sufficiently high to allow
 an additional connection. The second example shows how to stream two-phase
 transactions. Before you use two-phase commands, you must set
 max_prepared_transactions to at least 1.

Example 1:
$ pg_recvlogical -d postgres --slot=test --create-slot
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "INSERT INTO data(data) VALUES('4');"
$ fg
BEGIN 693
table public.data: INSERT: id[integer]:4 data[text]:'4'
COMMIT 693
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

Example 2:
$ pg_recvlogical -d postgres --slot=test --create-slot --two-phase
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "BEGIN;INSERT INTO data(data) VALUES('5');PREPARE TRANSACTION 'test';"
$ fg
BEGIN 694
table public.data: INSERT: id[integer]:5 data[text]:'5'
PREPARE TRANSACTION 'test', txid 694
Control+Z
$ psql -d postgres -c "COMMIT PREPARED 'test';"
$ fg
COMMIT PREPARED 'test', txid 694
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

 The following example shows SQL interface that can be used to decode prepared
 transactions. Before you use two-phase commit commands, you must set
 max_prepared_transactions to at least 1. You must also have
 set the two-phase parameter as 'true' while creating the slot using
 pg_create_logical_replication_slot
 Note that we will stream the entire transaction after the commit if it
 is not already decoded.

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('5');
postgres=*# PREPARE TRANSACTION 'test_prepared1';

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+---
 0/1689DC0 | 529 | BEGIN 529
 0/1689DC0 | 529 | table public.data: INSERT: id[integer]:3 data[text]:'5'
 0/1689FC0 | 529 | PREPARE TRANSACTION 'test_prepared1', txid 529
(3 rows)

postgres=# COMMIT PREPARED 'test_prepared1';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+--
 0/168A060 | 529 | COMMIT PREPARED 'test_prepared1', txid 529
(4 row)

postgres=#-- you can also rollback a prepared transaction
postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('6');
postgres=*# PREPARE TRANSACTION 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+---
 0/168A180 | 530 | BEGIN 530
 0/168A1E8 | 530 | table public.data: INSERT: id[integer]:4 data[text]:'6'
 0/168A430 | 530 | PREPARE TRANSACTION 'test_prepared2', txid 530
(3 rows)

postgres=# ROLLBACK PREPARED 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-----+--
 0/168A4B8 | 530 | ROLLBACK PREPARED 'test_prepared2', txid 530
(1 row)

Logical Decoding Concepts

Logical Decoding

 Logical decoding is the process of extracting all persistent changes
 to a database's tables into a coherent, easy to understand format which
 can be interpreted without detailed knowledge of the database's internal
 state.

 In PostgreSQL™, logical decoding is implemented
 by decoding the contents of the write-ahead
 log, which describe changes on a storage level, into an
 application-specific form such as a stream of tuples or SQL statements.

Replication Slots

 In the context of logical replication, a slot represents a stream of
 changes that can be replayed to a client in the order they were made on
 the origin server. Each slot streams a sequence of changes from a single
 database.

Note
PostgreSQL™ also has streaming replication slots
 (see the section called “Streaming Replication”), but they are used somewhat
 differently there.

 A replication slot has an identifier that is unique across all databases
 in a PostgreSQL™ cluster. Slots persist
 independently of the connection using them and are crash-safe.

 A logical slot will emit each change just once in normal operation.
 The current position of each slot is persisted only at checkpoint, so in
 the case of a crash the slot may return to an earlier LSN, which will
 then cause recent changes to be sent again when the server restarts.
 Logical decoding clients are responsible for avoiding ill effects from
 handling the same message more than once. Clients may wish to record
 the last LSN they saw when decoding and skip over any repeated data or
 (when using the replication protocol) request that decoding start from
 that LSN rather than letting the server determine the start point.
 The Replication Progress Tracking feature is designed for this purpose,
 refer to replication origins.

 Multiple independent slots may exist for a single database. Each slot has
 its own state, allowing different consumers to receive changes from
 different points in the database change stream. For most applications, a
 separate slot will be required for each consumer.

 A logical replication slot knows nothing about the state of the
 receiver(s). It's even possible to have multiple different receivers using
 the same slot at different times; they'll just get the changes following
 on from when the last receiver stopped consuming them. Only one receiver
 may consume changes from a slot at any given time.

 A logical replication slot can also be created on a hot standby. To prevent
 VACUUM from removing required rows from the system
 catalogs, hot_standby_feedback should be set on the
 standby. In spite of that, if any required rows get removed, the slot gets
 invalidated. It's highly recommended to use a physical slot between the
 primary and the standby. Otherwise, hot_standby_feedback
 will work but only while the connection is alive (for example a node
 restart would break it). Then, the primary may delete system catalog rows
 that could be needed by the logical decoding on the standby (as it does
 not know about the catalog_xmin on the standby). Existing logical slots
 on standby also get invalidated if wal_level on the
 primary is reduced to less than logical.
 This is done as soon as the standby detects such a change in the WAL stream.
 It means that, for walsenders which are lagging (if any), some WAL records up
 to the wal_level parameter change on the primary won't be
 decoded.

 Creation of a logical slot requires information about all the currently
 running transactions. On the primary, this information is available
 directly, but on a standby, this information has to be obtained from
 primary. Thus, slot creation may need to wait for some activity to happen
 on the primary. If the primary is idle, creating a logical slot on
 standby may take noticeable time. This can be sped up by calling the
 pg_log_standby_snapshot function on the primary.

Caution

 Replication slots persist across crashes and know nothing about the state
 of their consumer(s). They will prevent removal of required resources
 even when there is no connection using them. This consumes storage
 because neither required WAL nor required rows from the system catalogs
 can be removed by VACUUM as long as they are required by a replication
 slot. In extreme cases this could cause the database to shut down to prevent
 transaction ID wraparound (see the section called “Preventing Transaction ID Wraparound Failures”).
 So if a slot is no longer required it should be dropped.

Output Plugins

 Output plugins transform the data from the write-ahead log's internal
 representation into the format the consumer of a replication slot desires.

Exported Snapshots

 When a new replication slot is created using the streaming replication
 interface (see CREATE_REPLICATION_SLOT), a
 snapshot is exported
 (see the section called “Snapshot Synchronization Functions”), which will show
 exactly the state of the database after which all changes will be
 included in the change stream. This can be used to create a new replica by
 using SET TRANSACTION
 SNAPSHOT to read the state of the database at the moment
 the slot was created. This transaction can then be used to dump the
 database's state at that point in time, which afterwards can be updated
 using the slot's contents without losing any changes.

 Applications that do not require
 snapshot export may suppress it with the SNAPSHOT 'nothing'
 option.

Streaming Replication Protocol Interface

 The commands

	CREATE_REPLICATION_SLOT slot_name LOGICAL output_plugin

	DROP_REPLICATION_SLOT slot_name [WAIT]

	START_REPLICATION SLOT slot_name LOGICAL ...

 are used to create, drop, and stream changes from a replication
 slot, respectively. These commands are only available over a replication
 connection; they cannot be used via SQL.
 See the section called “Streaming Replication Protocol” for details on these commands.

 The command pg_recvlogical(1) can be used to control
 logical decoding over a streaming replication connection. (It uses
 these commands internally.)

Logical Decoding SQL Interface

 See the section called “Replication Management Functions” for detailed documentation on
 the SQL-level API for interacting with logical decoding.

 Synchronous replication (see the section called “Synchronous Replication”) is
 only supported on replication slots used over the streaming replication interface. The
 function interface and additional, non-core interfaces do not support
 synchronous replication.

System Catalogs Related to Logical Decoding

 The pg_replication_slots
 view and the

 pg_stat_replication
 view provide information about the current state of replication slots and
 streaming replication connections respectively. These views apply to both physical and
 logical replication. The

 pg_stat_replication_slots
 view provides statistics information about the logical replication slots.

Logical Decoding Output Plugins

 An example output plugin can be found in the

 contrib/test_decoding

 subdirectory of the PostgreSQL source tree.

Initialization Function

 An output plugin is loaded by dynamically loading a shared library with
 the output plugin's name as the library base name. The normal library
 search path is used to locate the library. To provide the required output
 plugin callbacks and to indicate that the library is actually an output
 plugin it needs to provide a function named
 _PG_output_plugin_init. This function is passed a
 struct that needs to be filled with the callback function pointers for
 individual actions.

typedef struct OutputPluginCallbacks
{
 LogicalDecodeStartupCB startup_cb;
 LogicalDecodeBeginCB begin_cb;
 LogicalDecodeChangeCB change_cb;
 LogicalDecodeTruncateCB truncate_cb;
 LogicalDecodeCommitCB commit_cb;
 LogicalDecodeMessageCB message_cb;
 LogicalDecodeFilterByOriginCB filter_by_origin_cb;
 LogicalDecodeShutdownCB shutdown_cb;
 LogicalDecodeFilterPrepareCB filter_prepare_cb;
 LogicalDecodeBeginPrepareCB begin_prepare_cb;
 LogicalDecodePrepareCB prepare_cb;
 LogicalDecodeCommitPreparedCB commit_prepared_cb;
 LogicalDecodeRollbackPreparedCB rollback_prepared_cb;
 LogicalDecodeStreamStartCB stream_start_cb;
 LogicalDecodeStreamStopCB stream_stop_cb;
 LogicalDecodeStreamAbortCB stream_abort_cb;
 LogicalDecodeStreamPrepareCB stream_prepare_cb;
 LogicalDecodeStreamCommitCB stream_commit_cb;
 LogicalDecodeStreamChangeCB stream_change_cb;
 LogicalDecodeStreamMessageCB stream_message_cb;
 LogicalDecodeStreamTruncateCB stream_truncate_cb;
} OutputPluginCallbacks;

typedef void (*LogicalOutputPluginInit) (struct OutputPluginCallbacks *cb);

 The begin_cb, change_cb
 and commit_cb callbacks are required,
 while startup_cb, truncate_cb,
 message_cb, filter_by_origin_cb,
 and shutdown_cb are optional.
 If truncate_cb is not set but a
 TRUNCATE is to be decoded, the action will be ignored.

 An output plugin may also define functions to support streaming of large,
 in-progress transactions. The stream_start_cb,
 stream_stop_cb, stream_abort_cb,
 stream_commit_cb, and stream_change_cb
 are required, while stream_message_cb and
 stream_truncate_cb are optional. The
 stream_prepare_cb is also required if the output
 plugin also support two-phase commits.

 An output plugin may also define functions to support two-phase commits,
 which allows actions to be decoded on the PREPARE TRANSACTION.
 The begin_prepare_cb, prepare_cb,
 commit_prepared_cb and rollback_prepared_cb
 callbacks are required, while filter_prepare_cb is optional.
 The stream_prepare_cb is also required if the output plugin
 also supports the streaming of large in-progress transactions.

Capabilities

 To decode, format and output changes, output plugins can use most of the
 backend's normal infrastructure, including calling output functions. Read
 only access to relations is permitted as long as only relations are
 accessed that either have been created by initdb in
 the pg_catalog schema, or have been marked as user
 provided catalog tables using

ALTER TABLE user_catalog_table SET (user_catalog_table = true);
CREATE TABLE another_catalog_table(data text) WITH (user_catalog_table = true);

 Note that access to user catalog tables or regular system catalog tables
 in the output plugins has to be done via the systable_*
 scan APIs only. Access via the heap_* scan APIs will
 error out. Additionally, any actions leading to transaction ID assignment
 are prohibited. That, among others, includes writing to tables, performing
 DDL changes, and calling pg_current_xact_id().

Output Modes

 Output plugin callbacks can pass data to the consumer in nearly arbitrary
 formats. For some use cases, like viewing the changes via SQL, returning
 data in a data type that can contain arbitrary data (e.g., bytea) is
 cumbersome. If the output plugin only outputs textual data in the
 server's encoding, it can declare that by
 setting OutputPluginOptions.output_type
 to OUTPUT_PLUGIN_TEXTUAL_OUTPUT instead
 of OUTPUT_PLUGIN_BINARY_OUTPUT in
 the startup
 callback. In that case, all the data has to be in the server's encoding
 so that a text datum can contain it. This is checked in assertion-enabled
 builds.

Output Plugin Callbacks

 An output plugin gets notified about changes that are happening via
 various callbacks it needs to provide.

 Concurrent transactions are decoded in commit order, and only changes
 belonging to a specific transaction are decoded between
 the begin and commit
 callbacks. Transactions that were rolled back explicitly or implicitly
 never get
 decoded. Successful savepoints are
 folded into the transaction containing them in the order they were
 executed within that transaction. A transaction that is prepared for
 a two-phase commit using PREPARE TRANSACTION will
 also be decoded if the output plugin callbacks needed for decoding
 them are provided. It is possible that the current prepared transaction
 which is being decoded is aborted concurrently via a
 ROLLBACK PREPARED command. In that case, the logical
 decoding of this transaction will be aborted too. All the changes of such
 a transaction are skipped once the abort is detected and the
 prepare_cb callback is invoked. Thus even in case of
 a concurrent abort, enough information is provided to the output plugin
 for it to properly deal with ROLLBACK PREPARED once
 that is decoded.

Note

 Only transactions that have already safely been flushed to disk will be
 decoded. That can lead to a COMMIT not immediately being decoded in a
 directly following pg_logical_slot_get_changes()
 when synchronous_commit is set
 to off.

Startup Callback

 The optional startup_cb callback is called whenever
 a replication slot is created or asked to stream changes, independent
 of the number of changes that are ready to be put out.

typedef void (*LogicalDecodeStartupCB) (struct LogicalDecodingContext *ctx,
 OutputPluginOptions *options,
 bool is_init);

 The is_init parameter will be true when the
 replication slot is being created and false
 otherwise. options points to a struct of options
 that output plugins can set:

typedef struct OutputPluginOptions
{
 OutputPluginOutputType output_type;
 bool receive_rewrites;
} OutputPluginOptions;

 output_type has to either be set to
 OUTPUT_PLUGIN_TEXTUAL_OUTPUT
 or OUTPUT_PLUGIN_BINARY_OUTPUT. See also
 the section called “Output Modes”.
 If receive_rewrites is true, the output plugin will
 also be called for changes made by heap rewrites during certain DDL
 operations. These are of interest to plugins that handle DDL
 replication, but they require special handling.

 The startup callback should validate the options present in
 ctx->output_plugin_options. If the output plugin
 needs to have a state, it can
 use ctx->output_plugin_private to store it.

Shutdown Callback

 The optional shutdown_cb callback is called
 whenever a formerly active replication slot is not used anymore and can
 be used to deallocate resources private to the output plugin. The slot
 isn't necessarily being dropped, streaming is just being stopped.

typedef void (*LogicalDecodeShutdownCB) (struct LogicalDecodingContext *ctx);

Transaction Begin Callback

 The required begin_cb callback is called whenever a
 start of a committed transaction has been decoded. Aborted transactions
 and their contents never get decoded.

typedef void (*LogicalDecodeBeginCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

 The txn parameter contains meta information about
 the transaction, like the time stamp at which it has been committed and
 its XID.

Transaction End Callback

 The required commit_cb callback is called whenever
 a transaction commit has been
 decoded. The change_cb callbacks for all modified
 rows will have been called before this, if there have been any modified
 rows.

typedef void (*LogicalDecodeCommitCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

Change Callback

 The required change_cb callback is called for every
 individual row modification inside a transaction, may it be
 an INSERT, UPDATE,
 or DELETE. Even if the original command modified
 several rows at once the callback will be called individually for each
 row. The change_cb callback may access system or
 user catalog tables to aid in the process of outputting the row
 modification details. In case of decoding a prepared (but yet
 uncommitted) transaction or decoding of an uncommitted transaction, this
 change callback might also error out due to simultaneous rollback of
 this very same transaction. In that case, the logical decoding of this
 aborted transaction is stopped gracefully.

typedef void (*LogicalDecodeChangeCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

 The ctx and txn parameters
 have the same contents as for the begin_cb
 and commit_cb callbacks, but additionally the
 relation descriptor relation points to the
 relation the row belongs to and a struct
 change describing the row modification are passed
 in.

Note

 Only changes in user defined tables that are not unlogged
 (see UNLOGGED) and not temporary
 (see TEMPORARY or TEMP) can be extracted using
 logical decoding.

Truncate Callback

 The optional truncate_cb callback is called for a
 TRUNCATE command.

typedef void (*LogicalDecodeTruncateCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

 The parameters are analogous to the change_cb
 callback. However, because TRUNCATE actions on
 tables connected by foreign keys need to be executed together, this
 callback receives an array of relations instead of just a single one.
 See the description of the TRUNCATE(7) statement for
 details.

Origin Filter Callback

 The optional filter_by_origin_cb callback
 is called to determine whether data that has been replayed
 from origin_id is of interest to the
 output plugin.

typedef bool (*LogicalDecodeFilterByOriginCB) (struct LogicalDecodingContext *ctx,
 RepOriginId origin_id);

 The ctx parameter has the same contents
 as for the other callbacks. No information but the origin is
 available. To signal that changes originating on the passed in
 node are irrelevant, return true, causing them to be filtered
 away; false otherwise. The other callbacks will not be called
 for transactions and changes that have been filtered away.

 This is useful when implementing cascading or multidirectional
 replication solutions. Filtering by the origin allows to
 prevent replicating the same changes back and forth in such
 setups. While transactions and changes also carry information
 about the origin, filtering via this callback is noticeably
 more efficient.

Generic Message Callback

 The optional message_cb callback is called whenever
 a logical decoding message has been decoded.

typedef void (*LogicalDecodeMessageCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,
 const char *message);

 The txn parameter contains meta information about
 the transaction, like the time stamp at which it has been committed and
 its XID. Note however that it can be NULL when the message is
 non-transactional and the XID was not assigned yet in the transaction
 which logged the message. The lsn has WAL
 location of the message. The transactional says
 if the message was sent as transactional or not. Similar to the change
 callback, in case of decoding a prepared (but yet uncommitted)
 transaction or decoding of an uncommitted transaction, this message
 callback might also error out due to simultaneous rollback of
 this very same transaction. In that case, the logical decoding of this
 aborted transaction is stopped gracefully.

 The prefix is arbitrary null-terminated prefix
 which can be used for identifying interesting messages for the current
 plugin. And finally the message parameter holds
 the actual message of message_size size.

 Extra care should be taken to ensure that the prefix the output plugin
 considers interesting is unique. Using name of the extension or the
 output plugin itself is often a good choice.

Prepare Filter Callback

 The optional filter_prepare_cb callback
 is called to determine whether data that is part of the current
 two-phase commit transaction should be considered for decoding
 at this prepare stage or later as a regular one-phase transaction at
 COMMIT PREPARED time. To signal that
 decoding should be skipped, return true;
 false otherwise. When the callback is not
 defined, false is assumed (i.e. no filtering, all
 transactions using two-phase commit are decoded in two phases as well).

typedef bool (*LogicalDecodeFilterPrepareCB) (struct LogicalDecodingContext *ctx,
 TransactionId xid,
 const char *gid);

 The ctx parameter has the same contents as for
 the other callbacks. The parameters xid
 and gid provide two different ways to identify
 the transaction. The later COMMIT PREPARED or
 ROLLBACK PREPARED carries both identifiers,
 providing an output plugin the choice of what to use.

 The callback may be invoked multiple times per transaction to decode
 and must provide the same static answer for a given pair of
 xid and gid every time
 it is called.

Transaction Begin Prepare Callback

 The required begin_prepare_cb callback is called
 whenever the start of a prepared transaction has been decoded. The
 gid field, which is part of the
 txn parameter, can be used in this callback to
 check if the plugin has already received this PREPARE
 in which case it can either error out or skip the remaining changes of
 the transaction.

typedef void (*LogicalDecodeBeginPrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

Transaction Prepare Callback

 The required prepare_cb callback is called whenever
 a transaction which is prepared for two-phase commit has been
 decoded. The change_cb callback for all modified
 rows will have been called before this, if there have been any modified
 rows. The gid field, which is part of the
 txn parameter, can be used in this callback.

typedef void (*LogicalDecodePrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_lsn);

Transaction Commit Prepared Callback

 The required commit_prepared_cb callback is called
 whenever a transaction COMMIT PREPARED has been decoded.
 The gid field, which is part of the
 txn parameter, can be used in this callback.

typedef void (*LogicalDecodeCommitPreparedCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

Transaction Rollback Prepared Callback

 The required rollback_prepared_cb callback is called
 whenever a transaction ROLLBACK PREPARED has been
 decoded. The gid field, which is part of the
 txn parameter, can be used in this callback. The
 parameters prepare_end_lsn and
 prepare_time can be used to check if the plugin
 has received this PREPARE TRANSACTION in which case
 it can apply the rollback, otherwise, it can skip the rollback operation. The
 gid alone is not sufficient because the downstream
 node can have a prepared transaction with same identifier.

typedef void (*LogicalDecodeRollbackPreparedCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_end_lsn,
 TimestampTz prepare_time);

Stream Start Callback

 The required stream_start_cb callback is called when
 opening a block of streamed changes from an in-progress transaction.

typedef void (*LogicalDecodeStreamStartCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

Stream Stop Callback

 The required stream_stop_cb callback is called when
 closing a block of streamed changes from an in-progress transaction.

typedef void (*LogicalDecodeStreamStopCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

Stream Abort Callback

 The required stream_abort_cb callback is called to
 abort a previously streamed transaction.

typedef void (*LogicalDecodeStreamAbortCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr abort_lsn);

Stream Prepare Callback

 The stream_prepare_cb callback is called to prepare
 a previously streamed transaction as part of a two-phase commit. This
 callback is required when the output plugin supports both the streaming
 of large in-progress transactions and two-phase commits.

typedef void (*LogicalDecodeStreamPrepareCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr prepare_lsn);

Stream Commit Callback

 The required stream_commit_cb callback is called to
 commit a previously streamed transaction.

typedef void (*LogicalDecodeStreamCommitCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

Stream Change Callback

 The required stream_change_cb callback is called
 when sending a change in a block of streamed changes (demarcated by
 stream_start_cb and stream_stop_cb calls).
 The actual changes are not displayed as the transaction can abort at a later
 point in time and we don't decode changes for aborted transactions.

typedef void (*LogicalDecodeStreamChangeCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

Stream Message Callback

 The optional stream_message_cb callback is called when
 sending a generic message in a block of streamed changes (demarcated by
 stream_start_cb and stream_stop_cb calls).
 The message contents for transactional messages are not displayed as the transaction
 can abort at a later point in time and we don't decode changes for aborted
 transactions.

typedef void (*LogicalDecodeStreamMessageCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,
 const char *message);

Stream Truncate Callback

 The optional stream_truncate_cb callback is called
 for a TRUNCATE command in a block of streamed changes
 (demarcated by stream_start_cb and
 stream_stop_cb calls).

typedef void (*LogicalDecodeStreamTruncateCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

 The parameters are analogous to the stream_change_cb
 callback. However, because TRUNCATE actions on
 tables connected by foreign keys need to be executed together, this
 callback receives an array of relations instead of just a single one.
 See the description of the TRUNCATE(7) statement for
 details.

Functions for Producing Output

 To actually produce output, output plugins can write data to
 the StringInfo output buffer
 in ctx->out when inside
 the begin_cb, commit_cb,
 or change_cb callbacks. Before writing to the output
 buffer, OutputPluginPrepareWrite(ctx, last_write) has
 to be called, and after finishing writing to the
 buffer, OutputPluginWrite(ctx, last_write) has to be
 called to perform the write. The last_write
 indicates whether a particular write was the callback's last write.

 The following example shows how to output data to the consumer of an
 output plugin:

OutputPluginPrepareWrite(ctx, true);
appendStringInfo(ctx->out, "BEGIN %u", txn->xid);
OutputPluginWrite(ctx, true);

Logical Decoding Output Writers

 It is possible to add more output methods for logical decoding.
 For details, see
 src/backend/replication/logical/logicalfuncs.c.
 Essentially, three functions need to be provided: one to read WAL, one to
 prepare writing output, and one to write the output
 (see the section called “Functions for Producing Output”).

Synchronous Replication Support for Logical Decoding

Overview

 Logical decoding can be used to build
 synchronous
 replication solutions with the same user interface as synchronous
 replication for streaming
 replication. To do this, the streaming replication interface
 (see the section called “Streaming Replication Protocol Interface”) must be used to stream out
 data. Clients have to send Standby status update (F)
 (see the section called “Streaming Replication Protocol”) messages, just like streaming
 replication clients do.

Note

 A synchronous replica receiving changes via logical decoding will work in
 the scope of a single database. Since, in contrast to
 that, synchronous_standby_names currently is
 server wide, this means this technique will not work properly if more
 than one database is actively used.

Caveats

 In synchronous replication setup, a deadlock can happen, if the transaction
 has locked [user] catalog tables exclusively. See
 the section called “Capabilities” for information on user
 catalog tables. This is because logical decoding of transactions can lock
 catalog tables to access them. To avoid this users must refrain from taking
 an exclusive lock on [user] catalog tables. This can happen in the following
 ways:

	
 Issuing an explicit LOCK on pg_class
 in a transaction.

	
 Perform CLUSTER on pg_class in
 a transaction.

	
 PREPARE TRANSACTION after LOCK command
 on pg_class and allow logical decoding of two-phase
 transactions.

	
 PREPARE TRANSACTION after CLUSTER
 command on pg_trigger and allow logical decoding of
 two-phase transactions. This will lead to deadlock only when published table
 have a trigger.

	
 Executing TRUNCATE on [user] catalog table in a
 transaction.

 Note that these commands that can cause deadlock apply to not only explicitly
 indicated system catalog tables above but also to any other [user] catalog
 table.

Streaming of Large Transactions for Logical Decoding

 The basic output plugin callbacks (e.g., begin_cb,
 change_cb, commit_cb and
 message_cb) are only invoked when the transaction
 actually commits. The changes are still decoded from the transaction
 log, but are only passed to the output plugin at commit (and discarded
 if the transaction aborts).

 This means that while the decoding happens incrementally, and may spill
 to disk to keep memory usage under control, all the decoded changes have
 to be transmitted when the transaction finally commits (or more precisely,
 when the commit is decoded from the transaction log). Depending on the
 size of the transaction and network bandwidth, the transfer time may
 significantly increase the apply lag.

 To reduce the apply lag caused by large transactions, an output plugin
 may provide additional callback to support incremental streaming of
 in-progress transactions. There are multiple required streaming callbacks
 (stream_start_cb, stream_stop_cb,
 stream_abort_cb, stream_commit_cb
 and stream_change_cb) and two optional callbacks
 (stream_message_cb and stream_truncate_cb).
 Also, if streaming of two-phase commands is to be supported, then additional
 callbacks must be provided. (See the section called “Two-phase Commit Support for Logical Decoding”
 for details).

 When streaming an in-progress transaction, the changes (and messages) are
 streamed in blocks demarcated by stream_start_cb
 and stream_stop_cb callbacks. Once all the decoded
 changes are transmitted, the transaction can be committed using the
 stream_commit_cb callback
 (or possibly aborted using the stream_abort_cb callback).
 If two-phase commits are supported, the transaction can be prepared using the
 stream_prepare_cb callback,
 COMMIT PREPARED using the
 commit_prepared_cb callback or aborted using the
 rollback_prepared_cb.

 One example sequence of streaming callback calls for one transaction may
 look like this:

stream_start_cb(...); <-- start of first block of changes
 stream_change_cb(...);
 stream_change_cb(...);
 stream_message_cb(...);
 stream_change_cb(...);
 ...
 stream_change_cb(...);
stream_stop_cb(...); <-- end of first block of changes

stream_start_cb(...); <-- start of second block of changes
 stream_change_cb(...);
 stream_change_cb(...);
 stream_change_cb(...);
 ...
 stream_message_cb(...);
 stream_change_cb(...);
stream_stop_cb(...); <-- end of second block of changes

[a. when using normal commit]
stream_commit_cb(...); <-- commit of the streamed transaction

[b. when using two-phase commit]
stream_prepare_cb(...); <-- prepare the streamed transaction
commit_prepared_cb(...); <-- commit of the prepared transaction

 The actual sequence of callback calls may be more complicated, of course.
 There may be blocks for multiple streamed transactions, some of the
 transactions may get aborted, etc.

 Similar to spill-to-disk behavior, streaming is triggered when the total
 amount of changes decoded from the WAL (for all in-progress transactions)
 exceeds the limit defined by logical_decoding_work_mem setting.
 At that point, the largest top-level transaction (measured by the amount of memory
 currently used for decoded changes) is selected and streamed. However, in
 some cases we still have to spill to disk even if streaming is enabled
 because we exceed the memory threshold but still have not decoded the
 complete tuple e.g., only decoded toast table insert but not the main table
 insert.

 Even when streaming large transactions, the changes are still applied in
 commit order, preserving the same guarantees as the non-streaming mode.

Two-phase Commit Support for Logical Decoding

 With the basic output plugin callbacks (eg., begin_cb,
 change_cb, commit_cb and
 message_cb) two-phase commit commands like
 PREPARE TRANSACTION, COMMIT PREPARED
 and ROLLBACK PREPARED are not decoded. While the
 PREPARE TRANSACTION is ignored,
 COMMIT PREPARED is decoded as a COMMIT
 and ROLLBACK PREPARED is decoded as a
 ROLLBACK.

 To support the streaming of two-phase commands, an output plugin needs to
 provide additional callbacks. There are multiple two-phase commit callbacks
 that are required, (begin_prepare_cb,
 prepare_cb, commit_prepared_cb,
 rollback_prepared_cb and
 stream_prepare_cb) and an optional callback
 (filter_prepare_cb).

 If the output plugin callbacks for decoding two-phase commit commands are
 provided, then on PREPARE TRANSACTION, the changes of
 that transaction are decoded, passed to the output plugin, and the
 prepare_cb callback is invoked. This differs from the
 basic decoding setup where changes are only passed to the output plugin
 when a transaction is committed. The start of a prepared transaction is
 indicated by the begin_prepare_cb callback.

 When a prepared transaction is rolled back using the
 ROLLBACK PREPARED, then the
 rollback_prepared_cb callback is invoked and when the
 prepared transaction is committed using COMMIT PREPARED,
 then the commit_prepared_cb callback is invoked.

 Optionally the output plugin can define filtering rules via
 filter_prepare_cb to decode only specific transaction
 in two phases. This can be achieved by pattern matching on the
 gid or via lookups using the
 xid.

 The users that want to decode prepared transactions need to be careful about
 below mentioned points:

	
 If the prepared transaction has locked [user] catalog tables exclusively
 then decoding prepare can block till the main transaction is committed.

	
 The logical replication solution that builds distributed two phase commit
 using this feature can deadlock if the prepared transaction has locked
 [user] catalog tables exclusively. To avoid this users must refrain from
 having locks on catalog tables (e.g. explicit LOCK command)
 in such transactions.
 See the section called “Caveats” for the details.

Chapter 50. Replication Progress Tracking

 Replication origins are intended to make it easier to implement
 logical replication solutions on top
 of logical decoding.
 They provide a solution to two common problems:

	How to safely keep track of replication progress

	How to change replication behavior based on the
 origin of a row; for example, to prevent loops in bi-directional
 replication setups

 Replication origins have just two properties, a name and an ID. The name,
 which is what should be used to refer to the origin across systems, is
 free-form text. It should be used in a way that makes conflicts
 between replication origins created by different replication solutions
 unlikely; e.g., by prefixing the replication solution's name to it.
 The ID is used only to avoid having to store the long version
 in situations where space efficiency is important. It should never be shared
 across systems.

 Replication origins can be created using the function
 pg_replication_origin_create();
 dropped using
 pg_replication_origin_drop();
 and seen in the
 pg_replication_origin
 system catalog.

 One nontrivial part of building a replication solution is to keep track of
 replay progress in a safe manner. When the applying process, or the whole
 cluster, dies, it needs to be possible to find out up to where data has
 successfully been replicated. Naive solutions to this, such as updating a
 row in a table for every replayed transaction, have problems like run-time
 overhead and database bloat.

 Using the replication origin infrastructure a session can be
 marked as replaying from a remote node (using the
 pg_replication_origin_session_setup()
 function). Additionally the LSN and commit
 time stamp of every source transaction can be configured on a per
 transaction basis using
 pg_replication_origin_xact_setup().
 If that's done replication progress will persist in a crash safe
 manner. Replay progress for all replication origins can be seen in the

 pg_replication_origin_status
 view. An individual origin's progress, e.g., when resuming
 replication, can be acquired using
 pg_replication_origin_progress()
 for any origin or
 pg_replication_origin_session_progress()
 for the origin configured in the current session.

 In replication topologies more complex than replication from exactly one
 system to one other system, another problem can be that it is hard to avoid
 replicating replayed rows again. That can lead both to cycles in the
 replication and inefficiencies. Replication origins provide an optional
 mechanism to recognize and prevent that. When configured using the functions
 referenced in the previous paragraph, every change and transaction passed to
 output plugin callbacks (see the section called “Logical Decoding Output Plugins”)
 generated by the session is tagged with the replication origin of the
 generating session. This allows treating them differently in the output
 plugin, e.g., ignoring all but locally-originating rows. Additionally
 the
 filter_by_origin_cb callback can be used
 to filter the logical decoding change stream based on the
 source. While less flexible, filtering via that callback is
 considerably more efficient than doing it in the output plugin.

Chapter 51. Archive Modules

 PostgreSQL provides infrastructure to create custom modules for continuous
 archiving (see the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”). While archiving via
 a shell command (i.e., archive_command) is much
 simpler, a custom archive module will often be considerably more robust and
 performant.

 When a custom archive_library is configured, PostgreSQL
 will submit completed WAL files to the module, and the server will avoid
 recycling or removing these WAL files until the module indicates that the files
 were successfully archived. It is ultimately up to the module to decide what
 to do with each WAL file, but many recommendations are listed at
 the section called “Setting Up WAL Archiving”.

 Archiving modules must at least consist of an initialization function (see
 the section called “Initialization Functions”) and the required callbacks (see
 the section called “Archive Module Callbacks”). However, archive modules are
 also permitted to do much more (e.g., declare GUCs and register background
 workers).

 The contrib/basic_archive module contains a working
 example, which demonstrates some useful techniques.

Initialization Functions

 An archive library is loaded by dynamically loading a shared library with the
 archive_library's name as the library base name. The
 normal library search path is used to locate the library. To provide the
 required archive module callbacks and to indicate that the library is
 actually an archive module, it needs to provide a function named
 _PG_archive_module_init. The result of the function
 must be a pointer to a struct of type
 ArchiveModuleCallbacks, which contains everything
 that the core code needs to know to make use of the archive module. The
 return value needs to be of server lifetime, which is typically achieved by
 defining it as a static const variable in global scope.

typedef struct ArchiveModuleCallbacks
{
 ArchiveStartupCB startup_cb;
 ArchiveCheckConfiguredCB check_configured_cb;
 ArchiveFileCB archive_file_cb;
 ArchiveShutdownCB shutdown_cb;
} ArchiveModuleCallbacks;
typedef const ArchiveModuleCallbacks *(*ArchiveModuleInit) (void);

 Only the archive_file_cb callback is required. The
 others are optional.

Archive Module Callbacks

 The archive callbacks define the actual archiving behavior of the module.
 The server will call them as required to process each individual WAL file.

Startup Callback

 The startup_cb callback is called shortly after the
 module is loaded. This callback can be used to perform any additional
 initialization required. If the archive module has any state, it can use
 state->private_data to store it.

typedef void (*ArchiveStartupCB) (ArchiveModuleState *state);

Check Callback

 The check_configured_cb callback is called to determine
 whether the module is fully configured and ready to accept WAL files (e.g.,
 its configuration parameters are set to valid values). If no
 check_configured_cb is defined, the server always
 assumes the module is configured.

typedef bool (*ArchiveCheckConfiguredCB) (ArchiveModuleState *state);

 If true is returned, the server will proceed with
 archiving the file by calling the archive_file_cb
 callback. If false is returned, archiving will not
 proceed, and the archiver will emit the following message to the server log:

WARNING: archive_mode enabled, yet archiving is not configured

 In the latter case, the server will periodically call this function, and
 archiving will proceed only when it returns true.

Archive Callback

 The archive_file_cb callback is called to archive a
 single WAL file.

typedef bool (*ArchiveFileCB) (ArchiveModuleState *state, const char *file, const char *path);

 If true is returned, the server proceeds as if the file
 was successfully archived, which may include recycling or removing the
 original WAL file. If false is returned, the server will
 keep the original WAL file and retry archiving later.
 file will contain just the file name of the WAL
 file to archive, while path contains the full
 path of the WAL file (including the file name).

Shutdown Callback

 The shutdown_cb callback is called when the archiver
 process exits (e.g., after an error) or the value of
 archive_library changes. If no
 shutdown_cb is defined, no special action is taken in
 these situations. If the archive module has any state, this callback should
 free it to avoid leaks.

typedef void (*ArchiveShutdownCB) (ArchiveModuleState *state);

Part VI. Reference

 The entries in this Reference are meant to provide in reasonable
 length an authoritative, complete, and formal summary about their
 respective subjects. More information about the use of
 PostgreSQL™, in narrative, tutorial, or
 example form, can be found in other parts of this book. See the
 cross-references listed on each reference page.

 The reference entries are also available as traditional
 “man” pages.

SQL Commands

 This part contains reference information for the
 SQL commands supported by
 PostgreSQL™. By “SQL” the
 language in general is meant; information about the standards
 conformance and compatibility of each command can be found on the
 respective reference page.

Name
ABORT — abort the current transaction

Synopsis

ABORT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description

 ABORT rolls back the current transaction and causes
 all the updates made by the transaction to be discarded.
 This command is identical
 in behavior to the standard SQL command
 ROLLBACK,
 and is present only for historical reasons.

Parameters
	WORK, TRANSACTION
	
 Optional key words. They have no effect.

	AND CHAIN
	
 If AND CHAIN is specified, a new transaction is
 immediately started with the same transaction characteristics (see SET TRANSACTION) as the just finished one. Otherwise,
 no new transaction is started.

Notes

 Use COMMIT to
 successfully terminate a transaction.

 Issuing ABORT outside of a transaction block
 emits a warning and otherwise has no effect.

Examples

 To abort all changes:

ABORT;

Compatibility

 This command is a PostgreSQL™ extension
 present for historical reasons. ROLLBACK is the
 equivalent standard SQL command.

See Also
BEGIN(7), COMMIT(7), ROLLBACK(7)

Name
ALTER AGGREGATE — change the definition of an aggregate function

Synopsis

ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name
ALTER AGGREGATE name (aggregate_signature)
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype [, ...]

Description

 ALTER AGGREGATE changes the definition of an
 aggregate function.

 You must own the aggregate function to use ALTER AGGREGATE.
 To change the schema of an aggregate function, you must also have
 CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the aggregate function's schema.
 (These restrictions enforce that altering
 the owner doesn't do anything you couldn't do by dropping and recreating
 the aggregate function. However, a superuser can alter ownership of any
 aggregate function anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing aggregate function.

	argmode
	
 The mode of an argument: IN or VARIADIC.
 If omitted, the default is IN.

	argname
	
 The name of an argument.
 Note that ALTER AGGREGATE does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the aggregate function's identity.

	argtype
	
 An input data type on which the aggregate function operates.
 To reference a zero-argument aggregate function, write *
 in place of the list of argument specifications.
 To reference an ordered-set aggregate function, write
 ORDER BY between the direct and aggregated argument
 specifications.

	new_name
	
 The new name of the aggregate function.

	new_owner
	
 The new owner of the aggregate function.

	new_schema
	
 The new schema for the aggregate function.

Notes

 The recommended syntax for referencing an ordered-set aggregate
 is to write ORDER BY between the direct and aggregated
 argument specifications, in the same style as in
 CREATE AGGREGATE. However, it will also work to
 omit ORDER BY and just run the direct and aggregated
 argument specifications into a single list. In this abbreviated form,
 if VARIADIC "any" was used in both the direct and
 aggregated argument lists, write VARIADIC "any" only once.

Examples

 To rename the aggregate function myavg for type
 integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

 To change the owner of the aggregate function myavg for type
 integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

 To move the ordered-set aggregate mypercentile with
 direct argument of type float8 and aggregated argument
 of type integer into schema myschema:

ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA myschema;

 This will work too:

ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;

Compatibility

 There is no ALTER AGGREGATE statement in the SQL
 standard.

See Also
CREATE AGGREGATE(7), DROP AGGREGATE(7)

Name
ALTER COLLATION — change the definition of a collation

Synopsis

ALTER COLLATION name REFRESH VERSION

ALTER COLLATION name RENAME TO new_name
ALTER COLLATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER COLLATION name SET SCHEMA new_schema

Description

 ALTER COLLATION changes the definition of a
 collation.

 You must own the collation to use ALTER COLLATION.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the collation's schema.
 (These restrictions enforce that altering the
 owner doesn't do anything you couldn't do by dropping and recreating the
 collation. However, a superuser can alter ownership of any collation
 anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing collation.

	new_name
	
 The new name of the collation.

	new_owner
	
 The new owner of the collation.

	new_schema
	
 The new schema for the collation.

	REFRESH VERSION
	
 Update the collation's version.
 See Notes below.

Notes

 When a collation object is created, the provider-specific version of the
 collation is recorded in the system catalog. When the collation is used,
 the current version is
 checked against the recorded version, and a warning is issued when there is
 a mismatch, for example:

WARNING: collation "xx-x-icu" has version mismatch
DETAIL: The collation in the database was created using version 1.2.3.4, but the operating system provides version 2.3.4.5.
HINT: Rebuild all objects affected by this collation and run ALTER COLLATION pg_catalog."xx-x-icu" REFRESH VERSION, or build PostgreSQL with the right library version.

 A change in collation definitions can lead to corrupt indexes and other
 problems because the database system relies on stored objects having a
 certain sort order. Generally, this should be avoided, but it can happen
 in legitimate circumstances, such as when upgrading the operating system
 to a new major version or when
 using pg_upgrade to upgrade to server binaries linked
 with a newer version of ICU. When this happens, all objects depending on
 the collation should be rebuilt, for example,
 using REINDEX. When that is done, the collation version
 can be refreshed using the command ALTER COLLATION ... REFRESH
 VERSION. This will update the system catalog to record the
 current collation version and will make the warning go away. Note that this
 does not actually check whether all affected objects have been rebuilt
 correctly.

 When using collations provided by libc, version
 information is recorded on systems using the GNU C library (most Linux
 systems), FreeBSD and Windows. When using collations provided by ICU, the
 version information is provided by the ICU library and is available on all
 platforms.

Note

 When using the GNU C library for collations, the C library's version
 is used as a proxy for the collation version. Many Linux distributions
 change collation definitions only when upgrading the C library, but this
 approach is imperfect as maintainers are free to back-port newer
 collation definitions to older C library releases.

 When using Windows for collations, version information is only available
 for collations defined with BCP 47 language tags such as
 en-US.

 For the database default collation, there is an analogous command
 ALTER DATABASE ... REFRESH COLLATION VERSION.

 The following query can be used to identify all collations in the current
 database that need to be refreshed and the objects that depend on them:

SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object"
 FROM pg_depend d JOIN pg_collation c
 ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid
 WHERE c.collversion <> pg_collation_actual_version(c.oid)
 ORDER BY 1, 2;

Examples

 To rename the collation de_DE to
 german:

ALTER COLLATION "de_DE" RENAME TO german;

 To change the owner of the collation en_US to
 joe:

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility

 There is no ALTER COLLATION statement in the SQL
 standard.

See Also
CREATE COLLATION(7), DROP COLLATION(7)

Name
ALTER CONVERSION — change the definition of a conversion

Synopsis

ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER CONVERSION name SET SCHEMA new_schema

Description

 ALTER CONVERSION changes the definition of a
 conversion.

 You must own the conversion to use ALTER CONVERSION.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the conversion's schema.
 (These restrictions enforce that altering the
 owner doesn't do anything you couldn't do by dropping and recreating the
 conversion. However, a superuser can alter ownership of any conversion
 anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing conversion.

	new_name
	
 The new name of the conversion.

	new_owner
	
 The new owner of the conversion.

	new_schema
	
 The new schema for the conversion.

Examples

 To rename the conversion iso_8859_1_to_utf8 to
 latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;

 To change the owner of the conversion iso_8859_1_to_utf8 to
 joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility

 There is no ALTER CONVERSION statement in the SQL
 standard.

See Also
CREATE CONVERSION(7), DROP CONVERSION(7)

Name
ALTER DATABASE — change a database

Synopsis

ALTER DATABASE name [[WITH] option [...]]

where option can be:

 ALLOW_CONNECTIONS allowconn
 CONNECTION LIMIT connlimit
 IS_TEMPLATE istemplate

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name REFRESH COLLATION VERSION

ALTER DATABASE name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter
ALTER DATABASE name RESET ALL

Description

 ALTER DATABASE changes the attributes
 of a database.

 The first form changes certain per-database settings. (See below for
 details.) Only the database owner or a superuser can change these settings.

 The second form changes the name of the database. Only the database
 owner or a superuser can rename a database; non-superuser owners must
 also have the
 CREATEDB privilege. The current database cannot
 be renamed. (Connect to a different database if you need to do
 that.)

 The third form changes the owner of the database.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and you must have the
 CREATEDB privilege.
 (Note that superusers have all these privileges automatically.)

 The fourth form changes the default tablespace of the database.
 Only the database owner or a superuser can do this; you must also have
 create privilege for the new tablespace.
 This command physically moves any tables or indexes in the database's old
 default tablespace to the new tablespace. The new default tablespace
 must be empty for this database, and no one can be connected to
 the database. Tables and indexes in non-default tablespaces are
 unaffected.

 The remaining forms change the session default for a run-time
 configuration variable for a PostgreSQL™
 database. Whenever a new session is subsequently started in that
 database, the specified value becomes the session default value.
 The database-specific default overrides whatever setting is present
 in postgresql.conf or has been received from the
 postgres command line. Only the database
 owner or a superuser can change the session defaults for a
 database. Certain variables cannot be set this way, or can only be
 set by a superuser.

Parameters
	name
	
 The name of the database whose attributes are to be altered.

	allowconn
	
 If false then no one can connect to this database.

	connlimit
	
 How many concurrent connections can be made
 to this database. -1 means no limit.

	istemplate
	
 If true, then this database can be cloned by any user with CREATEDB
 privileges; if false, then only superusers or the owner of the
 database can clone it.

	new_name
	
 The new name of the database.

	new_owner
	
 The new owner of the database.

	new_tablespace
	
 The new default tablespace of the database.

 This form of the command cannot be executed inside a transaction block.

	REFRESH COLLATION VERSION
	
 Update the database collation version. See Notes for background.

	configuration_parameter, value
	
 Set this database's session default for the specified configuration
 parameter to the given value. If
 value is DEFAULT
 or, equivalently, RESET is used, the
 database-specific setting is removed, so the system-wide default
 setting will be inherited in new sessions. Use RESET
 ALL to clear all database-specific settings.
 SET FROM CURRENT saves the session's current value of
 the parameter as the database-specific value.

 See SET(7) and Chapter 20, Server Configuration
 for more information about allowed parameter names
 and values.

Notes

 It is also possible to tie a session default to a specific role
 rather than to a database; see
 ALTER ROLE(7).
 Role-specific settings override database-specific
 ones if there is a conflict.

Examples

 To disable index scans by default in the database
 test:

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility

 The ALTER DATABASE statement is a
 PostgreSQL™ extension.

See Also
CREATE DATABASE(7), DROP DATABASE(7), SET(7), CREATE TABLESPACE(7)

Name
ALTER DEFAULT PRIVILEGES — define default access privileges

Synopsis

ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | CREATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SCHEMAS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | CREATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SCHEMAS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Description

 ALTER DEFAULT PRIVILEGES allows you to set the
 privileges that will be applied to objects created in the future.
 (It does not affect privileges assigned to already-existing objects.)
 Privileges can be set globally (i.e., for all objects created in the
 current database), or just for objects created in specified schemas.

 While you can change your own default privileges and the defaults of
 roles that you are a member of, at object creation time, new object
 permissions are only affected by the default privileges of the current
 role, and are not inherited from any roles in which the current role
 is a member.

 As explained in the section called “Privileges”,
 the default privileges for any object type normally grant all grantable
 permissions to the object owner, and may grant some privileges to
 PUBLIC as well. However, this behavior can be changed by
 altering the global default privileges with
 ALTER DEFAULT PRIVILEGES.

 Currently,
 only the privileges for schemas, tables (including views and foreign
 tables), sequences, functions, and types (including domains) can be
 altered. For this command, functions include aggregates and procedures.
 The words FUNCTIONS and ROUTINES are
 equivalent in this command. (ROUTINES is preferred
 going forward as the standard term for functions and procedures taken
 together. In earlier PostgreSQL releases, only the
 word FUNCTIONS was allowed. It is not possible to set
 default privileges for functions and procedures separately.)

 Default privileges that are specified per-schema are added to whatever
 the global default privileges are for the particular object type.
 This means you cannot revoke privileges per-schema if they are granted
 globally (either by default, or according to a previous ALTER
 DEFAULT PRIVILEGES command that did not specify a schema).
 Per-schema REVOKE is only useful to reverse the
 effects of a previous per-schema GRANT.

Parameters
	target_role
	
 Change default privileges for objects created by the
 target_role, or the current
 role if unspecified.

	schema_name
	
 The name of an existing schema. If specified, the default privileges
 are altered for objects later created in that schema.
 If IN SCHEMA is omitted, the global default privileges
 are altered.
 IN SCHEMA is not allowed when setting privileges
 for schemas, since schemas can't be nested.

	role_name
	
 The name of an existing role to grant or revoke privileges for.
 This parameter, and all the other parameters in
 abbreviated_grant_or_revoke,
 act as described under
 GRANT(7) or
 REVOKE(7),
 except that one is setting permissions for a whole class of objects
 rather than specific named objects.

Notes

 Use psql(1)'s \ddp command
 to obtain information about existing assignments of default privileges.
 The meaning of the privilege display is the same as explained for
 \dp in the section called “Privileges”.

 If you wish to drop a role for which the default privileges have been
 altered, it is necessary to reverse the changes in its default privileges
 or use DROP OWNED BY to get rid of the default privileges entry
 for the role.

Examples

 Grant SELECT privilege to everyone for all tables (and views) you
 subsequently create in schema myschema, and allow
 role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO webuser;

 Undo the above, so that subsequently-created tables won't have any
 more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM webuser;

 Remove the public EXECUTE permission that is normally granted on functions,
 for all functions subsequently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

 Note however that you cannot accomplish that effect
 with a command limited to a single schema. This command has no effect,
 unless it is undoing a matching GRANT:

ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

 That's because per-schema default privileges can only add privileges to
 the global setting, not remove privileges granted by it.

Compatibility

 There is no ALTER DEFAULT PRIVILEGES statement in the SQL
 standard.

See Also
GRANT(7), REVOKE(7)

Name
ALTER DOMAIN —
 change the definition of a domain

Synopsis

ALTER DOMAIN name
 { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
 { SET | DROP } NOT NULL
ALTER DOMAIN name
 ADD domain_constraint [NOT VALID]
ALTER DOMAIN name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER DOMAIN name
 VALIDATE CONSTRAINT constraint_name
ALTER DOMAIN name
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER DOMAIN name
 RENAME TO new_name
ALTER DOMAIN name
 SET SCHEMA new_schema

where domain_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | CHECK (expression) }

Description

 ALTER DOMAIN changes the definition of an existing domain.
 There are several sub-forms:

	SET/DROP DEFAULT
	
 These forms set or remove the default value for a domain. Note
 that defaults only apply to subsequent INSERT
 commands; they do not affect rows already in a table using the domain.

	SET/DROP NOT NULL
	
 These forms change whether a domain is marked to allow NULL
 values or to reject NULL values. You can only SET NOT NULL
 when the columns using the domain contain no null values.

	ADD domain_constraint [NOT VALID]
	
 This form adds a new constraint to a domain.
 When a new constraint is added to a domain, all columns using that
 domain will be checked against the newly added constraint. These
 checks can be suppressed by adding the new constraint using the
 NOT VALID option; the constraint can later be made
 valid using ALTER DOMAIN ... VALIDATE CONSTRAINT.
 Newly inserted or updated rows are always checked against all
 constraints, even those marked NOT VALID.
 NOT VALID is only accepted for CHECK constraints.

	DROP CONSTRAINT [IF EXISTS]
	
 This form drops constraints on a domain.
 If IF EXISTS is specified and the constraint
 does not exist, no error is thrown. In this case a notice is issued instead.

	RENAME CONSTRAINT
	
 This form changes the name of a constraint on a domain.

	VALIDATE CONSTRAINT
	
 This form validates a constraint previously added as
 NOT VALID, that is, it verifies that all values in
 table columns of the domain type satisfy the specified constraint.

	OWNER
	
 This form changes the owner of the domain to the specified user.

	RENAME
	
 This form changes the name of the domain.

	SET SCHEMA
	
 This form changes the schema of the domain. Any constraints
 associated with the domain are moved into the new schema as well.

 You must own the domain to use ALTER DOMAIN.
 To change the schema of a domain, you must also have
 CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE privilege
 on the domain's schema. (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the domain.
 However, a superuser can alter ownership of any domain anyway.)

Parameters

	name
	
 The name (possibly schema-qualified) of an existing domain to
 alter.

	domain_constraint
	
 New domain constraint for the domain.

	constraint_name
	
 Name of an existing constraint to drop or rename.

	NOT VALID
	
 Do not verify existing stored data for constraint validity.

	CASCADE
	
 Automatically drop objects that depend on the constraint,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the constraint if there are any dependent
 objects. This is the default behavior.

	new_name
	
 The new name for the domain.

	new_constraint_name
	
 The new name for the constraint.

	new_owner
	
 The user name of the new owner of the domain.

	new_schema
	
 The new schema for the domain.

Notes

 Although ALTER DOMAIN ADD CONSTRAINT attempts to verify
 that existing stored data satisfies the new constraint, this check is not
 bulletproof, because the command cannot “see” table rows that
 are newly inserted or updated and not yet committed. If there is a hazard
 that concurrent operations might insert bad data, the way to proceed is to
 add the constraint using the NOT VALID option, commit
 that command, wait until all transactions started before that commit have
 finished, and then issue ALTER DOMAIN VALIDATE
 CONSTRAINT to search for data violating the constraint. This
 method is reliable because once the constraint is committed, all new
 transactions are guaranteed to enforce it against new values of the domain
 type.

 Currently, ALTER DOMAIN ADD CONSTRAINT, ALTER
 DOMAIN VALIDATE CONSTRAINT, and ALTER DOMAIN SET NOT
 NULL will fail if the named domain or any derived domain is used
 within a container-type column (a composite, array, or range column) in
 any table in the database. They should eventually be improved to be able
 to verify the new constraint for such nested values.

Examples

 To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

 To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

 To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

 To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

 To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

 To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility

 ALTER DOMAIN conforms to the SQL
 standard, except for the OWNER, RENAME, SET SCHEMA, and
 VALIDATE CONSTRAINT variants, which are
 PostgreSQL™ extensions. The NOT VALID
 clause of the ADD CONSTRAINT variant is also a
 PostgreSQL™ extension.

See Also
CREATE DOMAIN(7), DROP DOMAIN(7)

Name
ALTER EVENT TRIGGER — change the definition of an event trigger

Synopsis

ALTER EVENT TRIGGER name DISABLE
ALTER EVENT TRIGGER name ENABLE [REPLICA | ALWAYS]
ALTER EVENT TRIGGER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER EVENT TRIGGER name RENAME TO new_name

Description

 ALTER EVENT TRIGGER changes properties of an
 existing event trigger.

 You must be superuser to alter an event trigger.

Parameters
	name
	
 The name of an existing trigger to alter.

	new_owner
	
 The user name of the new owner of the event trigger.

	new_name
	
 The new name of the event trigger.

	DISABLE/ENABLE [REPLICA | ALWAYS]
	
 These forms configure the firing of event triggers. A disabled trigger
 is still known to the system, but is not executed when its triggering
 event occurs. See also session_replication_role.

Compatibility

 There is no ALTER EVENT TRIGGER statement in the
 SQL standard.

See Also
CREATE EVENT TRIGGER(7), DROP EVENT TRIGGER(7)

Name
ALTER EXTENSION —
 change the definition of an extension

Synopsis

ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype [, ...]

Description

 ALTER EXTENSION changes the definition of an installed
 extension. There are several subforms:

	UPDATE
	
 This form updates the extension to a newer version. The extension
 must supply a suitable update script (or series of scripts) that can
 modify the currently-installed version into the requested version.

	SET SCHEMA
	
 This form moves the extension's objects into another schema. The
 extension has to be relocatable for this command to
 succeed.

	ADD member_object
	
 This form adds an existing object to the extension. This is mainly
 useful in extension update scripts. The object will subsequently
 be treated as a member of the extension; notably, it can only be
 dropped by dropping the extension.

	DROP member_object
	
 This form removes a member object from the extension. This is mainly
 useful in extension update scripts. The object is not dropped, only
 disassociated from the extension.

 See the section called “Packaging Related Objects into an Extension” for more information about these
 operations.

 You must own the extension to use ALTER EXTENSION.
 The ADD/DROP forms require ownership of the
 added/dropped object as well.

Parameters

	name
	
 The name of an installed extension.

	new_version
	
 The desired new version of the extension. This can be written as
 either an identifier or a string literal. If not specified,
 ALTER EXTENSION UPDATE attempts to update to whatever is
 shown as the default version in the extension's control file.

	new_schema
	
 The new schema for the extension.

	object_name, aggregate_name, function_name, operator_name, procedure_name, routine_name
	
 The name of an object to be added to or removed from the extension.
 Names of tables,
 aggregates, domains, foreign tables, functions, operators,
 operator classes, operator families, procedures, routines, sequences, text search objects,
 types, and views can be schema-qualified.

	source_type
	
 The name of the source data type of the cast.

	target_type
	
 The name of the target data type of the cast.

	argmode
	
 The mode of a function, procedure, or aggregate
 argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Note that ALTER EXTENSION does not actually pay
 any attention to OUT arguments, since only the input
 arguments are needed to determine the function's identity.
 So it is sufficient to list the IN, INOUT,
 and VARIADIC arguments.

	argname
	
 The name of a function, procedure, or aggregate argument.
 Note that ALTER EXTENSION does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the function's identity.

	argtype
	
 The data type of a function, procedure, or aggregate argument.

	left_type, right_type
	
 The data type(s) of the operator's arguments (optionally
 schema-qualified). Write NONE for the missing argument
 of a prefix operator.

	PROCEDURAL
	
 This is a noise word.

	type_name
	
 The name of the data type of the transform.

	lang_name
	
 The name of the language of the transform.

Examples

 To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO '2.0';

 To change the schema of the hstore extension
 to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

 To add an existing function to the hstore extension:

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);

Compatibility

 ALTER EXTENSION is a PostgreSQL™
 extension.

See Also
CREATE EXTENSION(7), DROP EXTENSION(7)

Name
ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper

Synopsis

ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER FOREIGN DATA WRAPPER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description

 ALTER FOREIGN DATA WRAPPER changes the
 definition of a foreign-data wrapper. The first form of the
 command changes the support functions or the generic options of the
 foreign-data wrapper (at least one clause is required). The second
 form changes the owner of the foreign-data wrapper.

 Only superusers can alter foreign-data wrappers. Additionally,
 only superusers can own foreign-data wrappers.

Parameters
	name
	
 The name of an existing foreign-data wrapper.

	HANDLER handler_function
	
 Specifies a new handler function for the foreign-data wrapper.

	NO HANDLER
	
 This is used to specify that the foreign-data wrapper should no
 longer have a handler function.

 Note that foreign tables that use a foreign-data wrapper with no
 handler cannot be accessed.

	VALIDATOR validator_function
	
 Specifies a new validator function for the foreign-data wrapper.

 Note that it is possible that pre-existing options of the foreign-data
 wrapper, or of dependent servers, user mappings, or foreign tables, are
 invalid according to the new validator. PostgreSQL™ does
 not check for this. It is up to the user to make sure that these
 options are correct before using the modified foreign-data wrapper.
 However, any options specified in this ALTER FOREIGN DATA
 WRAPPER command will be checked using the new validator.

	NO VALIDATOR
	
 This is used to specify that the foreign-data wrapper should no
 longer have a validator function.

	OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])
	
 Change options for the foreign-data
 wrapper. ADD, SET, and DROP
 specify the action to be performed. ADD is assumed
 if no operation is explicitly specified. Option names must be
 unique; names and values are also validated using the foreign
 data wrapper's validator function, if any.

	new_owner
	
 The user name of the new owner of the foreign-data wrapper.

	new_name
	
 The new name for the foreign-data wrapper.

Examples

 Change a foreign-data wrapper dbi, add
 option foo, drop bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP bar);

 Change the foreign-data wrapper dbi validator
 to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility

 ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC
 9075-9 (SQL/MED), except that the HANDLER,
 VALIDATOR, OWNER TO, and RENAME
 clauses are extensions.

See Also
CREATE FOREIGN DATA WRAPPER(7), DROP FOREIGN DATA WRAPPER(7)

Name
ALTER FOREIGN TABLE — change the definition of a foreign table

Synopsis

ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] column_name data_type [COLLATE collation] [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
 ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])
 ADD table_constraint [NOT VALID]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 SET WITHOUT OIDS
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description

 ALTER FOREIGN TABLE changes the definition of an
 existing foreign table. There are several subforms:

	ADD COLUMN
	
 This form adds a new column to the foreign table, using the same syntax as
 CREATE FOREIGN TABLE.
 Unlike the case when adding a column to a regular table, nothing happens
 to the underlying storage: this action simply declares that
 some new column is now accessible through the foreign table.

	DROP COLUMN [IF EXISTS]
	
 This form drops a column from a foreign table.
 You will need to say CASCADE if
 anything outside the table depends on the column; for example,
 views.
 If IF EXISTS is specified and the column
 does not exist, no error is thrown. In this case a notice
 is issued instead.

	SET DATA TYPE
	
 This form changes the type of a column of a foreign table.
 Again, this has no effect on any underlying storage: this action simply
 changes the type that PostgreSQL™ believes the column to
 have.

	SET/DROP DEFAULT
	
 These forms set or remove the default value for a column.
 Default values only apply in subsequent INSERT
 or UPDATE commands; they do not cause rows already in the
 table to change.

	SET/DROP NOT NULL
	
 Mark a column as allowing, or not allowing, null values.

	SET STATISTICS
	
 This form
 sets the per-column statistics-gathering target for subsequent
 ANALYZE operations.
 See the similar form of ALTER TABLE
 for more details.

	SET (attribute_option = value [, ...]), RESET (attribute_option [, ...])
	
 This form sets or resets per-attribute options.
 See the similar form of ALTER TABLE
 for more details.

	
 SET STORAGE

	
 This form sets the storage mode for a column.
 See the similar form of ALTER TABLE
 for more details.
 Note that the storage mode has no effect unless the table's
 foreign-data wrapper chooses to pay attention to it.

	ADD table_constraint [NOT VALID]
	
 This form adds a new constraint to a foreign table, using the same
 syntax as CREATE FOREIGN TABLE.
 Currently only CHECK constraints are supported.

 Unlike the case when adding a constraint to a regular table, nothing is
 done to verify the constraint is correct; rather, this action simply
 declares that some new condition should be assumed to hold for all rows
 in the foreign table. (See the discussion
 in CREATE FOREIGN TABLE.)
 If the constraint is marked NOT VALID, then it isn't
 assumed to hold, but is only recorded for possible future use.

	VALIDATE CONSTRAINT
	
 This form marks as valid a constraint that was previously marked
 as NOT VALID. No action is taken to verify the
 constraint, but future queries will assume that it holds.

	DROP CONSTRAINT [IF EXISTS]
	
 This form drops the specified constraint on a foreign table.
 If IF EXISTS is specified and the constraint
 does not exist, no error is thrown.
 In this case a notice is issued instead.

	DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER
	
 These forms configure the firing of trigger(s) belonging to the foreign
 table. See the similar form of ALTER TABLE for more
 details.

	SET WITHOUT OIDS
	
 Backward compatibility syntax for removing the oid
 system column. As oid system columns cannot be added
 anymore, this never has an effect.

	INHERIT parent_table
	
 This form adds the target foreign table as a new child of the specified
 parent table.
 See the similar form of ALTER TABLE
 for more details.

	NO INHERIT parent_table
	
 This form removes the target foreign table from the list of children of
 the specified parent table.

	OWNER
	
 This form changes the owner of the foreign table to the
 specified user.

	OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])
	
 Change options for the foreign table or one of its columns.
 ADD, SET, and DROP
 specify the action to be performed. ADD is assumed
 if no operation is explicitly specified. Duplicate option names are not
 allowed (although it's OK for a table option and a column option to have
 the same name). Option names and values are also validated using the
 foreign data wrapper library.

	RENAME
	
 The RENAME forms change the name of a foreign table
 or the name of an individual column in a foreign table.

	SET SCHEMA
	
 This form moves the foreign table into another schema.

 All the actions except RENAME and SET SCHEMA
 can be combined into
 a list of multiple alterations to apply in parallel. For example, it
 is possible to add several columns and/or alter the type of several
 columns in a single command.

 If the command is written as ALTER FOREIGN TABLE IF EXISTS ...
 and the foreign table does not exist, no error is thrown. A notice is
 issued in this case.

 You must own the table to use ALTER FOREIGN TABLE.
 To change the schema of a foreign table, you must also have
 CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE privilege
 on the table's schema. (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the table.
 However, a superuser can alter ownership of any table anyway.)
 To add a column or alter a column type, you must also
 have USAGE privilege on the data type.

Parameters
	name
	
 The name (possibly schema-qualified) of an existing foreign table to
 alter. If ONLY is specified before the table name, only
 that table is altered. If ONLY is not specified, the table
 and all its descendant tables (if any) are altered. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included.

	column_name
	
 Name of a new or existing column.

	new_column_name
	
 New name for an existing column.

	new_name
	
 New name for the table.

	data_type
	
 Data type of the new column, or new data type for an existing
 column.

	table_constraint
	
 New table constraint for the foreign table.

	constraint_name
	
 Name of an existing constraint to drop.

	CASCADE
	
 Automatically drop objects that depend on the dropped column
 or constraint (for example, views referencing the column),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the column or constraint if there are any dependent
 objects. This is the default behavior.

	trigger_name
	
 Name of a single trigger to disable or enable.

	ALL
	
 Disable or enable all triggers belonging to the foreign table. (This
 requires superuser privilege if any of the triggers are internally
 generated triggers. The core system does not add such triggers to
 foreign tables, but add-on code could do so.)

	USER
	
 Disable or enable all triggers belonging to the foreign table except
 for internally generated triggers.

	parent_table
	
 A parent table to associate or de-associate with this foreign table.

	new_owner
	
 The user name of the new owner of the table.

	new_schema
	
 The name of the schema to which the table will be moved.

Notes

 The key word COLUMN is noise and can be omitted.

 Consistency with the foreign server is not checked when a column is added
 or removed with ADD COLUMN or
 DROP COLUMN, a NOT NULL
 or CHECK constraint is added, or a column type is changed
 with SET DATA TYPE. It is the user's responsibility to ensure
 that the table definition matches the remote side.

 Refer to CREATE FOREIGN TABLE for a further description of valid
 parameters.

Examples

 To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

 To change options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 'value', SET opt2 'value2', DROP opt3);

Compatibility

 The forms ADD, DROP,
 and SET DATA TYPE
 conform with the SQL standard. The other forms are
 PostgreSQL™ extensions of the SQL standard.
 Also, the ability to specify more than one manipulation in a single
 ALTER FOREIGN TABLE command is an extension.

 ALTER FOREIGN TABLE DROP COLUMN can be used to drop the only
 column of a foreign table, leaving a zero-column table. This is an
 extension of SQL, which disallows zero-column foreign tables.

See Also
CREATE FOREIGN TABLE(7), DROP FOREIGN TABLE(7)

Name
ALTER FUNCTION — change the definition of a function

Synopsis

ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SUPPORT support_function
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description

 ALTER FUNCTION changes the definition of a
 function.

 You must own the function to use ALTER FUNCTION.
 To change a function's schema, you must also have CREATE
 privilege on the new schema. To alter the owner, you must be able to
 SET ROLE to the new owning role, and that role must
 have CREATE privilege on
 the function's schema. (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the function.
 However, a superuser can alter ownership of any function anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing function. If no
 argument list is specified, the name must be unique in its schema.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Note that ALTER FUNCTION does not actually pay
 any attention to OUT arguments, since only the input
 arguments are needed to determine the function's identity.
 So it is sufficient to list the IN, INOUT,
 and VARIADIC arguments.

	argname
	
 The name of an argument.
 Note that ALTER FUNCTION does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the function's identity.

	argtype
	
 The data type(s) of the function's arguments (optionally
 schema-qualified), if any.

	new_name
	
 The new name of the function.

	new_owner
	
 The new owner of the function. Note that if the function is
 marked SECURITY DEFINER, it will subsequently
 execute as the new owner.

	new_schema
	
 The new schema for the function.

	DEPENDS ON EXTENSION extension_name, NO DEPENDS ON EXTENSION extension_name
	
 This form marks the function as dependent on the extension, or no longer
 dependent on that extension if NO is specified.
 A function that's marked as dependent on an extension is dropped when the
 extension is dropped, even if CASCADE is not specified.
 A function can depend upon multiple extensions, and will be dropped when
 any one of those extensions is dropped.

	CALLED ON NULL INPUT, RETURNS NULL ON NULL INPUT, STRICT
	CALLED ON NULL INPUT changes the function so
 that it will be invoked when some or all of its arguments are
 null. RETURNS NULL ON NULL INPUT or
 STRICT changes the function so that it is not
 invoked if any of its arguments are null; instead, a null result
 is assumed automatically. See CREATE FUNCTION(7)
 for more information.

	IMMUTABLE, STABLE, VOLATILE
	
 Change the volatility of the function to the specified setting.
 See CREATE FUNCTION(7) for details.

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	
 Change whether the function is a security definer or not. The
 key word EXTERNAL is ignored for SQL
 conformance. See CREATE FUNCTION(7) for more information about
 this capability.

	PARALLEL
	
 Change whether the function is deemed safe for parallelism.
 See CREATE FUNCTION(7) for details.

	LEAKPROOF
	
 Change whether the function is considered leakproof or not.
 See CREATE FUNCTION(7) for more information about
 this capability.

	COST execution_cost
	
 Change the estimated execution cost of the function.
 See CREATE FUNCTION(7) for more information.

	ROWS result_rows
	
 Change the estimated number of rows returned by a set-returning
 function. See CREATE FUNCTION(7) for more information.

	SUPPORT support_function
	
 Set or change the planner support function to use for this function.
 See the section called “Function Optimization Information” for details. You must be
 superuser to use this option.

 This option cannot be used to remove the support function altogether,
 since it must name a new support function. Use CREATE OR
 REPLACE FUNCTION if you need to do that.

	configuration_parameter, value
	
 Add or change the assignment to be made to a configuration parameter
 when the function is called. If
 value is DEFAULT
 or, equivalently, RESET is used, the function-local
 setting is removed, so that the function executes with the value
 present in its environment. Use RESET
 ALL to clear all function-local settings.
 SET FROM CURRENT saves the value of the parameter that
 is current when ALTER FUNCTION is executed as the value
 to be applied when the function is entered.

 See SET(7) and
 Chapter 20, Server Configuration
 for more information about allowed parameter names and values.

	RESTRICT
	
 Ignored for conformance with the SQL standard.

Examples

 To rename the function sqrt for type
 integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

 To change the owner of the function sqrt for type
 integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

 To change the schema of the function sqrt for type
 integer to maths:

ALTER FUNCTION sqrt(integer) SET SCHEMA maths;

 To mark the function sqrt for type
 integer as being dependent on the extension
 mathlib:

ALTER FUNCTION sqrt(integer) DEPENDS ON EXTENSION mathlib;

 To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;

 To disable automatic setting of search_path for a function:

ALTER FUNCTION check_password(text) RESET search_path;

 The function will now execute with whatever search path is used by its
 caller.

Compatibility

 This statement is partially compatible with the ALTER
 FUNCTION statement in the SQL standard. The standard allows more
 properties of a function to be modified, but does not provide the
 ability to rename a function, make a function a security definer,
 attach configuration parameter values to a function,
 or change the owner, schema, or volatility of a function. The standard also
 requires the RESTRICT key word, which is optional in
 PostgreSQL™.

See Also
CREATE FUNCTION(7), DROP FUNCTION(7), ALTER PROCEDURE(7), ALTER ROUTINE(7)

Name
ALTER GROUP — change role name or membership

Synopsis

ALTER GROUP role_specification ADD USER user_name [, ...]
ALTER GROUP role_specification DROP USER user_name [, ...]

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

ALTER GROUP group_name RENAME TO new_name

Description

 ALTER GROUP changes the attributes of a user group.
 This is an obsolete command, though still accepted for backwards
 compatibility, because groups (and users too) have been superseded by the
 more general concept of roles.

 The first two variants add users to a group or remove them from a group.
 (Any role can play the part of either a “user” or a
 “group” for this purpose.) These variants are effectively
 equivalent to granting or revoking membership in the role named as the
 “group”; so the preferred way to do this is to use
 GRANT or
 REVOKE. Note that
 GRANT and REVOKE have additional
 options which are not available with this command, such as the ability
 to grant and revoke ADMIN OPTION, and the ability to
 specify the grantor.

 The third variant changes the name of the group. This is exactly
 equivalent to renaming the role with
 ALTER ROLE.

Parameters
	group_name
	
 The name of the group (role) to modify.

	user_name
	
 Users (roles) that are to be added to or removed from the group.
 The users must already exist; ALTER GROUP does not
 create or drop users.

	new_name
	
 The new name of the group.

Examples

 Add users to a group:

ALTER GROUP staff ADD USER karl, john;

 Remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility

 There is no ALTER GROUP statement in the SQL
 standard.

See Also
GRANT(7), REVOKE(7), ALTER ROLE(7)

Name
ALTER INDEX — change the definition of an index

Synopsis

ALTER INDEX [IF EXISTS] name RENAME TO new_name
ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name
ALTER INDEX name ATTACH PARTITION index_name
ALTER INDEX name [NO] DEPENDS ON EXTENSION extension_name
ALTER INDEX [IF EXISTS] name SET (storage_parameter [= value] [, ...])
ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])
ALTER INDEX [IF EXISTS] name ALTER [COLUMN] column_number
 SET STATISTICS integer
ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

Description

 ALTER INDEX changes the definition of an existing index.
 There are several subforms described below. Note that the lock level required
 may differ for each subform. An ACCESS EXCLUSIVE lock is held
 unless explicitly noted. When multiple subcommands are listed, the lock
 held will be the strictest one required from any subcommand.

	RENAME
	
 The RENAME form changes the name of the index.
 If the index is associated with a table constraint (either
 UNIQUE, PRIMARY KEY,
 or EXCLUDE), the constraint is renamed as well.
 There is no effect on the stored data.

 Renaming an index acquires a SHARE UPDATE EXCLUSIVE
 lock.

	SET TABLESPACE
	
 This form changes the index's tablespace to the specified tablespace and
 moves the data file(s) associated with the index to the new tablespace.
 To change the tablespace of an index, you must own the index and have
 CREATE privilege on the new tablespace.
 All indexes in the current database in a tablespace can be moved by using
 the ALL IN TABLESPACE form, which will lock all
 indexes to be moved and then move each one. This form also supports
 OWNED BY, which will only move indexes owned by the
 roles specified. If the NOWAIT option is specified
 then the command will fail if it is unable to acquire all of the locks
 required immediately. Note that system catalogs will not be moved by
 this command, use ALTER DATABASE or explicit
 ALTER INDEX invocations instead if desired.
 See also
 CREATE TABLESPACE.

	ATTACH PARTITION index_name
	
 Causes the named index (possibly schema-qualified) to become attached
 to the altered index.
 The named index must be on a partition of the table containing the
 index being altered, and have an equivalent definition. An attached
 index cannot be dropped by itself, and will automatically be dropped
 if its parent index is dropped.

	DEPENDS ON EXTENSION extension_name, NO DEPENDS ON EXTENSION extension_name
	
 This form marks the index as dependent on the extension, or no longer
 dependent on that extension if NO is specified.
 An index that's marked as dependent on an extension is automatically
 dropped when the extension is dropped.

	SET (storage_parameter [= value] [, ...])
	
 This form changes one or more index-method-specific storage parameters
 for the index. See
 CREATE INDEX
 for details on the available parameters. Note that the index contents
 will not be modified immediately by this command; depending on the
 parameter you might need to rebuild the index with
 REINDEX
 to get the desired effects.

	RESET (storage_parameter [, ...])
	
 This form resets one or more index-method-specific storage parameters to
 their defaults. As with SET, a REINDEX
 might be needed to update the index entirely.

	ALTER [COLUMN] column_number SET STATISTICS integer
	
 This form sets the per-column statistics-gathering target for
 subsequent ANALYZE operations, though can
 be used only on index columns that are defined as an expression.
 Since expressions lack a unique name, we refer to them using the
 ordinal number of the index column.
 The target can be set in the range 0 to 10000; alternatively, set it
 to -1 to revert to using the system default statistics
 target (default_statistics_target).
 For more information on the use of statistics by the
 PostgreSQL™ query planner, refer to
 the section called “Statistics Used by the Planner”.

Parameters
	IF EXISTS
	
 Do not throw an error if the index does not exist. A notice is issued
 in this case.

	column_number
	
 The ordinal number refers to the ordinal (left-to-right) position
 of the index column.

	name
	
 The name (possibly schema-qualified) of an existing index to
 alter.

	new_name
	
 The new name for the index.

	tablespace_name
	
 The tablespace to which the index will be moved.

	extension_name
	
 The name of the extension that the index is to depend on.

	storage_parameter
	
 The name of an index-method-specific storage parameter.

	value
	
 The new value for an index-method-specific storage parameter.
 This might be a number or a word depending on the parameter.

Notes

 These operations are also possible using
 ALTER TABLE.
 ALTER INDEX is in fact just an alias for the forms
 of ALTER TABLE that apply to indexes.

 There was formerly an ALTER INDEX OWNER variant, but
 this is now ignored (with a warning). An index cannot have an owner
 different from its table's owner. Changing the table's owner
 automatically changes the index as well.

 Changing any part of a system catalog index is not permitted.

Examples

 To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

 To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

 To change an index's fill factor (assuming that the index method
 supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

 Set the statistics-gathering target for an expression index:

CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;

Compatibility

 ALTER INDEX is a PostgreSQL™
 extension.

See Also
CREATE INDEX(7), REINDEX(7)

Name
ALTER LANGUAGE — change the definition of a procedural language

Synopsis

ALTER [PROCEDURAL] LANGUAGE name RENAME TO new_name
ALTER [PROCEDURAL] LANGUAGE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description

 ALTER LANGUAGE changes the definition of a
 procedural language. The only functionality is to rename the language or
 assign a new owner. You must be superuser or owner of the language to
 use ALTER LANGUAGE.

Parameters
	name
	
 Name of a language

	new_name
	
 The new name of the language

	new_owner
	
 The new owner of the language

Compatibility

 There is no ALTER LANGUAGE statement in the SQL
 standard.

See Also
CREATE LANGUAGE(7), DROP LANGUAGE(7)

Name
ALTER LARGE OBJECT — change the definition of a large object

Synopsis

ALTER LARGE OBJECT large_object_oid OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description

 ALTER LARGE OBJECT changes the definition of a
 large object.

 You must own the large object to use ALTER LARGE OBJECT.
 To alter the owner, you must also be able to SET ROLE to
 the new owning role.
 (However, a superuser can alter any large object anyway.)
 Currently, the only functionality is to assign a new owner, so both
 restrictions always apply.

Parameters
	large_object_oid
	
 OID of the large object to be altered

	new_owner
	
 The new owner of the large object

Compatibility

 There is no ALTER LARGE OBJECT statement in the SQL
 standard.

See Also
Chapter 35, Large Objects

Name
ALTER MATERIALIZED VIEW — change the definition of a materialized view

Synopsis

ALTER MATERIALIZED VIEW [IF EXISTS] name
 action [, ...]
ALTER MATERIALIZED VIEW name
 [NO] DEPENDS ON EXTENSION extension_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET ACCESS METHOD new_access_method
 SET TABLESPACE new_tablespace
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description

 ALTER MATERIALIZED VIEW changes various auxiliary
 properties of an existing materialized view.

 You must own the materialized view to use ALTER MATERIALIZED
 VIEW. To change a materialized view's schema, you must also have
 CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the materialized view's schema.
 (These restrictions enforce that altering
 the owner doesn't do anything you couldn't do by dropping and recreating the
 materialized view. However, a superuser can alter ownership of any view
 anyway.)

 The statement subforms and actions available for
 ALTER MATERIALIZED VIEW are a subset of those available
 for ALTER TABLE, and have the same meaning when used for
 materialized views. See the descriptions for
 ALTER TABLE
 for details.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing materialized view.

	column_name
	
 Name of an existing column.

	extension_name
	
 The name of the extension that the materialized view is to depend on (or no longer
 dependent on, if NO is specified). A materialized view
 that's marked as dependent on an extension is automatically dropped when
 the extension is dropped.

	new_column_name
	
 New name for an existing column.

	new_owner
	
 The user name of the new owner of the materialized view.

	new_name
	
 The new name for the materialized view.

	new_schema
	
 The new schema for the materialized view.

Examples

 To rename the materialized view foo to
 bar:

ALTER MATERIALIZED VIEW foo RENAME TO bar;

Compatibility

 ALTER MATERIALIZED VIEW is a
 PostgreSQL™ extension.

See Also
CREATE MATERIALIZED VIEW(7), DROP MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)

Name
ALTER OPERATOR — change the definition of an operator

Synopsis

ALTER OPERATOR name ({ left_type | NONE } , right_type)
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR name ({ left_type | NONE } , right_type)
 SET SCHEMA new_schema

ALTER OPERATOR name ({ left_type | NONE } , right_type)
 SET ({ RESTRICT = { res_proc | NONE }
 | JOIN = { join_proc | NONE }
 } [, ...])

Description

 ALTER OPERATOR changes the definition of
 an operator.

 You must own the operator to use ALTER OPERATOR.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the operator's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the operator.
 However, a superuser can alter ownership of any operator anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing operator.

	left_type
	
 The data type of the operator's left operand; write
 NONE if the operator has no left operand.

	right_type
	
 The data type of the operator's right operand.

	new_owner
	
 The new owner of the operator.

	new_schema
	
 The new schema for the operator.

	res_proc
	
 The restriction selectivity estimator function for this operator; write NONE to remove existing selectivity estimator.

	join_proc
	
 The join selectivity estimator function for this operator; write NONE to remove existing selectivity estimator.

Examples

 Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

 Change the restriction and join selectivity estimator functions of a custom operator a && b for type int[]:

ALTER OPERATOR && (_int4, _int4) SET (RESTRICT = _int_contsel, JOIN = _int_contjoinsel);

Compatibility

 There is no ALTER OPERATOR statement in
 the SQL standard.

See Also
CREATE OPERATOR(7), DROP OPERATOR(7)

Name
ALTER OPERATOR CLASS — change the definition of an operator class

Synopsis

ALTER OPERATOR CLASS name USING index_method
 RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR CLASS name USING index_method
 SET SCHEMA new_schema

Description

 ALTER OPERATOR CLASS changes the definition of
 an operator class.

 You must own the operator class to use ALTER OPERATOR CLASS.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the operator class's schema.
 (These restrictions enforce that altering the
 owner doesn't do anything you couldn't do by dropping and recreating the
 operator class. However, a superuser can alter ownership of any operator
 class anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing operator
 class.

	index_method
	
 The name of the index method this operator class is for.

	new_name
	
 The new name of the operator class.

	new_owner
	
 The new owner of the operator class.

	new_schema
	
 The new schema for the operator class.

Compatibility

 There is no ALTER OPERATOR CLASS statement in
 the SQL standard.

See Also
CREATE OPERATOR CLASS(7), DROP OPERATOR CLASS(7), ALTER OPERATOR FAMILY(7)

Name
ALTER OPERATOR FAMILY — change the definition of an operator family

Synopsis

ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type)
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])]
 function_name [(argument_type [, ...])]
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type [, op_type])
 | FUNCTION support_number (op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method
 RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR FAMILY name USING index_method
 SET SCHEMA new_schema

Description

 ALTER OPERATOR FAMILY changes the definition of
 an operator family. You can add operators and support functions
 to the family, remove them from the family,
 or change the family's name or owner.

 When operators and support functions are added to a family with
 ALTER OPERATOR FAMILY, they are not part of any
 specific operator class within the family, but are just “loose”
 within the family. This indicates that these operators and functions
 are compatible with the family's semantics, but are not required for
 correct functioning of any specific index. (Operators and functions
 that are so required should be declared as part of an operator class,
 instead; see CREATE OPERATOR CLASS(7).)
 PostgreSQL™ will allow loose members of a
 family to be dropped from the family at any time, but members of an
 operator class cannot be dropped without dropping the whole class and
 any indexes that depend on it.
 Typically, single-data-type operators
 and functions are part of operator classes because they are needed to
 support an index on that specific data type, while cross-data-type
 operators and functions are made loose members of the family.

 You must be a superuser to use ALTER OPERATOR FAMILY.
 (This restriction is made because an erroneous operator family definition
 could confuse or even crash the server.)

 ALTER OPERATOR FAMILY does not presently check
 whether the operator family definition includes all the operators and
 functions required by the index method, nor whether the operators and
 functions form a self-consistent set. It is the user's
 responsibility to define a valid operator family.

 Refer to the section called “Interfacing Extensions to Indexes” for further information.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing operator
 family.

	index_method
	
 The name of the index method this operator family is for.

	strategy_number
	
 The index method's strategy number for an operator
 associated with the operator family.

	operator_name
	
 The name (optionally schema-qualified) of an operator associated
 with the operator family.

	op_type
	
 In an OPERATOR clause,
 the operand data type(s) of the operator, or NONE to
 signify a prefix operator. Unlike the comparable
 syntax in CREATE OPERATOR CLASS, the operand data types
 must always be specified.

 In an ADD FUNCTION clause, the operand data type(s) the
 function is intended to support, if different from
 the input data type(s) of the function. For B-tree comparison functions
 and hash functions it is not necessary to specify op_type since the function's input
 data type(s) are always the correct ones to use. For B-tree sort
 support functions, B-Tree equal image functions, and all
 functions in GiST, SP-GiST and GIN operator classes, it is
 necessary to specify the operand data type(s) the function is to
 be used with.

 In a DROP FUNCTION clause, the operand data type(s) the
 function is intended to support must be specified.

	sort_family_name
	
 The name (optionally schema-qualified) of an existing btree operator
 family that describes the sort ordering associated with an ordering
 operator.

 If neither FOR SEARCH nor FOR ORDER BY is
 specified, FOR SEARCH is the default.

	support_number
	
 The index method's support function number for a
 function associated with the operator family.

	function_name
	
 The name (optionally schema-qualified) of a function that is an index
 method support function for the operator family. If no argument list
 is specified, the name must be unique in its schema.

	argument_type
	
 The parameter data type(s) of the function.

	new_name
	
 The new name of the operator family.

	new_owner
	
 The new owner of the operator family.

	new_schema
	
 The new schema for the operator family.

 The OPERATOR and FUNCTION
 clauses can appear in any order.

Notes

 Notice that the DROP syntax only specifies the “slot”
 in the operator family, by strategy or support number and input data
 type(s). The name of the operator or function occupying the slot is not
 mentioned. Also, for DROP FUNCTION the type(s) to specify
 are the input data type(s) the function is intended to support; for
 GiST, SP-GiST and GIN indexes this might have nothing to do with the actual
 input argument types of the function.

 Because the index machinery does not check access permissions on functions
 before using them, including a function or operator in an operator family
 is tantamount to granting public execute permission on it. This is usually
 not an issue for the sorts of functions that are useful in an operator
 family.

 The operators should not be defined by SQL functions. An SQL function
 is likely to be inlined into the calling query, which will prevent
 the optimizer from recognizing that the query matches an index.

 Before PostgreSQL™ 8.4, the OPERATOR
 clause could include a RECHECK option. This is no longer
 supported because whether an index operator is “lossy” is now
 determined on-the-fly at run time. This allows efficient handling of
 cases where an operator might or might not be lossy.

Examples

 The following example command adds cross-data-type operators and
 support functions to an operator family that already contains B-tree
 operator classes for data types int4 and int2.

ALTER OPERATOR FAMILY integer_ops USING btree ADD

 -- int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ;

 To remove these entries again:

ALTER OPERATOR FAMILY integer_ops USING btree DROP

 -- int4 vs int2
 OPERATOR 1 (int4, int2) ,
 OPERATOR 2 (int4, int2) ,
 OPERATOR 3 (int4, int2) ,
 OPERATOR 4 (int4, int2) ,
 OPERATOR 5 (int4, int2) ,
 FUNCTION 1 (int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 (int2, int4) ,
 OPERATOR 2 (int2, int4) ,
 OPERATOR 3 (int2, int4) ,
 OPERATOR 4 (int2, int4) ,
 OPERATOR 5 (int2, int4) ,
 FUNCTION 1 (int2, int4) ;

Compatibility

 There is no ALTER OPERATOR FAMILY statement in
 the SQL standard.

See Also
CREATE OPERATOR FAMILY(7), DROP OPERATOR FAMILY(7), CREATE OPERATOR CLASS(7), ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7)

Name
ALTER POLICY — change the definition of a row-level security policy

Synopsis

ALTER POLICY name ON table_name RENAME TO new_name

ALTER POLICY name ON table_name
 [TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description

 ALTER POLICY changes the definition of an existing
 row-level security policy. Note that ALTER POLICY
 only allows the set of roles to which the policy applies and the
 USING and WITH CHECK expressions to
 be modified. To change other properties of a policy, such as the command
 to which it applies or whether it is permissive or restrictive, the policy
 must be dropped and recreated.

 To use ALTER POLICY, you must own the table that
 the policy applies to.

 In the second form of ALTER POLICY, the role list,
 using_expression, and
 check_expression are replaced
 independently if specified. When one of those clauses is omitted, the
 corresponding part of the policy is unchanged.

Parameters
	name
	
 The name of an existing policy to alter.

	table_name
	
 The name (optionally schema-qualified) of the table that the
 policy is on.

	new_name
	
 The new name for the policy.

	role_name
	
 The role(s) to which the policy applies. Multiple roles can be
 specified at one time. To apply the policy to all roles,
 use PUBLIC.

	using_expression
	
 The USING expression for the policy.
 See CREATE POLICY(7) for details.

	check_expression
	
 The WITH CHECK expression for the policy.
 See CREATE POLICY(7) for details.

Compatibility

 ALTER POLICY is a PostgreSQL™ extension.

See Also
CREATE POLICY(7), DROP POLICY(7)

Name
ALTER PROCEDURE — change the definition of a procedure

Synopsis

ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description

 ALTER PROCEDURE changes the definition of a
 procedure.

 You must own the procedure to use ALTER PROCEDURE.
 To change a procedure's schema, you must also have CREATE
 privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the procedure's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the procedure.
 However, a superuser can alter ownership of any procedure anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing procedure. If no
 argument list is specified, the name must be unique in its schema.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC. If omitted,
 the default is IN.

	argname
	
 The name of an argument.
 Note that ALTER PROCEDURE does not actually pay
 any attention to argument names, since only the argument data
 types are used to determine the procedure's identity.

	argtype
	
 The data type(s) of the procedure's arguments (optionally
 schema-qualified), if any.
 See DROP PROCEDURE(7) for the details of how
 the procedure is looked up using the argument data type(s).

	new_name
	
 The new name of the procedure.

	new_owner
	
 The new owner of the procedure. Note that if the procedure is
 marked SECURITY DEFINER, it will subsequently
 execute as the new owner.

	new_schema
	
 The new schema for the procedure.

	extension_name
	
 This form marks the procedure as dependent on the extension, or no longer
 dependent on the extension if NO is specified.
 A procedure that's marked as dependent on an extension is dropped when the
 extension is dropped, even if cascade is not specified.
 A procedure can depend upon multiple extensions, and will be dropped when
 any one of those extensions is dropped.

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	
 Change whether the procedure is a security definer or not. The
 key word EXTERNAL is ignored for SQL
 conformance. See CREATE PROCEDURE(7) for more information about
 this capability.

	configuration_parameter, value
	
 Add or change the assignment to be made to a configuration parameter
 when the procedure is called. If
 value is DEFAULT
 or, equivalently, RESET is used, the procedure-local
 setting is removed, so that the procedure executes with the value
 present in its environment. Use RESET
 ALL to clear all procedure-local settings.
 SET FROM CURRENT saves the value of the parameter that
 is current when ALTER PROCEDURE is executed as the value
 to be applied when the procedure is entered.

 See SET(7) and
 Chapter 20, Server Configuration
 for more information about allowed parameter names and values.

	RESTRICT
	
 Ignored for conformance with the SQL standard.

Examples

 To rename the procedure insert_data with two arguments
 of type integer to insert_record:

ALTER PROCEDURE insert_data(integer, integer) RENAME TO insert_record;

 To change the owner of the procedure insert_data with
 two arguments of type integer to joe:

ALTER PROCEDURE insert_data(integer, integer) OWNER TO joe;

 To change the schema of the procedure insert_data with
 two arguments of type integer
 to accounting:

ALTER PROCEDURE insert_data(integer, integer) SET SCHEMA accounting;

 To mark the procedure insert_data(integer, integer) as
 being dependent on the extension myext:

ALTER PROCEDURE insert_data(integer, integer) DEPENDS ON EXTENSION myext;

 To adjust the search path that is automatically set for a procedure:

ALTER PROCEDURE check_password(text) SET search_path = admin, pg_temp;

 To disable automatic setting of search_path for a procedure:

ALTER PROCEDURE check_password(text) RESET search_path;

 The procedure will now execute with whatever search path is used by its
 caller.

Compatibility

 This statement is partially compatible with the ALTER
 PROCEDURE statement in the SQL standard. The standard allows more
 properties of a procedure to be modified, but does not provide the
 ability to rename a procedure, make a procedure a security definer,
 attach configuration parameter values to a procedure,
 or change the owner, schema, or volatility of a procedure. The standard also
 requires the RESTRICT key word, which is optional in
 PostgreSQL™.

See Also
CREATE PROCEDURE(7), DROP PROCEDURE(7), ALTER FUNCTION(7), ALTER ROUTINE(7)

Name
ALTER PUBLICATION — change the definition of a publication

Synopsis

ALTER PUBLICATION name ADD publication_object [, ...]
ALTER PUBLICATION name SET publication_object [, ...]
ALTER PUBLICATION name DROP publication_drop_object [, ...]
ALTER PUBLICATION name SET (publication_parameter [= value] [, ...])
ALTER PUBLICATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER PUBLICATION name RENAME TO new_name

where publication_object is one of:

 TABLE table_and_columns [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

and publication_drop_object is one of:

 TABLE [ONLY] table_name [*] [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

and table_and_columns is:

 [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression)]

Description

 The command ALTER PUBLICATION can change the attributes
 of a publication.

 The first three variants change which tables/schemas are part of the
 publication. The SET clause will replace the list of
 tables/schemas in the publication with the specified list; the existing
 tables/schemas that were present in the publication will be removed. The
 ADD and DROP clauses will add and
 remove one or more tables/schemas from the publication. Note that adding
 tables/schemas to a publication that is already subscribed to will require an
 ALTER SUBSCRIPTION ... REFRESH PUBLICATION action on the
 subscribing side in order to become effective. Note also that
 DROP TABLES IN SCHEMA will not drop any schema tables
 that were specified using
 FOR TABLE/
 ADD TABLE.

 The fourth variant of this command listed in the synopsis can change
 all of the publication properties specified in
 CREATE PUBLICATION(7). Properties not mentioned in the
 command retain their previous settings.

 The remaining variants change the owner and the name of the publication.

 You must own the publication to use ALTER PUBLICATION.
 Adding a table to a publication additionally requires owning that table.
 The ADD TABLES IN SCHEMA and
 SET TABLES IN SCHEMA to a publication requires the
 invoking user to be a superuser.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the database.
 Also, the new owner of a
 FOR ALL TABLES
 or FOR TABLES IN SCHEMA
 publication must be a superuser. However, a superuser can
 change the ownership of a publication regardless of these restrictions.

 Adding/Setting any schema when the publication also publishes a table with a
 column list, and vice versa is not supported.

Parameters
	name
	
 The name of an existing publication whose definition is to be altered.

	table_name
	
 Name of an existing table. If ONLY is specified before the
 table name, only that table is affected. If ONLY is not
 specified, the table and all its descendant tables (if any) are
 affected. Optionally, * can be specified after the table
 name to explicitly indicate that descendant tables are included.

 Optionally, a column list can be specified. See CREATE PUBLICATION(7) for details. Note that a subscription
 having several publications in which the same table has been published
 with different column lists is not supported. See
 Warning: Combining Column Lists from Multiple Publications for details of
 potential problems when altering column lists.

 If the optional WHERE clause is specified, rows for
 which the expression
 evaluates to false or null will not be published. Note that parentheses
 are required around the expression. The
 expression is evaluated with
 the role used for the replication connection.

	schema_name
	
 Name of an existing schema.

	SET (publication_parameter [= value] [, ...])
	
 This clause alters publication parameters originally set by
 CREATE PUBLICATION(7). See there for more information.

	new_owner
	
 The user name of the new owner of the publication.

	new_name
	
 The new name for the publication.

Examples

 Change the publication to publish only deletes and updates:

ALTER PUBLICATION noinsert SET (publish = 'update, delete');

 Add some tables to the publication:

ALTER PUBLICATION mypublication ADD TABLE users (user_id, firstname), departments;

 Change the set of columns published for a table:

ALTER PUBLICATION mypublication SET TABLE users (user_id, firstname, lastname), TABLE departments;

 Add schemas marketing and
 sales to the publication
 sales_publication:

ALTER PUBLICATION sales_publication ADD TABLES IN SCHEMA marketing, sales;

 Add tables users,
 departments and schema
 production to the publication
 production_publication:

ALTER PUBLICATION production_publication ADD TABLE users, departments, TABLES IN SCHEMA production;

Compatibility

 ALTER PUBLICATION is a PostgreSQL™
 extension.

See Also
CREATE PUBLICATION(7), DROP PUBLICATION(7), CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)

Name
ALTER ROLE — change a database role

Synopsis

ALTER ROLE role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description

 ALTER ROLE changes the attributes of a
 PostgreSQL™ role.

 The first variant of this command listed in the synopsis can change
 many of the role attributes that can be specified in
 CREATE ROLE.
 (All the possible attributes are covered,
 except that there are no options for adding or removing memberships; use
 GRANT and
 REVOKE for that.)
 Attributes not mentioned in the command retain their previous settings.
 Database superusers can change any of these settings for any role.
 Non-superuser roles having CREATEROLE privilege can
 change most of these properties, but only for non-superuser and
 non-replication roles for which they have been granted
 ADMIN OPTION. Non-superusers cannot change the
 SUPERUSER property and can change the
 CREATEDB, REPLICATION, and
 BYPASSRLS properties only if they possess the
 corresponding property themselves.
 Ordinary roles can only change their own password.

 The second variant changes the name of the role.
 Database superusers can rename any role.
 Roles having CREATEROLE privilege can rename non-superuser
 roles for which they have been granted ADMIN OPTION.
 The current session user cannot be renamed.
 (Connect as a different user if you need to do that.)
 Because MD5-encrypted passwords use the role name as
 cryptographic salt, renaming a role clears its password if the
 password is MD5-encrypted.

 The remaining variants change a role's session default for a configuration
 variable, either for all databases or, when the IN
 DATABASE clause is specified, only for sessions in the named
 database. If ALL is specified instead of a role name,
 this changes the setting for all roles. Using ALL
 with IN DATABASE is effectively the same as using the
 command ALTER DATABASE ... SET

 Whenever the role subsequently
 starts a new session, the specified value becomes the session
 default, overriding whatever setting is present in
 postgresql.conf or has been received from the postgres
 command line. This only happens at login time; executing
 SET ROLE or
 SET SESSION AUTHORIZATION does not cause new
 configuration values to be set.
 Settings set for all databases are overridden by database-specific settings
 attached to a role. Settings for specific databases or specific roles override
 settings for all roles.

 Superusers can change anyone's session defaults. Roles having
 CREATEROLE privilege can change defaults for non-superuser
 roles for which they have been granted ADMIN OPTION.
 Ordinary roles can only set defaults for themselves.
 Certain configuration variables cannot be set this way, or can only be
 set if a superuser issues the command. Only superusers can change a setting
 for all roles in all databases.

Parameters
	name
	
 The name of the role whose attributes are to be altered.

	CURRENT_ROLE, CURRENT_USER
	
 Alter the current user instead of an explicitly identified role.

	SESSION_USER
	
 Alter the current session user instead of an explicitly identified
 role.

	SUPERUSER, NOSUPERUSER, CREATEDB, NOCREATEDB, CREATEROLE, NOCREATEROLE, INHERIT, NOINHERIT, LOGIN, NOLOGIN, REPLICATION, NOREPLICATION, BYPASSRLS, NOBYPASSRLS, CONNECTION LIMIT connlimit, [ENCRYPTED] PASSWORD 'password', PASSWORD NULL, VALID UNTIL 'timestamp'
	
 These clauses alter attributes originally set by
 CREATE ROLE. For more information, see the
 CREATE ROLE reference page.

	new_name
	
 The new name of the role.

	database_name
	
 The name of the database the configuration variable should be set in.

	configuration_parameter, value
	
 Set this role's session default for the specified configuration
 parameter to the given value. If
 value is DEFAULT
 or, equivalently, RESET is used, the
 role-specific variable setting is removed, so the role will
 inherit the system-wide default setting in new sessions. Use
 RESET ALL to clear all role-specific settings.
 SET FROM CURRENT saves the session's current value of
 the parameter as the role-specific value.
 If IN DATABASE is specified, the configuration
 parameter is set or removed for the given role and database only.

 Role-specific variable settings take effect only at login;
 SET ROLE and
 SET SESSION AUTHORIZATION
 do not process role-specific variable settings.

 See SET(7) and Chapter 20, Server Configuration for more information about allowed
 parameter names and values.

Notes

 Use CREATE ROLE
 to add new roles, and DROP ROLE to remove a role.

 ALTER ROLE cannot change a role's memberships.
 Use GRANT and
 REVOKE
 to do that.

 Caution must be exercised when specifying an unencrypted password
 with this command. The password will be transmitted to the server
 in cleartext, and it might also be logged in the client's command
 history or the server log. psql(1)
 contains a command
 \password that can be used to change a
 role's password without exposing the cleartext password.

 It is also possible to tie a
 session default to a specific database rather than to a role; see
 ALTER DATABASE(7).
 If there is a conflict, database-role-specific settings override role-specific
 ones, which in turn override database-specific ones.

Examples

 Change a role's password:

ALTER ROLE davide WITH PASSWORD 'hu8jmn3';

 Remove a role's password:

ALTER ROLE davide WITH PASSWORD NULL;

 Change a password expiration date, specifying that the password
 should expire at midday on 4th May 2015 using
 the time zone which is one hour ahead of UTC:

ALTER ROLE chris VALID UNTIL 'May 4 12:00:00 2015 +1';

 Make a password valid forever:

ALTER ROLE fred VALID UNTIL 'infinity';

 Give a role the ability to manage other roles and create new databases:

ALTER ROLE miriam CREATEROLE CREATEDB;

 Give a role a non-default setting of the
 maintenance_work_mem parameter:

ALTER ROLE worker_bee SET maintenance_work_mem = 100000;

 Give a role a non-default, database-specific setting of the
 client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Compatibility

 The ALTER ROLE statement is a
 PostgreSQL™ extension.

See Also
CREATE ROLE(7), DROP ROLE(7), ALTER DATABASE(7), SET(7)

Name
ALTER ROUTINE — change the definition of a routine

Synopsis

ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description

 ALTER ROUTINE changes the definition of a routine, which
 can be an aggregate function, a normal function, or a procedure. See
 under ALTER AGGREGATE(7), ALTER FUNCTION(7),
 and ALTER PROCEDURE(7) for the description of the
 parameters, more examples, and further details.

Examples

 To rename the routine foo for type
 integer to foobar:

ALTER ROUTINE foo(integer) RENAME TO foobar;

 This command will work independent of whether foo is an
 aggregate, function, or procedure.

Compatibility

 This statement is partially compatible with the ALTER
 ROUTINE statement in the SQL standard. See
 under ALTER FUNCTION(7)
 and ALTER PROCEDURE(7) for more details. Allowing
 routine names to refer to aggregate functions is
 a PostgreSQL™ extension.

See Also
ALTER AGGREGATE(7), ALTER FUNCTION(7), ALTER PROCEDURE(7), DROP ROUTINE(7)
 Note that there is no CREATE ROUTINE command.

Name
ALTER RULE — change the definition of a rule

Synopsis

ALTER RULE name ON table_name RENAME TO new_name

Description

 ALTER RULE changes properties of an existing
 rule. Currently, the only available action is to change the rule's name.

 To use ALTER RULE, you must own the table or view that
 the rule applies to.

Parameters
	name
	
 The name of an existing rule to alter.

	table_name
	
 The name (optionally schema-qualified) of the table or view that the
 rule applies to.

	new_name
	
 The new name for the rule.

Examples

 To rename an existing rule:

ALTER RULE notify_all ON emp RENAME TO notify_me;

Compatibility

 ALTER RULE is a
 PostgreSQL™ language extension, as is the
 entire query rewrite system.

See Also
CREATE RULE(7), DROP RULE(7)

Name
ALTER SCHEMA — change the definition of a schema

Synopsis

ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description

 ALTER SCHEMA changes the definition of a schema.

 You must own the schema to use ALTER SCHEMA.
 To rename a schema you must also have the
 CREATE privilege for the database.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have the
 CREATE privilege for the database.
 (Note that superusers have all these privileges automatically.)

Parameters
	name
	
 The name of an existing schema.

	new_name
	
 The new name of the schema. The new name cannot
 begin with pg_, as such names
 are reserved for system schemas.

	new_owner
	
 The new owner of the schema.

Compatibility

 There is no ALTER SCHEMA statement in the SQL
 standard.

See Also
CREATE SCHEMA(7), DROP SCHEMA(7)

Name
ALTER SEQUENCE —
 change the definition of a sequence generator

Synopsis

ALTER SEQUENCE [IF EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]
ALTER SEQUENCE [IF EXISTS] name SET { LOGGED | UNLOGGED }
ALTER SEQUENCE [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name
ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description

 ALTER SEQUENCE changes the parameters of an existing
 sequence generator. Any parameters not specifically set in the
 ALTER SEQUENCE command retain their prior settings.

 You must own the sequence to use ALTER SEQUENCE.
 To change a sequence's schema, you must also have CREATE
 privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the sequence's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the sequence.
 However, a superuser can alter ownership of any sequence anyway.)

Parameters

	name
	
 The name (optionally schema-qualified) of a sequence to be altered.

	IF EXISTS
	
 Do not throw an error if the sequence does not exist. A notice is issued
 in this case.

	data_type
	
 The optional
 clause AS data_type
 changes the data type of the sequence. Valid types are
 smallint, integer,
 and bigint.

 Changing the data type automatically changes the minimum and maximum
 values of the sequence if and only if the previous minimum and maximum
 values were the minimum or maximum value of the old data type (in
 other words, if the sequence had been created using NO
 MINVALUE or NO MAXVALUE, implicitly or
 explicitly). Otherwise, the minimum and maximum values are preserved,
 unless new values are given as part of the same command. If the
 minimum and maximum values do not fit into the new data type, an error
 will be generated.

	increment
	
 The clause INCREMENT BY increment is
 optional. A positive value will make an ascending sequence, a
 negative one a descending sequence. If unspecified, the old
 increment value will be maintained.

	minvalue, NO MINVALUE
	
 The optional clause MINVALUE minvalue determines
 the minimum value a sequence can generate. If NO
 MINVALUE is specified, the defaults of 1 and
 the minimum value of the data type for ascending and descending sequences,
 respectively, will be used. If neither option is specified,
 the current minimum value will be maintained.

	maxvalue, NO MAXVALUE
	
 The optional clause MAXVALUE maxvalue determines
 the maximum value for the sequence. If NO
 MAXVALUE is specified, the defaults of
 the maximum value of the data type and -1 for ascending and descending
 sequences, respectively, will be used. If neither option is
 specified, the current maximum value will be maintained.

	start
	
 The optional clause START WITH start changes the
 recorded start value of the sequence. This has no effect on the
 current sequence value; it simply sets the value
 that future ALTER SEQUENCE RESTART commands will use.

	restart
	
 The optional clause RESTART [WITH restart] changes the
 current value of the sequence. This is similar to calling the
 setval function with is_called =
 false: the specified value will be returned by the
 next call of nextval.
 Writing RESTART with no restart value is equivalent to supplying
 the start value that was recorded by CREATE SEQUENCE
 or last set by ALTER SEQUENCE START WITH.

 In contrast to a setval call,
 a RESTART operation on a sequence is transactional
 and blocks concurrent transactions from obtaining numbers from the
 same sequence. If that's not the desired mode of
 operation, setval should be used.

	cache
	
 The clause CACHE cache enables
 sequence numbers to be preallocated and stored in memory for
 faster access. The minimum value is 1 (only one value can be
 generated at a time, i.e., no cache). If unspecified, the old
 cache value will be maintained.

	CYCLE
	
 The optional CYCLE key word can be used to enable
 the sequence to wrap around when the
 maxvalue or
 minvalue has been
 reached by
 an ascending or descending sequence respectively. If the limit is
 reached, the next number generated will be the
 minvalue or
 maxvalue,
 respectively.

	NO CYCLE
	
 If the optional NO CYCLE key word is
 specified, any calls to nextval after the
 sequence has reached its maximum value will return an error.
 If neither CYCLE or NO
 CYCLE are specified, the old cycle behavior will be
 maintained.

	SET { LOGGED | UNLOGGED }
	
 This form changes the sequence from unlogged to logged or vice-versa
 (see CREATE SEQUENCE(7)). It cannot be applied to a
 temporary sequence.

	OWNED BY table_name.column_name, OWNED BY NONE
	
 The OWNED BY option causes the sequence to be
 associated with a specific table column, such that if that column
 (or its whole table) is dropped, the sequence will be automatically
 dropped as well. If specified, this association replaces any
 previously specified association for the sequence. The specified
 table must have the same owner and be in the same schema as the
 sequence.
 Specifying OWNED BY NONE removes any existing
 association, making the sequence “free-standing”.

	new_owner
	
 The user name of the new owner of the sequence.

	new_name
	
 The new name for the sequence.

	new_schema
	
 The new schema for the sequence.

Notes

 ALTER SEQUENCE will not immediately affect
 nextval results in backends,
 other than the current one, that have preallocated (cached) sequence
 values. They will use up all cached values prior to noticing the changed
 sequence generation parameters. The current backend will be affected
 immediately.

 ALTER SEQUENCE does not affect the currval
 status for the sequence. (Before PostgreSQL™
 8.3, it sometimes did.)

 ALTER SEQUENCE blocks
 concurrent nextval, currval,
 lastval, and setval calls.

 For historical reasons, ALTER TABLE can be used with
 sequences too; but the only variants of ALTER TABLE
 that are allowed with sequences are equivalent to the forms shown above.

Examples

 Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility

 ALTER SEQUENCE conforms to the SQL
 standard, except for the AS, START WITH,
 OWNED BY, OWNER TO, RENAME TO, and
 SET SCHEMA clauses, which are
 PostgreSQL™ extensions.

See Also
CREATE SEQUENCE(7), DROP SEQUENCE(7)

Name
ALTER SERVER — change the definition of a foreign server

Synopsis

ALTER SERVER name [VERSION 'new_version']
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER SERVER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SERVER name RENAME TO new_name

Description

 ALTER SERVER changes the definition of a foreign
 server. The first form changes the server version string or the
 generic options of the server (at least one clause is required).
 The second form changes the owner of the server.

 To alter the server you must be the owner of the server.
 Additionally to alter the owner, you must be able to
 SET ROLE to the new owning role, and you must
 have USAGE privilege on the server's foreign-data
 wrapper. (Note that superusers satisfy all these criteria
 automatically.)

Parameters
	name
	
 The name of an existing server.

	new_version
	
 New server version.

	OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])
	
 Change options for the
 server. ADD, SET, and DROP
 specify the action to be performed. ADD is assumed
 if no operation is explicitly specified. Option names must be
 unique; names and values are also validated using the server's
 foreign-data wrapper library.

	new_owner
	
 The user name of the new owner of the foreign server.

	new_name
	
 The new name for the foreign server.

Examples

 Alter server foo, add connection options:

ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');

 Alter server foo, change version,
 change host option:

ALTER SERVER foo VERSION '8.4' OPTIONS (SET host 'baz');

Compatibility

 ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED).
 The OWNER TO and RENAME forms are
 PostgreSQL extensions.

See Also
CREATE SERVER(7), DROP SERVER(7)

Name
ALTER STATISTICS —
 change the definition of an extended statistics object

Synopsis

ALTER STATISTICS name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER STATISTICS name RENAME TO new_name
ALTER STATISTICS name SET SCHEMA new_schema
ALTER STATISTICS name SET STATISTICS new_target

Description

 ALTER STATISTICS changes the parameters of an existing
 extended statistics object. Any parameters not specifically set in the
 ALTER STATISTICS command retain their prior settings.

 You must own the statistics object to use ALTER STATISTICS.
 To change a statistics object's schema, you must also
 have CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the statistics object's schema.
 (These restrictions enforce that altering
 the owner doesn't do anything you couldn't do by dropping and recreating
 the statistics object. However, a superuser can alter ownership of any
 statistics object anyway.)

Parameters

	name
	
 The name (optionally schema-qualified) of the statistics object to be
 altered.

	new_owner
	
 The user name of the new owner of the statistics object.

	new_name
	
 The new name for the statistics object.

	new_schema
	
 The new schema for the statistics object.

	new_target
	
 The statistic-gathering target for this statistics object for subsequent
 ANALYZE operations.
 The target can be set in the range 0 to 10000; alternatively, set it
 to -1 to revert to using the maximum of the statistics target of the
 referenced columns, if set, or the system default statistics
 target (default_statistics_target).
 For more information on the use of statistics by the
 PostgreSQL™ query planner, refer to
 the section called “Statistics Used by the Planner”.

Compatibility

 There is no ALTER STATISTICS command in the SQL standard.

See Also
CREATE STATISTICS(7), DROP STATISTICS(7)

Name
ALTER SUBSCRIPTION — change the definition of a subscription

Synopsis

ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...] [WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name ADD PUBLICATION publication_name [, ...] [WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name DROP PUBLICATION publication_name [, ...] [WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name REFRESH PUBLICATION [WITH (refresh_option [= value] [, ...])]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET (subscription_parameter [= value] [, ...])
ALTER SUBSCRIPTION name SKIP (skip_option = value)
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name

Description

 ALTER SUBSCRIPTION can change most of the subscription
 properties that can be specified
 in CREATE SUBSCRIPTION(7).

 You must own the subscription to use ALTER SUBSCRIPTION.
 To rename a subscription or alter the owner, you must have
 CREATE permission on the database. In addition,
 to alter the owner, you must be able to SET ROLE to the
 new owning role. If the subscription has
 password_required=false, only superusers can modify it.

 When refreshing a publication we remove the relations that are no longer
 part of the publication and we also remove the table synchronization slots
 if there are any. It is necessary to remove these slots so that the resources
 allocated for the subscription on the remote host are released. If due to
 network breakdown or some other error, PostgreSQL™
 is unable to remove the slots, an error will be reported. To proceed in this
 situation, the user either needs to retry the operation or disassociate the
 slot from the subscription and drop the subscription as explained in
 DROP SUBSCRIPTION(7).

 Commands ALTER SUBSCRIPTION ... REFRESH PUBLICATION and
 ALTER SUBSCRIPTION ... {SET|ADD|DROP} PUBLICATION ...
 with refresh option as true cannot be
 executed inside a transaction block.

 These commands also cannot be executed when the subscription has
 two_phase
 commit enabled, unless
 copy_data
 is false. See column subtwophasestate
 of pg_subscription
 to know the actual two-phase state.

Parameters
	name
	
 The name of a subscription whose properties are to be altered.

	CONNECTION 'conninfo'
	
 This clause replaces the connection string originally set by
 CREATE SUBSCRIPTION(7). See there for more
 information.

	SET PUBLICATION publication_name, ADD PUBLICATION publication_name, DROP PUBLICATION publication_name
	
 These forms change the list of subscribed publications.
 SET
 replaces the entire list of publications with a new list,
 ADD adds additional publications to the list of
 publications, and DROP removes the publications from
 the list of publications. We allow non-existent publications to be
 specified in ADD and SET variants
 so that users can add those later. See CREATE SUBSCRIPTION(7)
 for more information. By default, this command will also act like
 REFRESH PUBLICATION.

 publication_option specifies additional
 options for this operation. The supported options are:

	refresh (boolean)
	
 When false, the command will not try to refresh table information.
 REFRESH PUBLICATION should then be executed separately.
 The default is true.

 Additionally, the options described under
 REFRESH PUBLICATION may be specified, to control the
 implicit refresh operation.

	REFRESH PUBLICATION
	
 Fetch missing table information from publisher. This will start
 replication of tables that were added to the subscribed-to publications
 since CREATE SUBSCRIPTION or
 the last invocation of REFRESH PUBLICATION.

 refresh_option specifies additional options for the
 refresh operation. The supported options are:

	copy_data (boolean)
	
 Specifies whether to copy pre-existing data in the publications
 that are being subscribed to when the replication starts.
 The default is true.

 Previously subscribed tables are not copied, even if a table's row
 filter WHERE clause has since been modified.

 See Notes for details of
 how copy_data = true can interact with the
 origin
 parameter.

 See the
 binary
 parameter of CREATE SUBSCRIPTION for details about
 copying pre-existing data in binary format.

	ENABLE
	
 Enables a previously disabled subscription, starting the logical
 replication worker at the end of the transaction.

	DISABLE
	
 Disables a running subscription, stopping the logical replication
 worker at the end of the transaction.

	SET (subscription_parameter [= value] [, ...])
	
 This clause alters parameters originally set by
 CREATE SUBSCRIPTION(7). See there for more
 information. The parameters that can be altered are
 slot_name,
 synchronous_commit,
 binary,
 streaming,
 disable_on_error,
 password_required,
 run_as_owner, and
 origin.
 Only a superuser can set password_required = false.

	SKIP (skip_option = value)
	
 Skips applying all changes of the remote transaction. If incoming data
 violates any constraints, logical replication will stop until it is
 resolved. By using the ALTER SUBSCRIPTION ... SKIP command,
 the logical replication worker skips all data modification changes within
 the transaction. This option has no effect on the transactions that are
 already prepared by enabling
 two_phase
 on the subscriber.
 After the logical replication worker successfully skips the transaction or
 finishes a transaction, the LSN (stored in
 pg_subscription.subskiplsn)
 is cleared. See the section called “Conflicts” for
 the details of logical replication conflicts.

 skip_option specifies options for this operation.
 The supported option is:

	lsn (pg_lsn)
	
 Specifies the finish LSN of the remote transaction whose changes
 are to be skipped by the logical replication worker. The finish LSN
 is the LSN at which the transaction is either committed or prepared.
 Skipping individual subtransactions is not supported. Setting
 NONE resets the LSN.

	new_owner
	
 The user name of the new owner of the subscription.

	new_name
	
 The new name for the subscription.

 When specifying a parameter of type boolean, the
 = value
 part can be omitted, which is equivalent to
 specifying TRUE.

Examples

 Change the publication subscribed by a subscription to
 insert_only:

ALTER SUBSCRIPTION mysub SET PUBLICATION insert_only;

 Disable (stop) the subscription:

ALTER SUBSCRIPTION mysub DISABLE;

Compatibility

 ALTER SUBSCRIPTION is a PostgreSQL™
 extension.

See Also
CREATE SUBSCRIPTION(7), DROP SUBSCRIPTION(7), CREATE PUBLICATION(7), ALTER PUBLICATION(7)

Name
ALTER SYSTEM — change a server configuration parameter

Synopsis

ALTER SYSTEM SET configuration_parameter { TO | = } { value [, ...] | DEFAULT }

ALTER SYSTEM RESET configuration_parameter
ALTER SYSTEM RESET ALL

Description

 ALTER SYSTEM is used for changing server configuration
 parameters across the entire database cluster. It can be more convenient
 than the traditional method of manually editing
 the postgresql.conf file.
 ALTER SYSTEM writes the given parameter setting to
 the postgresql.auto.conf file, which is read in
 addition to postgresql.conf.
 Setting a parameter to DEFAULT, or using the
 RESET variant, removes that configuration entry from the
 postgresql.auto.conf file. Use RESET
 ALL to remove all such configuration entries.

 Values set with ALTER SYSTEM will be effective after
 the next server configuration reload, or after the next server restart
 in the case of parameters that can only be changed at server start.
 A server configuration reload can be commanded by calling the SQL
 function pg_reload_conf(), running pg_ctl reload,
 or sending a SIGHUP signal to the main server process.

 Only superusers and users granted ALTER SYSTEM privilege
 on a parameter can change it using ALTER SYSTEM. Also, since
 this command acts directly on the file system and cannot be rolled back,
 it is not allowed inside a transaction block or function.

Parameters
	configuration_parameter
	
 Name of a settable configuration parameter. Available parameters are
 documented in Chapter 20, Server Configuration.

	value
	
 New value of the parameter. Values can be specified as string
 constants, identifiers, numbers, or comma-separated lists of
 these, as appropriate for the particular parameter.
 Values that are neither numbers nor valid identifiers must be quoted.
 DEFAULT can be written to specify removing the
 parameter and its value from postgresql.auto.conf.

 For some list-accepting parameters, quoted values will produce
 double-quoted output to preserve whitespace and commas; for others,
 double-quotes must be used inside single-quoted strings to get
 this effect.

Notes

 This command can't be used to set data_directory,
 nor parameters that are not allowed in postgresql.conf
 (e.g., preset options).

 See the section called “Setting Parameters” for other ways to set the parameters.

Examples

 Set the wal_level:

ALTER SYSTEM SET wal_level = replica;

 Undo that, restoring whatever setting was effective
 in postgresql.conf:

ALTER SYSTEM RESET wal_level;

Compatibility

 The ALTER SYSTEM statement is a
 PostgreSQL™ extension.

See Also
SET(7), SHOW(7)

Name
ALTER TABLE — change the definition of a table

Synopsis

ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]
ALTER TABLE [IF EXISTS] name
 ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [IF EXISTS] name
 DETACH PARTITION partition_name [CONCURRENTLY | FINALIZE]

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type [COLLATE collation] [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation] [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name DROP EXPRESSION [IF EXISTS]
 ALTER [COLUMN] column_name ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)]
 ALTER [COLUMN] column_name { SET GENERATED { ALWAYS | BY DEFAULT } | SET sequence_option | RESTART [[WITH] restart] } [...]
 ALTER [COLUMN] column_name DROP IDENTITY [IF EXISTS]
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name
 ENABLE ALWAYS RULE rewrite_rule_name
 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET ACCESS METHOD new_access_method
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

and column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [COLLATE collation] [opclass [(opclass_parameter = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]

referential_action in a FOREIGN KEY/REFERENCES constraint is:

{ NO ACTION | RESTRICT | CASCADE | SET NULL [(column_name [, ...])] | SET DEFAULT [(column_name [, ...])] }

Description

 ALTER TABLE changes the definition of an existing table.
 There are several subforms described below. Note that the lock level required
 may differ for each subform. An ACCESS EXCLUSIVE lock is
 acquired unless explicitly noted. When multiple subcommands are given, the
 lock acquired will be the strictest one required by any subcommand.

	ADD COLUMN [IF NOT EXISTS]
	
 This form adds a new column to the table, using the same syntax as
 CREATE TABLE. If IF NOT EXISTS
 is specified and a column already exists with this name,
 no error is thrown.

	DROP COLUMN [IF EXISTS]
	
 This form drops a column from a table. Indexes and
 table constraints involving the column will be automatically
 dropped as well.
 Multivariate statistics referencing the dropped column will also be
 removed if the removal of the column would cause the statistics to
 contain data for only a single column.
 You will need to say CASCADE if anything outside the table
 depends on the column, for example, foreign key references or views.
 If IF EXISTS is specified and the column
 does not exist, no error is thrown. In this case a notice
 is issued instead.

	SET DATA TYPE
	
 This form changes the type of a column of a table. Indexes and
 simple table constraints involving the column will be automatically
 converted to use the new column type by reparsing the originally
 supplied expression.
 The optional COLLATE clause specifies a collation
 for the new column; if omitted, the collation is the default for the
 new column type.
 The optional USING
 clause specifies how to compute the new column value from the old;
 if omitted, the default conversion is the same as an assignment
 cast from old data type to new. A USING
 clause must be provided if there is no implicit or assignment
 cast from old to new type.

 When this form is used, the column's statistics are removed,
 so running ANALYZE
 on the table afterwards is recommended.

	SET/DROP DEFAULT
	
 These forms set or remove the default value for a column (where
 removal is equivalent to setting the default value to NULL). The new
 default value will only apply in subsequent INSERT
 or UPDATE commands; it does not cause rows already
 in the table to change.

	SET/DROP NOT NULL
	
 These forms change whether a column is marked to allow null
 values or to reject null values.

 SET NOT NULL may only be applied to a column
 provided none of the records in the table contain a
 NULL value for the column. Ordinarily this is
 checked during the ALTER TABLE by scanning the
 entire table;
 however, if a valid CHECK constraint exists
 (and is not dropped in the same command) which proves no
 NULL can exist, then the table scan is skipped.

 If this table is a partition, one cannot perform DROP NOT NULL
 on a column if it is marked NOT NULL in the parent
 table. To drop the NOT NULL constraint from all the
 partitions, perform DROP NOT NULL on the parent
 table. Even if there is no NOT NULL constraint on the
 parent, such a constraint can still be added to individual partitions,
 if desired; that is, the children can disallow nulls even if the parent
 allows them, but not the other way around.

	DROP EXPRESSION [IF EXISTS]
	
 This form turns a stored generated column into a normal base column.
 Existing data in the columns is retained, but future changes will no
 longer apply the generation expression.

 If DROP EXPRESSION IF EXISTS is specified and the
 column is not a stored generated column, no error is thrown. In this
 case a notice is issued instead.

	ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY, SET GENERATED { ALWAYS | BY DEFAULT }, DROP IDENTITY [IF EXISTS]
	
 These forms change whether a column is an identity column or change the
 generation attribute of an existing identity column.
 See CREATE TABLE for details.
 Like SET DEFAULT, these forms only affect the
 behavior of subsequent INSERT
 and UPDATE commands; they do not cause rows
 already in the table to change.

 If DROP IDENTITY IF EXISTS is specified and the
 column is not an identity column, no error is thrown. In this case a
 notice is issued instead.

	SET sequence_option, RESTART
	
 These forms alter the sequence that underlies an existing identity
 column. sequence_option is an option
 supported by ALTER SEQUENCE such
 as INCREMENT BY.

	SET STATISTICS
	
 This form
 sets the per-column statistics-gathering target for subsequent
 ANALYZE operations.
 The target can be set in the range 0 to 10000; alternatively, set it
 to -1 to revert to using the system default statistics
 target (default_statistics_target).
 For more information on the use of statistics by the
 PostgreSQL™ query planner, refer to
 the section called “Statistics Used by the Planner”.

 SET STATISTICS acquires a
 SHARE UPDATE EXCLUSIVE lock.

	SET (attribute_option = value [, ...]), RESET (attribute_option [, ...])
	
 This form sets or resets per-attribute options. Currently, the only
 defined per-attribute options are n_distinct and
 n_distinct_inherited, which override the
 number-of-distinct-values estimates made by subsequent
 ANALYZE
 operations. n_distinct affects the statistics for the
 table itself, while n_distinct_inherited affects the
 statistics gathered for the table plus its inheritance children, and for
 the statistics gathered for partitioned tables. When the value
 specified is a positive value, the query planner will assume that the
 column contains exactly the specified number of distinct nonnull values.
 Fractional values may also be specified by using values below 0 and
 above or equal to -1. This instructs the query planner to estimate the
 number of distinct values by multiplying the absolute value of the
 specified number by the estimated number of rows in the table. For
 example, a value of -1 implies that all values in the column are
 distinct, while a value of -0.5 implies that each value appears twice on
 average. This can be useful when the size of the table changes over
 time. For more information on the use of statistics by the
 PostgreSQL™ query planner, refer to
 the section called “Statistics Used by the Planner”.

 Changing per-attribute options acquires a
 SHARE UPDATE EXCLUSIVE lock.

	
 SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }

	
 This form sets the storage mode for a column. This controls whether this
 column is held inline or in a secondary TOAST table,
 and whether the data
 should be compressed or not. PLAIN must be used
 for fixed-length values such as integer and is
 inline, uncompressed. MAIN is for inline,
 compressible data. EXTERNAL is for external,
 uncompressed data, and EXTENDED is for external,
 compressed data.
 Writing DEFAULT sets the storage mode to the default
 mode for the column's data type. EXTENDED is the
 default for most data types that support non-PLAIN
 storage.
 Use of EXTERNAL will make substring operations on
 very large text and bytea values run faster,
 at the penalty of increased storage space.
 Note that ALTER TABLE ... SET STORAGE doesn't itself
 change anything in the table; it just sets the strategy to be pursued
 during future table updates.
 See the section called “TOAST” for more information.

	
 SET COMPRESSION compression_method

	
 This form sets the compression method for a column, determining how
 values inserted in future will be compressed (if the storage mode
 permits compression at all).
 This does not cause the table to be rewritten, so existing data may still
 be compressed with other compression methods. If the table is restored
 with pg_restore, then all values are rewritten
 with the configured compression method.
 However, when data is inserted from another relation (for example,
 by INSERT ... SELECT), values from the source table are
 not necessarily detoasted, so any previously compressed data may retain
 its existing compression method, rather than being recompressed with the
 compression method of the target column.
 The supported compression
 methods are pglz and lz4.
 (lz4 is available only if --with-lz4
 was used when building PostgreSQL™.) In
 addition, compression_method
 can be default, which selects the default behavior of
 consulting the default_toast_compression setting
 at the time of data insertion to determine the method to use.

	ADD table_constraint [NOT VALID]
	
 This form adds a new constraint to a table using the same constraint
 syntax as CREATE TABLE, plus the option NOT
 VALID, which is currently only allowed for foreign key
 and CHECK constraints.

 Normally, this form will cause a scan of the table to verify that all
 existing rows in the table satisfy the new constraint. But if
 the NOT VALID option is used, this
 potentially-lengthy scan is skipped. The constraint will still be
 enforced against subsequent inserts or updates (that is, they'll fail
 unless there is a matching row in the referenced table, in the case
 of foreign keys, or they'll fail unless the new row matches the
 specified check condition). But the
 database will not assume that the constraint holds for all rows in
 the table, until it is validated by using the VALIDATE
 CONSTRAINT option.
 See Notes below for more information
 about using the NOT VALID option.

 Although most forms of ADD
 table_constraint
 require an ACCESS EXCLUSIVE lock, ADD
 FOREIGN KEY requires only a SHARE ROW
 EXCLUSIVE lock. Note that ADD FOREIGN KEY
 also acquires a SHARE ROW EXCLUSIVE lock on the
 referenced table, in addition to the lock on the table on which the
 constraint is declared.

 Additional restrictions apply when unique or primary key constraints
 are added to partitioned tables; see CREATE TABLE.
 Also, foreign key constraints on partitioned
 tables may not be declared NOT VALID at present.

	ADD table_constraint_using_index
	
 This form adds a new PRIMARY KEY or UNIQUE
 constraint to a table based on an existing unique index. All the
 columns of the index will be included in the constraint.

 The index cannot have expression columns nor be a partial index.
 Also, it must be a b-tree index with default sort ordering. These
 restrictions ensure that the index is equivalent to one that would be
 built by a regular ADD PRIMARY KEY or ADD UNIQUE
 command.

 If PRIMARY KEY is specified, and the index's columns are not
 already marked NOT NULL, then this command will attempt to
 do ALTER COLUMN SET NOT NULL against each such column.
 That requires a full table scan to verify the column(s) contain no
 nulls. In all other cases, this is a fast operation.

 If a constraint name is provided then the index will be renamed to match
 the constraint name. Otherwise the constraint will be named the same as
 the index.

 After this command is executed, the index is “owned” by the
 constraint, in the same way as if the index had been built by
 a regular ADD PRIMARY KEY or ADD UNIQUE
 command. In particular, dropping the constraint will make the index
 disappear too.

 This form is not currently supported on partitioned tables.

Note

 Adding a constraint using an existing index can be helpful in
 situations where a new constraint needs to be added without blocking
 table updates for a long time. To do that, create the index using
 CREATE INDEX CONCURRENTLY, and then install it as an
 official constraint using this syntax. See the example below.

	ALTER CONSTRAINT
	
 This form alters the attributes of a constraint that was previously
 created. Currently only foreign key constraints may be altered.

	VALIDATE CONSTRAINT
	
 This form validates a foreign key or check constraint that was
 previously created as NOT VALID, by scanning the
 table to ensure there are no rows for which the constraint is not
 satisfied. Nothing happens if the constraint is already marked valid.
 (See Notes below for an explanation
 of the usefulness of this command.)

 This command acquires a SHARE UPDATE EXCLUSIVE lock.

	DROP CONSTRAINT [IF EXISTS]
	
 This form drops the specified constraint on a table, along with
 any index underlying the constraint.
 If IF EXISTS is specified and the constraint
 does not exist, no error is thrown. In this case a notice is issued instead.

	DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER
	
 These forms configure the firing of trigger(s) belonging to the table.
 A disabled trigger is still known to the system, but is not executed
 when its triggering event occurs. (For a deferred trigger, the enable
 status is checked when the event occurs, not when the trigger function
 is actually executed.) One can disable or enable a single
 trigger specified by name, or all triggers on the table, or only
 user triggers (this option excludes internally generated constraint
 triggers, such as those that are used to implement foreign key
 constraints or deferrable uniqueness and exclusion constraints).
 Disabling or enabling internally generated constraint triggers
 requires superuser privileges; it should be done with caution since
 of course the integrity of the constraint cannot be guaranteed if the
 triggers are not executed.

 The trigger firing mechanism is also affected by the configuration
 variable session_replication_role. Simply enabled
 triggers (the default) will fire when the replication role is “origin”
 (the default) or “local”. Triggers configured as ENABLE
 REPLICA will only fire if the session is in “replica”
 mode, and triggers configured as ENABLE ALWAYS will
 fire regardless of the current replication role.

 The effect of this mechanism is that in the default configuration,
 triggers do not fire on replicas. This is useful because if a trigger
 is used on the origin to propagate data between tables, then the
 replication system will also replicate the propagated data; so the
 trigger should not fire a second time on the replica, because that would
 lead to duplication. However, if a trigger is used for another purpose
 such as creating external alerts, then it might be appropriate to set it
 to ENABLE ALWAYS so that it is also fired on
 replicas.

 When this command is applied to a partitioned table, the states of
 corresponding clone triggers in the partitions are updated too,
 unless ONLY is specified.

 This command acquires a SHARE ROW EXCLUSIVE lock.

	DISABLE/ENABLE [REPLICA | ALWAYS] RULE
	
 These forms configure the firing of rewrite rules belonging to the table.
 A disabled rule is still known to the system, but is not applied
 during query rewriting. The semantics are as for disabled/enabled
 triggers. This configuration is ignored for ON SELECT rules, which
 are always applied in order to keep views working even if the current
 session is in a non-default replication role.

 The rule firing mechanism is also affected by the configuration variable
 session_replication_role, analogous to triggers as
 described above.

	DISABLE/ENABLE ROW LEVEL SECURITY
	
 These forms control the application of row security policies belonging
 to the table. If enabled and no policies exist for the table, then a
 default-deny policy is applied. Note that policies can exist for a table
 even if row-level security is disabled. In this case, the policies will
 not be applied and the policies will be ignored.
 See also
 CREATE POLICY.

	NO FORCE/FORCE ROW LEVEL SECURITY
	
 These forms control the application of row security policies belonging
 to the table when the user is the table owner. If enabled, row-level
 security policies will be applied when the user is the table owner. If
 disabled (the default) then row-level security will not be applied when
 the user is the table owner.
 See also
 CREATE POLICY.

	CLUSTER ON
	
 This form selects the default index for future
 CLUSTER
 operations. It does not actually re-cluster the table.

 Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

	SET WITHOUT CLUSTER
	
 This form removes the most recently used
 CLUSTER
 index specification from the table. This affects
 future cluster operations that don't specify an index.

 Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

	SET WITHOUT OIDS
	
 Backward-compatible syntax for removing the oid
 system column. As oid system columns cannot be
 added anymore, this never has an effect.

	SET ACCESS METHOD
	
 This form changes the access method of the table by rewriting it. See
 Chapter 63, Table Access Method Interface Definition for more information.

	SET TABLESPACE
	
 This form changes the table's tablespace to the specified tablespace and
 moves the data file(s) associated with the table to the new tablespace.
 Indexes on the table, if any, are not moved; but they can be moved
 separately with additional SET TABLESPACE commands.
 When applied to a partitioned table, nothing is moved, but any
 partitions created afterwards with
 CREATE TABLE PARTITION OF will use that tablespace,
 unless overridden by a TABLESPACE clause.

 All tables in the current database in a tablespace can be moved by using
 the ALL IN TABLESPACE form, which will lock all tables
 to be moved first and then move each one. This form also supports
 OWNED BY, which will only move tables owned by the
 roles specified. If the NOWAIT option is specified
 then the command will fail if it is unable to acquire all of the locks
 required immediately. Note that system catalogs are not moved by this
 command; use ALTER DATABASE or explicit
 ALTER TABLE invocations instead if desired. The
 information_schema relations are not considered part
 of the system catalogs and will be moved.
 See also
 CREATE TABLESPACE.

	SET { LOGGED | UNLOGGED }
	
 This form changes the table from unlogged to logged or vice-versa
 (see UNLOGGED). It cannot be applied
 to a temporary table.

 This also changes the persistence of any sequences linked to the table
 (for identity or serial columns). However, it is also possible to
 change the persistence of such sequences separately.

	SET (storage_parameter [= value] [, ...])
	
 This form changes one or more storage parameters for the table. See
 Storage Parameters in the
 CREATE TABLE documentation
 for details on the available parameters. Note that the table contents
 will not be modified immediately by this command; depending on the
 parameter you might need to rewrite the table to get the desired effects.
 That can be done with VACUUM
 FULL, CLUSTER or one of the forms
 of ALTER TABLE that forces a table rewrite.
 For planner related parameters, changes will take effect from the next
 time the table is locked so currently executing queries will not be
 affected.

 SHARE UPDATE EXCLUSIVE lock will be taken for
 fillfactor, toast and autovacuum storage parameters, as well as the
 planner parameter parallel_workers.

	RESET (storage_parameter [, ...])
	
 This form resets one or more storage parameters to their
 defaults. As with SET, a table rewrite might be
 needed to update the table entirely.

	INHERIT parent_table
	
 This form adds the target table as a new child of the specified parent
 table. Subsequently, queries against the parent will include records
 of the target table. To be added as a child, the target table must
 already contain all the same columns as the parent (it could have
 additional columns, too). The columns must have matching data types,
 and if they have NOT NULL constraints in the parent
 then they must also have NOT NULL constraints in the
 child.

 There must also be matching child-table constraints for all
 CHECK constraints of the parent, except those
 marked non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ... NO INHERIT)
 in the parent, which are ignored; all child-table constraints matched
 must not be marked non-inheritable.
 Currently
 UNIQUE, PRIMARY KEY, and
 FOREIGN KEY constraints are not considered, but
 this might change in the future.

	NO INHERIT parent_table
	
 This form removes the target table from the list of children of the
 specified parent table.
 Queries against the parent table will no longer include records drawn
 from the target table.

	OF type_name
	
 This form links the table to a composite type as though CREATE
 TABLE OF had formed it. The table's list of column names and types
 must precisely match that of the composite type. The table must
 not inherit from any other table. These restrictions ensure
 that CREATE TABLE OF would permit an equivalent table
 definition.

	NOT OF
	
 This form dissociates a typed table from its type.

	OWNER TO
	
 This form changes the owner of the table, sequence, view, materialized view,
 or foreign table to the specified user.

	REPLICA IDENTITY
	
 This form changes the information which is written to the write-ahead log
 to identify rows which are updated or deleted.
 In most cases, the old value of each column is only logged if it differs
 from the new value; however, if the old value is stored externally, it is
 always logged regardless of whether it changed.
 This option has no effect except when logical replication is in use.

	DEFAULT
	
 Records the old values of the columns of the primary key, if any.
 This is the default for non-system tables.

	USING INDEX index_name
	
 Records the old values of the columns covered by the named index,
 that must be unique, not partial, not deferrable, and include only
 columns marked NOT NULL. If this index is
 dropped, the behavior is the same as NOTHING.

	FULL
	
 Records the old values of all columns in the row.

	NOTHING
	
 Records no information about the old row. This is the default for
 system tables.

	RENAME
	
 The RENAME forms change the name of a table
 (or an index, sequence, view, materialized view, or foreign table), the
 name of an individual column in a table, or the name of a constraint of
 the table. When renaming a constraint that has an underlying index,
 the index is renamed as well.
 There is no effect on the stored data.

	SET SCHEMA
	
 This form moves the table into another schema. Associated indexes,
 constraints, and sequences owned by table columns are moved as well.

	ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
	
 This form attaches an existing table (which might itself be partitioned)
 as a partition of the target table. The table can be attached
 as a partition for specific values using FOR VALUES
 or as a default partition by using DEFAULT.
 For each index in the target table, a corresponding
 one will be created in the attached table; or, if an equivalent
 index already exists, it will be attached to the target table's index,
 as if ALTER INDEX ATTACH PARTITION had been executed.
 Note that if the existing table is a foreign table, it is currently not
 allowed to attach the table as a partition of the target table if there
 are UNIQUE indexes on the target table. (See also
 CREATE FOREIGN TABLE(7).) For each user-defined
 row-level trigger that exists in the target table, a corresponding one
 is created in the attached table.

 A partition using FOR VALUES uses same syntax for
 partition_bound_spec as
 CREATE TABLE.
 The partition bound specification
 must correspond to the partitioning strategy and partition key of the
 target table. The table to be attached must have all the same columns
 as the target table and no more; moreover, the column types must also
 match. Also, it must have all the NOT NULL and
 CHECK constraints of the target table, not marked
 NO INHERIT. Currently
 FOREIGN KEY constraints are not considered.
 UNIQUE and PRIMARY KEY constraints
 from the parent table will be created in the partition, if they don't
 already exist.

 If the new partition is a regular table, a full table scan is performed
 to check that existing rows in the table do not violate the partition
 constraint. It is possible to avoid this scan by adding a valid
 CHECK constraint to the table that allows only
 rows satisfying the desired partition constraint before running this
 command. The CHECK constraint will be used to
 determine that the table need not be scanned to validate the partition
 constraint. This does not work, however, if any of the partition keys
 is an expression and the partition does not accept
 NULL values. If attaching a list partition that will
 not accept NULL values, also add a
 NOT NULL constraint to the partition key column,
 unless it's an expression.

 If the new partition is a foreign table, nothing is done to verify
 that all the rows in the foreign table obey the partition constraint.
 (See the discussion in CREATE FOREIGN TABLE(7) about
 constraints on the foreign table.)

 When a table has a default partition, defining a new partition changes
 the partition constraint for the default partition. The default
 partition can't contain any rows that would need to be moved to the new
 partition, and will be scanned to verify that none are present. This
 scan, like the scan of the new partition, can be avoided if an
 appropriate CHECK constraint is present. Also like
 the scan of the new partition, it is always skipped when the default
 partition is a foreign table.

 Attaching a partition acquires a
 SHARE UPDATE EXCLUSIVE lock on the parent table,
 in addition to the ACCESS EXCLUSIVE locks on the table
 being attached and on the default partition (if any).

 Further locks must also be held on all sub-partitions if the table being
 attached is itself a partitioned table. Likewise if the default
 partition is itself a partitioned table. The locking of the
 sub-partitions can be avoided by adding a CHECK
 constraint as described in
 the section called “Partition Maintenance”.

	DETACH PARTITION partition_name [CONCURRENTLY | FINALIZE]
	
 This form detaches the specified partition of the target table. The detached
 partition continues to exist as a standalone table, but no longer has any
 ties to the table from which it was detached. Any indexes that were
 attached to the target table's indexes are detached. Any triggers that
 were created as clones of those in the target table are removed.
 SHARE lock is obtained on any tables that reference
 this partitioned table in foreign key constraints.

 If CONCURRENTLY is specified, it runs using a reduced
 lock level to avoid blocking other sessions that might be accessing the
 partitioned table. In this mode, two transactions are used internally.
 During the first transaction, a SHARE UPDATE EXCLUSIVE
 lock is taken on both parent table and partition, and the partition is
 marked as undergoing detach; at that point, the transaction is committed
 and all other transactions using the partitioned table are waited for.
 Once all those transactions have completed, the second transaction
 acquires SHARE UPDATE EXCLUSIVE on the partitioned
 table and ACCESS EXCLUSIVE on the partition,
 and the detach process completes. A CHECK constraint
 that duplicates the partition constraint is added to the partition.
 CONCURRENTLY cannot be run in a transaction block and
 is not allowed if the partitioned table contains a default partition.

 If FINALIZE is specified, a previous
 DETACH CONCURRENTLY invocation that was canceled or
 interrupted is completed.
 At most one partition in a partitioned table can be pending detach at
 a time.

 All the forms of ALTER TABLE that act on a single table, except
 RENAME, SET SCHEMA,
 ATTACH PARTITION, and
 DETACH PARTITION can be combined into
 a list of multiple alterations to be applied together. For example, it
 is possible to add several columns and/or alter the type of several
 columns in a single command. This is particularly useful with large
 tables, since only one pass over the table need be made.

 You must own the table to use ALTER TABLE.
 To change the schema or tablespace of a table, you must also have
 CREATE privilege on the new schema or tablespace.
 To add the table as a new child of a parent table, you must own the parent
 table as well. Also, to attach a table as a new partition of the table,
 you must own the table being attached.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the table's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the table.
 However, a superuser can alter ownership of any table anyway.)
 To add a column or alter a column type or use the OF
 clause, you must also have USAGE privilege on the data
 type.

Parameters
	IF EXISTS
	
 Do not throw an error if the table does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing table to
 alter. If ONLY is specified before the table name, only
 that table is altered. If ONLY is not specified, the table
 and all its descendant tables (if any) are altered. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included.

	column_name
	
 Name of a new or existing column.

	new_column_name
	
 New name for an existing column.

	new_name
	
 New name for the table.

	data_type
	
 Data type of the new column, or new data type for an existing
 column.

	table_constraint
	
 New table constraint for the table.

	constraint_name
	
 Name of a new or existing constraint.

	CASCADE
	
 Automatically drop objects that depend on the dropped column
 or constraint (for example, views referencing the column),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the column or constraint if there are any dependent
 objects. This is the default behavior.

	trigger_name
	
 Name of a single trigger to disable or enable.

	ALL
	
 Disable or enable all triggers belonging to the table.
 (This requires superuser privilege if any of the triggers are
 internally generated constraint triggers, such as those that are used
 to implement foreign key constraints or deferrable uniqueness and
 exclusion constraints.)

	USER
	
 Disable or enable all triggers belonging to the table except for
 internally generated constraint triggers, such as those that are used
 to implement foreign key constraints or deferrable uniqueness and
 exclusion constraints.

	index_name
	
 The name of an existing index.

	storage_parameter
	
 The name of a table storage parameter.

	value
	
 The new value for a table storage parameter.
 This might be a number or a word depending on the parameter.

	parent_table
	
 A parent table to associate or de-associate with this table.

	new_owner
	
 The user name of the new owner of the table.

	new_access_method
	
 The name of the access method to which the table will be converted.

	new_tablespace
	
 The name of the tablespace to which the table will be moved.

	new_schema
	
 The name of the schema to which the table will be moved.

	partition_name
	
 The name of the table to attach as a new partition or to detach from this table.

	partition_bound_spec
	
 The partition bound specification for a new partition. Refer to
 CREATE TABLE(7) for more details on the syntax of the same.

Notes

 The key word COLUMN is noise and can be omitted.

 When a column is added with ADD COLUMN and a
 non-volatile DEFAULT is specified, the default is
 evaluated at the time of the statement and the result stored in the
 table's metadata. That value will be used for the column for all existing
 rows. If no DEFAULT is specified, NULL is used. In
 neither case is a rewrite of the table required.

 Adding a column with a volatile DEFAULT or
 changing the type of an existing column will require the entire table and
 its indexes to be rewritten. As an exception, when changing the type of an
 existing column, if the USING clause does not change
 the column contents and the old type is either binary coercible to the new
 type or an unconstrained domain over the new type, a table rewrite is not
 needed. However, indexes must always be rebuilt unless the system can
 verify that the new index would be logically equivalent to the existing
 one. For example, if the collation for a column has been changed, an index
 rebuild is always required because the new sort order might be different.
 However, in the absence of a collation change, a column can be changed
 from text to varchar (or vice versa) without
 rebuilding the indexes because these data types sort identically.
 Table and/or index rebuilds may take a
 significant amount of time for a large table; and will temporarily require
 as much as double the disk space.

 Adding a CHECK or NOT NULL constraint requires
 scanning the table to verify that existing rows meet the constraint,
 but does not require a table rewrite.

 Similarly, when attaching a new partition it may be scanned to verify that
 existing rows meet the partition constraint.

 The main reason for providing the option to specify multiple changes
 in a single ALTER TABLE is that multiple table scans or
 rewrites can thereby be combined into a single pass over the table.

 Scanning a large table to verify a new foreign key or check constraint
 can take a long time, and other updates to the table are locked out
 until the ALTER TABLE ADD CONSTRAINT command is
 committed. The main purpose of the NOT VALID
 constraint option is to reduce the impact of adding a constraint on
 concurrent updates. With NOT VALID,
 the ADD CONSTRAINT command does not scan the table
 and can be committed immediately. After that, a VALIDATE
 CONSTRAINT command can be issued to verify that existing rows
 satisfy the constraint. The validation step does not need to lock out
 concurrent updates, since it knows that other transactions will be
 enforcing the constraint for rows that they insert or update; only
 pre-existing rows need to be checked. Hence, validation acquires only
 a SHARE UPDATE EXCLUSIVE lock on the table being
 altered. (If the constraint is a foreign key then a ROW
 SHARE lock is also required on the table referenced by the
 constraint.) In addition to improving concurrency, it can be useful to
 use NOT VALID and VALIDATE
 CONSTRAINT in cases where the table is known to contain
 pre-existing violations. Once the constraint is in place, no new
 violations can be inserted, and the existing problems can be corrected
 at leisure until VALIDATE CONSTRAINT finally
 succeeds.

 The DROP COLUMN form does not physically remove
 the column, but simply makes it invisible to SQL operations. Subsequent
 insert and update operations in the table will store a null value for the
 column. Thus, dropping a column is quick but it will not immediately
 reduce the on-disk size of your table, as the space occupied
 by the dropped column is not reclaimed. The space will be
 reclaimed over time as existing rows are updated.

 To force immediate reclamation of space occupied by a dropped column,
 you can execute one of the forms of ALTER TABLE that
 performs a rewrite of the whole table. This results in reconstructing
 each row with the dropped column replaced by a null value.

 The rewriting forms of ALTER TABLE are not MVCC-safe.
 After a table rewrite, the table will appear empty to concurrent
 transactions, if they are using a snapshot taken before the rewrite
 occurred. See the section called “Caveats” for more details.

 The USING option of SET DATA TYPE can actually
 specify any expression involving the old values of the row; that is, it
 can refer to other columns as well as the one being converted. This allows
 very general conversions to be done with the SET DATA TYPE
 syntax. Because of this flexibility, the USING
 expression is not applied to the column's default value (if any); the
 result might not be a constant expression as required for a default.
 This means that when there is no implicit or assignment cast from old to
 new type, SET DATA TYPE might fail to convert the default even
 though a USING clause is supplied. In such cases,
 drop the default with DROP DEFAULT, perform the ALTER
 TYPE, and then use SET DEFAULT to add a suitable new
 default. Similar considerations apply to indexes and constraints involving
 the column.

 If a table has any descendant tables, it is not permitted to add,
 rename, or change the type of a column in the parent table without doing
 the same to the descendants. This ensures that the descendants always
 have columns matching the parent. Similarly, a CHECK
 constraint cannot be renamed in the parent without also renaming it in
 all descendants, so that CHECK constraints also match
 between the parent and its descendants. (That restriction does not apply
 to index-based constraints, however.)
 Also, because selecting from the parent also selects from its descendants,
 a constraint on the parent cannot be marked valid unless it is also marked
 valid for those descendants. In all of these cases, ALTER TABLE
 ONLY will be rejected.

 A recursive DROP COLUMN operation will remove a
 descendant table's column only if the descendant does not inherit
 that column from any other parents and never had an independent
 definition of the column. A nonrecursive DROP
 COLUMN (i.e., ALTER TABLE ONLY ... DROP
 COLUMN) never removes any descendant columns, but
 instead marks them as independently defined rather than inherited.
 A nonrecursive DROP COLUMN command will fail for a
 partitioned table, because all partitions of a table must have the same
 columns as the partitioning root.

 The actions for identity columns (ADD
 GENERATED, SET etc., DROP
 IDENTITY), as well as the actions
 CLUSTER, OWNER,
 and TABLESPACE never recurse to descendant tables;
 that is, they always act as though ONLY were specified.
 Actions affecting trigger states recurse to partitions of partitioned
 tables (unless ONLY is specified), but never to
 traditional-inheritance descendants.
 Adding a constraint recurses only for CHECK constraints
 that are not marked NO INHERIT.

 Changing any part of a system catalog table is not permitted.

 Refer to CREATE TABLE(7) for a further description of valid
 parameters. Chapter 5, Data Definition has further information on
 inheritance.

Examples

 To add a column of type varchar to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

 That will cause all existing rows in the table to be filled with null
 values for the new column.

 To add a column with a non-null default:

ALTER TABLE measurements
 ADD COLUMN mtime timestamp with time zone DEFAULT now();

 Existing rows will be filled with the current time as the value of the
 new column, and then new rows will receive the time of their insertion.

 To add a column and fill it with a value different from the default to
 be used later:

ALTER TABLE transactions
 ADD COLUMN status varchar(30) DEFAULT 'old',
 ALTER COLUMN status SET default 'current';

 Existing rows will be filled with old, but then
 the default for subsequent commands will be current.
 The effects are the same as if the two sub-commands had been issued
 in separate ALTER TABLE commands.

 To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

 To change the types of two existing columns in one operation:

ALTER TABLE distributors
 ALTER COLUMN address TYPE varchar(80),
 ALTER COLUMN name TYPE varchar(100);

 To change an integer column containing Unix timestamps to timestamp
 with time zone via a USING clause:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second';

 The same, when the column has a default expression that won't automatically
 cast to the new data type:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp DROP DEFAULT,
 ALTER COLUMN foo_timestamp TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second',
 ALTER COLUMN foo_timestamp SET DEFAULT now();

 To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

 To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

 To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

 To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

 To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

 To add a check constraint to a table and all its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

 To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO INHERIT;

 (The check constraint will not be inherited by future children, either.)

 To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

 To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

 (The check constraint remains in place for any child tables.)

 To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address);

 To add a foreign key constraint to a table with the least impact on other work:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;

 To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);

 To add an automatically named primary key constraint to a table, noting
 that a table can only ever have one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

 To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

 To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

 To recreate a primary key constraint, without blocking updates while the
 index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
 ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;

 To attach a partition to a range-partitioned table:

ALTER TABLE measurement
 ATTACH PARTITION measurement_y2016m07 FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');

 To attach a partition to a list-partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_ab FOR VALUES IN ('a', 'b');

 To attach a partition to a hash-partitioned table:

ALTER TABLE orders
 ATTACH PARTITION orders_p4 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

 To attach a default partition to a partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_partdef DEFAULT;

 To detach a partition from a partitioned table:

ALTER TABLE measurement
 DETACH PARTITION measurement_y2015m12;

Compatibility

 The forms ADD (without USING INDEX),
 DROP [COLUMN], DROP IDENTITY, RESTART,
 SET DEFAULT, SET DATA TYPE (without USING),
 SET GENERATED, and SET sequence_option
 conform with the SQL standard. The other forms are
 PostgreSQL™ extensions of the SQL standard.
 Also, the ability to specify more than one manipulation in a single
 ALTER TABLE command is an extension.

 ALTER TABLE DROP COLUMN can be used to drop the only
 column of a table, leaving a zero-column table. This is an
 extension of SQL, which disallows zero-column tables.

See Also
CREATE TABLE(7)

Name
ALTER TABLESPACE — change the definition of a tablespace

Synopsis

ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TABLESPACE name SET (tablespace_option = value [, ...])
ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description

 ALTER TABLESPACE can be used to change the definition of
 a tablespace.

 You must own the tablespace to change the definition of a tablespace.
 To alter the owner, you must also be able to SET ROLE
 to the new owning role.
 (Note that superusers have these privileges automatically.)

Parameters
	name
	
 The name of an existing tablespace.

	new_name
	
 The new name of the tablespace. The new name cannot
 begin with pg_, as such names
 are reserved for system tablespaces.

	new_owner
	
 The new owner of the tablespace.

	tablespace_option
	
 A tablespace parameter to be set or reset. Currently, the only
 available parameters are seq_page_cost,
 random_page_cost, effective_io_concurrency
 and maintenance_io_concurrency.
 Setting these values for a particular tablespace will override the
 planner's usual estimate of the cost of reading pages from tables in
 that tablespace, and the executor's prefetching behavior, as established
 by the configuration parameters of the
 same name (see seq_page_cost,
 random_page_cost,
 effective_io_concurrency,
 maintenance_io_concurrency). This may be useful if
 one tablespace is located on a disk which is faster or slower than the
 remainder of the I/O subsystem.

Examples

 Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

 Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility

 There is no ALTER TABLESPACE statement in
 the SQL standard.

See Also
CREATE TABLESPACE(7), DROP TABLESPACE(7)

Name
ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration

Synopsis

ALTER TEXT SEARCH CONFIGURATION name
 ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description

 ALTER TEXT SEARCH CONFIGURATION changes the definition of
 a text search configuration. You can modify
 its mappings from token types to dictionaries,
 or change the configuration's name or owner.

 You must be the owner of the configuration to use
 ALTER TEXT SEARCH CONFIGURATION.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing text search
 configuration.

	token_type
	
 The name of a token type that is emitted by the configuration's
 parser.

	dictionary_name
	
 The name of a text search dictionary to be consulted for the
 specified token type(s). If multiple dictionaries are listed,
 they are consulted in the specified order.

	old_dictionary
	
 The name of a text search dictionary to be replaced in the mapping.

	new_dictionary
	
 The name of a text search dictionary to be substituted for
 old_dictionary.

	new_name
	
 The new name of the text search configuration.

	new_owner
	
 The new owner of the text search configuration.

	new_schema
	
 The new schema for the text search configuration.

 The ADD MAPPING FOR form installs a list of dictionaries to be
 consulted for the specified token type(s); it is an error if there is
 already a mapping for any of the token types.
 The ALTER MAPPING FOR form does the same, but first removing
 any existing mapping for those token types.
 The ALTER MAPPING REPLACE forms substitute new_dictionary for old_dictionary anywhere the latter appears.
 This is done for only the specified token types when FOR
 appears, or for all mappings of the configuration when it doesn't.
 The DROP MAPPING form removes all dictionaries for the
 specified token type(s), causing tokens of those types to be ignored
 by the text search configuration. It is an error if there is no mapping
 for the token types, unless IF EXISTS appears.

Examples

 The following example replaces the english dictionary
 with the swedish dictionary anywhere that english
 is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
 ALTER MAPPING REPLACE english WITH swedish;

Compatibility

 There is no ALTER TEXT SEARCH CONFIGURATION statement in
 the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION(7), DROP TEXT SEARCH CONFIGURATION(7)

Name
ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary

Synopsis

ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description

 ALTER TEXT SEARCH DICTIONARY changes the definition of
 a text search dictionary. You can change the dictionary's
 template-specific options, or change the dictionary's name or owner.

 You must be the owner of the dictionary to use
 ALTER TEXT SEARCH DICTIONARY.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing text search
 dictionary.

	option
	
 The name of a template-specific option to be set for this dictionary.

	value
	
 The new value to use for a template-specific option.
 If the equal sign and value are omitted, then any previous
 setting for the option is removed from the dictionary,
 allowing the default to be used.

	new_name
	
 The new name of the text search dictionary.

	new_owner
	
 The new owner of the text search dictionary.

	new_schema
	
 The new schema for the text search dictionary.

 Template-specific options can appear in any order.

Examples

 The following example command changes the stopword list
 for a Snowball-based dictionary. Other parameters remain unchanged.

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

 The following example command changes the language option to dutch,
 and removes the stopword option entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

 The following example command “updates” the dictionary's
 definition without actually changing anything.

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

 (The reason this works is that the option removal code doesn't complain
 if there is no such option.) This trick is useful when changing
 configuration files for the dictionary: the ALTER will
 force existing database sessions to re-read the configuration files,
 which otherwise they would never do if they had read them earlier.

Compatibility

 There is no ALTER TEXT SEARCH DICTIONARY statement in
 the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY(7), DROP TEXT SEARCH DICTIONARY(7)

Name
ALTER TEXT SEARCH PARSER — change the definition of a text search parser

Synopsis

ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description

 ALTER TEXT SEARCH PARSER changes the definition of
 a text search parser. Currently, the only supported functionality
 is to change the parser's name.

 You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing text search parser.

	new_name
	
 The new name of the text search parser.

	new_schema
	
 The new schema for the text search parser.

Compatibility

 There is no ALTER TEXT SEARCH PARSER statement in
 the SQL standard.

See Also
CREATE TEXT SEARCH PARSER(7), DROP TEXT SEARCH PARSER(7)

Name
ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template

Synopsis

ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description

 ALTER TEXT SEARCH TEMPLATE changes the definition of
 a text search template. Currently, the only supported functionality
 is to change the template's name.

 You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing text search template.

	new_name
	
 The new name of the text search template.

	new_schema
	
 The new schema for the text search template.

Compatibility

 There is no ALTER TEXT SEARCH TEMPLATE statement in
 the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE(7), DROP TEXT SEARCH TEMPLATE(7)

Name
ALTER TRIGGER — change the definition of a trigger

Synopsis

ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name [NO] DEPENDS ON EXTENSION extension_name

Description

 ALTER TRIGGER changes properties of an existing
 trigger.

 The RENAME clause changes the name of
 the given trigger without otherwise changing the trigger
 definition.
 If the table that the trigger is on is a partitioned table,
 then corresponding clone triggers in the partitions are
 renamed too.

 The DEPENDS ON EXTENSION clause marks
 the trigger as dependent on an extension, such that if the extension is
 dropped, the trigger will automatically be dropped as well.

 You must own the table on which the trigger acts to be allowed to change its properties.

Parameters
	name
	
 The name of an existing trigger to alter.

	table_name
	
 The name of the table on which this trigger acts.

	new_name
	
 The new name for the trigger.

	extension_name
	
 The name of the extension that the trigger is to depend on (or no longer
 dependent on, if NO is specified). A trigger
 that's marked as dependent on an extension is automatically dropped when
 the extension is dropped.

Notes

 The ability to temporarily enable or disable a trigger is provided by
 ALTER TABLE, not by
 ALTER TRIGGER, because ALTER TRIGGER has no
 convenient way to express the option of enabling or disabling all of
 a table's triggers at once.

Examples

 To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

 To mark a trigger as being dependent on an extension:

ALTER TRIGGER emp_stamp ON emp DEPENDS ON EXTENSION emplib;

Compatibility

 ALTER TRIGGER is a PostgreSQL™
 extension of the SQL standard.

See Also
ALTER TABLE(7)

Name
ALTER TYPE —
 change the definition of a type

Synopsis

ALTER TYPE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [CASCADE | RESTRICT]
ALTER TYPE name action [, ...]
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE | AFTER } neighbor_enum_value]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value
ALTER TYPE name SET (property = value [, ...])

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE | RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type [COLLATE collation] [CASCADE | RESTRICT]

Description

 ALTER TYPE changes the definition of an existing type.
 There are several subforms:

	OWNER
	
 This form changes the owner of the type.

	RENAME
	
 This form changes the name of the type.

	SET SCHEMA
	
 This form moves the type into another schema.

	RENAME ATTRIBUTE
	
 This form is only usable with composite types.
 It changes the name of an individual attribute of the type.

	ADD ATTRIBUTE
	
 This form adds a new attribute to a composite type, using the same syntax as
 CREATE TYPE.

	DROP ATTRIBUTE [IF EXISTS]
	
 This form drops an attribute from a composite type.
 If IF EXISTS is specified and the attribute
 does not exist, no error is thrown. In this case a notice
 is issued instead.

	ALTER ATTRIBUTE ... SET DATA TYPE
	
 This form changes the type of an attribute of a composite type.

	ADD VALUE [IF NOT EXISTS] [BEFORE | AFTER]
	
 This form adds a new value to an enum type. The new value's place in
 the enum's ordering can be specified as being BEFORE
 or AFTER one of the existing values. Otherwise,
 the new item is added at the end of the list of values.

 If IF NOT EXISTS is specified, it is not an error if
 the type already contains the new value: a notice is issued but no other
 action is taken. Otherwise, an error will occur if the new value is
 already present.

	RENAME VALUE
	
 This form renames a value of an enum type.
 The value's place in the enum's ordering is not affected.
 An error will occur if the specified value is not present or the new
 name is already present.

	
 SET (property = value [, ...])

	
 This form is only applicable to base types. It allows adjustment of a
 subset of the base-type properties that can be set in CREATE
 TYPE. Specifically, these properties can be changed:

	
 RECEIVE can be set to the name of a binary input
 function, or NONE to remove the type's binary
 input function. Using this option requires superuser privilege.

	
 SEND can be set to the name of a binary output
 function, or NONE to remove the type's binary
 output function. Using this option requires superuser privilege.

	
 TYPMOD_IN can be set to the name of a type
 modifier input function, or NONE to remove the
 type's type modifier input function. Using this option requires
 superuser privilege.

	
 TYPMOD_OUT can be set to the name of a type
 modifier output function, or NONE to remove the
 type's type modifier output function. Using this option requires
 superuser privilege.

	
 ANALYZE can be set to the name of a type-specific
 statistics collection function, or NONE to remove
 the type's statistics collection function. Using this option
 requires superuser privilege.

	
 SUBSCRIPT can be set to the name of a type-specific
 subscripting handler function, or NONE to remove
 the type's subscripting handler function. Using this option
 requires superuser privilege.

	
 STORAGE
 can be set to plain,
 extended, external,
 or main (see the section called “TOAST” for
 more information about what these mean). However, changing
 from plain to another setting requires superuser
 privilege (because it requires that the type's C functions all be
 TOAST-ready), and changing to plain from another
 setting is not allowed at all (since the type may already have
 TOASTed values present in the database). Note that changing this
 option doesn't by itself change any stored data, it just sets the
 default TOAST strategy to be used for table columns created in the
 future. See ALTER TABLE(7) to change the TOAST
 strategy for existing table columns.

 See CREATE TYPE(7) for more details about these
 type properties. Note that where appropriate, a change in these
 properties for a base type will be propagated automatically to domains
 based on that type.

 The ADD ATTRIBUTE, DROP
 ATTRIBUTE, and ALTER ATTRIBUTE actions
 can be combined into a list of multiple alterations to apply in
 parallel. For example, it is possible to add several attributes
 and/or alter the type of several attributes in a single command.

 You must own the type to use ALTER TYPE.
 To change the schema of a type, you must also have
 CREATE privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the type's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the type.
 However, a superuser can alter ownership of any type anyway.)
 To add an attribute or alter an attribute type, you must also
 have USAGE privilege on the attribute's data type.

Parameters

	name
	
 The name (possibly schema-qualified) of an existing type to
 alter.

	new_name
	
 The new name for the type.

	new_owner
	
 The user name of the new owner of the type.

	new_schema
	
 The new schema for the type.

	attribute_name
	
 The name of the attribute to add, alter, or drop.

	new_attribute_name
	
 The new name of the attribute to be renamed.

	data_type
	
 The data type of the attribute to add, or the new type of the
 attribute to alter.

	new_enum_value
	
 The new value to be added to an enum type's list of values,
 or the new name to be given to an existing value.
 Like all enum literals, it needs to be quoted.

	neighbor_enum_value
	
 The existing enum value that the new value should be added immediately
 before or after in the enum type's sort ordering.
 Like all enum literals, it needs to be quoted.

	existing_enum_value
	
 The existing enum value that should be renamed.
 Like all enum literals, it needs to be quoted.

	property
	
 The name of a base-type property to be modified; see above for
 possible values.

	CASCADE
	
 Automatically propagate the operation to typed tables of the
 type being altered, and their descendants.

	RESTRICT
	
 Refuse the operation if the type being altered is the type of a
 typed table. This is the default.

Notes

 If ALTER TYPE ... ADD VALUE (the form that adds a new
 value to an enum type) is executed inside a transaction block, the new
 value cannot be used until after the transaction has been committed.

 Comparisons involving an added enum value will sometimes be slower than
 comparisons involving only original members of the enum type. This will
 usually only occur if BEFORE or AFTER
 is used to set the new value's sort position somewhere other than at the
 end of the list. However, sometimes it will happen even though the new
 value is added at the end (this occurs if the OID counter “wrapped
 around” since the original creation of the enum type). The slowdown is
 usually insignificant; but if it matters, optimal performance can be
 regained by dropping and recreating the enum type, or by dumping and
 restoring the database.

Examples

 To rename a data type:

ALTER TYPE electronic_mail RENAME TO email;

 To change the owner of the type email
 to joe:

ALTER TYPE email OWNER TO joe;

 To change the schema of the type email
 to customers:

ALTER TYPE email SET SCHEMA customers;

 To add a new attribute to a composite type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

 To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';

 To rename an enum value:

ALTER TYPE colors RENAME VALUE 'purple' TO 'mauve';

 To create binary I/O functions for an existing base type:

CREATE FUNCTION mytypesend(mytype) RETURNS bytea ...;
CREATE FUNCTION mytyperecv(internal, oid, integer) RETURNS mytype ...;
ALTER TYPE mytype SET (
 SEND = mytypesend,
 RECEIVE = mytyperecv
);

Compatibility

 The variants to add and drop attributes are part of the SQL
 standard; the other variants are PostgreSQL extensions.

See Also
CREATE TYPE(7), DROP TYPE(7)

Name
ALTER USER — change a database role

Synopsis

ALTER USER role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER USER name RENAME TO new_name

ALTER USER { role_specification | ALL } [IN DATABASE database_name] SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER { role_specification | ALL } [IN DATABASE database_name] SET configuration_parameter FROM CURRENT
ALTER USER { role_specification | ALL } [IN DATABASE database_name] RESET configuration_parameter
ALTER USER { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description

 ALTER USER is now an alias for
 ALTER ROLE.

Compatibility

 The ALTER USER statement is a
 PostgreSQL™ extension. The SQL standard
 leaves the definition of users to the implementation.

See Also
ALTER ROLE(7)

Name
ALTER USER MAPPING — change the definition of a user mapping

Synopsis

ALTER USER MAPPING FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | SESSION_USER | PUBLIC }
 SERVER server_name
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description

 ALTER USER MAPPING changes the definition of a
 user mapping.

 The owner of a foreign server can alter user mappings for that
 server for any user. Also, a user can alter a user mapping for
 their own user name if USAGE privilege on the server has
 been granted to the user.

Parameters
	user_name
	
 User name of the mapping. CURRENT_ROLE, CURRENT_USER,
 and USER match the name of the current
 user. PUBLIC is used to match all present and future
 user names in the system.

	server_name
	
 Server name of the user mapping.

	OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])
	
 Change options for the user mapping. The new options override
 any previously specified
 options. ADD, SET, and DROP
 specify the action to be performed. ADD is assumed
 if no operation is explicitly specified. Option names must be
 unique; options are also validated by the server's foreign-data
 wrapper.

Examples

 Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');

Compatibility

 ALTER USER MAPPING conforms to ISO/IEC 9075-9
 (SQL/MED). There is a subtle syntax issue: The standard omits
 the FOR key word. Since both CREATE
 USER MAPPING and DROP USER MAPPING use
 FOR in analogous positions, and IBM DB2 (being
 the other major SQL/MED implementation) also requires it
 for ALTER USER MAPPING, PostgreSQL diverges from
 the standard here in the interest of consistency and
 interoperability.

See Also
CREATE USER MAPPING(7), DROP USER MAPPING(7)

Name
ALTER VIEW — change the definition of a view

Synopsis

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET DEFAULT expression
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name TO new_column_name
ALTER VIEW [IF EXISTS] name RENAME TO new_name
ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema
ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description

 ALTER VIEW changes various auxiliary properties
 of a view. (If you want to modify the view's defining query,
 use CREATE OR REPLACE VIEW.)

 You must own the view to use ALTER VIEW.
 To change a view's schema, you must also have CREATE
 privilege on the new schema.
 To alter the owner, you must be able to SET ROLE to the
 new owning role, and that role must have CREATE
 privilege on the view's schema.
 (These restrictions enforce that altering the owner
 doesn't do anything you couldn't do by dropping and recreating the view.
 However, a superuser can alter ownership of any view anyway.)

Parameters
	name
	
 The name (optionally schema-qualified) of an existing view.

	column_name
	
 Name of an existing column.

	new_column_name
	
 New name for an existing column.

	IF EXISTS
	
 Do not throw an error if the view does not exist. A notice is issued
 in this case.

	SET/DROP DEFAULT
	
 These forms set or remove the default value for a column.
 A view column's default value is substituted into any
 INSERT or UPDATE command whose target is the
 view, before applying any rules or triggers for the view. The view's
 default will therefore take precedence over any default values from
 underlying relations.

	new_owner
	
 The user name of the new owner of the view.

	new_name
	
 The new name for the view.

	new_schema
	
 The new schema for the view.

	SET (view_option_name [= view_option_value] [, ...]), RESET (view_option_name [, ...])
	
 Sets or resets a view option. Currently supported options are:

	check_option (enum)
	
 Changes the check option of the view. The value must
 be local or cascaded.

	security_barrier (boolean)
	
 Changes the security-barrier property of the view. The value must
 be a Boolean value, such as true
 or false.

	security_invoker (boolean)
	
 Changes the security-invoker property of the view. The value must
 be a Boolean value, such as true
 or false.

Notes

 For historical reasons, ALTER TABLE can be used with
 views too; but the only variants of ALTER TABLE
 that are allowed with views are equivalent to the ones shown above.

Examples

 To rename the view foo to
 bar:

ALTER VIEW foo RENAME TO bar;

 To attach a default column value to an updatable view:

CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibility

 ALTER VIEW is a PostgreSQL™
 extension of the SQL standard.

See Also
CREATE VIEW(7), DROP VIEW(7)

Name
ANALYZE — collect statistics about a database

Synopsis

ANALYZE [(option [, ...])] [table_and_columns [, ...]]
ANALYZE [VERBOSE] [table_and_columns [, ...]]

where option can be one of:

 VERBOSE [boolean]
 SKIP_LOCKED [boolean]
 BUFFER_USAGE_LIMIT size

and table_and_columns is:

 table_name [(column_name [, ...])]

Description

 ANALYZE collects statistics about the contents
 of tables in the database, and stores the results in the pg_statistic
 system catalog. Subsequently, the query planner uses these
 statistics to help determine the most efficient execution plans for
 queries.

 Without a table_and_columns
 list, ANALYZE processes every table and materialized view
 in the current database that the current user has permission to analyze.
 With a list, ANALYZE processes only those table(s).
 It is further possible to give a list of column names for a table,
 in which case only the statistics for those columns are collected.

 When the option list is surrounded by parentheses, the options can be
 written in any order. The parenthesized syntax was added in
 PostgreSQL™ 11; the unparenthesized syntax
 is deprecated.

Parameters
	VERBOSE
	
 Enables display of progress messages.

	SKIP_LOCKED
	
 Specifies that ANALYZE should not wait for any
 conflicting locks to be released when beginning work on a relation:
 if a relation cannot be locked immediately without waiting, the relation
 is skipped. Note that even with this option, ANALYZE
 may still block when opening the relation's indexes or when acquiring
 sample rows from partitions, table inheritance children, and some
 types of foreign tables. Also, while ANALYZE
 ordinarily processes all partitions of specified partitioned tables,
 this option will cause ANALYZE to skip all
 partitions if there is a conflicting lock on the partitioned table.

	BUFFER_USAGE_LIMIT
	
 Specifies the
 Buffer Access Strategy
 ring buffer size for ANALYZE. This size is used to
 calculate the number of shared buffers which will be reused as part of
 this strategy. 0 disables use of a
 Buffer Access Strategy. When this option is not
 specified, ANALYZE uses the value from
 vacuum_buffer_usage_limit. Higher settings can
 allow ANALYZE to run more quickly, but having too
 large a setting may cause too many other useful pages to be evicted from
 shared buffers. The minimum value is 128 kB and the
 maximum value is 16 GB.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

	size
	
 Specifies an amount of memory in kilobytes. Sizes may also be specified
 as a string containing the numerical size followed by any one of the
 following memory units: B (bytes),
 kB (kilobytes), MB (megabytes),
 GB (gigabytes), or TB (terabytes).

	table_name
	
 The name (possibly schema-qualified) of a specific table to
 analyze. If omitted, all regular tables, partitioned tables, and
 materialized views in the current database are analyzed (but not
 foreign tables). If the specified table is a partitioned table, both the
 inheritance statistics of the partitioned table as a whole and
 statistics of the individual partitions are updated.

	column_name
	
 The name of a specific column to analyze. Defaults to all columns.

Outputs

 When VERBOSE is specified, ANALYZE emits
 progress messages to indicate which table is currently being
 processed. Various statistics about the tables are printed as well.

Notes

 To analyze a table, one must ordinarily be the table's owner or a
 superuser. However, database owners are allowed to
 analyze all tables in their databases, except shared catalogs.
 (The restriction for shared catalogs means that a true database-wide
 ANALYZE can only be performed by a superuser.)
 ANALYZE will skip over any tables that the calling user
 does not have permission to analyze.

 Foreign tables are analyzed only when explicitly selected. Not all
 foreign data wrappers support ANALYZE. If the table's
 wrapper does not support ANALYZE, the command prints a
 warning and does nothing.

 In the default PostgreSQL™ configuration,
 the autovacuum daemon (see the section called “The Autovacuum Daemon”)
 takes care of automatic analyzing of tables when they are first loaded
 with data, and as they change throughout regular operation.
 When autovacuum is disabled,
 it is a good idea to run ANALYZE periodically, or
 just after making major changes in the contents of a table. Accurate
 statistics will help the planner to choose the most appropriate query
 plan, and thereby improve the speed of query processing. A common
 strategy for read-mostly databases is to run VACUUM
 and ANALYZE once a day during a low-usage time of day.
 (This will not be sufficient if there is heavy update activity.)

 ANALYZE
 requires only a read lock on the target table, so it can run in
 parallel with other activity on the table.

 The statistics collected by ANALYZE usually
 include a list of some of the most common values in each column and
 a histogram showing the approximate data distribution in each
 column. One or both of these can be omitted if
 ANALYZE deems them uninteresting (for example,
 in a unique-key column, there are no common values) or if the
 column data type does not support the appropriate operators. There
 is more information about the statistics in Chapter 25, Routine Database Maintenance Tasks.

 For large tables, ANALYZE takes a random sample
 of the table contents, rather than examining every row. This
 allows even very large tables to be analyzed in a small amount of
 time. Note, however, that the statistics are only approximate, and
 will change slightly each time ANALYZE is run,
 even if the actual table contents did not change. This might result
 in small changes in the planner's estimated costs shown by
 EXPLAIN.
 In rare situations, this non-determinism will cause the planner's
 choices of query plans to change after ANALYZE is run.
 To avoid this, raise the amount of statistics collected by
 ANALYZE, as described below.

 The extent of analysis can be controlled by adjusting the
 default_statistics_target configuration variable, or
 on a column-by-column basis by setting the per-column statistics
 target with ALTER TABLE ... ALTER COLUMN ... SET
 STATISTICS.
 The target value sets the
 maximum number of entries in the most-common-value list and the
 maximum number of bins in the histogram. The default target value
 is 100, but this can be adjusted up or down to trade off accuracy of
 planner estimates against the time taken for
 ANALYZE and the amount of space occupied in
 pg_statistic. In particular, setting the
 statistics target to zero disables collection of statistics for
 that column. It might be useful to do that for columns that are
 never used as part of the WHERE, GROUP BY,
 or ORDER BY clauses of queries, since the planner will
 have no use for statistics on such columns.

 The largest statistics target among the columns being analyzed determines
 the number of table rows sampled to prepare the statistics. Increasing
 the target causes a proportional increase in the time and space needed
 to do ANALYZE.

 One of the values estimated by ANALYZE is the number of
 distinct values that appear in each column. Because only a subset of the
 rows are examined, this estimate can sometimes be quite inaccurate, even
 with the largest possible statistics target. If this inaccuracy leads to
 bad query plans, a more accurate value can be determined manually and then
 installed with
 ALTER TABLE ... ALTER COLUMN ... SET (n_distinct = ...).

 If the table being analyzed has inheritance children,
 ANALYZE gathers two sets of statistics: one on the rows
 of the parent table only, and a second including rows of both the parent
 table and all of its children. This second set of statistics is needed when
 planning queries that process the inheritance tree as a whole. The child
 tables themselves are not individually analyzed in this case.
 The autovacuum daemon, however, will only consider inserts or
 updates on the parent table itself when deciding whether to trigger an
 automatic analyze for that table. If that table is rarely inserted into
 or updated, the inheritance statistics will not be up to date unless you
 run ANALYZE manually.

 For partitioned tables, ANALYZE gathers statistics by
 sampling rows from all partitions; in addition, it will recurse into each
 partition and update its statistics. Each leaf partition is analyzed only
 once, even with multi-level partitioning. No statistics are collected for
 only the parent table (without data from its partitions), because with
 partitioning it's guaranteed to be empty.

 The autovacuum daemon does not process partitioned tables, nor does it
 process inheritance parents if only the children are ever modified.
 It is usually necessary to periodically run a manual
 ANALYZE to keep the statistics of the table hierarchy
 up to date.

 If any child tables or partitions are foreign tables whose foreign
 data wrappers do not support ANALYZE, those tables are
 ignored while gathering inheritance statistics.

 If the table being analyzed is completely empty, ANALYZE
 will not record new statistics for that table. Any existing statistics
 will be retained.

 Each backend running ANALYZE will report its progress
 in the pg_stat_progress_analyze view. See
 the section called “ANALYZE Progress Reporting” for details.

Compatibility

 There is no ANALYZE statement in the SQL standard.

See Also
VACUUM(7), vacuumdb(1), the section called “Cost-based Vacuum Delay”, the section called “The Autovacuum Daemon”, the section called “ANALYZE Progress Reporting”

Name
BEGIN — start a transaction block

Synopsis

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description

 BEGIN initiates a transaction block, that is,
 all statements after a BEGIN command will be
 executed in a single transaction until an explicit COMMIT or ROLLBACK is given.
 By default (without BEGIN),
 PostgreSQL™ executes
 transactions in “autocommit” mode, that is, each
 statement is executed in its own transaction and a commit is
 implicitly performed at the end of the statement (if execution was
 successful, otherwise a rollback is done).

 Statements are executed more quickly in a transaction block, because
 transaction start/commit requires significant CPU and disk
 activity. Execution of multiple statements inside a transaction is
 also useful to ensure consistency when making several related changes:
 other sessions will be unable to see the intermediate states
 wherein not all the related updates have been done.

 If the isolation level, read/write mode, or deferrable mode is specified, the new
 transaction has those characteristics, as if
 SET TRANSACTION
 was executed.

Parameters
	WORK, TRANSACTION
	
 Optional key words. They have no effect.

 Refer to SET TRANSACTION(7) for information on the meaning
 of the other parameters to this statement.

Notes

 START TRANSACTION has the same functionality
 as BEGIN.

 Use COMMIT or
 ROLLBACK
 to terminate a transaction block.

 Issuing BEGIN when already inside a transaction block will
 provoke a warning message. The state of the transaction is not affected.
 To nest transactions within a transaction block, use savepoints
 (see SAVEPOINT(7)).

 For reasons of backwards compatibility, the commas between successive
 transaction_modes can be
 omitted.

Examples

 To begin a transaction block:

BEGIN;

Compatibility

 BEGIN is a PostgreSQL™
 language extension. It is equivalent to the SQL-standard command
 START TRANSACTION, whose reference page
 contains additional compatibility information.

 The DEFERRABLE
 transaction_mode
 is a PostgreSQL™ language extension.

 Incidentally, the BEGIN key word is used for a
 different purpose in embedded SQL. You are advised to be careful
 about the transaction semantics when porting database applications.

See Also
COMMIT(7), ROLLBACK(7), START TRANSACTION(7), SAVEPOINT(7)

Name
CALL — invoke a procedure

Synopsis

CALL name ([argument] [, ...])

Description

 CALL executes a procedure.

 If the procedure has any output parameters, then a result row will be
 returned, containing the values of those parameters.

Parameters
	name
	
 The name (optionally schema-qualified) of the procedure.

	argument
	
 An argument expression for the procedure call.

 Arguments can include parameter names, using the syntax
 name => value.
 This works the same as in ordinary function calls; see
 the section called “Calling Functions” for details.

 Arguments must be supplied for all procedure parameters that lack
 defaults, including OUT parameters. However,
 arguments matching OUT parameters are not evaluated,
 so it's customary to just write NULL for them.
 (Writing something else for an OUT parameter
 might cause compatibility problems with
 future PostgreSQL™ versions.)

Notes

 The user must have EXECUTE privilege on the procedure in
 order to be allowed to invoke it.

 To call a function (not a procedure), use SELECT instead.

 If CALL is executed in a transaction block, then the
 called procedure cannot execute transaction control statements.
 Transaction control statements are only allowed if CALL
 is executed in its own transaction.

 PL/pgSQL handles output parameters
 in CALL commands differently;
 see the section called “Calling a Procedure”.

Examples

CALL do_db_maintenance();

Compatibility

 CALL conforms to the SQL standard,
 except for the handling of output parameters. The standard
 says that users should write variables to receive the values
 of output parameters.

See Also
CREATE PROCEDURE(7)

Name
CHECKPOINT — force a write-ahead log checkpoint

Synopsis

CHECKPOINT

Description

 A checkpoint is a point in the write-ahead log sequence at which
 all data files have been updated to reflect the information in the
 log. All data files will be flushed to disk. Refer to
 the section called “WAL Configuration” for more details about what happens
 during a checkpoint.

 The CHECKPOINT command forces an immediate
 checkpoint when the command is issued, without waiting for a
 regular checkpoint scheduled by the system (controlled by the settings in
 the section called “Checkpoints”).
 CHECKPOINT is not intended for use during normal
 operation.

 If executed during recovery, the CHECKPOINT command
 will force a restartpoint (see the section called “WAL Configuration”)
 rather than writing a new checkpoint.

 Only superusers or users with the privileges of
 the pg_checkpoint
 role can call CHECKPOINT.

Compatibility

 The CHECKPOINT command is a
 PostgreSQL™ language extension.

Name
CLOSE — close a cursor

Synopsis

CLOSE { name | ALL }

Description

 CLOSE frees the resources associated with an open cursor.
 After the cursor is closed, no subsequent operations
 are allowed on it. A cursor should be closed when it is
 no longer needed.

 Every non-holdable open cursor is implicitly closed when a
 transaction is terminated by COMMIT or
 ROLLBACK. A holdable cursor is implicitly
 closed if the transaction that created it aborts via
 ROLLBACK. If the creating transaction
 successfully commits, the holdable cursor remains open until an
 explicit CLOSE is executed, or the client
 disconnects.

Parameters
	name
	
 The name of an open cursor to close.

	ALL
	
 Close all open cursors.

Notes

 PostgreSQL™ does not have an explicit
 OPEN cursor statement; a cursor is considered
 open when it is declared. Use the
 DECLARE
 statement to declare a cursor.

 You can see all available cursors by querying the pg_cursors system view.

 If a cursor is closed after a savepoint which is later rolled back,
 the CLOSE is not rolled back; that is, the cursor
 remains closed.

Examples

 Close the cursor liahona:

CLOSE liahona;

Compatibility

 CLOSE is fully conforming with the SQL
 standard. CLOSE ALL is a PostgreSQL™
 extension.

See Also
DECLARE(7), FETCH(7), MOVE(7)

Name
CLUSTER — cluster a table according to an index

Synopsis

CLUSTER [VERBOSE] table_name [USING index_name]
CLUSTER (option [, ...]) table_name [USING index_name]
CLUSTER [VERBOSE]

where option can be one of:

 VERBOSE [boolean]

Description

 CLUSTER instructs PostgreSQL™
 to cluster the table specified
 by table_name
 based on the index specified by
 index_name. The index must
 already have been defined on
 table_name.

 When a table is clustered, it is physically reordered
 based on the index information. Clustering is a one-time operation:
 when the table is subsequently updated, the changes are
 not clustered. That is, no attempt is made to store new or
 updated rows according to their index order. (If one wishes, one can
 periodically recluster by issuing the command again. Also, setting
 the table's fillfactor storage parameter to less than
 100% can aid in preserving cluster ordering during updates, since updated
 rows are kept on the same page if enough space is available there.)

 When a table is clustered, PostgreSQL™
 remembers which index it was clustered by. The form
 CLUSTER table_name
 reclusters the table using the same index as before. You can also
 use the CLUSTER or SET WITHOUT CLUSTER
 forms of ALTER TABLE to set the index to be used for
 future cluster operations, or to clear any previous setting.

 CLUSTER without a
 table_name reclusters all the
 previously-clustered tables in the current database that the calling user
 owns, or all such tables if called by a superuser. This
 form of CLUSTER cannot be executed inside a transaction
 block.

 When a table is being clustered, an ACCESS
 EXCLUSIVE lock is acquired on it. This prevents any other
 database operations (both reads and writes) from operating on the
 table until the CLUSTER is finished.

Parameters
	table_name
	
 The name (possibly schema-qualified) of a table.

	index_name
	
 The name of an index.

	VERBOSE
	
 Prints a progress report as each table is clustered.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

Notes

 In cases where you are accessing single rows randomly
 within a table, the actual order of the data in the
 table is unimportant. However, if you tend to access some
 data more than others, and there is an index that groups
 them together, you will benefit from using CLUSTER.
 If you are requesting a range of indexed values from a table, or a
 single indexed value that has multiple rows that match,
 CLUSTER will help because once the index identifies the
 table page for the first row that matches, all other rows
 that match are probably already on the same table page,
 and so you save disk accesses and speed up the query.

 CLUSTER can re-sort the table using either an index scan
 on the specified index, or (if the index is a b-tree) a sequential
 scan followed by sorting. It will attempt to choose the method that
 will be faster, based on planner cost parameters and available statistical
 information.

 When an index scan is used, a temporary copy of the table is created that
 contains the table data in the index order. Temporary copies of each
 index on the table are created as well. Therefore, you need free space on
 disk at least equal to the sum of the table size and the index sizes.

 When a sequential scan and sort is used, a temporary sort file is
 also created, so that the peak temporary space requirement is as much
 as double the table size, plus the index sizes. This method is often
 faster than the index scan method, but if the disk space requirement is
 intolerable, you can disable this choice by temporarily setting enable_sort to off.

 It is advisable to set maintenance_work_mem to
 a reasonably large value (but not more than the amount of RAM you can
 dedicate to the CLUSTER operation) before clustering.

 Because the planner records statistics about the ordering of
 tables, it is advisable to run ANALYZE
 on the newly clustered table.
 Otherwise, the planner might make poor choices of query plans.

 Because CLUSTER remembers which indexes are clustered,
 one can cluster the tables one wants clustered manually the first time,
 then set up a periodic maintenance script that executes
 CLUSTER without any parameters, so that the desired tables
 are periodically reclustered.

 Each backend running CLUSTER will report its progress
 in the pg_stat_progress_cluster view. See
 the section called “CLUSTER Progress Reporting” for details.

 Clustering a partitioned table clusters each of its partitions using the
 partition of the specified partitioned index. When clustering a partitioned
 table, the index may not be omitted. CLUSTER on a
 partitioned table cannot be executed inside a transaction block.

Examples

 Cluster the table employees on the basis of
 its index employees_ind:

CLUSTER employees USING employees_ind;

 Cluster the employees table using the same
 index that was used before:

CLUSTER employees;

 Cluster all tables in the database that have previously been clustered:

CLUSTER;

Compatibility

 There is no CLUSTER statement in the SQL standard.

 The syntax

CLUSTER index_name ON table_name

 is also supported for compatibility with pre-8.3 PostgreSQL™
 versions.

See Also
clusterdb(1), the section called “CLUSTER Progress Reporting”

Name
COMMENT — define or change the comment of an object

Synopsis

COMMENT ON
{
 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 COLUMN relation_name.column_name |
 CONSTRAINT constraint_name ON table_name |
 CONSTRAINT constraint_name ON DOMAIN domain_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 POLICY policy_name ON table_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 STATISTICS object_name |
 SUBSCRIPTION object_name |
 TABLE object_name |
 TABLESPACE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name
} IS { string_literal | NULL }

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype [, ...]

Description

 COMMENT stores a comment about a database object.

 Only one comment string is stored for each object, so to modify a comment,
 issue a new COMMENT command for the same object. To remove a
 comment, write NULL in place of the text string.
 Comments are automatically dropped when their object is dropped.

 A SHARE UPDATE EXCLUSIVE lock is acquired on the
 object to be commented.

 For most kinds of object, only the object's owner can set the comment.
 Roles don't have owners, so the rule for COMMENT ON ROLE is
 that you must be superuser to comment on a superuser role, or have the
 CREATEROLE privilege and have been granted
 ADMIN OPTION on the target role.
 Likewise, access methods don't have owners either; you must be superuser
 to comment on an access method.
 Of course, a superuser can comment on anything.

 Comments can be viewed using psql's
 \d family of commands.
 Other user interfaces to retrieve comments can be built atop
 the same built-in functions that psql uses, namely
 obj_description, col_description,
 and shobj_description
 (see Table 9.78, “Comment Information Functions”).

Parameters
	object_name, relation_name.column_name, aggregate_name, constraint_name, function_name, operator_name, policy_name, procedure_name, routine_name, rule_name, trigger_name
	
 The name of the object to be commented. Names of objects that reside in
 schemas (tables, functions, etc.) can be
 schema-qualified. When commenting on a column,
 relation_name must refer
 to a table, view, composite type, or foreign table.

	table_name, domain_name
	
 When creating a comment on a constraint, a trigger, a rule or
 a policy these parameters specify the name of the table or domain on
 which that object is defined.

	source_type
	
 The name of the source data type of the cast.

	target_type
	
 The name of the target data type of the cast.

	argmode
	
 The mode of a function, procedure, or aggregate
 argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Note that COMMENT does not actually pay
 any attention to OUT arguments, since only the input
 arguments are needed to determine the function's identity.
 So it is sufficient to list the IN, INOUT,
 and VARIADIC arguments.

	argname
	
 The name of a function, procedure, or aggregate argument.
 Note that COMMENT does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the function's identity.

	argtype
	
 The data type of a function, procedure, or aggregate argument.

	large_object_oid
	
 The OID of the large object.

	left_type, right_type
	
 The data type(s) of the operator's arguments (optionally
 schema-qualified). Write NONE for the missing argument
 of a prefix operator.

	PROCEDURAL
	
 This is a noise word.

	type_name
	
 The name of the data type of the transform.

	lang_name
	
 The name of the language of the transform.

	string_literal
	
 The new comment contents, written as a string literal.

	NULL
	
 Write NULL to drop the comment.

Notes

 There is presently no security mechanism for viewing comments: any user
 connected to a database can see all the comments for objects in
 that database. For shared objects such as
 databases, roles, and tablespaces, comments are stored globally so any
 user connected to any database in the cluster can see all the comments
 for shared objects. Therefore, don't put security-critical
 information in comments.

Examples

 Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

 Remove it again:

COMMENT ON TABLE mytable IS NULL;

 Some more examples:

COMMENT ON ACCESS METHOD gin IS 'GIN index access method';
COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes sample variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';
COMMENT ON CONSTRAINT dom_col_constr ON DOMAIN dom IS 'Constrains col of domain';
COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EVENT TRIGGER abort_ddl IS 'Aborts all DDL commands';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in other database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON MATERIALIZED VIEW my_matview IS 'Summary of order history';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer operators for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer operators for btrees';
COMMENT ON POLICY my_policy ON mytable IS 'Filter rows by users';
COMMENT ON PROCEDURE my_proc (integer, integer) IS 'Runs a report';
COMMENT ON PUBLICATION alltables IS 'Publishes all operations on all tables';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON ROUTINE my_routine (integer, integer) IS 'Runs a routine (which is a function or procedure)';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON STATISTICS my_statistics IS 'Improves planner row estimations';
COMMENT ON SUBSCRIPTION alltables IS 'Subscription for all operations on all tables';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for Swedish language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRANSFORM FOR hstore LANGUAGE plpython3u IS 'Transform between hstore and Python dict';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';

Compatibility

 There is no COMMENT command in the SQL standard.

Name
COMMIT — commit the current transaction

Synopsis

COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description

 COMMIT commits the current transaction. All
 changes made by the transaction become visible to others
 and are guaranteed to be durable if a crash occurs.

Parameters
	WORK, TRANSACTION
	
 Optional key words. They have no effect.

	AND CHAIN
	
 If AND CHAIN is specified, a new transaction is
 immediately started with the same transaction characteristics (see SET TRANSACTION(7)) as the just finished one. Otherwise,
 no new transaction is started.

Notes

 Use ROLLBACK(7) to
 abort a transaction.

 Issuing COMMIT when not inside a transaction does
 no harm, but it will provoke a warning message. COMMIT AND
 CHAIN when not inside a transaction is an error.

Examples

 To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility

 The command COMMIT conforms to the SQL standard. The
 form COMMIT TRANSACTION is a PostgreSQL extension.

See Also
BEGIN(7), ROLLBACK(7)

Name
COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit

Synopsis

COMMIT PREPARED transaction_id

Description

 COMMIT PREPARED commits a transaction that is in
 prepared state.

Parameters
	transaction_id
	
 The transaction identifier of the transaction that is to be
 committed.

Notes

 To commit a prepared transaction, you must be either the same user that
 executed the transaction originally, or a superuser. But you do not
 have to be in the same session that executed the transaction.

 This command cannot be executed inside a transaction block. The prepared
 transaction is committed immediately.

 All currently available prepared transactions are listed in the
 pg_prepared_xacts
 system view.

Examples

 Commit the transaction identified by the transaction
 identifier foobar:

COMMIT PREPARED 'foobar';

Compatibility

 COMMIT PREPARED is a
 PostgreSQL™ extension. It is intended for use by
 external transaction management systems, some of which are covered by
 standards (such as X/Open XA), but the SQL side of those systems is not
 standardized.

See Also
PREPARE TRANSACTION(7), ROLLBACK PREPARED(7)

Name
COPY — copy data between a file and a table

Synopsis

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option [, ...])]
 [WHERE condition]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

where option can be one of:

 FORMAT format_name
 FREEZE [boolean]
 DELIMITER 'delimiter_character'
 NULL 'null_string'
 DEFAULT 'default_string'
 HEADER [boolean | MATCH]
 QUOTE 'quote_character'
 ESCAPE 'escape_character'
 FORCE_QUOTE { (column_name [, ...]) | * }
 FORCE_NOT_NULL (column_name [, ...])
 FORCE_NULL (column_name [, ...])
 ENCODING 'encoding_name'

Description

 COPY moves data between
 PostgreSQL™ tables and standard file-system
 files. COPY TO copies the contents of a table
 to a file, while COPY FROM copies
 data from a file to a table (appending the data to
 whatever is in the table already). COPY TO
 can also copy the results of a SELECT query.

 If a column list is specified, COPY TO copies only
 the data in the specified columns to the file. For COPY
 FROM, each field in the file is inserted, in order, into the
 specified column. Table columns not specified in the COPY
 FROM column list will receive their default values.

 COPY with a file name instructs the
 PostgreSQL™ server to directly read from
 or write to a file. The file must be accessible by the
 PostgreSQL™ user (the user ID the server
 runs as) and the name must be specified from the viewpoint of the
 server. When PROGRAM is specified, the server
 executes the given command and reads from the standard output of the
 program, or writes to the standard input of the program. The command
 must be specified from the viewpoint of the server, and be executable
 by the PostgreSQL™ user. When
 STDIN or STDOUT is
 specified, data is transmitted via the connection between the
 client and the server.

 Each backend running COPY will report its progress
 in the pg_stat_progress_copy view. See
 the section called “COPY Progress Reporting” for details.

Parameters
	table_name
	
 The name (optionally schema-qualified) of an existing table.

	column_name
	
 An optional list of columns to be copied. If no column list is
 specified, all columns of the table except generated columns will be
 copied.

	query
	
 A SELECT,
 VALUES,
 INSERT,
 UPDATE, or
 DELETE command whose results are to be
 copied. Note that parentheses are required around the query.

 For INSERT, UPDATE and
 DELETE queries a RETURNING clause
 must be provided, and the target relation must not have a conditional
 rule, nor an ALSO rule, nor an
 INSTEAD rule that expands to multiple statements.

	filename
	
 The path name of the input or output file. An input file name can be
 an absolute or relative path, but an output file name must be an absolute
 path. Windows users might need to use an E'' string and
 double any backslashes used in the path name.

	PROGRAM
	
 A command to execute. In COPY FROM, the input is
 read from standard output of the command, and in COPY TO,
 the output is written to the standard input of the command.

 Note that the command is invoked by the shell, so if you need to pass
 any arguments that come from an untrusted source, you
 must be careful to strip or escape any special characters that might
 have a special meaning for the shell. For security reasons, it is best
 to use a fixed command string, or at least avoid including any user input
 in it.

	STDIN
	
 Specifies that input comes from the client application.

	STDOUT
	
 Specifies that output goes to the client application.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

	FORMAT
	
 Selects the data format to be read or written:
 text,
 csv (Comma Separated Values),
 or binary.
 The default is text.

	FREEZE
	
 Requests copying the data with rows already frozen, just as they
 would be after running the VACUUM FREEZE command.
 This is intended as a performance option for initial data loading.
 Rows will be frozen only if the table being loaded has been created
 or truncated in the current subtransaction, there are no cursors
 open and there are no older snapshots held by this transaction. It is
 currently not possible to perform a COPY FREEZE on
 a partitioned table.

 Note that all other sessions will immediately be able to see the data
 once it has been successfully loaded. This violates the normal rules
 of MVCC visibility and users should be aware of the
 potential problems this might cause.

	DELIMITER
	
 Specifies the character that separates columns within each row
 (line) of the file. The default is a tab character in text format,
 a comma in CSV format.
 This must be a single one-byte character.
 This option is not allowed when using binary format.

	NULL
	
 Specifies the string that represents a null value. The default is
 \N (backslash-N) in text format, and an unquoted empty
 string in CSV format. You might prefer an
 empty string even in text format for cases where you don't want to
 distinguish nulls from empty strings.
 This option is not allowed when using binary format.

Note

 When using COPY FROM, any data item that matches
 this string will be stored as a null value, so you should make
 sure that you use the same string as you used with
 COPY TO.

	DEFAULT
	
 Specifies the string that represents a default value. Each time the string
 is found in the input file, the default value of the corresponding column
 will be used.
 This option is allowed only in COPY FROM, and only when
 not using binary format.

	HEADER
	
 Specifies that the file contains a header line with the names of each
 column in the file. On output, the first line contains the column
 names from the table. On input, the first line is discarded when this
 option is set to true (or equivalent Boolean value).
 If this option is set to MATCH, the number and names
 of the columns in the header line must match the actual column names of
 the table, in order; otherwise an error is raised.
 This option is not allowed when using binary format.
 The MATCH option is only valid for COPY
 FROM commands.

	QUOTE
	
 Specifies the quoting character to be used when a data value is quoted.
 The default is double-quote.
 This must be a single one-byte character.
 This option is allowed only when using CSV format.

	ESCAPE
	
 Specifies the character that should appear before a
 data character that matches the QUOTE value.
 The default is the same as the QUOTE value (so that
 the quoting character is doubled if it appears in the data).
 This must be a single one-byte character.
 This option is allowed only when using CSV format.

	FORCE_QUOTE
	
 Forces quoting to be
 used for all non-NULL values in each specified column.
 NULL output is never quoted. If * is specified,
 non-NULL values will be quoted in all columns.
 This option is allowed only in COPY TO, and only when
 using CSV format.

	FORCE_NOT_NULL
	
 Do not match the specified columns' values against the null string.
 In the default case where the null string is empty, this means that
 empty values will be read as zero-length strings rather than nulls,
 even when they are not quoted.
 This option is allowed only in COPY FROM, and only when
 using CSV format.

	FORCE_NULL
	
 Match the specified columns' values against the null string, even
 if it has been quoted, and if a match is found set the value to
 NULL. In the default case where the null string is empty,
 this converts a quoted empty string into NULL.
 This option is allowed only in COPY FROM, and only when
 using CSV format.

	ENCODING
	
 Specifies that the file is encoded in the encoding_name. If this option is
 omitted, the current client encoding is used. See the Notes below
 for more details.

	WHERE
	
 The optional WHERE clause has the general form

WHERE condition

 where condition is
 any expression that evaluates to a result of type
 boolean. Any row that does not satisfy this
 condition will not be inserted to the table. A row satisfies the
 condition if it returns true when the actual row values are
 substituted for any variable references.

 Currently, subqueries are not allowed in WHERE
 expressions, and the evaluation does not see any changes made by the
 COPY itself (this matters when the expression
 contains calls to VOLATILE functions).

Outputs

 On successful completion, a COPY command returns a command
 tag of the form

COPY count

 The count is the number
 of rows copied.

Note

 psql will print this command tag only if the command
 was not COPY ... TO STDOUT, or the
 equivalent psql meta-command
 \copy ... to stdout. This is to prevent confusing the
 command tag with the data that was just printed.

Notes

 COPY TO can be used only with plain
 tables, not views, and does not copy rows from child tables
 or child partitions. For example, COPY table TO copies
 the same rows as SELECT * FROM ONLY table.
 The syntax COPY (SELECT * FROM table) TO ... can be used to
 dump all of the rows in an inheritance hierarchy, partitioned table,
 or view.

 COPY FROM can be used with plain, foreign, or
 partitioned tables or with views that have
 INSTEAD OF INSERT triggers.

 You must have select privilege on the table
 whose values are read by COPY TO, and
 insert privilege on the table into which values
 are inserted by COPY FROM. It is sufficient
 to have column privileges on the column(s) listed in the command.

 If row-level security is enabled for the table, the relevant
 SELECT policies will apply to COPY
 table TO statements.
 Currently, COPY FROM is not supported for tables
 with row-level security. Use equivalent INSERT
 statements instead.

 Files named in a COPY command are read or written
 directly by the server, not by the client application. Therefore,
 they must reside on or be accessible to the database server machine,
 not the client. They must be accessible to and readable or writable
 by the PostgreSQL™ user (the user ID the
 server runs as), not the client. Similarly,
 the command specified with PROGRAM is executed directly
 by the server, not by the client application, must be executable by the
 PostgreSQL™ user.
 COPY naming a file or command is only allowed to
 database superusers or users who are granted one of the roles
 pg_read_server_files,
 pg_write_server_files,
 or pg_execute_server_program, since it allows reading
 or writing any file or running a program that the server has privileges to
 access.

 Do not confuse COPY with the
 psql instruction
 \copy. \copy invokes
 COPY FROM STDIN or COPY TO
 STDOUT, and then fetches/stores the data in a file
 accessible to the psql client. Thus,
 file accessibility and access rights depend on the client rather
 than the server when \copy is used.

 It is recommended that the file name used in COPY
 always be specified as an absolute path. This is enforced by the
 server in the case of COPY TO, but for
 COPY FROM you do have the option of reading from
 a file specified by a relative path. The path will be interpreted
 relative to the working directory of the server process (normally
 the cluster's data directory), not the client's working directory.

 Executing a command with PROGRAM might be restricted
 by the operating system's access control mechanisms, such as SELinux.

 COPY FROM will invoke any triggers and check
 constraints on the destination table. However, it will not invoke rules.

 For identity columns, the COPY FROM command will always
 write the column values provided in the input data, like
 the INSERT option OVERRIDING SYSTEM
 VALUE.

 COPY input and output is affected by
 DateStyle. To ensure portability to other
 PostgreSQL™ installations that might use
 non-default DateStyle settings,
 DateStyle should be set to ISO before
 using COPY TO. It is also a good idea to avoid dumping
 data with IntervalStyle set to
 sql_standard, because negative interval values might be
 misinterpreted by a server that has a different setting for
 IntervalStyle.

 Input data is interpreted according to ENCODING
 option or the current client encoding, and output data is encoded
 in ENCODING or the current client encoding, even
 if the data does not pass through the client but is read from or
 written to a file directly by the server.

 COPY stops operation at the first error. This
 should not lead to problems in the event of a COPY
 TO, but the target table will already have received
 earlier rows in a COPY FROM. These rows will not
 be visible or accessible, but they still occupy disk space. This might
 amount to a considerable amount of wasted disk space if the failure
 happened well into a large copy operation. You might wish to invoke
 VACUUM to recover the wasted space.

 FORCE_NULL and FORCE_NOT_NULL can be used
 simultaneously on the same column. This results in converting quoted
 null strings to null values and unquoted null strings to empty strings.

File Formats
Text Format

 When the text format is used,
 the data read or written is a text file with one line per table row.
 Columns in a row are separated by the delimiter character.
 The column values themselves are strings generated by the
 output function, or acceptable to the input function, of each
 attribute's data type. The specified null string is used in
 place of columns that are null.
 COPY FROM will raise an error if any line of the
 input file contains more or fewer columns than are expected.

 End of data can be represented by a single line containing just
 backslash-period (\.). An end-of-data marker is
 not necessary when reading from a file, since the end of file
 serves perfectly well; it is needed only when copying data to or from
 client applications using pre-3.0 client protocol.

 Backslash characters (\) can be used in the
 COPY data to quote data characters that might
 otherwise be taken as row or column delimiters. In particular, the
 following characters must be preceded by a backslash if
 they appear as part of a column value: backslash itself,
 newline, carriage return, and the current delimiter character.

 The specified null string is sent by COPY TO without
 adding any backslashes; conversely, COPY FROM matches
 the input against the null string before removing backslashes. Therefore,
 a null string such as \N cannot be confused with
 the actual data value \N (which would be represented
 as \\N).

 The following special backslash sequences are recognized by
 COPY FROM:

	Sequence	Represents
	\b	Backspace (ASCII 8)
	\f	Form feed (ASCII 12)
	\n	Newline (ASCII 10)
	\r	Carriage return (ASCII 13)
	\t	Tab (ASCII 9)
	\v	Vertical tab (ASCII 11)
	\digits	Backslash followed by one to three octal digits specifies
 the byte with that numeric code
	\xdigits	Backslash x followed by one or two hex digits specifies
 the byte with that numeric code

 Presently, COPY TO will never emit an octal or
 hex-digits backslash sequence, but it does use the other sequences
 listed above for those control characters.

 Any other backslashed character that is not mentioned in the above table
 will be taken to represent itself. However, beware of adding backslashes
 unnecessarily, since that might accidentally produce a string matching the
 end-of-data marker (\.) or the null string (\N by
 default). These strings will be recognized before any other backslash
 processing is done.

 It is strongly recommended that applications generating COPY data convert
 data newlines and carriage returns to the \n and
 \r sequences respectively. At present it is
 possible to represent a data carriage return by a backslash and carriage
 return, and to represent a data newline by a backslash and newline.
 However, these representations might not be accepted in future releases.
 They are also highly vulnerable to corruption if the COPY file is
 transferred across different machines (for example, from Unix to Windows
 or vice versa).

 All backslash sequences are interpreted after encoding conversion.
 The bytes specified with the octal and hex-digit backslash sequences must
 form valid characters in the database encoding.

 COPY TO will terminate each row with a Unix-style
 newline (“\n”). Servers running on Microsoft Windows instead
 output carriage return/newline (“\r\n”), but only for
 COPY to a server file; for consistency across platforms,
 COPY TO STDOUT always sends “\n”
 regardless of server platform.
 COPY FROM can handle lines ending with newlines,
 carriage returns, or carriage return/newlines. To reduce the risk of
 error due to un-backslashed newlines or carriage returns that were
 meant as data, COPY FROM will complain if the line
 endings in the input are not all alike.

CSV Format

 This format option is used for importing and exporting the Comma
 Separated Value (CSV) file format used by many other
 programs, such as spreadsheets. Instead of the escaping rules used by
 PostgreSQL™'s standard text format, it
 produces and recognizes the common CSV escaping mechanism.

 The values in each record are separated by the DELIMITER
 character. If the value contains the delimiter character, the
 QUOTE character, the NULL string, a carriage
 return, or line feed character, then the whole value is prefixed and
 suffixed by the QUOTE character, and any occurrence
 within the value of a QUOTE character or the
 ESCAPE character is preceded by the escape character.
 You can also use FORCE_QUOTE to force quotes when outputting
 non-NULL values in specific columns.

 The CSV format has no standard way to distinguish a
 NULL value from an empty string.
 PostgreSQL™'s COPY handles this by quoting.
 A NULL is output as the NULL parameter string
 and is not quoted, while a non-NULL value matching the
 NULL parameter string is quoted. For example, with the
 default settings, a NULL is written as an unquoted empty
 string, while an empty string data value is written with double quotes
 (""). Reading values follows similar rules. You can
 use FORCE_NOT_NULL to prevent NULL input
 comparisons for specific columns. You can also use
 FORCE_NULL to convert quoted null string data values to
 NULL.

 Because backslash is not a special character in the CSV
 format, \., the end-of-data marker, could also appear
 as a data value. To avoid any misinterpretation, a \.
 data value appearing as a lone entry on a line is automatically
 quoted on output, and on input, if quoted, is not interpreted as the
 end-of-data marker. If you are loading a file created by another
 application that has a single unquoted column and might have a
 value of \., you might need to quote that value in the
 input file.

Note

 In CSV format, all characters are significant. A quoted value
 surrounded by white space, or any characters other than
 DELIMITER, will include those characters. This can cause
 errors if you import data from a system that pads CSV
 lines with white space out to some fixed width. If such a situation
 arises you might need to preprocess the CSV file to remove
 the trailing white space, before importing the data into
 PostgreSQL™.

Note

 CSV format will both recognize and produce CSV files with quoted
 values containing embedded carriage returns and line feeds. Thus
 the files are not strictly one line per table row like text-format
 files.

Note

 Many programs produce strange and occasionally perverse CSV files,
 so the file format is more a convention than a standard. Thus you
 might encounter some files that cannot be imported using this
 mechanism, and COPY might produce files that other
 programs cannot process.

Binary Format

 The binary format option causes all data to be
 stored/read as binary format rather than as text. It is
 somewhat faster than the text and CSV formats,
 but a binary-format file is less portable across machine architectures and
 PostgreSQL™ versions.
 Also, the binary format is very data type specific; for example
 it will not work to output binary data from a smallint column
 and read it into an integer column, even though that would work
 fine in text format.

 The binary file format consists
 of a file header, zero or more tuples containing the row data, and
 a file trailer. Headers and data are in network byte order.

Note

 PostgreSQL™ releases before 7.4 used a
 different binary file format.

File Header

 The file header consists of 15 bytes of fixed fields, followed
 by a variable-length header extension area. The fixed fields are:

	Signature
	
11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte
is a required part of the signature. (The signature is designed to allow
easy identification of files that have been munged by a non-8-bit-clean
transfer. This signature will be changed by end-of-line-translation
filters, dropped zero bytes, dropped high bits, or parity changes.)

	Flags field
	
32-bit integer bit mask to denote important aspects of the file format. Bits
are numbered from 0 (LSB) to 31 (MSB). Note that
this field is stored in network byte order (most significant byte first),
as are all the integer fields used in the file format. Bits
16–31 are reserved to denote critical file format issues; a reader
should abort if it finds an unexpected bit set in this range. Bits 0–15
are reserved to signal backwards-compatible format issues; a reader
should simply ignore any unexpected bits set in this range. Currently
only one flag bit is defined, and the rest must be zero:

	Bit 16
	
 If 1, OIDs are included in the data; if 0, not. Oid system columns
 are not supported in PostgreSQL™
 anymore, but the format still contains the indicator.

	Header extension area length
	
32-bit integer, length in bytes of remainder of header, not including self.
Currently, this is zero, and the first tuple follows
immediately. Future changes to the format might allow additional data
to be present in the header. A reader should silently skip over any header
extension data it does not know what to do with.

The header extension area is envisioned to contain a sequence of
self-identifying chunks. The flags field is not intended to tell readers
what is in the extension area. Specific design of header extension contents
is left for a later release.

 This design allows for both backwards-compatible header additions (add
 header extension chunks, or set low-order flag bits) and
 non-backwards-compatible changes (set high-order flag bits to signal such
 changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the
tuple. (Presently, all tuples in a table will have the same count, but that
might not always be true.) Then, repeated for each field in the tuple, there
is a 32-bit length word followed by that many bytes of field data. (The
length word does not include itself, and can be zero.) As a special case,
-1 indicates a NULL field value. No value bytes follow in the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are
assumed to be in binary format (format code one). It is anticipated that a
future extension might add a header field that allows per-column format codes
to be specified.

To determine the appropriate binary format for the actual tuple data you
should consult the PostgreSQL™ source, in
particular the *send and *recv functions for
each column's data type (typically these functions are found in the
src/backend/utils/adt/ directory of the source
distribution).

If OIDs are included in the file, the OID field immediately follows the
field-count word. It is a normal field except that it's not included in the
field-count. Note that oid system columns are not supported in current
versions of PostgreSQL™.

File Trailer

 The file trailer consists of a 16-bit integer word containing -1. This
 is easily distinguished from a tuple's field-count word.

 A reader should report an error if a field-count word is neither -1
 nor the expected number of columns. This provides an extra
 check against somehow getting out of sync with the data.

Examples

 The following example copies a table to the client
 using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER '|');

 To copy data from a file into the country table:

COPY country FROM '/usr1/proj/bray/sql/country_data';

 To copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO '/usr1/proj/bray/sql/a_list_countries.copy';

 To copy into a compressed file, you can pipe the output through an external
 compression program:

COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';

 Here is a sample of data suitable for copying into a table from
 STDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

 Note that the white space on each line is actually a tab character.

 The following is the same data, output in binary format.
 The data is shown after filtering through the
 Unix utility od -c. The table has three columns;
 the first has type char(2), the second has type text,
 and the third has type integer. All the rows have a null value
 in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A
0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility

 There is no COPY statement in the SQL standard.

 The following syntax was used before PostgreSQL™
 version 9.0 and is still supported:

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE NOT NULL column_name [, ...]]]]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | STDOUT }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE QUOTE { column_name [, ...] | * }]]]

 Note that in this syntax, BINARY and CSV are
 treated as independent keywords, not as arguments of a FORMAT
 option.

 The following syntax was used before PostgreSQL™
 version 7.3 and is still supported:

COPY [BINARY] table_name
 FROM { 'filename' | STDIN }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

COPY [BINARY] table_name
 TO { 'filename' | STDOUT }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

See Also
the section called “COPY Progress Reporting”

Name
CREATE ACCESS METHOD — define a new access method

Synopsis

CREATE ACCESS METHOD name
 TYPE access_method_type
 HANDLER handler_function

Description

 CREATE ACCESS METHOD creates a new access method.

 The access method name must be unique within the database.

 Only superusers can define new access methods.

Parameters
	name
	
 The name of the access method to be created.

	access_method_type
	
 This clause specifies the type of access method to define.
 Only TABLE and INDEX
 are supported at present.

	handler_function
	
 handler_function is the
 name (possibly schema-qualified) of a previously registered function
 that represents the access method. The handler function must be
 declared to take a single argument of type internal,
 and its return type depends on the type of access method;
 for TABLE access methods, it must
 be table_am_handler and for INDEX
 access methods, it must be index_am_handler.
 The C-level API that the handler function must implement varies
 depending on the type of access method. The table access method API
 is described in Chapter 63, Table Access Method Interface Definition and the index access method
 API is described in Chapter 64, Index Access Method Interface Definition.

Examples

 Create an index access method heptree with
 handler function heptree_handler:

CREATE ACCESS METHOD heptree TYPE INDEX HANDLER heptree_handler;

Compatibility

 CREATE ACCESS METHOD is a
 PostgreSQL™ extension.

See Also
DROP ACCESS METHOD(7), CREATE OPERATOR CLASS(7), CREATE OPERATOR FAMILY(7)

Name
CREATE AGGREGATE — define a new aggregate function

Synopsis

CREATE [OR REPLACE] AGGREGATE name ([argmode] [argname] arg_data_type [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
)

CREATE [OR REPLACE] AGGREGATE name ([[argmode] [argname] arg_data_type [, ...]]
 ORDER BY [argmode] [argname] arg_data_type [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, INITCOND = initial_condition]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
 [, HYPOTHETICAL]
)

or the old syntax

CREATE [OR REPLACE] AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

Description

 CREATE AGGREGATE defines a new aggregate function.
 CREATE OR REPLACE AGGREGATE will either define a new
 aggregate function or replace an existing definition. Some basic and
 commonly-used aggregate functions are included with the distribution; they
 are documented in the section called “Aggregate Functions”. If one defines new
 types or needs an aggregate function not already provided, then
 CREATE AGGREGATE can be used to provide the desired
 features.

 When replacing an existing definition, the argument types, result type,
 and number of direct arguments may not be changed. Also, the new definition
 must be of the same kind (ordinary aggregate, ordered-set aggregate, or
 hypothetical-set aggregate) as the old one.

 If a schema name is given (for example, CREATE AGGREGATE
 myschema.myagg ...) then the aggregate function is created in the
 specified schema. Otherwise it is created in the current schema.

 An aggregate function is identified by its name and input data type(s).
 Two aggregates in the same schema can have the same name if they operate on
 different input types. The
 name and input data type(s) of an aggregate must also be distinct from
 the name and input data type(s) of every ordinary function in the same
 schema.
 This behavior is identical to overloading of ordinary function names
 (see CREATE FUNCTION(7)).

 A simple aggregate function is made from one or two ordinary
 functions:
 a state transition function
 sfunc,
 and an optional final calculation function
 ffunc.
 These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

 PostgreSQL™ creates a temporary variable
 of data type stype
 to hold the current internal state of the aggregate. At each input row,
 the aggregate argument value(s) are calculated and
 the state transition function is invoked with the current state value
 and the new argument value(s) to calculate a new
 internal state value. After all the rows have been processed,
 the final function is invoked once to calculate the aggregate's return
 value. If there is no final function then the ending state value
 is returned as-is.

 An aggregate function can provide an initial condition,
 that is, an initial value for the internal state value.
 This is specified and stored in the database as a value of type
 text, but it must be a valid external representation
 of a constant of the state value data type. If it is not supplied
 then the state value starts out null.

 If the state transition function is declared “strict”,
 then it cannot be called with null inputs. With such a transition
 function, aggregate execution behaves as follows. Rows with any null input
 values are ignored (the function is not called and the previous state value
 is retained). If the initial state value is null, then at the first row
 with all-nonnull input values, the first argument value replaces the state
 value, and the transition function is invoked at each subsequent row with
 all-nonnull input values.
 This is handy for implementing aggregates like max.
 Note that this behavior is only available when
 state_data_type
 is the same as the first
 arg_data_type.
 When these types are different, you must supply a nonnull initial
 condition or use a nonstrict transition function.

 If the state transition function is not strict, then it will be called
 unconditionally at each input row, and must deal with null inputs
 and null state values for itself. This allows the aggregate
 author to have full control over the aggregate's handling of null values.

 If the final function is declared “strict”, then it will not
 be called when the ending state value is null; instead a null result
 will be returned automatically. (Of course this is just the normal
 behavior of strict functions.) In any case the final function has
 the option of returning a null value. For example, the final function for
 avg returns null when it sees there were zero
 input rows.

 Sometimes it is useful to declare the final function as taking not just
 the state value, but extra parameters corresponding to the aggregate's
 input values. The main reason for doing this is if the final function
 is polymorphic and the state value's data type would be inadequate to
 pin down the result type. These extra parameters are always passed as
 NULL (and so the final function must not be strict when
 the FINALFUNC_EXTRA option is used), but nonetheless they
 are valid parameters. The final function could for example make use
 of get_fn_expr_argtype to identify the actual argument type
 in the current call.

 An aggregate can optionally support moving-aggregate mode,
 as described in the section called “Moving-Aggregate Mode”. This requires
 specifying the MSFUNC, MINVFUNC,
 and MSTYPE parameters, and optionally
 the MSSPACE, MFINALFUNC,
 MFINALFUNC_EXTRA, MFINALFUNC_MODIFY,
 and MINITCOND parameters. Except for MINVFUNC,
 these parameters work like the corresponding simple-aggregate parameters
 without M; they define a separate implementation of the
 aggregate that includes an inverse transition function.

 The syntax with ORDER BY in the parameter list creates
 a special type of aggregate called an ordered-set
 aggregate; or if HYPOTHETICAL is specified, then
 a hypothetical-set aggregate is created. These
 aggregates operate over groups of sorted values in order-dependent ways,
 so that specification of an input sort order is an essential part of a
 call. Also, they can have direct arguments, which are
 arguments that are evaluated only once per aggregation rather than once
 per input row. Hypothetical-set aggregates are a subclass of ordered-set
 aggregates in which some of the direct arguments are required to match,
 in number and data types, the aggregated argument columns. This allows
 the values of those direct arguments to be added to the collection of
 aggregate-input rows as an additional “hypothetical” row.

 An aggregate can optionally support partial aggregation,
 as described in the section called “Partial Aggregation”.
 This requires specifying the COMBINEFUNC parameter.
 If the state_data_type
 is internal, it's usually also appropriate to provide the
 SERIALFUNC and DESERIALFUNC parameters so that
 parallel aggregation is possible. Note that the aggregate must also be
 marked PARALLEL SAFE to enable parallel aggregation.

 Aggregates that behave like MIN or MAX can
 sometimes be optimized by looking into an index instead of scanning every
 input row. If this aggregate can be so optimized, indicate it by
 specifying a sort operator. The basic requirement is that
 the aggregate must yield the first element in the sort ordering induced by
 the operator; in other words:

SELECT agg(col) FROM tab;

 must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

 Further assumptions are that the aggregate ignores null inputs, and that
 it delivers a null result if and only if there were no non-null inputs.
 Ordinarily, a data type's < operator is the proper sort
 operator for MIN, and > is the proper sort
 operator for MAX. Note that the optimization will never
 actually take effect unless the specified operator is the “less
 than” or “greater than” strategy member of a B-tree
 index operator class.

 To be able to create an aggregate function, you must
 have USAGE privilege on the argument types, the state
 type(s), and the return type, as well as EXECUTE
 privilege on the supporting functions.

Parameters
	name
	
 The name (optionally schema-qualified) of the aggregate function
 to create.

	argmode
	
 The mode of an argument: IN or VARIADIC.
 (Aggregate functions do not support OUT arguments.)
 If omitted, the default is IN. Only the last argument
 can be marked VARIADIC.

	argname
	
 The name of an argument. This is currently only useful for
 documentation purposes. If omitted, the argument has no name.

	arg_data_type
	
 An input data type on which this aggregate function operates.
 To create a zero-argument aggregate function, write *
 in place of the list of argument specifications. (An example of such an
 aggregate is count(*).)

	base_type
	
 In the old syntax for CREATE AGGREGATE, the input data type
 is specified by a basetype parameter rather than being
 written next to the aggregate name. Note that this syntax allows
 only one input parameter. To define a zero-argument aggregate function
 with this syntax, specify the basetype as
 "ANY" (not *).
 Ordered-set aggregates cannot be defined with the old syntax.

	sfunc
	
 The name of the state transition function to be called for each
 input row. For a normal N-argument
 aggregate function, the sfunc
 must take N+1 arguments,
 the first being of type state_data_type and the rest
 matching the declared input data type(s) of the aggregate.
 The function must return a value of type state_data_type. This function
 takes the current state value and the current input data value(s),
 and returns the next state value.

 For ordered-set (including hypothetical-set) aggregates, the state
 transition function receives only the current state value and the
 aggregated arguments, not the direct arguments. Otherwise it is the
 same.

	state_data_type
	
 The data type for the aggregate's state value.

	state_data_size
	
 The approximate average size (in bytes) of the aggregate's state value.
 If this parameter is omitted or is zero, a default estimate is used
 based on the state_data_type.
 The planner uses this value to estimate the memory required for a
 grouped aggregate query.

	ffunc
	
 The name of the final function called to compute the aggregate's
 result after all input rows have been traversed.
 For a normal aggregate, this function
 must take a single argument of type state_data_type. The return
 data type of the aggregate is defined as the return type of this
 function. If ffunc
 is not specified, then the ending state value is used as the
 aggregate's result, and the return type is state_data_type.

 For ordered-set (including hypothetical-set) aggregates, the
 final function receives not only the final state value,
 but also the values of all the direct arguments.

 If FINALFUNC_EXTRA is specified, then in addition to the
 final state value and any direct arguments, the final function
 receives extra NULL values corresponding to the aggregate's regular
 (aggregated) arguments. This is mainly useful to allow correct
 resolution of the aggregate result type when a polymorphic aggregate
 is being defined.

	FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
	
 This option specifies whether the final function is a pure function
 that does not modify its arguments. READ_ONLY indicates
 it does not; the other two values indicate that it may change the
 transition state value. See Notes
 below for more detail. The
 default is READ_ONLY, except for ordered-set aggregates,
 for which the default is READ_WRITE.

	combinefunc
	
 The combinefunc function
 may optionally be specified to allow the aggregate function to support
 partial aggregation. If provided,
 the combinefunc must
 combine two state_data_type
 values, each containing the result of aggregation over some subset of
 the input values, to produce a
 new state_data_type that
 represents the result of aggregating over both sets of inputs. This
 function can be thought of as
 an sfunc, where instead of
 acting upon an individual input row and adding it to the running
 aggregate state, it adds another aggregate state to the running state.

 The combinefunc must be
 declared as taking two arguments of
 the state_data_type and
 returning a value of
 the state_data_type.
 Optionally this function may be “strict”. In this case the
 function will not be called when either of the input states are null;
 the other state will be taken as the correct result.

 For aggregate functions
 whose state_data_type
 is internal,
 the combinefunc must not
 be strict. In this case
 the combinefunc must
 ensure that null states are handled correctly and that the state being
 returned is properly stored in the aggregate memory context.

	serialfunc
	
 An aggregate function
 whose state_data_type
 is internal can participate in parallel aggregation only if it
 has a serialfunc function,
 which must serialize the aggregate state into a bytea value for
 transmission to another process. This function must take a single
 argument of type internal and return type bytea. A
 corresponding deserialfunc
 is also required.

	deserialfunc
	
 Deserialize a previously serialized aggregate state back into
 state_data_type. This
 function must take two arguments of types bytea
 and internal, and produce a result of type internal.
 (Note: the second, internal argument is unused, but is required
 for type safety reasons.)

	initial_condition
	
 The initial setting for the state value. This must be a string
 constant in the form accepted for the data type state_data_type. If not
 specified, the state value starts out null.

	msfunc
	
 The name of the forward state transition function to be called for each
 input row in moving-aggregate mode. This is exactly like the regular
 transition function, except that its first argument and result are of
 type mstate_data_type, which might be different
 from state_data_type.

	minvfunc
	
 The name of the inverse state transition function to be used in
 moving-aggregate mode. This function has the same argument and
 result types as msfunc, but it is used to remove
 a value from the current aggregate state, rather than add a value to
 it. The inverse transition function must have the same strictness
 attribute as the forward state transition function.

	mstate_data_type
	
 The data type for the aggregate's state value, when using
 moving-aggregate mode.

	mstate_data_size
	
 The approximate average size (in bytes) of the aggregate's state
 value, when using moving-aggregate mode. This works the same as
 state_data_size.

	mffunc
	
 The name of the final function called to compute the aggregate's
 result after all input rows have been traversed, when using
 moving-aggregate mode. This works the same as ffunc,
 except that its first argument's type
 is mstate_data_type and extra dummy arguments are
 specified by writing MFINALFUNC_EXTRA.
 The aggregate result type determined by mffunc
 or mstate_data_type must match that determined by the
 aggregate's regular implementation.

	MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
	
 This option is like FINALFUNC_MODIFY, but it describes
 the behavior of the moving-aggregate final function.

	minitial_condition
	
 The initial setting for the state value, when using moving-aggregate
 mode. This works the same as initial_condition.

	sort_operator
	
 The associated sort operator for a MIN- or
 MAX-like aggregate.
 This is just an operator name (possibly schema-qualified).
 The operator is assumed to have the same input data types as
 the aggregate (which must be a single-argument normal aggregate).

	PARALLEL = { SAFE | RESTRICTED | UNSAFE }
	
 The meanings of PARALLEL SAFE, PARALLEL
 RESTRICTED, and PARALLEL UNSAFE are the same as
 in CREATE FUNCTION. An aggregate will not be
 considered for parallelization if it is marked PARALLEL
 UNSAFE (which is the default!) or PARALLEL RESTRICTED.
 Note that the parallel-safety markings of the aggregate's support
 functions are not consulted by the planner, only the marking of the
 aggregate itself.

	HYPOTHETICAL
	
 For ordered-set aggregates only, this flag specifies that the aggregate
 arguments are to be processed according to the requirements for
 hypothetical-set aggregates: that is, the last few direct arguments must
 match the data types of the aggregated (WITHIN GROUP)
 arguments. The HYPOTHETICAL flag has no effect on
 run-time behavior, only on parse-time resolution of the data types and
 collations of the aggregate's arguments.

 The parameters of CREATE AGGREGATE can be
 written in any order, not just the order illustrated above.

Notes

 In parameters that specify support function names, you can write
 a schema name if needed, for example SFUNC = public.sum.
 Do not write argument types there, however — the argument types
 of the support functions are determined from other parameters.

 Ordinarily, PostgreSQL functions are expected to be true functions that
 do not modify their input values. However, an aggregate transition
 function, when used in the context of an aggregate,
 is allowed to cheat and modify its transition-state argument in place.
 This can provide substantial performance benefits compared to making
 a fresh copy of the transition state each time.

 Likewise, while an aggregate final function is normally expected not to
 modify its input values, sometimes it is impractical to avoid modifying
 the transition-state argument. Such behavior must be declared using
 the FINALFUNC_MODIFY parameter.
 The READ_WRITE
 value indicates that the final function modifies the transition state in
 unspecified ways. This value prevents use of the aggregate as a window
 function, and it also prevents merging of transition states for aggregate
 calls that share the same input values and transition functions.
 The SHAREABLE value indicates that the transition function
 cannot be applied after the final function, but multiple final-function
 calls can be performed on the ending transition state value. This value
 prevents use of the aggregate as a window function, but it allows merging
 of transition states. (That is, the optimization of interest here is not
 applying the same final function repeatedly, but applying different final
 functions to the same ending transition state value. This is allowed as
 long as none of the final functions are marked READ_WRITE.)

 If an aggregate supports moving-aggregate mode, it will improve
 calculation efficiency when the aggregate is used as a window function
 for a window with moving frame start (that is, a frame start mode other
 than UNBOUNDED PRECEDING). Conceptually, the forward
 transition function adds input values to the aggregate's state when
 they enter the window frame from the bottom, and the inverse transition
 function removes them again when they leave the frame at the top. So,
 when values are removed, they are always removed in the same order they
 were added. Whenever the inverse transition function is invoked, it will
 thus receive the earliest added but not yet removed argument value(s).
 The inverse transition function can assume that at least one row will
 remain in the current state after it removes the oldest row. (When this
 would not be the case, the window function mechanism simply starts a
 fresh aggregation, rather than using the inverse transition function.)

 The forward transition function for moving-aggregate mode is not
 allowed to return NULL as the new state value. If the inverse
 transition function returns NULL, this is taken as an indication that
 the inverse function cannot reverse the state calculation for this
 particular input, and so the aggregate calculation will be redone from
 scratch for the current frame starting position. This convention
 allows moving-aggregate mode to be used in situations where there are
 some infrequent cases that are impractical to reverse out of the
 running state value.

 If no moving-aggregate implementation is supplied,
 the aggregate can still be used with moving frames,
 but PostgreSQL™ will recompute the whole
 aggregation whenever the start of the frame moves.
 Note that whether or not the aggregate supports moving-aggregate
 mode, PostgreSQL™ can handle a moving frame
 end without recalculation; this is done by continuing to add new values
 to the aggregate's state. This is why use of an aggregate as a window
 function requires that the final function be read-only: it must
 not damage the aggregate's state value, so that the aggregation can be
 continued even after an aggregate result value has been obtained for
 one set of frame boundaries.

 The syntax for ordered-set aggregates allows VARIADIC
 to be specified for both the last direct parameter and the last
 aggregated (WITHIN GROUP) parameter. However, the
 current implementation restricts use of VARIADIC
 in two ways. First, ordered-set aggregates can only use
 VARIADIC "any", not other variadic array types.
 Second, if the last direct parameter is VARIADIC "any",
 then there can be only one aggregated parameter and it must also
 be VARIADIC "any". (In the representation used in the
 system catalogs, these two parameters are merged into a single
 VARIADIC "any" item, since pg_proc cannot
 represent functions with more than one VARIADIC parameter.)
 If the aggregate is a hypothetical-set aggregate, the direct arguments
 that match the VARIADIC "any" parameter are the hypothetical
 ones; any preceding parameters represent additional direct arguments
 that are not constrained to match the aggregated arguments.

 Currently, ordered-set aggregates do not need to support
 moving-aggregate mode, since they cannot be used as window functions.

 Partial (including parallel) aggregation is currently not supported for
 ordered-set aggregates. Also, it will never be used for aggregate calls
 that include DISTINCT or ORDER BY clauses, since
 those semantics cannot be supported during partial aggregation.

Examples

 See the section called “User-Defined Aggregates”.

Compatibility

 CREATE AGGREGATE is a
 PostgreSQL™ language extension. The SQL
 standard does not provide for user-defined aggregate functions.

See Also
ALTER AGGREGATE(7), DROP AGGREGATE(7)

Name
CREATE CAST — define a new cast

Synopsis

CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type [, ...])]
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

Description

 CREATE CAST defines a new cast. A cast
 specifies how to perform a conversion between
 two data types. For example,

SELECT CAST(42 AS float8);

 converts the integer constant 42 to type float8 by
 invoking a previously specified function, in this case
 float8(int4). (If no suitable cast has been defined, the
 conversion fails.)

 Two types can be binary coercible, which
 means that the conversion can be performed “for free”
 without invoking any function. This requires that corresponding
 values use the same internal representation. For instance, the
 types text and varchar are binary
 coercible both ways. Binary coercibility is not necessarily a
 symmetric relationship. For example, the cast
 from xml to text can be performed for
 free in the present implementation, but the reverse direction
 requires a function that performs at least a syntax check. (Two
 types that are binary coercible both ways are also referred to as
 binary compatible.)

 You can define a cast as an I/O conversion cast by using
 the WITH INOUT syntax. An I/O conversion cast is
 performed by invoking the output function of the source data type, and
 passing the resulting string to the input function of the target data type.
 In many common cases, this feature avoids the need to write a separate
 cast function for conversion. An I/O conversion cast acts the same as
 a regular function-based cast; only the implementation is different.

 By default, a cast can be invoked only by an explicit cast request,
 that is an explicit CAST(x AS
 typename) or
 x::typename
 construct.

 If the cast is marked AS ASSIGNMENT then it can be invoked
 implicitly when assigning a value to a column of the target data type.
 For example, supposing that foo.f1 is a column of
 type text, then:

INSERT INTO foo (f1) VALUES (42);

 will be allowed if the cast from type integer to type
 text is marked AS ASSIGNMENT, otherwise not.
 (We generally use the term assignment
 cast to describe this kind of cast.)

 If the cast is marked AS IMPLICIT then it can be invoked
 implicitly in any context, whether assignment or internally in an
 expression. (We generally use the term implicit
 cast to describe this kind of cast.)
 For example, consider this query:

SELECT 2 + 4.0;

 The parser initially marks the constants as being of type integer
 and numeric respectively. There is no integer
 + numeric operator in the system catalogs,
 but there is a numeric + numeric operator.
 The query will therefore succeed if a cast from integer to
 numeric is available and is marked AS IMPLICIT —
 which in fact it is. The parser will apply the implicit cast and resolve
 the query as if it had been written

SELECT CAST (2 AS numeric) + 4.0;

 Now, the catalogs also provide a cast from numeric to
 integer. If that cast were marked AS IMPLICIT —
 which it is not — then the parser would be faced with choosing
 between the above interpretation and the alternative of casting the
 numeric constant to integer and applying the
 integer + integer operator. Lacking any
 knowledge of which choice to prefer, it would give up and declare the
 query ambiguous. The fact that only one of the two casts is
 implicit is the way in which we teach the parser to prefer resolution
 of a mixed numeric-and-integer expression as
 numeric; there is no built-in knowledge about that.

 It is wise to be conservative about marking casts as implicit. An
 overabundance of implicit casting paths can cause
 PostgreSQL™ to choose surprising
 interpretations of commands, or to be unable to resolve commands at
 all because there are multiple possible interpretations. A good
 rule of thumb is to make a cast implicitly invokable only for
 information-preserving transformations between types in the same
 general type category. For example, the cast from int2 to
 int4 can reasonably be implicit, but the cast from
 float8 to int4 should probably be
 assignment-only. Cross-type-category casts, such as text
 to int4, are best made explicit-only.

Note

 Sometimes it is necessary for usability or standards-compliance reasons
 to provide multiple implicit casts among a set of types, resulting in
 ambiguity that cannot be avoided as above. The parser has a fallback
 heuristic based on type categories and preferred
 types that can help to provide desired behavior in such cases. See
 CREATE TYPE(7) for
 more information.

 To be able to create a cast, you must own the source or the target data type
 and have USAGE privilege on the other type. To create a
 binary-coercible cast, you must be superuser. (This restriction is made
 because an erroneous binary-coercible cast conversion can easily crash the
 server.)

Parameters
	source_type
	
 The name of the source data type of the cast.

	target_type
	
 The name of the target data type of the cast.

	function_name[(argument_type [, ...])]
	
 The function used to perform the cast. The function name can
 be schema-qualified. If it is not, the function will be looked
 up in the schema search path. The function's result data type must
 match the target type of the cast. Its arguments are discussed below.
 If no argument list is specified, the function name must be unique in
 its schema.

	WITHOUT FUNCTION
	
 Indicates that the source type is binary-coercible to the target type,
 so no function is required to perform the cast.

	WITH INOUT
	
 Indicates that the cast is an I/O conversion cast, performed by
 invoking the output function of the source data type, and passing the
 resulting string to the input function of the target data type.

	AS ASSIGNMENT
	
 Indicates that the cast can be invoked implicitly in assignment
 contexts.

	AS IMPLICIT
	
 Indicates that the cast can be invoked implicitly in any context.

 Cast implementation functions can have one to three arguments.
 The first argument type must be identical to or binary-coercible from
 the cast's source type. The second argument,
 if present, must be type integer; it receives the type
 modifier associated with the destination type, or -1
 if there is none. The third argument,
 if present, must be type boolean; it receives true
 if the cast is an explicit cast, false otherwise.
 (Bizarrely, the SQL standard demands different behaviors for explicit and
 implicit casts in some cases. This argument is supplied for functions
 that must implement such casts. It is not recommended that you design
 your own data types so that this matters.)

 The return type of a cast function must be identical to or
 binary-coercible to the cast's target type.

 Ordinarily a cast must have different source and target data types.
 However, it is allowed to declare a cast with identical source and
 target types if it has a cast implementation function with more than one
 argument. This is used to represent type-specific length coercion
 functions in the system catalogs. The named function is used to
 coerce a value of the type to the type modifier value given by its
 second argument.

 When a cast has different source and
 target types and a function that takes more than one argument, it
 supports converting from one type to another and applying a length
 coercion in a single step. When no such entry is available, coercion
 to a type that uses a type modifier involves two cast steps, one to
 convert between data types and a second to apply the modifier.

 A cast to or from a domain type currently has no effect. Casting
 to or from a domain uses the casts associated with its underlying type.

Notes

 Use DROP CAST to remove user-defined casts.

 Remember that if you want to be able to convert types both ways you
 need to declare casts both ways explicitly.

 It is normally not necessary to create casts between user-defined types
 and the standard string types (text, varchar, and
 char(n), as well as user-defined types that
 are defined to be in the string category). PostgreSQL™
 provides automatic I/O conversion casts for that. The automatic casts to
 string types are treated as assignment casts, while the automatic casts
 from string types are
 explicit-only. You can override this behavior by declaring your own
 cast to replace an automatic cast, but usually the only reason to
 do so is if you want the conversion to be more easily invokable than the
 standard assignment-only or explicit-only setting. Another possible
 reason is that you want the conversion to behave differently from the
 type's I/O function; but that is sufficiently surprising that you
 should think twice about whether it's a good idea. (A small number of
 the built-in types do indeed have different behaviors for conversions,
 mostly because of requirements of the SQL standard.)

 While not required, it is recommended that you continue to follow this old
 convention of naming cast implementation functions after the target data
 type. Many users are used to being able to cast data types using a
 function-style notation, that is
 typename(x). This notation is in fact
 nothing more nor less than a call of the cast implementation function; it
 is not specially treated as a cast. If your conversion functions are not
 named to support this convention then you will have surprised users.
 Since PostgreSQL™ allows overloading of the same function
 name with different argument types, there is no difficulty in having
 multiple conversion functions from different types that all use the
 target type's name.

Note

 Actually the preceding paragraph is an oversimplification: there are
 two cases in which a function-call construct will be treated as a cast
 request without having matched it to an actual function.
 If a function call name(x) does not
 exactly match any existing function, but name is the name
 of a data type and pg_cast provides a binary-coercible cast
 to this type from the type of x, then the call will be
 construed as a binary-coercible cast. This exception is made so that
 binary-coercible casts can be invoked using functional syntax, even
 though they lack any function. Likewise, if there is no
 pg_cast entry but the cast would be to or from a string
 type, the call will be construed as an I/O conversion cast. This
 exception allows I/O conversion casts to be invoked using functional
 syntax.

Note

 There is also an exception to the exception: I/O conversion casts from
 composite types to string types cannot be invoked using functional
 syntax, but must be written in explicit cast syntax (either
 CAST or :: notation). This exception was added
 because after the introduction of automatically-provided I/O conversion
 casts, it was found too easy to accidentally invoke such a cast when
 a function or column reference was intended.

Examples

 To create an assignment cast from type bigint to type
 int4 using the function int4(bigint):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

 (This cast is already predefined in the system.)

Compatibility

 The CREATE CAST command conforms to the
 SQL standard,
 except that SQL does not make provisions for binary-coercible
 types or extra arguments to implementation functions.
 AS IMPLICIT is a PostgreSQL™
 extension, too.

See Also

 CREATE FUNCTION(7),
 CREATE TYPE(7),
 DROP CAST(7)

Name
CREATE COLLATION — define a new collation

Synopsis

CREATE COLLATION [IF NOT EXISTS] name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype,]
 [PROVIDER = provider,]
 [DETERMINISTIC = boolean,]
 [RULES = rules,]
 [VERSION = version]
)
CREATE COLLATION [IF NOT EXISTS] name FROM existing_collation

Description

 CREATE COLLATION defines a new collation using
 the specified operating system locale settings,
 or by copying an existing collation.

 To be able to create a collation, you must
 have CREATE privilege on the destination schema.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a collation with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing collation is anything like the one that would have been created.

	name
	
 The name of the collation. The collation name can be
 schema-qualified. If it is not, the collation is defined in the
 current schema. The collation name must be unique within that
 schema. (The system catalogs can contain collations with the
 same name for other encodings, but these are ignored if the
 database encoding does not match.)

	locale
	
 The locale name for this collation. See the section called “libc Collations” and the section called “ICU Collations” for details.

 If provider is libc, this
 is a shortcut for setting LC_COLLATE and
 LC_CTYPE at once. If you specify
 locale, you cannot specify either of those
 parameters.

	lc_collate
	
 If provider is libc, use
 the specified operating system locale for the
 LC_COLLATE locale category.

	lc_ctype
	
 If provider is libc, use
 the specified operating system locale for the LC_CTYPE
 locale category.

	provider
	
 Specifies the provider to use for locale services associated with this
 collation. Possible values are
 icu
 (if the server was built with ICU support) or libc.
 libc is the default. See the section called “Locale Providers” for details.

	DETERMINISTIC
	
 Specifies whether the collation should use deterministic comparisons.
 The default is true. A deterministic comparison considers strings that
 are not byte-wise equal to be unequal even if they are considered
 logically equal by the comparison. PostgreSQL breaks ties using a
 byte-wise comparison. Comparison that is not deterministic can make the
 collation be, say, case- or accent-insensitive. For that, you need to
 choose an appropriate LOCALE setting
 and set the collation to not deterministic here.

 Nondeterministic collations are only supported with the ICU provider.

	rules
	
 Specifies additional collation rules to customize the behavior of the
 collation. This is supported for ICU only. See the section called “ICU Tailoring Rules” for details.

	version
	
 Specifies the version string to store with the collation. Normally,
 this should be omitted, which will cause the version to be computed
 from the actual version of the collation as provided by the operating
 system. This option is intended to be used
 by pg_upgrade for copying the version from an
 existing installation.

 See also ALTER COLLATION(7) for how to handle
 collation version mismatches.

	existing_collation
	
 The name of an existing collation to copy. The new collation
 will have the same properties as the existing one, but it
 will be an independent object.

Notes

 CREATE COLLATION takes a SHARE ROW
 EXCLUSIVE lock, which is self-conflicting, on the
 pg_collation system catalog, so only one
 CREATE COLLATION command can run at a time.

 Use DROP COLLATION to remove user-defined collations.

 See the section called “Creating New Collation Objects” for more information on how to create collations.

 When using the libc collation provider, the locale must
 be applicable to the current database encoding.
 See CREATE DATABASE(7) for the precise rules.

Examples

 To create a collation from the operating system locale
 fr_FR.utf8
 (assuming the current database encoding is UTF8):

CREATE COLLATION french (locale = 'fr_FR.utf8');

 To create a collation using the ICU provider using German phone book sort order:

CREATE COLLATION german_phonebook (provider = icu, locale = 'de-u-co-phonebk');

 To create a collation using the ICU provider, based on the root ICU locale,
 with custom rules:

CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');

 See the section called “ICU Tailoring Rules” for further details and examples
 on the rules syntax.

 To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

 This can be convenient to be able to use operating-system-independent
 collation names in applications.

Compatibility

 There is a CREATE COLLATION statement in the SQL
 standard, but it is limited to copying an existing collation. The
 syntax to create a new collation is
 a PostgreSQL™ extension.

See Also
ALTER COLLATION(7), DROP COLLATION(7)

Name
CREATE CONVERSION — define a new encoding conversion

Synopsis

CREATE [DEFAULT] CONVERSION name
 FOR source_encoding TO dest_encoding FROM function_name

Description

 CREATE CONVERSION defines a new conversion between
 two character set encodings.

 Conversions that are marked DEFAULT can be used for
 automatic encoding conversion between client and server. To support that
 usage, two conversions, from encoding A to B and
 from encoding B to A, must be defined.

 To be able to create a conversion, you must have EXECUTE privilege
 on the function and CREATE privilege on the destination schema.

Parameters
	DEFAULT
	
 The DEFAULT clause indicates that this conversion
 is the default for this particular source to destination
 encoding. There should be only one default encoding in a schema
 for the encoding pair.

	name
	
 The name of the conversion. The conversion name can be
 schema-qualified. If it is not, the conversion is defined in the
 current schema. The conversion name must be unique within a
 schema.

	source_encoding
	
 The source encoding name.

	dest_encoding
	
 The destination encoding name.

	function_name
	
 The function used to perform the conversion. The function name can
 be schema-qualified. If it is not, the function will be looked
 up in the path.

 The function must have the following signature:

conv_proc(
 integer, -- source encoding ID
 integer, -- destination encoding ID
 cstring, -- source string (null terminated C string)
 internal, -- destination (fill with a null terminated C string)
 integer, -- source string length
 boolean -- if true, don't throw an error if conversion fails
) RETURNS integer;

 The return value is the number of source bytes that were successfully
 converted. If the last argument is false, the function must throw an
 error on invalid input, and the return value is always equal to the
 source string length.

Notes

 Neither the source nor the destination encoding can
 be SQL_ASCII, as the server's behavior for cases
 involving the SQL_ASCII “encoding” is
 hard-wired.

 Use DROP CONVERSION to remove user-defined conversions.

 The privileges required to create a conversion might be changed in a future
 release.

Examples

 To create a conversion from encoding UTF8 to
 LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility

 CREATE CONVERSION
 is a PostgreSQL™ extension.
 There is no CREATE CONVERSION
 statement in the SQL standard, but a CREATE TRANSLATION
 statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION(7), CREATE FUNCTION(7), DROP CONVERSION(7)

Name
CREATE DATABASE — create a new database

Synopsis

CREATE DATABASE name
 [WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [STRATEGY [=] strategy]
 [LOCALE [=] locale]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [ICU_LOCALE [=] icu_locale]
 [ICU_RULES [=] icu_rules]
 [LOCALE_PROVIDER [=] locale_provider]
 [COLLATION_VERSION = collation_version]
 [TABLESPACE [=] tablespace_name]
 [ALLOW_CONNECTIONS [=] allowconn]
 [CONNECTION LIMIT [=] connlimit]
 [IS_TEMPLATE [=] istemplate]
 [OID [=] oid]

Description

 CREATE DATABASE creates a new
 PostgreSQL™ database.

 To create a database, you must be a superuser or have the special
 CREATEDB privilege.
 See CREATE ROLE(7).

 By default, the new database will be created by cloning the standard
 system database template1. A different template can be
 specified by writing TEMPLATE
 name. In particular,
 by writing TEMPLATE template0, you can create a pristine
 database (one where no user-defined objects exist and where the system
 objects have not been altered)
 containing only the standard objects predefined by your
 version of PostgreSQL™. This is useful
 if you wish to avoid copying
 any installation-local objects that might have been added to
 template1.

Parameters
	name
	
 The name of a database to create.

	user_name
	
 The role name of the user who will own the new database,
 or DEFAULT to use the default (namely, the
 user executing the command). To create a database owned by another
 role, you must be able to SET ROLE to that
 role.

	template
	
 The name of the template from which to create the new database,
 or DEFAULT to use the default template
 (template1).

	encoding
	
 Character set encoding to use in the new database. Specify
 a string constant (e.g., 'SQL_ASCII'),
 or an integer encoding number, or DEFAULT
 to use the default encoding (namely, the encoding of the
 template database). The character sets supported by the
 PostgreSQL™ server are described in
 the section called “Supported Character Sets”. See below for
 additional restrictions.

	strategy
	
 Strategy to be used in creating the new database. If
 the WAL_LOG strategy is used, the database will be
 copied block by block and each block will be separately written
 to the write-ahead log. This is the most efficient strategy in
 cases where the template database is small, and therefore it is the
 default. The older FILE_COPY strategy is also
 available. This strategy writes a small record to the write-ahead log
 for each tablespace used by the target database. Each such record
 represents copying an entire directory to a new location at the
 filesystem level. While this does reduce the write-ahead
 log volume substantially, especially if the template database is large,
 it also forces the system to perform a checkpoint both before and
 after the creation of the new database. In some situations, this may
 have a noticeable negative impact on overall system performance.

	locale
	
 Sets the default collation order and character classification in the
 new database. Collation affects the sort order applied to strings,
 e.g., in queries with ORDER BY, as well as the order used in indexes
 on text columns. Character classification affects the categorization
 of characters, e.g., lower, upper, and digit. Also sets the
 associated aspects of the operating system environment,
 LC_COLLATE and LC_CTYPE. The
 default is the same setting as the template database. See the section called “libc Collations” and the section called “ICU Collations” for details.

 Can be overridden by setting lc_collate, lc_ctype, or icu_locale individually.

Tip

 The other locale settings lc_messages, lc_monetary, lc_numeric, and
 lc_time are not fixed per database and are not
 set by this command. If you want to make them the default for a
 specific database, you can use ALTER DATABASE
 ... SET.

	lc_collate
	
 Sets LC_COLLATE in the database server's operating
 system environment. The default is the setting of locale if specified, otherwise the same
 setting as the template database. See below for additional
 restrictions.

 If locale_provider is
 libc, also sets the default collation order to use
 in the new database, overriding the setting locale.

	lc_ctype
	
 Sets LC_CTYPE in the database server's operating
 system environment. The default is the setting of locale if specified, otherwise the same
 setting as the template database. See below for additional
 restrictions.

 If locale_provider is
 libc, also sets the default character
 classification to use in the new database, overriding the setting
 locale.

	icu_locale
	
 Specifies the ICU locale (see the section called “ICU Collations”) for the database default
 collation order and character classification, overriding the setting
 locale. The locale provider must be ICU. The default
 is the setting of locale if
 specified; otherwise the same setting as the template database.

	icu_rules
	
 Specifies additional collation rules to customize the behavior of the
 default collation of this database. This is supported for ICU only.
 See the section called “ICU Tailoring Rules” for details.

	locale_provider
	
 Specifies the provider to use for the default collation in this
 database. Possible values are
 icu
 (if the server was built with ICU support) or libc.
 By default, the provider is the same as that of the template. See the section called “Locale Providers” for details.

	collation_version
	
 Specifies the collation version string to store with the database.
 Normally, this should be omitted, which will cause the version to be
 computed from the actual version of the database collation as provided
 by the operating system. This option is intended to be used by
 pg_upgrade for copying the version from an existing
 installation.

 See also ALTER DATABASE(7) for how to handle
 database collation version mismatches.

	tablespace_name
	
 The name of the tablespace that will be associated with the
 new database, or DEFAULT to use the
 template database's tablespace. This
 tablespace will be the default tablespace used for objects
 created in this database. See
 CREATE TABLESPACE(7)
 for more information.

	allowconn
	
 If false then no one can connect to this database. The default is
 true, allowing connections (except as restricted by other mechanisms,
 such as GRANT/REVOKE CONNECT).

	connlimit
	
 How many concurrent connections can be made
 to this database. -1 (the default) means no limit.

	istemplate
	
 If true, then this database can be cloned by any user with CREATEDB
 privileges; if false (the default), then only superusers or the owner
 of the database can clone it.

	oid
	
 The object identifier to be used for the new database. If this
 parameter is not specified, PostgreSQL™
 will choose a suitable OID automatically. This parameter is primarily
 intended for internal use by pg_upgrade,
 and only pg_upgrade can specify a value
 less than 16384.

 Optional parameters can be written in any order, not only the order
 illustrated above.

Notes

 CREATE DATABASE cannot be executed inside a transaction
 block.

 Errors along the line of “could not initialize database directory”
 are most likely related to insufficient permissions on the data
 directory, a full disk, or other file system problems.

 Use DROP DATABASE to remove a database.

 The program createdb(1) is a
 wrapper program around this command, provided for convenience.

 Database-level configuration parameters (set via ALTER DATABASE) and database-level permissions (set via
 GRANT) are not copied from the template database.

 Although it is possible to copy a database other than template1
 by specifying its name as the template, this is not (yet) intended as
 a general-purpose “COPY DATABASE” facility.
 The principal limitation is that no other sessions can be connected to
 the template database while it is being copied. CREATE
 DATABASE will fail if any other connection exists when it starts;
 otherwise, new connections to the template database are locked out
 until CREATE DATABASE completes.
 See the section called “Template Databases” for more information.

 The character set encoding specified for the new database must be
 compatible with the chosen locale settings (LC_COLLATE and
 LC_CTYPE). If the locale is C (or equivalently
 POSIX), then all encodings are allowed, but for other
 locale settings there is only one encoding that will work properly.
 (On Windows, however, UTF-8 encoding can be used with any locale.)
 CREATE DATABASE will allow superusers to specify
 SQL_ASCII encoding regardless of the locale settings,
 but this choice is deprecated and may result in misbehavior of
 character-string functions if data that is not encoding-compatible
 with the locale is stored in the database.

 The encoding and locale settings must match those of the template database,
 except when template0 is used as template. This is because
 other databases might contain data that does not match the specified
 encoding, or might contain indexes whose sort ordering is affected by
 LC_COLLATE and LC_CTYPE. Copying such data would
 result in a database that is corrupt according to the new settings.
 template0, however, is known to not contain any data or
 indexes that would be affected.

 There is currently no option to use a database locale with nondeterministic
 comparisons (see CREATE
 COLLATION for an explanation). If this is needed, then
 per-column collations would need to be used.

 The CONNECTION LIMIT option is only enforced approximately;
 if two new sessions start at about the same time when just one
 connection “slot” remains for the database, it is possible that
 both will fail. Also, the limit is not enforced against superusers or
 background worker processes.

Examples

 To create a new database:

CREATE DATABASE lusiadas;

 To create a database sales owned by user salesapp
 with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

 To create a database music with a different locale:

CREATE DATABASE music
 LOCALE 'sv_SE.utf8'
 TEMPLATE template0;

 In this example, the TEMPLATE template0 clause is required if
 the specified locale is different from the one in template1.
 (If it is not, then specifying the locale explicitly is redundant.)

 To create a database music2 with a different locale and a
 different character set encoding:

CREATE DATABASE music2
 LOCALE 'sv_SE.iso885915'
 ENCODING LATIN9
 TEMPLATE template0;

 The specified locale and encoding settings must match, or an error will be
 reported.

 Note that locale names are specific to the operating system, so that the
 above commands might not work in the same way everywhere.

Compatibility

 There is no CREATE DATABASE statement in the SQL
 standard. Databases are equivalent to catalogs, whose creation is
 implementation-defined.

See Also
ALTER DATABASE(7), DROP DATABASE(7)

Name
CREATE DOMAIN — define a new domain

Synopsis

CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]

where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description

 CREATE DOMAIN creates a new domain. A domain is
 essentially a data type with optional constraints (restrictions on
 the allowed set of values).
 The user who defines a domain becomes its owner.

 If a schema name is given (for example, CREATE DOMAIN
 myschema.mydomain ...) then the domain is created in the
 specified schema. Otherwise it is created in the current schema.
 The domain name must be unique among the types and domains existing
 in its schema.

 Domains are useful for abstracting common constraints on fields into
 a single location for maintenance. For example, several tables might
 contain email address columns, all requiring the same CHECK constraint
 to verify the address syntax.
 Define a domain rather than setting up each table's constraint
 individually.

 To be able to create a domain, you must have USAGE
 privilege on the underlying type.

Parameters
	name
	
 The name (optionally schema-qualified) of a domain to be created.

	data_type
	
 The underlying data type of the domain. This can include array
 specifiers.

	collation
	
 An optional collation for the domain. If no collation is
 specified, the domain has the same collation behavior as its
 underlying data type.
 The underlying type must be collatable if COLLATE
 is specified.

	DEFAULT expression
	
 The DEFAULT clause specifies a default value for
 columns of the domain data type. The value is any
 variable-free expression (but subqueries are not allowed).
 The data type of the default expression must match the data
 type of the domain. If no default value is specified, then
 the default value is the null value.

 The default expression will be used in any insert operation
 that does not specify a value for the column. If a default
 value is defined for a particular column, it overrides any
 default associated with the domain. In turn, the domain
 default overrides any default value associated with the
 underlying data type.

	CONSTRAINT constraint_name
	
 An optional name for a constraint. If not specified,
 the system generates a name.

	NOT NULL
	
 Values of this domain are prevented from being null
 (but see notes below).

	NULL
	
 Values of this domain are allowed to be null. This is the default.

 This clause is only intended for compatibility with
 nonstandard SQL databases. Its use is discouraged in new
 applications.

	CHECK (expression)
	CHECK clauses specify integrity constraints or tests
 which values of the domain must satisfy.
 Each constraint must be an expression
 producing a Boolean result. It should use the key word VALUE
 to refer to the value being tested. Expressions evaluating
 to TRUE or UNKNOWN succeed. If the expression produces a FALSE result,
 an error is reported and the value is not allowed to be converted
 to the domain type.

 Currently, CHECK expressions cannot contain
 subqueries nor refer to variables other than VALUE.

 When a domain has multiple CHECK constraints,
 they will be tested in alphabetical order by name.
 (PostgreSQL™ versions before 9.5 did not honor any
 particular firing order for CHECK constraints.)

Notes

 Domain constraints, particularly NOT NULL, are checked when
 converting a value to the domain type. It is possible for a column that
 is nominally of the domain type to read as null despite there being such
 a constraint. For example, this can happen in an outer-join query, if
 the domain column is on the nullable side of the outer join. A more
 subtle example is

INSERT INTO tab (domcol) VALUES ((SELECT domcol FROM tab WHERE false));

 The empty scalar sub-SELECT will produce a null value that is considered
 to be of the domain type, so no further constraint checking is applied
 to it, and the insertion will succeed.

 It is very difficult to avoid such problems, because of SQL's general
 assumption that a null value is a valid value of every data type. Best practice
 therefore is to design a domain's constraints so that a null value is allowed,
 and then to apply column NOT NULL constraints to columns of
 the domain type as needed, rather than directly to the domain type.

 PostgreSQL™ assumes that
 CHECK constraints' conditions are immutable, that is,
 they will always give the same result for the same input value. This
 assumption is what justifies examining CHECK
 constraints only when a value is first converted to be of a domain type,
 and not at other times. (This is essentially the same as the treatment
 of table CHECK constraints, as described in
 the section called “Check Constraints”.)

 An example of a common way to break this assumption is to reference a
 user-defined function in a CHECK expression, and then
 change the behavior of that
 function. PostgreSQL™ does not disallow that,
 but it will not notice if there are stored values of the domain type that
 now violate the CHECK constraint. That would cause a
 subsequent database dump and restore to fail. The recommended way to
 handle such a change is to drop the constraint (using ALTER
 DOMAIN), adjust the function definition, and re-add the
 constraint, thereby rechecking it against stored data.

 It's also good practice to ensure that domain CHECK
 expressions will not throw errors.

Examples

 This example creates the us_postal_code data type and
 then uses the type in a table definition. A regular expression test
 is used to verify that the value looks like a valid US postal code:

CREATE DOMAIN us_postal_code AS TEXT
CHECK(
 VALUE ~ '^\d{5}$'
OR VALUE ~ '^\d{5}-\d{4}$'
);

CREATE TABLE us_snail_addy (
 address_id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 postal us_postal_code NOT NULL
);

Compatibility

 The command CREATE DOMAIN conforms to the SQL
 standard.

See Also
ALTER DOMAIN(7), DROP DOMAIN(7)

Name
CREATE EVENT TRIGGER — define a new event trigger

Synopsis

CREATE EVENT TRIGGER name
 ON event
 [WHEN filter_variable IN (filter_value [, ...]) [AND ...]]
 EXECUTE { FUNCTION | PROCEDURE } function_name()

Description

 CREATE EVENT TRIGGER creates a new event trigger.
 Whenever the designated event occurs and the WHEN condition
 associated with the trigger, if any, is satisfied, the trigger function
 will be executed. For a general introduction to event triggers, see
 Chapter 40, Event Triggers. The user who creates an event trigger
 becomes its owner.

Parameters
	name
	
 The name to give the new trigger. This name must be unique within
 the database.

	event
	
 The name of the event that triggers a call to the given function.
 See the section called “Overview of Event Trigger Behavior” for more information
 on event names.

	filter_variable
	
 The name of a variable used to filter events. This makes it possible
 to restrict the firing of the trigger to a subset of the cases in which
 it is supported. Currently the only supported
 filter_variable
 is TAG.

	filter_value
	
 A list of values for the
 associated filter_variable
 for which the trigger should fire. For TAG, this means a
 list of command tags (e.g., 'DROP FUNCTION').

	function_name
	
 A user-supplied function that is declared as taking no argument and
 returning type event_trigger.

 In the syntax of CREATE EVENT TRIGGER, the keywords
 FUNCTION and PROCEDURE are
 equivalent, but the referenced function must in any case be a function,
 not a procedure. The use of the keyword PROCEDURE
 here is historical and deprecated.

Notes

 Only superusers can create event triggers.

 Event triggers are disabled in single-user mode (see postgres(1)). If an erroneous event trigger disables the
 database so much that you can't even drop the trigger, restart in
 single-user mode and you'll be able to do that.

Examples

 Forbid the execution of any DDL command:

CREATE OR REPLACE FUNCTION abort_any_command()
 RETURNS event_trigger
 LANGUAGE plpgsql
 AS $$
BEGIN
 RAISE EXCEPTION 'command % is disabled', tg_tag;
END;
$$;

CREATE EVENT TRIGGER abort_ddl ON ddl_command_start
 EXECUTE FUNCTION abort_any_command();

Compatibility

 There is no CREATE EVENT TRIGGER statement in the
 SQL standard.

See Also
ALTER EVENT TRIGGER(7), DROP EVENT TRIGGER(7), CREATE FUNCTION(7)

Name
CREATE EXTENSION — install an extension

Synopsis

CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [CASCADE]

Description

 CREATE EXTENSION loads a new extension into the current
 database. There must not be an extension of the same name already loaded.

 Loading an extension essentially amounts to running the extension's script
 file. The script will typically create new SQL objects such as
 functions, data types, operators and index support methods.
 CREATE EXTENSION additionally records the identities
 of all the created objects, so that they can be dropped again if
 DROP EXTENSION is issued.

 The user who runs CREATE EXTENSION becomes the
 owner of the extension for purposes of later privilege checks, and
 normally also becomes the owner of any objects created by the
 extension's script.

 Loading an extension ordinarily requires the same privileges that would
 be required to create its component objects. For many extensions this
 means superuser privileges are needed.
 However, if the extension is marked trusted in
 its control file, then it can be installed by any user who has
 CREATE privilege on the current database.
 In this case the extension object itself will be owned by the calling
 user, but the contained objects will be owned by the bootstrap superuser
 (unless the extension's script explicitly assigns them to the calling
 user). This configuration gives the calling user the right to drop the
 extension, but not to modify individual objects within it.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if an extension with the same name already
 exists. A notice is issued in this case. Note that there is no
 guarantee that the existing extension is anything like the one that
 would have been created from the currently-available script file.

	extension_name
	
 The name of the extension to be
 installed. PostgreSQL™ will create the
 extension using details from the file
 SHAREDIR/extension/extension_name.control.

	schema_name
	
 The name of the schema in which to install the extension's
 objects, given that the extension allows its contents to be
 relocated. The named schema must already exist.
 If not specified, and the extension's control file does not specify a
 schema either, the current default object creation schema is used.

 If the extension specifies a schema parameter in its
 control file, then that schema cannot be overridden with
 a SCHEMA clause. Normally, an error will be raised if
 a SCHEMA clause is given and it conflicts with the
 extension's schema parameter. However, if
 the CASCADE clause is also given,
 then schema_name is
 ignored when it conflicts. The
 given schema_name will be
 used for installation of any needed extensions that do not
 specify schema in their control files.

 Remember that the extension itself is not considered to be within any
 schema: extensions have unqualified names that must be unique
 database-wide. But objects belonging to the extension can be within
 schemas.

	version
	
 The version of the extension to install. This can be written as
 either an identifier or a string literal. The default version is
 whatever is specified in the extension's control file.

	CASCADE
	
 Automatically install any extensions that this extension depends on
 that are not already installed. Their dependencies are likewise
 automatically installed, recursively. The SCHEMA clause,
 if given, applies to all extensions that get installed this way.
 Other options of the statement are not applied to
 automatically-installed extensions; in particular, their default
 versions are always selected.

Notes

 Before you can use CREATE EXTENSION to load an extension
 into a database, the extension's supporting files must be installed.
 Information about installing the extensions supplied with
 PostgreSQL™ can be found in
 Additional Supplied Modules.

 The extensions currently available for loading can be identified from the
 pg_available_extensions
 or
 pg_available_extension_versions
 system views.

Caution

 Installing an extension as superuser requires trusting that the
 extension's author wrote the extension installation script in a secure
 fashion. It is not terribly difficult for a malicious user to create
 trojan-horse objects that will compromise later execution of a
 carelessly-written extension script, allowing that user to acquire
 superuser privileges. However, trojan-horse objects are only hazardous
 if they are in the search_path during script
 execution, meaning that they are in the extension's installation target
 schema or in the schema of some extension it depends on. Therefore, a
 good rule of thumb when dealing with extensions whose scripts have not
 been carefully vetted is to install them only into schemas for which
 CREATE privilege has not been and will not be granted to any untrusted
 users. Likewise for any extensions they depend on.

 The extensions supplied with PostgreSQL™ are
 believed to be secure against installation-time attacks of this sort,
 except for a few that depend on other extensions. As stated in the
 documentation for those extensions, they should be installed into secure
 schemas, or installed into the same schemas as the extensions they
 depend on, or both.

 For information about writing new extensions, see
 the section called “Packaging Related Objects into an Extension”.

Examples

 Install the hstore extension into the
 current database, placing its objects in schema addons:

CREATE EXTENSION hstore SCHEMA addons;

 Another way to accomplish the same thing:

SET search_path = addons;
CREATE EXTENSION hstore;

Compatibility

 CREATE EXTENSION is a PostgreSQL™
 extension.

See Also
ALTER EXTENSION(7), DROP EXTENSION(7)

Name
CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper

Synopsis

CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS (option 'value' [, ...])]

Description

 CREATE FOREIGN DATA WRAPPER creates a new
 foreign-data wrapper. The user who defines a foreign-data wrapper
 becomes its owner.

 The foreign-data wrapper name must be unique within the database.

 Only superusers can create foreign-data wrappers.

Parameters
	name
	
 The name of the foreign-data wrapper to be created.

	HANDLER handler_function
	handler_function is the
 name of a previously registered function that will be called to
 retrieve the execution functions for foreign tables.
 The handler function must take no arguments, and
 its return type must be fdw_handler.

 It is possible to create a foreign-data wrapper with no handler
 function, but foreign tables using such a wrapper can only be declared,
 not accessed.

	VALIDATOR validator_function
	validator_function
 is the name of a previously registered function that will be called to
 check the generic options given to the foreign-data wrapper, as
 well as options for foreign servers, user mappings and foreign tables
 using the foreign-data wrapper. If no validator function or NO
 VALIDATOR is specified, then options will not be
 checked at creation time. (Foreign-data wrappers will possibly
 ignore or reject invalid option specifications at run time,
 depending on the implementation.) The validator function must
 take two arguments: one of type text[], which will
 contain the array of options as stored in the system catalogs,
 and one of type oid, which will be the OID of the
 system catalog containing the options. The return type is ignored;
 the function should report invalid options using the
 ereport(ERROR) function.

	OPTIONS (option 'value' [, ...])
	
 This clause specifies options for the new foreign-data wrapper.
 The allowed option names and values are specific to each foreign
 data wrapper and are validated using the foreign-data wrapper's
 validator function. Option names must be unique.

Notes

 PostgreSQL™'s foreign-data functionality is still under
 active development. Optimization of queries is primitive (and mostly left
 to the wrapper, too). Thus, there is considerable room for future
 performance improvements.

Examples

 Create a useless foreign-data wrapper dummy:

CREATE FOREIGN DATA WRAPPER dummy;

 Create a foreign-data wrapper file with
 handler function file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

 Create a foreign-data wrapper mywrapper with some
 options:

CREATE FOREIGN DATA WRAPPER mywrapper
 OPTIONS (debug 'true');

Compatibility

 CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC
 9075-9 (SQL/MED), with the exception that the HANDLER
 and VALIDATOR clauses are extensions and the standard
 clauses LIBRARY and LANGUAGE
 are not implemented in PostgreSQL™.

 Note, however, that the SQL/MED functionality as a whole is not yet
 conforming.

See Also
ALTER FOREIGN DATA WRAPPER(7), DROP FOREIGN DATA WRAPPER(7), CREATE SERVER(7), CREATE USER MAPPING(7), CREATE FOREIGN TABLE(7)

Name
CREATE FOREIGN TABLE — define a new foreign table

Synopsis

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [OPTIONS (option 'value' [, ...])] [COLLATE collation] [column_constraint [...]]
 | table_constraint }
 [, ...]
])
[INHERITS (parent_table [, ...])]
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
{ FOR VALUES partition_bound_spec | DEFAULT }
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED }

and table_constraint is:

[CONSTRAINT constraint_name]
CHECK (expression) [NO INHERIT]

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

Description

 CREATE FOREIGN TABLE creates a new foreign table
 in the current database. The table will be owned by the user issuing the
 command.

 If a schema name is given (for example, CREATE FOREIGN TABLE
 myschema.mytable ...) then the table is created in the specified
 schema. Otherwise it is created in the current schema.
 The name of the foreign table must be
 distinct from the name of any other relation (table, sequence, index, view,
 materialized view, or foreign table) in the same schema.

 CREATE FOREIGN TABLE also automatically creates a data
 type that represents the composite type corresponding to one row of
 the foreign table. Therefore, foreign tables cannot have the same
 name as any existing data type in the same schema.

 If PARTITION OF clause is specified then the table is
 created as a partition of parent_table with specified
 bounds.

 To be able to create a foreign table, you must have USAGE
 privilege on the foreign server, as well as USAGE
 privilege on all column types used in the table.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a relation with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing relation is anything like the one that would have been
 created.

	table_name
	
 The name (optionally schema-qualified) of the table to be created.

	column_name
	
 The name of a column to be created in the new table.

	data_type
	
 The data type of the column. This can include array
 specifiers. For more information on the data types supported by
 PostgreSQL™, refer to Chapter 8, Data Types.

	COLLATE collation
	
 The COLLATE clause assigns a collation to
 the column (which must be of a collatable data type).
 If not specified, the column data type's default collation is used.

	INHERITS (parent_table [, ...])
	
 The optional INHERITS clause specifies a list of
 tables from which the new foreign table automatically inherits
 all columns. Parent tables can be plain tables or foreign tables.
 See the similar form of
 CREATE TABLE for more details.

	PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }
	
 This form can be used to create the foreign table as partition of
 the given parent table with specified partition bound values.
 See the similar form of
 CREATE TABLE for more details.
 Note that it is currently not allowed to create the foreign table as a
 partition of the parent table if there are UNIQUE
 indexes on the parent table. (See also
 ALTER TABLE ATTACH PARTITION.)

	CONSTRAINT constraint_name
	
 An optional name for a column or table constraint. If the
 constraint is violated, the constraint name is present in error messages,
 so constraint names like col must be positive can be used
 to communicate helpful constraint information to client applications.
 (Double-quotes are needed to specify constraint names that contain spaces.)
 If a constraint name is not specified, the system generates a name.

	NOT NULL
	
 The column is not allowed to contain null values.

	NULL
	
 The column is allowed to contain null values. This is the default.

 This clause is only provided for compatibility with
 non-standard SQL databases. Its use is discouraged in new
 applications.

	CHECK (expression) [NO INHERIT]
	
 The CHECK clause specifies an expression producing a
 Boolean result which each row in the foreign table is expected
 to satisfy; that is, the expression should produce TRUE or UNKNOWN,
 never FALSE, for all rows in the foreign table.
 A check constraint specified as a column constraint should
 reference that column's value only, while an expression
 appearing in a table constraint can reference multiple columns.

 Currently, CHECK expressions cannot contain
 subqueries nor refer to variables other than columns of the
 current row. The system column tableoid
 may be referenced, but not any other system column.

 A constraint marked with NO INHERIT will not propagate to
 child tables.

	DEFAULT
 default_expr
	
 The DEFAULT clause assigns a default data value for
 the column whose column definition it appears within. The value
 is any variable-free expression (subqueries and cross-references
 to other columns in the current table are not allowed). The
 data type of the default expression must match the data type of the
 column.

 The default expression will be used in any insert operation that
 does not specify a value for the column. If there is no default
 for a column, then the default is null.

	GENERATED ALWAYS AS (generation_expr) STORED
	
 This clause creates the column as a generated
 column. The column cannot be written to, and when read the
 result of the specified expression will be returned.

 The keyword STORED is required to signify that the
 column will be computed on write. (The computed value will be presented
 to the foreign-data wrapper for storage and must be returned on
 reading.)

 The generation expression can refer to other columns in the table, but
 not other generated columns. Any functions and operators used must be
 immutable. References to other tables are not allowed.

	server_name
	
 The name of an existing foreign server to use for the foreign table.
 For details on defining a server, see CREATE SERVER(7).

	OPTIONS (option 'value' [, ...])
	
 Options to be associated with the new foreign table or one of its
 columns.
 The allowed option names and values are specific to each foreign
 data wrapper and are validated using the foreign-data wrapper's
 validator function. Duplicate option names are not allowed (although
 it's OK for a table option and a column option to have the same name).

Notes

 Constraints on foreign tables (such as CHECK
 or NOT NULL clauses) are not enforced by the
 core PostgreSQL™ system, and most foreign data wrappers
 do not attempt to enforce them either; that is, the constraint is
 simply assumed to hold true. There would be little point in such
 enforcement since it would only apply to rows inserted or updated via
 the foreign table, and not to rows modified by other means, such as
 directly on the remote server. Instead, a constraint attached to a
 foreign table should represent a constraint that is being enforced by
 the remote server.

 Some special-purpose foreign data wrappers might be the only access
 mechanism for the data they access, and in that case it might be
 appropriate for the foreign data wrapper itself to perform constraint
 enforcement. But you should not assume that a wrapper does that
 unless its documentation says so.

 Although PostgreSQL™ does not attempt to enforce
 constraints on foreign tables, it does assume that they are correct
 for purposes of query optimization. If there are rows visible in the
 foreign table that do not satisfy a declared constraint, queries on
 the table might produce errors or incorrect answers. It is the user's
 responsibility to ensure that the constraint definition matches
 reality.

Caution

 When a foreign table is used as a partition of a partitioned table,
 there is an implicit constraint that its contents must satisfy the
 partitioning rule. Again, it is the user's responsibility to ensure
 that that is true, which is best done by installing a matching
 constraint on the remote server.

 Within a partitioned table containing foreign-table partitions,
 an UPDATE that changes the partition key value can
 cause a row to be moved from a local partition to a foreign-table
 partition, provided the foreign data wrapper supports tuple routing.
 However, it is not currently possible to move a row from a
 foreign-table partition to another partition.
 An UPDATE that would require doing that will fail
 due to the partitioning constraint, assuming that that is properly
 enforced by the remote server.

 Similar considerations apply to generated columns. Stored generated
 columns are computed on insert or update on the local
 PostgreSQL™ server and handed to the
 foreign-data wrapper for writing out to the foreign data store, but it is
 not enforced that a query of the foreign table returns values for stored
 generated columns that are consistent with the generation expression.
 Again, this might result in incorrect query results.

Examples

 Create foreign table films, which will be accessed through
 the server film_server:

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
)
SERVER film_server;

 Create foreign table measurement_y2016m07, which will be
 accessed through the server server_07, as a partition
 of the range partitioned table measurement:

CREATE FOREIGN TABLE measurement_y2016m07
 PARTITION OF measurement FOR VALUES FROM ('2016-07-01') TO ('2016-08-01')
 SERVER server_07;

Compatibility

 The CREATE FOREIGN TABLE command largely conforms to the
 SQL standard; however, much as with
 CREATE TABLE,
 NULL constraints and zero-column foreign tables are permitted.
 The ability to specify column default values is also
 a PostgreSQL™ extension. Table inheritance, in the form
 defined by PostgreSQL™, is nonstandard.

See Also
ALTER FOREIGN TABLE(7), DROP FOREIGN TABLE(7), CREATE TABLE(7), CREATE SERVER(7), IMPORT FOREIGN SCHEMA(7)

Name
CREATE FUNCTION — define a new function

Synopsis

CREATE [OR REPLACE] FUNCTION
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr] [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | WINDOW
 | { IMMUTABLE | STABLE | VOLATILE }
 | [NOT] LEAKPROOF
 | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
 | { [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER }
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SUPPORT support_function
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 | sql_body
 } ...

Description

 CREATE FUNCTION defines a new function.
 CREATE OR REPLACE FUNCTION will either create a
 new function, or replace an existing definition.
 To be able to define a function, the user must have the
 USAGE privilege on the language.

 If a schema name is included, then the function is created in the
 specified schema. Otherwise it is created in the current schema.
 The name of the new function must not match any existing function or procedure
 with the same input argument types in the same schema. However,
 functions and procedures of different argument types can share a name (this is
 called overloading).

 To replace the current definition of an existing function, use
 CREATE OR REPLACE FUNCTION. It is not possible
 to change the name or argument types of a function this way (if you
 tried, you would actually be creating a new, distinct function).
 Also, CREATE OR REPLACE FUNCTION will not let
 you change the return type of an existing function. To do that,
 you must drop and recreate the function. (When using OUT
 parameters, that means you cannot change the types of any
 OUT parameters except by dropping the function.)

 When CREATE OR REPLACE FUNCTION is used to replace an
 existing function, the ownership and permissions of the function
 do not change. All other function properties are assigned the
 values specified or implied in the command. You must own the function
 to replace it (this includes being a member of the owning role).

 If you drop and then recreate a function, the new function is not
 the same entity as the old; you will have to drop existing rules, views,
 triggers, etc. that refer to the old function. Use
 CREATE OR REPLACE FUNCTION to change a function
 definition without breaking objects that refer to the function.
 Also, ALTER FUNCTION can be used to change most of the
 auxiliary properties of an existing function.

 The user that creates the function becomes the owner of the function.

 To be able to create a function, you must have USAGE
 privilege on the argument types and the return type.

 Refer to the section called “User-Defined Functions” for further information on writing
 functions.

Parameters
	name
	
 The name (optionally schema-qualified) of the function to create.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Only OUT arguments can follow a VARIADIC one.
 Also, OUT and INOUT arguments cannot be used
 together with the RETURNS TABLE notation.

	argname
	
 The name of an argument. Some languages (including SQL and PL/pgSQL)
 let you use the name in the function body. For other languages the
 name of an input argument is just extra documentation, so far as
 the function itself is concerned; but you can use input argument names
 when calling a function to improve readability (see the section called “Calling Functions”). In any case, the name
 of an output argument is significant, because it defines the column
 name in the result row type. (If you omit the name for an output
 argument, the system will choose a default column name.)

	argtype
	
 The data type(s) of the function's arguments (optionally
 schema-qualified), if any. The argument types can be base, composite,
 or domain types, or can reference the type of a table column.

 Depending on the implementation language it might also be allowed
 to specify “pseudo-types” such as cstring.
 Pseudo-types indicate that the actual argument type is either
 incompletely specified, or outside the set of ordinary SQL data types.

 The type of a column is referenced by writing
 table_name.column_name%TYPE.
 Using this feature can sometimes help make a function independent of
 changes to the definition of a table.

	default_expr
	
 An expression to be used as default value if the parameter is
 not specified. The expression has to be coercible to the
 argument type of the parameter.
 Only input (including INOUT) parameters can have a default
 value. All input parameters following a
 parameter with a default value must have default values as well.

	rettype
	
 The return data type (optionally schema-qualified). The return type
 can be a base, composite, or domain type,
 or can reference the type of a table column.
 Depending on the implementation language it might also be allowed
 to specify “pseudo-types” such as cstring.
 If the function is not supposed to return a value, specify
 void as the return type.

 When there are OUT or INOUT parameters,
 the RETURNS clause can be omitted. If present, it
 must agree with the result type implied by the output parameters:
 RECORD if there are multiple output parameters, or
 the same type as the single output parameter.

 The SETOF
 modifier indicates that the function will return a set of
 items, rather than a single item.

 The type of a column is referenced by writing
 table_name.column_name%TYPE.

	column_name
	
 The name of an output column in the RETURNS TABLE
 syntax. This is effectively another way of declaring a named
 OUT parameter, except that RETURNS TABLE
 also implies RETURNS SETOF.

	column_type
	
 The data type of an output column in the RETURNS TABLE
 syntax.

	lang_name
	
 The name of the language that the function is implemented in.
 It can be sql, c,
 internal, or the name of a user-defined
 procedural language, e.g., plpgsql. The default is
 sql if sql_body is specified. Enclosing the
 name in single quotes is deprecated and requires matching case.

	TRANSFORM { FOR TYPE type_name } [, ...] }
	
 Lists which transforms a call to the function should apply. Transforms
 convert between SQL types and language-specific data types;
 see CREATE TRANSFORM(7). Procedural language
 implementations usually have hardcoded knowledge of the built-in types,
 so those don't need to be listed here. If a procedural language
 implementation does not know how to handle a type and no transform is
 supplied, it will fall back to a default behavior for converting data
 types, but this depends on the implementation.

	WINDOW
	WINDOW indicates that the function is a
 window function rather than a plain function.
 This is currently only useful for functions written in C.
 The WINDOW attribute cannot be changed when
 replacing an existing function definition.

	IMMUTABLE, STABLE, VOLATILE
	
 These attributes inform the query optimizer about the behavior
 of the function. At most one choice
 can be specified. If none of these appear,
 VOLATILE is the default assumption.

IMMUTABLE indicates that the function
 cannot modify the database and always
 returns the same result when given the same argument values; that
 is, it does not do database lookups or otherwise use information not
 directly present in its argument list. If this option is given,
 any call of the function with all-constant arguments can be
 immediately replaced with the function value.

STABLE indicates that the function
 cannot modify the database,
 and that within a single table scan it will consistently
 return the same result for the same argument values, but that its
 result could change across SQL statements. This is the appropriate
 selection for functions whose results depend on database lookups,
 parameter variables (such as the current time zone), etc. (It is
 inappropriate for AFTER triggers that wish to
 query rows modified by the current command.) Also note
 that the current_timestamp family of functions qualify
 as stable, since their values do not change within a transaction.

VOLATILE indicates that the function value can
 change even within a single table scan, so no optimizations can be
 made. Relatively few database functions are volatile in this sense;
 some examples are random(), currval(),
 timeofday(). But note that any function that has
 side-effects must be classified volatile, even if its result is quite
 predictable, to prevent calls from being optimized away; an example is
 setval().

 For additional details see the section called “Function Volatility Categories”.

	LEAKPROOF
	
 LEAKPROOF indicates that the function has no side
 effects. It reveals no information about its arguments other than by
 its return value. For example, a function which throws an error message
 for some argument values but not others, or which includes the argument
 values in any error message, is not leakproof. This affects how the
 system executes queries against views created with the
 security_barrier option or tables with row level
 security enabled. The system will enforce conditions from security
 policies and security barrier views before any user-supplied conditions
 from the query itself that contain non-leakproof functions, in order to
 prevent the inadvertent exposure of data. Functions and operators
 marked as leakproof are assumed to be trustworthy, and may be executed
 before conditions from security policies and security barrier views.
 In addition, functions which do not take arguments or which are not
 passed any arguments from the security barrier view or table do not have
 to be marked as leakproof to be executed before security conditions. See
 CREATE VIEW(7) and the section called “Rules and Privileges”.
 This option can only be set by the superuser.

	CALLED ON NULL INPUT, RETURNS NULL ON NULL INPUT, STRICT
	CALLED ON NULL INPUT (the default) indicates
 that the function will be called normally when some of its
 arguments are null. It is then the function author's
 responsibility to check for null values if necessary and respond
 appropriately.

RETURNS NULL ON NULL INPUT or
 STRICT indicates that the function always
 returns null whenever any of its arguments are null. If this
 parameter is specified, the function is not executed when there
 are null arguments; instead a null result is assumed
 automatically.

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	SECURITY INVOKER indicates that the function
 is to be executed with the privileges of the user that calls it.
 That is the default. SECURITY DEFINER
 specifies that the function is to be executed with the
 privileges of the user that owns it. For information on how to
 write SECURITY DEFINER functions safely,
 see below.

 The key word EXTERNAL is allowed for SQL
 conformance, but it is optional since, unlike in SQL, this feature
 applies to all functions not only external ones.

	PARALLEL
	PARALLEL UNSAFE indicates that the function
 can't be executed in parallel mode and the presence of such a
 function in an SQL statement forces a serial execution plan. This is
 the default. PARALLEL RESTRICTED indicates that
 the function can be executed in parallel mode, but the execution is
 restricted to parallel group leader. PARALLEL SAFE
 indicates that the function is safe to run in parallel mode without
 restriction.

 Functions should be labeled parallel unsafe if they modify any database
 state, or if they make changes to the transaction such as using
 sub-transactions, or if they access sequences or attempt to make
 persistent changes to settings (e.g., setval). They should
 be labeled as parallel restricted if they access temporary tables,
 client connection state, cursors, prepared statements, or miscellaneous
 backend-local state which the system cannot synchronize in parallel mode
 (e.g., setseed cannot be executed other than by the group
 leader because a change made by another process would not be reflected
 in the leader). In general, if a function is labeled as being safe when
 it is restricted or unsafe, or if it is labeled as being restricted when
 it is in fact unsafe, it may throw errors or produce wrong answers
 when used in a parallel query. C-language functions could in theory
 exhibit totally undefined behavior if mislabeled, since there is no way
 for the system to protect itself against arbitrary C code, but in most
 likely cases the result will be no worse than for any other function.
 If in doubt, functions should be labeled as UNSAFE, which is
 the default.

	COST execution_cost
	
 A positive number giving the estimated execution cost for the function,
 in units of cpu_operator_cost. If the function
 returns a set, this is the cost per returned row. If the cost is
 not specified, 1 unit is assumed for C-language and internal functions,
 and 100 units for functions in all other languages. Larger values
 cause the planner to try to avoid evaluating the function more often
 than necessary.

	ROWS result_rows
	
 A positive number giving the estimated number of rows that the planner
 should expect the function to return. This is only allowed when the
 function is declared to return a set. The default assumption is
 1000 rows.

	SUPPORT support_function
	
 The name (optionally schema-qualified) of a planner support
 function to use for this function. See
 the section called “Function Optimization Information” for details.
 You must be superuser to use this option.

	configuration_parameter, value
	
 The SET clause causes the specified configuration
 parameter to be set to the specified value when the function is
 entered, and then restored to its prior value when the function exits.
 SET FROM CURRENT saves the value of the parameter that
 is current when CREATE FUNCTION is executed as the value
 to be applied when the function is entered.

 If a SET clause is attached to a function, then
 the effects of a SET LOCAL command executed inside the
 function for the same variable are restricted to the function: the
 configuration parameter's prior value is still restored at function exit.
 However, an ordinary
 SET command (without LOCAL) overrides the
 SET clause, much as it would do for a previous SET
 LOCAL command: the effects of such a command will persist after
 function exit, unless the current transaction is rolled back.

 See SET(7) and
 Chapter 20, Server Configuration
 for more information about allowed parameter names and values.

	definition
	
 A string constant defining the function; the meaning depends on the
 language. It can be an internal function name, the path to an
 object file, an SQL command, or text in a procedural language.

 It is often helpful to use dollar quoting (see the section called “Dollar-Quoted String Constants”) to write the function definition
 string, rather than the normal single quote syntax. Without dollar
 quoting, any single quotes or backslashes in the function definition must
 be escaped by doubling them.

	obj_file, link_symbol
	
 This form of the AS clause is used for
 dynamically loadable C language functions when the function name
 in the C language source code is not the same as the name of
 the SQL function. The string obj_file is the name of the shared
 library file containing the compiled C function, and is interpreted
 as for the LOAD command. The string
 link_symbol is the
 function's link symbol, that is, the name of the function in the C
 language source code. If the link symbol is omitted, it is assumed to
 be the same as the name of the SQL function being defined. The C names
 of all functions must be different, so you must give overloaded C
 functions different C names (for example, use the argument types as
 part of the C names).

 When repeated CREATE FUNCTION calls refer to
 the same object file, the file is only loaded once per session.
 To unload and
 reload the file (perhaps during development), start a new session.

	sql_body
	
 The body of a LANGUAGE SQL function. This can
 either be a single statement

RETURN expression

 or a block

BEGIN ATOMIC
 statement;
 statement;
 ...
 statement;
END

 This is similar to writing the text of the function body as a string
 constant (see definition above), but there
 are some differences: This form only works for LANGUAGE
 SQL, the string constant form works for all languages. This
 form is parsed at function definition time, the string constant form is
 parsed at execution time; therefore this form cannot support
 polymorphic argument types and other constructs that are not resolvable
 at function definition time. This form tracks dependencies between the
 function and objects used in the function body, so DROP
 ... CASCADE will work correctly, whereas the form using
 string literals may leave dangling functions. Finally, this form is
 more compatible with the SQL standard and other SQL implementations.

Overloading

 PostgreSQL™ allows function
 overloading; that is, the same name can be
 used for several different functions so long as they have distinct
 input argument types. Whether or not you use it, this capability entails
 security precautions when calling functions in databases where some users
 mistrust other users; see the section called “Functions”.

 Two functions are considered the same if they have the same names and
 input argument types, ignoring any OUT
 parameters. Thus for example these declarations conflict:

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

 Functions that have different argument type lists will not be considered
 to conflict at creation time, but if defaults are provided they might
 conflict in use. For example, consider

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

 A call foo(10) will fail due to the ambiguity about which
 function should be called.

Notes

 The full SQL type syntax is allowed for
 declaring a function's arguments and return value. However,
 parenthesized type modifiers (e.g., the precision field for
 type numeric) are discarded by CREATE FUNCTION.
 Thus for example
 CREATE FUNCTION foo (varchar(10)) ...
 is exactly the same as
 CREATE FUNCTION foo (varchar)

 When replacing an existing function with CREATE OR REPLACE
 FUNCTION, there are restrictions on changing parameter names.
 You cannot change the name already assigned to any input parameter
 (although you can add names to parameters that had none before).
 If there is more than one output parameter, you cannot change the
 names of the output parameters, because that would change the
 column names of the anonymous composite type that describes the
 function's result. These restrictions are made to ensure that
 existing calls of the function do not stop working when it is replaced.

 If a function is declared STRICT with a VARIADIC
 argument, the strictness check tests that the variadic array as
 a whole is non-null. The function will still be called if the
 array has null elements.

Examples

 Add two integers using an SQL function:

CREATE FUNCTION add(integer, integer) RETURNS integer
 AS 'select $1 + $2;'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

 The same function written in a more SQL-conforming style, using argument
 names and an unquoted body:

CREATE FUNCTION add(a integer, b integer) RETURNS integer
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT
 RETURN a + b;

 Increment an integer, making use of an argument name, in
 PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
 BEGIN
 RETURN i + 1;
 END;
$$ LANGUAGE plpgsql;

 Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

 You can do the same thing more verbosely with an explicitly named
 composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

 Another way to return multiple columns is to use a TABLE
 function:

CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

 However, a TABLE function is different from the
 preceding examples, because it actually returns a set
 of records, not just one record.

Writing SECURITY DEFINER Functions Safely

 Because a SECURITY DEFINER function is executed
 with the privileges of the user that owns it, care is needed to
 ensure that the function cannot be misused. For security,
 search_path should be set to exclude any schemas
 writable by untrusted users. This prevents
 malicious users from creating objects (e.g., tables, functions, and
 operators) that mask objects intended to be used by the function.
 Particularly important in this regard is the
 temporary-table schema, which is searched first by default, and
 is normally writable by anyone. A secure arrangement can be obtained
 by forcing the temporary schema to be searched last. To do this,
 write pg_temp as the last entry in search_path.
 This function illustrates safe usage:

CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN
 SELECT (pwd = $2) INTO passed
 FROM pwds
 WHERE username = $1;

 RETURN passed;
END;
$$ LANGUAGE plpgsql
 SECURITY DEFINER
 -- Set a secure search_path: trusted schema(s), then 'pg_temp'.
 SET search_path = admin, pg_temp;

 This function's intention is to access a table admin.pwds.
 But without the SET clause, or with a SET clause
 mentioning only admin, the function could be subverted by
 creating a temporary table named pwds.

 If the security definer function intends to create roles, and if it
 is running as a non-superuser, createrole_self_grant
 should also be set to a known value using the SET
 clause.

 Another point to keep in mind is that by default, execute privilege
 is granted to PUBLIC for newly created functions
 (see the section called “Privileges” for more
 information). Frequently you will wish to restrict use of a security
 definer function to only some users. To do that, you must revoke
 the default PUBLIC privileges and then grant execute
 privilege selectively. To avoid having a window where the new function
 is accessible to all, create it and set the privileges within a single
 transaction. For example:

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO admins;
COMMIT;

Compatibility

 A CREATE FUNCTION command is defined in the SQL
 standard. The PostgreSQL™ implementation can be
 used in a compatible way but has many extensions. Conversely, the SQL
 standard specifies a number of optional features that are not implemented
 in PostgreSQL™.

 The following are important compatibility issues:

	
 OR REPLACE is a PostgreSQL extension.

	
 For compatibility with some other database systems, argmode can be written either before or
 after argname. But only
 the first way is standard-compliant.

	
 For parameter defaults, the SQL standard specifies only the syntax with
 the DEFAULT key word. The syntax with
 = is used in T-SQL and Firebird.

	
 The SETOF modifier is a PostgreSQL extension.

	
 Only SQL is standardized as a language.

	
 All other attributes except CALLED ON NULL INPUT and
 RETURNS NULL ON NULL INPUT are not standardized.

	
 For the body of LANGUAGE SQL functions, the SQL
 standard only specifies the sql_body form.

 Simple LANGUAGE SQL functions can be written in a way
 that is both standard-conforming and portable to other implementations.
 More complex functions using advanced features, optimization attributes, or
 other languages will necessarily be specific to PostgreSQL in a significant
 way.

See Also
ALTER FUNCTION(7), DROP FUNCTION(7), GRANT(7), LOAD(7), REVOKE(7)

Name
CREATE GROUP — define a new database role

Synopsis

CREATE GROUP name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description

 CREATE GROUP is now an alias for
 CREATE ROLE(7).

Compatibility

 There is no CREATE GROUP statement in the SQL
 standard.

See Also
CREATE ROLE(7)

Name
CREATE INDEX — define a new index

Synopsis

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON [ONLY] table_name [USING method]
 ({ column_name | (expression) } [COLLATE collation] [opclass [(opclass_parameter = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])
 [INCLUDE (column_name [, ...])]
 [NULLS [NOT] DISTINCT]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate]

Description

 CREATE INDEX constructs an index on the specified column(s)
 of the specified relation, which can be a table or a materialized view.
 Indexes are primarily used to enhance database performance (though
 inappropriate use can result in slower performance).

 The key field(s) for the index are specified as column names,
 or alternatively as expressions written in parentheses.
 Multiple fields can be specified if the index method supports
 multicolumn indexes.

 An index field can be an expression computed from the values of
 one or more columns of the table row. This feature can be used
 to obtain fast access to data based on some transformation of
 the basic data. For example, an index computed on
 upper(col) would allow the clause
 WHERE upper(col) = 'JIM' to use an index.

 PostgreSQL™ provides the index methods
 B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also define their own
 index methods, but that is fairly complicated.

 When the WHERE clause is present, a
 partial index is created.
 A partial index is an index that contains entries for only a portion of
 a table, usually a portion that is more useful for indexing than the
 rest of the table. For example, if you have a table that contains both
 billed and unbilled orders where the unbilled orders take up a small
 fraction of the total table and yet that is an often used section, you
 can improve performance by creating an index on just that portion.
 Another possible application is to use WHERE with
 UNIQUE to enforce uniqueness over a subset of a
 table. See the section called “Partial Indexes” for more discussion.

 The expression used in the WHERE clause can refer
 only to columns of the underlying table, but it can use all columns,
 not just the ones being indexed. Presently, subqueries and
 aggregate expressions are also forbidden in WHERE.
 The same restrictions apply to index fields that are expressions.

 All functions and operators used in an index definition must be
 “immutable”, that is, their results must depend only on
 their arguments and never on any outside influence (such as
 the contents of another table or the current time). This restriction
 ensures that the behavior of the index is well-defined. To use a
 user-defined function in an index expression or WHERE
 clause, remember to mark the function immutable when you create it.

Parameters
	UNIQUE
	
 Causes the system to check for
 duplicate values in the table when the index is created (if data
 already exist) and each time data is added. Attempts to
 insert or update data which would result in duplicate entries
 will generate an error.

 Additional restrictions apply when unique indexes are applied to
 partitioned tables; see CREATE TABLE(7).

	CONCURRENTLY
	
 When this option is used, PostgreSQL™ will build the
 index without taking any locks that prevent concurrent inserts,
 updates, or deletes on the table; whereas a standard index build
 locks out writes (but not reads) on the table until it's done.
 There are several caveats to be aware of when using this option
 — see Building Indexes Concurrently below.

 For temporary tables, CREATE INDEX is always
 non-concurrent, as no other session can access them, and
 non-concurrent index creation is cheaper.

	IF NOT EXISTS
	
 Do not throw an error if a relation with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing index is anything like the one that would have been created.
 Index name is required when IF NOT EXISTS is specified.

	INCLUDE
	
 The optional INCLUDE clause specifies a
 list of columns which will be included in the index
 as non-key columns. A non-key column cannot
 be used in an index scan search qualification, and it is disregarded
 for purposes of any uniqueness or exclusion constraint enforced by
 the index. However, an index-only scan can return the contents of
 non-key columns without having to visit the index's table, since
 they are available directly from the index entry. Thus, addition of
 non-key columns allows index-only scans to be used for queries that
 otherwise could not use them.

 It's wise to be conservative about adding non-key columns to an
 index, especially wide columns. If an index tuple exceeds the
 maximum size allowed for the index type, data insertion will fail.
 In any case, non-key columns duplicate data from the index's table
 and bloat the size of the index, thus potentially slowing searches.
 Furthermore, B-tree deduplication is never used with indexes
 that have a non-key column.

 Columns listed in the INCLUDE clause don't need
 appropriate operator classes; the clause can include
 columns whose data types don't have operator classes defined for
 a given access method.

 Expressions are not supported as included columns since they cannot be
 used in index-only scans.

 Currently, the B-tree, GiST and SP-GiST index access methods support
 this feature. In these indexes, the values of columns listed
 in the INCLUDE clause are included in leaf tuples
 which correspond to heap tuples, but are not included in upper-level
 index entries used for tree navigation.

	name
	
 The name of the index to be created. No schema name can be included
 here; the index is always created in the same schema as its parent
 table. The name of the index must be distinct from the name of any
 other relation (table, sequence, index, view, materialized view, or
 foreign table) in that schema.
 If the name is omitted, PostgreSQL™ chooses a
 suitable name based on the parent table's name and the indexed column
 name(s).

	ONLY
	
 Indicates not to recurse creating indexes on partitions, if the
 table is partitioned. The default is to recurse.

	table_name
	
 The name (possibly schema-qualified) of the table to be indexed.

	method
	
 The name of the index method to be used. Choices are
 btree, hash,
 gist, spgist, gin,
 brin, or user-installed access methods like
 bloom.
 The default method is btree.

	column_name
	
 The name of a column of the table.

	expression
	
 An expression based on one or more columns of the table. The
 expression usually must be written with surrounding parentheses,
 as shown in the syntax. However, the parentheses can be omitted
 if the expression has the form of a function call.

	collation
	
 The name of the collation to use for the index. By default,
 the index uses the collation declared for the column to be
 indexed or the result collation of the expression to be
 indexed. Indexes with non-default collations can be useful for
 queries that involve expressions using non-default collations.

	opclass
	
 The name of an operator class. See below for details.

	opclass_parameter
	
 The name of an operator class parameter. See below for details.

	ASC
	
 Specifies ascending sort order (which is the default).

	DESC
	
 Specifies descending sort order.

	NULLS FIRST
	
 Specifies that nulls sort before non-nulls. This is the default
 when DESC is specified.

	NULLS LAST
	
 Specifies that nulls sort after non-nulls. This is the default
 when DESC is not specified.

	NULLS DISTINCT, NULLS NOT DISTINCT
	
 Specifies whether for a unique index, null values should be considered
 distinct (not equal). The default is that they are distinct, so that
 a unique index could contain multiple null values in a column.

	storage_parameter
	
 The name of an index-method-specific storage parameter. See
 Index Storage Parameters below
 for details.

	tablespace_name
	
 The tablespace in which to create the index. If not specified,
 default_tablespace is consulted, or
 temp_tablespaces for indexes on temporary
 tables.

	predicate
	
 The constraint expression for a partial index.

Index Storage Parameters

 The optional WITH clause specifies storage
 parameters for the index. Each index method has its own set of allowed
 storage parameters. The B-tree, hash, GiST and SP-GiST index methods all
 accept this parameter:

	fillfactor (integer)

	
 The fillfactor for an index is a percentage that determines how full
 the index method will try to pack index pages. For B-trees, leaf pages
 are filled to this percentage during initial index builds, and also
 when extending the index at the right (adding new largest key values).
 If pages
 subsequently become completely full, they will be split, leading to
 fragmentation of the on-disk index structure. B-trees use a default
 fillfactor of 90, but any integer value from 10 to 100 can be selected.

 B-tree indexes on tables where many inserts and/or updates are
 anticipated can benefit from lower fillfactor settings at
 CREATE INDEX time (following bulk loading into the
 table). Values in the range of 50 - 90 can usefully “smooth
 out” the rate of page splits during the
 early life of the B-tree index (lowering fillfactor like this may even
 lower the absolute number of page splits, though this effect is highly
 workload dependent). The B-tree bottom-up index deletion technique
 described in the section called “Bottom-up Index Deletion” is dependent on having
 some “extra” space on pages to store “extra”
 tuple versions, and so can be affected by fillfactor (though the effect
 is usually not significant).

 In other specific cases it might be useful to increase fillfactor to
 100 at CREATE INDEX time as a way of maximizing
 space utilization. You should only consider this when you are
 completely sure that the table is static (i.e. that it will never be
 affected by either inserts or updates). A fillfactor setting of 100
 otherwise risks harming performance: even a few
 updates or inserts will cause a sudden flood of page splits.

 The other index methods use fillfactor in different but roughly
 analogous ways; the default fillfactor varies between methods.

 B-tree indexes additionally accept this parameter:

	deduplicate_items (boolean)

	
 Controls usage of the B-tree deduplication technique described
 in the section called “Deduplication”. Set to
 ON or OFF to enable or
 disable the optimization. (Alternative spellings of
 ON and OFF are allowed as
 described in the section called “Setting Parameters”.) The default is
 ON.

Note

 Turning deduplicate_items off via
 ALTER INDEX prevents future insertions from
 triggering deduplication, but does not in itself make existing
 posting list tuples use the standard tuple representation.

 GiST indexes additionally accept this parameter:

	buffering (enum)

	
 Determines whether the buffered build technique described in
 the section called “GiST Index Build Methods” is used to build the index. With
 OFF buffering is disabled, with ON
 it is enabled, and with AUTO it is initially disabled,
 but is turned on on-the-fly once the index size reaches
 effective_cache_size. The default
 is AUTO.
 Note that if sorted build is possible, it will be used instead of
 buffered build unless buffering=ON is specified.

 GIN indexes accept different parameters:

	fastupdate (boolean)

	
 This setting controls usage of the fast update technique described in
 the section called “GIN Fast Update Technique”. It is a Boolean parameter:
 ON enables fast update, OFF disables it.
 The default is ON.

Note

 Turning fastupdate off via ALTER INDEX prevents
 future insertions from going into the list of pending index entries,
 but does not in itself flush previous entries. You might want to
 VACUUM the table or call gin_clean_pending_list
 function afterward to ensure the pending list is emptied.

	gin_pending_list_limit (integer)

	
 Custom gin_pending_list_limit parameter.
 This value is specified in kilobytes.

 BRIN indexes accept different parameters:

	pages_per_range (integer)

	
 Defines the number of table blocks that make up one block range for
 each entry of a BRIN index (see the section called “Introduction”
 for more details). The default is 128.

	autosummarize (boolean)

	
 Defines whether a summarization run is queued for the previous page
 range whenever an insertion is detected on the next one.
 See the section called “Index Maintenance” for more details.
 The default is off.

Building Indexes Concurrently

 Creating an index can interfere with regular operation of a database.
 Normally PostgreSQL™ locks the table to be indexed against
 writes and performs the entire index build with a single scan of the
 table. Other transactions can still read the table, but if they try to
 insert, update, or delete rows in the table they will block until the
 index build is finished. This could have a severe effect if the system is
 a live production database. Very large tables can take many hours to be
 indexed, and even for smaller tables, an index build can lock out writers
 for periods that are unacceptably long for a production system.

 PostgreSQL™ supports building indexes without locking
 out writes. This method is invoked by specifying the
 CONCURRENTLY option of CREATE INDEX.
 When this option is used,
 PostgreSQL™ must perform two scans of the table, and in
 addition it must wait for all existing transactions that could potentially
 modify or use the index to terminate. Thus
 this method requires more total work than a standard index build and takes
 significantly longer to complete. However, since it allows normal
 operations to continue while the index is built, this method is useful for
 adding new indexes in a production environment. Of course, the extra CPU
 and I/O load imposed by the index creation might slow other operations.

 In a concurrent index build, the index is actually entered as an
 “invalid” index into
 the system catalogs in one transaction, then two table scans occur in
 two more transactions. Before each table scan, the index build must
 wait for existing transactions that have modified the table to terminate.
 After the second scan, the index build must wait for any transactions
 that have a snapshot (see Chapter 13, Concurrency Control) predating the second
 scan to terminate, including transactions used by any phase of concurrent
 index builds on other tables, if the indexes involved are partial or have
 columns that are not simple column references.
 Then finally the index can be marked “valid” and ready for use,
 and the CREATE INDEX command terminates.
 Even then, however, the index may not be immediately usable for queries:
 in the worst case, it cannot be used as long as transactions exist that
 predate the start of the index build.

 If a problem arises while scanning the table, such as a deadlock or a
 uniqueness violation in a unique index, the CREATE INDEX
 command will fail but leave behind an “invalid” index. This index
 will be ignored for querying purposes because it might be incomplete;
 however it will still consume update overhead. The psql
 \d command will report such an index as INVALID:

postgres=# \d tab
 Table "public.tab"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 col | integer | | |
Indexes:
 "idx" btree (col) INVALID

 The recommended recovery
 method in such cases is to drop the index and try again to perform
 CREATE INDEX CONCURRENTLY. (Another possibility is
 to rebuild the index with REINDEX INDEX CONCURRENTLY).

 Another caveat when building a unique index concurrently is that the
 uniqueness constraint is already being enforced against other transactions
 when the second table scan begins. This means that constraint violations
 could be reported in other queries prior to the index becoming available
 for use, or even in cases where the index build eventually fails. Also,
 if a failure does occur in the second scan, the “invalid” index
 continues to enforce its uniqueness constraint afterwards.

 Concurrent builds of expression indexes and partial indexes are supported.
 Errors occurring in the evaluation of these expressions could cause
 behavior similar to that described above for unique constraint violations.

 Regular index builds permit other regular index builds on the
 same table to occur simultaneously, but only one concurrent index build
 can occur on a table at a time. In either case, schema modification of the
 table is not allowed while the index is being built. Another difference is
 that a regular CREATE INDEX command can be performed
 within a transaction block, but CREATE INDEX CONCURRENTLY
 cannot.

 Concurrent builds for indexes on partitioned tables are currently not
 supported. However, you may concurrently build the index on each
 partition individually and then finally create the partitioned index
 non-concurrently in order to reduce the time where writes to the
 partitioned table will be locked out. In this case, building the
 partitioned index is a metadata only operation.

Notes

 See Chapter 11, Indexes for information about when indexes can
 be used, when they are not used, and in which particular situations
 they can be useful.

 Currently, only the B-tree, GiST, GIN, and BRIN index methods support
 multiple-key-column indexes. Whether there can be multiple key
 columns is independent of whether INCLUDE columns
 can be added to the index. Indexes can have up to 32 columns,
 including INCLUDE columns.
 (This limit can be altered when building
 PostgreSQL™.) Only B-tree currently
 supports unique indexes.

 An operator class with optional parameters
 can be specified for each column of an index.
 The operator class identifies the operators to be
 used by the index for that column. For example, a B-tree index on
 four-byte integers would use the int4_ops class;
 this operator class includes comparison functions for four-byte
 integers. In practice the default operator class for the column's data
 type is usually sufficient. The main point of having operator classes
 is that for some data types, there could be more than one meaningful
 ordering. For example, we might want to sort a complex-number data
 type either by absolute value or by real part. We could do this by
 defining two operator classes for the data type and then selecting
 the proper class when creating an index. More information about
 operator classes is in the section called “Operator Classes and Operator Families” and in the section called “Interfacing Extensions to Indexes”.

 When CREATE INDEX is invoked on a partitioned
 table, the default behavior is to recurse to all partitions to ensure
 they all have matching indexes.
 Each partition is first checked to determine whether an equivalent
 index already exists, and if so, that index will become attached as a
 partition index to the index being created, which will become its
 parent index.
 If no matching index exists, a new index will be created and
 automatically attached; the name of the new index in each partition
 will be determined as if no index name had been specified in the
 command.
 If the ONLY option is specified, no recursion
 is done, and the index is marked invalid.
 (ALTER INDEX ... ATTACH PARTITION marks the index
 valid, once all partitions acquire matching indexes.) Note, however,
 that any partition that is created in the future using
 CREATE TABLE ... PARTITION OF will automatically
 have a matching index, regardless of whether ONLY is
 specified.

 For index methods that support ordered scans (currently, only B-tree),
 the optional clauses ASC, DESC, NULLS
 FIRST, and/or NULLS LAST can be specified to modify
 the sort ordering of the index. Since an ordered index can be
 scanned either forward or backward, it is not normally useful to create a
 single-column DESC index — that sort ordering is already
 available with a regular index. The value of these options is that
 multicolumn indexes can be created that match the sort ordering requested
 by a mixed-ordering query, such as SELECT ... ORDER BY x ASC, y
 DESC. The NULLS options are useful if you need to support
 “nulls sort low” behavior, rather than the default “nulls
 sort high”, in queries that depend on indexes to avoid sorting steps.

 The system regularly collects statistics on all of a table's
 columns. Newly-created non-expression indexes can immediately
 use these statistics to determine an index's usefulness.
 For new expression indexes, it is necessary to run ANALYZE or wait for
 the autovacuum daemon to analyze
 the table to generate statistics for these indexes.

 For most index methods, the speed of creating an index is
 dependent on the setting of maintenance_work_mem.
 Larger values will reduce the time needed for index creation, so long
 as you don't make it larger than the amount of memory really available,
 which would drive the machine into swapping.

 PostgreSQL™ can build indexes while
 leveraging multiple CPUs in order to process the table rows faster.
 This feature is known as parallel index
 build. For index methods that support building indexes
 in parallel (currently, only B-tree),
 maintenance_work_mem specifies the maximum
 amount of memory that can be used by each index build operation as
 a whole, regardless of how many worker processes were started.
 Generally, a cost model automatically determines how many worker
 processes should be requested, if any.

 Parallel index builds may benefit from increasing
 maintenance_work_mem where an equivalent serial
 index build will see little or no benefit. Note that
 maintenance_work_mem may influence the number of
 worker processes requested, since parallel workers must have at
 least a 32MB share of the total
 maintenance_work_mem budget. There must also be
 a remaining 32MB share for the leader process.
 Increasing max_parallel_maintenance_workers
 may allow more workers to be used, which will reduce the time
 needed for index creation, so long as the index build is not
 already I/O bound. Of course, there should also be sufficient
 CPU capacity that would otherwise lie idle.

 Setting a value for parallel_workers via ALTER TABLE directly controls how many parallel
 worker processes will be requested by a CREATE
 INDEX against the table. This bypasses the cost model
 completely, and prevents maintenance_work_mem
 from affecting how many parallel workers are requested. Setting
 parallel_workers to 0 via ALTER
 TABLE will disable parallel index builds on the table in
 all cases.

Tip

 You might want to reset parallel_workers after
 setting it as part of tuning an index build. This avoids
 inadvertent changes to query plans, since
 parallel_workers affects
 all parallel table scans.

 While CREATE INDEX with the
 CONCURRENTLY option supports parallel builds
 without special restrictions, only the first table scan is actually
 performed in parallel.

 Use DROP INDEX
 to remove an index.

 Like any long-running transaction, CREATE INDEX on a
 table can affect which tuples can be removed by concurrent
 VACUUM on any other table.

 Prior releases of PostgreSQL™ also had an
 R-tree index method. This method has been removed because
 it had no significant advantages over the GiST method.
 If USING rtree is specified, CREATE INDEX
 will interpret it as USING gist, to simplify conversion
 of old databases to GiST.

 Each backend running CREATE INDEX will report its
 progress in the pg_stat_progress_create_index
 view. See the section called “CREATE INDEX Progress Reporting” for details.

Examples

 To create a unique B-tree index on the column title in
 the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

 To create a unique B-tree index on the column title
 with included columns director
 and rating in the table films:

CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);

 To create a B-Tree index with deduplication disabled:

CREATE INDEX title_idx ON films (title) WITH (deduplicate_items = off);

 To create an index on the expression lower(title),
 allowing efficient case-insensitive searches:

CREATE INDEX ON films ((lower(title)));

 (In this example we have chosen to omit the index name, so the system
 will choose a name, typically films_lower_idx.)

 To create an index with non-default collation:

CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

 To create an index with non-default sort ordering of nulls:

CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);

 To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);

 To create a GIN index with fast updates disabled:

CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);

 To create an index on the column code in the table
 films and have the index reside in the tablespace
 indexspace:

CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;

 To create a GiST index on a point attribute so that we
 can efficiently use box operators on the result of the
 conversion function:

CREATE INDEX pointloc
 ON points USING gist (box(location,location));
SELECT * FROM points
 WHERE box(location,location) && '(0,0),(1,1)'::box;

 To create an index without locking out writes to the table:

CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);

Compatibility

 CREATE INDEX is a
 PostgreSQL™ language extension. There
 are no provisions for indexes in the SQL standard.

See Also
ALTER INDEX(7), DROP INDEX(7), REINDEX(7), the section called “CREATE INDEX Progress Reporting”

Name
CREATE LANGUAGE — define a new procedural language

Synopsis

CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler] [VALIDATOR valfunction]
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name

Description

 CREATE LANGUAGE registers a new
 procedural language with a PostgreSQL™
 database. Subsequently, functions and procedures can be
 defined in this new language.

 CREATE LANGUAGE effectively associates the
 language name with handler function(s) that are responsible for executing
 functions written in the language. Refer to Chapter 58, Writing a Procedural Language Handler
 for more information about language handlers.

 CREATE OR REPLACE LANGUAGE will either create a
 new language, or replace an existing definition. If the language
 already exists, its parameters are updated according to the command,
 but the language's ownership and permissions settings do not change,
 and any existing functions written in the language are assumed to still
 be valid.

 One must have the
 PostgreSQL™ superuser privilege to
 register a new language or change an existing language's parameters.
 However, once the language is created it is valid to assign ownership of
 it to a non-superuser, who may then drop it, change its permissions,
 rename it, or assign it to a new owner. (Do not, however, assign
 ownership of the underlying C functions to a non-superuser; that would
 create a privilege escalation path for that user.)

 The form of CREATE LANGUAGE that does not supply
 any handler function is obsolete. For backwards compatibility with
 old dump files, it is interpreted as CREATE EXTENSION.
 That will work if the language has been packaged into an extension of
 the same name, which is the conventional way to set up procedural
 languages.

Parameters
	TRUSTED
	TRUSTED specifies that the language does
 not grant access to data that the user would not otherwise
 have. If this key word is omitted
 when registering the language, only users with the
 PostgreSQL™ superuser privilege can
 use this language to create new functions.

	PROCEDURAL
	
 This is a noise word.

	name
	
 The name of the new procedural language.
 The name must be unique among the languages in the database.

	HANDLER call_handler
	call_handler is
 the name of a previously registered function that will be
 called to execute the procedural language's functions. The call
 handler for a procedural language must be written in a compiled
 language such as C with version 1 call convention and
 registered with PostgreSQL™ as a
 function taking no arguments and returning the
 language_handler type, a placeholder type that is
 simply used to identify the function as a call handler.

	INLINE inline_handler
	inline_handler is the
 name of a previously registered function that will be called
 to execute an anonymous code block
 (DO command)
 in this language.
 If no inline_handler
 function is specified, the language does not support anonymous code
 blocks.
 The handler function must take one argument of
 type internal, which will be the DO command's
 internal representation, and it will typically return
 void. The return value of the handler is ignored.

	VALIDATOR valfunction
	valfunction is the
 name of a previously registered function that will be called
 when a new function in the language is created, to validate the
 new function.
 If no
 validator function is specified, then a new function will not
 be checked when it is created.
 The validator function must take one argument of
 type oid, which will be the OID of the
 to-be-created function, and will typically return void.

 A validator function would typically inspect the function body
 for syntactical correctness, but it can also look at other
 properties of the function, for example if the language cannot
 handle certain argument types. To signal an error, the
 validator function should use the ereport()
 function. The return value of the function is ignored.

Notes

 Use DROP LANGUAGE to drop procedural languages.

 The system catalog pg_language (see the section called “pg_language”) records information about the
 currently installed languages. Also, the psql
 command \dL lists the installed languages.

 To create functions in a procedural language, a user must have the
 USAGE privilege for the language. By default,
 USAGE is granted to PUBLIC (i.e., everyone)
 for trusted languages. This can be revoked if desired.

 Procedural languages are local to individual databases.
 However, a language can be installed into the template1
 database, which will cause it to be available automatically in
 all subsequently-created databases.

Examples

 A minimal sequence for creating a new procedural language is:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS '$libdir/plsample'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

 Typically that would be written in an extension's creation script,
 and users would do this to install the extension:

CREATE EXTENSION plsample;

Compatibility

 CREATE LANGUAGE is a
 PostgreSQL™ extension.

See Also
ALTER LANGUAGE(7), CREATE FUNCTION(7), DROP LANGUAGE(7), GRANT(7), REVOKE(7)

Name
CREATE MATERIALIZED VIEW — define a new materialized view

Synopsis

CREATE MATERIALIZED VIEW [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description

 CREATE MATERIALIZED VIEW defines a materialized view of
 a query. The query is executed and used to populate the view at the time
 the command is issued (unless WITH NO DATA is used) and may be
 refreshed later using REFRESH MATERIALIZED VIEW.

 CREATE MATERIALIZED VIEW is similar to
 CREATE TABLE AS, except that it also remembers the query used
 to initialize the view, so that it can be refreshed later upon demand.
 A materialized view has many of the same properties as a table, but there
 is no support for temporary materialized views.

 CREATE MATERIALIZED VIEW requires
 CREATE privilege on the schema used for the materialized
 view.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a materialized view with the same name already
 exists. A notice is issued in this case. Note that there is no guarantee
 that the existing materialized view is anything like the one that would
 have been created.

	table_name
	
 The name (optionally schema-qualified) of the materialized view to be
 created. The name must be distinct from the name of any other relation
 (table, sequence, index, view, materialized view, or foreign table) in
 the same schema.

	column_name
	
 The name of a column in the new materialized view. If column names are
 not provided, they are taken from the output column names of the query.

	USING method
	
 This optional clause specifies the table access method to use to store
 the contents for the new materialized view; the method needs be an
 access method of type TABLE. See Chapter 63, Table Access Method Interface Definition for more information. If this option is not
 specified, the default table access method is chosen for the new
 materialized view. See default_table_access_method
 for more information.

	WITH (storage_parameter [= value] [, ...])
	
 This clause specifies optional storage parameters for the new
 materialized view; see
 Storage Parameters in the
 CREATE TABLE(7) documentation for more
 information. All parameters supported for CREATE
 TABLE are also supported for CREATE MATERIALIZED
 VIEW.
 See CREATE TABLE(7) for more information.

	TABLESPACE tablespace_name
	
 The tablespace_name is the name
 of the tablespace in which the new materialized view is to be created.
 If not specified, default_tablespace is consulted.

	query
	
 A SELECT, TABLE,
 or VALUES command. This query will run within a
 security-restricted operation; in particular, calls to functions that
 themselves create temporary tables will fail.

	WITH [NO] DATA
	
 This clause specifies whether or not the materialized view should be
 populated at creation time. If not, the materialized view will be
 flagged as unscannable and cannot be queried until REFRESH
 MATERIALIZED VIEW is used.

Compatibility

 CREATE MATERIALIZED VIEW is a
 PostgreSQL™ extension.

See Also
ALTER MATERIALIZED VIEW(7), CREATE TABLE AS(7), CREATE VIEW(7), DROP MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)

Name
CREATE OPERATOR — define a new operator

Synopsis

CREATE OPERATOR name (
 {FUNCTION|PROCEDURE} = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

Description

 CREATE OPERATOR defines a new operator,
 name. The user who
 defines an operator becomes its owner. If a schema name is given
 then the operator is created in the specified schema. Otherwise it
 is created in the current schema.

 The operator name is a sequence of up to NAMEDATALEN-1
 (63 by default) characters from the following list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

 There are a few restrictions on your choice of name:

	
 -- and /* cannot appear anywhere in an operator name,
 since they will be taken as the start of a comment.

	
 A multicharacter operator name cannot end in + or
 -,
 unless the name also contains at least one of these characters:

~ ! @ # % ^ & | ` ?

 For example, @- is an allowed operator name,
 but *- is not.
 This restriction allows PostgreSQL™ to
 parse SQL-compliant commands without requiring spaces between tokens.

	
 The symbol => is reserved by the SQL grammar,
 so it cannot be used as an operator name.

 The operator != is mapped to
 <> on input, so these two names are always
 equivalent.

 For binary operators, both LEFTARG and
 RIGHTARG must be defined. For prefix operators only
 RIGHTARG should be defined.
 The function_name
 function must have been previously defined using CREATE
 FUNCTION and must be defined to accept the correct number
 of arguments (either one or two) of the indicated types.

 In the syntax of CREATE OPERATOR, the keywords
 FUNCTION and PROCEDURE are
 equivalent, but the referenced function must in any case be a function, not
 a procedure. The use of the keyword PROCEDURE here is
 historical and deprecated.

 The other clauses specify optional operator optimization clauses.
 Their meaning is detailed in the section called “Operator Optimization Information”.

 To be able to create an operator, you must have USAGE
 privilege on the argument types and the return type, as well
 as EXECUTE privilege on the underlying function. If a
 commutator or negator operator is specified, you must own these operators.

Parameters
	name
	
 The name of the operator to be defined. See above for allowable
 characters. The name can be schema-qualified, for example
 CREATE OPERATOR myschema.+ (...). If not, then
 the operator is created in the current schema. Two operators
 in the same schema can have the same name if they operate on
 different data types. This is called
 overloading.

	function_name
	
 The function used to implement this operator.

	left_type
	
 The data type of the operator's left operand, if any.
 This option would be omitted for a prefix operator.

	right_type
	
 The data type of the operator's right operand.

	com_op
	
 The commutator of this operator.

	neg_op
	
 The negator of this operator.

	res_proc
	
 The restriction selectivity estimator function for this operator.

	join_proc
	
 The join selectivity estimator function for this operator.

	HASHES
	
 Indicates this operator can support a hash join.

	MERGES
	
 Indicates this operator can support a merge join.

 To give a schema-qualified operator name in com_op or the other optional
 arguments, use the OPERATOR() syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes

 Refer to the section called “User-Defined Operators” for further information.

 It is not possible to specify an operator's lexical precedence in
 CREATE OPERATOR, because the parser's precedence behavior
 is hard-wired. See the section called “Operator Precedence” for precedence details.

 The obsolete options SORT1, SORT2,
 LTCMP, and GTCMP were formerly used to
 specify the names of sort operators associated with a merge-joinable
 operator. This is no longer necessary, since information about
 associated operators is found by looking at B-tree operator families
 instead. If one of these options is given, it is ignored except
 for implicitly setting MERGES true.

 Use DROP OPERATOR to delete user-defined operators
 from a database. Use ALTER OPERATOR to modify operators in a
 database.

Examples

 The following command defines a new operator, area-equality, for
 the data type box:

CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 FUNCTION = area_equal_function,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_function,
 JOIN = area_join_function,
 HASHES, MERGES
);

Compatibility

 CREATE OPERATOR is a
 PostgreSQL™ extension. There are no
 provisions for user-defined operators in the SQL standard.

See Also
ALTER OPERATOR(7), CREATE OPERATOR CLASS(7), DROP OPERATOR(7)

Name
CREATE OPERATOR CLASS — define a new operator class

Synopsis

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])] function_name (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description

 CREATE OPERATOR CLASS creates a new operator class.
 An operator class defines how a particular data type can be used with
 an index. The operator class specifies that certain operators will fill
 particular roles or “strategies” for this data type and this
 index method. The operator class also specifies the support functions to
 be used by
 the index method when the operator class is selected for an
 index column. All the operators and functions used by an operator
 class must be defined before the operator class can be created.

 If a schema name is given then the operator class is created in the
 specified schema. Otherwise it is created in the current schema.
 Two operator classes in the same schema can have the same name only if they
 are for different index methods.

 The user who defines an operator class becomes its owner. Presently,
 the creating user must be a superuser. (This restriction is made because
 an erroneous operator class definition could confuse or even crash the
 server.)

 CREATE OPERATOR CLASS does not presently check
 whether the operator class definition includes all the operators and
 functions required by the index method, nor whether the operators and
 functions form a self-consistent set. It is the user's
 responsibility to define a valid operator class.

 Related operator classes can be grouped into operator
 families. To add a new operator class to an existing family,
 specify the FAMILY option in CREATE OPERATOR
 CLASS. Without this option, the new class is placed into
 a family named the same as the new class (creating that family if
 it doesn't already exist).

 Refer to the section called “Interfacing Extensions to Indexes” for further information.

Parameters
	name
	
 The name of the operator class to be created. The name can be
 schema-qualified.

	DEFAULT
	
 If present, the operator class will become the default
 operator class for its data type. At most one operator class
 can be the default for a specific data type and index method.

	data_type
	
 The column data type that this operator class is for.

	index_method
	
 The name of the index method this operator class is for.

	family_name
	
 The name of the existing operator family to add this operator class to.
 If not specified, a family named the same as the operator class is
 used (creating it, if it doesn't already exist).

	strategy_number
	
 The index method's strategy number for an operator
 associated with the operator class.

	operator_name
	
 The name (optionally schema-qualified) of an operator associated
 with the operator class.

	op_type
	
 In an OPERATOR clause,
 the operand data type(s) of the operator, or NONE to
 signify a prefix operator. The operand data
 types can be omitted in the normal case where they are the same
 as the operator class's data type.

 In a FUNCTION clause, the operand data type(s) the
 function is intended to support, if different from
 the input data type(s) of the function (for B-tree comparison functions
 and hash functions)
 or the class's data type (for B-tree sort support functions,
 B-tree equal image functions, and all functions in GiST,
 SP-GiST, GIN and BRIN operator classes). These defaults are
 correct, and so op_type need not be specified
 in FUNCTION clauses, except for the case of a
 B-tree sort support function that is meant to support
 cross-data-type comparisons.

	sort_family_name
	
 The name (optionally schema-qualified) of an existing btree operator
 family that describes the sort ordering associated with an ordering
 operator.

 If neither FOR SEARCH nor FOR ORDER BY is
 specified, FOR SEARCH is the default.

	support_number
	
 The index method's support function number for a
 function associated with the operator class.

	function_name
	
 The name (optionally schema-qualified) of a function that is an
 index method support function for the operator class.

	argument_type
	
 The parameter data type(s) of the function.

	storage_type
	
 The data type actually stored in the index. Normally this is
 the same as the column data type, but some index methods
 (currently GiST, GIN, SP-GiST and BRIN) allow it to be different. The
 STORAGE clause must be omitted unless the index
 method allows a different type to be used.
 If the column data_type is specified
 as anyarray, the storage_type
 can be declared as anyelement to indicate that the index
 entries are members of the element type belonging to the actual array
 type that each particular index is created for.

 The OPERATOR, FUNCTION, and STORAGE
 clauses can appear in any order.

Notes

 Because the index machinery does not check access permissions on functions
 before using them, including a function or operator in an operator class
 is tantamount to granting public execute permission on it. This is usually
 not an issue for the sorts of functions that are useful in an operator
 class.

 The operators should not be defined by SQL functions. An SQL function
 is likely to be inlined into the calling query, which will prevent
 the optimizer from recognizing that the query matches an index.

 Before PostgreSQL™ 8.4, the OPERATOR
 clause could include a RECHECK option. This is no longer
 supported because whether an index operator is “lossy” is now
 determined on-the-fly at run time. This allows efficient handling of
 cases where an operator might or might not be lossy.

Examples

 The following example command defines a GiST index operator class
 for the data type _int4 (array of int4). See the
 intarray module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
 DEFAULT FOR TYPE _int4 USING gist AS
 OPERATOR 3 &&,
 OPERATOR 6 = (anyarray, anyarray),
 OPERATOR 7 @>,
 OPERATOR 8 <@,
 OPERATOR 20 @@ (_int4, query_int),
 FUNCTION 1 g_int_consistent (internal, _int4, smallint, oid, internal),
 FUNCTION 2 g_int_union (internal, internal),
 FUNCTION 3 g_int_compress (internal),
 FUNCTION 4 g_int_decompress (internal),
 FUNCTION 5 g_int_penalty (internal, internal, internal),
 FUNCTION 6 g_int_picksplit (internal, internal),
 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility

 CREATE OPERATOR CLASS is a
 PostgreSQL™ extension. There is no
 CREATE OPERATOR CLASS statement in the SQL
 standard.

See Also
ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7), CREATE OPERATOR FAMILY(7), ALTER OPERATOR FAMILY(7)

Name
CREATE OPERATOR FAMILY — define a new operator family

Synopsis

CREATE OPERATOR FAMILY name USING index_method

Description

 CREATE OPERATOR FAMILY creates a new operator family.
 An operator family defines a collection of related operator classes,
 and perhaps some additional operators and support functions that are
 compatible with these operator classes but not essential for the
 functioning of any individual index. (Operators and functions that
 are essential to indexes should be grouped within the relevant operator
 class, rather than being “loose” in the operator family.
 Typically, single-data-type operators are bound to operator classes,
 while cross-data-type operators can be loose in an operator family
 containing operator classes for both data types.)

 The new operator family is initially empty. It should be populated
 by issuing subsequent CREATE OPERATOR CLASS commands
 to add contained operator classes, and optionally
 ALTER OPERATOR FAMILY commands to add “loose”
 operators and their corresponding support functions.

 If a schema name is given then the operator family is created in the
 specified schema. Otherwise it is created in the current schema.
 Two operator families in the same schema can have the same name only if they
 are for different index methods.

 The user who defines an operator family becomes its owner. Presently,
 the creating user must be a superuser. (This restriction is made because
 an erroneous operator family definition could confuse or even crash the
 server.)

 Refer to the section called “Interfacing Extensions to Indexes” for further information.

Parameters
	name
	
 The name of the operator family to be created. The name can be
 schema-qualified.

	index_method
	
 The name of the index method this operator family is for.

Compatibility

 CREATE OPERATOR FAMILY is a
 PostgreSQL™ extension. There is no
 CREATE OPERATOR FAMILY statement in the SQL
 standard.

See Also
ALTER OPERATOR FAMILY(7), DROP OPERATOR FAMILY(7), CREATE OPERATOR CLASS(7), ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7)

Name
CREATE POLICY — define a new row-level security policy for a table

Synopsis

CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description

 The CREATE POLICY command defines a new row-level
 security policy for a table. Note that row-level security must be
 enabled on the table (using ALTER TABLE ... ENABLE ROW LEVEL
 SECURITY) in order for created policies to be applied.

 A policy grants the permission to select, insert, update, or delete rows
 that match the relevant policy expression. Existing table rows are
 checked against the expression specified in USING,
 while new rows that would be created via INSERT
 or UPDATE are checked against the expression specified
 in WITH CHECK. When a USING
 expression returns true for a given row then that row is visible to the
 user, while if false or null is returned then the row is not visible.
 Typically, no error occurs when a row is not visible, but see
 Table 292, “Policies Applied by Command Type” for exceptions.
 When a WITH CHECK expression returns true for a row
 then that row is inserted or updated, while if false or null is returned
 then an error occurs.

 For INSERT, UPDATE, and
 MERGE statements,
 WITH CHECK expressions are enforced after
 BEFORE triggers are fired, and before any actual data
 modifications are made. Thus a BEFORE ROW trigger may
 modify the data to be inserted, affecting the result of the security
 policy check. WITH CHECK expressions are enforced
 before any other constraints.

 Policy names are per-table. Therefore, one policy name can be used for many
 different tables and have a definition for each table which is appropriate to
 that table.

 Policies can be applied for specific commands or for specific roles. The
 default for newly created policies is that they apply for all commands and
 roles, unless otherwise specified. Multiple policies may apply to a single
 command; see below for more details.
 Table 292, “Policies Applied by Command Type” summarizes how the different types
 of policy apply to specific commands.

 For policies that can have both USING
 and WITH CHECK expressions (ALL
 and UPDATE), if no WITH CHECK
 expression is defined, then the USING expression will be
 used both to determine which rows are visible (normal
 USING case) and which new rows will be allowed to be
 added (WITH CHECK case).

 If row-level security is enabled for a table, but no applicable policies
 exist, a “default deny” policy is assumed, so that no rows will
 be visible or updatable.

Parameters
	name
	
 The name of the policy to be created. This must be distinct from the
 name of any other policy for the table.

	table_name
	
 The name (optionally schema-qualified) of the table the
 policy applies to.

	PERMISSIVE
	
 Specify that the policy is to be created as a permissive policy.
 All permissive policies which are applicable to a given query will
 be combined together using the Boolean “OR” operator. By creating
 permissive policies, administrators can add to the set of records
 which can be accessed. Policies are permissive by default.

	RESTRICTIVE
	
 Specify that the policy is to be created as a restrictive policy.
 All restrictive policies which are applicable to a given query will
 be combined together using the Boolean “AND” operator. By creating
 restrictive policies, administrators can reduce the set of records
 which can be accessed as all restrictive policies must be passed for
 each record.

 Note that there needs to be at least one permissive policy to grant
 access to records before restrictive policies can be usefully used to
 reduce that access. If only restrictive policies exist, then no records
 will be accessible. When a mix of permissive and restrictive policies
 are present, a record is only accessible if at least one of the
 permissive policies passes, in addition to all the restrictive
 policies.

	command
	
 The command to which the policy applies. Valid options are
 ALL, SELECT,
 INSERT, UPDATE,
 and DELETE.
 ALL is the default.
 See below for specifics regarding how these are applied.

	role_name
	
 The role(s) to which the policy is to be applied. The default is
 PUBLIC, which will apply the policy to all roles.

	using_expression
	
 Any SQL conditional expression (returning
 boolean). The conditional expression cannot contain
 any aggregate or window functions. This expression will be added
 to queries that refer to the table if row-level security is enabled.
 Rows for which the expression returns true will be visible. Any
 rows for which the expression returns false or null will not be
 visible to the user (in a SELECT), and will not be
 available for modification (in an UPDATE
 or DELETE). Typically, such rows are silently
 suppressed; no error is reported (but see
 Table 292, “Policies Applied by Command Type” for exceptions).

	check_expression
	
 Any SQL conditional expression (returning
 boolean). The conditional expression cannot contain
 any aggregate or window functions. This expression will be used in
 INSERT and UPDATE queries against
 the table if row-level security is enabled. Only rows for which the
 expression evaluates to true will be allowed. An error will be thrown
 if the expression evaluates to false or null for any of the records
 inserted or any of the records that result from the update. Note that
 the check_expression is
 evaluated against the proposed new contents of the row, not the
 original contents.

Per-Command Policies
	ALL
	
 Using ALL for a policy means that it will apply
 to all commands, regardless of the type of command. If an
 ALL policy exists and more specific policies
 exist, then both the ALL policy and the more
 specific policy (or policies) will be applied.
 Additionally, ALL policies will be applied to
 both the selection side of a query and the modification side, using
 the USING expression for both cases if only
 a USING expression has been defined.

 As an example, if an UPDATE is issued, then the
 ALL policy will be applicable both to what the
 UPDATE will be able to select as rows to be
 updated (applying the USING expression),
 and to the resulting updated rows, to check if they are permitted
 to be added to the table (applying the WITH CHECK
 expression, if defined, and the USING expression
 otherwise). If an INSERT
 or UPDATE command attempts to add rows to the
 table that do not pass the ALL
 policy's WITH CHECK expression (or its
 USING expression, if it does not have a
 WITH CHECK expression), the entire command will
 be aborted.

	SELECT
	
 Using SELECT for a policy means that it will apply
 to SELECT queries and whenever
 SELECT permissions are required on the relation the
 policy is defined for. The result is that only those records from the
 relation that pass the SELECT policy will be
 returned during a SELECT query, and that queries
 that require SELECT permissions, such as
 UPDATE, DELETE, and
 MERGE, will also only see those records
 that are allowed by the SELECT policy.
 A SELECT policy cannot have a WITH
 CHECK expression, as it only applies in cases where
 records are being retrieved from the relation, except as described
 below.

 If a data-modifying query has a RETURNING clause,
 SELECT permissions are required on the relation,
 and any newly inserted or updated rows from the relation must satisfy
 the relation's SELECT policies in order to be
 available to the RETURNING clause. If a newly
 inserted or updated row does not satisfy the relation's
 SELECT policies, an error will be thrown (inserted
 or updated rows to be returned are never
 silently ignored).

 If an INSERT has an ON CONFLICT DO
 NOTHING/UPDATE clause, SELECT
 permissions are required on the relation, and the rows proposed for
 insertion are checked using the relation's SELECT
 policies. If a row proposed for insertion does not satisfy the
 relation's SELECT policies, an error is thrown
 (the INSERT is never silently
 avoided). In addition, if the UPDATE path is
 taken, the row to be updated and the new updated row are checked
 against the relation's SELECT policies, and an
 error is thrown if they are not satisfied (an auxiliary
 UPDATE is never silently
 avoided).

 A MERGE command requires SELECT
 permissions on both the source and target relations, and so each
 relation's SELECT policies are applied before they
 are joined, and the MERGE actions will only see
 those records that are allowed by those policies. In addition, if
 an UPDATE action is executed, the target relation's
 SELECT policies are applied to the updated row, as
 for a standalone UPDATE, except that an error is
 thrown if they are not satisfied.

	INSERT
	
 Using INSERT for a policy means that it will apply
 to INSERT commands and MERGE
 commands that contain INSERT actions.
 Rows being inserted that do
 not pass this policy will result in a policy violation error, and the
 entire INSERT command will be aborted.
 An INSERT policy cannot have
 a USING expression, as it only applies in cases
 where records are being added to the relation.

 Note that an INSERT with an ON CONFLICT
 DO NOTHING/UPDATE clause will check the
 INSERT policies' WITH CHECK
 expressions for all rows proposed for insertion, regardless of
 whether or not they end up being inserted.

	UPDATE
	
 Using UPDATE for a policy means that it will apply
 to UPDATE, SELECT FOR UPDATE,
 and SELECT FOR SHARE commands, as well as
 auxiliary ON CONFLICT DO UPDATE clauses of
 INSERT commands, and MERGE
 commands containing UPDATE actions.
 Since an UPDATE command
 involves pulling an existing record and replacing it with a new
 modified record, UPDATE
 policies accept both a USING expression and
 a WITH CHECK expression.
 The USING expression determines which records
 the UPDATE command will see to operate against,
 while the WITH CHECK expression defines which
 modified rows are allowed to be stored back into the relation.

 Any rows whose updated values do not pass the
 WITH CHECK expression will cause an error, and the
 entire command will be aborted. If only a USING
 clause is specified, then that clause will be used for both
 USING and WITH CHECK cases.

 Typically an UPDATE command also needs to read
 data from columns in the relation being updated (e.g., in a
 WHERE clause or a RETURNING
 clause, or in an expression on the right hand side of the
 SET clause). In this case,
 SELECT rights are also required on the relation
 being updated, and the appropriate SELECT or
 ALL policies will be applied in addition to
 the UPDATE policies. Thus the user must have
 access to the row(s) being updated through a SELECT
 or ALL policy in addition to being granted
 permission to update the row(s) via an UPDATE
 or ALL policy.

 When an INSERT command has an auxiliary
 ON CONFLICT DO UPDATE clause, if the
 UPDATE path is taken, the row to be updated is
 first checked against the USING expressions of
 any UPDATE policies, and then the new updated row
 is checked against the WITH CHECK expressions.
 Note, however, that unlike a standalone UPDATE
 command, if the existing row does not pass the
 USING expressions, an error will be thrown (the
 UPDATE path will never be silently
 avoided). The same applies to an UPDATE action
 of a MERGE command.

	DELETE
	
 Using DELETE for a policy means that it will apply
 to DELETE commands and MERGE
 commands containing DELETE actions. For a
 DELETE command, only rows that pass this policy
 will be seen by the DELETE command. There can
 be rows that are visible through a SELECT policy
 that are not available for deletion, if they do not pass the
 USING expression for the DELETE
 policy. Note, however, that a DELETE action in a
 MERGE command will see rows that are visible
 through SELECT policies, and if the
 DELETE policy does not pass for such a row, an
 error will be thrown.

 In most cases a DELETE command also needs to read
 data from columns in the relation that it is deleting from (e.g.,
 in a WHERE clause or a
 RETURNING clause). In this case,
 SELECT rights are also required on the relation,
 and the appropriate SELECT or
 ALL policies will be applied in addition to
 the DELETE policies. Thus the user must have
 access to the row(s) being deleted through a SELECT
 or ALL policy in addition to being granted
 permission to delete the row(s) via a DELETE or
 ALL policy.

 A DELETE policy cannot have a WITH
 CHECK expression, as it only applies in cases where
 records are being deleted from the relation, so that there is no
 new row to check.

 Table 292, “Policies Applied by Command Type” summarizes how the different
 types of policy apply to specific commands. In the table,
 “check” means that the policy expression is checked and an
 error is thrown if it returns false or null, whereas “filter”
 means that the row is silently ignored if the policy expression returns
 false or null.

Table 292. Policies Applied by Command Type
	Command	SELECT/ALL policy	INSERT/ALL policy	UPDATE/ALL policy	DELETE/ALL policy
	USING expression	WITH CHECK expression	USING expression	WITH CHECK expression	USING expression
	SELECT / COPY ... TO	Filter existing row	—	—	—	—
	SELECT FOR UPDATE/SHARE	Filter existing row	—	Filter existing row	—	—
	INSERT	
 Check new row [a]
 	Check new row	—	—	—
	UPDATE	
 Filter existing row [a] &
 check new row [a]
 	—	Filter existing row	Check new row	—
	DELETE	
 Filter existing row [a]
 	—	—	—	Filter existing row
	INSERT ... ON CONFLICT	
 Check new row [b]
 	
 Check new row [b]
 	—	—	—
	ON CONFLICT DO UPDATE	
 Check existing & new rows [c]
 	—	Check existing row	
 Check new row [c]
 	—
	MERGE	Filter source & target rows	—	—	—	—
	MERGE ... THEN INSERT	—	Check new row	—	—	—
	MERGE ... THEN UPDATE	Check new row	—	Check existing row	Check new row	—
	MERGE ... THEN DELETE	—	—	—	—	Check existing row
	[a]
 If read access is required to either the existing or new row (for
 example, a WHERE or RETURNING
 clause that refers to columns from the relation).

[b]
 Row proposed for insertion is checked regardless of whether or not a
 conflict occurs.

[c]
 New row of the auxiliary UPDATE command, which
 might be different from the new row of the original
 INSERT command.

Application of Multiple Policies

 When multiple policies of different command types apply to the same command
 (for example, SELECT and UPDATE
 policies applied to an UPDATE command), then the user
 must have both types of permissions (for example, permission to select rows
 from the relation as well as permission to update them). Thus the
 expressions for one type of policy are combined with the expressions for
 the other type of policy using the AND operator.

 When multiple policies of the same command type apply to the same command,
 then there must be at least one PERMISSIVE policy
 granting access to the relation, and all of the
 RESTRICTIVE policies must pass. Thus all the
 PERMISSIVE policy expressions are combined using
 OR, all the RESTRICTIVE policy
 expressions are combined using AND, and the results are
 combined using AND. If there are no
 PERMISSIVE policies, then access is denied.

 Note that, for the purposes of combining multiple policies,
 ALL policies are treated as having the same type as
 whichever other type of policy is being applied.

 For example, in an UPDATE command requiring both
 SELECT and UPDATE permissions, if
 there are multiple applicable policies of each type, they will be combined
 as follows:

expression from RESTRICTIVE SELECT/ALL policy 1
AND
expression from RESTRICTIVE SELECT/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE SELECT/ALL policy 1
 OR
 expression from PERMISSIVE SELECT/ALL policy 2
 OR
 ...
)
AND
expression from RESTRICTIVE UPDATE/ALL policy 1
AND
expression from RESTRICTIVE UPDATE/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE UPDATE/ALL policy 1
 OR
 expression from PERMISSIVE UPDATE/ALL policy 2
 OR
 ...
)

Notes

 You must be the owner of a table to create or change policies for it.

 While policies will be applied for explicit queries against tables
 in the database, they are not applied when the system is performing internal
 referential integrity checks or validating constraints. This means there are
 indirect ways to determine that a given value exists. An example of this is
 attempting to insert a duplicate value into a column that is a primary key
 or has a unique constraint. If the insert fails then the user can infer that
 the value already exists. (This example assumes that the user is permitted by
 policy to insert records which they are not allowed to see.) Another example
 is where a user is allowed to insert into a table which references another,
 otherwise hidden table. Existence can be determined by the user inserting
 values into the referencing table, where success would indicate that the
 value exists in the referenced table. These issues can be addressed by
 carefully crafting policies to prevent users from being able to insert,
 delete, or update records at all which might possibly indicate a value they
 are not otherwise able to see, or by using generated values (e.g., surrogate
 keys) instead of keys with external meanings.

 Generally, the system will enforce filter conditions imposed using
 security policies prior to qualifications that appear in user queries,
 in order to prevent inadvertent exposure of the protected data to
 user-defined functions which might not be trustworthy. However,
 functions and operators marked by the system (or the system
 administrator) as LEAKPROOF may be evaluated before
 policy expressions, as they are assumed to be trustworthy.

 Since policy expressions
 are added to the user's query directly, they will be run with the rights of
 the user running the overall query. Therefore, users who are using a given
 policy must be able to access any tables or functions referenced in the
 expression or they will simply receive a permission denied error when
 attempting to query the table that has row-level security enabled.
 This does not change how views
 work, however. As with normal queries and views, permission checks and
 policies for the tables which are referenced by a view will use the view
 owner's rights and any policies which apply to the view owner, except if
 the view is defined using the security_invoker option
 (see CREATE VIEW).

 No separate policy exists for MERGE. Instead, the policies
 defined for SELECT, INSERT,
 UPDATE, and DELETE are applied
 while executing MERGE, depending on the actions that are
 performed.

 Additional discussion and practical examples can be found
 in the section called “Row Security Policies”.

Compatibility

 CREATE POLICY is a PostgreSQL™
 extension.

See Also
ALTER POLICY(7), DROP POLICY(7), ALTER TABLE(7)

Name
CREATE PROCEDURE — define a new procedure

Synopsis

CREATE [OR REPLACE] PROCEDURE
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr] [, ...]])
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 | sql_body
 } ...

Description

 CREATE PROCEDURE defines a new procedure.
 CREATE OR REPLACE PROCEDURE will either create a
 new procedure, or replace an existing definition.
 To be able to define a procedure, the user must have the
 USAGE privilege on the language.

 If a schema name is included, then the procedure is created in the
 specified schema. Otherwise it is created in the current schema.
 The name of the new procedure must not match any existing procedure or function
 with the same input argument types in the same schema. However,
 procedures and functions of different argument types can share a name (this is
 called overloading).

 To replace the current definition of an existing procedure, use
 CREATE OR REPLACE PROCEDURE. It is not possible
 to change the name or argument types of a procedure this way (if you
 tried, you would actually be creating a new, distinct procedure).

 When CREATE OR REPLACE PROCEDURE is used to replace an
 existing procedure, the ownership and permissions of the procedure
 do not change. All other procedure properties are assigned the
 values specified or implied in the command. You must own the procedure
 to replace it (this includes being a member of the owning role).

 The user that creates the procedure becomes the owner of the procedure.

 To be able to create a procedure, you must have USAGE
 privilege on the argument types.

 Refer to the section called “User-Defined Procedures” for further information on writing
 procedures.

Parameters
	name
	
 The name (optionally schema-qualified) of the procedure to create.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC. If omitted,
 the default is IN.

	argname
	
 The name of an argument.

	argtype
	
 The data type(s) of the procedure's arguments (optionally
 schema-qualified), if any. The argument types can be base, composite,
 or domain types, or can reference the type of a table column.

 Depending on the implementation language it might also be allowed
 to specify “pseudo-types” such as cstring.
 Pseudo-types indicate that the actual argument type is either
 incompletely specified, or outside the set of ordinary SQL data types.

 The type of a column is referenced by writing
 table_name.column_name%TYPE.
 Using this feature can sometimes help make a procedure independent of
 changes to the definition of a table.

	default_expr
	
 An expression to be used as default value if the parameter is
 not specified. The expression has to be coercible to the
 argument type of the parameter.
 All input parameters following a
 parameter with a default value must have default values as well.

	lang_name
	
 The name of the language that the procedure is implemented in.
 It can be sql, c,
 internal, or the name of a user-defined
 procedural language, e.g., plpgsql. The default is
 sql if sql_body is specified. Enclosing the
 name in single quotes is deprecated and requires matching case.

	TRANSFORM { FOR TYPE type_name } [, ...] }
	
 Lists which transforms a call to the procedure should apply. Transforms
 convert between SQL types and language-specific data types;
 see CREATE TRANSFORM(7). Procedural language
 implementations usually have hardcoded knowledge of the built-in types,
 so those don't need to be listed here. If a procedural language
 implementation does not know how to handle a type and no transform is
 supplied, it will fall back to a default behavior for converting data
 types, but this depends on the implementation.

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	SECURITY INVOKER indicates that the procedure
 is to be executed with the privileges of the user that calls it.
 That is the default. SECURITY DEFINER
 specifies that the procedure is to be executed with the
 privileges of the user that owns it.

 The key word EXTERNAL is allowed for SQL
 conformance, but it is optional since, unlike in SQL, this feature
 applies to all procedures not only external ones.

 A SECURITY DEFINER procedure cannot execute
 transaction control statements (for example, COMMIT
 and ROLLBACK, depending on the language).

	configuration_parameter, value
	
 The SET clause causes the specified configuration
 parameter to be set to the specified value when the procedure is
 entered, and then restored to its prior value when the procedure exits.
 SET FROM CURRENT saves the value of the parameter that
 is current when CREATE PROCEDURE is executed as the value
 to be applied when the procedure is entered.

 If a SET clause is attached to a procedure, then
 the effects of a SET LOCAL command executed inside the
 procedure for the same variable are restricted to the procedure: the
 configuration parameter's prior value is still restored at procedure exit.
 However, an ordinary
 SET command (without LOCAL) overrides the
 SET clause, much as it would do for a previous SET
 LOCAL command: the effects of such a command will persist after
 procedure exit, unless the current transaction is rolled back.

 If a SET clause is attached to a procedure, then
 that procedure cannot execute transaction control statements (for
 example, COMMIT and ROLLBACK,
 depending on the language).

 See SET(7) and
 Chapter 20, Server Configuration
 for more information about allowed parameter names and values.

	definition
	
 A string constant defining the procedure; the meaning depends on the
 language. It can be an internal procedure name, the path to an
 object file, an SQL command, or text in a procedural language.

 It is often helpful to use dollar quoting (see the section called “Dollar-Quoted String Constants”) to write the procedure definition
 string, rather than the normal single quote syntax. Without dollar
 quoting, any single quotes or backslashes in the procedure definition must
 be escaped by doubling them.

	obj_file, link_symbol
	
 This form of the AS clause is used for
 dynamically loadable C language procedures when the procedure name
 in the C language source code is not the same as the name of
 the SQL procedure. The string obj_file is the name of the shared
 library file containing the compiled C procedure, and is interpreted
 as for the LOAD command. The string
 link_symbol is the
 procedure's link symbol, that is, the name of the procedure in the C
 language source code. If the link symbol is omitted, it is assumed
 to be the same as the name of the SQL procedure being defined.

 When repeated CREATE PROCEDURE calls refer to
 the same object file, the file is only loaded once per session.
 To unload and
 reload the file (perhaps during development), start a new session.

	sql_body
	
 The body of a LANGUAGE SQL procedure. This should
 be a block

BEGIN ATOMIC
 statement;
 statement;
 ...
 statement;
END

 This is similar to writing the text of the procedure body as a string
 constant (see definition above), but there
 are some differences: This form only works for LANGUAGE
 SQL, the string constant form works for all languages. This
 form is parsed at procedure definition time, the string constant form is
 parsed at execution time; therefore this form cannot support
 polymorphic argument types and other constructs that are not resolvable
 at procedure definition time. This form tracks dependencies between the
 procedure and objects used in the procedure body, so DROP
 ... CASCADE will work correctly, whereas the form using
 string literals may leave dangling procedures. Finally, this form is
 more compatible with the SQL standard and other SQL implementations.

Notes

 See CREATE FUNCTION(7) for more details on function
 creation that also apply to procedures.

 Use CALL(7) to execute a procedure.

Examples

CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
AS $$
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
$$;

 or

CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
BEGIN ATOMIC
 INSERT INTO tbl VALUES (a);
 INSERT INTO tbl VALUES (b);
END;

 and call like this:

CALL insert_data(1, 2);

Compatibility

 A CREATE PROCEDURE command is defined in the SQL
 standard. The PostgreSQL™ implementation can be
 used in a compatible way but has many extensions. For details see also
 CREATE FUNCTION(7).

See Also
ALTER PROCEDURE(7), DROP PROCEDURE(7), CALL(7), CREATE FUNCTION(7)

Name
CREATE PUBLICATION — define a new publication

Synopsis

CREATE PUBLICATION name
 [FOR ALL TABLES
 | FOR publication_object [, ...]]
 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE table_and_columns [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

and table_and_columns is:

 [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression)]

Description

 CREATE PUBLICATION adds a new publication
 into the current database. The publication name must be distinct from
 the name of any existing publication in the current database.

 A publication is essentially a group of tables whose data changes are
 intended to be replicated through logical replication. See
 the section called “Publication” for details about how
 publications fit into the logical replication setup.

Parameters
	name
	
 The name of the new publication.

	FOR TABLE
	
 Specifies a list of tables to add to the publication. If
 ONLY is specified before the table name, only
 that table is added to the publication. If ONLY is not
 specified, the table and all its descendant tables (if any) are added.
 Optionally, * can be specified after the table name to
 explicitly indicate that descendant tables are included.
 This does not apply to a partitioned table, however. The partitions of
 a partitioned table are always implicitly considered part of the
 publication, so they are never explicitly added to the publication.

 If the optional WHERE clause is specified, it defines a
 row filter expression. Rows for
 which the expression
 evaluates to false or null will not be published. Note that parentheses
 are required around the expression. It has no effect on
 TRUNCATE commands.

 When a column list is specified, only the named columns are replicated.
 If no column list is specified, all columns of the table are replicated
 through this publication, including any columns added later. It has no
 effect on TRUNCATE commands. See
 the section called “Column Lists” for details about column
 lists.

 Only persistent base tables and partitioned tables can be part of a
 publication. Temporary tables, unlogged tables, foreign tables,
 materialized views, and regular views cannot be part of a publication.

 Specifying a column list when the publication also publishes
 FOR TABLES IN SCHEMA is not supported.

 When a partitioned table is added to a publication, all of its existing
 and future partitions are implicitly considered to be part of the
 publication. So, even operations that are performed directly on a
 partition are also published via publications that its ancestors are
 part of.

	FOR ALL TABLES
	
 Marks the publication as one that replicates changes for all tables in
 the database, including tables created in the future.

	FOR TABLES IN SCHEMA
	
 Marks the publication as one that replicates changes for all tables in
 the specified list of schemas, including tables created in the future.

 Specifying a schema when the publication also publishes a table with a
 column list is not supported.

 Only persistent base tables and partitioned tables present in the schema
 will be included as part of the publication. Temporary tables, unlogged
 tables, foreign tables, materialized views, and regular views from the
 schema will not be part of the publication.

 When a partitioned table is published via schema level publication, all
 of its existing and future partitions are implicitly considered to be part of the
 publication, regardless of whether they are from the publication schema or not.
 So, even operations that are performed directly on a
 partition are also published via publications that its ancestors are
 part of.

	WITH (publication_parameter [= value] [, ...])
	
 This clause specifies optional parameters for a publication. The
 following parameters are supported:

	publish (string)
	
 This parameter determines which DML operations will be published by
 the new publication to the subscribers. The value is
 comma-separated list of operations. The allowed operations are
 insert, update,
 delete, and truncate.
 The default is to publish all actions,
 and so the default value for this option is
 'insert, update, delete, truncate'.

 This parameter only affects DML operations. In particular, the initial
 data synchronization (see the section called “Initial Snapshot”)
 for logical replication does not take this parameter into account when
 copying existing table data.

	publish_via_partition_root (boolean)
	
 This parameter controls how changes to a partitioned table (or any of
 its partitions) are published. When set to true,
 changes are published using the identity and schema of the
 root partitioned table. When set to false (the
 default), changes are published using the identity and schema of the
 individual partitions where the changes actually occurred. Enabling
 this option allows the changes to be replicated into a
 non-partitioned table or into a partitioned table whose partition
 structure differs from that of the publisher.

 There can be a case where a subscription combines multiple
 publications. If a partitioned table is published by any
 subscribed publications which set
 publish_via_partition_root = true, changes on this
 partitioned table (or on its partitions) will be published using
 the identity and schema of this partitioned table rather than
 that of the individual partitions.

 This parameter also affects how row filters and column lists are
 chosen for partitions; see below for details.

 If this is enabled, TRUNCATE operations performed
 directly on partitions are not replicated.

 When specifying a parameter of type boolean, the
 = value
 part can be omitted, which is equivalent to
 specifying TRUE.

Notes

 If FOR TABLE, FOR ALL TABLES or
 FOR TABLES IN SCHEMA are not specified, then the
 publication starts out with an empty set of tables. That is useful if
 tables or schemas are to be added later.

 The creation of a publication does not start replication. It only defines
 a grouping and filtering logic for future subscribers.

 To create a publication, the invoking user must have the
 CREATE privilege for the current database.
 (Of course, superusers bypass this check.)

 To add a table to a publication, the invoking user must have ownership
 rights on the table. The FOR ALL TABLES and
 FOR TABLES IN SCHEMA clauses require the invoking
 user to be a superuser.

 The tables added to a publication that publishes UPDATE
 and/or DELETE operations must have
 REPLICA IDENTITY defined. Otherwise those operations will be
 disallowed on those tables.

 Any column list must include the REPLICA IDENTITY columns
 in order for UPDATE or DELETE
 operations to be published. There are no column list restrictions if the
 publication publishes only INSERT operations.

 A row filter expression (i.e., the WHERE clause) must contain only
 columns that are covered by the REPLICA IDENTITY, in
 order for UPDATE and DELETE operations
 to be published. For publication of INSERT operations,
 any column may be used in the WHERE expression. The
 row filter allows simple expressions that don't have
 user-defined functions, user-defined operators, user-defined types,
 user-defined collations, non-immutable built-in functions, or references to
 system columns.

 The row filter on a table becomes redundant if
 FOR TABLES IN SCHEMA is specified and the table
 belongs to the referred schema.

 For published partitioned tables, the row filter for each
 partition is taken from the published partitioned table if the
 publication parameter publish_via_partition_root is true,
 or from the partition itself if it is false (the default).
 See the section called “Row Filters” for details about row
 filters.
 Similarly, for published partitioned tables, the column list for each
 partition is taken from the published partitioned table if the
 publication parameter publish_via_partition_root is true,
 or from the partition itself if it is false.

 For an INSERT ... ON CONFLICT command, the publication will
 publish the operation that results from the command. Depending
 on the outcome, it may be published as either INSERT or
 UPDATE, or it may not be published at all.

 For a MERGE command, the publication will publish an
 INSERT, UPDATE, or DELETE
 for each row inserted, updated, or deleted.

 ATTACHing a table into a partition tree whose root is
 published using a publication with publish_via_partition_root
 set to true does not result in the table's existing contents
 being replicated.

 COPY ... FROM commands are published
 as INSERT operations.

 DDL operations are not published.

 The WHERE clause expression is executed with the role used
 for the replication connection.

Examples

 Create a publication that publishes all changes in two tables:

CREATE PUBLICATION mypublication FOR TABLE users, departments;

 Create a publication that publishes all changes from active departments:

CREATE PUBLICATION active_departments FOR TABLE departments WHERE (active IS TRUE);

 Create a publication that publishes all changes in all tables:

CREATE PUBLICATION alltables FOR ALL TABLES;

 Create a publication that only publishes INSERT
 operations in one table:

CREATE PUBLICATION insert_only FOR TABLE mydata
 WITH (publish = 'insert');

 Create a publication that publishes all changes for tables
 users, departments and
 all changes for all the tables present in the schema
 production:

CREATE PUBLICATION production_publication FOR TABLE users, departments, TABLES IN SCHEMA production;

 Create a publication that publishes all changes for all the tables present in
 the schemas marketing and
 sales:

CREATE PUBLICATION sales_publication FOR TABLES IN SCHEMA marketing, sales;

 Create a publication that publishes all changes for table users,
 but replicates only columns user_id and
 firstname:

CREATE PUBLICATION users_filtered FOR TABLE users (user_id, firstname);

Compatibility

 CREATE PUBLICATION is a PostgreSQL™
 extension.

See Also
ALTER PUBLICATION(7), DROP PUBLICATION(7), CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)

Name
CREATE ROLE — define a new database role

Synopsis

CREATE ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description

 CREATE ROLE adds a new role to a
 PostgreSQL™ database cluster. A role is
 an entity that can own database objects and have database privileges;
 a role can be considered a “user”, a “group”, or both
 depending on how it is used. Refer to
 Chapter 22, Database Roles and Chapter 21, Client Authentication for information about managing
 users and authentication. You must have CREATEROLE
 privilege or be a database superuser to use this command.

 Note that roles are defined at the database cluster
 level, and so are valid in all databases in the cluster.

 During role creation it is possible to immediately assign the newly created
 role to be a member of an existing role, and also assign existing roles
 to be members of the newly created role. The rules for which initial
 role membership options are enabled are described below in the
 IN ROLE, ROLE, and
 ADMIN clauses. The GRANT(7)
 command has fine-grained option control during membership creation,
 and the ability to modify these options after the new role is created.

Parameters
	name
	
 The name of the new role.

	SUPERUSER, NOSUPERUSER
	
 These clauses determine whether the new role is a “superuser”,
 who can override all access restrictions within the database.
 Superuser status is dangerous and should be used only when really
 needed. You must yourself be a superuser to create a new superuser.
 If not specified,
 NOSUPERUSER is the default.

	CREATEDB, NOCREATEDB
	
 These clauses define a role's ability to create databases. If
 CREATEDB is specified, the role being
 defined will be allowed to create new databases. Specifying
 NOCREATEDB will deny a role the ability to
 create databases. If not specified,
 NOCREATEDB is the default.
 Only superuser roles or roles with CREATEDB
 can specify CREATEDB.

	CREATEROLE, NOCREATEROLE
	
 These clauses determine whether a role will be permitted to
 create, alter, drop, comment on, and change the security label for
 other roles.
 See role creation for more details about what
 capabilities are conferred by this privilege.
 If not specified, NOCREATEROLE is the default.

	INHERIT, NOINHERIT
	
 This affects the membership inheritance status when this
 role is added as a member of another role, both in this and
 future commands. Specifically, it controls the inheritance
 status of memberships added with this command using the
 IN ROLE clause, and in later commands using
 the ROLE clause. It is also used as the
 default inheritance status when adding this role as a member
 using the GRANT command. If not specified,
 INHERIT is the default.

 In PostgreSQL™ versions before 16,
 inheritance was a role-level attribute that controlled all runtime
 membership checks for that role.

	LOGIN, NOLOGIN
	
 These clauses determine whether a role is allowed to log in;
 that is, whether the role can be given as the initial session
 authorization name during client connection. A role having
 the LOGIN attribute can be thought of as a user.
 Roles without this attribute are useful for managing database
 privileges, but are not users in the usual sense of the word.
 If not specified,
 NOLOGIN is the default, except when
 CREATE ROLE is invoked through its alternative spelling
 CREATE USER.

	REPLICATION, NOREPLICATION
	
 These clauses determine whether a role is a replication role. A role
 must have this attribute (or be a superuser) in order to be able to
 connect to the server in replication mode (physical or logical
 replication) and in order to be able to create or drop replication
 slots.
 A role having the REPLICATION attribute is a very
 highly privileged role, and should only be used on roles actually
 used for replication. If not specified,
 NOREPLICATION is the default.
 Only superuser roles or roles with REPLICATION
 can specify REPLICATION.

	BYPASSRLS, NOBYPASSRLS
	
 These clauses determine whether a role bypasses every row-level
 security (RLS) policy. NOBYPASSRLS is the default.
 Only superuser roles or roles with BYPASSRLS
 can specify BYPASSRLS.

 Note that pg_dump will set row_security to
 OFF by default, to ensure all contents of a table are
 dumped out. If the user running pg_dump does not have appropriate
 permissions, an error will be returned. However, superusers and the
 owner of the table being dumped always bypass RLS.

	CONNECTION LIMIT connlimit
	
 If role can log in, this specifies how many concurrent connections
 the role can make. -1 (the default) means no limit. Note that only
 normal connections are counted towards this limit. Neither prepared
 transactions nor background worker connections are counted towards
 this limit.

	[ENCRYPTED] PASSWORD 'password', PASSWORD NULL
	
 Sets the role's password. (A password is only of use for
 roles having the LOGIN attribute, but you
 can nonetheless define one for roles without it.) If you do
 not plan to use password authentication you can omit this
 option. If no password is specified, the password will be set
 to null and password authentication will always fail for that
 user. A null password can optionally be written explicitly as
 PASSWORD NULL.

Note

 Specifying an empty string will also set the password to null,
 but that was not the case before PostgreSQL™
 version 10. In earlier versions, an empty string could be used,
 or not, depending on the authentication method and the exact
 version, and libpq would refuse to use it in any case.
 To avoid the ambiguity, specifying an empty string should be
 avoided.

 The password is always stored encrypted in the system catalogs. The
 ENCRYPTED keyword has no effect, but is accepted for
 backwards compatibility. The method of encryption is determined
 by the configuration parameter password_encryption.
 If the presented password string is already in MD5-encrypted or
 SCRAM-encrypted format, then it is stored as-is regardless of
 password_encryption (since the system cannot decrypt
 the specified encrypted password string, to encrypt it in a
 different format). This allows reloading of encrypted passwords
 during dump/restore.

	VALID UNTIL 'timestamp'
	
 The VALID UNTIL clause sets a date and
 time after which the role's password is no longer valid. If
 this clause is omitted the password will be valid for all time.

	IN ROLE role_name
	
 The IN ROLE clause causes the new role to
 be automatically added as a member of the specified existing
 roles. The new membership will have the SET
 option enabled and the ADMIN option disabled.
 The INHERIT option will be enabled unless the
 NOINHERIT option is specified.

	IN GROUP role_name
	IN GROUP is an obsolete spelling of
 IN ROLE.

	ROLE role_name
	
 The ROLE clause causes one or more specified
 existing roles to be automatically added as members, with the
 SET option enabled. This in effect makes the
 new role a “group”. Roles named in this clause
 with the role-level INHERIT attribute will have
 the INHERIT option enabled in the new membership.
 New memberships will have the ADMIN option disabled.

	ADMIN role_name
	
 The ADMIN clause has the same effect as
 ROLE, but the named roles are added as members
 of the new role with ADMIN enabled, giving
 them the right to grant membership in the new role to others.

	USER role_name
	
 The USER clause is an obsolete spelling of
 the ROLE clause.

	SYSID uid
	
 The SYSID clause is ignored, but is accepted
 for backwards compatibility.

Notes

 Use ALTER ROLE to
 change the attributes of a role, and DROP ROLE
 to remove a role. All the attributes
 specified by CREATE ROLE can be modified by later
 ALTER ROLE commands.

 The preferred way to add and remove members of roles that are being
 used as groups is to use
 GRANT and
 REVOKE.

 The VALID UNTIL clause defines an expiration time for a
 password only, not for the role per se. In
 particular, the expiration time is not enforced when logging in using
 a non-password-based authentication method.

 The role attributes defined here are non-inheritable, i.e., being a
 member of a role with, e.g., CREATEDB will not
 allow the member to create new databases even if the membership grant
 has the INHERIT option. Of course, if the membership
 grant has the SET option the member role would be able to
 SET ROLE to the
 createdb role and then create a new database.

 The membership grants created by the
 IN ROLE, ROLE, and ADMIN
 clauses have the role executing this command as the grantor.

 The INHERIT attribute is the default for reasons of backwards
 compatibility: in prior releases of PostgreSQL™,
 users always had access to all privileges of groups they were members of.
 However, NOINHERIT provides a closer match to the semantics
 specified in the SQL standard.

 PostgreSQL™ includes a program createuser(1) that has
 the same functionality as CREATE ROLE (in fact,
 it calls this command) but can be run from the command shell.

 The CONNECTION LIMIT option is only enforced approximately;
 if two new sessions start at about the same time when just one
 connection “slot” remains for the role, it is possible that
 both will fail. Also, the limit is never enforced for superusers.

 Caution must be exercised when specifying an unencrypted password
 with this command. The password will be transmitted to the server
 in cleartext, and it might also be logged in the client's command
 history or the server log. The command createuser(1), however, transmits
 the password encrypted. Also, psql(1)
 contains a command
 \password that can be used to safely change the
 password later.

Examples

 Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

 Create a role with a password:

CREATE USER davide WITH PASSWORD 'jw8s0F4';

 (CREATE USER is the same as CREATE ROLE except
 that it implies LOGIN.)

 Create a role with a password that is valid until the end of 2004.
 After one second has ticked in 2005, the password is no longer
 valid.

CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VALID UNTIL '2005-01-01';

 Create a role that can create databases and manage roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility

 The CREATE ROLE statement is in the SQL standard,
 but the standard only requires the syntax

CREATE ROLE name [WITH ADMIN role_name]

 Multiple initial administrators, and all the other options of
 CREATE ROLE, are
 PostgreSQL™ extensions.

 The SQL standard defines the concepts of users and roles, but it
 regards them as distinct concepts and leaves all commands defining
 users to be specified by each database implementation. In
 PostgreSQL™ we have chosen to unify
 users and roles into a single kind of entity. Roles therefore
 have many more optional attributes than they do in the standard.

 The behavior specified by the SQL standard is most closely approximated
 creating SQL-standard users as PostgreSQL™
 roles with the NOINHERIT option, and SQL-standard
 roles as PostgreSQL™ roles with the
 INHERIT option.

See Also
SET ROLE(7), ALTER ROLE(7), DROP ROLE(7), GRANT(7), REVOKE(7), createuser(1), createrole_self_grant

Name
CREATE RULE — define a new rewrite rule

Synopsis

CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

where event can be one of:

 SELECT | INSERT | UPDATE | DELETE

Description

 CREATE RULE defines a new rule applying to a specified
 table or view.
 CREATE OR REPLACE RULE will either create a
 new rule, or replace an existing rule of the same name for the same
 table.

 The PostgreSQL™ rule system allows one to
 define an alternative action to be performed on insertions, updates,
 or deletions in database tables. Roughly speaking, a rule causes
 additional commands to be executed when a given command on a given
 table is executed. Alternatively, an INSTEAD
 rule can replace a given command by another, or cause a command
 not to be executed at all. Rules are used to implement SQL
 views as well. It is important to realize that a rule is really
 a command transformation mechanism, or command macro. The
 transformation happens before the execution of the command starts.
 If you actually want an operation that fires independently for each
 physical row, you probably want to use a trigger, not a rule.
 More information about the rules system is in Chapter 41, The Rule System.

 Presently, ON SELECT rules can only be attached
 to views. Such a rule must be named "_RETURN",
 must be an unconditional INSTEAD rule, and must have
 an action that consists of a single SELECT command.
 This command defines the visible contents of the view. (The view
 itself is basically a dummy table with no storage.) It's best to
 regard such a rule as an implementation detail. While a view can be
 redefined via CREATE OR REPLACE RULE "_RETURN" AS
 ..., it's better style to use CREATE OR REPLACE
 VIEW.

 You can create the illusion of an updatable view by defining
 ON INSERT, ON UPDATE, and
 ON DELETE rules (or any subset of those that's
 sufficient for your purposes) to replace update actions on the view
 with appropriate updates on other tables. If you want to support
 INSERT RETURNING and so on, then be sure to put a suitable
 RETURNING clause into each of these rules.

 There is a catch if you try to use conditional rules for complex view
 updates: there must be an unconditional
 INSTEAD rule for each action you wish to allow
 on the view. If the rule is conditional, or is not
 INSTEAD, then the system will still reject
 attempts to perform the update action, because it thinks it might
 end up trying to perform the action on the dummy table of the view
 in some cases. If you want to handle all the useful cases in
 conditional rules, add an unconditional DO
 INSTEAD NOTHING rule to ensure that the system
 understands it will never be called on to update the dummy table.
 Then make the conditional rules non-INSTEAD; in
 the cases where they are applied, they add to the default
 INSTEAD NOTHING action. (This method does not
 currently work to support RETURNING queries, however.)

Note

 A view that is simple enough to be automatically updatable (see CREATE VIEW(7)) does not require a user-created rule in
 order to be updatable. While you can create an explicit rule anyway,
 the automatic update transformation will generally outperform an
 explicit rule.

 Another alternative worth considering is to use INSTEAD OF
 triggers (see CREATE TRIGGER(7)) in place of rules.

Parameters
	name
	
 The name of a rule to create. This must be distinct from the
 name of any other rule for the same table. Multiple rules on
 the same table and same event type are applied in alphabetical
 name order.

	event
	
 The event is one of SELECT,
 INSERT, UPDATE, or
 DELETE. Note that an
 INSERT containing an ON
 CONFLICT clause cannot be used on tables that have
 either INSERT or UPDATE
 rules. Consider using an updatable view instead.

	table_name
	
 The name (optionally schema-qualified) of the table or view the
 rule applies to.

	condition
	
 Any SQL conditional expression (returning
 boolean). The condition expression cannot refer
 to any tables except NEW and OLD, and
 cannot contain aggregate functions.

	INSTEAD
	INSTEAD indicates that the commands should be
 executed instead of the original command.

	ALSO
	ALSO indicates that the commands should be
 executed in addition to the original
 command.

 If neither ALSO nor
 INSTEAD is specified, ALSO
 is the default.

	command
	
 The command or commands that make up the rule action. Valid
 commands are SELECT,
 INSERT, UPDATE,
 DELETE, or NOTIFY.

 Within condition and
 command, the special
 table names NEW and OLD can
 be used to refer to values in the referenced table.
 NEW is valid in ON INSERT and
 ON UPDATE rules to refer to the new row being
 inserted or updated. OLD is valid in
 ON UPDATE and ON DELETE rules
 to refer to the existing row being updated or deleted.

Notes

 You must be the owner of a table to create or change rules for it.

 In a rule for INSERT, UPDATE, or
 DELETE on a view, you can add a RETURNING
 clause that emits the view's columns. This clause will be used to compute
 the outputs if the rule is triggered by an INSERT RETURNING,
 UPDATE RETURNING, or DELETE RETURNING command
 respectively. When the rule is triggered by a command without
 RETURNING, the rule's RETURNING clause will be
 ignored. The current implementation allows only unconditional
 INSTEAD rules to contain RETURNING; furthermore
 there can be at most one RETURNING clause among all the rules
 for the same event. (This ensures that there is only one candidate
 RETURNING clause to be used to compute the results.)
 RETURNING queries on the view will be rejected if
 there is no RETURNING clause in any available rule.

 It is very important to take care to avoid circular rules. For
 example, though each of the following two rule definitions are
 accepted by PostgreSQL™, the
 SELECT command would cause
 PostgreSQL™ to report an error because
 of recursive expansion of a rule:

CREATE RULE "_RETURN" AS
 ON SELECT TO t1
 DO INSTEAD
 SELECT * FROM t2;

CREATE RULE "_RETURN" AS
 ON SELECT TO t2
 DO INSTEAD
 SELECT * FROM t1;

SELECT * FROM t1;

 Presently, if a rule action contains a NOTIFY
 command, the NOTIFY command will be executed
 unconditionally, that is, the NOTIFY will be
 issued even if there are not any rows that the rule should apply
 to. For example, in:

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = 'foo' WHERE id = 42;

 one NOTIFY event will be sent during the
 UPDATE, whether or not there are any rows that
 match the condition id = 42. This is an
 implementation restriction that might be fixed in future releases.

Compatibility

 CREATE RULE is a
 PostgreSQL™ language extension, as is the
 entire query rewrite system.

See Also
ALTER RULE(7), DROP RULE(7)

Name
CREATE SCHEMA — define a new schema

Synopsis

CREATE SCHEMA schema_name [AUTHORIZATION role_specification] [schema_element [...]]
CREATE SCHEMA AUTHORIZATION role_specification [schema_element [...]]
CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION role_specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:

 user_name
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description

 CREATE SCHEMA enters a new schema
 into the current database.
 The schema name must be distinct from the name of any existing schema
 in the current database.

 A schema is essentially a namespace:
 it contains named objects (tables, data types, functions, and operators)
 whose names can duplicate those of other objects existing in other
 schemas. Named objects are accessed either by “qualifying”
 their names with the schema name as a prefix, or by setting a search
 path that includes the desired schema(s). A CREATE command
 specifying an unqualified object name creates the object
 in the current schema (the one at the front of the search path,
 which can be determined with the function current_schema).

 Optionally, CREATE SCHEMA can include subcommands
 to create objects within the new schema. The subcommands are treated
 essentially the same as separate commands issued after creating the
 schema, except that if the AUTHORIZATION clause is used,
 all the created objects will be owned by that user.

Parameters
	schema_name
	
 The name of a schema to be created. If this is omitted, the
 user_name
 is used as the schema name. The name cannot
 begin with pg_, as such names
 are reserved for system schemas.

	user_name
	
 The role name of the user who will own the new schema. If omitted,
 defaults to the user executing the command. To create a schema
 owned by another role, you must be able to
 SET ROLE to that role.

	schema_element
	
 An SQL statement defining an object to be created within the
 schema. Currently, only CREATE
 TABLE, CREATE VIEW, CREATE
 INDEX, CREATE SEQUENCE, CREATE
 TRIGGER and GRANT are accepted as clauses
 within CREATE SCHEMA. Other kinds of objects may
 be created in separate commands after the schema is created.

	IF NOT EXISTS
	
 Do nothing (except issuing a notice) if a schema with the same name
 already exists. schema_element
 subcommands cannot be included when this option is used.

Notes

 To create a schema, the invoking user must have the
 CREATE privilege for the current database.
 (Of course, superusers bypass this check.)

Examples

 Create a schema:

CREATE SCHEMA myschema;

 Create a schema for user joe; the schema will also be
 named joe:

CREATE SCHEMA AUTHORIZATION joe;

 Create a schema named test that will be owned by user
 joe, unless there already is a schema named test.
 (It does not matter whether joe owns the pre-existing schema.)

CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;

 Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
 CREATE TABLE films (title text, release date, awards text[])
 CREATE VIEW winners AS
 SELECT title, release FROM films WHERE awards IS NOT NULL;

 Notice that the individual subcommands do not end with semicolons.

 The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS
 SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;

Compatibility

 The SQL standard allows a DEFAULT CHARACTER SET clause
 in CREATE SCHEMA, as well as more subcommand
 types than are presently accepted by
 PostgreSQL™.

 The SQL standard specifies that the subcommands in CREATE
 SCHEMA can appear in any order. The present
 PostgreSQL™ implementation does not
 handle all cases of forward references in subcommands; it might
 sometimes be necessary to reorder the subcommands in order to avoid
 forward references.

 According to the SQL standard, the owner of a schema always owns
 all objects within it. PostgreSQL™
 allows schemas to contain objects owned by users other than the
 schema owner. This can happen only if the schema owner grants the
 CREATE privilege on their schema to someone else, or a
 superuser chooses to create objects in it.

 The IF NOT EXISTS option is a
 PostgreSQL™ extension.

See Also
ALTER SCHEMA(7), DROP SCHEMA(7)

Name
CREATE SEQUENCE — define a new sequence generator

Synopsis

CREATE [{ TEMPORARY | TEMP } | UNLOGGED] SEQUENCE [IF NOT EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]

Description

 CREATE SEQUENCE creates a new sequence number
 generator. This involves creating and initializing a new special
 single-row table with the name name. The generator will be
 owned by the user issuing the command.

 If a schema name is given then the sequence is created in the
 specified schema. Otherwise it is created in the current schema.
 Temporary sequences exist in a special schema, so a schema name cannot be
 given when creating a temporary sequence.
 The sequence name must be distinct from the name of any other relation
 (table, sequence, index, view, materialized view, or foreign table) in
 the same schema.

 After a sequence is created, you use the functions
 nextval,
 currval, and
 setval
 to operate on the sequence. These functions are documented in
 the section called “Sequence Manipulation Functions”.

 Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM name;

 to examine the parameters and current state of a sequence. In particular,
 the last_value field of the sequence shows the last value
 allocated by any session. (Of course, this value might be obsolete
 by the time it's printed, if other sessions are actively doing
 nextval calls.)

Parameters
	TEMPORARY or TEMP
	
 If specified, the sequence object is created only for this
 session, and is automatically dropped on session exit. Existing
 permanent sequences with the same name are not visible (in this
 session) while the temporary sequence exists, unless they are
 referenced with schema-qualified names.

	UNLOGGED
	
 If specified, the sequence is created as an unlogged sequence. Changes
 to unlogged sequences are not written to the write-ahead log. They are
 not crash-safe: an unlogged sequence is automatically reset to its
 initial state after a crash or unclean shutdown. Unlogged sequences are
 also not replicated to standby servers.

 Unlike unlogged tables, unlogged sequences do not offer a significant
 performance advantage. This option is mainly intended for sequences
 associated with unlogged tables via identity columns or serial columns.
 In those cases, it usually wouldn't make sense to have the sequence
 WAL-logged and replicated but not its associated table.

	IF NOT EXISTS
	
 Do not throw an error if a relation with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing relation is anything like the sequence that would have
 been created — it might not even be a sequence.

	name
	
 The name (optionally schema-qualified) of the sequence to be created.

	data_type
	
 The optional
 clause AS data_type
 specifies the data type of the sequence. Valid types are
 smallint, integer,
 and bigint. bigint is the
 default. The data type determines the default minimum and maximum
 values of the sequence.

	increment
	
 The optional clause INCREMENT BY increment specifies
 which value is added to the current sequence value to create a
 new value. A positive value will make an ascending sequence, a
 negative one a descending sequence. The default value is 1.

	minvalue, NO MINVALUE
	
 The optional clause MINVALUE minvalue determines
 the minimum value a sequence can generate. If this clause is not
 supplied or NO MINVALUE is specified, then
 defaults will be used. The default for an ascending sequence is 1. The
 default for a descending sequence is the minimum value of the data type.

	maxvalue, NO MAXVALUE
	
 The optional clause MAXVALUE maxvalue determines
 the maximum value for the sequence. If this clause is not
 supplied or NO MAXVALUE is specified, then
 default values will be used. The default for an ascending sequence is
 the maximum value of the data type. The default for a descending
 sequence is -1.

	start
	
 The optional clause START WITH start allows the
 sequence to begin anywhere. The default starting value is
 minvalue for
 ascending sequences and maxvalue for descending ones.

	cache
	
 The optional clause CACHE cache specifies how
 many sequence numbers are to be preallocated and stored in
 memory for faster access. The minimum value is 1 (only one value
 can be generated at a time, i.e., no cache), and this is also the
 default.

	CYCLE, NO CYCLE
	
 The CYCLE option allows the sequence to wrap
 around when the maxvalue or minvalue has been reached by an
 ascending or descending sequence respectively. If the limit is
 reached, the next number generated will be the minvalue or maxvalue, respectively.

 If NO CYCLE is specified, any calls to
 nextval after the sequence has reached its
 maximum value will return an error. If neither
 CYCLE or NO CYCLE are
 specified, NO CYCLE is the default.

	OWNED BY table_name.column_name, OWNED BY NONE
	
 The OWNED BY option causes the sequence to be
 associated with a specific table column, such that if that column
 (or its whole table) is dropped, the sequence will be automatically
 dropped as well. The specified table must have the same owner and be in
 the same schema as the sequence.
 OWNED BY NONE, the default, specifies that there
 is no such association.

Notes

 Use DROP SEQUENCE to remove a sequence.

 Sequences are based on bigint arithmetic, so the range
 cannot exceed the range of an eight-byte integer
 (-9223372036854775808 to 9223372036854775807).

 Because nextval and setval calls are never
 rolled back, sequence objects cannot be used if “gapless”
 assignment of sequence numbers is needed. It is possible to build
 gapless assignment by using exclusive locking of a table containing a
 counter; but this solution is much more expensive than sequence
 objects, especially if many transactions need sequence numbers
 concurrently.

 Unexpected results might be obtained if a cache setting greater than one is
 used for a sequence object that will be used concurrently by
 multiple sessions. Each session will allocate and cache successive
 sequence values during one access to the sequence object and
 increase the sequence object's last_value accordingly.
 Then, the next cache-1
 uses of nextval within that session simply return the
 preallocated values without touching the sequence object. So, any
 numbers allocated but not used within a session will be lost when
 that session ends, resulting in “holes” in the
 sequence.

 Furthermore, although multiple sessions are guaranteed to allocate
 distinct sequence values, the values might be generated out of
 sequence when all the sessions are considered. For example, with
 a cache setting of 10,
 session A might reserve values 1..10 and return
 nextval=1, then session B might reserve values
 11..20 and return nextval=11 before session A
 has generated nextval=2. Thus, with a
 cache setting of one
 it is safe to assume that nextval values are generated
 sequentially; with a cache setting greater than one you
 should only assume that the nextval values are all
 distinct, not that they are generated purely sequentially. Also,
 last_value will reflect the latest value reserved by
 any session, whether or not it has yet been returned by
 nextval.

 Another consideration is that a setval executed on
 such a sequence will not be noticed by other sessions until they
 have used up any preallocated values they have cached.

Examples

 Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

 Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 101

 Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 102

 Use this sequence in an INSERT command:

INSERT INTO distributors VALUES (nextval('serial'), 'nothing');

 Update the sequence value after a COPY FROM:

BEGIN;
COPY distributors FROM 'input_file';
SELECT setval('serial', max(id)) FROM distributors;
END;

Compatibility

 CREATE SEQUENCE conforms to the SQL
 standard, with the following exceptions:

	
 Obtaining the next value is done using the nextval()
 function instead of the standard's NEXT VALUE FOR
 expression.

	
 The OWNED BY clause is a PostgreSQL™
 extension.

See Also
ALTER SEQUENCE(7), DROP SEQUENCE(7)

Name
CREATE SERVER — define a new foreign server

Synopsis

CREATE SERVER [IF NOT EXISTS] server_name [TYPE 'server_type'] [VERSION 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS (option 'value' [, ...])]

Description

 CREATE SERVER defines a new foreign server. The
 user who defines the server becomes its owner.

 A foreign server typically encapsulates connection information that
 a foreign-data wrapper uses to access an external data resource.
 Additional user-specific connection information may be specified by
 means of user mappings.

 The server name must be unique within the database.

 Creating a server requires USAGE privilege on the
 foreign-data wrapper being used.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a server with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing server is anything like the one that would have been
 created.

	server_name
	
 The name of the foreign server to be created.

	server_type
	
 Optional server type, potentially useful to foreign-data wrappers.

	server_version
	
 Optional server version, potentially useful to foreign-data wrappers.

	fdw_name
	
 The name of the foreign-data wrapper that manages the server.

	OPTIONS (option 'value' [, ...])
	
 This clause specifies the options for the server. The options
 typically define the connection details of the server, but the
 actual names and values are dependent on the server's
 foreign-data wrapper.

Notes

 When using the dblink module,
 a foreign server's name can be used
 as an argument of the dblink_connect(3)
 function to indicate the connection parameters. It is necessary to have
 the USAGE privilege on the foreign server to be
 able to use it in this way.

 If the foreign server supports sort pushdown, it is necessary for it
 to have the same sort ordering as the local server.

Examples

 Create a server myserver that uses the
 foreign-data wrapper postgres_fdw:

CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'foo', dbname 'foodb', port '5432');

 See postgres_fdw for more details.

Compatibility

 CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER(7), DROP SERVER(7), CREATE FOREIGN DATA WRAPPER(7), CREATE FOREIGN TABLE(7), CREATE USER MAPPING(7)

Name
CREATE STATISTICS — define extended statistics

Synopsis

CREATE STATISTICS [[IF NOT EXISTS] statistics_name]
 ON (expression)
 FROM table_name

CREATE STATISTICS [[IF NOT EXISTS] statistics_name]
 [(statistics_kind [, ...])]
 ON { column_name | (expression) }, { column_name | (expression) } [, ...]
 FROM table_name

Description

 CREATE STATISTICS will create a new extended statistics
 object tracking data about the specified table, foreign table or
 materialized view. The statistics object will be created in the current
 database and will be owned by the user issuing the command.

 The CREATE STATISTICS command has two basic forms. The
 first form allows univariate statistics for a single expression to be
 collected, providing benefits similar to an expression index without the
 overhead of index maintenance. This form does not allow the statistics
 kind to be specified, since the various statistics kinds refer only to
 multivariate statistics. The second form of the command allows
 multivariate statistics on multiple columns and/or expressions to be
 collected, optionally specifying which statistics kinds to include. This
 form will also automatically cause univariate statistics to be collected on
 any expressions included in the list.

 If a schema name is given (for example, CREATE STATISTICS
 myschema.mystat ...) then the statistics object is created in the
 specified schema. Otherwise it is created in the current schema.
 If given, the name of the statistics object must be distinct from the name
 of any other statistics object in the same schema.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a statistics object with the same name already
 exists. A notice is issued in this case. Note that only the name of
 the statistics object is considered here, not the details of its
 definition.
 Statistics name is required when IF NOT EXISTS is specified.

	statistics_name
	
 The name (optionally schema-qualified) of the statistics object to be
 created.
 If the name is omitted, PostgreSQL™ chooses a
 suitable name based on the parent table's name and the defined column
 name(s) and/or expression(s).

	statistics_kind
	
 A multivariate statistics kind to be computed in this statistics object.
 Currently supported kinds are
 ndistinct, which enables n-distinct statistics,
 dependencies, which enables functional
 dependency statistics, and mcv which enables
 most-common values lists.
 If this clause is omitted, all supported statistics kinds are
 included in the statistics object. Univariate expression statistics are
 built automatically if the statistics definition includes any complex
 expressions rather than just simple column references.
 For more information, see the section called “Extended Statistics”
 and the section called “Multivariate Statistics Examples”.

	column_name
	
 The name of a table column to be covered by the computed statistics.
 This is only allowed when building multivariate statistics. At least
 two column names or expressions must be specified, and their order is
 not significant.

	expression
	
 An expression to be covered by the computed statistics. This may be
 used to build univariate statistics on a single expression, or as part
 of a list of multiple column names and/or expressions to build
 multivariate statistics. In the latter case, separate univariate
 statistics are built automatically for each expression in the list.

	table_name
	
 The name (optionally schema-qualified) of the table containing the
 column(s) the statistics are computed on; see ANALYZE(7) for an explanation of the handling of
 inheritance and partitions.

Notes

 You must be the owner of a table to create a statistics object
 reading it. Once created, however, the ownership of the statistics
 object is independent of the underlying table(s).

 Expression statistics are per-expression and are similar to creating an
 index on the expression, except that they avoid the overhead of index
 maintenance. Expression statistics are built automatically for each
 expression in the statistics object definition.

 Extended statistics are not currently used by the planner for selectivity
 estimations made for table joins. This limitation will likely be removed
 in a future version of PostgreSQL™.

Examples

 Create table t1 with two functionally dependent columns, i.e.,
 knowledge of a value in the first column is sufficient for determining the
 value in the other column. Then functional dependency statistics are built
 on those columns:

CREATE TABLE t1 (
 a int,
 b int
);

INSERT INTO t1 SELECT i/100, i/500
 FROM generate_series(1,1000000) s(i);

ANALYZE t1;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;

-- now the row count estimate is more accurate:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

 Without functional-dependency statistics, the planner would assume
 that the two WHERE conditions are independent, and would
 multiply their selectivities together to arrive at a much-too-small
 row count estimate.
 With such statistics, the planner recognizes that the WHERE
 conditions are redundant and does not underestimate the row count.

 Create table t2 with two perfectly correlated columns
 (containing identical data), and an MCV list on those columns:

CREATE TABLE t2 (
 a int,
 b int
);

INSERT INTO t2 SELECT mod(i,100), mod(i,100)
 FROM generate_series(1,1000000) s(i);

CREATE STATISTICS s2 (mcv) ON a, b FROM t2;

ANALYZE t2;

-- valid combination (found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 1);

-- invalid combination (not found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 2);

 The MCV list gives the planner more detailed information about the
 specific values that commonly appear in the table, as well as an upper
 bound on the selectivities of combinations of values that do not appear
 in the table, allowing it to generate better estimates in both cases.

 Create table t3 with a single timestamp column,
 and run queries using expressions on that column. Without extended
 statistics, the planner has no information about the data distribution for
 the expressions, and uses default estimates. The planner also does not
 realize that the value of the date truncated to the month is fully
 determined by the value of the date truncated to the day. Then expression
 and ndistinct statistics are built on those two expressions:

CREATE TABLE t3 (
 a timestamp
);

INSERT INTO t3 SELECT i FROM generate_series('2020-01-01'::timestamp,
 '2020-12-31'::timestamp,
 '1 minute'::interval) s(i);

ANALYZE t3;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
 AND '2020-06-30'::timestamp;

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
 FROM t3 GROUP BY 1, 2;

-- build ndistinct statistics on the pair of expressions (per-expression
-- statistics are built automatically)
CREATE STATISTICS s3 (ndistinct) ON date_trunc('month', a), date_trunc('day', a) FROM t3;

ANALYZE t3;

-- now the row count estimates are more accurate:
EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
 WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
 AND '2020-06-30'::timestamp;

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
 FROM t3 GROUP BY 1, 2;

 Without expression and ndistinct statistics, the planner has no information
 about the number of distinct values for the expressions, and has to rely
 on default estimates. The equality and range conditions are assumed to have
 0.5% selectivity, and the number of distinct values in the expression is
 assumed to be the same as for the column (i.e. unique). This results in a
 significant underestimate of the row count in the first two queries. Moreover,
 the planner has no information about the relationship between the expressions,
 so it assumes the two WHERE and GROUP BY
 conditions are independent, and multiplies their selectivities together to
 arrive at a severe overestimate of the group count in the aggregate query.
 This is further exacerbated by the lack of accurate statistics for the
 expressions, forcing the planner to use a default ndistinct estimate for the
 expression derived from ndistinct for the column. With such statistics, the
 planner recognizes that the conditions are correlated, and arrives at much
 more accurate estimates.

Compatibility

 There is no CREATE STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS(7), DROP STATISTICS(7)

Name
CREATE SUBSCRIPTION — define a new subscription

Synopsis

CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

Description

 CREATE SUBSCRIPTION adds a new logical-replication
 subscription. The user that creates a subscription becomes the owner
 of the subscription. The subscription name must be distinct from the name of
 any existing subscription in the current database.

 A subscription represents a replication connection to the publisher.
 Hence, in addition to adding definitions in the local catalogs, this
 command normally creates a replication slot on the publisher.

 A logical replication worker will be started to replicate data for the new
 subscription at the commit of the transaction where this command is run,
 unless the subscription is initially disabled.

 To be able to create a subscription, you must have the privileges of the
 the pg_create_subscription role, as well as
 CREATE privileges on the current database.

 Additional information about subscriptions and logical replication as a
 whole is available at the section called “Subscription” and
 Chapter 31, Logical Replication.

Parameters
	subscription_name
	
 The name of the new subscription.

	CONNECTION 'conninfo'
	
 The libpq connection string defining how
 to connect to the publisher database. For details see
 the section called “Connection Strings”.

	PUBLICATION publication_name [, ...]
	
 Names of the publications on the publisher to subscribe to.

	WITH (subscription_parameter [= value] [, ...])
	
 This clause specifies optional parameters for a subscription.

 The following parameters control what happens during subscription creation:

	connect (boolean)
	
 Specifies whether the CREATE SUBSCRIPTION
 command should connect to the publisher at all. The default
 is true. Setting this to
 false will force the values of
 create_slot, enabled and
 copy_data to false.
 (You cannot combine setting connect
 to false with
 setting create_slot, enabled,
 or copy_data to true.)

 Since no connection is made when this option is
 false, no tables are subscribed. To initiate
 replication, you must manually create the replication slot, enable
 the subscription, and refresh the subscription. See
 the section called “Examples: Deferred Replication Slot Creation”
 for examples.

	create_slot (boolean)
	
 Specifies whether the command should create the replication slot on
 the publisher. The default is true.

 If set to false, you are responsible for
 creating the publisher's slot in some other way. See
 the section called “Examples: Deferred Replication Slot Creation”
 for examples.

	enabled (boolean)
	
 Specifies whether the subscription should be actively replicating
 or whether it should just be set up but not started yet. The default
 is true.

	slot_name (string)
	
 Name of the publisher's replication slot to use. The default is
 to use the name of the subscription for the slot name.

 Setting slot_name to NONE
 means there will be no replication slot associated with the
 subscription. Such subscriptions must also have both
 enabled and create_slot set to
 false. Use this when you will be creating the
 replication slot later manually. See
 the section called “Examples: Deferred Replication Slot Creation”
 for examples.

 The following parameters control the subscription's replication
 behavior after it has been created:

	binary (boolean)
	
 Specifies whether the subscription will request the publisher to send
 the data in binary format (as opposed to text). The default is
 false. Any initial table synchronization copy
 (see copy_data) also uses the same format. Binary
 format can be faster than the text format, but it is less portable
 across machine architectures and PostgreSQL™
 versions. Binary format is very data type specific; for example, it
 will not allow copying from a smallint column to an
 integer column, even though that would work fine in text
 format. Even when this option is enabled, only data types having binary
 send and receive functions will be transferred in binary. Note that
 the initial synchronization requires all data types to have binary
 send and receive functions, otherwise the synchronization will fail
 (see CREATE TYPE(7) for more about send/receive
 functions).

 When doing cross-version replication, it could be that the
 publisher has a binary send function for some data type, but the
 subscriber lacks a binary receive function for that type. In
 such a case, data transfer will fail, and
 the binary option cannot be used.

 If the publisher is a PostgreSQL™ version
 before 16, then any initial table synchronization will use text format
 even if binary = true.

	copy_data (boolean)
	
 Specifies whether to copy pre-existing data in the publications
 that are being subscribed to when the replication starts.
 The default is true.

 If the publications contain WHERE clauses, it
 will affect what data is copied. Refer to the
 Notes for details.

 See Notes for details of how
 copy_data = true can interact with the
 origin parameter.

	streaming (enum)
	
 Specifies whether to enable streaming of in-progress transactions
 for this subscription. The default value is off,
 meaning all transactions are fully decoded on the publisher and only
 then sent to the subscriber as a whole.

 If set to on, the incoming changes are written to
 temporary files and then applied only after the transaction is
 committed on the publisher and received by the subscriber.

 If set to parallel, incoming changes are directly
 applied via one of the parallel apply workers, if available. If no
 parallel apply worker is free to handle streaming transactions then
 the changes are written to temporary files and applied after the
 transaction is committed. Note that if an error happens in a
 parallel apply worker, the finish LSN of the remote transaction
 might not be reported in the server log.

	synchronous_commit (enum)
	
 The value of this parameter overrides the
 synchronous_commit setting within this
 subscription's apply worker processes. The default value
 is off.

 It is safe to use off for logical replication:
 If the subscriber loses transactions because of missing
 synchronization, the data will be sent again from the publisher.

 A different setting might be appropriate when doing synchronous
 logical replication. The logical replication workers report the
 positions of writes and flushes to the publisher, and when using
 synchronous replication, the publisher will wait for the actual
 flush. This means that setting
 synchronous_commit for the subscriber to
 off when the subscription is used for
 synchronous replication might increase the latency for
 COMMIT on the publisher. In this scenario, it
 can be advantageous to set synchronous_commit
 to local or higher.

	two_phase (boolean)
	
 Specifies whether two-phase commit is enabled for this subscription.
 The default is false.

 When two-phase commit is enabled, prepared transactions are sent
 to the subscriber at the time of PREPARE
 TRANSACTION, and are processed as two-phase
 transactions on the subscriber too. Otherwise, prepared
 transactions are sent to the subscriber only when committed, and
 are then processed immediately by the subscriber.

 The implementation of two-phase commit requires that replication
 has successfully finished the initial table synchronization
 phase. So even when two_phase is enabled for a
 subscription, the internal two-phase state remains
 temporarily “pending” until the initialization phase
 completes. See column subtwophasestate
 of pg_subscription
 to know the actual two-phase state.

	disable_on_error (boolean)
	
 Specifies whether the subscription should be automatically disabled
 if any errors are detected by subscription workers during data
 replication from the publisher. The default is
 false.

	password_required (boolean)
	
 If set to true, connections to the publisher made
 as a result of this subscription must use password authentication
 and the password must be specified as a part of the connection
 string. This setting is ignored when the subscription is owned by a
 superuser. The default is true. Only superusers
 can set this value to false.

	run_as_owner (boolean)
	
 If true, all replication actions are performed as the subscription
 owner. If false, replication workers will perform actions on each
 table as the owner of that table. The latter configuration is
 generally much more secure; for details, see
 the section called “Security”.
 The default is false.

	origin (string)
	
 Specifies whether the subscription will request the publisher to only
 send changes that don't have an origin or send changes regardless of
 origin. Setting origin to none
 means that the subscription will request the publisher to only send
 changes that don't have an origin. Setting origin
 to any means that the publisher sends changes
 regardless of their origin. The default is any.

 See Notes for details of how
 copy_data = true can interact with the
 origin parameter.

 When specifying a parameter of type boolean, the
 = value
 part can be omitted, which is equivalent to
 specifying TRUE.

Notes

 See the section called “Security” for details on
 how to configure access control between the subscription and the
 publication instance.

 When creating a replication slot (the default behavior), CREATE
 SUBSCRIPTION cannot be executed inside a transaction block.

 Creating a subscription that connects to the same database cluster (for
 example, to replicate between databases in the same cluster or to replicate
 within the same database) will only succeed if the replication slot is not
 created as part of the same command. Otherwise, the CREATE
 SUBSCRIPTION call will hang. To make this work, create the
 replication slot separately (using the
 function pg_create_logical_replication_slot with the
 plugin name pgoutput) and create the subscription using
 the parameter create_slot = false. See
 the section called “Examples: Deferred Replication Slot Creation”
 for examples. This is an implementation restriction that might be lifted in a
 future release.

 If any table in the publication has a WHERE clause, rows
 for which the expression
 evaluates to false or null will not be published. If the subscription has
 several publications in which the same table has been published with
 different WHERE clauses, a row will be published if any
 of the expressions (referring to that publish operation) are satisfied. In
 the case of different WHERE clauses, if one of the
 publications has no WHERE clause (referring to that
 publish operation) or the publication is declared as
 FOR ALL TABLES
 or FOR TABLES IN SCHEMA,
 rows are always published regardless of the definition of the other
 expressions. If the subscriber is a PostgreSQL™
 version before 15, then any row filtering is ignored during the initial data
 synchronization phase. For this case, the user might want to consider
 deleting any initially copied data that would be incompatible with
 subsequent filtering. Because initial data synchronization does not take
 into account the publication
 publish
 parameter when copying existing table data, some rows may be copied that
 would not be replicated using DML. See
 the section called “Examples: Set Up Logical Replication” for examples.

 Subscriptions having several publications in which the same table has been
 published with different column lists are not supported.

 We allow non-existent publications to be specified so that users can add
 those later. This means
 pg_subscription
 can have non-existent publications.

 When using a subscription parameter combination of
 copy_data = true and origin = NONE,
 the initial sync table data is copied directly from the publisher, meaning
 that knowledge of the true origin of that data is not possible. If the
 publisher also has subscriptions then the copied table data might have
 originated from further upstream. This scenario is detected and a WARNING is
 logged to the user, but the warning is only an indication of a potential
 problem; it is the user's responsibility to make the necessary checks to
 ensure the copied data origins are really as wanted or not.

 To find which tables might potentially include non-local origins (due to
 other subscriptions created on the publisher) try this SQL query:

substitute <pub-names> below with your publication name(s) to be queried
SELECT DISTINCT PT.schemaname, PT.tablename
FROM pg_publication_tables PT
 JOIN pg_class C ON (C.relname = PT.tablename)
 JOIN pg_namespace N ON (N.nspname = PT.schemaname),
 pg_subscription_rel PS
WHERE C.relnamespace = N.oid AND
 (PS.srrelid = C.oid OR
 C.oid IN (SELECT relid FROM pg_partition_ancestors(PS.srrelid) UNION
 SELECT relid FROM pg_partition_tree(PS.srrelid))) AND
 PT.pubname IN (<pub-names>);

Examples

 Create a subscription to a remote server that replicates tables in
 the publications mypublication and
 insert_only and starts replicating immediately on
 commit:

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION mypublication, insert_only;

 Create a subscription to a remote server that replicates tables in
 the insert_only publication and does not start replicating
 until enabled at a later time.

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION insert_only
 WITH (enabled = false);

Compatibility

 CREATE SUBSCRIPTION is a PostgreSQL™
 extension.

See Also
ALTER SUBSCRIPTION(7), DROP SUBSCRIPTION(7), CREATE PUBLICATION(7), ALTER PUBLICATION(7)

Name
CREATE TABLE — define a new table

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }] [COMPRESSION compression_method] [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name
 OF type_name [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | COMPRESSION | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY | INDEXES | STATISTICS | STORAGE | ALL }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [COLLATE collation] [opclass [(opclass_parameter = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]

referential_action in a FOREIGN KEY/REFERENCES constraint is:

{ NO ACTION | RESTRICT | CASCADE | SET NULL [(column_name [, ...])] | SET DEFAULT [(column_name [, ...])] }

Description

 CREATE TABLE will create a new, initially empty table
 in the current database. The table will be owned by the user issuing the
 command.

 If a schema name is given (for example, CREATE TABLE
 myschema.mytable ...) then the table is created in the specified
 schema. Otherwise it is created in the current schema. Temporary
 tables exist in a special schema, so a schema name cannot be given
 when creating a temporary table. The name of the table must be
 distinct from the name of any other relation (table, sequence, index, view,
 materialized view, or foreign table) in the same schema.

 CREATE TABLE also automatically creates a data
 type that represents the composite type corresponding
 to one row of the table. Therefore, tables cannot have the same
 name as any existing data type in the same schema.

 The optional constraint clauses specify constraints (tests) that
 new or updated rows must satisfy for an insert or update operation
 to succeed. A constraint is an SQL object that helps define the
 set of valid values in the table in various ways.

 There are two ways to define constraints: table constraints and
 column constraints. A column constraint is defined as part of a
 column definition. A table constraint definition is not tied to a
 particular column, and it can encompass more than one column.
 Every column constraint can also be written as a table constraint;
 a column constraint is only a notational convenience for use when the
 constraint only affects one column.

 To be able to create a table, you must have USAGE
 privilege on all column types or the type in the OF
 clause, respectively.

Parameters
	TEMPORARY or TEMP
	
 If specified, the table is created as a temporary table.
 Temporary tables are automatically dropped at the end of a
 session, or optionally at the end of the current transaction
 (see ON COMMIT below). The default
 search_path includes the temporary schema first and so identically
 named existing permanent tables are not chosen for new plans
 while the temporary table exists, unless they are referenced
 with schema-qualified names. Any indexes created on a temporary
 table are automatically temporary as well.

 The autovacuum daemon cannot
 access and therefore cannot vacuum or analyze temporary tables.
 For this reason, appropriate vacuum and analyze operations should be
 performed via session SQL commands. For example, if a temporary
 table is going to be used in complex queries, it is wise to run
 ANALYZE on the temporary table after it is populated.

 Optionally, GLOBAL or LOCAL
 can be written before TEMPORARY or TEMP.
 This presently makes no difference in PostgreSQL™
 and is deprecated; see
 Compatibility below.

	UNLOGGED
	
 If specified, the table is created as an unlogged table. Data written
 to unlogged tables is not written to the write-ahead log (see Chapter 30, Reliability and the Write-Ahead Log), which makes them considerably faster than ordinary
 tables. However, they are not crash-safe: an unlogged table is
 automatically truncated after a crash or unclean shutdown. The contents
 of an unlogged table are also not replicated to standby servers.
 Any indexes created on an unlogged table are automatically unlogged as
 well.

 If this is specified, any sequences created together with the unlogged
 table (for identity or serial columns) are also created as unlogged.

	IF NOT EXISTS
	
 Do not throw an error if a relation with the same name already exists.
 A notice is issued in this case. Note that there is no guarantee that
 the existing relation is anything like the one that would have been
 created.

	table_name
	
 The name (optionally schema-qualified) of the table to be created.

	OF type_name
	
 Creates a typed table, which takes its
 structure from the specified composite type (name optionally
 schema-qualified). A typed table is tied to its type; for
 example the table will be dropped if the type is dropped
 (with DROP TYPE ... CASCADE).

 When a typed table is created, then the data types of the
 columns are determined by the underlying composite type and are
 not specified by the CREATE TABLE command.
 But the CREATE TABLE command can add defaults
 and constraints to the table and can specify storage parameters.

	column_name
	
 The name of a column to be created in the new table.

	data_type
	
 The data type of the column. This can include array
 specifiers. For more information on the data types supported by
 PostgreSQL™, refer to Chapter 8, Data Types.

	COLLATE collation
	
 The COLLATE clause assigns a collation to
 the column (which must be of a collatable data type).
 If not specified, the column data type's default collation is used.

	
 STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }

	
 This form sets the storage mode for the column. This controls whether this
 column is held inline or in a secondary TOAST table,
 and whether the data should be compressed or not. PLAIN
 must be used for fixed-length values such as integer and is
 inline, uncompressed. MAIN is for inline, compressible
 data. EXTERNAL is for external, uncompressed data, and
 EXTENDED is for external, compressed data.
 Writing DEFAULT sets the storage mode to the default
 mode for the column's data type. EXTENDED is the
 default for most data types that support non-PLAIN
 storage.
 Use of EXTERNAL will make substring operations on
 very large text and bytea values run faster,
 at the penalty of increased storage space.
 See the section called “TOAST” for more information.

	COMPRESSION compression_method
	
 The COMPRESSION clause sets the compression method
 for the column. Compression is supported only for variable-width data
 types, and is used only when the column's storage mode
 is main or extended.
 (See ALTER TABLE(7) for information on
 column storage modes.) Setting this property for a partitioned table
 has no direct effect, because such tables have no storage of their own,
 but the configured value will be inherited by newly-created partitions.
 The supported compression methods are pglz and
 lz4. (lz4 is available only if
 --with-lz4 was used when building
 PostgreSQL™.) In addition,
 compression_method
 can be default to explicitly specify the default
 behavior, which is to consult the
 default_toast_compression setting at the time of
 data insertion to determine the method to use.

	INHERITS (parent_table [, ...])
	
 The optional INHERITS clause specifies a list of
 tables from which the new table automatically inherits all
 columns. Parent tables can be plain tables or foreign tables.

 Use of INHERITS creates a persistent relationship
 between the new child table and its parent table(s). Schema
 modifications to the parent(s) normally propagate to children
 as well, and by default the data of the child table is included in
 scans of the parent(s).

 If the same column name exists in more than one parent
 table, an error is reported unless the data types of the columns
 match in each of the parent tables. If there is no conflict,
 then the duplicate columns are merged to form a single column in
 the new table. If the column name list of the new table
 contains a column name that is also inherited, the data type must
 likewise match the inherited column(s), and the column
 definitions are merged into one. If the
 new table explicitly specifies a default value for the column,
 this default overrides any defaults from inherited declarations
 of the column. Otherwise, any parents that specify default
 values for the column must all specify the same default, or an
 error will be reported.

 CHECK constraints are merged in essentially the same way as
 columns: if multiple parent tables and/or the new table definition
 contain identically-named CHECK constraints, these
 constraints must all have the same check expression, or an error will be
 reported. Constraints having the same name and expression will
 be merged into one copy. A constraint marked NO INHERIT in a
 parent will not be considered. Notice that an unnamed CHECK
 constraint in the new table will never be merged, since a unique name
 will always be chosen for it.

 Column STORAGE settings are also copied from parent tables.

 If a column in the parent table is an identity column, that property is
 not inherited. A column in the child table can be declared identity
 column if desired.

	PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [opclass] [, ...])
	
 The optional PARTITION BY clause specifies a strategy
 of partitioning the table. The table thus created is called a
 partitioned table. The parenthesized list of
 columns or expressions forms the partition key
 for the table. When using range or hash partitioning, the partition key
 can include multiple columns or expressions (up to 32, but this limit can
 be altered when building PostgreSQL™), but for
 list partitioning, the partition key must consist of a single column or
 expression.

 Range and list partitioning require a btree operator class, while hash
 partitioning requires a hash operator class. If no operator class is
 specified explicitly, the default operator class of the appropriate
 type will be used; if no default operator class exists, an error will
 be raised. When hash partitioning is used, the operator class used
 must implement support function 2 (see the section called “Index Method Support Routines”
 for details).

 A partitioned table is divided into sub-tables (called partitions),
 which are created using separate CREATE TABLE commands.
 The partitioned table is itself empty. A data row inserted into the
 table is routed to a partition based on the value of columns or
 expressions in the partition key. If no existing partition matches
 the values in the new row, an error will be reported.

 Partitioned tables do not support EXCLUDE constraints;
 however, you can define these constraints on individual partitions.

 See the section called “Table Partitioning” for more discussion on table
 partitioning.

	PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }
	
 Creates the table as a partition of the specified
 parent table. The table can be created either as a partition for specific
 values using FOR VALUES or as a default partition
 using DEFAULT. Any indexes, constraints and
 user-defined row-level triggers that exist in the parent table are cloned
 on the new partition.

 The partition_bound_spec
 must correspond to the partitioning method and partition key of the
 parent table, and must not overlap with any existing partition of that
 parent. The form with IN is used for list partitioning,
 the form with FROM and TO is used
 for range partitioning, and the form with WITH is used
 for hash partitioning.

 partition_bound_expr is
 any variable-free expression (subqueries, window functions, aggregate
 functions, and set-returning functions are not allowed). Its data type
 must match the data type of the corresponding partition key column.
 The expression is evaluated once at table creation time, so it can
 even contain volatile expressions such as
 CURRENT_TIMESTAMP.

 When creating a list partition, NULL can be
 specified to signify that the partition allows the partition key
 column to be null. However, there cannot be more than one such
 list partition for a given parent table. NULL
 cannot be specified for range partitions.

 When creating a range partition, the lower bound specified with
 FROM is an inclusive bound, whereas the upper
 bound specified with TO is an exclusive bound.
 That is, the values specified in the FROM list
 are valid values of the corresponding partition key columns for this
 partition, whereas those in the TO list are
 not. Note that this statement must be understood according to the
 rules of row-wise comparison (the section called “Row Constructor Comparison”).
 For example, given PARTITION BY RANGE (x,y), a partition
 bound FROM (1, 2) TO (3, 4)
 allows x=1 with any y>=2,
 x=2 with any non-null y,
 and x=3 with any y<4.

 The special values MINVALUE and MAXVALUE
 may be used when creating a range partition to indicate that there
 is no lower or upper bound on the column's value. For example, a
 partition defined using FROM (MINVALUE) TO (10) allows
 any values less than 10, and a partition defined using
 FROM (10) TO (MAXVALUE) allows any values greater than
 or equal to 10.

 When creating a range partition involving more than one column, it
 can also make sense to use MAXVALUE as part of the lower
 bound, and MINVALUE as part of the upper bound. For
 example, a partition defined using
 FROM (0, MAXVALUE) TO (10, MAXVALUE) allows any rows
 where the first partition key column is greater than 0 and less than
 or equal to 10. Similarly, a partition defined using
 FROM ('a', MINVALUE) TO ('b', MINVALUE) allows any rows
 where the first partition key column starts with "a".

 Note that if MINVALUE or MAXVALUE is used for
 one column of a partitioning bound, the same value must be used for all
 subsequent columns. For example, (10, MINVALUE, 0) is not
 a valid bound; you should write (10, MINVALUE, MINVALUE).

 Also note that some element types, such as timestamp,
 have a notion of "infinity", which is just another value that can
 be stored. This is different from MINVALUE and
 MAXVALUE, which are not real values that can be stored,
 but rather they are ways of saying that the value is unbounded.
 MAXVALUE can be thought of as being greater than any
 other value, including "infinity" and MINVALUE as being
 less than any other value, including "minus infinity". Thus the range
 FROM ('infinity') TO (MAXVALUE) is not an empty range; it
 allows precisely one value to be stored — "infinity".

 If DEFAULT is specified, the table will be
 created as the default partition of the parent table. This option
 is not available for hash-partitioned tables. A partition key value
 not fitting into any other partition of the given parent will be
 routed to the default partition.

 When a table has an existing DEFAULT partition and
 a new partition is added to it, the default partition must
 be scanned to verify that it does not contain any rows which properly
 belong in the new partition. If the default partition contains a
 large number of rows, this may be slow. The scan will be skipped if
 the default partition is a foreign table or if it has a constraint which
 proves that it cannot contain rows which should be placed in the new
 partition.

 When creating a hash partition, a modulus and remainder must be specified.
 The modulus must be a positive integer, and the remainder must be a
 non-negative integer less than the modulus. Typically, when initially
 setting up a hash-partitioned table, you should choose a modulus equal to
 the number of partitions and assign every table the same modulus and a
 different remainder (see examples, below). However, it is not required
 that every partition have the same modulus, only that every modulus which
 occurs among the partitions of a hash-partitioned table is a factor of the
 next larger modulus. This allows the number of partitions to be increased
 incrementally without needing to move all the data at once. For example,
 suppose you have a hash-partitioned table with 8 partitions, each of which
 has modulus 8, but find it necessary to increase the number of partitions
 to 16. You can detach one of the modulus-8 partitions, create two new
 modulus-16 partitions covering the same portion of the key space (one with
 a remainder equal to the remainder of the detached partition, and the
 other with a remainder equal to that value plus 8), and repopulate them
 with data. You can then repeat this -- perhaps at a later time -- for
 each modulus-8 partition until none remain. While this may still involve
 a large amount of data movement at each step, it is still better than
 having to create a whole new table and move all the data at once.

 A partition must have the same column names and types as the partitioned
 table to which it belongs. Modifications to the column names or types of
 a partitioned table will automatically propagate to all partitions.
 CHECK constraints will be inherited automatically by
 every partition, but an individual partition may specify additional
 CHECK constraints; additional constraints with the
 same name and condition as in the parent will be merged with the parent
 constraint. Defaults may be specified separately for each partition.
 But note that a partition's default value is not applied when inserting
 a tuple through a partitioned table.

 Rows inserted into a partitioned table will be automatically routed to
 the correct partition. If no suitable partition exists, an error will
 occur.

 Operations such as TRUNCATE
 which normally affect a table and all of its
 inheritance children will cascade to all partitions, but may also be
 performed on an individual partition.

 Note that creating a partition using PARTITION OF
 requires taking an ACCESS EXCLUSIVE lock on the
 parent partitioned table. Likewise, dropping a partition
 with DROP TABLE requires taking
 an ACCESS EXCLUSIVE lock on the parent table.
 It is possible to use ALTER
 TABLE ATTACH/DETACH PARTITION to perform these
 operations with a weaker lock, thus reducing interference with
 concurrent operations on the partitioned table.

	LIKE source_table [like_option ...]
	
 The LIKE clause specifies a table from which
 the new table automatically copies all column names, their data types,
 and their not-null constraints.

 Unlike INHERITS, the new table and original table
 are completely decoupled after creation is complete. Changes to the
 original table will not be applied to the new table, and it is not
 possible to include data of the new table in scans of the original
 table.

 Also unlike INHERITS, columns and
 constraints copied by LIKE are not merged with similarly
 named columns and constraints.
 If the same name is specified explicitly or in another
 LIKE clause, an error is signaled.

 The optional like_option clauses specify
 which additional properties of the original table to copy. Specifying
 INCLUDING copies the property, specifying
 EXCLUDING omits the property.
 EXCLUDING is the default. If multiple specifications
 are made for the same kind of object, the last one is used. The
 available options are:

	INCLUDING COMMENTS
	
 Comments for the copied columns, constraints, and indexes will be
 copied. The default behavior is to exclude comments, resulting in
 the copied columns and constraints in the new table having no
 comments.

	INCLUDING COMPRESSION
	
 Compression method of the columns will be copied. The default
 behavior is to exclude compression methods, resulting in columns
 having the default compression method.

	INCLUDING CONSTRAINTS
	
 CHECK constraints will be copied. No distinction
 is made between column constraints and table constraints. Not-null
 constraints are always copied to the new table.

	INCLUDING DEFAULTS
	
 Default expressions for the copied column definitions will be
 copied. Otherwise, default expressions are not copied, resulting in
 the copied columns in the new table having null defaults. Note that
 copying defaults that call database-modification functions, such as
 nextval, may create a functional linkage
 between the original and new tables.

	INCLUDING GENERATED
	
 Any generation expressions of copied column definitions will be
 copied. By default, new columns will be regular base columns.

	INCLUDING IDENTITY
	
 Any identity specifications of copied column definitions will be
 copied. A new sequence is created for each identity column of the
 new table, separate from the sequences associated with the old
 table.

	INCLUDING INDEXES
	
 Indexes, PRIMARY KEY, UNIQUE,
 and EXCLUDE constraints on the original table
 will be created on the new table. Names for the new indexes and
 constraints are chosen according to the default rules, regardless of
 how the originals were named. (This behavior avoids possible
 duplicate-name failures for the new indexes.)

	INCLUDING STATISTICS
	
 Extended statistics are copied to the new table.

	INCLUDING STORAGE
	
 STORAGE settings for the copied column
 definitions will be copied. The default behavior is to exclude
 STORAGE settings, resulting in the copied columns
 in the new table having type-specific default settings. For more on
 STORAGE settings, see the section called “TOAST”.

	INCLUDING ALL
	
 INCLUDING ALL is an abbreviated form selecting
 all the available individual options. (It could be useful to write
 individual EXCLUDING clauses after
 INCLUDING ALL to select all but some specific
 options.)

 The LIKE clause can also be used to copy column
 definitions from views, foreign tables, or composite types.
 Inapplicable options (e.g., INCLUDING INDEXES from
 a view) are ignored.

	CONSTRAINT constraint_name
	
 An optional name for a column or table constraint. If the
 constraint is violated, the constraint name is present in error messages,
 so constraint names like col must be positive can be used
 to communicate helpful constraint information to client applications.
 (Double-quotes are needed to specify constraint names that contain spaces.)
 If a constraint name is not specified, the system generates a name.

	NOT NULL
	
 The column is not allowed to contain null values.

	NULL
	
 The column is allowed to contain null values. This is the default.

 This clause is only provided for compatibility with
 non-standard SQL databases. Its use is discouraged in new
 applications.

	CHECK (expression) [NO INHERIT]
	
 The CHECK clause specifies an expression producing a
 Boolean result which new or updated rows must satisfy for an
 insert or update operation to succeed. Expressions evaluating
 to TRUE or UNKNOWN succeed. Should any row of an insert or
 update operation produce a FALSE result, an error exception is
 raised and the insert or update does not alter the database. A
 check constraint specified as a column constraint should
 reference that column's value only, while an expression
 appearing in a table constraint can reference multiple columns.

 Currently, CHECK expressions cannot contain
 subqueries nor refer to variables other than columns of the
 current row (see the section called “Check Constraints”).
 The system column tableoid
 may be referenced, but not any other system column.

 A constraint marked with NO INHERIT will not propagate to
 child tables.

 When a table has multiple CHECK constraints,
 they will be tested for each row in alphabetical order by name,
 after checking NOT NULL constraints.
 (PostgreSQL™ versions before 9.5 did not honor any
 particular firing order for CHECK constraints.)

	DEFAULT
 default_expr
	
 The DEFAULT clause assigns a default data value for
 the column whose column definition it appears within. The value
 is any variable-free expression (in particular, cross-references
 to other columns in the current table are not allowed). Subqueries
 are not allowed either. The data type of the default expression must
 match the data type of the column.

 The default expression will be used in any insert operation that
 does not specify a value for the column. If there is no default
 for a column, then the default is null.

	GENERATED ALWAYS AS (generation_expr) STORED
	
 This clause creates the column as a generated
 column. The column cannot be written to, and when read the
 result of the specified expression will be returned.

 The keyword STORED is required to signify that the
 column will be computed on write and will be stored on disk.

 The generation expression can refer to other columns in the table, but
 not other generated columns. Any functions and operators used must be
 immutable. References to other tables are not allowed.

	GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)]
	
 This clause creates the column as an identity
 column. It will have an implicit sequence attached to it
 and in newly-inserted rows the column will automatically have values
 from the sequence assigned to it.
 Such a column is implicitly NOT NULL.

 The clauses ALWAYS and BY DEFAULT
 determine how explicitly user-specified values are handled in
 INSERT and UPDATE commands.

 In an INSERT command, if ALWAYS is
 selected, a user-specified value is only accepted if the
 INSERT statement specifies OVERRIDING SYSTEM
 VALUE. If BY DEFAULT is selected, then the
 user-specified value takes precedence. See INSERT(7)
 for details. (In the COPY command, user-specified
 values are always used regardless of this setting.)

 In an UPDATE command, if ALWAYS is
 selected, any update of the column to any value other than
 DEFAULT will be rejected. If BY
 DEFAULT is selected, the column can be updated normally.
 (There is no OVERRIDING clause for the
 UPDATE command.)

 The optional sequence_options clause can
 be used to override the parameters of the sequence. The available
 options include those shown for CREATE SEQUENCE(7),
 plus SEQUENCE NAME name,
 LOGGED, and UNLOGGED, which
 allow selection of the name and persistence level of the
 sequence. Without SEQUENCE NAME, the system
 chooses an unused name for the sequence.
 Without LOGGED or UNLOGGED,
 the sequence will have the same persistence level as the table.

	UNIQUE [NULLS [NOT] DISTINCT] (column constraint), UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...])
 [INCLUDE (column_name [, ...])] (table constraint)
	
 The UNIQUE constraint specifies that a
 group of one or more columns of a table can contain
 only unique values. The behavior of a unique table constraint
 is the same as that of a unique column constraint, with the
 additional capability to span multiple columns. The constraint
 therefore enforces that any two rows must differ in at least one
 of these columns.

 For the purpose of a unique constraint, null values are not
 considered equal, unless NULLS NOT DISTINCT is
 specified.

 Each unique constraint should name a set of columns that is
 different from the set of columns named by any other unique or
 primary key constraint defined for the table. (Otherwise, redundant
 unique constraints will be discarded.)

 When establishing a unique constraint for a multi-level partition
 hierarchy, all the columns in the partition key of the target
 partitioned table, as well as those of all its descendant partitioned
 tables, must be included in the constraint definition.

 Adding a unique constraint will automatically create a unique btree
 index on the column or group of columns used in the constraint.

 The optional INCLUDE clause adds to that index
 one or more columns that are simply “payload”: uniqueness
 is not enforced on them, and the index cannot be searched on the basis
 of those columns. However they can be retrieved by an index-only scan.
 Note that although the constraint is not enforced on included columns,
 it still depends on them. Consequently, some operations on such columns
 (e.g., DROP COLUMN) can cause cascaded constraint and
 index deletion.

	PRIMARY KEY (column constraint), PRIMARY KEY (column_name [, ...])
 [INCLUDE (column_name [, ...])] (table constraint)
	
 The PRIMARY KEY constraint specifies that a column or
 columns of a table can contain only unique (non-duplicate), nonnull
 values. Only one primary key can be specified for a table, whether as a
 column constraint or a table constraint.

 The primary key constraint should name a set of columns that is
 different from the set of columns named by any unique
 constraint defined for the same table. (Otherwise, the unique
 constraint is redundant and will be discarded.)

 PRIMARY KEY enforces the same data constraints as
 a combination of UNIQUE and NOT
 NULL. However,
 identifying a set of columns as the primary key also provides metadata
 about the design of the schema, since a primary key implies that other
 tables can rely on this set of columns as a unique identifier for rows.

 When placed on a partitioned table, PRIMARY KEY
 constraints share the restrictions previously described
 for UNIQUE constraints.

 Adding a PRIMARY KEY constraint will automatically
 create a unique btree index on the column or group of columns used in the
 constraint.

 The optional INCLUDE clause adds to that index
 one or more columns that are simply “payload”: uniqueness
 is not enforced on them, and the index cannot be searched on the basis
 of those columns. However they can be retrieved by an index-only scan.
 Note that although the constraint is not enforced on included columns,
 it still depends on them. Consequently, some operations on such columns
 (e.g., DROP COLUMN) can cause cascaded constraint and
 index deletion.

	EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters [WHERE (predicate)]
	
 The EXCLUDE clause defines an exclusion
 constraint, which guarantees that if
 any two rows are compared on the specified column(s) or
 expression(s) using the specified operator(s), not all of these
 comparisons will return TRUE. If all of the
 specified operators test for equality, this is equivalent to a
 UNIQUE constraint, although an ordinary unique constraint
 will be faster. However, exclusion constraints can specify
 constraints that are more general than simple equality.
 For example, you can specify a constraint that
 no two rows in the table contain overlapping circles
 (see the section called “Geometric Types”) by using the
 && operator.
 The operator(s) are required to be commutative.

 Exclusion constraints are implemented using
 an index, so each specified operator must be associated with an
 appropriate operator class
 (see the section called “Operator Classes and Operator Families”) for the index access
 method index_method.
 Each exclude_element
 defines a column of the index, so it can optionally specify a collation,
 an operator class, operator class parameters, and/or ordering options;
 these are described fully under CREATE INDEX(7).

 The access method must support amgettuple (see Chapter 64, Index Access Method Interface Definition); at present this means GIN
 cannot be used. Although it's allowed, there is little point in using
 B-tree or hash indexes with an exclusion constraint, because this
 does nothing that an ordinary unique constraint doesn't do better.
 So in practice the access method will always be GiST or
 SP-GiST.

 The predicate allows you to specify an
 exclusion constraint on a subset of the table; internally this creates a
 partial index. Note that parentheses are required around the predicate.

	REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE referential_action] [ON UPDATE referential_action] (column constraint), FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [MATCH matchtype]
 [ON DELETE referential_action]
 [ON UPDATE referential_action]
 (table constraint)
	
 These clauses specify a foreign key constraint, which requires
 that a group of one or more columns of the new table must only
 contain values that match values in the referenced
 column(s) of some row of the referenced table. If the refcolumn list is omitted, the
 primary key of the reftable
 is used. Otherwise, the refcolumn
 list must refer to the columns of a non-deferrable unique or primary key
 constraint or be the columns of a non-partial unique index. The user
 must have REFERENCES permission on the referenced
 table (either the whole table, or the specific referenced columns). The
 addition of a foreign key constraint requires a
 SHARE ROW EXCLUSIVE lock on the referenced table.
 Note that foreign key constraints cannot be defined between temporary
 tables and permanent tables.

 A value inserted into the referencing column(s) is matched against the
 values of the referenced table and referenced columns using the
 given match type. There are three match types: MATCH
 FULL, MATCH PARTIAL, and MATCH
 SIMPLE (which is the default). MATCH
 FULL will not allow one column of a multicolumn foreign key
 to be null unless all foreign key columns are null; if they are all
 null, the row is not required to have a match in the referenced table.
 MATCH SIMPLE allows any of the foreign key columns
 to be null; if any of them are null, the row is not required to have a
 match in the referenced table.
 MATCH PARTIAL is not yet implemented.
 (Of course, NOT NULL constraints can be applied to the
 referencing column(s) to prevent these cases from arising.)

 In addition, when the data in the referenced columns is changed,
 certain actions are performed on the data in this table's
 columns. The ON DELETE clause specifies the
 action to perform when a referenced row in the referenced table is
 being deleted. Likewise, the ON UPDATE
 clause specifies the action to perform when a referenced column
 in the referenced table is being updated to a new value. If the
 row is updated, but the referenced column is not actually
 changed, no action is done. Referential actions other than the
 NO ACTION check cannot be deferred, even if
 the constraint is declared deferrable. There are the following possible
 actions for each clause:

	NO ACTION
	
 Produce an error indicating that the deletion or update
 would create a foreign key constraint violation.
 If the constraint is deferred, this
 error will be produced at constraint check time if there still
 exist any referencing rows. This is the default action.

	RESTRICT
	
 Produce an error indicating that the deletion or update
 would create a foreign key constraint violation.
 This is the same as NO ACTION except that
 the check is not deferrable.

	CASCADE
	
 Delete any rows referencing the deleted row, or update the
 values of the referencing column(s) to the new values of the
 referenced columns, respectively.

	SET NULL [(column_name [, ...])]
	
 Set all of the referencing columns, or a specified subset of the
 referencing columns, to null. A subset of columns can only be
 specified for ON DELETE actions.

	SET DEFAULT [(column_name [, ...])]
	
 Set all of the referencing columns, or a specified subset of the
 referencing columns, to their default values. A subset of columns
 can only be specified for ON DELETE actions.
 (There must be a row in the referenced table matching the default
 values, if they are not null, or the operation will fail.)

 If the referenced column(s) are changed frequently, it might be wise to
 add an index to the referencing column(s) so that referential actions
 associated with the foreign key constraint can be performed more
 efficiently.

	DEFERRABLE, NOT DEFERRABLE
	
 This controls whether the constraint can be deferred. A
 constraint that is not deferrable will be checked immediately
 after every command. Checking of constraints that are
 deferrable can be postponed until the end of the transaction
 (using the SET CONSTRAINTS command).
 NOT DEFERRABLE is the default.
 Currently, only UNIQUE, PRIMARY KEY,
 EXCLUDE, and
 REFERENCES (foreign key) constraints accept this
 clause. NOT NULL and CHECK constraints are not
 deferrable. Note that deferrable constraints cannot be used as
 conflict arbiters in an INSERT statement that
 includes an ON CONFLICT clause.

	INITIALLY IMMEDIATE, INITIALLY DEFERRED
	
 If a constraint is deferrable, this clause specifies the default
 time to check the constraint. If the constraint is
 INITIALLY IMMEDIATE, it is checked after each
 statement. This is the default. If the constraint is
 INITIALLY DEFERRED, it is checked only at the
 end of the transaction. The constraint check time can be
 altered with the SET CONSTRAINTS command.

	USING method
	
 This optional clause specifies the table access method to use to store
 the contents for the new table; the method needs be an access method of
 type TABLE. See Chapter 63, Table Access Method Interface Definition for more
 information. If this option is not specified, the default table access
 method is chosen for the new table. See default_table_access_method for more information.

	WITH (storage_parameter [= value] [, ...])
	
 This clause specifies optional storage parameters for a table or index;
 see Storage Parameters below for more
 information. For backward-compatibility the WITH
 clause for a table can also include OIDS=FALSE to
 specify that rows of the new table should not contain OIDs (object
 identifiers), OIDS=TRUE is not supported anymore.

	WITHOUT OIDS
	
 This is backward-compatible syntax for declaring a table
 WITHOUT OIDS, creating a table WITH
 OIDS is not supported anymore.

	ON COMMIT
	
 The behavior of temporary tables at the end of a transaction
 block can be controlled using ON COMMIT.
 The three options are:

	PRESERVE ROWS
	
 No special action is taken at the ends of transactions.
 This is the default behavior.

	DELETE ROWS
	
 All rows in the temporary table will be deleted at the end
 of each transaction block. Essentially, an automatic TRUNCATE is done
 at each commit. When used on a partitioned table, this
 is not cascaded to its partitions.

	DROP
	
 The temporary table will be dropped at the end of the current
 transaction block. When used on a partitioned table, this action
 drops its partitions and when used on tables with inheritance
 children, it drops the dependent children.

	TABLESPACE tablespace_name
	
 The tablespace_name is the name
 of the tablespace in which the new table is to be created.
 If not specified,
 default_tablespace is consulted, or
 temp_tablespaces if the table is temporary. For
 partitioned tables, since no storage is required for the table itself,
 the tablespace specified overrides default_tablespace
 as the default tablespace to use for any newly created partitions when no
 other tablespace is explicitly specified.

	USING INDEX TABLESPACE tablespace_name
	
 This clause allows selection of the tablespace in which the index
 associated with a UNIQUE, PRIMARY
 KEY, or EXCLUDE constraint will be created.
 If not specified,
 default_tablespace is consulted, or
 temp_tablespaces if the table is temporary.

Storage Parameters

 The WITH clause can specify storage parameters
 for tables, and for indexes associated with a UNIQUE,
 PRIMARY KEY, or EXCLUDE constraint.
 Storage parameters for
 indexes are documented in CREATE INDEX(7).
 The storage parameters currently
 available for tables are listed below. For many of these parameters, as
 shown, there is an additional parameter with the same name prefixed with
 toast., which controls the behavior of the
 table's secondary TOAST table, if any
 (see the section called “TOAST” for more information about TOAST).
 If a table parameter value is set and the
 equivalent toast. parameter is not, the TOAST table
 will use the table's parameter value.
 Specifying these parameters for partitioned tables is not supported,
 but you may specify them for individual leaf partitions.

	fillfactor (integer)

	
 The fillfactor for a table is a percentage between 10 and 100.
 100 (complete packing) is the default. When a smaller fillfactor
 is specified, INSERT operations pack table pages only
 to the indicated percentage; the remaining space on each page is
 reserved for updating rows on that page. This gives UPDATE
 a chance to place the updated copy of a row on the same page as the
 original, which is more efficient than placing it on a different
 page, and makes heap-only tuple
 updates more likely.
 For a table whose entries are never updated, complete packing is the
 best choice, but in heavily updated tables smaller fillfactors are
 appropriate. This parameter cannot be set for TOAST tables.

	toast_tuple_target (integer)

	
 The toast_tuple_target specifies the minimum tuple length required before
 we try to compress and/or move long column values into TOAST tables, and
 is also the target length we try to reduce the length below once toasting
 begins. This affects columns marked as External (for move),
 Main (for compression), or Extended (for both) and applies only to new
 tuples. There is no effect on existing rows.
 By default this parameter is set to allow at least 4 tuples per block,
 which with the default block size will be 2040 bytes. Valid values are
 between 128 bytes and the (block size - header), by default 8160 bytes.
 Changing this value may not be useful for very short or very long rows.
 Note that the default setting is often close to optimal, and
 it is possible that setting this parameter could have negative
 effects in some cases.
 This parameter cannot be set for TOAST tables.

	parallel_workers (integer)

	
 This sets the number of workers that should be used to assist a parallel
 scan of this table. If not set, the system will determine a value based
 on the relation size. The actual number of workers chosen by the planner
 or by utility statements that use parallel scans may be less, for example
 due to the setting of max_worker_processes.

	autovacuum_enabled, toast.autovacuum_enabled (boolean)

	
 Enables or disables the autovacuum daemon for a particular table.
 If true, the autovacuum daemon will perform automatic VACUUM
 and/or ANALYZE operations on this table following the rules
 discussed in the section called “The Autovacuum Daemon”.
 If false, this table will not be autovacuumed, except to prevent
 transaction ID wraparound. See the section called “Preventing Transaction ID Wraparound Failures” for
 more about wraparound prevention.
 Note that the autovacuum daemon does not run at all (except to prevent
 transaction ID wraparound) if the autovacuum
 parameter is false; setting individual tables' storage parameters does
 not override that. Therefore there is seldom much point in explicitly
 setting this storage parameter to true, only
 to false.

	vacuum_index_cleanup, toast.vacuum_index_cleanup (enum)

	
 Forces or disables index cleanup when VACUUM
 is run on this table. The default value is
 AUTO. With OFF, index
 cleanup is disabled, with ON it is enabled,
 and with AUTO a decision is made dynamically,
 each time VACUUM runs. The dynamic behavior
 allows VACUUM to avoid needlessly scanning
 indexes to remove very few dead tuples. Forcibly disabling all
 index cleanup can speed up VACUUM very
 significantly, but may also lead to severely bloated indexes if
 table modifications are frequent. The
 INDEX_CLEANUP parameter of VACUUM, if
 specified, overrides the value of this option.

	vacuum_truncate, toast.vacuum_truncate (boolean)

	
 Enables or disables vacuum to try to truncate off any empty pages
 at the end of this table. The default value is true.
 If true, VACUUM and
 autovacuum do the truncation and the disk space for
 the truncated pages is returned to the operating system.
 Note that the truncation requires ACCESS EXCLUSIVE
 lock on the table. The TRUNCATE parameter
 of VACUUM, if specified, overrides the value
 of this option.

	autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)

	
 Per-table value for autovacuum_vacuum_threshold
 parameter.

	autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (floating point)

	
 Per-table value for autovacuum_vacuum_scale_factor
 parameter.

	autovacuum_vacuum_insert_threshold, toast.autovacuum_vacuum_insert_threshold (integer)

	
 Per-table value for autovacuum_vacuum_insert_threshold
 parameter. The special value of -1 may be used to disable insert vacuums on the table.

	autovacuum_vacuum_insert_scale_factor, toast.autovacuum_vacuum_insert_scale_factor (floating point)

	
 Per-table value for autovacuum_vacuum_insert_scale_factor
 parameter.

	autovacuum_analyze_threshold (integer)

	
 Per-table value for autovacuum_analyze_threshold
 parameter.

	autovacuum_analyze_scale_factor (floating point)

	
 Per-table value for autovacuum_analyze_scale_factor
 parameter.

	autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (floating point)

	
 Per-table value for autovacuum_vacuum_cost_delay
 parameter.

	autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)

	
 Per-table value for autovacuum_vacuum_cost_limit
 parameter.

	autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

	
 Per-table value for vacuum_freeze_min_age
 parameter. Note that autovacuum will ignore
 per-table autovacuum_freeze_min_age parameters that are
 larger than half the
 system-wide autovacuum_freeze_max_age setting.

	autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

	
 Per-table value for autovacuum_freeze_max_age
 parameter. Note that autovacuum will ignore
 per-table autovacuum_freeze_max_age parameters that are
 larger than the system-wide setting (it can only be set smaller).

	autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)

	
 Per-table value for vacuum_freeze_table_age
 parameter.

	autovacuum_multixact_freeze_min_age, toast.autovacuum_multixact_freeze_min_age (integer)

	
 Per-table value for vacuum_multixact_freeze_min_age
 parameter. Note that autovacuum will ignore
 per-table autovacuum_multixact_freeze_min_age parameters
 that are larger than half the
 system-wide autovacuum_multixact_freeze_max_age
 setting.

	autovacuum_multixact_freeze_max_age, toast.autovacuum_multixact_freeze_max_age (integer)

	
 Per-table value
 for autovacuum_multixact_freeze_max_age parameter.
 Note that autovacuum will ignore
 per-table autovacuum_multixact_freeze_max_age parameters
 that are larger than the system-wide setting (it can only be set
 smaller).

	autovacuum_multixact_freeze_table_age, toast.autovacuum_multixact_freeze_table_age (integer)

	
 Per-table value
 for vacuum_multixact_freeze_table_age parameter.

	log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)

	
 Per-table value for log_autovacuum_min_duration
 parameter.

	user_catalog_table (boolean)

	
 Declare the table as an additional catalog table for purposes of
 logical replication. See
 the section called “Capabilities” for details.
 This parameter cannot be set for TOAST tables.

Notes

 PostgreSQL™ automatically creates an
 index for each unique constraint and primary key constraint to
 enforce uniqueness. Thus, it is not necessary to create an
 index explicitly for primary key columns. (See CREATE INDEX(7) for more information.)

 Unique constraints and primary keys are not inherited in the
 current implementation. This makes the combination of
 inheritance and unique constraints rather dysfunctional.

 A table cannot have more than 1600 columns. (In practice, the
 effective limit is usually lower because of tuple-length constraints.)

Examples

 Create table films and table
 distributors:

CREATE TABLE films (
 code char(5) CONSTRAINT firstkey PRIMARY KEY,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
);

CREATE TABLE distributors (
 did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
 name varchar(40) NOT NULL CHECK (name <> '')
);

 Create a table with a 2-dimensional array:

CREATE TABLE array_int (
 vector int[][]
);

 Define a unique table constraint for the table
 films. Unique table constraints can be defined
 on one or more columns of the table:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT production UNIQUE(date_prod)
);

 Define a check column constraint:

CREATE TABLE distributors (
 did integer CHECK (did > 100),
 name varchar(40)
);

 Define a check table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);

 Define a primary key table constraint for the table
 films:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

 Define a primary key constraint for table
 distributors. The following two examples are
 equivalent, the first using the table constraint syntax, the second
 the column constraint syntax:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did integer PRIMARY KEY,
 name varchar(40)
);

 Assign a literal constant default value for the column
 name, arrange for the default value of column
 did to be generated by selecting the next value
 of a sequence object, and make the default value of
 modtime be the time at which the row is
 inserted:

CREATE TABLE distributors (
 name varchar(40) DEFAULT 'Luso Films',
 did integer DEFAULT nextval('distributors_serial'),
 modtime timestamp DEFAULT current_timestamp
);

 Define two NOT NULL column constraints on the table
 distributors, one of which is explicitly
 given a name:

CREATE TABLE distributors (
 did integer CONSTRAINT no_null NOT NULL,
 name varchar(40) NOT NULL
);

 Define a unique constraint for the name column:

CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE
);

 The same, specified as a table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name)
);

 Create the same table, specifying 70% fill factor for both the table
 and its unique index:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);

 Create table circles with an exclusion
 constraint that prevents any two circles from overlapping:

CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

 Create table cinemas in tablespace diskvol1:

CREATE TABLE cinemas (
 id serial,
 name text,
 location text
) TABLESPACE diskvol1;

 Create a composite type and a typed table:

CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
 PRIMARY KEY (name),
 salary WITH OPTIONS DEFAULT 1000
);

 Create a range partitioned table:

CREATE TABLE measurement (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

 Create a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_year_month (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));

 Create a list partitioned table:

CREATE TABLE cities (
 city_id bigserial not null,
 name text not null,
 population bigint
) PARTITION BY LIST (left(lower(name), 1));

 Create a hash partitioned table:

CREATE TABLE orders (
 order_id bigint not null,
 cust_id bigint not null,
 status text
) PARTITION BY HASH (order_id);

 Create partition of a range partitioned table:

CREATE TABLE measurement_y2016m07
 PARTITION OF measurement (
 unitsales DEFAULT 0
) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');

 Create a few partitions of a range partitioned table with multiple
 columns in the partition key:

CREATE TABLE measurement_ym_older
 PARTITION OF measurement_year_month
 FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);

CREATE TABLE measurement_ym_y2016m11
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 11) TO (2016, 12);

CREATE TABLE measurement_ym_y2016m12
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 12) TO (2017, 01);

CREATE TABLE measurement_ym_y2017m01
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2017, 01) TO (2017, 02);

 Create partition of a list partitioned table:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');

 Create partition of a list partitioned table that is itself further
 partitioned and then add a partition to it:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);

CREATE TABLE cities_ab_10000_to_100000
 PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);

 Create partitions of a hash partitioned table:

CREATE TABLE orders_p1 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

 Create a default partition:

CREATE TABLE cities_partdef
 PARTITION OF cities DEFAULT;

Compatibility

 The CREATE TABLE command conforms to the
 SQL standard, with exceptions listed below.

Temporary Tables

 Although the syntax of CREATE TEMPORARY TABLE
 resembles that of the SQL standard, the effect is not the same. In the
 standard,
 temporary tables are defined just once and automatically exist (starting
 with empty contents) in every session that needs them.
 PostgreSQL™ instead
 requires each session to issue its own CREATE TEMPORARY
 TABLE command for each temporary table to be used. This allows
 different sessions to use the same temporary table name for different
 purposes, whereas the standard's approach constrains all instances of a
 given temporary table name to have the same table structure.

 The standard's definition of the behavior of temporary tables is
 widely ignored. PostgreSQL™'s behavior
 on this point is similar to that of several other SQL databases.

 The SQL standard also distinguishes between global and local temporary
 tables, where a local temporary table has a separate set of contents for
 each SQL module within each session, though its definition is still shared
 across sessions. Since PostgreSQL™ does not
 support SQL modules, this distinction is not relevant in
 PostgreSQL™.

 For compatibility's sake, PostgreSQL™ will
 accept the GLOBAL and LOCAL keywords
 in a temporary table declaration, but they currently have no effect.
 Use of these keywords is discouraged, since future versions of
 PostgreSQL™ might adopt a more
 standard-compliant interpretation of their meaning.

 The ON COMMIT clause for temporary tables
 also resembles the SQL standard, but has some differences.
 If the ON COMMIT clause is omitted, SQL specifies that the
 default behavior is ON COMMIT DELETE ROWS. However, the
 default behavior in PostgreSQL™ is
 ON COMMIT PRESERVE ROWS. The ON COMMIT
 DROP option does not exist in SQL.

Non-Deferred Uniqueness Constraints

 When a UNIQUE or PRIMARY KEY constraint is
 not deferrable, PostgreSQL™ checks for
 uniqueness immediately whenever a row is inserted or modified.
 The SQL standard says that uniqueness should be enforced only at
 the end of the statement; this makes a difference when, for example,
 a single command updates multiple key values. To obtain
 standard-compliant behavior, declare the constraint as
 DEFERRABLE but not deferred (i.e., INITIALLY
 IMMEDIATE). Be aware that this can be significantly slower than
 immediate uniqueness checking.

Column Check Constraints

 The SQL standard says that CHECK column constraints
 can only refer to the column they apply to; only CHECK
 table constraints can refer to multiple columns.
 PostgreSQL™ does not enforce this
 restriction; it treats column and table check constraints alike.

EXCLUDE Constraint

 The EXCLUDE constraint type is a
 PostgreSQL™ extension.

Foreign Key Constraints

 The ability to specify column lists in the foreign key actions
 SET DEFAULT and SET NULL is a
 PostgreSQL™ extension.

 It is a PostgreSQL™ extension that a
 foreign key constraint may reference columns of a unique index instead of
 columns of a primary key or unique constraint.

NULL “Constraint”

 The NULL “constraint” (actually a
 non-constraint) is a PostgreSQL™
 extension to the SQL standard that is included for compatibility with some
 other database systems (and for symmetry with the NOT
 NULL constraint). Since it is the default for any
 column, its presence is simply noise.

Constraint Naming

 The SQL standard says that table and domain constraints must have names
 that are unique across the schema containing the table or domain.
 PostgreSQL™ is laxer: it only requires
 constraint names to be unique across the constraints attached to a
 particular table or domain. However, this extra freedom does not exist
 for index-based constraints (UNIQUE,
 PRIMARY KEY, and EXCLUDE
 constraints), because the associated index is named the same as the
 constraint, and index names must be unique across all relations within
 the same schema.

 Currently, PostgreSQL™ does not record names
 for NOT NULL constraints at all, so they are not
 subject to the uniqueness restriction. This might change in a future
 release.

Inheritance

 Multiple inheritance via the INHERITS clause is
 a PostgreSQL™ language extension.
 SQL:1999 and later define single inheritance using a
 different syntax and different semantics. SQL:1999-style
 inheritance is not yet supported by
 PostgreSQL™.

Zero-Column Tables

 PostgreSQL™ allows a table of no columns
 to be created (for example, CREATE TABLE foo();). This
 is an extension from the SQL standard, which does not allow zero-column
 tables. Zero-column tables are not in themselves very useful, but
 disallowing them creates odd special cases for ALTER TABLE
 DROP COLUMN, so it seems cleaner to ignore this spec restriction.

Multiple Identity Columns

 PostgreSQL™ allows a table to have more than one
 identity column. The standard specifies that a table can have at most one
 identity column. This is relaxed mainly to give more flexibility for
 doing schema changes or migrations. Note that
 the INSERT command supports only one override clause
 that applies to the entire statement, so having multiple identity columns
 with different behaviors is not well supported.

Generated Columns

 The option STORED is not standard but is also used by
 other SQL implementations. The SQL standard does not specify the storage
 of generated columns.

LIKE Clause

 While a LIKE clause exists in the SQL standard, many of the
 options that PostgreSQL™ accepts for it are not
 in the standard, and some of the standard's options are not implemented
 by PostgreSQL™.

WITH Clause

 The WITH clause is a PostgreSQL™
 extension; storage parameters are not in the standard.

Tablespaces

 The PostgreSQL™ concept of tablespaces is not
 part of the standard. Hence, the clauses TABLESPACE
 and USING INDEX TABLESPACE are extensions.

Typed Tables

 Typed tables implement a subset of the SQL standard. According to
 the standard, a typed table has columns corresponding to the
 underlying composite type as well as one other column that is
 the “self-referencing column”.
 PostgreSQL™ does not support self-referencing
 columns explicitly.

PARTITION BY Clause

 The PARTITION BY clause is a
 PostgreSQL™ extension.

PARTITION OF Clause

 The PARTITION OF clause is a
 PostgreSQL™ extension.

See Also
ALTER TABLE(7), DROP TABLE(7), CREATE TABLE AS(7), CREATE TABLESPACE(7), CREATE TYPE(7)

Name
CREATE TABLE AS — define a new table from the results of a query

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description

 CREATE TABLE AS creates a table and fills it
 with data computed by a SELECT command.
 The table columns have the
 names and data types associated with the output columns of the
 SELECT (except that you can override the column
 names by giving an explicit list of new column names).

 CREATE TABLE AS bears some resemblance to
 creating a view, but it is really quite different: it creates a new
 table and evaluates the query just once to fill the new table
 initially. The new table will not track subsequent changes to the
 source tables of the query. In contrast, a view re-evaluates its
 defining SELECT statement whenever it is
 queried.

 CREATE TABLE AS requires CREATE
 privilege on the schema used for the table.

Parameters
	GLOBAL or LOCAL
	
 Ignored for compatibility. Use of these keywords is deprecated;
 refer to CREATE TABLE(7) for details.

	TEMPORARY or TEMP
	
 If specified, the table is created as a temporary table.
 Refer to CREATE TABLE(7) for details.

	UNLOGGED
	
 If specified, the table is created as an unlogged table.
 Refer to CREATE TABLE(7) for details.

	IF NOT EXISTS
	
 Do not throw an error if a relation with the same name already
 exists; simply issue a notice and leave the table unmodified.

	table_name
	
 The name (optionally schema-qualified) of the table to be created.

	column_name
	
 The name of a column in the new table. If column names are not
 provided, they are taken from the output column names of the query.

	USING method
	
 This optional clause specifies the table access method to use to store
 the contents for the new table; the method needs be an access method of
 type TABLE. See Chapter 63, Table Access Method Interface Definition for more
 information. If this option is not specified, the default table access
 method is chosen for the new table. See default_table_access_method for more information.

	WITH (storage_parameter [= value] [, ...])
	
 This clause specifies optional storage parameters for the new table;
 see Storage Parameters in the
 CREATE TABLE(7) documentation for more
 information. For backward-compatibility the WITH
 clause for a table can also include OIDS=FALSE to
 specify that rows of the new table should contain no OIDs (object
 identifiers), OIDS=TRUE is not supported anymore.

	WITHOUT OIDS
	
 This is backward-compatible syntax for declaring a table
 WITHOUT OIDS, creating a table WITH
 OIDS is not supported anymore.

	ON COMMIT
	
 The behavior of temporary tables at the end of a transaction
 block can be controlled using ON COMMIT.
 The three options are:

	PRESERVE ROWS
	
 No special action is taken at the ends of transactions.
 This is the default behavior.

	DELETE ROWS
	
 All rows in the temporary table will be deleted at the end
 of each transaction block. Essentially, an automatic TRUNCATE is done
 at each commit.

	DROP
	
 The temporary table will be dropped at the end of the current
 transaction block.

	TABLESPACE tablespace_name
	
 The tablespace_name is the name
 of the tablespace in which the new table is to be created.
 If not specified,
 default_tablespace is consulted, or
 temp_tablespaces if the table is temporary.

	query
	
 A SELECT, TABLE, or VALUES
 command, or an EXECUTE command that runs a
 prepared SELECT, TABLE, or
 VALUES query.

	WITH [NO] DATA
	
 This clause specifies whether or not the data produced by the query
 should be copied into the new table. If not, only the table structure
 is copied. The default is to copy the data.

Notes

 This command is functionally similar to SELECT INTO(7), but it is
 preferred since it is less likely to be confused with other uses of
 the SELECT INTO syntax. Furthermore, CREATE
 TABLE AS offers a superset of the functionality offered
 by SELECT INTO.

Examples

 Create a new table films_recent consisting of only
 recent entries from the table films:

CREATE TABLE films_recent AS
 SELECT * FROM films WHERE date_prod >= '2002-01-01';

 To copy a table completely, the short form using
 the TABLE command can also be used:

CREATE TABLE films2 AS
 TABLE films;

 Create a new temporary table films_recent, consisting of
 only recent entries from the table films, using a
 prepared statement. The new table will be dropped at commit:

PREPARE recentfilms(date) AS
 SELECT * FROM films WHERE date_prod > $1;
CREATE TEMP TABLE films_recent ON COMMIT DROP AS
 EXECUTE recentfilms('2002-01-01');

Compatibility

 CREATE TABLE AS conforms to the SQL
 standard. The following are nonstandard extensions:

	
 The standard requires parentheses around the subquery clause; in
 PostgreSQL™, these parentheses are
 optional.

	
 In the standard, the WITH [NO] DATA clause
 is required; in PostgreSQL it is optional.

	PostgreSQL™ handles temporary tables in a way
 rather different from the standard; see
 CREATE TABLE(7)
 for details.

	
 The WITH clause is a PostgreSQL™
 extension; storage parameters are not in the standard.

	
 The PostgreSQL™ concept of tablespaces is not
 part of the standard. Hence, the clause TABLESPACE
 is an extension.

See Also
CREATE MATERIALIZED VIEW(7), CREATE TABLE(7), EXECUTE(7), SELECT(7), SELECT INTO(7), VALUES(7)

Name
CREATE TABLESPACE — define a new tablespace

Synopsis

CREATE TABLESPACE tablespace_name
 [OWNER { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }]
 LOCATION 'directory'
 [WITH (tablespace_option = value [, ...])]

Description

 CREATE TABLESPACE registers a new cluster-wide
 tablespace. The tablespace name must be distinct from the name of any
 existing tablespace in the database cluster.

 A tablespace allows superusers to define an alternative location on
 the file system where the data files containing database objects
 (such as tables and indexes) can reside.

 A user with appropriate privileges can pass
 tablespace_name to
 CREATE DATABASE, CREATE TABLE,
 CREATE INDEX or ADD CONSTRAINT to have the data
 files for these objects stored within the specified tablespace.

Warning

 A tablespace cannot be used independently of the cluster in which it
 is defined; see the section called “Tablespaces”.

Parameters
	tablespace_name
	
 The name of a tablespace to be created. The name cannot
 begin with pg_, as such names
 are reserved for system tablespaces.

	user_name
	
 The name of the user who will own the tablespace. If omitted,
 defaults to the user executing the command. Only superusers
 can create tablespaces, but they can assign ownership of tablespaces
 to non-superusers.

	directory
	
 The directory that will be used for the tablespace. The directory
 must exist (CREATE TABLESPACE will not create it),
 should be empty, and must be owned by the
 PostgreSQL™ system user. The directory must be
 specified by an absolute path name.

	tablespace_option
	
 A tablespace parameter to be set or reset. Currently, the only
 available parameters are seq_page_cost,
 random_page_cost, effective_io_concurrency
 and maintenance_io_concurrency.
 Setting these values for a particular tablespace will override the
 planner's usual estimate of the cost of reading pages from tables in
 that tablespace, and the executor's prefetching behavior, as established
 by the configuration parameters of the
 same name (see seq_page_cost,
 random_page_cost,
 effective_io_concurrency,
 maintenance_io_concurrency). This may be useful if
 one tablespace is located on a disk which is faster or slower than the
 remainder of the I/O subsystem.

Notes

 CREATE TABLESPACE cannot be executed inside a transaction
 block.

Examples

 To create a tablespace dbspace at file system location
 /data/dbs, first create the directory using operating
 system facilities and set the correct ownership:

mkdir /data/dbs
chown postgres:postgres /data/dbs

 Then issue the tablespace creation command inside
 PostgreSQL™:

CREATE TABLESPACE dbspace LOCATION '/data/dbs';

 To create a tablespace owned by a different database user, use a command
 like this:

CREATE TABLESPACE indexspace OWNER genevieve LOCATION '/data/indexes';

Compatibility

 CREATE TABLESPACE is a PostgreSQL™
 extension.

See Also
CREATE DATABASE(7), CREATE TABLE(7), CREATE INDEX(7), DROP TABLESPACE(7), ALTER TABLESPACE(7)

Name
CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration

Synopsis

CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
)

Description

 CREATE TEXT SEARCH CONFIGURATION creates a new text
 search configuration. A text search configuration specifies a text
 search parser that can divide a string into tokens, plus dictionaries
 that can be used to determine which tokens are of interest for searching.

 If only the parser is specified, then the new text search configuration
 initially has no mappings from token types to dictionaries, and therefore
 will ignore all words. Subsequent ALTER TEXT SEARCH
 CONFIGURATION commands must be used to create mappings to
 make the configuration useful. Alternatively, an existing text search
 configuration can be copied.

 If a schema name is given then the text search configuration is created in
 the specified schema. Otherwise it is created in the current schema.

 The user who defines a text search configuration becomes its owner.

 Refer to Chapter 12, Full Text Search for further information.

Parameters
	name
	
 The name of the text search configuration to be created. The name can be
 schema-qualified.

	parser_name
	
 The name of the text search parser to use for this configuration.

	source_config
	
 The name of an existing text search configuration to copy.

Notes

 The PARSER and COPY options are mutually
 exclusive, because when an existing configuration is copied, its
 parser selection is copied too.

Compatibility

 There is no CREATE TEXT SEARCH CONFIGURATION statement
 in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION(7), DROP TEXT SEARCH CONFIGURATION(7)

Name
CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary

Synopsis

CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

Description

 CREATE TEXT SEARCH DICTIONARY creates a new text search
 dictionary. A text search dictionary specifies a way of recognizing
 interesting or uninteresting words for searching. A dictionary depends
 on a text search template, which specifies the functions that actually
 perform the work. Typically the dictionary provides some options that
 control the detailed behavior of the template's functions.

 If a schema name is given then the text search dictionary is created in the
 specified schema. Otherwise it is created in the current schema.

 The user who defines a text search dictionary becomes its owner.

 Refer to Chapter 12, Full Text Search for further information.

Parameters
	name
	
 The name of the text search dictionary to be created. The name can be
 schema-qualified.

	template
	
 The name of the text search template that will define the basic
 behavior of this dictionary.

	option
	
 The name of a template-specific option to be set for this dictionary.

	value
	
 The value to use for a template-specific option. If the value
 is not a simple identifier or number, it must be quoted (but you can
 always quote it, if you wish).

 The options can appear in any order.

Examples

 The following example command creates a Snowball-based dictionary
 with a nonstandard list of stop words.

CREATE TEXT SEARCH DICTIONARY my_russian (
 template = snowball,
 language = russian,
 stopwords = myrussian
);

Compatibility

 There is no CREATE TEXT SEARCH DICTIONARY statement in
 the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY(7), DROP TEXT SEARCH DICTIONARY(7)

Name
CREATE TEXT SEARCH PARSER — define a new text search parser

Synopsis

CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

Description

 CREATE TEXT SEARCH PARSER creates a new text search
 parser. A text search parser defines a method for splitting a text
 string into tokens and assigning types (categories) to the tokens.
 A parser is not particularly useful by itself, but must be bound into a
 text search configuration along with some text search dictionaries
 to be used for searching.

 If a schema name is given then the text search parser is created in the
 specified schema. Otherwise it is created in the current schema.

 You must be a superuser to use CREATE TEXT SEARCH PARSER.
 (This restriction is made because an erroneous text search parser
 definition could confuse or even crash the server.)

 Refer to Chapter 12, Full Text Search for further information.

Parameters
	name
	
 The name of the text search parser to be created. The name can be
 schema-qualified.

	start_function
	
 The name of the start function for the parser.

	gettoken_function
	
 The name of the get-next-token function for the parser.

	end_function
	
 The name of the end function for the parser.

	lextypes_function
	
 The name of the lextypes function for the parser (a function that
 returns information about the set of token types it produces).

	headline_function
	
 The name of the headline function for the parser (a function that
 summarizes a set of tokens).

 The function names can be schema-qualified if necessary. Argument types
 are not given, since the argument list for each type of function is
 predetermined. All except the headline function are required.

 The arguments can appear in any order, not only the one shown above.

Compatibility

 There is no
 CREATE TEXT SEARCH PARSER statement in the SQL
 standard.

See Also
ALTER TEXT SEARCH PARSER(7), DROP TEXT SEARCH PARSER(7)

Name
CREATE TEXT SEARCH TEMPLATE — define a new text search template

Synopsis

CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

Description

 CREATE TEXT SEARCH TEMPLATE creates a new text search
 template. Text search templates define the functions that implement
 text search dictionaries. A template is not useful by itself, but must
 be instantiated as a dictionary to be used. The dictionary typically
 specifies parameters to be given to the template functions.

 If a schema name is given then the text search template is created in the
 specified schema. Otherwise it is created in the current schema.

 You must be a superuser to use CREATE TEXT SEARCH
 TEMPLATE. This restriction is made because an erroneous text
 search template definition could confuse or even crash the server.
 The reason for separating templates from dictionaries is that a template
 encapsulates the “unsafe” aspects of defining a dictionary.
 The parameters that can be set when defining a dictionary are safe for
 unprivileged users to set, and so creating a dictionary need not be a
 privileged operation.

 Refer to Chapter 12, Full Text Search for further information.

Parameters
	name
	
 The name of the text search template to be created. The name can be
 schema-qualified.

	init_function
	
 The name of the init function for the template.

	lexize_function
	
 The name of the lexize function for the template.

 The function names can be schema-qualified if necessary. Argument types
 are not given, since the argument list for each type of function is
 predetermined. The lexize function is required, but the init function
 is optional.

 The arguments can appear in any order, not only the one shown above.

Compatibility

 There is no
 CREATE TEXT SEARCH TEMPLATE statement in the SQL
 standard.

See Also
ALTER TEXT SEARCH TEMPLATE(7), DROP TEXT SEARCH TEMPLATE(7)

Name
CREATE TRANSFORM — define a new transform

Synopsis

CREATE [OR REPLACE] TRANSFORM FOR type_name LANGUAGE lang_name (
 FROM SQL WITH FUNCTION from_sql_function_name [(argument_type [, ...])],
 TO SQL WITH FUNCTION to_sql_function_name [(argument_type [, ...])]
);

Description

 CREATE TRANSFORM defines a new transform.
 CREATE OR REPLACE TRANSFORM will either create a new
 transform, or replace an existing definition.

 A transform specifies how to adapt a data type to a procedural language.
 For example, when writing a function in PL/Python using
 the hstore type, PL/Python has no prior knowledge how to
 present hstore values in the Python environment. Language
 implementations usually default to using the text representation, but that
 is inconvenient when, for example, an associative array or a list would be
 more appropriate.

 A transform specifies two functions:

	
 A “from SQL” function that converts the type from the SQL
 environment to the language. This function will be invoked on the
 arguments of a function written in the language.

	
 A “to SQL” function that converts the type from the
 language to the SQL environment. This function will be invoked on the
 return value of a function written in the language.

 It is not necessary to provide both of these functions. If one is not
 specified, the language-specific default behavior will be used if
 necessary. (To prevent a transformation in a certain direction from
 happening at all, you could also write a transform function that always
 errors out.)

 To be able to create a transform, you must own and
 have USAGE privilege on the type, have
 USAGE privilege on the language, and own and
 have EXECUTE privilege on the from-SQL and to-SQL
 functions, if specified.

Parameters
	type_name
	
 The name of the data type of the transform.

	lang_name
	
 The name of the language of the transform.

	from_sql_function_name[(argument_type [, ...])]
	
 The name of the function for converting the type from the SQL
 environment to the language. It must take one argument of
 type internal and return type internal. The
 actual argument will be of the type for the transform, and the function
 should be coded as if it were. (But it is not allowed to declare an
 SQL-level function returning internal without at
 least one argument of type internal.) The actual return
 value will be something specific to the language implementation.
 If no argument list is specified, the function name must be unique in
 its schema.

	to_sql_function_name[(argument_type [, ...])]
	
 The name of the function for converting the type from the language to
 the SQL environment. It must take one argument of type
 internal and return the type that is the type for the
 transform. The actual argument value will be something specific to the
 language implementation.
 If no argument list is specified, the function name must be unique in
 its schema.

Notes

 Use DROP TRANSFORM to remove transforms.

Examples

 To create a transform for type hstore and language
 plpython3u, first set up the type and the language:

CREATE TYPE hstore ...;

CREATE EXTENSION plpython3u;

 Then create the necessary functions:

CREATE FUNCTION hstore_to_plpython(val internal) RETURNS internal
LANGUAGE C STRICT IMMUTABLE
AS ...;

CREATE FUNCTION plpython_to_hstore(val internal) RETURNS hstore
LANGUAGE C STRICT IMMUTABLE
AS ...;

 And finally create the transform to connect them all together:

CREATE TRANSFORM FOR hstore LANGUAGE plpython3u (
 FROM SQL WITH FUNCTION hstore_to_plpython(internal),
 TO SQL WITH FUNCTION plpython_to_hstore(internal)
);

 In practice, these commands would be wrapped up in an extension.

 The contrib section contains a number of extensions
 that provide transforms, which can serve as real-world examples.

Compatibility

 This form of CREATE TRANSFORM is a
 PostgreSQL™ extension. There is a CREATE
 TRANSFORM command in the SQL standard, but it
 is for adapting data types to client languages. That usage is not supported
 by PostgreSQL™.

See Also

 CREATE FUNCTION(7),
 CREATE LANGUAGE(7),
 CREATE TYPE(7),
 DROP TRANSFORM(7)

Name
CREATE TRIGGER — define a new trigger

Synopsis

CREATE [OR REPLACE] [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
 [REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

 INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

Description

 CREATE TRIGGER creates a new trigger.
 CREATE OR REPLACE TRIGGER will either create a
 new trigger, or replace an existing trigger. The
 trigger will be associated with the specified table, view, or foreign table
 and will execute the specified
 function function_name when
 certain operations are performed on that table.

 To replace the current definition of an existing trigger, use
 CREATE OR REPLACE TRIGGER, specifying the existing
 trigger's name and parent table. All other properties are replaced.

 The trigger can be specified to fire before the
 operation is attempted on a row (before constraints are checked and
 the INSERT, UPDATE, or
 DELETE is attempted); or after the operation has
 completed (after constraints are checked and the
 INSERT, UPDATE, or
 DELETE has completed); or instead of the operation
 (in the case of inserts, updates or deletes on a view).
 If the trigger fires before or instead of the event, the trigger can skip
 the operation for the current row, or change the row being inserted (for
 INSERT and UPDATE operations
 only). If the trigger fires after the event, all changes, including
 the effects of other triggers, are “visible”
 to the trigger.

 A trigger that is marked FOR EACH ROW is called
 once for every row that the operation modifies. For example, a
 DELETE that affects 10 rows will cause any
 ON DELETE triggers on the target relation to be
 called 10 separate times, once for each deleted row. In contrast, a
 trigger that is marked FOR EACH STATEMENT only
 executes once for any given operation, regardless of how many rows
 it modifies (in particular, an operation that modifies zero rows
 will still result in the execution of any applicable FOR
 EACH STATEMENT triggers).

 Triggers that are specified to fire INSTEAD OF the trigger
 event must be marked FOR EACH ROW, and can only be defined
 on views. BEFORE and AFTER triggers on a view
 must be marked as FOR EACH STATEMENT.

 In addition, triggers may be defined to fire for
 TRUNCATE, though only
 FOR EACH STATEMENT.

 The following table summarizes which types of triggers may be used on
 tables, views, and foreign tables:

	When	Event	Row-level	Statement-level
	BEFORE	INSERT/UPDATE/DELETE	Tables and foreign tables	Tables, views, and foreign tables
	TRUNCATE	—	Tables and foreign tables
	AFTER	INSERT/UPDATE/DELETE	Tables and foreign tables	Tables, views, and foreign tables
	TRUNCATE	—	Tables and foreign tables
	INSTEAD OF	INSERT/UPDATE/DELETE	Views	—
	TRUNCATE	—	—

 Also, a trigger definition can specify a Boolean WHEN
 condition, which will be tested to see whether the trigger should
 be fired. In row-level triggers the WHEN condition can
 examine the old and/or new values of columns of the row. Statement-level
 triggers can also have WHEN conditions, although the feature
 is not so useful for them since the condition cannot refer to any values
 in the table.

 If multiple triggers of the same kind are defined for the same event,
 they will be fired in alphabetical order by name.

 When the CONSTRAINT option is specified, this command creates a
 constraint trigger.
 This is the same as a regular trigger
 except that the timing of the trigger firing can be adjusted using
 SET CONSTRAINTS.
 Constraint triggers must be AFTER ROW triggers on plain
 tables (not foreign tables). They
 can be fired either at the end of the statement causing the triggering
 event, or at the end of the containing transaction; in the latter case they
 are said to be deferred. A pending deferred-trigger firing
 can also be forced to happen immediately by using SET
 CONSTRAINTS. Constraint triggers are expected to raise an exception
 when the constraints they implement are violated.

 The REFERENCING option enables collection
 of transition relations, which are row sets that include all
 of the rows inserted, deleted, or modified by the current SQL statement.
 This feature lets the trigger see a global view of what the statement did,
 not just one row at a time. This option is only allowed for
 an AFTER trigger on a plain table (not a foreign table).
 The trigger should not be a constraint trigger. Also, if the trigger is
 an UPDATE trigger, it must not specify
 a column_name list when using
 this option.
 OLD TABLE may only be specified once, and only for a trigger
 that can fire on UPDATE or DELETE; it creates a
 transition relation containing the before-images of all rows
 updated or deleted by the statement.
 Similarly, NEW TABLE may only be specified once, and only for
 a trigger that can fire on UPDATE or INSERT;
 it creates a transition relation containing the after-images
 of all rows updated or inserted by the statement.

 SELECT does not modify any rows so you cannot
 create SELECT triggers. Rules and views may provide
 workable solutions to problems that seem to need SELECT
 triggers.

 Refer to Chapter 39, Triggers for more information about triggers.

Parameters
	name
	
 The name to give the new trigger. This must be distinct from
 the name of any other trigger for the same table.
 The name cannot be schema-qualified — the trigger inherits the
 schema of its table. For a constraint trigger, this is also the name to
 use when modifying the trigger's behavior using
 SET CONSTRAINTS.

	BEFORE, AFTER, INSTEAD OF
	
 Determines whether the function is called before, after, or instead of
 the event. A constraint trigger can only be specified as
 AFTER.

	event
	
 One of INSERT, UPDATE,
 DELETE, or TRUNCATE;
 this specifies the event that will fire the trigger. Multiple
 events can be specified using OR, except when
 transition relations are requested.

 For UPDATE events, it is possible to
 specify a list of columns using this syntax:

UPDATE OF column_name1 [, column_name2 ...]

 The trigger will only fire if at least one of the listed columns
 is mentioned as a target of the UPDATE command
 or if one of the listed columns is a generated column that depends on a
 column that is the target of the UPDATE.

 INSTEAD OF UPDATE events do not allow a list of columns.
 A column list cannot be specified when requesting transition relations,
 either.

	table_name
	
 The name (optionally schema-qualified) of the table, view, or foreign
 table the trigger is for.

	referenced_table_name
	
 The (possibly schema-qualified) name of another table referenced by the
 constraint. This option is used for foreign-key constraints and is not
 recommended for general use. This can only be specified for
 constraint triggers.

	DEFERRABLE, NOT DEFERRABLE, INITIALLY IMMEDIATE, INITIALLY DEFERRED
	
 The default timing of the trigger.
 See the CREATE TABLE(7) documentation for details of
 these constraint options. This can only be specified for constraint
 triggers.

	REFERENCING
	
 This keyword immediately precedes the declaration of one or two
 relation names that provide access to the transition relations of the
 triggering statement.

	OLD TABLE, NEW TABLE
	
 This clause indicates whether the following relation name is for the
 before-image transition relation or the after-image transition
 relation.

	transition_relation_name
	
 The (unqualified) name to be used within the trigger for this
 transition relation.

	FOR EACH ROW, FOR EACH STATEMENT
	
 This specifies whether the trigger function should be fired
 once for every row affected by the trigger event, or just once
 per SQL statement. If neither is specified, FOR EACH
 STATEMENT is the default. Constraint triggers can only
 be specified FOR EACH ROW.

	condition
	
 A Boolean expression that determines whether the trigger function
 will actually be executed. If WHEN is specified, the
 function will only be called if the condition returns true.
 In FOR EACH ROW triggers, the WHEN
 condition can refer to columns of the old and/or new row values
 by writing OLD.column_name or
 NEW.column_name respectively.
 Of course, INSERT triggers cannot refer to OLD
 and DELETE triggers cannot refer to NEW.

INSTEAD OF triggers do not support WHEN
 conditions.

 Currently, WHEN expressions cannot contain
 subqueries.

 Note that for constraint triggers, evaluation of the WHEN
 condition is not deferred, but occurs immediately after the row update
 operation is performed. If the condition does not evaluate to true then
 the trigger is not queued for deferred execution.

	function_name
	
 A user-supplied function that is declared as taking no arguments
 and returning type trigger, which is executed when
 the trigger fires.

 In the syntax of CREATE TRIGGER, the keywords
 FUNCTION and PROCEDURE are
 equivalent, but the referenced function must in any case be a function,
 not a procedure. The use of the keyword PROCEDURE
 here is historical and deprecated.

	arguments
	
 An optional comma-separated list of arguments to be provided to
 the function when the trigger is executed. The arguments are
 literal string constants. Simple names and numeric constants
 can be written here, too, but they will all be converted to
 strings. Please check the description of the implementation
 language of the trigger function to find out how these arguments
 can be accessed within the function; it might be different from
 normal function arguments.

Notes

 To create or replace a trigger on a table, the user must have the
 TRIGGER privilege on the table. The user must
 also have EXECUTE privilege on the trigger function.

 Use DROP TRIGGER to remove a trigger.

 Creating a row-level trigger on a partitioned table will cause an
 identical “clone” trigger to be created on each of its
 existing partitions; and any partitions created or attached later will have
 an identical trigger, too. If there is a conflictingly-named trigger on a
 child partition already, an error occurs unless CREATE OR REPLACE
 TRIGGER is used, in which case that trigger is replaced with a
 clone trigger. When a partition is detached from its parent, its clone
 triggers are removed.

 A column-specific trigger (one defined using the UPDATE OF
 column_name syntax) will fire when any
 of its columns are listed as targets in the UPDATE
 command's SET list. It is possible for a column's value
 to change even when the trigger is not fired, because changes made to the
 row's contents by BEFORE UPDATE triggers are not considered.
 Conversely, a command such as UPDATE ... SET x = x ...
 will fire a trigger on column x, even though the column's
 value did not change.

 In a BEFORE trigger, the WHEN condition is
 evaluated just before the function is or would be executed, so using
 WHEN is not materially different from testing the same
 condition at the beginning of the trigger function. Note in particular
 that the NEW row seen by the condition is the current value,
 as possibly modified by earlier triggers. Also, a BEFORE
 trigger's WHEN condition is not allowed to examine the
 system columns of the NEW row (such as ctid),
 because those won't have been set yet.

 In an AFTER trigger, the WHEN condition is
 evaluated just after the row update occurs, and it determines whether an
 event is queued to fire the trigger at the end of statement. So when an
 AFTER trigger's WHEN condition does not return
 true, it is not necessary to queue an event nor to re-fetch the row at end
 of statement. This can result in significant speedups in statements that
 modify many rows, if the trigger only needs to be fired for a few of the
 rows.

 In some cases it is possible for a single SQL command to fire more than
 one kind of trigger. For instance an INSERT with
 an ON CONFLICT DO UPDATE clause may cause both insert and
 update operations, so it will fire both kinds of triggers as needed.
 The transition relations supplied to triggers are
 specific to their event type; thus an INSERT trigger
 will see only the inserted rows, while an UPDATE
 trigger will see only the updated rows.

 Row updates or deletions caused by foreign-key enforcement actions, such
 as ON UPDATE CASCADE or ON DELETE SET NULL, are
 treated as part of the SQL command that caused them (note that such
 actions are never deferred). Relevant triggers on the affected table will
 be fired, so that this provides another way in which an SQL command might
 fire triggers not directly matching its type. In simple cases, triggers
 that request transition relations will see all changes caused in their
 table by a single original SQL command as a single transition relation.
 However, there are cases in which the presence of an AFTER ROW
 trigger that requests transition relations will cause the foreign-key
 enforcement actions triggered by a single SQL command to be split into
 multiple steps, each with its own transition relation(s). In such cases,
 any statement-level triggers that are present will be fired once per
 creation of a transition relation set, ensuring that the triggers see
 each affected row in a transition relation once and only once.

 Statement-level triggers on a view are fired only if the action on the
 view is handled by a row-level INSTEAD OF trigger.
 If the action is handled by an INSTEAD rule, then
 whatever statements are emitted by the rule are executed in place of the
 original statement naming the view, so that the triggers that will be
 fired are those on tables named in the replacement statements.
 Similarly, if the view is automatically updatable, then the action is
 handled by automatically rewriting the statement into an action on the
 view's base table, so that the base table's statement-level triggers are
 the ones that are fired.

 Modifying a partitioned table or a table with inheritance children fires
 statement-level triggers attached to the explicitly named table, but not
 statement-level triggers for its partitions or child tables. In contrast,
 row-level triggers are fired on the rows in affected partitions or
 child tables, even if they are not explicitly named in the query.
 If a statement-level trigger has been defined with transition relations
 named by a REFERENCING clause, then before and after
 images of rows are visible from all affected partitions or child tables.
 In the case of inheritance children, the row images include only columns
 that are present in the table that the trigger is attached to.

 Currently, row-level triggers with transition relations cannot be defined
 on partitions or inheritance child tables. Also, triggers on partitioned
 tables may not be INSTEAD OF.

 Currently, the OR REPLACE option is not supported for
 constraint triggers.

 Replacing an existing trigger within a transaction that has already
 performed updating actions on the trigger's table is not recommended.
 Trigger firing decisions, or portions of firing decisions, that have
 already been made will not be reconsidered, so the effects could be
 surprising.

 There are a few built-in trigger functions that can be used to
 solve common problems without having to write your own trigger code;
 see the section called “Trigger Functions”.

Examples

 Execute the function check_account_update whenever
 a row of the table accounts is about to be updated:

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

 Modify that trigger definition to only execute the function if
 column balance is specified as a target in
 the UPDATE command:

CREATE OR REPLACE TRIGGER check_update
 BEFORE UPDATE OF balance ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

 This form only executes the function if column balance
 has in fact changed value:

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
 EXECUTE FUNCTION check_account_update();

 Call a function to log updates of accounts, but only if
 something changed:

CREATE TRIGGER log_update
 AFTER UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.* IS DISTINCT FROM NEW.*)
 EXECUTE FUNCTION log_account_update();

 Execute the function view_insert_row for each row to insert
 rows into the tables underlying a view:

CREATE TRIGGER view_insert
 INSTEAD OF INSERT ON my_view
 FOR EACH ROW
 EXECUTE FUNCTION view_insert_row();

 Execute the function check_transfer_balances_to_zero for each
 statement to confirm that the transfer rows offset to a net of
 zero:

CREATE TRIGGER transfer_insert
 AFTER INSERT ON transfer
 REFERENCING NEW TABLE AS inserted
 FOR EACH STATEMENT
 EXECUTE FUNCTION check_transfer_balances_to_zero();

 Execute the function check_matching_pairs for each row to
 confirm that changes are made to matching pairs at the same time (by the
 same statement):

CREATE TRIGGER paired_items_update
 AFTER UPDATE ON paired_items
 REFERENCING NEW TABLE AS newtab OLD TABLE AS oldtab
 FOR EACH ROW
 EXECUTE FUNCTION check_matching_pairs();

 the section called “A Complete Trigger Example” contains a complete example of a trigger
 function written in C.

Compatibility

 The CREATE TRIGGER statement in
 PostgreSQL™ implements a subset of the
 SQL standard. The following functionalities are currently
 missing:

	
 While transition table names for AFTER triggers are
 specified using the REFERENCING clause in the standard way,
 the row variables used in FOR EACH ROW triggers may not be
 specified in a REFERENCING clause. They are available in a
 manner that is dependent on the language in which the trigger function
 is written, but is fixed for any one language. Some languages
 effectively behave as though there is a REFERENCING clause
 containing OLD ROW AS OLD NEW ROW AS NEW.

	
 The standard allows transition tables to be used with
 column-specific UPDATE triggers, but then the set of rows
 that should be visible in the transition tables depends on the
 trigger's column list. This is not currently implemented by
 PostgreSQL™.

	
 PostgreSQL™ only allows the execution
 of a user-defined function for the triggered action. The standard
 allows the execution of a number of other SQL commands, such as
 CREATE TABLE, as the triggered action. This
 limitation is not hard to work around by creating a user-defined
 function that executes the desired commands.

 SQL specifies that multiple triggers should be fired in
 time-of-creation order. PostgreSQL™ uses
 name order, which was judged to be more convenient.

 SQL specifies that BEFORE DELETE triggers on cascaded
 deletes fire after the cascaded DELETE completes.
 The PostgreSQL™ behavior is for BEFORE
 DELETE to always fire before the delete action, even a cascading
 one. This is considered more consistent. There is also nonstandard
 behavior if BEFORE triggers modify rows or prevent
 updates during an update that is caused by a referential action. This can
 lead to constraint violations or stored data that does not honor the
 referential constraint.

 The ability to specify multiple actions for a single trigger using
 OR is a PostgreSQL™ extension of
 the SQL standard.

 The ability to fire triggers for TRUNCATE is a
 PostgreSQL™ extension of the SQL standard, as is the
 ability to define statement-level triggers on views.

 CREATE CONSTRAINT TRIGGER is a
 PostgreSQL™ extension of the SQL
 standard.
 So is the OR REPLACE option.

See Also
ALTER TRIGGER(7), DROP TRIGGER(7), CREATE FUNCTION(7), SET CONSTRAINTS(7)

Name
CREATE TYPE — define a new data type

Synopsis

CREATE TYPE name AS
 ([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
 [, MULTIRANGE_TYPE_NAME = multirange_type_name]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, SUBSCRIPT = subscript_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

CREATE TYPE name

Description

 CREATE TYPE registers a new data type for use in
 the current database. The user who defines a type becomes its
 owner.

 If a schema name is given then the type is created in the specified
 schema. Otherwise it is created in the current schema. The type
 name must be distinct from the name of any existing type or domain
 in the same schema. (Because tables have associated data types,
 the type name must also be distinct from the name of any existing
 table in the same schema.)

 There are five forms of CREATE TYPE, as shown in the
 syntax synopsis above. They respectively create a composite
 type, an enum type, a range type, a
 base type, or a shell type. The first four
 of these are discussed in turn below. A shell type is simply a placeholder
 for a type to be defined later; it is created by issuing CREATE
 TYPE with no parameters except for the type name. Shell types
 are needed as forward references when creating range types and base types,
 as discussed in those sections.

Composite Types

 The first form of CREATE TYPE
 creates a composite type.
 The composite type is specified by a list of attribute names and data types.
 An attribute's collation can be specified too, if its data type is
 collatable. A composite type is essentially the same as the row type
 of a table, but using CREATE TYPE avoids the need to
 create an actual table when all that is wanted is to define a type.
 A stand-alone composite type is useful, for example, as the argument or
 return type of a function.

 To be able to create a composite type, you must
 have USAGE privilege on all attribute types.

Enumerated Types

 The second form of CREATE TYPE creates an enumerated
 (enum) type, as described in the section called “Enumerated Types”.
 Enum types take a list of quoted labels, each of which
 must be less than NAMEDATALEN bytes long (64 bytes in a
 standard PostgreSQL™ build). (It is possible to
 create an enumerated type with zero labels, but such a type cannot be used
 to hold values before at least one label is added using ALTER TYPE.)

Range Types

 The third form of CREATE TYPE creates a new
 range type, as described in the section called “Range Types”.

 The range type's subtype can
 be any type with an associated b-tree operator class (to determine the
 ordering of values for the range type). Normally the subtype's default
 b-tree operator class is used to determine ordering; to use a non-default
 operator class, specify its name with subtype_opclass. If the subtype is
 collatable, and you want to use a non-default collation in the range's
 ordering, specify the desired collation with the collation option.

 The optional canonical
 function must take one argument of the range type being defined, and
 return a value of the same type. This is used to convert range values
 to a canonical form, when applicable. See the section called “Defining New Range Types” for more information. Creating a
 canonical function
 is a bit tricky, since it must be defined before the range type can be
 declared. To do this, you must first create a shell type, which is a
 placeholder type that has no properties except a name and an
 owner. This is done by issuing the command CREATE TYPE
 name, with no additional parameters. Then
 the function can be declared using the shell type as argument and result,
 and finally the range type can be declared using the same name. This
 automatically replaces the shell type entry with a valid range type.

 The optional subtype_diff
 function must take two values of the
 subtype type as argument,
 and return a double precision value representing the
 difference between the two given values. While this is optional,
 providing it allows much greater efficiency of GiST indexes on columns of
 the range type. See the section called “Defining New Range Types” for more
 information.

 The optional multirange_type_name
 parameter specifies the name of the corresponding multirange type. If not
 specified, this name is chosen automatically as follows.
 If the range type name contains the substring range, then
 the multirange type name is formed by replacement of the range
 substring with multirange in the range
 type name. Otherwise, the multirange type name is formed by appending a
 _multirange suffix to the range type name.

Base Types

 The fourth form of CREATE TYPE creates a new base type
 (scalar type). To create a new base type, you must be a superuser.
 (This restriction is made because an erroneous type definition could
 confuse or even crash the server.)

 The parameters can appear in any order, not only that
 illustrated above, and most are optional. You must register
 two or more functions (using CREATE FUNCTION) before
 defining the type. The support functions
 input_function and
 output_function
 are required, while the functions
 receive_function,
 send_function,
 type_modifier_input_function,
 type_modifier_output_function,
 analyze_function, and
 subscript_function
 are optional. Generally these functions have to be coded in C
 or another low-level language.

 The input_function
 converts the type's external textual representation to the internal
 representation used by the operators and functions defined for the type.
 output_function
 performs the reverse transformation. The input function can be
 declared as taking one argument of type cstring,
 or as taking three arguments of types
 cstring, oid, integer.
 The first argument is the input text as a C string, the second
 argument is the type's own OID (except for array types, which instead
 receive their element type's OID),
 and the third is the typmod of the destination column, if known
 (-1 will be passed if not).
 The input function must return a value of the data type itself.
 Usually, an input function should be declared STRICT; if it is not,
 it will be called with a NULL first parameter when reading a NULL
 input value. The function must still return NULL in this case, unless
 it raises an error.
 (This case is mainly meant to support domain input functions, which
 might need to reject NULL inputs.)
 The output function must be
 declared as taking one argument of the new data type.
 The output function must return type cstring.
 Output functions are not invoked for NULL values.

 The optional receive_function
 converts the type's external binary representation to the internal
 representation. If this function is not supplied, the type cannot
 participate in binary input. The binary representation should be
 chosen to be cheap to convert to internal form, while being reasonably
 portable. (For example, the standard integer data types use network
 byte order as the external binary representation, while the internal
 representation is in the machine's native byte order.) The receive
 function should perform adequate checking to ensure that the value is
 valid.
 The receive function can be declared as taking one argument of type
 internal, or as taking three arguments of types
 internal, oid, integer.
 The first argument is a pointer to a StringInfo buffer
 holding the received byte string; the optional arguments are the
 same as for the text input function.
 The receive function must return a value of the data type itself.
 Usually, a receive function should be declared STRICT; if it is not,
 it will be called with a NULL first parameter when reading a NULL
 input value. The function must still return NULL in this case, unless
 it raises an error.
 (This case is mainly meant to support domain receive functions, which
 might need to reject NULL inputs.)
 Similarly, the optional
 send_function converts
 from the internal representation to the external binary representation.
 If this function is not supplied, the type cannot participate in binary
 output. The send function must be
 declared as taking one argument of the new data type.
 The send function must return type bytea.
 Send functions are not invoked for NULL values.

 You should at this point be wondering how the input and output functions
 can be declared to have results or arguments of the new type, when they
 have to be created before the new type can be created. The answer is that
 the type should first be defined as a shell type, which is a
 placeholder type that has no properties except a name and an owner. This
 is done by issuing the command CREATE TYPE
 name, with no additional parameters. Then the
 C I/O functions can be defined referencing the shell type. Finally,
 CREATE TYPE with a full definition replaces the shell entry
 with a complete, valid type definition, after which the new type can be
 used normally.

 The optional
 type_modifier_input_function
 and type_modifier_output_function
 are needed if the type supports modifiers, that is optional constraints
 attached to a type declaration, such as char(5) or
 numeric(30,2). PostgreSQL™ allows
 user-defined types to take one or more simple constants or identifiers as
 modifiers. However, this information must be capable of being packed into a
 single non-negative integer value for storage in the system catalogs. The
 type_modifier_input_function
 is passed the declared modifier(s) in the form of a cstring
 array. It must check the values for validity (throwing an error if they
 are wrong), and if they are correct, return a single non-negative
 integer value that will be stored as the column “typmod”.
 Type modifiers will be rejected if the type does not have a
 type_modifier_input_function.
 The type_modifier_output_function
 converts the internal integer typmod value back to the correct form for
 user display. It must return a cstring value that is the exact
 string to append to the type name; for example numeric's
 function might return (30,2).
 It is allowed to omit the
 type_modifier_output_function,
 in which case the default display format is just the stored typmod integer
 value enclosed in parentheses.

 The optional analyze_function
 performs type-specific statistics collection for columns of the data type.
 By default, ANALYZE will attempt to gather statistics using
 the type's “equals” and “less-than” operators, if there
 is a default b-tree operator class for the type. For non-scalar types
 this behavior is likely to be unsuitable, so it can be overridden by
 specifying a custom analysis function. The analysis function must be
 declared to take a single argument of type internal, and return
 a boolean result. The detailed API for analysis functions appears
 in src/include/commands/vacuum.h.

 The optional subscript_function
 allows the data type to be subscripted in SQL commands. Specifying this
 function does not cause the type to be considered a “true”
 array type; for example, it will not be a candidate for the result type
 of ARRAY[] constructs. But if subscripting a value
 of the type is a natural notation for extracting data from it, then
 a subscript_function can
 be written to define what that means. The subscript function must be
 declared to take a single argument of type internal, and
 return an internal result, which is a pointer to a struct
 of methods (functions) that implement subscripting.
 The detailed API for subscript functions appears
 in src/include/nodes/subscripting.h.
 It may also be useful to read the array implementation
 in src/backend/utils/adt/arraysubs.c,
 or the simpler code
 in contrib/hstore/hstore_subs.c.
 Additional information appears in
 Array Types below.

 While the details of the new type's internal representation are only
 known to the I/O functions and other functions you create to work with
 the type, there are several properties of the internal representation
 that must be declared to PostgreSQL™.
 Foremost of these is
 internallength.
 Base data types can be fixed-length, in which case
 internallength is a
 positive integer, or variable-length, indicated by setting
 internallength
 to VARIABLE. (Internally, this is represented
 by setting typlen to -1.) The internal representation of all
 variable-length types must start with a 4-byte integer giving the total
 length of this value of the type. (Note that the length field is often
 encoded, as described in the section called “TOAST”; it's unwise
 to access it directly.)

 The optional flag PASSEDBYVALUE indicates that
 values of this data type are passed by value, rather than by
 reference. Types passed by value must be fixed-length, and their internal
 representation cannot be larger than the size of the Datum type
 (4 bytes on some machines, 8 bytes on others).

 The alignment parameter
 specifies the storage alignment required for the data type. The
 allowed values equate to alignment on 1, 2, 4, or 8 byte boundaries.
 Note that variable-length types must have an alignment of at least
 4, since they necessarily contain an int4 as their first component.

 The storage parameter
 allows selection of storage strategies for variable-length data
 types. (Only plain is allowed for fixed-length
 types.) plain specifies that data of the type
 will always be stored in-line and not compressed.
 extended specifies that the system will first
 try to compress a long data value, and will move the value out of
 the main table row if it's still too long.
 external allows the value to be moved out of the
 main table, but the system will not try to compress it.
 main allows compression, but discourages moving
 the value out of the main table. (Data items with this storage
 strategy might still be moved out of the main table if there is no
 other way to make a row fit, but they will be kept in the main
 table preferentially over extended and
 external items.)

 All storage values other
 than plain imply that the functions of the data type
 can handle values that have been toasted, as described
 in the section called “TOAST” and the section called “TOAST Considerations”.
 The specific other value given merely determines the default TOAST
 storage strategy for columns of a toastable data type; users can pick
 other strategies for individual columns using ALTER TABLE
 SET STORAGE.

 The like_type parameter
 provides an alternative method for specifying the basic representation
 properties of a data type: copy them from some existing type. The values of
 internallength,
 passedbyvalue,
 alignment, and
 storage are copied from the
 named type. (It is possible, though usually undesirable, to override
 some of these values by specifying them along with the LIKE
 clause.) Specifying representation this way is especially useful when
 the low-level implementation of the new type “piggybacks” on an
 existing type in some fashion.

 The category and
 preferred parameters can be
 used to help control which implicit cast will be applied in ambiguous
 situations. Each data type belongs to a category named by a single ASCII
 character, and each type is either “preferred” or not within its
 category. The parser will prefer casting to preferred types (but only from
 other types within the same category) when this rule is helpful in
 resolving overloaded functions or operators. For more details see Chapter 10, Type Conversion. For types that have no implicit casts to or from any
 other types, it is sufficient to leave these settings at the defaults.
 However, for a group of related types that have implicit casts, it is often
 helpful to mark them all as belonging to a category and select one or two
 of the “most general” types as being preferred within the category.
 The category parameter is
 especially useful when adding a user-defined type to an existing built-in
 category, such as the numeric or string types. However, it is also
 possible to create new entirely-user-defined type categories. Select any
 ASCII character other than an upper-case letter to name such a category.

 A default value can be specified, in case a user wants columns of the
 data type to default to something other than the null value.
 Specify the default with the DEFAULT key word.
 (Such a default can be overridden by an explicit DEFAULT
 clause attached to a particular column.)

 To indicate that a type is a fixed-length array type,
 specify the type of the array
 elements using the ELEMENT key word. For example, to
 define an array of 4-byte integers (int4), specify
 ELEMENT = int4. For more details,
 see Array Types below.

 To indicate the delimiter to be used between values in the external
 representation of arrays of this type, delimiter can be
 set to a specific character. The default delimiter is the comma
 (,). Note that the delimiter is associated
 with the array element type, not the array type itself.

 If the optional Boolean
 parameter collatable
 is true, column definitions and expressions of the type may carry
 collation information through use of
 the COLLATE clause. It is up to the
 implementations of the functions operating on the type to actually
 make use of the collation information; this does not happen
 automatically merely by marking the type collatable.

Array Types

 Whenever a user-defined type is created,
 PostgreSQL™ automatically creates an
 associated array type, whose name consists of the element type's
 name prepended with an underscore, and truncated if necessary to keep
 it less than NAMEDATALEN bytes long. (If the name
 so generated collides with an existing type name, the process is
 repeated until a non-colliding name is found.)
 This implicitly-created array type is variable length and uses the
 built-in input and output functions array_in and
 array_out. Furthermore, this type is what the system
 uses for constructs such as ARRAY[] over the
 user-defined type. The array type tracks any changes in its
 element type's owner or schema, and is dropped if the element type is.

 You might reasonably ask why there is an ELEMENT
 option, if the system makes the correct array type automatically.
 The main case where it's useful to use ELEMENT is when you are
 making a fixed-length type that happens to be internally an array of a number of
 identical things, and you want to allow these things to be accessed
 directly by subscripting, in addition to whatever operations you plan
 to provide for the type as a whole. For example, type point
 is represented as just two floating-point numbers, which can be accessed
 using point[0] and point[1].
 Note that
 this facility only works for fixed-length types whose internal form
 is exactly a sequence of identical fixed-length fields.
 For historical reasons (i.e., this is clearly wrong but it's far too
 late to change it), subscripting of fixed-length array types starts from
 zero, rather than from one as for variable-length arrays.

 Specifying the SUBSCRIPT option allows a data type to
 be subscripted, even though the system does not otherwise regard it as
 an array type. The behavior just described for fixed-length arrays is
 actually implemented by the SUBSCRIPT handler
 function raw_array_subscript_handler, which is
 used automatically if you specify ELEMENT for a
 fixed-length type without also writing SUBSCRIPT.

 When specifying a custom SUBSCRIPT function, it is
 not necessary to specify ELEMENT unless
 the SUBSCRIPT handler function needs to
 consult typelem to find out what to return.
 Be aware that specifying ELEMENT causes the system to
 assume that the new type contains, or is somehow physically dependent on,
 the element type; thus for example changing properties of the element
 type won't be allowed if there are any columns of the dependent type.

Parameters
	name
	
 The name (optionally schema-qualified) of a type to be created.

	attribute_name
	
 The name of an attribute (column) for the composite type.

	data_type
	
 The name of an existing data type to become a column of the
 composite type.

	collation
	
 The name of an existing collation to be associated with a column of
 a composite type, or with a range type.

	label
	
 A string literal representing the textual label associated with
 one value of an enum type.

	subtype
	
 The name of the element type that the range type will represent ranges
 of.

	subtype_operator_class
	
 The name of a b-tree operator class for the subtype.

	canonical_function
	
 The name of the canonicalization function for the range type.

	subtype_diff_function
	
 The name of a difference function for the subtype.

	multirange_type_name
	
 The name of the corresponding multirange type.

	input_function
	
 The name of a function that converts data from the type's
 external textual form to its internal form.

	output_function
	
 The name of a function that converts data from the type's
 internal form to its external textual form.

	receive_function
	
 The name of a function that converts data from the type's
 external binary form to its internal form.

	send_function
	
 The name of a function that converts data from the type's
 internal form to its external binary form.

	type_modifier_input_function
	
 The name of a function that converts an array of modifier(s) for the type
 into internal form.

	type_modifier_output_function
	
 The name of a function that converts the internal form of the type's
 modifier(s) to external textual form.

	analyze_function
	
 The name of a function that performs statistical analysis for the
 data type.

	subscript_function
	
 The name of a function that defines what subscripting a value of the
 data type does.

	internallength
	
 A numeric constant that specifies the length in bytes of the new
 type's internal representation. The default assumption is that
 it is variable-length.

	alignment
	
 The storage alignment requirement of the data type. If specified,
 it must be char, int2,
 int4, or double; the
 default is int4.

	storage
	
 The storage strategy for the data type. If specified, must be
 plain, external,
 extended, or main; the
 default is plain.

	like_type
	
 The name of an existing data type that the new type will have the
 same representation as. The values of
 internallength,
 passedbyvalue,
 alignment, and
 storage
 are copied from that type, unless overridden by explicit
 specification elsewhere in this CREATE TYPE command.

	category
	
 The category code (a single ASCII character) for this type.
 The default is 'U' for “user-defined type”.
 Other standard category codes can be found in
 Table 53.65, “typcategory Codes”. You may also choose
 other ASCII characters in order to create custom categories.

	preferred
	
 True if this type is a preferred type within its type category,
 else false. The default is false. Be very careful about creating
 a new preferred type within an existing type category, as this
 could cause surprising changes in behavior.

	default
	
 The default value for the data type. If this is omitted, the
 default is null.

	element
	
 The type being created is an array; this specifies the type of
 the array elements.

	delimiter
	
 The delimiter character to be used between values in arrays made
 of this type.

	collatable
	
 True if this type's operations can use collation information.
 The default is false.

Notes

 Because there are no restrictions on use of a data type once it's been
 created, creating a base type or range type is tantamount to granting
 public execute permission on the functions mentioned in the type definition.
 This is usually
 not an issue for the sorts of functions that are useful in a type
 definition. But you might want to think twice before designing a type
 in a way that would require “secret” information to be used
 while converting it to or from external form.

 Before PostgreSQL™ version 8.3, the name of
 a generated array type was always exactly the element type's name with one
 underscore character (_) prepended. (Type names were
 therefore restricted in length to one fewer character than other names.)
 While this is still usually the case, the array type name may vary from
 this in case of maximum-length names or collisions with user type names
 that begin with underscore. Writing code that depends on this convention
 is therefore deprecated. Instead, use
 pg_type.typarray to locate the array type
 associated with a given type.

 It may be advisable to avoid using type and table names that begin with
 underscore. While the server will change generated array type names to
 avoid collisions with user-given names, there is still risk of confusion,
 particularly with old client software that may assume that type names
 beginning with underscores always represent arrays.

 Before PostgreSQL™ version 8.2, the shell-type
 creation syntax
 CREATE TYPE name did not exist.
 The way to create a new base type was to create its input function first.
 In this approach, PostgreSQL™ will first see
 the name of the new data type as the return type of the input function.
 The shell type is implicitly created in this situation, and then it
 can be referenced in the definitions of the remaining I/O functions.
 This approach still works, but is deprecated and might be disallowed in
 some future release. Also, to avoid accidentally cluttering
 the catalogs with shell types as a result of simple typos in function
 definitions, a shell type will only be made this way when the input
 function is written in C.

 In PostgreSQL™ version 16 and later,
 it is desirable for base types' input functions to
 return “soft” errors using the
 new errsave()/ereturn()
 mechanism, rather than throwing ereport()
 exceptions as in previous versions.
 See src/backend/utils/fmgr/README for more
 information.

Examples

 This example creates a composite type and uses it in
 a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
 SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;

 This example creates an enumerated type and uses it in
 a table definition:

CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');

CREATE TABLE bug (
 id serial,
 description text,
 status bug_status
);

 This example creates a range type:

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);

 This example creates the base data type box and then uses the
 type in a table definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
 id integer,
 description box
);

 If the internal structure of box were an array of four
 float4 elements, we might instead use:

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function,
 ELEMENT = float4
);

 which would allow a box value's component numbers to be accessed
 by subscripting. Otherwise the type behaves the same as before.

 This example creates a large object type and uses it in
 a table definition:

CREATE TYPE bigobj (
 INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE
);
CREATE TABLE big_objs (
 id integer,
 obj bigobj
);

 More examples, including suitable input and output functions, are
 in the section called “User-Defined Types”.

Compatibility

 The first form of the CREATE TYPE command, which
 creates a composite type, conforms to the SQL standard.
 The other forms are PostgreSQL™
 extensions. The CREATE TYPE statement in
 the SQL standard also defines other forms that are not
 implemented in PostgreSQL™.

 The ability to create a composite type with zero attributes is
 a PostgreSQL™-specific deviation from the
 standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE(7), CREATE DOMAIN(7), CREATE FUNCTION(7), DROP TYPE(7)

Name
CREATE USER — define a new database role

Synopsis

CREATE USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description

 CREATE USER is now an alias for
 CREATE ROLE.
 The only difference is that when the command is spelled
 CREATE USER, LOGIN is assumed
 by default, whereas NOLOGIN is assumed when
 the command is spelled
 CREATE ROLE.

Compatibility

 The CREATE USER statement is a
 PostgreSQL™ extension. The SQL standard
 leaves the definition of users to the implementation.

See Also
CREATE ROLE(7)

Name
CREATE USER MAPPING — define a new mapping of a user to a foreign server

Synopsis

CREATE USER MAPPING [IF NOT EXISTS] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | PUBLIC }
 SERVER server_name
 [OPTIONS (option 'value' [, ...])]

Description

 CREATE USER MAPPING defines a mapping of a user
 to a foreign server. A user mapping typically encapsulates
 connection information that a foreign-data wrapper uses together
 with the information encapsulated by a foreign server to access an
 external data resource.

 The owner of a foreign server can create user mappings for that
 server for any user. Also, a user can create a user mapping for
 their own user name if USAGE privilege on the server has
 been granted to the user.

Parameters
	IF NOT EXISTS
	
 Do not throw an error if a mapping of the given user to the given foreign
 server already exists. A notice is issued in this case. Note that there
 is no guarantee that the existing user mapping is anything like the one
 that would have been created.

	user_name
	
 The name of an existing user that is mapped to foreign server.
 CURRENT_ROLE, CURRENT_USER, and USER match the name of
 the current user. When PUBLIC is specified, a
 so-called public mapping is created that is used when no
 user-specific mapping is applicable.

	server_name
	
 The name of an existing server for which the user mapping is
 to be created.

	OPTIONS (option 'value' [, ...])
	
 This clause specifies the options of the user mapping. The
 options typically define the actual user name and password of
 the mapping. Option names must be unique. The allowed option
 names and values are specific to the server's foreign-data wrapper.

Examples

 Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password 'secret');

Compatibility

 CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING(7), DROP USER MAPPING(7), CREATE FOREIGN DATA WRAPPER(7), CREATE SERVER(7)

Name
CREATE VIEW — define a new view

Synopsis

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description

 CREATE VIEW defines a view of a query. The view
 is not physically materialized. Instead, the query is run every time
 the view is referenced in a query.

 CREATE OR REPLACE VIEW is similar, but if a view
 of the same name already exists, it is replaced. The new query must
 generate the same columns that were generated by the existing view query
 (that is, the same column names in the same order and with the same data
 types), but it may add additional columns to the end of the list. The
 calculations giving rise to the output columns may be completely different.

 If a schema name is given (for example, CREATE VIEW
 myschema.myview ...) then the view is created in the specified
 schema. Otherwise it is created in the current schema. Temporary
 views exist in a special schema, so a schema name cannot be given
 when creating a temporary view. The name of the view must be
 distinct from the name of any other relation (table, sequence, index, view,
 materialized view, or foreign table) in the same schema.

Parameters
	TEMPORARY or TEMP
	
 If specified, the view is created as a temporary view.
 Temporary views are automatically dropped at the end of the
 current session. Existing
 permanent relations with the same name are not visible to the
 current session while the temporary view exists, unless they are
 referenced with schema-qualified names.

 If any of the tables referenced by the view are temporary,
 the view is created as a temporary view (whether
 TEMPORARY is specified or not).

	RECURSIVE

	
 Creates a recursive view. The syntax

CREATE RECURSIVE VIEW [schema .] view_name (column_names) AS SELECT ...;

 is equivalent to

CREATE VIEW [schema .] view_name AS WITH RECURSIVE view_name (column_names) AS (SELECT ...) SELECT column_names FROM view_name;

 A view column name list must be specified for a recursive view.

	name
	
 The name (optionally schema-qualified) of a view to be created.

	column_name
	
 An optional list of names to be used for columns of the view.
 If not given, the column names are deduced from the query.

	WITH (view_option_name [= view_option_value] [, ...])
	
 This clause specifies optional parameters for a view; the following
 parameters are supported:

	check_option (enum)
	
 This parameter may be either local or
 cascaded, and is equivalent to specifying
 WITH [CASCADED | LOCAL] CHECK OPTION (see below).

	security_barrier (boolean)
	
 This should be used if the view is intended to provide row-level
 security. See the section called “Rules and Privileges” for full details.

	security_invoker (boolean)
	
 This option causes the underlying base relations to be checked
 against the privileges of the user of the view rather than the view
 owner. See the notes below for full details.

 All of the above options can be changed on existing views using ALTER VIEW.

	query
	
 A SELECT or
 VALUES command
 which will provide the columns and rows of the view.

	WITH [CASCADED | LOCAL] CHECK OPTION

	
 This option controls the behavior of automatically updatable views. When
 this option is specified, INSERT and UPDATE
 commands on the view will be checked to ensure that new rows satisfy the
 view-defining condition (that is, the new rows are checked to ensure that
 they are visible through the view). If they are not, the update will be
 rejected. If the CHECK OPTION is not specified,
 INSERT and UPDATE commands on the view are
 allowed to create rows that are not visible through the view. The
 following check options are supported:

	LOCAL
	
 New rows are only checked against the conditions defined directly in
 the view itself. Any conditions defined on underlying base views are
 not checked (unless they also specify the CHECK OPTION).

	CASCADED
	
 New rows are checked against the conditions of the view and all
 underlying base views. If the CHECK OPTION is specified,
 and neither LOCAL nor CASCADED is specified,
 then CASCADED is assumed.

 The CHECK OPTION may not be used with RECURSIVE
 views.

 Note that the CHECK OPTION is only supported on views that
 are automatically updatable, and do not have INSTEAD OF
 triggers or INSTEAD rules. If an automatically updatable
 view is defined on top of a base view that has INSTEAD OF
 triggers, then the LOCAL CHECK OPTION may be used to check
 the conditions on the automatically updatable view, but the conditions
 on the base view with INSTEAD OF triggers will not be
 checked (a cascaded check option will not cascade down to a
 trigger-updatable view, and any check options defined directly on a
 trigger-updatable view will be ignored). If the view or any of its base
 relations has an INSTEAD rule that causes the
 INSERT or UPDATE command to be rewritten, then
 all check options will be ignored in the rewritten query, including any
 checks from automatically updatable views defined on top of the relation
 with the INSTEAD rule.

Notes

 Use the DROP VIEW
 statement to drop views.

 Be careful that the names and types of the view's columns will be
 assigned the way you want. For example:

CREATE VIEW vista AS SELECT 'Hello World';

 is bad form because the column name defaults to ?column?;
 also, the column data type defaults to text, which might not
 be what you wanted. Better style for a string literal in a view's
 result is something like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

 By default, access to the underlying base relations referenced in the view
 is determined by the permissions of the view owner. In some cases, this
 can be used to provide secure but restricted access to the underlying
 tables. However, not all views are secure against tampering; see the section called “Rules and Privileges” for details.

 If the view has the security_invoker property set to
 true, access to the underlying base relations is
 determined by the permissions of the user executing the query, rather than
 the view owner. Thus, the user of a security invoker view must have the
 relevant permissions on the view and its underlying base relations.

 If any of the underlying base relations is a security invoker view, it
 will be treated as if it had been accessed directly from the original
 query. Thus, a security invoker view will always check its underlying
 base relations using the permissions of the current user, even if it is
 accessed from a view without the security_invoker
 property.

 If any of the underlying base relations has
 row-level security enabled, then
 by default, the row-level security policies of the view owner are applied,
 and access to any additional relations referred to by those policies is
 determined by the permissions of the view owner. However, if the view has
 security_invoker set to true, then
 the policies and permissions of the invoking user are used instead, as if
 the base relations had been referenced directly from the query using the
 view.

 Functions called in the view are treated the same as if they had been
 called directly from the query using the view. Therefore, the user of
 a view must have permissions to call all functions used by the view.
 Functions in the view are executed with the privileges of the user
 executing the query or the function owner, depending on whether the
 functions are defined as SECURITY INVOKER or
 SECURITY DEFINER. Thus, for example, calling
 CURRENT_USER directly in a view will always return the
 invoking user, not the view owner. This is not affected by the view's
 security_invoker setting, and so a view with
 security_invoker set to false is
 not equivalent to a
 SECURITY DEFINER function and those concepts should not
 be confused.

 The user creating or replacing a view must have USAGE
 privileges on any schemas referred to in the view query, in order to look
 up the referenced objects in those schemas. Note, however, that this
 lookup only happens when the view is created or replaced. Therefore, the
 user of the view only requires the USAGE privilege on
 the schema containing the view, not on the schemas referred to in the view
 query, even for a security invoker view.

 When CREATE OR REPLACE VIEW is used on an existing
 view, only the view's defining SELECT rule, plus any
 WITH (...) parameters and its
 CHECK OPTION are changed.
 Other view properties, including ownership, permissions, and non-SELECT
 rules, remain unchanged. You must own the view
 to replace it (this includes being a member of the owning role).

Updatable Views

 Simple views are automatically updatable: the system will allow
 INSERT, UPDATE and DELETE statements
 to be used on the view in the same way as on a regular table. A view is
 automatically updatable if it satisfies all of the following conditions:

	
 The view must have exactly one entry in its FROM list,
 which must be a table or another updatable view.

	
 The view definition must not contain WITH,
 DISTINCT, GROUP BY, HAVING,
 LIMIT, or OFFSET clauses at the top level.

	
 The view definition must not contain set operations (UNION,
 INTERSECT or EXCEPT) at the top level.

	
 The view's select list must not contain any aggregates, window functions
 or set-returning functions.

 An automatically updatable view may contain a mix of updatable and
 non-updatable columns. A column is updatable if it is a simple reference
 to an updatable column of the underlying base relation; otherwise the
 column is read-only, and an error will be raised if an INSERT
 or UPDATE statement attempts to assign a value to it.

 If the view is automatically updatable the system will convert any
 INSERT, UPDATE or DELETE statement
 on the view into the corresponding statement on the underlying base
 relation. INSERT statements that have an ON
 CONFLICT UPDATE clause are fully supported.

 If an automatically updatable view contains a WHERE
 condition, the condition restricts which rows of the base relation are
 available to be modified by UPDATE and DELETE
 statements on the view. However, an UPDATE is allowed to
 change a row so that it no longer satisfies the WHERE
 condition, and thus is no longer visible through the view. Similarly,
 an INSERT command can potentially insert base-relation rows
 that do not satisfy the WHERE condition and thus are not
 visible through the view (ON CONFLICT UPDATE may
 similarly affect an existing row not visible through the view).
 The CHECK OPTION may be used to prevent
 INSERT and UPDATE commands from creating
 such rows that are not visible through the view.

 If an automatically updatable view is marked with the
 security_barrier property then all the view's WHERE
 conditions (and any conditions using operators which are marked as LEAKPROOF)
 will always be evaluated before any conditions that a user of the view has
 added. See the section called “Rules and Privileges” for full details. Note that,
 due to this, rows which are not ultimately returned (because they do not
 pass the user's WHERE conditions) may still end up being locked.
 EXPLAIN can be used to see which conditions are
 applied at the relation level (and therefore do not lock rows) and which are
 not.

 A more complex view that does not satisfy all these conditions is
 read-only by default: the system will not allow an insert, update, or
 delete on the view. You can get the effect of an updatable view by
 creating INSTEAD OF triggers on the view, which must
 convert attempted inserts, etc. on the view into appropriate actions
 on other tables. For more information see CREATE TRIGGER(7). Another possibility is to create rules
 (see CREATE RULE(7)), but in practice triggers are
 easier to understand and use correctly.

 Note that the user performing the insert, update or delete on the view
 must have the corresponding insert, update or delete privilege on the
 view. In addition, by default, the view's owner must have the relevant
 privileges on the underlying base relations, whereas the user performing
 the update does not need any permissions on the underlying base relations
 (see the section called “Rules and Privileges”). However, if the view has
 security_invoker set to true, the
 user performing the update, rather than the view owner, must have the
 relevant privileges on the underlying base relations.

Examples

 Create a view consisting of all comedy films:

CREATE VIEW comedies AS
 SELECT *
 FROM films
 WHERE kind = 'Comedy';

 This will create a view containing the columns that are in the
 film table at the time of view creation. Though
 * was used to create the view, columns added later to
 the table will not be part of the view.

 Create a view with LOCAL CHECK OPTION:

CREATE VIEW universal_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'U'
 WITH LOCAL CHECK OPTION;

 This will create a view based on the comedies view, showing
 only films with kind = 'Comedy' and
 classification = 'U'. Any attempt to INSERT or
 UPDATE a row in the view will be rejected if the new row
 doesn't have classification = 'U', but the film
 kind will not be checked.

 Create a view with CASCADED CHECK OPTION:

CREATE VIEW pg_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'PG'
 WITH CASCADED CHECK OPTION;

 This will create a view that checks both the kind and
 classification of new rows.

 Create a view with a mix of updatable and non-updatable columns:

CREATE VIEW comedies AS
 SELECT f.*,
 country_code_to_name(f.country_code) AS country,
 (SELECT avg(r.rating)
 FROM user_ratings r
 WHERE r.film_id = f.id) AS avg_rating
 FROM films f
 WHERE f.kind = 'Comedy';

 This view will support INSERT, UPDATE and
 DELETE. All the columns from the films table will
 be updatable, whereas the computed columns country and
 avg_rating will be read-only.

 Create a recursive view consisting of the numbers from 1 to 100:

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

 Notice that although the recursive view's name is schema-qualified in this
 CREATE, its internal self-reference is not schema-qualified.
 This is because the implicitly-created CTE's name cannot be
 schema-qualified.

Compatibility

 CREATE OR REPLACE VIEW is a
 PostgreSQL™ language extension.
 So is the concept of a temporary view.
 The WITH (...) clause is an extension as well, as are
 security barrier views and security invoker views.

See Also
ALTER VIEW(7), DROP VIEW(7), CREATE MATERIALIZED VIEW(7)

Name
DEALLOCATE — deallocate a prepared statement

Synopsis

DEALLOCATE [PREPARE] { name | ALL }

Description

 DEALLOCATE is used to deallocate a previously
 prepared SQL statement. If you do not explicitly deallocate a
 prepared statement, it is deallocated when the session ends.

 For more information on prepared statements, see PREPARE(7).

Parameters
	PREPARE
	
 This key word is ignored.

	name
	
 The name of the prepared statement to deallocate.

	ALL
	
 Deallocate all prepared statements.

Compatibility

 The SQL standard includes a DEALLOCATE
 statement, but it is only for use in embedded SQL.

See Also
EXECUTE(7), PREPARE(7)

Name
DECLARE — define a cursor

Synopsis

DECLARE name [BINARY] [ASENSITIVE | INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description

 DECLARE allows a user to create cursors, which
 can be used to retrieve
 a small number of rows at a time out of a larger query.
 After the cursor is created, rows are fetched from it using
 FETCH.

Note

 This page describes usage of cursors at the SQL command level.
 If you are trying to use cursors inside a PL/pgSQL
 function, the rules are different —
 see the section called “Cursors”.

Parameters
	name
	
 The name of the cursor to be created.
 This must be different from any other active cursor name in the
 session.

	BINARY
	
 Causes the cursor to return data in binary rather than in text format.

	ASENSITIVE, INSENSITIVE
	
 Cursor sensitivity determines whether changes to the data underlying the
 cursor, done in the same transaction, after the cursor has been
 declared, are visible in the cursor. INSENSITIVE
 means they are not visible, ASENSITIVE means the
 behavior is implementation-dependent. A third behavior,
 SENSITIVE, meaning that such changes are visible in
 the cursor, is not available in PostgreSQL™.
 In PostgreSQL™, all cursors are insensitive;
 so these key words have no effect and are only accepted for
 compatibility with the SQL standard.

 Specifying INSENSITIVE together with FOR
 UPDATE or FOR SHARE is an error.

	SCROLL, NO SCROLL
	SCROLL specifies that the cursor can be used
 to retrieve rows in a nonsequential fashion (e.g.,
 backward). Depending upon the complexity of the query's
 execution plan, specifying SCROLL might impose
 a performance penalty on the query's execution time.
 NO SCROLL specifies that the cursor cannot be
 used to retrieve rows in a nonsequential fashion. The default is to
 allow scrolling in some cases; this is not the same as specifying
 SCROLL. See Notes
 below for details.

	WITH HOLD, WITHOUT HOLD
	WITH HOLD specifies that the cursor can
 continue to be used after the transaction that created it
 successfully commits. WITHOUT HOLD specifies
 that the cursor cannot be used outside of the transaction that
 created it. If neither WITHOUT HOLD nor
 WITH HOLD is specified, WITHOUT
 HOLD is the default.

	query
	
 A SELECT or
 VALUES command
 which will provide the rows to be returned by the cursor.

 The key words ASENSITIVE, BINARY,
 INSENSITIVE, and SCROLL can
 appear in any order.

Notes

 Normal cursors return data in text format, the same as a
 SELECT would produce. The BINARY option
 specifies that the cursor should return data in binary format.
 This reduces conversion effort for both the server and client,
 at the cost of more programmer effort to deal with platform-dependent
 binary data formats.
 As an example, if a query returns a value of one from an integer column,
 you would get a string of 1 with a default cursor,
 whereas with a binary cursor you would get
 a 4-byte field containing the internal representation of the value
 (in big-endian byte order).

 Binary cursors should be used carefully. Many applications,
 including psql, are not prepared to
 handle binary cursors and expect data to come back in the text
 format.

Note

 When the client application uses the “extended query” protocol
 to issue a FETCH command, the Bind protocol message
 specifies whether data is to be retrieved in text or binary format.
 This choice overrides the way that the cursor is defined. The concept
 of a binary cursor as such is thus obsolete when using extended query
 protocol — any cursor can be treated as either text or binary.

 Unless WITH HOLD is specified, the cursor
 created by this command can only be used within the current
 transaction. Thus, DECLARE without WITH
 HOLD is useless outside a transaction block: the cursor would
 survive only to the completion of the statement. Therefore
 PostgreSQL™ reports an error if such a
 command is used outside a transaction block.
 Use
 BEGIN and
 COMMIT
 (or ROLLBACK)
 to define a transaction block.

 If WITH HOLD is specified and the transaction
 that created the cursor successfully commits, the cursor can
 continue to be accessed by subsequent transactions in the same
 session. (But if the creating transaction is aborted, the cursor
 is removed.) A cursor created with WITH HOLD
 is closed when an explicit CLOSE command is
 issued on it, or the session ends. In the current implementation,
 the rows represented by a held cursor are copied into a temporary
 file or memory area so that they remain available for subsequent
 transactions.

 WITH HOLD may not be specified when the query
 includes FOR UPDATE or FOR SHARE.

 The SCROLL option should be specified when defining a
 cursor that will be used to fetch backwards. This is required by
 the SQL standard. However, for compatibility with earlier
 versions, PostgreSQL™ will allow
 backward fetches without SCROLL, if the cursor's query
 plan is simple enough that no extra overhead is needed to support
 it. However, application developers are advised not to rely on
 using backward fetches from a cursor that has not been created
 with SCROLL. If NO SCROLL is
 specified, then backward fetches are disallowed in any case.

 Backward fetches are also disallowed when the query
 includes FOR UPDATE or FOR SHARE; therefore
 SCROLL may not be specified in this case.

Caution

 Scrollable cursors may give unexpected
 results if they invoke any volatile functions (see the section called “Function Volatility Categories”). When a previously fetched row is
 re-fetched, the functions might be re-executed, perhaps leading to
 results different from the first time. It's best to
 specify NO SCROLL for a query involving volatile
 functions. If that is not practical, one workaround
 is to declare the cursor SCROLL WITH HOLD and commit the
 transaction before reading any rows from it. This will force the
 entire output of the cursor to be materialized in temporary storage,
 so that volatile functions are executed exactly once for each row.

 If the cursor's query includes FOR UPDATE or FOR
 SHARE, then returned rows are locked at the time they are first
 fetched, in the same way as for a regular
 SELECT command with
 these options.
 In addition, the returned rows will be the most up-to-date versions.

Caution

 It is generally recommended to use FOR UPDATE if the cursor
 is intended to be used with UPDATE ... WHERE CURRENT OF or
 DELETE ... WHERE CURRENT OF. Using FOR UPDATE
 prevents other sessions from changing the rows between the time they are
 fetched and the time they are updated. Without FOR UPDATE,
 a subsequent WHERE CURRENT OF command will have no effect if
 the row was changed since the cursor was created.

 Another reason to use FOR UPDATE is that without it, a
 subsequent WHERE CURRENT OF might fail if the cursor query
 does not meet the SQL standard's rules for being “simply
 updatable” (in particular, the cursor must reference just one table
 and not use grouping or ORDER BY). Cursors
 that are not simply updatable might work, or might not, depending on plan
 choice details; so in the worst case, an application might work in testing
 and then fail in production. If FOR UPDATE is
 specified, the cursor is guaranteed to be updatable.

 The main reason not to use FOR UPDATE with WHERE
 CURRENT OF is if you need the cursor to be scrollable, or to be
 isolated from concurrent updates (that is, continue to show the old
 data). If this is a requirement, pay close heed to the caveats shown
 above.

 The SQL standard only makes provisions for cursors in embedded
 SQL. The PostgreSQL™
 server does not implement an OPEN statement for
 cursors; a cursor is considered to be open when it is declared.
 However, ECPG, the embedded SQL
 preprocessor for PostgreSQL™, supports
 the standard SQL cursor conventions, including those involving
 DECLARE and OPEN statements.

 The server data structure underlying an open cursor is called a
 portal. Portal names are exposed in the
 client protocol: a client can fetch rows directly from an open
 portal, if it knows the portal name. When creating a cursor with
 DECLARE, the portal name is the same as the
 cursor name.

 You can see all available cursors by querying the pg_cursors
 system view.

Examples

 To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

 See FETCH(7) for more
 examples of cursor usage.

Compatibility

 The SQL standard allows cursors only in embedded
 SQL and in modules. PostgreSQL™
 permits cursors to be used interactively.

 According to the SQL standard, changes made to insensitive cursors by
 UPDATE ... WHERE CURRENT OF and DELETE
 ... WHERE CURRENT OF statements are visible in that same
 cursor. PostgreSQL™ treats these statements like
 all other data changing statements in that they are not visible in
 insensitive cursors.

 Binary cursors are a PostgreSQL™
 extension.

See Also
CLOSE(7), FETCH(7), MOVE(7)

Name
DELETE — delete rows of a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING { * | output_expression [[AS] output_name] } [, ...]]

Description

 DELETE deletes rows that satisfy the
 WHERE clause from the specified table. If the
 WHERE clause is absent, the effect is to delete
 all rows in the table. The result is a valid, but empty table.

Tip

 TRUNCATE provides a
 faster mechanism to remove all rows from a table.

 There are two ways to delete rows in a table using information
 contained in other tables in the database: using sub-selects, or
 specifying additional tables in the USING clause.
 Which technique is more appropriate depends on the specific
 circumstances.

 The optional RETURNING clause causes DELETE
 to compute and return value(s) based on each row actually deleted.
 Any expression using the table's columns, and/or columns of other
 tables mentioned in USING, can be computed.
 The syntax of the RETURNING list is identical to that of the
 output list of SELECT.

 You must have the DELETE privilege on the table
 to delete from it, as well as the SELECT
 privilege for any table in the USING clause or
 whose values are read in the condition.

Parameters
	with_query
	
 The WITH clause allows you to specify one or more
 subqueries that can be referenced by name in the DELETE
 query. See the section called “WITH Queries (Common Table Expressions)” and SELECT(7)
 for details.

	table_name
	
 The name (optionally schema-qualified) of the table to delete rows
 from. If ONLY is specified before the table name,
 matching rows are deleted from the named table only. If
 ONLY is not specified, matching rows are also deleted
 from any tables inheriting from the named table. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included.

	alias
	
 A substitute name for the target table. When an alias is
 provided, it completely hides the actual name of the table. For
 example, given DELETE FROM foo AS f, the remainder
 of the DELETE statement must refer to this
 table as f not foo.

	from_item
	
 A table expression allowing columns from other tables to appear
 in the WHERE condition. This uses the same
 syntax as the FROM
 clause of a SELECT statement; for example, an alias
 for the table name can be specified. Do not repeat the target
 table as a from_item
 unless you wish to set up a self-join (in which case it must appear
 with an alias in the from_item).

	condition
	
 An expression that returns a value of type boolean.
 Only rows for which this expression returns true
 will be deleted.

	cursor_name
	
 The name of the cursor to use in a WHERE CURRENT OF
 condition. The row to be deleted is the one most recently fetched
 from this cursor. The cursor must be a non-grouping
 query on the DELETE's target table.
 Note that WHERE CURRENT OF cannot be
 specified together with a Boolean condition. See
 DECLARE(7)
 for more information about using cursors with
 WHERE CURRENT OF.

	output_expression
	
 An expression to be computed and returned by the DELETE
 command after each row is deleted. The expression can use any
 column names of the table named by table_name
 or table(s) listed in USING.
 Write * to return all columns.

	output_name
	
 A name to use for a returned column.

Outputs

 On successful completion, a DELETE command returns a command
 tag of the form

DELETE count

 The count is the number
 of rows deleted. Note that the number may be less than the number of
 rows that matched the condition when deletes were
 suppressed by a BEFORE DELETE trigger. If count is 0, no rows were deleted by
 the query (this is not considered an error).

 If the DELETE command contains a RETURNING
 clause, the result will be similar to that of a SELECT
 statement containing the columns and values defined in the
 RETURNING list, computed over the row(s) deleted by the
 command.

Notes

 PostgreSQL™ lets you reference columns of
 other tables in the WHERE condition by specifying the
 other tables in the USING clause. For example,
 to delete all films produced by a given producer, one can do:

DELETE FROM films USING producers
 WHERE producer_id = producers.id AND producers.name = 'foo';

 What is essentially happening here is a join between films
 and producers, with all successfully joined
 films rows being marked for deletion.
 This syntax is not standard. A more standard way to do it is:

DELETE FROM films
 WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo');

 In some cases the join style is easier to write or faster to
 execute than the sub-select style.

Examples

 Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

 Clear the table films:

DELETE FROM films;

 Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = 'DONE' RETURNING *;

 Delete the row of tasks on which the cursor
 c_tasks is currently positioned:

DELETE FROM tasks WHERE CURRENT OF c_tasks;

Compatibility

 This command conforms to the SQL standard, except
 that the USING and RETURNING clauses
 are PostgreSQL™ extensions, as is the ability
 to use WITH with DELETE.

See Also
TRUNCATE(7)

Name
DISCARD — discard session state

Synopsis

DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }

Description

 DISCARD releases internal resources associated with a
 database session. This command is useful for partially or fully
 resetting the session's state. There are several subcommands to
 release different types of resources; the DISCARD ALL
 variant subsumes all the others, and also resets additional state.

Parameters
	PLANS
	
 Releases all cached query plans, forcing re-planning to occur
 the next time the associated prepared statement is used.

	SEQUENCES
	
 Discards all cached sequence-related state,
 including currval()/lastval()
 information and any preallocated sequence values that have not
 yet been returned by nextval().
 (See CREATE SEQUENCE(7) for a description of
 preallocated sequence values.)

	TEMPORARY or TEMP
	
 Drops all temporary tables created in the current session.

	ALL
	
 Releases all temporary resources associated with the current
 session and resets the session to its initial state.
 Currently, this has the same effect as executing the following sequence
 of statements:

CLOSE ALL;
SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD TEMP;
DISCARD SEQUENCES;

Notes

 DISCARD ALL cannot be executed inside a transaction block.

Compatibility

 DISCARD is a PostgreSQL™ extension.

Name
DO — execute an anonymous code block

Synopsis

DO [LANGUAGE lang_name] code

Description

 DO executes an anonymous code block, or in other
 words a transient anonymous function in a procedural language.

 The code block is treated as though it were the body of a function
 with no parameters, returning void. It is parsed and
 executed a single time.

 The optional LANGUAGE clause can be written either
 before or after the code block.

Parameters
	code
	
 The procedural language code to be executed. This must be specified
 as a string literal, just as in CREATE FUNCTION.
 Use of a dollar-quoted literal is recommended.

	lang_name
	
 The name of the procedural language the code is written in.
 If omitted, the default is plpgsql.

Notes

 The procedural language to be used must already have been installed
 into the current database by means of CREATE EXTENSION.
 plpgsql is installed by default, but other languages are not.

 The user must have USAGE privilege for the procedural
 language, or must be a superuser if the language is untrusted.
 This is the same privilege requirement as for creating a function
 in the language.

 If DO is executed in a transaction block, then the
 procedure code cannot execute transaction control statements. Transaction
 control statements are only allowed if DO is executed in
 its own transaction.

Examples

 Grant all privileges on all views in schema public to
 role webuser:

DO $$DECLARE r record;
BEGIN
 FOR r IN SELECT table_schema, table_name FROM information_schema.tables
 WHERE table_type = 'VIEW' AND table_schema = 'public'
 LOOP
 EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' || quote_ident(r.table_name) || ' TO webuser';
 END LOOP;
END$$;

Compatibility

 There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE(7)

Name
DROP ACCESS METHOD — remove an access method

Synopsis

DROP ACCESS METHOD [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP ACCESS METHOD removes an existing access method.
 Only superusers can drop access methods.

Parameters
	IF EXISTS
	
 Do not throw an error if the access method does not exist.
 A notice is issued in this case.

	name
	
 The name of an existing access method.

	CASCADE
	
 Automatically drop objects that depend on the access method
 (such as operator classes, operator families, and indexes),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the access method if any objects depend on it.
 This is the default.

Examples

 Drop the access method heptree:

DROP ACCESS METHOD heptree;

Compatibility

 DROP ACCESS METHOD is a
 PostgreSQL™ extension.

See Also
CREATE ACCESS METHOD(7)

Name
DROP AGGREGATE — remove an aggregate function

Synopsis

DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [, ...] [CASCADE | RESTRICT]

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype [, ...]

Description

 DROP AGGREGATE removes an existing
 aggregate function. To execute this command the current
 user must be the owner of the aggregate function.

Parameters
	IF EXISTS
	
 Do not throw an error if the aggregate does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing aggregate function.

	argmode
	
 The mode of an argument: IN or VARIADIC.
 If omitted, the default is IN.

	argname
	
 The name of an argument.
 Note that DROP AGGREGATE does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the aggregate function's identity.

	argtype
	
 An input data type on which the aggregate function operates.
 To reference a zero-argument aggregate function, write *
 in place of the list of argument specifications.
 To reference an ordered-set aggregate function, write
 ORDER BY between the direct and aggregated argument
 specifications.

	CASCADE
	
 Automatically drop objects that depend on the aggregate function
 (such as views using it),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the aggregate function if any objects depend on
 it. This is the default.

Notes

 Alternative syntaxes for referencing ordered-set aggregates
 are described under ALTER AGGREGATE(7).

Examples

 To remove the aggregate function myavg for type
 integer:

DROP AGGREGATE myavg(integer);

 To remove the hypothetical-set aggregate function myrank,
 which takes an arbitrary list of ordering columns and a matching list
 of direct arguments:

DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");

 To remove multiple aggregate functions in one command:

DROP AGGREGATE myavg(integer), myavg(bigint);

Compatibility

 There is no DROP AGGREGATE statement in the SQL
 standard.

See Also
ALTER AGGREGATE(7), CREATE AGGREGATE(7)

Name
DROP CAST — remove a cast

Synopsis

DROP CAST [IF EXISTS] (source_type AS target_type) [CASCADE | RESTRICT]

Description

 DROP CAST removes a previously defined cast.

 To be able to drop a cast, you must own the source or the target
 data type. These are the same privileges that are required to
 create a cast.

Parameters
	IF EXISTS
	
 Do not throw an error if the cast does not exist. A notice is issued
 in this case.

	source_type
	
 The name of the source data type of the cast.

	target_type
	
 The name of the target data type of the cast.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no
 dependencies on casts.

Examples

 To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility

 The DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST(7)

Name
DROP COLLATION — remove a collation

Synopsis

DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP COLLATION removes a previously defined collation.
 To be able to drop a collation, you must own the collation.

Parameters
	IF EXISTS
	
 Do not throw an error if the collation does not exist.
 A notice is issued in this case.

	name
	
 The name of the collation. The collation name can be
 schema-qualified.

	CASCADE
	
 Automatically drop objects that depend on the collation,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the collation if any objects depend on it. This
 is the default.

Examples

 To drop the collation named german:

DROP COLLATION german;

Compatibility

 The DROP COLLATION command conforms to the
 SQL standard, apart from the IF
 EXISTS option, which is a PostgreSQL™ extension.

See Also
ALTER COLLATION(7), CREATE COLLATION(7)

Name
DROP CONVERSION — remove a conversion

Synopsis

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP CONVERSION removes a previously defined conversion.
 To be able to drop a conversion, you must own the conversion.

Parameters
	IF EXISTS
	
 Do not throw an error if the conversion does not exist.
 A notice is issued in this case.

	name
	
 The name of the conversion. The conversion name can be
 schema-qualified.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no
 dependencies on conversions.

Examples

 To drop the conversion named myname:

DROP CONVERSION myname;

Compatibility

 There is no DROP CONVERSION statement in the SQL
 standard, but a DROP TRANSLATION statement that
 goes along with the CREATE TRANSLATION statement
 that is similar to the CREATE CONVERSION
 statement in PostgreSQL.

See Also
ALTER CONVERSION(7), CREATE CONVERSION(7)

Name
DROP DATABASE — remove a database

Synopsis

DROP DATABASE [IF EXISTS] name [[WITH] (option [, ...])]

where option can be:

 FORCE

Description

 DROP DATABASE drops a database. It removes the
 catalog entries for the database and deletes the directory
 containing the data. It can only be executed by the database owner.
 It cannot be executed while you are connected to the target database.
 (Connect to postgres or any other database to issue this
 command.)
 Also, if anyone else is connected to the target database, this command will
 fail unless you use the FORCE option described below.

 DROP DATABASE cannot be undone. Use it with care!

Parameters
	IF EXISTS
	
 Do not throw an error if the database does not exist. A notice is issued
 in this case.

	name
	
 The name of the database to remove.

	FORCE
	
 Attempt to terminate all existing connections to the target database.
 It doesn't terminate if prepared transactions, active logical replication
 slots or subscriptions are present in the target database.

 This terminates background worker connections and connections that the
 current user has permission to terminate
 with pg_terminate_backend, described in
 the section called “Server Signaling Functions”. If connections would remain,
 this command will fail.

Notes

 DROP DATABASE cannot be executed inside a transaction
 block.

 This command cannot be executed while connected to the target
 database. Thus, it might be more convenient to use the program
 dropdb(1) instead,
 which is a wrapper around this command.

Compatibility

 There is no DROP DATABASE statement in the SQL standard.

See Also
CREATE DATABASE(7)

Name
DROP DOMAIN — remove a domain

Synopsis

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP DOMAIN removes a domain. Only the owner of
 a domain can remove it.

Parameters
	IF EXISTS
	
 Do not throw an error if the domain does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing domain.

	CASCADE
	
 Automatically drop objects that depend on the domain (such as
 table columns),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the domain if any objects depend on it. This is
 the default.

Examples

 To remove the domain box:

DROP DOMAIN box;

Compatibility

 This command conforms to the SQL standard, except for the
 IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
CREATE DOMAIN(7), ALTER DOMAIN(7)

Name
DROP EVENT TRIGGER — remove an event trigger

Synopsis

DROP EVENT TRIGGER [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP EVENT TRIGGER removes an existing event trigger.
 To execute this command, the current user must be the owner of the event
 trigger.

Parameters
	IF EXISTS
	
 Do not throw an error if the event trigger does not exist. A notice
 is issued in this case.

	name
	
 The name of the event trigger to remove.

	CASCADE
	
 Automatically drop objects that depend on the trigger,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the trigger if any objects depend on it. This is
 the default.

Examples

 Destroy the trigger snitch:

DROP EVENT TRIGGER snitch;

Compatibility

 There is no DROP EVENT TRIGGER statement in the
 SQL standard.

See Also
CREATE EVENT TRIGGER(7), ALTER EVENT TRIGGER(7)

Name
DROP EXTENSION — remove an extension

Synopsis

DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP EXTENSION removes extensions from the database.
 Dropping an extension causes its member objects, and other explicitly
 dependent routines (see ALTER ROUTINE(7),
 the DEPENDS ON EXTENSION extension_name
 action), to be dropped as well.

 You must own the extension to use DROP EXTENSION.

Parameters
	IF EXISTS
	
 Do not throw an error if the extension does not exist. A notice is issued
 in this case.

	name
	
 The name of an installed extension.

	CASCADE
	
 Automatically drop objects that depend on the extension,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 This option prevents the specified extensions from being dropped if
 other objects, besides these extensions, their members, and their
 explicitly dependent routines, depend on them. This is the default.

Examples

 To remove the extension hstore from the current
 database:

DROP EXTENSION hstore;

 This command will fail if any of hstore's objects
 are in use in the database, for example if any tables have columns
 of the hstore type. Add the CASCADE option to
 forcibly remove those dependent objects as well.

Compatibility

 DROP EXTENSION is a PostgreSQL™
 extension.

See Also
CREATE EXTENSION(7), ALTER EXTENSION(7)

Name
DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper

Synopsis

DROP FOREIGN DATA WRAPPER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP FOREIGN DATA WRAPPER removes an existing
 foreign-data wrapper. To execute this command, the current user
 must be the owner of the foreign-data wrapper.

Parameters
	IF EXISTS
	
 Do not throw an error if the foreign-data wrapper does not
 exist. A notice is issued in this case.

	name
	
 The name of an existing foreign-data wrapper.

	CASCADE
	
 Automatically drop objects that depend on the foreign-data
 wrapper (such as foreign tables and servers),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the foreign-data wrapper if any objects depend
 on it. This is the default.

Examples

 Drop the foreign-data wrapper dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility

 DROP FOREIGN DATA WRAPPER conforms to ISO/IEC
 9075-9 (SQL/MED). The IF EXISTS clause is
 a PostgreSQL™ extension.

See Also
CREATE FOREIGN DATA WRAPPER(7), ALTER FOREIGN DATA WRAPPER(7)

Name
DROP FOREIGN TABLE — remove a foreign table

Synopsis

DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP FOREIGN TABLE removes a foreign table.
 Only the owner of a foreign table can remove it.

Parameters
	IF EXISTS
	
 Do not throw an error if the foreign table does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of the foreign table to drop.

	CASCADE
	
 Automatically drop objects that depend on the foreign table (such as
 views), and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the foreign table if any objects depend on it. This is
 the default.

Examples

 To destroy two foreign tables, films and
 distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility

 This command conforms to ISO/IEC 9075-9 (SQL/MED), except that the
 standard only allows one foreign table to be dropped per command, and apart
 from the IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
ALTER FOREIGN TABLE(7), CREATE FOREIGN TABLE(7)

Name
DROP FUNCTION — remove a function

Synopsis

DROP FUNCTION [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description

 DROP FUNCTION removes the definition of an existing
 function. To execute this command the user must be the
 owner of the function. The argument types to the
 function must be specified, since several different functions
 can exist with the same name and different argument lists.

Parameters
	IF EXISTS
	
 Do not throw an error if the function does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing function. If no
 argument list is specified, the name must be unique in its schema.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Note that DROP FUNCTION does not actually pay
 any attention to OUT arguments, since only the input
 arguments are needed to determine the function's identity.
 So it is sufficient to list the IN, INOUT,
 and VARIADIC arguments.

	argname
	
 The name of an argument.
 Note that DROP FUNCTION does not actually pay
 any attention to argument names, since only the argument data
 types are needed to determine the function's identity.

	argtype
	
 The data type(s) of the function's arguments (optionally
 schema-qualified), if any.

	CASCADE
	
 Automatically drop objects that depend on the function (such as
 operators or triggers),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the function if any objects depend on it. This
 is the default.

Examples

 This command removes the square root function:

DROP FUNCTION sqrt(integer);

 Drop multiple functions in one command:

DROP FUNCTION sqrt(integer), sqrt(bigint);

 If the function name is unique in its schema, it can be referred to without
 an argument list:

DROP FUNCTION update_employee_salaries;

 Note that this is different from

DROP FUNCTION update_employee_salaries();

 which refers to a function with zero arguments, whereas the first variant
 can refer to a function with any number of arguments, including zero, as
 long as the name is unique.

Compatibility

 This command conforms to the SQL standard, with
 these PostgreSQL™ extensions:

	The standard only allows one function to be dropped per command.

	The IF EXISTS option

	The ability to specify argument modes and names

See Also
CREATE FUNCTION(7), ALTER FUNCTION(7), DROP PROCEDURE(7), DROP ROUTINE(7)

Name
DROP GROUP — remove a database role

Synopsis

DROP GROUP [IF EXISTS] name [, ...]

Description

 DROP GROUP is now an alias for
 DROP ROLE.

Compatibility

 There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE(7)

Name
DROP INDEX — remove an index

Synopsis

DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP INDEX drops an existing index from the database
 system. To execute this command you must be the owner of
 the index.

Parameters
	CONCURRENTLY
	
 Drop the index without locking out concurrent selects, inserts, updates,
 and deletes on the index's table. A normal DROP INDEX
 acquires an ACCESS EXCLUSIVE lock on the table,
 blocking other accesses until the index drop can be completed. With
 this option, the command instead waits until conflicting transactions
 have completed.

 There are several caveats to be aware of when using this option.
 Only one index name can be specified, and the CASCADE option
 is not supported. (Thus, an index that supports a UNIQUE or
 PRIMARY KEY constraint cannot be dropped this way.)
 Also, regular DROP INDEX commands can be
 performed within a transaction block, but
 DROP INDEX CONCURRENTLY cannot.
 Lastly, indexes on partitioned tables cannot be dropped using this
 option.

 For temporary tables, DROP INDEX is always
 non-concurrent, as no other session can access them, and
 non-concurrent index drop is cheaper.

	IF EXISTS
	
 Do not throw an error if the index does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an index to remove.

	CASCADE
	
 Automatically drop objects that depend on the index,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the index if any objects depend on it. This is
 the default.

Examples

 This command will remove the index title_idx:

DROP INDEX title_idx;

Compatibility

 DROP INDEX is a
 PostgreSQL™ language extension. There
 are no provisions for indexes in the SQL standard.

See Also
CREATE INDEX(7)

Name
DROP LANGUAGE — remove a procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP LANGUAGE removes the definition of a
 previously registered procedural language. You must be a superuser
 or the owner of the language to use DROP LANGUAGE.

Note

 As of PostgreSQL™ 9.1, most procedural
 languages have been made into “extensions”, and should
 therefore be removed with DROP EXTENSION
 not DROP LANGUAGE.

Parameters
	IF EXISTS
	
 Do not throw an error if the language does not exist. A notice is issued
 in this case.

	name
	
 The name of an existing procedural language.

	CASCADE
	
 Automatically drop objects that depend on the language (such as
 functions in the language),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the language if any objects depend on it. This
 is the default.

Examples

 This command removes the procedural language
 plsample:

DROP LANGUAGE plsample;

Compatibility

 There is no DROP LANGUAGE statement in the SQL
 standard.

See Also
ALTER LANGUAGE(7), CREATE LANGUAGE(7)

Name
DROP MATERIALIZED VIEW — remove a materialized view

Synopsis

DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP MATERIALIZED VIEW drops an existing materialized
 view. To execute this command you must be the owner of the materialized
 view.

Parameters
	IF EXISTS
	
 Do not throw an error if the materialized view does not exist. A notice
 is issued in this case.

	name
	
 The name (optionally schema-qualified) of the materialized view to
 remove.

	CASCADE
	
 Automatically drop objects that depend on the materialized view (such as
 other materialized views, or regular views),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the materialized view if any objects depend on it. This
 is the default.

Examples

 This command will remove the materialized view called
 order_summary:

DROP MATERIALIZED VIEW order_summary;

Compatibility

 DROP MATERIALIZED VIEW is a
 PostgreSQL™ extension.

See Also
CREATE MATERIALIZED VIEW(7), ALTER MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)

Name
DROP OPERATOR — remove an operator

Synopsis

DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , right_type) [, ...] [CASCADE | RESTRICT]

Description

 DROP OPERATOR drops an existing operator from
 the database system. To execute this command you must be the owner
 of the operator.

Parameters
	IF EXISTS
	
 Do not throw an error if the operator does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing operator.

	left_type
	
 The data type of the operator's left operand; write
 NONE if the operator has no left operand.

	right_type
	
 The data type of the operator's right operand.

	CASCADE
	
 Automatically drop objects that depend on the operator (such as views
 using it), and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the operator if any objects depend on it. This
 is the default.

Examples

 Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

 Remove the bitwise-complement prefix operator
 ~b for type bit:

DROP OPERATOR ~ (none, bit);

 Remove multiple operators in one command:

DROP OPERATOR ~ (none, bit), ^ (integer, integer);

Compatibility

 There is no DROP OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR(7), ALTER OPERATOR(7)

Name
DROP OPERATOR CLASS — remove an operator class

Synopsis

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description

 DROP OPERATOR CLASS drops an existing operator class.
 To execute this command you must be the owner of the operator class.

 DROP OPERATOR CLASS does not drop any of the operators
 or functions referenced by the class. If there are any indexes depending
 on the operator class, you will need to specify
 CASCADE for the drop to complete.

Parameters
	IF EXISTS
	
 Do not throw an error if the operator class does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing operator class.

	index_method
	
 The name of the index access method the operator class is for.

	CASCADE
	
 Automatically drop objects that depend on the operator class (such as
 indexes), and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the operator class if any objects depend on it.
 This is the default.

Notes

 DROP OPERATOR CLASS will not drop the operator family
 containing the class, even if there is nothing else left in the
 family (in particular, in the case where the family was implicitly
 created by CREATE OPERATOR CLASS). An empty operator
 family is harmless, but for the sake of tidiness you might wish to
 remove the family with DROP OPERATOR FAMILY; or perhaps
 better, use DROP OPERATOR FAMILY in the first place.

Examples

 Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

 This command will not succeed if there are any existing indexes
 that use the operator class. Add CASCADE to drop
 such indexes along with the operator class.

Compatibility

 There is no DROP OPERATOR CLASS statement in the
 SQL standard.

See Also
ALTER OPERATOR CLASS(7), CREATE OPERATOR CLASS(7), DROP OPERATOR FAMILY(7)

Name
DROP OPERATOR FAMILY — remove an operator family

Synopsis

DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description

 DROP OPERATOR FAMILY drops an existing operator family.
 To execute this command you must be the owner of the operator family.

 DROP OPERATOR FAMILY includes dropping any operator
 classes contained in the family, but it does not drop any of the operators
 or functions referenced by the family. If there are any indexes depending
 on operator classes within the family, you will need to specify
 CASCADE for the drop to complete.

Parameters
	IF EXISTS
	
 Do not throw an error if the operator family does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of an existing operator family.

	index_method
	
 The name of the index access method the operator family is for.

	CASCADE
	
 Automatically drop objects that depend on the operator family,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the operator family if any objects depend on it.
 This is the default.

Examples

 Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

 This command will not succeed if there are any existing indexes
 that use operator classes within the family. Add CASCADE to
 drop such indexes along with the operator family.

Compatibility

 There is no DROP OPERATOR FAMILY statement in the
 SQL standard.

See Also
ALTER OPERATOR FAMILY(7), CREATE OPERATOR FAMILY(7), ALTER OPERATOR CLASS(7), CREATE OPERATOR CLASS(7), DROP OPERATOR CLASS(7)

Name
DROP OWNED — remove database objects owned by a database role

Synopsis

DROP OWNED BY { name | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...] [CASCADE | RESTRICT]

Description

 DROP OWNED drops all the objects within the current
 database that are owned by one of the specified roles. Any
 privileges granted to the given roles on objects in the current
 database or on shared objects (databases, tablespaces, configuration
 parameters) will also be revoked.

Parameters
	name
	
 The name of a role whose objects will be dropped, and whose
 privileges will be revoked.

	CASCADE
	
 Automatically drop objects that depend on the affected objects,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the objects owned by a role if any other database
 objects depend on one of the affected objects. This is the default.

Notes

 DROP OWNED is often used to prepare for the
 removal of one or more roles. Because DROP OWNED
 only affects the objects in the current database, it is usually
 necessary to execute this command in each database that contains
 objects owned by a role that is to be removed.

 Using the CASCADE option might make the command
 recurse to objects owned by other users.

 The REASSIGN OWNED command is an alternative that
 reassigns the ownership of all the database objects owned by one or
 more roles. However, REASSIGN OWNED does not deal with
 privileges for other objects.

 Databases and tablespaces owned by the role(s) will not be removed.

 See the section called “Dropping Roles” for more discussion.

Compatibility

 The DROP OWNED command is a
 PostgreSQL™ extension.

See Also
REASSIGN OWNED(7), DROP ROLE(7)

Name
DROP POLICY — remove a row-level security policy from a table

Synopsis

DROP POLICY [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description

 DROP POLICY removes the specified policy from the table.
 Note that if the last policy is removed for a table and the table still has
 row-level security enabled via ALTER TABLE, then the
 default-deny policy will be used. ALTER TABLE ... DISABLE ROW
 LEVEL SECURITY can be used to disable row-level security for a
 table, whether policies for the table exist or not.

Parameters
	IF EXISTS
	
 Do not throw an error if the policy does not exist. A notice is issued
 in this case.

	name
	
 The name of the policy to drop.

	table_name
	
 The name (optionally schema-qualified) of the table that
 the policy is on.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no
 dependencies on policies.

Examples

 To drop the policy called p1 on the table named
 my_table:

DROP POLICY p1 ON my_table;

Compatibility

 DROP POLICY is a PostgreSQL™ extension.

See Also
CREATE POLICY(7), ALTER POLICY(7)

Name
DROP PROCEDURE — remove a procedure

Synopsis

DROP PROCEDURE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description

 DROP PROCEDURE removes the definition of one or more
 existing procedures. To execute this command the user must be the
 owner of the procedure(s). The argument types to the
 procedure(s) usually must be specified, since several different procedures
 can exist with the same name and different argument lists.

Parameters
	IF EXISTS
	
 Do not throw an error if the procedure does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of an existing procedure.

	argmode
	
 The mode of an argument: IN, OUT,
 INOUT, or VARIADIC. If omitted,
 the default is IN (but see below).

	argname
	
 The name of an argument.
 Note that DROP PROCEDURE does not actually pay
 any attention to argument names, since only the argument data
 types are used to determine the procedure's identity.

	argtype
	
 The data type(s) of the procedure's arguments (optionally
 schema-qualified), if any.
 See below for details.

	CASCADE
	
 Automatically drop objects that depend on the procedure,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the procedure if any objects depend on it. This
 is the default.

Notes

 If there is only one procedure of the given name, the argument list
 can be omitted. Omit the parentheses too in this case.

 In PostgreSQL™, it's sufficient to list the
 input (including INOUT) arguments,
 because no two routines of the same name are allowed to share the same
 input-argument list. Moreover, the DROP command
 will not actually check that you wrote the types
 of OUT arguments correctly; so any arguments that
 are explicitly marked OUT are just noise. But
 writing them is recommendable for consistency with the
 corresponding CREATE command.

 For compatibility with the SQL standard, it is also allowed to write
 all the argument data types (including those of OUT
 arguments) without
 any argmode markers.
 When this is done, the types of the procedure's OUT
 argument(s) will be verified against the command.
 This provision creates an ambiguity, in that when the argument list
 contains no argmode
 markers, it's unclear which rule is intended.
 The DROP command will attempt the lookup both ways,
 and will throw an error if two different procedures are found.
 To avoid the risk of such ambiguity, it's recommendable to
 write IN markers explicitly rather than letting them
 be defaulted, thus forcing the
 traditional PostgreSQL™ interpretation to be
 used.

 The lookup rules just explained are also used by other commands that
 act on existing procedures, such as ALTER PROCEDURE
 and COMMENT ON PROCEDURE.

Examples

 If there is only one procedure do_db_maintenance,
 this command is sufficient to drop it:

DROP PROCEDURE do_db_maintenance;

 Given this procedure definition:

CREATE PROCEDURE do_db_maintenance(IN target_schema text, OUT results text) ...

 any one of these commands would work to drop it:

DROP PROCEDURE do_db_maintenance(IN target_schema text, OUT results text);
DROP PROCEDURE do_db_maintenance(IN text, OUT text);
DROP PROCEDURE do_db_maintenance(IN text);
DROP PROCEDURE do_db_maintenance(text);
DROP PROCEDURE do_db_maintenance(text, text); -- potentially ambiguous

 However, the last example would be ambiguous if there is also, say,

CREATE PROCEDURE do_db_maintenance(IN target_schema text, IN options text) ...

Compatibility

 This command conforms to the SQL standard, with
 these PostgreSQL™ extensions:

	The standard only allows one procedure to be dropped per command.

	The IF EXISTS option is an extension.

	The ability to specify argument modes and names is an
 extension, and the lookup rules differ when modes are given.

See Also
CREATE PROCEDURE(7), ALTER PROCEDURE(7), DROP FUNCTION(7), DROP ROUTINE(7)

Name
DROP PUBLICATION — remove a publication

Synopsis

DROP PUBLICATION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP PUBLICATION removes an existing publication from
 the database.

 A publication can only be dropped by its owner or a superuser.

Parameters
	IF EXISTS
	
 Do not throw an error if the publication does not exist. A notice is
 issued in this case.

	name
	
 The name of an existing publication.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no dependencies
 on publications.

Examples

 Drop a publication:

DROP PUBLICATION mypublication;

Compatibility

 DROP PUBLICATION is a PostgreSQL™
 extension.

See Also
CREATE PUBLICATION(7), ALTER PUBLICATION(7)

Name
DROP ROLE — remove a database role

Synopsis

DROP ROLE [IF EXISTS] name [, ...]

Description

 DROP ROLE removes the specified role(s).
 To drop a superuser role, you must be a superuser yourself;
 to drop non-superuser roles, you must have CREATEROLE
 privilege and have been granted ADMIN OPTION on the role.

 A role cannot be removed if it is still referenced in any database
 of the cluster; an error will be raised if so. Before dropping the role,
 you must drop all the objects it owns (or reassign their ownership)
 and revoke any privileges the role has been granted on other objects.
 The REASSIGN
 OWNED and DROP
 OWNED
 commands can be useful for this purpose; see the section called “Dropping Roles”
 for more discussion.

 However, it is not necessary to remove role memberships involving
 the role; DROP ROLE automatically revokes any memberships
 of the target role in other roles, and of other roles in the target role.
 The other roles are not dropped nor otherwise affected.

Parameters
	IF EXISTS
	
 Do not throw an error if the role does not exist. A notice is issued
 in this case.

	name
	
 The name of the role to remove.

Notes

 PostgreSQL™ includes a program dropuser(1) that has the
 same functionality as this command (in fact, it calls this command)
 but can be run from the command shell.

Examples

 To drop a role:

DROP ROLE jonathan;

Compatibility

 The SQL standard defines DROP ROLE, but it allows
 only one role to be dropped at a time, and it specifies different
 privilege requirements than PostgreSQL™ uses.

See Also
CREATE ROLE(7), ALTER ROLE(7), SET ROLE(7)

Name
DROP ROUTINE — remove a routine

Synopsis

DROP ROUTINE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description

 DROP ROUTINE removes the definition of one or more
 existing routines. The term “routine” includes
 aggregate functions, normal functions, and procedures. See
 under DROP AGGREGATE(7), DROP FUNCTION(7),
 and DROP PROCEDURE(7) for the description of the
 parameters, more examples, and further details.

Notes

 The lookup rules used by DROP ROUTINE are
 fundamentally the same as for DROP PROCEDURE; in
 particular, DROP ROUTINE shares that command's
 behavior of considering an argument list that has
 no argmode markers to be
 possibly using the SQL standard's definition that OUT
 arguments are included in the list. (DROP AGGREGATE
 and DROP FUNCTION do not do that.)

 In some cases where the same name is shared by routines of different
 kinds, it is possible for DROP ROUTINE to fail with
 an ambiguity error when a more specific command (DROP
 FUNCTION, etc.) would work. Specifying the argument type
 list more carefully will also resolve such problems.

 These lookup rules are also used by other commands that
 act on existing routines, such as ALTER ROUTINE
 and COMMENT ON ROUTINE.

Examples

 To drop the routine foo for type
 integer:

DROP ROUTINE foo(integer);

 This command will work independent of whether foo is an
 aggregate, function, or procedure.

Compatibility

 This command conforms to the SQL standard, with
 these PostgreSQL™ extensions:

	The standard only allows one routine to be dropped per command.

	The IF EXISTS option is an extension.

	The ability to specify argument modes and names is an
 extension, and the lookup rules differ when modes are given.

	User-definable aggregate functions are an extension.

See Also
DROP AGGREGATE(7), DROP FUNCTION(7), DROP PROCEDURE(7), ALTER ROUTINE(7)
 Note that there is no CREATE ROUTINE command.

Name
DROP RULE — remove a rewrite rule

Synopsis

DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description

 DROP RULE drops a rewrite rule.

Parameters
	IF EXISTS
	
 Do not throw an error if the rule does not exist. A notice is issued
 in this case.

	name
	
 The name of the rule to drop.

	table_name
	
 The name (optionally schema-qualified) of the table or view that
 the rule applies to.

	CASCADE
	
 Automatically drop objects that depend on the rule,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the rule if any objects depend on it. This is
 the default.

Examples

 To drop the rewrite rule newrule:

DROP RULE newrule ON mytable;

Compatibility

 DROP RULE is a
 PostgreSQL™ language extension, as is the
 entire query rewrite system.

See Also
CREATE RULE(7), ALTER RULE(7)

Name
DROP SCHEMA — remove a schema

Synopsis

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP SCHEMA removes schemas from the database.

 A schema can only be dropped by its owner or a superuser. Note that
 the owner can drop the schema (and thereby all contained objects)
 even if they do not own some of the objects within the schema.

Parameters
	IF EXISTS
	
 Do not throw an error if the schema does not exist. A notice is issued
 in this case.

	name
	
 The name of a schema.

	CASCADE
	
 Automatically drop objects (tables, functions, etc.) that are
 contained in the schema,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the schema if it contains any objects. This is
 the default.

Notes

 Using the CASCADE option might make the command
 remove objects in other schemas besides the one(s) named.

Examples

 To remove schema mystuff from the database,
 along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility

 DROP SCHEMA is fully conforming with the SQL
 standard, except that the standard only allows one schema to be
 dropped per command, and apart from the
 IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
ALTER SCHEMA(7), CREATE SCHEMA(7)

Name
DROP SEQUENCE — remove a sequence

Synopsis

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP SEQUENCE removes sequence number
 generators. A sequence can only be dropped by its owner or a superuser.

Parameters
	IF EXISTS
	
 Do not throw an error if the sequence does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of a sequence.

	CASCADE
	
 Automatically drop objects that depend on the sequence,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the sequence if any objects depend on it. This
 is the default.

Examples

 To remove the sequence serial:

DROP SEQUENCE serial;

Compatibility

 DROP SEQUENCE conforms to the SQL
 standard, except that the standard only allows one
 sequence to be dropped per command, and apart from the
 IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
CREATE SEQUENCE(7), ALTER SEQUENCE(7)

Name
DROP SERVER — remove a foreign server descriptor

Synopsis

DROP SERVER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP SERVER removes an existing foreign server
 descriptor. To execute this command, the current user must be the
 owner of the server.

Parameters
	IF EXISTS
	
 Do not throw an error if the server does not exist. A notice is
 issued in this case.

	name
	
 The name of an existing server.

	CASCADE
	
 Automatically drop objects that depend on the server (such as
 user mappings),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the server if any objects depend on it. This is
 the default.

Examples

 Drop a server foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility

 DROP SERVER conforms to ISO/IEC 9075-9
 (SQL/MED). The IF EXISTS clause is
 a PostgreSQL™ extension.

See Also
CREATE SERVER(7), ALTER SERVER(7)

Name
DROP STATISTICS — remove extended statistics

Synopsis

DROP STATISTICS [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP STATISTICS removes statistics object(s) from the
 database. Only the statistics object's owner, the schema owner, or a
 superuser can drop a statistics object.

Parameters
	IF EXISTS
	
 Do not throw an error if the statistics object does not exist. A notice
 is issued in this case.

	name
	
 The name (optionally schema-qualified) of the statistics object to drop.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no dependencies
 on statistics.

Examples

 To destroy two statistics objects in different schemas, without failing
 if they don't exist:

DROP STATISTICS IF EXISTS
 accounting.users_uid_creation,
 public.grants_user_role;

Compatibility

 There is no DROP STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS(7), CREATE STATISTICS(7)

Name
DROP SUBSCRIPTION — remove a subscription

Synopsis

DROP SUBSCRIPTION [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP SUBSCRIPTION removes a subscription from the
 database cluster.

 To execute this command the user must be the owner of the subscription.

 DROP SUBSCRIPTION cannot be executed inside a
 transaction block if the subscription is associated with a replication
 slot. (You can use ALTER SUBSCRIPTION to unset the
 slot.)

Parameters
	name
	
 The name of a subscription to be dropped.

	CASCADE, RESTRICT
	
 These key words do not have any effect, since there are no dependencies
 on subscriptions.

Notes

 When dropping a subscription that is associated with a replication slot on
 the remote host (the normal state), DROP SUBSCRIPTION
 will connect to the remote host and try to drop the replication slot (and
 any remaining table synchronization slots) as
 part of its operation. This is necessary so that the resources allocated
 for the subscription on the remote host are released. If this fails,
 either because the remote host is not reachable or because the remote
 replication slot cannot be dropped or does not exist or never existed,
 the DROP SUBSCRIPTION command will fail. To proceed
 in this situation, first disable the subscription by executing
 ALTER SUBSCRIPTION ... DISABLE, and then disassociate
 it from the replication slot by executing
 ALTER SUBSCRIPTION ... SET (slot_name = NONE).
 After that, DROP SUBSCRIPTION will no longer attempt any
 actions on a remote host. Note that if the remote replication slot still
 exists, it (and any related table synchronization slots) should then be
 dropped manually; otherwise it/they will continue to
 reserve WAL and might eventually cause the disk to fill up. See
 also the section called “Replication Slot Management”.

 If a subscription is associated with a replication slot, then DROP
 SUBSCRIPTION cannot be executed inside a transaction block.

Examples

 Drop a subscription:

DROP SUBSCRIPTION mysub;

Compatibility

 DROP SUBSCRIPTION is a PostgreSQL™
 extension.

See Also
CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)

Name
DROP TABLE — remove a table

Synopsis

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP TABLE removes tables from the database.
 Only the table owner, the schema owner, and superuser can drop a
 table. To empty a table of rows
 without destroying the table, use DELETE
 or TRUNCATE.

 DROP TABLE always removes any indexes, rules,
 triggers, and constraints that exist for the target table.
 However, to drop a table that is referenced by a view or a foreign-key
 constraint of another table, CASCADE must be
 specified. (CASCADE will remove a dependent view entirely,
 but in the foreign-key case it will only remove the foreign-key
 constraint, not the other table entirely.)

Parameters
	IF EXISTS
	
 Do not throw an error if the table does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of the table to drop.

	CASCADE
	
 Automatically drop objects that depend on the table (such as
 views),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the table if any objects depend on it. This is
 the default.

Examples

 To destroy two tables, films and
 distributors:

DROP TABLE films, distributors;

Compatibility

 This command conforms to the SQL standard, except that the standard only
 allows one table to be dropped per command, and apart from the
 IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
ALTER TABLE(7), CREATE TABLE(7)

Name
DROP TABLESPACE — remove a tablespace

Synopsis

DROP TABLESPACE [IF EXISTS] name

Description

 DROP TABLESPACE removes a tablespace from the system.

 A tablespace can only be dropped by its owner or a superuser.
 The tablespace must be empty of all database objects before it can be
 dropped. It is possible that objects in other databases might still reside
 in the tablespace even if no objects in the current database are using
 the tablespace. Also, if the tablespace is listed in the temp_tablespaces setting of any active session, the
 DROP might fail due to temporary files residing in the
 tablespace.

Parameters
	IF EXISTS
	
 Do not throw an error if the tablespace does not exist. A notice is issued
 in this case.

	name
	
 The name of a tablespace.

Notes

 DROP TABLESPACE cannot be executed inside a transaction block.

Examples

 To remove tablespace mystuff from the system:

DROP TABLESPACE mystuff;

Compatibility

 DROP TABLESPACE is a PostgreSQL™
 extension.

See Also
CREATE TABLESPACE(7), ALTER TABLESPACE(7)

Name
DROP TEXT SEARCH CONFIGURATION — remove a text search configuration

Synopsis

DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP TEXT SEARCH CONFIGURATION drops an existing text
 search configuration. To execute this command you must be the owner of the
 configuration.

Parameters
	IF EXISTS
	
 Do not throw an error if the text search configuration does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of an existing text search
 configuration.

	CASCADE
	
 Automatically drop objects that depend on the text search configuration,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the text search configuration if any objects depend on it.
 This is the default.

Examples

 Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

 This command will not succeed if there are any existing indexes
 that reference the configuration in to_tsvector calls.
 Add CASCADE to
 drop such indexes along with the text search configuration.

Compatibility

 There is no DROP TEXT SEARCH CONFIGURATION statement in
 the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION(7), CREATE TEXT SEARCH CONFIGURATION(7)

Name
DROP TEXT SEARCH DICTIONARY — remove a text search dictionary

Synopsis

DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP TEXT SEARCH DICTIONARY drops an existing text
 search dictionary. To execute this command you must be the owner of the
 dictionary.

Parameters
	IF EXISTS
	
 Do not throw an error if the text search dictionary does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of an existing text search
 dictionary.

	CASCADE
	
 Automatically drop objects that depend on the text search dictionary,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the text search dictionary if any objects depend on it.
 This is the default.

Examples

 Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

 This command will not succeed if there are any existing text search
 configurations that use the dictionary. Add CASCADE to
 drop such configurations along with the dictionary.

Compatibility

 There is no DROP TEXT SEARCH DICTIONARY statement in the
 SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY(7), CREATE TEXT SEARCH DICTIONARY(7)

Name
DROP TEXT SEARCH PARSER — remove a text search parser

Synopsis

DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP TEXT SEARCH PARSER drops an existing text search
 parser. You must be a superuser to use this command.

Parameters
	IF EXISTS
	
 Do not throw an error if the text search parser does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of an existing text search parser.

	CASCADE
	
 Automatically drop objects that depend on the text search parser,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the text search parser if any objects depend on it.
 This is the default.

Examples

 Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

 This command will not succeed if there are any existing text search
 configurations that use the parser. Add CASCADE to
 drop such configurations along with the parser.

Compatibility

 There is no DROP TEXT SEARCH PARSER statement in the
 SQL standard.

See Also
ALTER TEXT SEARCH PARSER(7), CREATE TEXT SEARCH PARSER(7)

Name
DROP TEXT SEARCH TEMPLATE — remove a text search template

Synopsis

DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Description

 DROP TEXT SEARCH TEMPLATE drops an existing text search
 template. You must be a superuser to use this command.

Parameters
	IF EXISTS
	
 Do not throw an error if the text search template does not exist.
 A notice is issued in this case.

	name
	
 The name (optionally schema-qualified) of an existing text search
 template.

	CASCADE
	
 Automatically drop objects that depend on the text search template,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the text search template if any objects depend on it.
 This is the default.

Examples

 Remove the text search template thesaurus:

DROP TEXT SEARCH TEMPLATE thesaurus;

 This command will not succeed if there are any existing text search
 dictionaries that use the template. Add CASCADE to
 drop such dictionaries along with the template.

Compatibility

 There is no DROP TEXT SEARCH TEMPLATE statement in the
 SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE(7), CREATE TEXT SEARCH TEMPLATE(7)

Name
DROP TRANSFORM — remove a transform

Synopsis

DROP TRANSFORM [IF EXISTS] FOR type_name LANGUAGE lang_name [CASCADE | RESTRICT]

Description

 DROP TRANSFORM removes a previously defined transform.

 To be able to drop a transform, you must own the type and the language.
 These are the same privileges that are required to create a transform.

Parameters
	IF EXISTS
	
 Do not throw an error if the transform does not exist. A notice is issued
 in this case.

	type_name
	
 The name of the data type of the transform.

	lang_name
	
 The name of the language of the transform.

	CASCADE
	
 Automatically drop objects that depend on the transform,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the transform if any objects depend on it. This is the
 default.

Examples

 To drop the transform for type hstore and language
 plpython3u:

DROP TRANSFORM FOR hstore LANGUAGE plpython3u;

Compatibility

 This form of DROP TRANSFORM is a
 PostgreSQL™ extension. See CREATE TRANSFORM(7) for details.

See Also
CREATE TRANSFORM(7)

Name
DROP TRIGGER — remove a trigger

Synopsis

DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description

 DROP TRIGGER removes an existing
 trigger definition. To execute this command, the current
 user must be the owner of the table for which the trigger is defined.

Parameters
	IF EXISTS
	
 Do not throw an error if the trigger does not exist. A notice is issued
 in this case.

	name
	
 The name of the trigger to remove.

	table_name
	
 The name (optionally schema-qualified) of the table for which
 the trigger is defined.

	CASCADE
	
 Automatically drop objects that depend on the trigger,
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the trigger if any objects depend on it. This is
 the default.

Examples

 Destroy the trigger if_dist_exists on the table
 films:

DROP TRIGGER if_dist_exists ON films;

Compatibility

 The DROP TRIGGER statement in
 PostgreSQL™ is incompatible with the SQL
 standard. In the SQL standard, trigger names are not local to
 tables, so the command is simply DROP TRIGGER
 name.

See Also
CREATE TRIGGER(7)

Name
DROP TYPE — remove a data type

Synopsis

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP TYPE removes a user-defined data type.
 Only the owner of a type can remove it.

Parameters
	IF EXISTS
	
 Do not throw an error if the type does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of the data type to remove.

	CASCADE
	
 Automatically drop objects that depend on the type (such as
 table columns, functions, and operators),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the type if any objects depend on it. This is
 the default.

Examples

 To remove the data type box:

DROP TYPE box;

Compatibility

 This command is similar to the corresponding command in the SQL
 standard, apart from the IF EXISTS
 option, which is a PostgreSQL™ extension.
 But note that much of the CREATE TYPE command
 and the data type extension mechanisms in
 PostgreSQL™ differ from the SQL standard.

See Also
ALTER TYPE(7), CREATE TYPE(7)

Name
DROP USER — remove a database role

Synopsis

DROP USER [IF EXISTS] name [, ...]

Description

 DROP USER is simply an alternate spelling of
 DROP ROLE.

Compatibility

 The DROP USER statement is a
 PostgreSQL™ extension. The SQL standard
 leaves the definition of users to the implementation.

See Also
DROP ROLE(7)

Name
DROP USER MAPPING — remove a user mapping for a foreign server

Synopsis

DROP USER MAPPING [IF EXISTS] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | PUBLIC } SERVER server_name

Description

 DROP USER MAPPING removes an existing user
 mapping from foreign server.

 The owner of a foreign server can drop user mappings for that server
 for any user. Also, a user can drop a user mapping for their own
 user name if USAGE privilege on the server has been
 granted to the user.

Parameters
	IF EXISTS
	
 Do not throw an error if the user mapping does not exist. A
 notice is issued in this case.

	user_name
	
 User name of the mapping. CURRENT_ROLE, CURRENT_USER,
 and USER match the name of the current
 user. PUBLIC is used to match all present and
 future user names in the system.

	server_name
	
 Server name of the user mapping.

Examples

 Drop a user mapping bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility

 DROP USER MAPPING conforms to ISO/IEC 9075-9
 (SQL/MED). The IF EXISTS clause is
 a PostgreSQL™ extension.

See Also
CREATE USER MAPPING(7), ALTER USER MAPPING(7)

Name
DROP VIEW — remove a view

Synopsis

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

 DROP VIEW drops an existing view. To execute
 this command you must be the owner of the view.

Parameters
	IF EXISTS
	
 Do not throw an error if the view does not exist. A notice is issued
 in this case.

	name
	
 The name (optionally schema-qualified) of the view to remove.

	CASCADE
	
 Automatically drop objects that depend on the view (such as
 other views),
 and in turn all objects that depend on those objects
 (see the section called “Dependency Tracking”).

	RESTRICT
	
 Refuse to drop the view if any objects depend on it. This is
 the default.

Examples

 This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility

 This command conforms to the SQL standard, except that the standard only
 allows one view to be dropped per command, and apart from the
 IF EXISTS option, which is a PostgreSQL™
 extension.

See Also
ALTER VIEW(7), CREATE VIEW(7)

Name
END — commit the current transaction

Synopsis

END [WORK | TRANSACTION] [AND [NO] CHAIN]

Description

 END commits the current transaction. All changes
 made by the transaction become visible to others and are guaranteed
 to be durable if a crash occurs. This command is a
 PostgreSQL™ extension
 that is equivalent to COMMIT.

Parameters
	WORK, TRANSACTION
	
 Optional key words. They have no effect.

	AND CHAIN
	
 If AND CHAIN is specified, a new transaction is
 immediately started with the same transaction characteristics (see SET TRANSACTION(7)) as the just finished one. Otherwise,
 no new transaction is started.

Notes

 Use ROLLBACK to
 abort a transaction.

 Issuing END when not inside a transaction does
 no harm, but it will provoke a warning message.

Examples

 To commit the current transaction and make all changes permanent:

END;

Compatibility

 END is a PostgreSQL™
 extension that provides functionality equivalent to COMMIT, which is
 specified in the SQL standard.

See Also
BEGIN(7), COMMIT(7), ROLLBACK(7)

Name
EXECUTE — execute a prepared statement

Synopsis

EXECUTE name [(parameter [, ...])]

Description

 EXECUTE is used to execute a previously prepared
 statement. Since prepared statements only exist for the duration of a
 session, the prepared statement must have been created by a
 PREPARE statement executed earlier in the
 current session.

 If the PREPARE statement that created the statement
 specified some parameters, a compatible set of parameters must be
 passed to the EXECUTE statement, or else an
 error is raised. Note that (unlike functions) prepared statements are
 not overloaded based on the type or number of their parameters; the
 name of a prepared statement must be unique within a database session.

 For more information on the creation and usage of prepared statements,
 see PREPARE(7).

Parameters
	name
	
 The name of the prepared statement to execute.

	parameter
	
 The actual value of a parameter to the prepared statement. This
 must be an expression yielding a value that is compatible with
 the data type of this parameter, as was determined when the
 prepared statement was created.

Outputs

 The command tag returned by EXECUTE
 is that of the prepared statement, and not EXECUTE.

Examples

 Examples are given in Examples
 in the PREPARE(7) documentation.

Compatibility

 The SQL standard includes an EXECUTE statement,
 but it is only for use in embedded SQL. This version of the
 EXECUTE statement also uses a somewhat different
 syntax.

See Also
DEALLOCATE(7), PREPARE(7)

Name
EXPLAIN — show the execution plan of a statement

Synopsis

EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 SETTINGS [boolean]
 GENERIC_PLAN [boolean]
 BUFFERS [boolean]
 WAL [boolean]
 TIMING [boolean]
 SUMMARY [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

Description

 This command displays the execution plan that the
 PostgreSQL™ planner generates for the
 supplied statement. The execution plan shows how the table(s)
 referenced by the statement will be scanned — by plain sequential scan,
 index scan, etc. — and if multiple tables are referenced, what join
 algorithms will be used to bring together the required rows from
 each input table.

 The most critical part of the display is the estimated statement execution
 cost, which is the planner's guess at how long it will take to run the
 statement (measured in cost units that are arbitrary, but conventionally
 mean disk page fetches). Actually two numbers
 are shown: the start-up cost before the first row can be returned, and
 the total cost to return all the rows. For most queries the total cost
 is what matters, but in contexts such as a subquery in EXISTS, the planner
 will choose the smallest start-up cost instead of the smallest total cost
 (since the executor will stop after getting one row, anyway).
 Also, if you limit the number of rows to return with a LIMIT clause,
 the planner makes an appropriate interpolation between the endpoint
 costs to estimate which plan is really the cheapest.

 The ANALYZE option causes the statement to be actually
 executed, not only planned. Then actual run time statistics are added to
 the display, including the total elapsed time expended within each plan
 node (in milliseconds) and the total number of rows it actually returned.
 This is useful for seeing whether the planner's estimates
 are close to reality.

Important

 Keep in mind that the statement is actually executed when
 the ANALYZE option is used. Although
 EXPLAIN will discard any output that a
 SELECT would return, other side effects of the
 statement will happen as usual. If you wish to use
 EXPLAIN ANALYZE on an
 INSERT, UPDATE,
 DELETE, MERGE,
 CREATE TABLE AS,
 or EXECUTE statement
 without letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

 Only the ANALYZE and VERBOSE options
 can be specified, and only in that order, without surrounding the option
 list in parentheses. Prior to PostgreSQL™ 9.0,
 the unparenthesized syntax was the only one supported. It is expected that
 all new options will be supported only in the parenthesized syntax.

Parameters
	ANALYZE
	
 Carry out the command and show actual run times and other statistics.
 This parameter defaults to FALSE.

	VERBOSE
	
 Display additional information regarding the plan. Specifically, include
 the output column list for each node in the plan tree, schema-qualify
 table and function names, always label variables in expressions with
 their range table alias, and always print the name of each trigger for
 which statistics are displayed. The query identifier will also be
 displayed if one has been computed, see compute_query_id for more details. This parameter
 defaults to FALSE.

	COSTS
	
 Include information on the estimated startup and total cost of each
 plan node, as well as the estimated number of rows and the estimated
 width of each row.
 This parameter defaults to TRUE.

	SETTINGS
	
 Include information on configuration parameters. Specifically, include
 options affecting query planning with value different from the built-in
 default value. This parameter defaults to FALSE.

	GENERIC_PLAN
	
 Allow the statement to contain parameter placeholders like
 $1, and generate a generic plan that does not
 depend on the values of those parameters.
 See PREPARE
 for details about generic plans and the types of statement that
 support parameters.
 This parameter cannot be used together with ANALYZE.
 It defaults to FALSE.

	BUFFERS
	
 Include information on buffer usage. Specifically, include the number of
 shared blocks hit, read, dirtied, and written, the number of local blocks
 hit, read, dirtied, and written, the number of temp blocks read and
 written, and the time spent reading and writing data file blocks and
 temporary file blocks (in milliseconds) if
 track_io_timing is enabled. A
 hit means that a read was avoided because the block
 was found already in cache when needed.
 Shared blocks contain data from regular tables and indexes;
 local blocks contain data from temporary tables and indexes;
 while temporary blocks contain short-term working data used in sorts,
 hashes, Materialize plan nodes, and similar cases.
 The number of blocks dirtied indicates the number of
 previously unmodified blocks that were changed by this query; while the
 number of blocks written indicates the number of
 previously-dirtied blocks evicted from cache by this backend during
 query processing.
 The number of blocks shown for an
 upper-level node includes those used by all its child nodes. In text
 format, only non-zero values are printed. This parameter defaults to
 FALSE.

	WAL
	
 Include information on WAL record generation. Specifically, include the
 number of records, number of full page images (fpi) and the amount of WAL
 generated in bytes. In text format, only non-zero values are printed.
 This parameter may only be used when ANALYZE is also
 enabled. It defaults to FALSE.

	TIMING
	
 Include actual startup time and time spent in each node in the output.
 The overhead of repeatedly reading the system clock can slow down the
 query significantly on some systems, so it may be useful to set this
 parameter to FALSE when only actual row counts, and
 not exact times, are needed. Run time of the entire statement is
 always measured, even when node-level timing is turned off with this
 option.
 This parameter may only be used when ANALYZE is also
 enabled. It defaults to TRUE.

	SUMMARY
	
 Include summary information (e.g., totaled timing information) after the
 query plan. Summary information is included by default when
 ANALYZE is used but otherwise is not included by
 default, but can be enabled using this option. Planning time in
 EXPLAIN EXECUTE includes the time required to fetch
 the plan from the cache and the time required for re-planning, if
 necessary.

	FORMAT
	
 Specify the output format, which can be TEXT, XML, JSON, or YAML.
 Non-text output contains the same information as the text output
 format, but is easier for programs to parse. This parameter defaults to
 TEXT.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

	statement
	
 Any SELECT, INSERT, UPDATE,
 DELETE, MERGE,
 VALUES, EXECUTE,
 DECLARE, CREATE TABLE AS, or
 CREATE MATERIALIZED VIEW AS statement, whose execution
 plan you wish to see.

Outputs

 The command's result is a textual description of the plan selected
 for the statement,
 optionally annotated with execution statistics.
 the section called “Using EXPLAIN” describes the information provided.

Notes

 In order to allow the PostgreSQL™ query
 planner to make reasonably informed decisions when optimizing
 queries, the pg_statistic
 data should be up-to-date for all tables used in the query. Normally
 the autovacuum daemon will take care
 of that automatically. But if a table has recently had substantial
 changes in its contents, you might need to do a manual
 ANALYZE rather than wait for autovacuum to catch up
 with the changes.

 In order to measure the run-time cost of each node in the execution
 plan, the current implementation of EXPLAIN
 ANALYZE adds profiling overhead to query execution.
 As a result, running EXPLAIN ANALYZE
 on a query can sometimes take significantly longer than executing
 the query normally. The amount of overhead depends on the nature of
 the query, as well as the platform being used. The worst case occurs
 for plan nodes that in themselves require very little time per
 execution, and on machines that have relatively slow operating
 system calls for obtaining the time of day.

Examples

 To show the plan for a simple query on a table with a single
 integer column and 10000 rows:

EXPLAIN SELECT * FROM foo;

 QUERY PLAN

 Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

 Here is the same query, with JSON output formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM foo;
 QUERY PLAN

 [+
 { +
 "Plan": { +
 "Node Type": "Seq Scan",+
 "Relation Name": "foo", +
 "Alias": "foo", +
 "Startup Cost": 0.00, +
 "Total Cost": 155.00, +
 "Plan Rows": 10000, +
 "Plan Width": 4 +
 } +
 } +
]
(1 row)

 If there is an index and we use a query with an indexable
 WHERE condition, EXPLAIN
 might show a different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

 QUERY PLAN
--
 Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
 Index Cond: (i = 4)
(2 rows)

 Here is the same query, but in YAML format:

EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i='4';
 QUERY PLAN

 - Plan: +
 Node Type: "Index Scan" +
 Scan Direction: "Forward"+
 Index Name: "fi" +
 Relation Name: "foo" +
 Alias: "foo" +
 Startup Cost: 0.00 +
 Total Cost: 5.98 +
 Plan Rows: 1 +
 Plan Width: 4 +
 Index Cond: "(i = 4)"
(1 row)

 XML format is left as an exercise for the reader.

 Here is the same plan with cost estimates suppressed:

EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

 QUERY PLAN

 Index Scan using fi on foo
 Index Cond: (i = 4)
(2 rows)

 Here is an example of a query plan for a query using an aggregate
 function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

 QUERY PLAN
---​--
 Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)
(3 rows)

 Here is an example of using EXPLAIN EXECUTE to
 display the execution plan for a prepared query:

PREPARE query(int, int) AS SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

 QUERY PLAN
---​--
 HashAggregate (cost=10.77..10.87 rows=10 width=12) (actual time=0.043..0.044 rows=10 loops=1)
 Group Key: foo
 Batches: 1 Memory Usage: 24kB
 -> Index Scan using test_pkey on test (cost=0.29..10.27 rows=99 width=8) (actual time=0.009..0.025 rows=99 loops=1)
 Index Cond: ((id > 100) AND (id < 200))
 Planning Time: 0.244 ms
 Execution Time: 0.073 ms
(7 rows)

 Of course, the specific numbers shown here depend on the actual
 contents of the tables involved. Also note that the numbers, and
 even the selected query strategy, might vary between
 PostgreSQL™ releases due to planner
 improvements. In addition, the ANALYZE command
 uses random sampling to estimate data statistics; therefore, it is
 possible for cost estimates to change after a fresh run of
 ANALYZE, even if the actual distribution of data
 in the table has not changed.

 Notice that the previous example showed a “custom” plan
 for the specific parameter values given in EXECUTE.
 We might also wish to see the generic plan for a parameterized
 query, which can be done with GENERIC_PLAN:

EXPLAIN (GENERIC_PLAN)
 SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

 QUERY PLAN
---​------------
 HashAggregate (cost=26.79..26.89 rows=10 width=12)
 Group Key: foo
 -> Index Scan using test_pkey on test (cost=0.29..24.29 rows=500 width=8)
 Index Cond: ((id > $1) AND (id < $2))
(4 rows)

 In this case the parser correctly inferred that $1
 and $2 should have the same data type
 as id, so the lack of parameter type information
 from PREPARE was not a problem. In other cases
 it might be necessary to explicitly specify types for the parameter
 symbols, which can be done by casting them, for example:

EXPLAIN (GENERIC_PLAN)
 SELECT sum(bar) FROM test
 WHERE id > $1::integer AND id < $2::integer
 GROUP BY foo;

Compatibility

 There is no EXPLAIN statement defined in the SQL standard.

See Also
ANALYZE(7)

Name
FETCH — retrieve rows from a query using a cursor

Synopsis

FETCH [direction] [FROM | IN] cursor_name

where direction can be one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description

 FETCH retrieves rows using a previously-created cursor.

 A cursor has an associated position, which is used by
 FETCH. The cursor position can be before the first row of the
 query result, on any particular row of the result, or after the last row
 of the result. When created, a cursor is positioned before the first row.
 After fetching some rows, the cursor is positioned on the row most recently
 retrieved. If FETCH runs off the end of the available rows
 then the cursor is left positioned after the last row, or before the first
 row if fetching backward. FETCH ALL or FETCH BACKWARD
 ALL will always leave the cursor positioned after the last row or before
 the first row.

 The forms NEXT, PRIOR, FIRST,
 LAST, ABSOLUTE, RELATIVE fetch
 a single row after moving the cursor appropriately. If there is no
 such row, an empty result is returned, and the cursor is left
 positioned before the first row or after the last row as
 appropriate.

 The forms using FORWARD and BACKWARD
 retrieve the indicated number of rows moving in the forward or
 backward direction, leaving the cursor positioned on the
 last-returned row (or after/before all rows, if the count exceeds the number of rows
 available).

 RELATIVE 0, FORWARD 0, and
 BACKWARD 0 all request fetching the current row without
 moving the cursor, that is, re-fetching the most recently fetched
 row. This will succeed unless the cursor is positioned before the
 first row or after the last row; in which case, no row is returned.

Note

 This page describes usage of cursors at the SQL command level.
 If you are trying to use cursors inside a PL/pgSQL
 function, the rules are different —
 see the section called “Using Cursors”.

Parameters
	direction
	direction defines
 the fetch direction and number of rows to fetch. It can be one
 of the following:

	NEXT
	
 Fetch the next row. This is the default if direction is omitted.

	PRIOR
	
 Fetch the prior row.

	FIRST
	
 Fetch the first row of the query (same as ABSOLUTE 1).

	LAST
	
 Fetch the last row of the query (same as ABSOLUTE -1).

	ABSOLUTE count
	
 Fetch the count'th row of the query,
 or the abs(count)'th row from
 the end if count is negative. Position
 before first row or after last row if count is out of range; in
 particular, ABSOLUTE 0 positions before
 the first row.

	RELATIVE count
	
 Fetch the count'th succeeding row, or
 the abs(count)'th prior
 row if count is
 negative. RELATIVE 0 re-fetches the
 current row, if any.

	count
	
 Fetch the next count rows (same as
 FORWARD count).

	ALL
	
 Fetch all remaining rows (same as FORWARD ALL).

	FORWARD
	
 Fetch the next row (same as NEXT).

	FORWARD count
	
 Fetch the next count rows.
 FORWARD 0 re-fetches the current row.

	FORWARD ALL
	
 Fetch all remaining rows.

	BACKWARD
	
 Fetch the prior row (same as PRIOR).

	BACKWARD count
	
 Fetch the prior count rows (scanning
 backwards). BACKWARD 0 re-fetches the
 current row.

	BACKWARD ALL
	
 Fetch all prior rows (scanning backwards).

	count
	count is a
 possibly-signed integer constant, determining the location or
 number of rows to fetch. For FORWARD and
 BACKWARD cases, specifying a negative count is equivalent to changing
 the sense of FORWARD and BACKWARD.

	cursor_name
	
 An open cursor's name.

Outputs

 On successful completion, a FETCH command returns a command
 tag of the form

FETCH count

 The count is the number
 of rows fetched (possibly zero). Note that in
 psql, the command tag will not actually be
 displayed, since psql displays the fetched
 rows instead.

Notes

 The cursor should be declared with the SCROLL
 option if one intends to use any variants of FETCH
 other than FETCH NEXT or FETCH FORWARD with
 a positive count. For simple queries
 PostgreSQL™ will allow backwards fetch
 from cursors not declared with SCROLL, but this
 behavior is best not relied on. If the cursor is declared with
 NO SCROLL, no backward fetches are allowed.

 ABSOLUTE fetches are not any faster than
 navigating to the desired row with a relative move: the underlying
 implementation must traverse all the intermediate rows anyway.
 Negative absolute fetches are even worse: the query must be read to
 the end to find the last row, and then traversed backward from
 there. However, rewinding to the start of the query (as with
 FETCH ABSOLUTE 0) is fast.

 DECLARE
 is used to define a cursor. Use
 MOVE
 to change cursor position without retrieving data.

Examples

 The following example traverses a table using a cursor:

BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

 code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

 code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility

 The SQL standard defines FETCH for use in
 embedded SQL only. The variant of FETCH
 described here returns the data as if it were a
 SELECT result rather than placing it in host
 variables. Other than this point, FETCH is
 fully upward-compatible with the SQL standard.

 The FETCH forms involving
 FORWARD and BACKWARD, as well
 as the forms FETCH count and FETCH
 ALL, in which FORWARD is implicit, are
 PostgreSQL™ extensions.

 The SQL standard allows only FROM preceding the cursor
 name; the option to use IN, or to leave them out altogether, is
 an extension.

See Also
CLOSE(7), DECLARE(7), MOVE(7)

Name
GRANT — define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } routine_name [([[argmode] [arg_name] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { SET | ALTER SYSTEM } [, ...] | ALL [PRIVILEGES] }
 ON PARAMETER configuration_parameter [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]
 [GRANTED BY role_specification]

GRANT role_name [, ...] TO role_specification [, ...]
 [WITH { ADMIN | INHERIT | SET } { OPTION | TRUE | FALSE }]
 [GRANTED BY role_specification]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description

 The GRANT command has two basic variants: one
 that grants privileges on a database object (table, column, view,
 foreign table, sequence, database, foreign-data wrapper, foreign server,
 function, procedure, procedural language, large object, configuration
 parameter, schema, tablespace, or type), and one that grants
 membership in a role. These variants are similar in many ways, but
 they are different enough to be described separately.

GRANT on Database Objects

 This variant of the GRANT command gives specific
 privileges on a database object to
 one or more roles. These privileges are added
 to those already granted, if any.

 The key word PUBLIC indicates that the
 privileges are to be granted to all roles, including those that might
 be created later. PUBLIC can be thought of as an
 implicitly defined group that always includes all roles.
 Any particular role will have the sum
 of privileges granted directly to it, privileges granted to any role it
 is presently a member of, and privileges granted to
 PUBLIC.

 If WITH GRANT OPTION is specified, the recipient
 of the privilege can in turn grant it to others. Without a grant
 option, the recipient cannot do that. Grant options cannot be granted
 to PUBLIC.

 If GRANTED BY is specified, the specified grantor must
 be the current user. This clause is currently present in this form only
 for SQL compatibility.

 There is no need to grant privileges to the owner of an object
 (usually the user that created it),
 as the owner has all privileges by default. (The owner could,
 however, choose to revoke some of their own privileges for safety.)

 The right to drop an object, or to alter its definition in any way, is
 not treated as a grantable privilege; it is inherent in the owner,
 and cannot be granted or revoked. (However, a similar effect can be
 obtained by granting or revoking membership in the role that owns
 the object; see below.) The owner implicitly has all grant
 options for the object, too.

 The possible privileges are:

	SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET, ALTER SYSTEM
	
 Specific types of privileges, as defined in the section called “Privileges”.

	TEMP
	
 Alternative spelling for TEMPORARY.

	ALL PRIVILEGES
	
 Grant all of the privileges available for the object's type.
 The PRIVILEGES key word is optional in
 PostgreSQL™, though it is required by
 strict SQL.

 The FUNCTION syntax works for plain functions,
 aggregate functions, and window functions, but not for procedures;
 use PROCEDURE for those.
 Alternatively, use ROUTINE to refer to a function,
 aggregate function, window function, or procedure regardless of its
 precise type.

 There is also an option to grant privileges on all objects of the same
 type within one or more schemas. This functionality is currently supported
 only for tables, sequences, functions, and procedures. ALL
 TABLES also affects views and foreign tables, just like the
 specific-object GRANT command. ALL
 FUNCTIONS also affects aggregate and window functions, but not
 procedures, again just like the specific-object GRANT
 command. Use ALL ROUTINES to include procedures.

GRANT on Roles

 This variant of the GRANT command grants membership
 in a role to one or more other roles, and the modification of
 membership options SET, INHERIT,
 and ADMIN; see the section called “Role Membership”
 for details. Membership in a role is significant
 because it potentially allows access to the privileges granted to a role
 to each of its members, and potentially also the ability to make changes
 to the role itself. However, the actual permissions conferred depend on
 the options associated with the grant. To modify that options of
 an existing membership, simply specify the membership with updated
 option values.

 Each of the options described below can be set to either
 TRUE or FALSE. The keyword
 OPTION is accepted as a synonym for
 TRUE, so that WITH ADMIN OPTION
 is a synonym for WITH ADMIN TRUE. When altering
 an existing membership the omission of an option results in the current
 value being retained.

 The ADMIN option allows the member to
 in turn grant membership in the role to others, and revoke membership
 in the role as well. Without the admin option, ordinary users cannot
 do that. A role is not considered to hold WITH ADMIN
 OPTION on itself. Database superusers can grant or revoke
 membership in any role to anyone. This option defaults to
 FALSE.

 The INHERIT option controls the inheritance status
 of the new membership; see the section called “Role Membership” for
 details on inheritance. If it is set to TRUE,
 it causes the new member to inherit from the granted role. If
 set to FALSE, the new member does not inherit.
 If unspecified when creating a new role membership, this defaults to the
 inheritance attribute of the new member.

 The SET option, if it is set to
 TRUE, allows the member to change to the granted
 role using the
 SET ROLE
 command. If a role is an indirect member of another role, it can use
 SET ROLE to change to that role only if there is a
 chain of grants each of which has SET TRUE.
 This option defaults to TRUE.

 To create an object owned by another role or give ownership of an existing
 object to another role, you must have the ability to SET
 ROLE to that role; otherwise, commands such as ALTER
 ... OWNER TO or CREATE DATABASE ... OWNER
 will fail. However, a user who inherits the privileges of a role but does
 not have the ability to SET ROLE to that role may be
 able to obtain full access to the role by manipulating existing objects
 owned by that role (e.g. they could redefine an existing function to act
 as a Trojan horse). Therefore, if a role's privileges are to be inherited
 but should not be accessible via SET ROLE, it should not
 own any SQL objects.

 If GRANTED BY is specified, the grant is recorded as
 having been done by the specified role. A user can only attribute a grant
 to another role if they possess the privileges of that role. The role
 recorded as the grantor must have ADMIN OPTION on the
 target role, unless it is the bootstrap superuser. When a grant is recorded
 as having a grantor other than the bootstrap superuser, it depends on the
 grantor continuing to possess ADMIN OPTION on the role;
 so, if ADMIN OPTION is revoked, dependent grants must
 be revoked as well.

 Unlike the case with privileges, membership in a role cannot be granted
 to PUBLIC. Note also that this form of the command
 does not allow the noise word GROUP
 in role_specification.

Notes

 The REVOKE command is used
 to revoke access privileges.

 Since PostgreSQL™ 8.1, the concepts of users and
 groups have been unified into a single kind of entity called a role.
 It is therefore no longer necessary to use the keyword GROUP
 to identify whether a grantee is a user or a group. GROUP
 is still allowed in the command, but it is a noise word.

 A user may perform SELECT, INSERT, etc. on a
 column if they hold that privilege for either the specific column or
 its whole table. Granting the privilege at the table level and then
 revoking it for one column will not do what one might wish: the
 table-level grant is unaffected by a column-level operation.

 When a non-owner of an object attempts to GRANT privileges
 on the object, the command will fail outright if the user has no
 privileges whatsoever on the object. As long as some privilege is
 available, the command will proceed, but it will grant only those
 privileges for which the user has grant options. The GRANT ALL
 PRIVILEGES forms will issue a warning message if no grant options are
 held, while the other forms will issue a warning if grant options for
 any of the privileges specifically named in the command are not held.
 (In principle these statements apply to the object owner as well, but
 since the owner is always treated as holding all grant options, the
 cases can never occur.)

 It should be noted that database superusers can access
 all objects regardless of object privilege settings. This
 is comparable to the rights of root in a Unix system.
 As with root, it's unwise to operate as a superuser
 except when absolutely necessary.

 If a superuser chooses to issue a GRANT or REVOKE
 command, the command is performed as though it were issued by the
 owner of the affected object. In particular, privileges granted via
 such a command will appear to have been granted by the object owner.
 (For role membership, the membership appears to have been granted
 by the bootstrap superuser.)

 GRANT and REVOKE can also be done by a role
 that is not the owner of the affected object, but is a member of the role
 that owns the object, or is a member of a role that holds privileges
 WITH GRANT OPTION on the object. In this case the
 privileges will be recorded as having been granted by the role that
 actually owns the object or holds the privileges
 WITH GRANT OPTION. For example, if table
 t1 is owned by role g1, of which role
 u1 is a member, then u1 can grant privileges
 on t1 to u2, but those privileges will appear
 to have been granted directly by g1. Any other member
 of role g1 could revoke them later.

 If the role executing GRANT holds the required privileges
 indirectly via more than one role membership path, it is unspecified
 which containing role will be recorded as having done the grant. In such
 cases it is best practice to use SET ROLE to become the
 specific role you want to do the GRANT as.

 Granting permission on a table does not automatically extend
 permissions to any sequences used by the table, including
 sequences tied to SERIAL columns. Permissions on
 sequences must be set separately.

 See the section called “Privileges” for more information about specific
 privilege types, as well as how to inspect objects' privileges.

Examples

 Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

 Grant all available privileges to user manuel on view
 kinds:

GRANT ALL PRIVILEGES ON kinds TO manuel;

 Note that while the above will indeed grant all privileges if executed by a
 superuser or the owner of kinds, when executed by someone
 else it will only grant those permissions for which the someone else has
 grant options.

 Grant membership in role admins to user joe:

GRANT admins TO joe;

Compatibility

 According to the SQL standard, the PRIVILEGES
 key word in ALL PRIVILEGES is required. The
 SQL standard does not support setting the privileges on more than
 one object per command.

 PostgreSQL™ allows an object owner to revoke their
 own ordinary privileges: for example, a table owner can make the table
 read-only to themselves by revoking their own INSERT,
 UPDATE, DELETE, and TRUNCATE
 privileges. This is not possible according to the SQL standard. The
 reason is that PostgreSQL™ treats the owner's
 privileges as having been granted by the owner to themselves; therefore they
 can revoke them too. In the SQL standard, the owner's privileges are
 granted by an assumed entity “_SYSTEM”. Not being
 “_SYSTEM”, the owner cannot revoke these rights.

 According to the SQL standard, grant options can be granted to
 PUBLIC; PostgreSQL only supports granting grant options
 to roles.

 The SQL standard allows the GRANTED BY option to
 specify only CURRENT_USER or
 CURRENT_ROLE. The other variants are PostgreSQL
 extensions.

 The SQL standard provides for a USAGE privilege
 on other kinds of objects: character sets, collations,
 translations.

 In the SQL standard, sequences only have a USAGE
 privilege, which controls the use of the NEXT VALUE FOR
 expression, which is equivalent to the
 function nextval in PostgreSQL. The sequence
 privileges SELECT and UPDATE are
 PostgreSQL extensions. The application of the
 sequence USAGE privilege to
 the currval function is also a PostgreSQL extension (as
 is the function itself).

 Privileges on databases, tablespaces, schemas, languages, and
 configuration parameters are
 PostgreSQL™ extensions.

See Also
REVOKE(7), ALTER DEFAULT PRIVILEGES(7)

Name
IMPORT FOREIGN SCHEMA — import table definitions from a foreign server

Synopsis

IMPORT FOREIGN SCHEMA remote_schema
 [{ LIMIT TO | EXCEPT } (table_name [, ...])]
 FROM SERVER server_name
 INTO local_schema
 [OPTIONS (option 'value' [, ...])]

Description

 IMPORT FOREIGN SCHEMA creates foreign tables that
 represent tables existing on a foreign server. The new foreign tables
 will be owned by the user issuing the command and are created with
 the correct column definitions and options to match the remote tables.

 By default, all tables and views existing in a particular schema on the
 foreign server are imported. Optionally, the list of tables can be limited
 to a specified subset, or specific tables can be excluded. The new foreign
 tables are all created in the target schema, which must already exist.

 To use IMPORT FOREIGN SCHEMA, the user must have
 USAGE privilege on the foreign server, as well as
 CREATE privilege on the target schema.

Parameters
	remote_schema
	
 The remote schema to import from. The specific meaning of a remote schema
 depends on the foreign data wrapper in use.

	LIMIT TO (table_name [, ...])
	
 Import only foreign tables matching one of the given table names.
 Other tables existing in the foreign schema will be ignored.

	EXCEPT (table_name [, ...])
	
 Exclude specified foreign tables from the import. All tables
 existing in the foreign schema will be imported except the
 ones listed here.

	server_name
	
 The foreign server to import from.

	local_schema
	
 The schema in which the imported foreign tables will be created.

	OPTIONS (option 'value' [, ...])
	
 Options to be used during the import.
 The allowed option names and values are specific to each foreign
 data wrapper.

Examples

 Import table definitions from a remote schema foreign_films
 on server film_server, creating the foreign tables in
 local schema films:

IMPORT FOREIGN SCHEMA foreign_films
 FROM SERVER film_server INTO films;

 As above, but import only the two tables actors and
 directors (if they exist):

IMPORT FOREIGN SCHEMA foreign_films LIMIT TO (actors, directors)
 FROM SERVER film_server INTO films;

Compatibility

 The IMPORT FOREIGN SCHEMA command conforms to the
 SQL standard, except that the OPTIONS
 clause is a PostgreSQL™ extension.

See Also
CREATE FOREIGN TABLE(7), CREATE SERVER(7)

Name
INSERT — create new rows in a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [AS alias] [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER } VALUE]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) [, ...] | query }
 [ON CONFLICT [conflict_target] conflict_action]
 [RETURNING { * | output_expression [[AS] output_name] } [, ...]]

where conflict_target can be one of:

 ({ index_column_name | (index_expression) } [COLLATE collation] [opclass] [, ...]) [WHERE index_predicate]
 ON CONSTRAINT constraint_name

and conflict_action is one of:

 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [WHERE condition]

Description

 INSERT inserts new rows into a table.
 One can insert one or more rows specified by value expressions,
 or zero or more rows resulting from a query.

 The target column names can be listed in any order. If no list of
 column names is given at all, the default is all the columns of the
 table in their declared order; or the first N column
 names, if there are only N columns supplied by the
 VALUES clause or query. The values
 supplied by the VALUES clause or query are
 associated with the explicit or implicit column list left-to-right.

 Each column not present in the explicit or implicit column list will be
 filled with a default value, either its declared default value
 or null if there is none.

 If the expression for any column is not of the correct data type,
 automatic type conversion will be attempted.

 INSERT into tables that lack unique indexes will
 not be blocked by concurrent activity. Tables with unique indexes
 might block if concurrent sessions perform actions that lock or modify
 rows matching the unique index values being inserted; the details
 are covered in the section called “Index Uniqueness Checks”.
 ON CONFLICT can be used to specify an alternative
 action to raising a unique constraint or exclusion constraint
 violation error. (See ON CONFLICT Clause below.)

 The optional RETURNING clause causes INSERT
 to compute and return value(s) based on each row actually inserted
 (or updated, if an ON CONFLICT DO UPDATE clause was
 used). This is primarily useful for obtaining values that were
 supplied by defaults, such as a serial sequence number. However,
 any expression using the table's columns is allowed. The syntax of
 the RETURNING list is identical to that of the output
 list of SELECT. Only rows that were successfully
 inserted or updated will be returned. For example, if a row was
 locked but not updated because an ON CONFLICT DO UPDATE
 ... WHERE clause condition was not satisfied, the
 row will not be returned.

 You must have INSERT privilege on a table in
 order to insert into it. If ON CONFLICT DO UPDATE is
 present, UPDATE privilege on the table is also
 required.

 If a column list is specified, you only need
 INSERT privilege on the listed columns.
 Similarly, when ON CONFLICT DO UPDATE is specified, you
 only need UPDATE privilege on the column(s) that are
 listed to be updated. However, ON CONFLICT DO UPDATE
 also requires SELECT privilege on any column whose
 values are read in the ON CONFLICT DO UPDATE
 expressions or condition.

 Use of the RETURNING clause requires SELECT
 privilege on all columns mentioned in RETURNING.
 If you use the query clause to insert rows from a
 query, you of course need to have SELECT privilege on
 any table or column used in the query.

Parameters
Inserting

 This section covers parameters that may be used when only
 inserting new rows. Parameters exclusively
 used with the ON CONFLICT clause are described
 separately.

	with_query
	
 The WITH clause allows you to specify one or more
 subqueries that can be referenced by name in the INSERT
 query. See the section called “WITH Queries (Common Table Expressions)” and SELECT(7)
 for details.

 It is possible for the query
 (SELECT statement)
 to also contain a WITH clause. In such a case both
 sets of with_query can be referenced within
 the query, but the
 second one takes precedence since it is more closely nested.

	table_name
	
 The name (optionally schema-qualified) of an existing table.

	alias
	
 A substitute name for table_name. When an alias is
 provided, it completely hides the actual name of the table.
 This is particularly useful when ON CONFLICT DO UPDATE
 targets a table named excluded, since that will otherwise
 be taken as the name of the special table representing the row proposed
 for insertion.

	column_name
	
 The name of a column in the table named by table_name. The column name
 can be qualified with a subfield name or array subscript, if
 needed. (Inserting into only some fields of a composite
 column leaves the other fields null.) When referencing a
 column with ON CONFLICT DO UPDATE, do not include
 the table's name in the specification of a target column. For
 example, INSERT INTO table_name ... ON CONFLICT DO UPDATE
 SET table_name.col = 1 is invalid (this follows the general
 behavior for UPDATE).

	OVERRIDING SYSTEM VALUE
	
 If this clause is specified, then any values supplied for identity
 columns will override the default sequence-generated values.

 For an identity column defined as GENERATED ALWAYS,
 it is an error to insert an explicit value (other than
 DEFAULT) without specifying either
 OVERRIDING SYSTEM VALUE or OVERRIDING USER
 VALUE. (For an identity column defined as
 GENERATED BY DEFAULT, OVERRIDING SYSTEM
 VALUE is the normal behavior and specifying it does nothing,
 but PostgreSQL™ allows it as an extension.)

	OVERRIDING USER VALUE
	
 If this clause is specified, then any values supplied for identity
 columns are ignored and the default sequence-generated values are
 applied.

 This clause is useful for example when copying values between tables.
 Writing INSERT INTO tbl2 OVERRIDING USER VALUE SELECT * FROM
 tbl1 will copy from tbl1 all columns that
 are not identity columns in tbl2 while values for
 the identity columns in tbl2 will be generated by
 the sequences associated with tbl2.

	DEFAULT VALUES
	
 All columns will be filled with their default values, as if
 DEFAULT were explicitly specified for each column.
 (An OVERRIDING clause is not permitted in this
 form.)

	expression
	
 An expression or value to assign to the corresponding column.

	DEFAULT
	
 The corresponding column will be filled with its default value. An
 identity column will be filled with a new value generated by the
 associated sequence. For a generated column, specifying this is
 permitted but merely specifies the normal behavior of computing the
 column from its generation expression.

	query
	
 A query (SELECT statement) that supplies the
 rows to be inserted. Refer to the
 SELECT(7)
 statement for a description of the syntax.

	output_expression
	
 An expression to be computed and returned by the
 INSERT command after each row is inserted or
 updated. The expression can use any column names of the table
 named by table_name. Write
 * to return all columns of the inserted or updated
 row(s).

	output_name
	
 A name to use for a returned column.

ON CONFLICT Clause

 The optional ON CONFLICT clause specifies an
 alternative action to raising a unique violation or exclusion
 constraint violation error. For each individual row proposed for
 insertion, either the insertion proceeds, or, if an
 arbiter constraint or index specified by
 conflict_target is violated, the
 alternative conflict_action is taken.
 ON CONFLICT DO NOTHING simply avoids inserting
 a row as its alternative action. ON CONFLICT DO
 UPDATE updates the existing row that conflicts with the
 row proposed for insertion as its alternative action.

 conflict_target can perform
 unique index inference. When performing
 inference, it consists of one or more index_column_name columns and/or
 index_expression
 expressions, and an optional index_predicate. All table_name unique indexes that,
 without regard to order, contain exactly the
 conflict_target-specified
 columns/expressions are inferred (chosen) as arbiter indexes. If
 an index_predicate is
 specified, it must, as a further requirement for inference,
 satisfy arbiter indexes. Note that this means a non-partial
 unique index (a unique index without a predicate) will be inferred
 (and thus used by ON CONFLICT) if such an index
 satisfying every other criteria is available. If an attempt at
 inference is unsuccessful, an error is raised.

 ON CONFLICT DO UPDATE guarantees an atomic
 INSERT or UPDATE outcome;
 provided there is no independent error, one of those two outcomes
 is guaranteed, even under high concurrency. This is also known as
 UPSERT — “UPDATE or
 INSERT”.

	conflict_target
	
 Specifies which conflicts ON CONFLICT takes
 the alternative action on by choosing arbiter
 indexes. Either performs unique index
 inference, or names a constraint explicitly. For
 ON CONFLICT DO NOTHING, it is optional to
 specify a conflict_target; when
 omitted, conflicts with all usable constraints (and unique
 indexes) are handled. For ON CONFLICT DO
 UPDATE, a conflict_target
 must be provided.

	conflict_action
	
 conflict_action specifies an
 alternative ON CONFLICT action. It can be
 either DO NOTHING, or a DO
 UPDATE clause specifying the exact details of the
 UPDATE action to be performed in case of a
 conflict. The SET and
 WHERE clauses in ON CONFLICT DO
 UPDATE have access to the existing row using the
 table's name (or an alias), and to the row proposed for insertion
 using the special excluded table.
 SELECT privilege is required on any column in the
 target table where corresponding excluded
 columns are read.

 Note that the effects of all per-row BEFORE
 INSERT triggers are reflected in
 excluded values, since those effects may
 have contributed to the row being excluded from insertion.

	index_column_name
	
 The name of a table_name column. Used to
 infer arbiter indexes. Follows CREATE
 INDEX format. SELECT privilege on
 index_column_name
 is required.

	index_expression
	
 Similar to index_column_name, but used to
 infer expressions on table_name columns appearing
 within index definitions (not simple columns). Follows
 CREATE INDEX format. SELECT
 privilege on any column appearing within index_expression is required.

	collation
	
 When specified, mandates that corresponding index_column_name or
 index_expression
 use a particular collation in order to be matched during
 inference. Typically this is omitted, as collations usually
 do not affect whether or not a constraint violation occurs.
 Follows CREATE INDEX format.

	opclass
	
 When specified, mandates that corresponding index_column_name or
 index_expression
 use particular operator class in order to be matched during
 inference. Typically this is omitted, as the
 equality semantics are often equivalent
 across a type's operator classes anyway, or because it's
 sufficient to trust that the defined unique indexes have the
 pertinent definition of equality. Follows CREATE
 INDEX format.

	index_predicate
	
 Used to allow inference of partial unique indexes. Any
 indexes that satisfy the predicate (which need not actually be
 partial indexes) can be inferred. Follows CREATE
 INDEX format. SELECT privilege on any
 column appearing within index_predicate is required.

	constraint_name
	
 Explicitly specifies an arbiter
 constraint by name, rather than inferring
 a constraint or index.

	condition
	
 An expression that returns a value of type
 boolean. Only rows for which this expression
 returns true will be updated, although all
 rows will be locked when the ON CONFLICT DO UPDATE
 action is taken. Note that
 condition is evaluated last, after
 a conflict has been identified as a candidate to update.

 Note that exclusion constraints are not supported as arbiters with
 ON CONFLICT DO UPDATE. In all cases, only
 NOT DEFERRABLE constraints and unique indexes
 are supported as arbiters.

 INSERT with an ON CONFLICT DO UPDATE
 clause is a “deterministic” statement. This means
 that the command will not be allowed to affect any single existing
 row more than once; a cardinality violation error will be raised
 when this situation arises. Rows proposed for insertion should
 not duplicate each other in terms of attributes constrained by an
 arbiter index or constraint.

 Note that it is currently not supported for the
 ON CONFLICT DO UPDATE clause of an
 INSERT applied to a partitioned table to update the
 partition key of a conflicting row such that it requires the row be moved
 to a new partition.

Tip

 It is often preferable to use unique index inference rather than
 naming a constraint directly using ON CONFLICT ON
 CONSTRAINT
 constraint_name. Inference will continue to work
 correctly when the underlying index is replaced by another more
 or less equivalent index in an overlapping way, for example when
 using CREATE UNIQUE INDEX ... CONCURRENTLY
 before dropping the index being replaced.

Warning

 While CREATE INDEX CONCURRENTLY or REINDEX
 CONCURRENTLY is running on a unique index, INSERT
 ... ON CONFLICT statements on the same table may unexpectedly
 fail with a unique violation.

Outputs

 On successful completion, an INSERT command returns a command
 tag of the form

INSERT oid count

 The count is the number of
 rows inserted or updated. oid is always 0 (it
 used to be the OID assigned to the inserted row if
 count was exactly one and the target table was
 declared WITH OIDS and 0 otherwise, but creating a table
 WITH OIDS is not supported anymore).

 If the INSERT command contains a RETURNING
 clause, the result will be similar to that of a SELECT
 statement containing the columns and values defined in the
 RETURNING list, computed over the row(s) inserted or
 updated by the command.

Notes

 If the specified table is a partitioned table, each row is routed to
 the appropriate partition and inserted into it. If the specified table
 is a partition, an error will occur if one of the input rows violates
 the partition constraint.

 You may also wish to consider using MERGE, since that
 allows mixing INSERT, UPDATE, and
 DELETE within a single statement.
 See MERGE(7).

Examples

 Insert a single row into table films:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, '1971-07-13', 'Comedy', '82 minutes');

 In this example, the len column is
 omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

 This example uses the DEFAULT clause for
 the date columns rather than specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes');
INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama');

 To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

 To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

 This example inserts some rows into table
 films from a table tmp_films
 with the same column layout as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < '2004-05-07';

 This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1, '{{" "," "," "},{" "," "," "},{" "," "," "}}');
-- The subscripts in the above example aren't really needed
INSERT INTO tictactoe (game, board)
 VALUES (2, '{{X," "," "},{" ",O," "},{" ",X," "}}');

 Insert a single row into table distributors, returning
 the sequence number generated by the DEFAULT clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')
 RETURNING did;

 Increment the sales count of the salesperson who manages the
 account for Acme Corporation, and record the whole updated row
 along with current time in a log table:

WITH upd AS (
 UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation')
 RETURNING *
)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;

 Insert or update new distributors as appropriate. Assumes a unique
 index has been defined that constrains values appearing in the
 did column. Note that the special
 excluded table is used to reference values originally
 proposed for insertion:

INSERT INTO distributors (did, dname)
 VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
 ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname;

 Insert a distributor, or do nothing for rows proposed for insertion
 when an existing, excluded row (a row with a matching constrained
 column or columns after before row insert triggers fire) exists.
 Example assumes a unique index has been defined that constrains
 values appearing in the did column:

INSERT INTO distributors (did, dname) VALUES (7, 'Redline GmbH')
 ON CONFLICT (did) DO NOTHING;

 Insert or update new distributors as appropriate. Example assumes
 a unique index has been defined that constrains values appearing in
 the did column. WHERE clause is
 used to limit the rows actually updated (any existing row not
 updated will still be locked, though):

-- Don't update existing distributors based in a certain ZIP code
INSERT INTO distributors AS d (did, dname) VALUES (8, 'Anvil Distribution')
 ON CONFLICT (did) DO UPDATE
 SET dname = EXCLUDED.dname || ' (formerly ' || d.dname || ')'
 WHERE d.zipcode <> '21201';

-- Name a constraint directly in the statement (uses associated
-- index to arbitrate taking the DO NOTHING action)
INSERT INTO distributors (did, dname) VALUES (9, 'Antwerp Design')
 ON CONFLICT ON CONSTRAINT distributors_pkey DO NOTHING;

 Insert new distributor if possible; otherwise
 DO NOTHING. Example assumes a unique index has been
 defined that constrains values appearing in the
 did column on a subset of rows where the
 is_active Boolean column evaluates to
 true:

-- This statement could infer a partial unique index on "did"
-- with a predicate of "WHERE is_active", but it could also
-- just use a regular unique constraint on "did"
INSERT INTO distributors (did, dname) VALUES (10, 'Conrad International')
 ON CONFLICT (did) WHERE is_active DO NOTHING;

Compatibility

 INSERT conforms to the SQL standard, except that
 the RETURNING clause is a
 PostgreSQL™ extension, as is the ability
 to use WITH with INSERT, and the ability to
 specify an alternative action with ON CONFLICT.
 Also, the case in
 which a column name list is omitted, but not all the columns are
 filled from the VALUES clause or query,
 is disallowed by the standard. If you prefer a more SQL standard
 conforming statement than ON CONFLICT, see
 MERGE(7).

 The SQL standard specifies that OVERRIDING SYSTEM VALUE
 can only be specified if an identity column that is generated always
 exists. PostgreSQL allows the clause in any case and ignores it if it is
 not applicable.

 Possible limitations of the query clause are documented under
 SELECT(7).

Name
LISTEN — listen for a notification

Synopsis

LISTEN channel

Description

 LISTEN registers the current session as a
 listener on the notification channel named channel.
 If the current session is already registered as a listener for
 this notification channel, nothing is done.

 Whenever the command NOTIFY channel is invoked, either
 by this session or another one connected to the same database, all
 the sessions currently listening on that notification channel are
 notified, and each will in turn notify its connected client
 application.

 A session can be unregistered for a given notification channel with the
 UNLISTEN command. A session's listen
 registrations are automatically cleared when the session ends.

 The method a client application must use to detect notification events depends on
 which PostgreSQL™ application programming interface it
 uses. With the libpq library, the application issues
 LISTEN as an ordinary SQL command, and then must
 periodically call the function PQnotifies to find out
 whether any notification events have been received. Other interfaces such as
 libpgtcl provide higher-level methods for handling notify events; indeed,
 with libpgtcl the application programmer should not even issue
 LISTEN or UNLISTEN directly. See the
 documentation for the interface you are using for more details.

Parameters
	channel
	
 Name of a notification channel (any identifier).

Notes

 LISTEN takes effect at transaction commit.
 If LISTEN or UNLISTEN is executed
 within a transaction that later rolls back, the set of notification
 channels being listened to is unchanged.

 A transaction that has executed LISTEN cannot be
 prepared for two-phase commit.

 There is a race condition when first setting up a listening session:
 if concurrently-committing transactions are sending notify events,
 exactly which of those will the newly listening session receive?
 The answer is that the session will receive all events committed after
 an instant during the transaction's commit step. But that is slightly
 later than any database state that the transaction could have observed
 in queries. This leads to the following rule for
 using LISTEN: first execute (and commit!) that
 command, then in a new transaction inspect the database state as needed
 by the application logic, then rely on notifications to find out about
 subsequent changes to the database state. The first few received
 notifications might refer to updates already observed in the initial
 database inspection, but this is usually harmless.

 NOTIFY(7)
 contains a more extensive
 discussion of the use of LISTEN and
 NOTIFY.

Examples

 Configure and execute a listen/notify sequence from
 psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Compatibility

 There is no LISTEN statement in the SQL
 standard.

See Also
NOTIFY(7), UNLISTEN(7)

Name
LOAD — load a shared library file

Synopsis

LOAD 'filename'

Description

 This command loads a shared library file into the PostgreSQL™
 server's address space. If the file has been loaded already,
 the command does nothing. Shared library files that contain C functions
 are automatically loaded whenever one of their functions is called.
 Therefore, an explicit LOAD is usually only needed to
 load a library that modifies the server's behavior through “hooks”
 rather than providing a set of functions.

 The library file name is typically given as just a bare file name,
 which is sought in the server's library search path (set
 by dynamic_library_path). Alternatively it can be
 given as a full path name. In either case the platform's standard shared
 library file name extension may be omitted.
 See the section called “Dynamic Loading” for more information on this topic.

 Non-superusers can only apply LOAD to library files
 located in $libdir/plugins/ — the specified
 filename must begin
 with exactly that string. (It is the database administrator's
 responsibility to ensure that only “safe” libraries
 are installed there.)

Compatibility

 LOAD is a PostgreSQL™
 extension.

See Also

 CREATE FUNCTION(7)

Name
LOCK — lock a table

Synopsis

LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description

 LOCK TABLE obtains a table-level lock, waiting
 if necessary for any conflicting locks to be released. If
 NOWAIT is specified, LOCK
 TABLE does not wait to acquire the desired lock: if it
 cannot be acquired immediately, the command is aborted and an
 error is emitted. Once obtained, the lock is held for the
 remainder of the current transaction. (There is no UNLOCK
 TABLE command; locks are always released at transaction
 end.)

 When a view is locked, all relations appearing in the view definition
 query are also locked recursively with the same lock mode.

 When acquiring locks automatically for commands that reference
 tables, PostgreSQL™ always uses the least
 restrictive lock mode possible. LOCK TABLE
 provides for cases when you might need more restrictive locking.
 For example, suppose an application runs a transaction at the
 READ COMMITTED isolation level and needs to ensure that
 data in a table remains stable for the duration of the transaction.
 To achieve this you could obtain SHARE lock mode over the
 table before querying. This will prevent concurrent data changes
 and ensure subsequent reads of the table see a stable view of
 committed data, because SHARE lock mode conflicts with
 the ROW EXCLUSIVE lock acquired by writers, and your
 LOCK TABLE name IN SHARE MODE
 statement will wait until any concurrent holders of ROW
 EXCLUSIVE mode locks commit or roll back. Thus, once you
 obtain the lock, there are no uncommitted writes outstanding;
 furthermore none can begin until you release the lock.

 To achieve a similar effect when running a transaction at the
 REPEATABLE READ or SERIALIZABLE
 isolation level, you have to execute the LOCK TABLE statement
 before executing any SELECT or data modification statement.
 A REPEATABLE READ or SERIALIZABLE transaction's
 view of data will be frozen when its first
 SELECT or data modification statement begins. A LOCK
 TABLE later in the transaction will still prevent concurrent writes
 — but it won't ensure that what the transaction reads corresponds to
 the latest committed values.

 If a transaction of this sort is going to change the data in the
 table, then it should use SHARE ROW EXCLUSIVE lock mode
 instead of SHARE mode. This ensures that only one
 transaction of this type runs at a time. Without this, a deadlock
 is possible: two transactions might both acquire SHARE
 mode, and then be unable to also acquire ROW EXCLUSIVE
 mode to actually perform their updates. (Note that a transaction's
 own locks never conflict, so a transaction can acquire ROW
 EXCLUSIVE mode when it holds SHARE mode — but not
 if anyone else holds SHARE mode.) To avoid deadlocks,
 make sure all transactions acquire locks on the same objects in the
 same order, and if multiple lock modes are involved for a single
 object, then transactions should always acquire the most
 restrictive mode first.

 More information about the lock modes and locking strategies can be
 found in the section called “Explicit Locking”.

Parameters
	name
	
 The name (optionally schema-qualified) of an existing table to
 lock. If ONLY is specified before the table name, only that
 table is locked. If ONLY is not specified, the table and all
 its descendant tables (if any) are locked. Optionally, *
 can be specified after the table name to explicitly indicate that
 descendant tables are included.

 The command LOCK TABLE a, b; is equivalent to
 LOCK TABLE a; LOCK TABLE b;. The tables are locked
 one-by-one in the order specified in the LOCK
 TABLE command.

	lockmode
	
 The lock mode specifies which locks this lock conflicts with.
 Lock modes are described in the section called “Explicit Locking”.

 If no lock mode is specified, then ACCESS
 EXCLUSIVE, the most restrictive mode, is used.

	NOWAIT
	
 Specifies that LOCK TABLE should not wait for
 any conflicting locks to be released: if the specified lock(s)
 cannot be acquired immediately without waiting, the transaction
 is aborted.

Notes

 To lock a table, the user must have the right privilege for the specified
 lockmode, or be the table's
 owner or a superuser. If the user has
 UPDATE, DELETE, or
 TRUNCATE privileges on the table, any lockmode is permitted. If the user has
 INSERT privileges on the table, ROW EXCLUSIVE
 MODE (or a less-conflicting mode as described in the section called “Explicit Locking”) is permitted. If a user has
 SELECT privileges on the table, ACCESS SHARE
 MODE is permitted.

 The user performing the lock on the view must have the corresponding
 privilege on the view. In addition, by default, the view's owner must
 have the relevant privileges on the underlying base relations, whereas the
 user performing the lock does not need any permissions on the underlying
 base relations. However, if the view has
 security_invoker set to true
 (see CREATE VIEW),
 the user performing the lock, rather than the view owner, must have the
 relevant privileges on the underlying base relations.

 LOCK TABLE is useless outside a transaction block: the lock
 would remain held only to the completion of the statement. Therefore
 PostgreSQL™ reports an error if LOCK
 is used outside a transaction block.
 Use
 BEGIN and
 COMMIT
 (or ROLLBACK)
 to define a transaction block.

 LOCK TABLE only deals with table-level locks, and so
 the mode names involving ROW are all misnomers. These
 mode names should generally be read as indicating the intention of
 the user to acquire row-level locks within the locked table. Also,
 ROW EXCLUSIVE mode is a shareable table lock. Keep in
 mind that all the lock modes have identical semantics so far as
 LOCK TABLE is concerned, differing only in the rules
 about which modes conflict with which. For information on how to
 acquire an actual row-level lock, see the section called “Row-Level Locks”
 and The Locking Clause
 in the SELECT(7) documentation.

Examples

 Obtain a SHARE lock on a primary key table when going to perform
 inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = 'Star Wars: Episode I - The Phantom Menace';
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;

 Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform
 a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility

 There is no LOCK TABLE in the SQL standard,
 which instead uses SET TRANSACTION to specify
 concurrency levels on transactions. PostgreSQL™ supports that too;
 see SET TRANSACTION(7) for details.

 Except for ACCESS SHARE, ACCESS EXCLUSIVE,
 and SHARE UPDATE EXCLUSIVE lock modes, the
 PostgreSQL™ lock modes and the
 LOCK TABLE syntax are compatible with those
 present in Oracle™.

Name
MERGE — conditionally insert, update, or delete rows of a table

Synopsis

[WITH with_query [, ...]]
MERGE INTO [ONLY] target_table_name [*] [[AS] target_alias]
 USING data_source ON join_condition
 when_clause [...]

where data_source is:

 { [ONLY] source_table_name [*] | (source_query) } [[AS] source_alias]

and when_clause is:

 { WHEN MATCHED [AND condition] THEN { merge_update | merge_delete | DO NOTHING } |
 WHEN NOT MATCHED [AND condition] THEN { merge_insert | DO NOTHING } }

and merge_insert is:

 INSERT [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER } VALUE]
 { VALUES ({ expression | DEFAULT } [, ...]) | DEFAULT VALUES }

and merge_update is:

 UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]

and merge_delete is:

 DELETE

Description

 MERGE performs actions that modify rows in the
 target table identified as target_table_name,
 using the data_source.
 MERGE provides a single SQL
 statement that can conditionally INSERT,
 UPDATE or DELETE rows, a task
 that would otherwise require multiple procedural language statements.

 First, the MERGE command performs a join
 from data_source to
 the target table
 producing zero or more candidate change rows. For each candidate change
 row, the status of MATCHED or NOT MATCHED
 is set just once, after which WHEN clauses are evaluated
 in the order specified. For each candidate change row, the first clause to
 evaluate as true is executed. No more than one WHEN
 clause is executed for any candidate change row.

 MERGE actions have the same effect as
 regular UPDATE, INSERT, or
 DELETE commands of the same names. The syntax of
 those commands is different, notably that there is no WHERE
 clause and no table name is specified. All actions refer to the
 target table,
 though modifications to other tables may be made using triggers.

 When DO NOTHING is specified, the source row is
 skipped. Since actions are evaluated in their specified order, DO
 NOTHING can be handy to skip non-interesting source rows before
 more fine-grained handling.

 There is no separate MERGE privilege.
 If you specify an update action, you must have the
 UPDATE privilege on the column(s)
 of the target table
 that are referred to in the SET clause.
 If you specify an insert action, you must have the INSERT
 privilege on the target table.
 If you specify a delete action, you must have the DELETE
 privilege on the target table.
 If you specify a DO NOTHING action, you must have
 the SELECT privilege on at least one column
 of the target table.
 You will also need SELECT privilege on any column(s)
 of the data_source and
 of the target table referred to
 in any condition (including join_condition)
 or expression.
 Privileges are tested once at statement start and are checked
 whether or not particular WHEN clauses are executed.

 MERGE is not supported if the
 target table is a
 materialized view, foreign table, or if it has any
 rules defined on it.

Parameters
	with_query
	
 The WITH clause allows you to specify one or more
 subqueries that can be referenced by name in the MERGE
 query. See the section called “WITH Queries (Common Table Expressions)” and SELECT(7)
 for details. Note that WITH RECURSIVE is not supported
 by MERGE.

	target_table_name
	
 The name (optionally schema-qualified) of the target table to merge into.
 If ONLY is specified before the table name, matching
 rows are updated or deleted in the named table only. If
 ONLY is not specified, matching rows are also updated
 or deleted in any tables inheriting from the named table. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included. The
 ONLY keyword and * option do not
 affect insert actions, which always insert into the named table only.

	target_alias
	
 A substitute name for the target table. When an alias is
 provided, it completely hides the actual name of the table. For
 example, given MERGE INTO foo AS f, the remainder of the
 MERGE statement must refer to this table as
 f not foo.

	source_table_name
	
 The name (optionally schema-qualified) of the source table, view, or
 transition table. If ONLY is specified before the
 table name, matching rows are included from the named table only. If
 ONLY is not specified, matching rows are also included
 from any tables inheriting from the named table. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included.

	source_query
	
 A query (SELECT statement or VALUES
 statement) that supplies the rows to be merged into the
 target table.
 Refer to the SELECT(7)
 statement or VALUES(7)
 statement for a description of the syntax.

	source_alias
	
 A substitute name for the data source. When an alias is
 provided, it completely hides the actual name of the table or the fact
 that a query was issued.

	join_condition
	
 join_condition is
 an expression resulting in a value of type
 boolean (similar to a WHERE
 clause) that specifies which rows in the
 data_source
 match rows in the target table.

Warning

 Only columns from the target table
 that attempt to match data_source
 rows should appear in join_condition.
 join_condition subexpressions that
 only reference the target table's
 columns can affect which action is taken, often in surprising ways.

	when_clause
	
 At least one WHEN clause is required.

 If the WHEN clause specifies WHEN MATCHED
 and the candidate change row matches a row in the
 target table,
 the WHEN clause is executed if the
 condition is
 absent or it evaluates to true.

 Conversely, if the WHEN clause specifies
 WHEN NOT MATCHED
 and the candidate change row does not match a row in the
 target table,
 the WHEN clause is executed if the
 condition is
 absent or it evaluates to true.

	condition
	
 An expression that returns a value of type boolean.
 If this expression for a WHEN clause
 returns true, then the action for that clause
 is executed for that row.

 A condition on a WHEN MATCHED clause can refer to columns
 in both the source and the target relations. A condition on a
 WHEN NOT MATCHED clause can only refer to columns from
 the source relation, since by definition there is no matching target row.
 Only the system attributes from the target table are accessible.

	merge_insert
	
 The specification of an INSERT action that inserts
 one row into the target table.
 The target column names can be listed in any order. If no list of
 column names is given at all, the default is all the columns of the
 table in their declared order.

 Each column not present in the explicit or implicit column list will be
 filled with a default value, either its declared default value
 or null if there is none.

 If the target table
 is a partitioned table, each row is routed to the appropriate partition
 and inserted into it.
 If the target table
 is a partition, an error will occur if any input row violates the
 partition constraint.

 Column names may not be specified more than once.
 INSERT actions cannot contain sub-selects.

 Only one VALUES clause can be specified.
 The VALUES clause can only refer to columns from
 the source relation, since by definition there is no matching target row.

	merge_update
	
 The specification of an UPDATE action that updates
 the current row of the target table.
 Column names may not be specified more than once.

 Neither a table name nor a WHERE clause are allowed.

	merge_delete
	
 Specifies a DELETE action that deletes the current row
 of the target table.
 Do not include the table name or any other clauses, as you would normally
 do with a DELETE(7) command.

	column_name
	
 The name of a column in the target table. The column name
 can be qualified with a subfield name or array subscript, if
 needed. (Inserting into only some fields of a composite
 column leaves the other fields null.)
 Do not include the table's name in the specification
 of a target column.

	OVERRIDING SYSTEM VALUE
	
 Without this clause, it is an error to specify an explicit value
 (other than DEFAULT) for an identity column defined
 as GENERATED ALWAYS. This clause overrides that
 restriction.

	OVERRIDING USER VALUE
	
 If this clause is specified, then any values supplied for identity
 columns defined as GENERATED BY DEFAULT are ignored
 and the default sequence-generated values are applied.

	DEFAULT VALUES
	
 All columns will be filled with their default values.
 (An OVERRIDING clause is not permitted in this
 form.)

	expression
	
 An expression to assign to the column. If used in a
 WHEN MATCHED clause, the expression can use values
 from the original row in the target table, and values from the
 data_source row.
 If used in a WHEN NOT MATCHED clause, the
 expression can use values from the
 data_source row.

	DEFAULT
	
 Set the column to its default value (which will be NULL
 if no specific default expression has been assigned to it).

	sub-SELECT
	
 A SELECT sub-query that produces as many output columns
 as are listed in the parenthesized column list preceding it. The
 sub-query must yield no more than one row when executed. If it
 yields one row, its column values are assigned to the target columns;
 if it yields no rows, NULL values are assigned to the target columns.
 The sub-query can refer to values from the original row in the target table,
 and values from the data_source
 row.

Outputs

 On successful completion, a MERGE command returns a command
 tag of the form

MERGE total_count

 The total_count is the total
 number of rows changed (whether inserted, updated, or deleted).
 If total_count is 0, no rows
 were changed in any way.

Notes

 The following steps take place during the execution of
 MERGE.

	
 Perform any BEFORE STATEMENT triggers for all
 actions specified, whether or not their WHEN
 clauses match.

	
 Perform a join from source to target table.
 The resulting query will be optimized normally and will produce
 a set of candidate change rows. For each candidate change row,

	
 Evaluate whether each row is MATCHED or
 NOT MATCHED.

	
 Test each WHEN condition in the order
 specified until one returns true.

	
 When a condition returns true, perform the following actions:

	
 Perform any BEFORE ROW triggers that fire
 for the action's event type.

	
 Perform the specified action, invoking any check constraints on the
 target table.

	
 Perform any AFTER ROW triggers that fire for
 the action's event type.

	
 Perform any AFTER STATEMENT triggers for actions
 specified, whether or not they actually occur. This is similar to the
 behavior of an UPDATE statement that modifies no rows.

 In summary, statement triggers for an event type (say,
 INSERT) will be fired whenever we
 specify an action of that kind.
 In contrast, row-level triggers will fire only for the specific event type
 being executed.
 So a MERGE command might fire statement triggers for both
 UPDATE and INSERT, even though only
 UPDATE row triggers were fired.

 You should ensure that the join produces at most one candidate change row
 for each target row. In other words, a target row shouldn't join to more
 than one data source row. If it does, then only one of the candidate change
 rows will be used to modify the target row; later attempts to modify the
 row will cause an error.
 This can also occur if row triggers make changes to the target table
 and the rows so modified are then subsequently also modified by
 MERGE.
 If the repeated action is an INSERT, this will
 cause a uniqueness violation, while a repeated UPDATE
 or DELETE will cause a cardinality violation; the
 latter behavior is required by the SQL standard.
 This differs from historical PostgreSQL™
 behavior of joins in UPDATE and
 DELETE statements where second and subsequent
 attempts to modify the same row are simply ignored.

 If a WHEN clause omits an AND
 sub-clause, it becomes the final reachable clause of that
 kind (MATCHED or NOT MATCHED).
 If a later WHEN clause of that kind
 is specified it would be provably unreachable and an error is raised.
 If no final reachable clause is specified of either kind, it is
 possible that no action will be taken for a candidate change row.

 The order in which rows are generated from the data source is
 indeterminate by default.
 A source_query can be
 used to specify a consistent ordering, if required, which might be
 needed to avoid deadlocks between concurrent transactions.

 There is no RETURNING clause with
 MERGE. Actions of INSERT,
 UPDATE and DELETE cannot contain
 RETURNING or WITH clauses.

 When MERGE is run concurrently with other commands
 that modify the target table, the usual transaction isolation rules
 apply; see the section called “Transaction Isolation” for an explanation
 on the behavior at each isolation level.
 You may also wish to consider using INSERT ... ON CONFLICT
 as an alternative statement which offers the ability to run an
 UPDATE if a concurrent INSERT
 occurs. There are a variety of differences and restrictions between
 the two statement types and they are not interchangeable.

Examples

 Perform maintenance on customer_accounts based
 upon new recent_transactions.

MERGE INTO customer_account ca
USING recent_transactions t
ON t.customer_id = ca.customer_id
WHEN MATCHED THEN
 UPDATE SET balance = balance + transaction_value
WHEN NOT MATCHED THEN
 INSERT (customer_id, balance)
 VALUES (t.customer_id, t.transaction_value);

 Notice that this would be exactly equivalent to the following
 statement because the MATCHED result does not change
 during execution.

MERGE INTO customer_account ca
USING (SELECT customer_id, transaction_value FROM recent_transactions) AS t
ON t.customer_id = ca.customer_id
WHEN MATCHED THEN
 UPDATE SET balance = balance + transaction_value
WHEN NOT MATCHED THEN
 INSERT (customer_id, balance)
 VALUES (t.customer_id, t.transaction_value);

 Attempt to insert a new stock item along with the quantity of stock. If
 the item already exists, instead update the stock count of the existing
 item. Don't allow entries that have zero stock.

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
 INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
 UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
 DELETE;

 The wine_stock_changes table might be, for example, a
 temporary table recently loaded into the database.

Compatibility

 This command conforms to the SQL standard.

 The WITH clause and DO NOTHING
 action are extensions to the SQL standard.

Name
MOVE — position a cursor

Synopsis

MOVE [direction] [FROM | IN] cursor_name

where direction can be one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description

 MOVE repositions a cursor without retrieving any data.
 MOVE works exactly like the FETCH
 command, except it only positions the cursor and does not return rows.

 The parameters for the MOVE command are identical to
 those of the FETCH command; refer to
 FETCH(7)
 for details on syntax and usage.

Outputs

 On successful completion, a MOVE command returns a command
 tag of the form

MOVE count

 The count is the number
 of rows that a FETCH command with the same parameters
 would have returned (possibly zero).

Examples

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;
 code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility

 There is no MOVE statement in the SQL standard.

See Also
CLOSE(7), DECLARE(7), FETCH(7)

Name
NOTIFY — generate a notification

Synopsis

NOTIFY channel [, payload]

Description

 The NOTIFY command sends a notification event together
 with an optional “payload” string to each client application that
 has previously executed
 LISTEN channel
 for the specified channel name in the current database.
 Notifications are visible to all users.

 NOTIFY provides a simple
 interprocess communication mechanism for a collection of processes
 accessing the same PostgreSQL™ database.
 A payload string can be sent along with the notification, and
 higher-level mechanisms for passing structured data can be built by using
 tables in the database to pass additional data from notifier to listener(s).

 The information passed to the client for a notification event includes the
 notification channel
 name, the notifying session's server process PID, and the
 payload string, which is an empty string if it has not been specified.

 It is up to the database designer to define the channel names that will
 be used in a given database and what each one means.
 Commonly, the channel name is the same as the name of some table in
 the database, and the notify event essentially means, “I changed this table,
 take a look at it to see what's new”. But no such association is enforced by
 the NOTIFY and LISTEN commands. For
 example, a database designer could use several different channel names
 to signal different sorts of changes to a single table. Alternatively,
 the payload string could be used to differentiate various cases.

 When NOTIFY is used to signal the occurrence of changes
 to a particular table, a useful programming technique is to put the
 NOTIFY in a statement trigger that is triggered by table updates.
 In this way, notification happens automatically when the table is changed,
 and the application programmer cannot accidentally forget to do it.

 NOTIFY interacts with SQL transactions in some important
 ways. Firstly, if a NOTIFY is executed inside a
 transaction, the notify events are not delivered until and unless the
 transaction is committed. This is appropriate, since if the transaction
 is aborted, all the commands within it have had no
 effect, including NOTIFY. But it can be disconcerting if one
 is expecting the notification events to be delivered immediately. Secondly, if
 a listening session receives a notification signal while it is within a transaction,
 the notification event will not be delivered to its connected client until just
 after the transaction is completed (either committed or aborted). Again, the
 reasoning is that if a notification were delivered within a transaction that was
 later aborted, one would want the notification to be undone somehow —
 but
 the server cannot “take back” a notification once it has sent it to the client.
 So notification events are only delivered between transactions. The upshot of this
 is that applications using NOTIFY for real-time signaling
 should try to keep their transactions short.

 If the same channel name is signaled multiple times with identical
 payload strings within the same transaction, only one instance of the
 notification event is delivered to listeners.
 On the other hand, notifications with distinct payload strings will
 always be delivered as distinct notifications. Similarly, notifications from
 different transactions will never get folded into one notification.
 Except for dropping later instances of duplicate notifications,
 NOTIFY guarantees that notifications from the same
 transaction get delivered in the order they were sent. It is also
 guaranteed that messages from different transactions are delivered in
 the order in which the transactions committed.

 It is common for a client that executes NOTIFY
 to be listening on the same notification channel itself. In that case
 it will get back a notification event, just like all the other
 listening sessions. Depending on the application logic, this could
 result in useless work, for example, reading a database table to
 find the same updates that that session just wrote out. It is
 possible to avoid such extra work by noticing whether the notifying
 session's server process PID (supplied in the
 notification event message) is the same as one's own session's
 PID (available from libpq). When they
 are the same, the notification event is one's own work bouncing
 back, and can be ignored.

Parameters
	channel
	
 Name of the notification channel to be signaled (any identifier).

	payload
	
 The “payload” string to be communicated along with the
 notification. This must be specified as a simple string literal.
 In the default configuration it must be shorter than 8000 bytes.
 (If binary data or large amounts of information need to be communicated,
 it's best to put it in a database table and send the key of the record.)

Notes

 There is a queue that holds notifications that have been sent but not
 yet processed by all listening sessions. If this queue becomes full,
 transactions calling NOTIFY will fail at commit.
 The queue is quite large (8GB in a standard installation) and should be
 sufficiently sized for almost every use case. However, no cleanup can take
 place if a session executes LISTEN and then enters a
 transaction for a very long time. Once the queue is half full you will see
 warnings in the log file pointing you to the session that is preventing
 cleanup. In this case you should make sure that this session ends its
 current transaction so that cleanup can proceed.

 The function pg_notification_queue_usage returns the
 fraction of the queue that is currently occupied by pending notifications.
 See the section called “System Information Functions and Operators” for more information.

 A transaction that has executed NOTIFY cannot be
 prepared for two-phase commit.

pg_notify

 To send a notification you can also use the function
 pg_notify(text,
 text). The function takes the channel name as the
 first argument and the payload as the second. The function is much easier
 to use than the NOTIFY command if you need to work with
 non-constant channel names and payloads.

Examples

 Configure and execute a listen/notify sequence from
 psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.
NOTIFY virtual, 'This is the payload';
Asynchronous notification "virtual" with payload "This is the payload" received from server process with PID 8448.

LISTEN foo;
SELECT pg_notify('fo' || 'o', 'pay' || 'load');
Asynchronous notification "foo" with payload "payload" received from server process with PID 14728.

Compatibility

 There is no NOTIFY statement in the SQL
 standard.

See Also
LISTEN(7), UNLISTEN(7)

Name
PREPARE — prepare a statement for execution

Synopsis

PREPARE name [(data_type [, ...])] AS statement

Description

 PREPARE creates a prepared statement. A prepared
 statement is a server-side object that can be used to optimize
 performance. When the PREPARE statement is
 executed, the specified statement is parsed, analyzed, and rewritten.
 When an EXECUTE command is subsequently
 issued, the prepared statement is planned and executed. This division
 of labor avoids repetitive parse analysis work, while allowing
 the execution plan to depend on the specific parameter values supplied.

 Prepared statements can take parameters: values that are
 substituted into the statement when it is executed. When creating
 the prepared statement, refer to parameters by position, using
 $1, $2, etc. A corresponding list of
 parameter data types can optionally be specified. When a
 parameter's data type is not specified or is declared as
 unknown, the type is inferred from the context
 in which the parameter is first referenced (if possible). When executing the
 statement, specify the actual values for these parameters in the
 EXECUTE statement. Refer to EXECUTE(7) for more
 information about that.

 Prepared statements only last for the duration of the current
 database session. When the session ends, the prepared statement is
 forgotten, so it must be recreated before being used again. This
 also means that a single prepared statement cannot be used by
 multiple simultaneous database clients; however, each client can create
 their own prepared statement to use. Prepared statements can be
 manually cleaned up using the DEALLOCATE command.

 Prepared statements potentially have the largest performance advantage
 when a single session is being used to execute a large number of similar
 statements. The performance difference will be particularly
 significant if the statements are complex to plan or rewrite, e.g.,
 if the query involves a join of many tables or requires
 the application of several rules. If the statement is relatively simple
 to plan and rewrite but relatively expensive to execute, the
 performance advantage of prepared statements will be less noticeable.

Parameters
	name
	
 An arbitrary name given to this particular prepared
 statement. It must be unique within a single session and is
 subsequently used to execute or deallocate a previously prepared
 statement.

	data_type
	
 The data type of a parameter to the prepared statement. If the
 data type of a particular parameter is unspecified or is
 specified as unknown, it will be inferred
 from the context in which the parameter is first referenced. To refer to the
 parameters in the prepared statement itself, use
 $1, $2, etc.

	statement
	
 Any SELECT, INSERT, UPDATE,
 DELETE, MERGE, or VALUES
 statement.

Notes

 A prepared statement can be executed with either a generic
 plan or a custom plan. A generic
 plan is the same across all executions, while a custom plan is generated
 for a specific execution using the parameter values given in that call.
 Use of a generic plan avoids planning overhead, but in some situations
 a custom plan will be much more efficient to execute because the planner
 can make use of knowledge of the parameter values. (Of course, if the
 prepared statement has no parameters, then this is moot and a generic
 plan is always used.)

 By default (that is, when plan_cache_mode is set
 to auto), the server will automatically choose
 whether to use a generic or custom plan for a prepared statement that
 has parameters. The current rule for this is that the first five
 executions are done with custom plans and the average estimated cost of
 those plans is calculated. Then a generic plan is created and its
 estimated cost is compared to the average custom-plan cost. Subsequent
 executions use the generic plan if its cost is not so much higher than
 the average custom-plan cost as to make repeated replanning seem
 preferable.

 This heuristic can be overridden, forcing the server to use either
 generic or custom plans, by setting plan_cache_mode
 to force_generic_plan
 or force_custom_plan respectively.
 This setting is primarily useful if the generic plan's cost estimate
 is badly off for some reason, allowing it to be chosen even though
 its actual cost is much more than that of a custom plan.

 To examine the query plan PostgreSQL™ is using
 for a prepared statement, use EXPLAIN, for example

EXPLAIN EXECUTE name(parameter_values);

 If a generic plan is in use, it will contain parameter symbols
 $n, while a custom plan
 will have the supplied parameter values substituted into it.

 For more information on query planning and the statistics collected
 by PostgreSQL™ for that purpose, see
 the ANALYZE(7)
 documentation.

 Although the main point of a prepared statement is to avoid repeated parse
 analysis and planning of the statement, PostgreSQL™ will
 force re-analysis and re-planning of the statement before using it
 whenever database objects used in the statement have undergone
 definitional (DDL) changes or their planner statistics have
 been updated since the previous use of the prepared
 statement. Also, if the value of search_path changes
 from one use to the next, the statement will be re-parsed using the new
 search_path. (This latter behavior is new as of
 PostgreSQL™ 9.3.) These rules make use of a
 prepared statement semantically almost equivalent to re-submitting the
 same query text over and over, but with a performance benefit if no object
 definitions are changed, especially if the best plan remains the same
 across uses. An example of a case where the semantic equivalence is not
 perfect is that if the statement refers to a table by an unqualified name,
 and then a new table of the same name is created in a schema appearing
 earlier in the search_path, no automatic re-parse will occur
 since no object used in the statement changed. However, if some other
 change forces a re-parse, the new table will be referenced in subsequent
 uses.

 You can see all prepared statements available in the session by querying the
 pg_prepared_statements
 system view.

Examples

 Create a prepared statement for an INSERT
 statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS
 INSERT INTO foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

 Create a prepared statement for a SELECT
 statement, and then execute it:

PREPARE usrrptplan (int) AS
 SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
 AND l.date = $2;
EXECUTE usrrptplan(1, current_date);

 In this example, the data type of the second parameter is not specified,
 so it is inferred from the context in which $2 is used.

Compatibility

 The SQL standard includes a PREPARE statement,
 but it is only for use in embedded SQL. This version of the
 PREPARE statement also uses a somewhat different
 syntax.

See Also
DEALLOCATE(7), EXECUTE(7)

Name
PREPARE TRANSACTION — prepare the current transaction for two-phase commit

Synopsis

PREPARE TRANSACTION transaction_id

Description

 PREPARE TRANSACTION prepares the current transaction
 for two-phase commit. After this command, the transaction is no longer
 associated with the current session; instead, its state is fully stored on
 disk, and there is a very high probability that it can be committed
 successfully, even if a database crash occurs before the commit is
 requested.

 Once prepared, a transaction can later be committed or rolled back
 with COMMIT PREPARED
 or ROLLBACK PREPARED,
 respectively. Those commands can be issued from any session, not
 only the one that executed the original transaction.

 From the point of view of the issuing session, PREPARE
 TRANSACTION is not unlike a ROLLBACK command:
 after executing it, there is no active current transaction, and the
 effects of the prepared transaction are no longer visible. (The effects
 will become visible again if the transaction is committed.)

 If the PREPARE TRANSACTION command fails for any
 reason, it becomes a ROLLBACK: the current transaction
 is canceled.

Parameters
	transaction_id
	
 An arbitrary identifier that later identifies this transaction for
 COMMIT PREPARED or ROLLBACK PREPARED.
 The identifier must be written as a string literal, and must be
 less than 200 bytes long. It must not be the same as the identifier
 used for any currently prepared transaction.

Notes

 PREPARE TRANSACTION is not intended for use in applications
 or interactive sessions. Its purpose is to allow an external
 transaction manager to perform atomic global transactions across multiple
 databases or other transactional resources. Unless you're writing a
 transaction manager, you probably shouldn't be using PREPARE
 TRANSACTION.

 This command must be used inside a transaction block. Use BEGIN to start one.

 It is not currently allowed to PREPARE a transaction that
 has executed any operations involving temporary tables or the session's
 temporary namespace, created any cursors WITH HOLD, or
 executed LISTEN, UNLISTEN, or
 NOTIFY.
 Those features are too tightly
 tied to the current session to be useful in a transaction to be prepared.

 If the transaction modified any run-time parameters with SET
 (without the LOCAL option),
 those effects persist after PREPARE TRANSACTION, and will not
 be affected by any later COMMIT PREPARED or
 ROLLBACK PREPARED. Thus, in this one respect
 PREPARE TRANSACTION acts more like COMMIT than
 ROLLBACK.

 All currently available prepared transactions are listed in the
 pg_prepared_xacts
 system view.

Caution

 It is unwise to leave transactions in the prepared state for a long time.
 This will interfere with the ability of VACUUM to reclaim
 storage, and in extreme cases could cause the database to shut down
 to prevent transaction ID wraparound (see the section called “Preventing Transaction ID Wraparound Failures”). Keep in mind also that the transaction
 continues to hold whatever locks it held. The intended usage of the
 feature is that a prepared transaction will normally be committed or
 rolled back as soon as an external transaction manager has verified that
 other databases are also prepared to commit.

 If you have not set up an external transaction manager to track prepared
 transactions and ensure they get closed out promptly, it is best to keep
 the prepared-transaction feature disabled by setting
 max_prepared_transactions to zero. This will
 prevent accidental creation of prepared transactions that might then
 be forgotten and eventually cause problems.

Examples

 Prepare the current transaction for two-phase commit, using
 foobar as the transaction identifier:

PREPARE TRANSACTION 'foobar';

Compatibility

 PREPARE TRANSACTION is a
 PostgreSQL™ extension. It is intended for use by
 external transaction management systems, some of which are covered by
 standards (such as X/Open XA), but the SQL side of those systems is not
 standardized.

See Also
COMMIT PREPARED(7), ROLLBACK PREPARED(7)

Name
REASSIGN OWNED — change the ownership of database objects owned by a database role

Synopsis

REASSIGN OWNED BY { old_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]
 TO { new_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

Description

 REASSIGN OWNED instructs the system to change
 the ownership of database objects owned by any of the
 old_roles to
 new_role.

Parameters
	old_role
	
 The name of a role. The ownership of all the objects within the
 current database, and of all shared objects (databases, tablespaces),
 owned by this role will be reassigned to
 new_role.

	new_role
	
 The name of the role that will be made the new owner of the
 affected objects.

Notes

 REASSIGN OWNED is often used to prepare for the
 removal of one or more roles. Because REASSIGN
 OWNED does not affect objects within other databases,
 it is usually necessary to execute this command in each database
 that contains objects owned by a role that is to be removed.

 REASSIGN OWNED requires membership on both the
 source role(s) and the target role.

 The DROP OWNED command is an alternative that
 simply drops all the database objects owned by one or more roles.

 The REASSIGN OWNED command does not affect any
 privileges granted to
 the old_roles on objects
 that are not owned by them. Likewise, it does not affect default
 privileges created with ALTER DEFAULT PRIVILEGES.
 Use DROP OWNED to revoke such privileges.

 See the section called “Dropping Roles” for more discussion.

Compatibility

 The REASSIGN OWNED command is a
 PostgreSQL™ extension.

See Also
DROP OWNED(7), DROP ROLE(7), ALTER DATABASE(7)

Name
REFRESH MATERIALIZED VIEW — replace the contents of a materialized view

Synopsis

REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

Description

 REFRESH MATERIALIZED VIEW completely replaces the
 contents of a materialized view. To execute this command you must be the
 owner of the materialized view. The old contents are discarded. If
 WITH DATA is specified (or defaults) the backing query
 is executed to provide the new data, and the materialized view is left in a
 scannable state. If WITH NO DATA is specified no new
 data is generated and the materialized view is left in an unscannable
 state.

 CONCURRENTLY and WITH NO DATA may not
 be specified together.

Parameters
	CONCURRENTLY
	
 Refresh the materialized view without locking out concurrent selects on
 the materialized view. Without this option a refresh which affects a
 lot of rows will tend to use fewer resources and complete more quickly,
 but could block other connections which are trying to read from the
 materialized view. This option may be faster in cases where a small
 number of rows are affected.

 This option is only allowed if there is at least one
 UNIQUE index on the materialized view which uses only
 column names and includes all rows; that is, it must not be an
 expression index or include a WHERE clause.

 This option may not be used when the materialized view is not already
 populated.

 Even with this option only one REFRESH at a time may
 run against any one materialized view.

	name
	
 The name (optionally schema-qualified) of the materialized view to
 refresh.

Notes

 If there is an ORDER BY clause in the materialized
 view's defining query, the original contents of the materialized view
 will be ordered that way; but REFRESH MATERIALIZED
 VIEW does not guarantee to preserve that ordering.

Examples

 This command will replace the contents of the materialized view called
 order_summary using the query from the materialized
 view's definition, and leave it in a scannable state:

REFRESH MATERIALIZED VIEW order_summary;

 This command will free storage associated with the materialized view
 annual_statistics_basis and leave it in an unscannable
 state:

REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;

Compatibility

 REFRESH MATERIALIZED VIEW is a
 PostgreSQL™ extension.

See Also
CREATE MATERIALIZED VIEW(7), ALTER MATERIALIZED VIEW(7), DROP MATERIALIZED VIEW(7)

Name
REINDEX — rebuild indexes

Synopsis

REINDEX [(option [, ...])] { INDEX | TABLE | SCHEMA } [CONCURRENTLY] name
REINDEX [(option [, ...])] { DATABASE | SYSTEM } [CONCURRENTLY] [name]

where option can be one of:

 CONCURRENTLY [boolean]
 TABLESPACE new_tablespace
 VERBOSE [boolean]

Description

 REINDEX rebuilds an index using the data
 stored in the index's table, replacing the old copy of the index. There are
 several scenarios in which to use REINDEX:

	
 An index has become corrupted, and no longer contains valid
 data. Although in theory this should never happen, in
 practice indexes can become corrupted due to software bugs or
 hardware failures. REINDEX provides a
 recovery method.

	
 An index has become “bloated”, that is it contains many
 empty or nearly-empty pages. This can occur with B-tree indexes in
 PostgreSQL™ under certain uncommon access
 patterns. REINDEX provides a way to reduce
 the space consumption of the index by writing a new version of
 the index without the dead pages. See the section called “Routine Reindexing” for more information.

	
 You have altered a storage parameter (such as fillfactor)
 for an index, and wish to ensure that the change has taken full effect.

	
 If an index build fails with the CONCURRENTLY option,
 this index is left as “invalid”. Such indexes are useless
 but it can be convenient to use REINDEX to rebuild
 them. Note that only REINDEX INDEX is able
 to perform a concurrent build on an invalid index.

Parameters
	INDEX
	
 Recreate the specified index. This form of REINDEX
 cannot be executed inside a transaction block when used with a
 partitioned index.

	TABLE
	
 Recreate all indexes of the specified table. If the table has a
 secondary “TOAST” table, that is reindexed as well.
 This form of REINDEX cannot be executed inside a
 transaction block when used with a partitioned table.

	SCHEMA
	
 Recreate all indexes of the specified schema. If a table of this
 schema has a secondary “TOAST” table, that is reindexed as
 well. Indexes on shared system catalogs are also processed.
 This form of REINDEX cannot be executed inside a
 transaction block.

	DATABASE
	
 Recreate all indexes within the current database, except system
 catalogs.
 Indexes on system catalogs are not processed.
 This form of REINDEX cannot be executed inside a
 transaction block.

	SYSTEM
	
 Recreate all indexes on system catalogs within the current database.
 Indexes on shared system catalogs are included.
 Indexes on user tables are not processed.
 This form of REINDEX cannot be executed inside a
 transaction block.

	name
	
 The name of the specific index, table, or database to be
 reindexed. Index and table names can be schema-qualified.
 Presently, REINDEX DATABASE and REINDEX SYSTEM
 can only reindex the current database. Their parameter is optional,
 and it must match the current database's name.

	CONCURRENTLY
	
 When this option is used, PostgreSQL™ will rebuild the
 index without taking any locks that prevent concurrent inserts,
 updates, or deletes on the table; whereas a standard index rebuild
 locks out writes (but not reads) on the table until it's done.
 There are several caveats to be aware of when using this option
 — see Rebuilding Indexes Concurrently below.

 For temporary tables, REINDEX is always
 non-concurrent, as no other session can access them, and
 non-concurrent reindex is cheaper.

	TABLESPACE
	
 Specifies that indexes will be rebuilt on a new tablespace.

	VERBOSE
	
 Prints a progress report as each index is reindexed.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

	new_tablespace
	
 The tablespace where indexes will be rebuilt.

Notes

 If you suspect corruption of an index on a user table, you can
 simply rebuild that index, or all indexes on the table, using
 REINDEX INDEX or REINDEX TABLE.

 Things are more difficult if you need to recover from corruption of
 an index on a system table. In this case it's important for the
 system to not have used any of the suspect indexes itself.
 (Indeed, in this sort of scenario you might find that server
 processes are crashing immediately at start-up, due to reliance on
 the corrupted indexes.) To recover safely, the server must be started
 with the -P option, which prevents it from using
 indexes for system catalog lookups.

 One way to do this is to shut down the server and start a single-user
 PostgreSQL™ server
 with the -P option included on its command line.
 Then, REINDEX DATABASE, REINDEX SYSTEM,
 REINDEX TABLE, or REINDEX INDEX can be
 issued, depending on how much you want to reconstruct. If in
 doubt, use REINDEX SYSTEM to select
 reconstruction of all system indexes in the database. Then quit
 the single-user server session and restart the regular server.
 See the postgres(1) reference page for more
 information about how to interact with the single-user server
 interface.

 Alternatively, a regular server session can be started with
 -P included in its command line options.
 The method for doing this varies across clients, but in all
 libpq-based clients, it is possible to set
 the PGOPTIONS environment variable to -P
 before starting the client. Note that while this method does not
 require locking out other clients, it might still be wise to prevent
 other users from connecting to the damaged database until repairs
 have been completed.

 REINDEX is similar to a drop and recreate of the index
 in that the index contents are rebuilt from scratch. However, the locking
 considerations are rather different. REINDEX locks out writes
 but not reads of the index's parent table. It also takes an
 ACCESS EXCLUSIVE lock on the specific index being processed,
 which will block reads that attempt to use that index. In particular,
 the query planner tries to take an ACCESS SHARE
 lock on every index of the table, regardless of the query, and so
 REINDEX blocks virtually any queries except for some
 prepared queries whose plan has been cached and which don't use this very
 index. In contrast,
 DROP INDEX momentarily takes an
 ACCESS EXCLUSIVE lock on the parent table, blocking both
 writes and reads. The subsequent CREATE INDEX locks out
 writes but not reads; since the index is not there, no read will attempt to
 use it, meaning that there will be no blocking but reads might be forced
 into expensive sequential scans.

 Reindexing a single index or table requires being the owner of that
 index or table. Reindexing a schema or database requires being the
 owner of that schema or database. Note specifically that it's thus
 possible for non-superusers to rebuild indexes of tables owned by
 other users. However, as a special exception, when
 REINDEX DATABASE, REINDEX SCHEMA
 or REINDEX SYSTEM is issued by a non-superuser,
 indexes on shared catalogs will be skipped unless the user owns the
 catalog (which typically won't be the case). Of course, superusers
 can always reindex anything.

 Reindexing partitioned indexes or partitioned tables is supported
 with REINDEX INDEX or REINDEX TABLE,
 respectively. Each partition of the specified partitioned relation is
 reindexed in a separate transaction. Those commands cannot be used inside
 a transaction block when working on a partitioned table or index.

 When using the TABLESPACE clause with
 REINDEX on a partitioned index or table, only the
 tablespace references of the leaf partitions are updated. As partitioned
 indexes are not updated, it is recommended to separately use
 ALTER TABLE ONLY on them so as any new partitions
 attached inherit the new tablespace. On failure, it may not have moved
 all the indexes to the new tablespace. Re-running the command will rebuild
 all the leaf partitions and move previously-unprocessed indexes to the new
 tablespace.

 If SCHEMA, DATABASE or
 SYSTEM is used with TABLESPACE,
 system relations are skipped and a single WARNING
 will be generated. Indexes on TOAST tables are rebuilt, but not moved
 to the new tablespace.

Rebuilding Indexes Concurrently

 Rebuilding an index can interfere with regular operation of a database.
 Normally PostgreSQL™ locks the table whose index is rebuilt
 against writes and performs the entire index build with a single scan of the
 table. Other transactions can still read the table, but if they try to
 insert, update, or delete rows in the table they will block until the
 index rebuild is finished. This could have a severe effect if the system is
 a live production database. Very large tables can take many hours to be
 indexed, and even for smaller tables, an index rebuild can lock out writers
 for periods that are unacceptably long for a production system.

 PostgreSQL™ supports rebuilding indexes with minimum locking
 of writes. This method is invoked by specifying the
 CONCURRENTLY option of REINDEX. When this option
 is used, PostgreSQL™ must perform two scans of the table
 for each index that needs to be rebuilt and wait for termination of
 all existing transactions that could potentially use the index.
 This method requires more total work than a standard index
 rebuild and takes significantly longer to complete as it needs to wait
 for unfinished transactions that might modify the index. However, since
 it allows normal operations to continue while the index is being rebuilt, this
 method is useful for rebuilding indexes in a production environment. Of
 course, the extra CPU, memory and I/O load imposed by the index rebuild
 may slow down other operations.

 The following steps occur in a concurrent reindex. Each step is run in a
 separate transaction. If there are multiple indexes to be rebuilt, then
 each step loops through all the indexes before moving to the next step.

	
 A new transient index definition is added to the catalog
 pg_index. This definition will be used to replace
 the old index. A SHARE UPDATE EXCLUSIVE lock at
 session level is taken on the indexes being reindexed as well as their
 associated tables to prevent any schema modification while processing.

	
 A first pass to build the index is done for each new index. Once the
 index is built, its flag pg_index.indisready is
 switched to “true” to make it ready for inserts, making it
 visible to other sessions once the transaction that performed the build
 is finished. This step is done in a separate transaction for each
 index.

	
 Then a second pass is performed to add tuples that were added while the
 first pass was running. This step is also done in a separate
 transaction for each index.

	
 All the constraints that refer to the index are changed to refer to the
 new index definition, and the names of the indexes are changed. At
 this point, pg_index.indisvalid is switched to
 “true” for the new index and to “false” for
 the old, and a cache invalidation is done causing all sessions that
 referenced the old index to be invalidated.

	
 The old indexes have pg_index.indisready switched to
 “false” to prevent any new tuple insertions, after waiting
 for running queries that might reference the old index to complete.

	
 The old indexes are dropped. The SHARE UPDATE
 EXCLUSIVE session locks for the indexes and the table are
 released.

 If a problem arises while rebuilding the indexes, such as a
 uniqueness violation in a unique index, the REINDEX
 command will fail but leave behind an “invalid” new index in addition to
 the pre-existing one. This index will be ignored for querying purposes
 because it might be incomplete; however it will still consume update
 overhead. The psql \d command will report
 such an index as INVALID:

postgres=# \d tab
 Table "public.tab"
 Column | Type | Modifiers
--------+---------+-----------
 col | integer |
Indexes:
 "idx" btree (col)
 "idx_ccnew" btree (col) INVALID

 If the index marked INVALID is suffixed
 _ccnew, then it corresponds to the transient
 index created during the concurrent operation, and the recommended
 recovery method is to drop it using DROP INDEX,
 then attempt REINDEX CONCURRENTLY again.
 If the invalid index is instead suffixed _ccold,
 it corresponds to the original index which could not be dropped;
 the recommended recovery method is to just drop said index, since the
 rebuild proper has been successful.
 A nonzero number may be appended to the suffix of the invalid index
 names to keep them unique, like _ccnew1,
 _ccold2, etc.

 Regular index builds permit other regular index builds on the same table
 to occur simultaneously, but only one concurrent index build can occur on a
 table at a time. In both cases, no other types of schema modification on
 the table are allowed meanwhile. Another difference is that a regular
 REINDEX TABLE or REINDEX INDEX
 command can be performed within a transaction block, but REINDEX
 CONCURRENTLY cannot.

 Like any long-running transaction, REINDEX on a table
 can affect which tuples can be removed by concurrent
 VACUUM on any other table.

 REINDEX SYSTEM does not support
 CONCURRENTLY since system catalogs cannot be reindexed
 concurrently.

 Furthermore, indexes for exclusion constraints cannot be reindexed
 concurrently. If such an index is named directly in this command, an
 error is raised. If a table or database with exclusion constraint indexes
 is reindexed concurrently, those indexes will be skipped. (It is possible
 to reindex such indexes without the CONCURRENTLY option.)

 Each backend running REINDEX will report its progress
 in the pg_stat_progress_create_index view. See
 the section called “CREATE INDEX Progress Reporting” for details.

Examples

 Rebuild a single index:

REINDEX INDEX my_index;

 Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

 Rebuild all indexes in a particular database, without trusting the
 system indexes to be valid already:

$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

 Rebuild indexes for a table, without blocking read and write operations
 on involved relations while reindexing is in progress:

REINDEX TABLE CONCURRENTLY my_broken_table;

Compatibility

 There is no REINDEX command in the SQL standard.

See Also
CREATE INDEX(7), DROP INDEX(7), reindexdb(1), the section called “CREATE INDEX Progress Reporting”

Name
RELEASE SAVEPOINT — release a previously defined savepoint

Synopsis

RELEASE [SAVEPOINT] savepoint_name

Description

 RELEASE SAVEPOINT releases the named savepoint and
 all active savepoints that were created after the named savepoint,
 and frees their resources. All changes made since the creation of
 the savepoint that didn't already get rolled back are merged into
 the transaction or savepoint that was active when the named savepoint
 was created. Changes made after RELEASE SAVEPOINT
 will also be part of this active transaction or savepoint.

Parameters
	savepoint_name
	
 The name of the savepoint to release.

Notes

 Specifying a savepoint name that was not previously defined is an error.

 It is not possible to release a savepoint when the transaction is in
 an aborted state; to do that, use ROLLBACK TO SAVEPOINT(7).

 If multiple savepoints have the same name, only the most recently defined
 unreleased one is released. Repeated commands will release progressively
 older savepoints.

Examples

 To establish and later release a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

 The above transaction will insert both 3 and 4.

 A more complex example with multiple nested subtransactions:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT sp1;
 INSERT INTO table1 VALUES (2);
 SAVEPOINT sp2;
 INSERT INTO table1 VALUES (3);
 RELEASE SAVEPOINT sp2;
 INSERT INTO table1 VALUES (4))); -- generates an error

 In this example, the application requests the release of the savepoint
 sp2, which inserted 3. This changes the insert's
 transaction context to sp1. When the statement
 attempting to insert value 4 generates an error, the insertion of 2 and
 4 are lost because they are in the same, now-rolled back savepoint,
 and value 3 is in the same transaction context. The application can
 now only choose one of these two commands, since all other commands
 will be ignored:

 ROLLBACK;
 ROLLBACK TO SAVEPOINT sp1;

 Choosing ROLLBACK will abort everything, including
 value 1, whereas ROLLBACK TO SAVEPOINT sp1 will retain
 value 1 and allow the transaction to continue.

Compatibility

 This command conforms to the SQL standard. The standard
 specifies that the key word SAVEPOINT is
 mandatory, but PostgreSQL™ allows it to
 be omitted.

See Also
BEGIN(7), COMMIT(7), ROLLBACK(7), ROLLBACK TO SAVEPOINT(7), SAVEPOINT(7)

Name
RESET — restore the value of a run-time parameter to the default value

Synopsis

RESET configuration_parameter
RESET ALL

Description

 RESET restores run-time parameters to their
 default values. RESET is an alternative
 spelling for

SET configuration_parameter TO DEFAULT

 Refer to SET(7) for
 details.

 The default value is defined as the value that the parameter would
 have had, if no SET had ever been issued for it in the
 current session. The actual source of this value might be a
 compiled-in default, the configuration file, command-line options,
 or per-database or per-user default settings. This is subtly different
 from defining it as “the value that the parameter had at session
 start”, because if the value came from the configuration file, it
 will be reset to whatever is specified by the configuration file now.
 See Chapter 20, Server Configuration for details.

 The transactional behavior of RESET is the same as
 SET: its effects will be undone by transaction rollback.

Parameters
	configuration_parameter
	
 Name of a settable run-time parameter. Available parameters are
 documented in Chapter 20, Server Configuration and on the
 SET(7) reference page.

	ALL
	
 Resets all settable run-time parameters to default values.

Examples

 Set the timezone configuration variable to its default value:

RESET timezone;

Compatibility

 RESET is a PostgreSQL™ extension.

See Also
SET(7), SHOW(7)

Name
REVOKE — remove access privileges

Synopsis

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } function_name [([[argmode] [arg_name] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SET | ALTER SYSTEM } [, ...] | ALL [PRIVILEGES] }
 ON PARAMETER configuration_parameter [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

REVOKE [{ ADMIN | INHERIT | SET } OPTION FOR]
 role_name [, ...] FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_ROLE
 | CURRENT_USER
 | SESSION_USER

Description

 The REVOKE command revokes previously granted
 privileges from one or more roles. The key word
 PUBLIC refers to the implicitly defined group of
 all roles.

 See the description of the GRANT command for
 the meaning of the privilege types.

 Note that any particular role will have the sum
 of privileges granted directly to it, privileges granted to any role it
 is presently a member of, and privileges granted to
 PUBLIC. Thus, for example, revoking SELECT privilege
 from PUBLIC does not necessarily mean that all roles
 have lost SELECT privilege on the object: those who have it granted
 directly or via another role will still have it. Similarly, revoking
 SELECT from a user might not prevent that user from using
 SELECT if PUBLIC or another membership
 role still has SELECT rights.

 If GRANT OPTION FOR is specified, only the grant
 option for the privilege is revoked, not the privilege itself.
 Otherwise, both the privilege and the grant option are revoked.

 If a user holds a privilege with grant option and has granted it to
 other users then the privileges held by those other users are
 called dependent privileges. If the privilege or the grant option
 held by the first user is being revoked and dependent privileges
 exist, those dependent privileges are also revoked if
 CASCADE is specified; if it is not, the revoke action
 will fail. This recursive revocation only affects privileges that
 were granted through a chain of users that is traceable to the user
 that is the subject of this REVOKE command.
 Thus, the affected users might effectively keep the privilege if it
 was also granted through other users.

 When revoking privileges on a table, the corresponding column privileges
 (if any) are automatically revoked on each column of the table, as well.
 On the other hand, if a role has been granted privileges on a table, then
 revoking the same privileges from individual columns will have no effect.

 When revoking membership in a role, GRANT OPTION is instead
 called ADMIN OPTION, but the behavior is similar.
 Note that, in releases prior to PostgreSQL™ 16,
 dependent privileges were not tracked for grants of role membership,
 and thus CASCADE had no effect for role membership.
 This is no longer the case.
 Note also that this form of the command does not
 allow the noise word GROUP
 in role_specification.

 Just as ADMIN OPTION can be removed from an existing
 role grant, it is also possible to revoke INHERIT OPTION
 or SET OPTION. This is equivalent to setting the value
 of the corresponding option to FALSE.

Notes

 A user can only revoke privileges that were granted directly by
 that user. If, for example, user A has granted a privilege with
 grant option to user B, and user B has in turn granted it to user
 C, then user A cannot revoke the privilege directly from C.
 Instead, user A could revoke the grant option from user B and use
 the CASCADE option so that the privilege is
 in turn revoked from user C. For another example, if both A and B
 have granted the same privilege to C, A can revoke their own grant
 but not B's grant, so C will still effectively have the privilege.

 When a non-owner of an object attempts to REVOKE privileges
 on the object, the command will fail outright if the user has no
 privileges whatsoever on the object. As long as some privilege is
 available, the command will proceed, but it will revoke only those
 privileges for which the user has grant options. The REVOKE ALL
 PRIVILEGES forms will issue a warning message if no grant options are
 held, while the other forms will issue a warning if grant options for
 any of the privileges specifically named in the command are not held.
 (In principle these statements apply to the object owner as well, but
 since the owner is always treated as holding all grant options, the
 cases can never occur.)

 If a superuser chooses to issue a GRANT or REVOKE
 command, the command is performed as though it were issued by the
 owner of the affected object. (Since roles do not have owners, in the
 case of a GRANT of role membership, the command is
 performed as though it were issued by the bootstrap superuser.)
 Since all privileges ultimately come
 from the object owner (possibly indirectly via chains of grant options),
 it is possible for a superuser to revoke all privileges, but this might
 require use of CASCADE as stated above.

 REVOKE can also be done by a role
 that is not the owner of the affected object, but is a member of the role
 that owns the object, or is a member of a role that holds privileges
 WITH GRANT OPTION on the object. In this case the
 command is performed as though it were issued by the containing role that
 actually owns the object or holds the privileges
 WITH GRANT OPTION. For example, if table
 t1 is owned by role g1, of which role
 u1 is a member, then u1 can revoke privileges
 on t1 that are recorded as being granted by g1.
 This would include grants made by u1 as well as by other
 members of role g1.

 If the role executing REVOKE holds privileges
 indirectly via more than one role membership path, it is unspecified
 which containing role will be used to perform the command. In such cases
 it is best practice to use SET ROLE to become the specific
 role you want to do the REVOKE as. Failure to do so might
 lead to revoking privileges other than the ones you intended, or not
 revoking anything at all.

 See the section called “Privileges” for more information about specific
 privilege types, as well as how to inspect objects' privileges.

Examples

 Revoke insert privilege for the public on table
 films:

REVOKE INSERT ON films FROM PUBLIC;

 Revoke all privileges from user manuel on view
 kinds:

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

 Note that this actually means “revoke all privileges that I
 granted”.

 Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility

 The compatibility notes of the GRANT command
 apply analogously to REVOKE.
 The keyword RESTRICT or CASCADE
 is required according to the standard, but PostgreSQL™
 assumes RESTRICT by default.

See Also
GRANT(7), ALTER DEFAULT PRIVILEGES(7)

Name
ROLLBACK — abort the current transaction

Synopsis

ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]

Description

 ROLLBACK rolls back the current transaction and causes
 all the updates made by the transaction to be discarded.

Parameters
	WORK, TRANSACTION
	
 Optional key words. They have no effect.

	AND CHAIN
	
 If AND CHAIN is specified, a new (not aborted)
 transaction is immediately started with the same transaction
 characteristics (see SET TRANSACTION(7)) as the
 just finished one. Otherwise, no new transaction is started.

Notes

 Use COMMIT to
 successfully terminate a transaction.

 Issuing ROLLBACK outside of a transaction
 block emits a warning and otherwise has no effect. ROLLBACK AND
 CHAIN outside of a transaction block is an error.

Examples

 To abort all changes:

ROLLBACK;

Compatibility

 The command ROLLBACK conforms to the SQL standard. The
 form ROLLBACK TRANSACTION is a PostgreSQL extension.

See Also
BEGIN(7), COMMIT(7), ROLLBACK TO SAVEPOINT(7)

Name
ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit

Synopsis

ROLLBACK PREPARED transaction_id

Description

 ROLLBACK PREPARED rolls back a transaction that is in
 prepared state.

Parameters
	transaction_id
	
 The transaction identifier of the transaction that is to be
 rolled back.

Notes

 To roll back a prepared transaction, you must be either the same user that
 executed the transaction originally, or a superuser. But you do not
 have to be in the same session that executed the transaction.

 This command cannot be executed inside a transaction block. The prepared
 transaction is rolled back immediately.

 All currently available prepared transactions are listed in the
 pg_prepared_xacts
 system view.

Examples

 Roll back the transaction identified by the transaction
 identifier foobar:

ROLLBACK PREPARED 'foobar';

Compatibility

 ROLLBACK PREPARED is a
 PostgreSQL™ extension. It is intended for use by
 external transaction management systems, some of which are covered by
 standards (such as X/Open XA), but the SQL side of those systems is not
 standardized.

See Also
PREPARE TRANSACTION(7), COMMIT PREPARED(7)

Name
ROLLBACK TO SAVEPOINT — roll back to a savepoint

Synopsis

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description

 Roll back all commands that were executed after the savepoint was
 established and then start a new subtransaction at the same transaction level.
 The savepoint remains valid and can be rolled back to again later,
 if needed.

 ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that
 were established after the named savepoint.

Parameters
	savepoint_name
	
 The savepoint to roll back to.

Notes

 Use RELEASE SAVEPOINT to destroy a savepoint
 without discarding the effects of commands executed after it was
 established.

 Specifying a savepoint name that has not been established is an error.

 Cursors have somewhat non-transactional behavior with respect to
 savepoints. Any cursor that is opened inside a savepoint will be closed
 when the savepoint is rolled back. If a previously opened cursor is
 affected by a FETCH or MOVE command inside a
 savepoint that is later rolled back, the cursor remains at the
 position that FETCH left it pointing to (that is, the cursor
 motion caused by FETCH is not rolled back).
 Closing a cursor is not undone by rolling back, either.
 However, other side-effects caused by the cursor's query (such as
 side-effects of volatile functions called by the query) are
 rolled back if they occur during a savepoint that is later rolled back.
 A cursor whose execution causes a transaction to abort is put in a
 cannot-execute state, so while the transaction can be restored using
 ROLLBACK TO SAVEPOINT, the cursor can no longer be used.

Examples

 To undo the effects of the commands executed after my_savepoint
 was established:

ROLLBACK TO SAVEPOINT my_savepoint;

 Cursor positions are not affected by savepoint rollback:

BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 2

COMMIT;

Compatibility

 The SQL standard specifies that the key word
 SAVEPOINT is mandatory, but PostgreSQL™
 and Oracle™ allow it to be omitted. SQL allows
 only WORK, not TRANSACTION, as a noise word
 after ROLLBACK. Also, SQL has an optional clause
 AND [NO] CHAIN which is not currently supported by
 PostgreSQL™. Otherwise, this command conforms to
 the SQL standard.

See Also
BEGIN(7), COMMIT(7), RELEASE SAVEPOINT(7), ROLLBACK(7), SAVEPOINT(7)

Name
SAVEPOINT — define a new savepoint within the current transaction

Synopsis

SAVEPOINT savepoint_name

Description

 SAVEPOINT establishes a new savepoint within
 the current transaction.

 A savepoint is a special mark inside a transaction that allows all commands
 that are executed after it was established to be rolled back, restoring
 the transaction state to what it was at the time of the savepoint.

Parameters
	savepoint_name
	
 The name to give to the new savepoint. If savepoints with the
 same name already exist, they will be inaccessible until newer
 identically-named savepoints are released.

Notes

 Use ROLLBACK TO to
 rollback to a savepoint. Use RELEASE SAVEPOINT
 to destroy a savepoint, keeping
 the effects of commands executed after it was established.

 Savepoints can only be established when inside a transaction block.
 There can be multiple savepoints defined within a transaction.

Examples

 To establish a savepoint and later undo the effects of all commands executed
 after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

 The above transaction will insert the values 1 and 3, but not 2.

 To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

 The above transaction will insert both 3 and 4.

 To use a single savepoint name:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);

 -- rollback to the second savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows rows 1 and 2

 -- release the second savepoint
 RELEASE SAVEPOINT my_savepoint;

 -- rollback to the first savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows only row 1
COMMIT;

 The above transaction shows row 3 being rolled back first, then row 2.

Compatibility

 SQL requires a savepoint to be destroyed automatically when another
 savepoint with the same name is established. In
 PostgreSQL™, the old savepoint is kept, though only the more
 recent one will be used when rolling back or releasing. (Releasing the
 newer savepoint with RELEASE SAVEPOINT will cause the older one
 to again become accessible to ROLLBACK TO SAVEPOINT and
 RELEASE SAVEPOINT.) Otherwise, SAVEPOINT is
 fully SQL conforming.

See Also
BEGIN(7), COMMIT(7), RELEASE SAVEPOINT(7), ROLLBACK(7), ROLLBACK TO SAVEPOINT(7)

Name
SECURITY LABEL — define or change a security label applied to an object

Synopsis

SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SUBSCRIPTION object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS { string_literal | NULL }

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype [, ...]

Description

 SECURITY LABEL applies a security label to a database
 object. An arbitrary number of security labels, one per label provider, can
 be associated with a given database object. Label providers are loadable
 modules which register themselves by using the function
 register_label_provider.

Note

 register_label_provider is not an SQL function; it can
 only be called from C code loaded into the backend.

 The label provider determines whether a given label is valid and whether
 it is permissible to assign that label to a given object. The meaning of a
 given label is likewise at the discretion of the label provider.
 PostgreSQL™ places no restrictions on whether or how a
 label provider must interpret security labels; it merely provides a
 mechanism for storing them. In practice, this facility is intended to allow
 integration with label-based mandatory access control (MAC) systems such as
 SELinux™. Such systems make all access control decisions
 based on object labels, rather than traditional discretionary access control
 (DAC) concepts such as users and groups.

 You must own the database object to use SECURITY LABEL.

Parameters
	object_name, table_name.column_name, aggregate_name, function_name, procedure_name, routine_name
	
 The name of the object to be labeled. Names of objects that reside in
 schemas (tables, functions, etc.) can be schema-qualified.

	provider
	
 The name of the provider with which this label is to be associated. The
 named provider must be loaded and must consent to the proposed labeling
 operation. If exactly one provider is loaded, the provider name may be
 omitted for brevity.

	argmode
	
 The mode of a function, procedure, or aggregate
 argument: IN, OUT,
 INOUT, or VARIADIC.
 If omitted, the default is IN.
 Note that SECURITY LABEL does not actually
 pay any attention to OUT arguments, since only the input
 arguments are needed to determine the function's identity.
 So it is sufficient to list the IN, INOUT,
 and VARIADIC arguments.

	argname
	
 The name of a function, procedure, or aggregate argument.
 Note that SECURITY LABEL does not actually
 pay any attention to argument names, since only the argument data
 types are needed to determine the function's identity.

	argtype
	
 The data type of a function, procedure, or aggregate argument.

	large_object_oid
	
 The OID of the large object.

	PROCEDURAL
	
 This is a noise word.

	string_literal
	
 The new setting of the security label, written as a string literal.

	NULL
	
 Write NULL to drop the security label.

Examples

 The following example shows how the security label of a table could
 be set or changed:

SECURITY LABEL FOR selinux ON TABLE mytable IS 'system_u:object_r:sepgsql_table_t:s0';

 To remove the label:

SECURITY LABEL FOR selinux ON TABLE mytable IS NULL;

Compatibility

 There is no SECURITY LABEL command in the SQL standard.

See Also
sepgsql, src/test/modules/dummy_seclabel

Name
SELECT, TABLE, WITH — retrieve rows from a table or view

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [{ * | expression [[AS] output_name] } [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }]
 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]] [NOWAIT | SKIP LOCKED] [...]]

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]]
 [LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition [, ...])
 [LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])
 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 from_item join_type from_item { ON join_condition | USING (join_column [, ...]) [AS join_using_alias] }
 from_item NATURAL join_type from_item
 from_item CROSS JOIN from_item

and grouping_element can be one of:

 ()
 expression
 (expression [, ...])
 ROLLUP ({ expression | (expression [, ...]) } [, ...])
 CUBE ({ expression | (expression [, ...]) } [, ...])
 GROUPING SETS (grouping_element [, ...])

and with_query is:

 with_query_name [(column_name [, ...])] AS [[NOT] MATERIALIZED] (select | values | insert | update | delete)
 [SEARCH { BREADTH | DEPTH } FIRST BY column_name [, ...] SET search_seq_col_name]
 [CYCLE column_name [, ...] SET cycle_mark_col_name [TO cycle_mark_value DEFAULT cycle_mark_default] USING cycle_path_col_name]

TABLE [ONLY] table_name [*]

Description

 SELECT retrieves rows from zero or more tables.
 The general processing of SELECT is as follows:

	
 All queries in the WITH list are computed.
 These effectively serve as temporary tables that can be referenced
 in the FROM list. A WITH query
 that is referenced more than once in FROM is
 computed only once,
 unless specified otherwise with NOT MATERIALIZED.
 (See WITH Clause below.)

	
 All elements in the FROM list are computed.
 (Each element in the FROM list is a real or
 virtual table.) If more than one element is specified in the
 FROM list, they are cross-joined together.
 (See FROM Clause below.)

	
 If the WHERE clause is specified, all rows
 that do not satisfy the condition are eliminated from the
 output. (See WHERE Clause below.)

	
 If the GROUP BY clause is specified,
 or if there are aggregate function calls, the
 output is combined into groups of rows that match on one or more
 values, and the results of aggregate functions are computed.
 If the HAVING clause is present, it
 eliminates groups that do not satisfy the given condition. (See
 GROUP BY Clause and
 HAVING Clause below.)
 Although query output columns are nominally computed in the next
 step, they can also be referenced (by name or ordinal number)
 in the GROUP BY clause.

	
 The actual output rows are computed using the
 SELECT output expressions for each selected
 row or row group. (See SELECT List below.)

	SELECT DISTINCT eliminates duplicate rows from the
 result. SELECT DISTINCT ON eliminates rows that
 match on all the specified expressions. SELECT ALL
 (the default) will return all candidate rows, including
 duplicates. (See DISTINCT Clause below.)

	
 Using the operators UNION,
 INTERSECT, and EXCEPT, the
 output of more than one SELECT statement can
 be combined to form a single result set. The
 UNION operator returns all rows that are in
 one or both of the result sets. The
 INTERSECT operator returns all rows that are
 strictly in both result sets. The EXCEPT
 operator returns the rows that are in the first result set but
 not in the second. In all three cases, duplicate rows are
 eliminated unless ALL is specified. The noise
 word DISTINCT can be added to explicitly specify
 eliminating duplicate rows. Notice that DISTINCT is
 the default behavior here, even though ALL is
 the default for SELECT itself. (See
 UNION Clause, INTERSECT Clause, and
 EXCEPT Clause below.)

	
 If the ORDER BY clause is specified, the
 returned rows are sorted in the specified order. If
 ORDER BY is not given, the rows are returned
 in whatever order the system finds fastest to produce. (See
 ORDER BY Clause below.)

	
 If the LIMIT (or FETCH FIRST) or OFFSET
 clause is specified, the SELECT statement
 only returns a subset of the result rows. (See LIMIT Clause below.)

	
 If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE
 or FOR KEY SHARE
 is specified, the
 SELECT statement locks the selected rows
 against concurrent updates. (See The Locking Clause
 below.)

 You must have SELECT privilege on each column used
 in a SELECT command. The use of FOR NO KEY UPDATE,
 FOR UPDATE,
 FOR SHARE or FOR KEY SHARE requires
 UPDATE privilege as well (for at least one column
 of each table so selected).

Parameters
WITH Clause

 The WITH clause allows you to specify one or more
 subqueries that can be referenced by name in the primary query.
 The subqueries effectively act as temporary tables or views
 for the duration of the primary query.
 Each subquery can be a SELECT, TABLE, VALUES,
 INSERT, UPDATE or
 DELETE statement.
 When writing a data-modifying statement (INSERT,
 UPDATE or DELETE) in
 WITH, it is usual to include a RETURNING clause.
 It is the output of RETURNING, not the underlying
 table that the statement modifies, that forms the temporary table that is
 read by the primary query. If RETURNING is omitted, the
 statement is still executed, but it produces no output so it cannot be
 referenced as a table by the primary query.

 A name (without schema qualification) must be specified for each
 WITH query. Optionally, a list of column names
 can be specified; if this is omitted,
 the column names are inferred from the subquery.

 If RECURSIVE is specified, it allows a
 SELECT subquery to reference itself by name. Such a
 subquery must have the form

non_recursive_term UNION [ALL | DISTINCT] recursive_term

 where the recursive self-reference must appear on the right-hand
 side of the UNION. Only one recursive self-reference
 is permitted per query. Recursive data-modifying statements are not
 supported, but you can use the results of a recursive
 SELECT query in
 a data-modifying statement. See the section called “WITH Queries (Common Table Expressions)” for
 an example.

 Another effect of RECURSIVE is that
 WITH queries need not be ordered: a query
 can reference another one that is later in the list. (However,
 circular references, or mutual recursion, are not implemented.)
 Without RECURSIVE, WITH queries
 can only reference sibling WITH queries
 that are earlier in the WITH list.

 When there are multiple queries in the WITH
 clause, RECURSIVE should be written only once,
 immediately after WITH. It applies to all queries
 in the WITH clause, though it has no effect on
 queries that do not use recursion or forward references.

 The optional SEARCH clause computes a search
 sequence column that can be used for ordering the results of a
 recursive query in either breadth-first or depth-first order. The
 supplied column name list specifies the row key that is to be used for
 keeping track of visited rows. A column named
 search_seq_col_name will be added to the result
 column list of the WITH query. This column can be
 ordered by in the outer query to achieve the respective ordering. See
 the section called “Search Order” for examples.

 The optional CYCLE clause is used to detect cycles in
 recursive queries. The supplied column name list specifies the row key
 that is to be used for keeping track of visited rows. A column named
 cycle_mark_col_name will be added to the result
 column list of the WITH query. This column will be set
 to cycle_mark_value when a cycle has been
 detected, else to cycle_mark_default.
 Furthermore, processing of the recursive union will stop when a cycle has
 been detected. cycle_mark_value and
 cycle_mark_default must be constants and they
 must be coercible to a common data type, and the data type must have an
 inequality operator. (The SQL standard requires that they be Boolean
 constants or character strings, but PostgreSQL does not require that.) By
 default, TRUE and FALSE (of type
 boolean) are used. Furthermore, a column
 named cycle_path_col_name will be added to the
 result column list of the WITH query. This column is
 used internally for tracking visited rows. See the section called “Cycle Detection” for examples.

 Both the SEARCH and the CYCLE clause
 are only valid for recursive WITH queries. The
 with_query must be a UNION
 (or UNION ALL) of two SELECT (or
 equivalent) commands (no nested UNIONs). If both
 clauses are used, the column added by the SEARCH clause
 appears before the columns added by the CYCLE clause.

 The primary query and the WITH queries are all
 (notionally) executed at the same time. This implies that the effects of
 a data-modifying statement in WITH cannot be seen from
 other parts of the query, other than by reading its RETURNING
 output. If two such data-modifying statements attempt to modify the same
 row, the results are unspecified.

 A key property of WITH queries is that they
 are normally evaluated only once per execution of the primary query,
 even if the primary query refers to them more than once.
 In particular, data-modifying statements are guaranteed to be
 executed once and only once, regardless of whether the primary query
 reads all or any of their output.

 However, a WITH query can be marked
 NOT MATERIALIZED to remove this guarantee. In that
 case, the WITH query can be folded into the primary
 query much as though it were a simple sub-SELECT in
 the primary query's FROM clause. This results in
 duplicate computations if the primary query refers to
 that WITH query more than once; but if each such use
 requires only a few rows of the WITH query's total
 output, NOT MATERIALIZED can provide a net savings by
 allowing the queries to be optimized jointly.
 NOT MATERIALIZED is ignored if it is attached to
 a WITH query that is recursive or is not
 side-effect-free (i.e., is not a plain SELECT
 containing no volatile functions).

 By default, a side-effect-free WITH query is folded
 into the primary query if it is used exactly once in the primary
 query's FROM clause. This allows joint optimization
 of the two query levels in situations where that should be semantically
 invisible. However, such folding can be prevented by marking the
 WITH query as MATERIALIZED.
 That might be useful, for example, if the WITH query
 is being used as an optimization fence to prevent the planner from
 choosing a bad plan.
 PostgreSQL™ versions before v12 never did
 such folding, so queries written for older versions might rely on
 WITH to act as an optimization fence.

 See the section called “WITH Queries (Common Table Expressions)” for additional information.

FROM Clause

 The FROM clause specifies one or more source
 tables for the SELECT. If multiple sources are
 specified, the result is the Cartesian product (cross join) of all
 the sources. But usually qualification conditions are added (via
 WHERE) to restrict the returned rows to a small subset of the
 Cartesian product.

 The FROM clause can contain the following
 elements:

	table_name
	
 The name (optionally schema-qualified) of an existing table or view.
 If ONLY is specified before the table name, only that
 table is scanned. If ONLY is not specified, the table
 and all its descendant tables (if any) are scanned. Optionally,
 * can be specified after the table name to explicitly
 indicate that descendant tables are included.

	alias
	
 A substitute name for the FROM item containing the
 alias. An alias is used for brevity or to eliminate ambiguity
 for self-joins (where the same table is scanned multiple
 times). When an alias is provided, it completely hides the
 actual name of the table or function; for example given
 FROM foo AS f, the remainder of the
 SELECT must refer to this FROM
 item as f not foo. If an alias is
 written, a column alias list can also be written to provide
 substitute names for one or more columns of the table.

	TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]
	
 A TABLESAMPLE clause after
 a table_name indicates that the
 specified sampling_method
 should be used to retrieve a subset of the rows in that table.
 This sampling precedes the application of any other filters such
 as WHERE clauses.
 The standard PostgreSQL™ distribution
 includes two sampling methods, BERNOULLI
 and SYSTEM, and other sampling methods can be
 installed in the database via extensions.

 The BERNOULLI and SYSTEM sampling methods
 each accept a single argument
 which is the fraction of the table to sample, expressed as a
 percentage between 0 and 100. This argument can be
 any real-valued expression. (Other sampling methods might
 accept more or different arguments.) These two methods each return
 a randomly-chosen sample of the table that will contain
 approximately the specified percentage of the table's rows.
 The BERNOULLI method scans the whole table and
 selects or ignores individual rows independently with the specified
 probability.
 The SYSTEM method does block-level sampling with
 each block having the specified chance of being selected; all rows
 in each selected block are returned.
 The SYSTEM method is significantly faster than
 the BERNOULLI method when small sampling
 percentages are specified, but it may return a less-random sample of
 the table as a result of clustering effects.

 The optional REPEATABLE clause specifies
 a seed number or expression to use
 for generating random numbers within the sampling method. The seed
 value can be any non-null floating-point value. Two queries that
 specify the same seed and argument
 values will select the same sample of the table, if the table has
 not been changed meanwhile. But different seed values will usually
 produce different samples.
 If REPEATABLE is not given then a new random
 sample is selected for each query, based upon a system-generated seed.
 Note that some add-on sampling methods do not
 accept REPEATABLE, and will always produce new
 samples on each use.

	select
	
 A sub-SELECT can appear in the
 FROM clause. This acts as though its
 output were created as a temporary table for the duration of
 this single SELECT command. Note that the
 sub-SELECT must be surrounded by
 parentheses, and an alias can be provided in the same way as for a
 table. A
 VALUES command
 can also be used here.

	with_query_name
	
 A WITH query is referenced by writing its name,
 just as though the query's name were a table name. (In fact,
 the WITH query hides any real table of the same name
 for the purposes of the primary query. If necessary, you can
 refer to a real table of the same name by schema-qualifying
 the table's name.)
 An alias can be provided in the same way as for a table.

	function_name
	
 Function calls can appear in the FROM
 clause. (This is especially useful for functions that return
 result sets, but any function can be used.) This acts as
 though the function's output were created as a temporary table for the
 duration of this single SELECT command.
 If the function's result type is composite (including the case of a
 function with multiple OUT parameters), each
 attribute becomes a separate column in the implicit table.

 When the optional WITH ORDINALITY clause is added
 to the function call, an additional column of type bigint
 will be appended to the function's result column(s). This column
 numbers the rows of the function's result set, starting from 1.
 By default, this column is named ordinality.

 An alias can be provided in the same way as for a table.
 If an alias is written, a column
 alias list can also be written to provide substitute names for
 one or more attributes of the function's composite return
 type, including the ordinality column if present.

 Multiple function calls can be combined into a
 single FROM-clause item by surrounding them
 with ROWS FROM(...). The output of such an item is the
 concatenation of the first row from each function, then the second
 row from each function, etc. If some of the functions produce fewer
 rows than others, null values are substituted for the missing data, so
 that the total number of rows returned is always the same as for the
 function that produced the most rows.

 If the function has been defined as returning the
 record data type, then an alias or the key word
 AS must be present, followed by a column
 definition list in the form (column_name data_type [, ...
]). The column definition list must match the
 actual number and types of columns returned by the function.

 When using the ROWS FROM(...) syntax, if one of the
 functions requires a column definition list, it's preferred to put
 the column definition list after the function call inside
 ROWS FROM(...). A column definition list can be placed
 after the ROWS FROM(...) construct only if there's just
 a single function and no WITH ORDINALITY clause.

 To use ORDINALITY together with a column definition
 list, you must use the ROWS FROM(...) syntax and put the
 column definition list inside ROWS FROM(...).

	join_type
	
 One of

	[INNER] JOIN

	LEFT [OUTER] JOIN

	RIGHT [OUTER] JOIN

	FULL [OUTER] JOIN

 For the INNER and OUTER join types, a
 join condition must be specified, namely exactly one of
 ON join_condition,
 USING (join_column [, ...]),
 or NATURAL. See below for the meaning.

 A JOIN clause combines two FROM
 items, which for convenience we will refer to as “tables”,
 though in reality they can be any type of FROM item.
 Use parentheses if necessary to determine the order of nesting.
 In the absence of parentheses, JOINs nest
 left-to-right. In any case JOIN binds more
 tightly than the commas separating FROM-list items.
 All the JOIN options are just a notational
 convenience, since they do nothing you couldn't do with plain
 FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified
 Cartesian product (i.e., all combined rows that pass its join
 condition), plus one copy of each row in the left-hand table
 for which there was no right-hand row that passed the join
 condition. This left-hand row is extended to the full width
 of the joined table by inserting null values for the
 right-hand columns. Note that only the JOIN
 clause's own condition is considered while deciding which rows
 have matches. Outer conditions are applied afterwards.

 Conversely, RIGHT OUTER JOIN returns all the
 joined rows, plus one row for each unmatched right-hand row
 (extended with nulls on the left). This is just a notational
 convenience, since you could convert it to a LEFT
 OUTER JOIN by switching the left and right tables.

FULL OUTER JOIN returns all the joined rows, plus
 one row for each unmatched left-hand row (extended with nulls
 on the right), plus one row for each unmatched right-hand row
 (extended with nulls on the left).

	ON join_condition
	join_condition is
 an expression resulting in a value of type
 boolean (similar to a WHERE
 clause) that specifies which rows in a join are considered to
 match.

	USING (join_column [, ...]) [AS join_using_alias]
	
 A clause of the form USING (a, b, ...) is
 shorthand for ON left_table.a = right_table.a AND
 left_table.b = right_table.b Also,
 USING implies that only one of each pair of
 equivalent columns will be included in the join output, not
 both.

 If a join_using_alias
 name is specified, it provides a table alias for the join columns.
 Only the join columns listed in the USING clause
 are addressable by this name. Unlike a regular alias, this does not hide the names of
 the joined tables from the rest of the query. Also unlike a regular
 alias, you cannot write a
 column alias list — the output names of the join columns are the
 same as they appear in the USING list.

	NATURAL
	
 NATURAL is shorthand for a
 USING list that mentions all columns in the two
 tables that have matching names. If there are no common
 column names, NATURAL is equivalent
 to ON TRUE.

	CROSS JOIN
	
 CROSS JOIN is equivalent to INNER JOIN ON
 (TRUE), that is, no rows are removed by qualification.
 They produce a simple Cartesian product, the same result as you get from
 listing the two tables at the top level of FROM,
 but restricted by the join condition (if any).

	LATERAL
	
 The LATERAL key word can precede a
 sub-SELECT FROM item. This allows the
 sub-SELECT to refer to columns of FROM
 items that appear before it in the FROM list. (Without
 LATERAL, each sub-SELECT is
 evaluated independently and so cannot cross-reference any other
 FROM item.)

LATERAL can also precede a function-call
 FROM item, but in this case it is a noise word, because
 the function expression can refer to earlier FROM items
 in any case.

 A LATERAL item can appear at top level in the
 FROM list, or within a JOIN tree. In the
 latter case it can also refer to any items that are on the left-hand
 side of a JOIN that it is on the right-hand side of.

 When a FROM item contains LATERAL
 cross-references, evaluation proceeds as follows: for each row of the
 FROM item providing the cross-referenced column(s), or
 set of rows of multiple FROM items providing the
 columns, the LATERAL item is evaluated using that
 row or row set's values of the columns. The resulting row(s) are
 joined as usual with the rows they were computed from. This is
 repeated for each row or set of rows from the column source table(s).

 The column source table(s) must be INNER or
 LEFT joined to the LATERAL item, else
 there would not be a well-defined set of rows from which to compute
 each set of rows for the LATERAL item. Thus,
 although a construct such as X RIGHT JOIN
 LATERAL Y is syntactically valid, it is
 not actually allowed for Y to reference
 X.

WHERE Clause

 The optional WHERE clause has the general form

WHERE condition

 where condition is
 any expression that evaluates to a result of type
 boolean. Any row that does not satisfy this
 condition will be eliminated from the output. A row satisfies the
 condition if it returns true when the actual row values are
 substituted for any variable references.

GROUP BY Clause

 The optional GROUP BY clause has the general form

GROUP BY [ALL | DISTINCT] grouping_element [, ...]

 GROUP BY will condense into a single row all
 selected rows that share the same values for the grouped
 expressions. An expression used inside a
 grouping_element
 can be an input column name, or the name or ordinal number of an
 output column (SELECT list item), or an arbitrary
 expression formed from input-column values. In case of ambiguity,
 a GROUP BY name will be interpreted as an
 input-column name rather than an output column name.

 If any of GROUPING SETS, ROLLUP or
 CUBE are present as grouping elements, then the
 GROUP BY clause as a whole defines some number of
 independent grouping sets. The effect of this is
 equivalent to constructing a UNION ALL between
 subqueries with the individual grouping sets as their
 GROUP BY clauses. The optional DISTINCT
 clause removes duplicate sets before processing; it does not
 transform the UNION ALL into a UNION DISTINCT.
 For further details on the handling
 of grouping sets see the section called “GROUPING SETS, CUBE, and ROLLUP”.

 Aggregate functions, if any are used, are computed across all rows
 making up each group, producing a separate value for each group.
 (If there are aggregate functions but no GROUP BY
 clause, the query is treated as having a single group comprising all
 the selected rows.)
 The set of rows fed to each aggregate function can be further filtered by
 attaching a FILTER clause to the aggregate function
 call; see the section called “Aggregate Expressions” for more information. When
 a FILTER clause is present, only those rows matching it
 are included in the input to that aggregate function.

 When GROUP BY is present,
 or any aggregate functions are present, it is not valid for
 the SELECT list expressions to refer to
 ungrouped columns except within aggregate functions or when the
 ungrouped column is functionally dependent on the grouped columns,
 since there would otherwise be more than one possible value to
 return for an ungrouped column. A functional dependency exists if
 the grouped columns (or a subset thereof) are the primary key of
 the table containing the ungrouped column.

 Keep in mind that all aggregate functions are evaluated before
 evaluating any “scalar” expressions in the HAVING
 clause or SELECT list. This means that, for example,
 a CASE expression cannot be used to skip evaluation of
 an aggregate function; see the section called “Expression Evaluation Rules”.

 Currently, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE and FOR KEY SHARE cannot be
 specified with GROUP BY.

HAVING Clause

 The optional HAVING clause has the general form

HAVING condition

 where condition is
 the same as specified for the WHERE clause.

 HAVING eliminates group rows that do not
 satisfy the condition. HAVING is different
 from WHERE: WHERE filters
 individual rows before the application of GROUP
 BY, while HAVING filters group rows
 created by GROUP BY. Each column referenced in
 condition must
 unambiguously reference a grouping column, unless the reference
 appears within an aggregate function or the ungrouped column is
 functionally dependent on the grouping columns.

 The presence of HAVING turns a query into a grouped
 query even if there is no GROUP BY clause. This is the
 same as what happens when the query contains aggregate functions but
 no GROUP BY clause. All the selected rows are considered to
 form a single group, and the SELECT list and
 HAVING clause can only reference table columns from
 within aggregate functions. Such a query will emit a single row if the
 HAVING condition is true, zero rows if it is not true.

 Currently, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE and FOR KEY SHARE cannot be
 specified with HAVING.

WINDOW Clause

 The optional WINDOW clause has the general form

WINDOW window_name AS (window_definition) [, ...]

 where window_name is
 a name that can be referenced from OVER clauses or
 subsequent window definitions, and
 window_definition is

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

 If an existing_window_name
 is specified it must refer to an earlier entry in the WINDOW
 list; the new window copies its partitioning clause from that entry,
 as well as its ordering clause if any. In this case the new window cannot
 specify its own PARTITION BY clause, and it can specify
 ORDER BY only if the copied window does not have one.
 The new window always uses its own frame clause; the copied window
 must not specify a frame clause.

 The elements of the PARTITION BY list are interpreted in
 much the same fashion as elements of a GROUP BY clause, except that
 they are always simple expressions and never the name or number of an
 output column.
 Another difference is that these expressions can contain aggregate
 function calls, which are not allowed in a regular GROUP BY
 clause. They are allowed here because windowing occurs after grouping
 and aggregation.

 Similarly, the elements of the ORDER BY list are interpreted
 in much the same fashion as elements of a statement-level ORDER BY clause, except that
 the expressions are always taken as simple expressions and never the name
 or number of an output column.

 The optional frame_clause defines
 the window frame for window functions that depend on the
 frame (not all do). The window frame is a set of related rows for
 each row of the query (called the current row).
 The frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

 where frame_start
 and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

 and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

 If frame_end is omitted it defaults to CURRENT
 ROW. Restrictions are that
 frame_start cannot be UNBOUNDED FOLLOWING,
 frame_end cannot be UNBOUNDED PRECEDING,
 and the frame_end choice cannot appear earlier in the
 above list of frame_start
 and frame_end options than
 the frame_start choice does — for example
 RANGE BETWEEN CURRENT ROW AND offset
 PRECEDING is not allowed.

 The default framing option is RANGE UNBOUNDED PRECEDING,
 which is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW; it sets the frame to be all rows from the partition start
 up through the current row's last peer (a row
 that the window's ORDER BY clause considers
 equivalent to the current row; all rows are peers if there
 is no ORDER BY).
 In general, UNBOUNDED PRECEDING means that the frame
 starts with the first row of the partition, and similarly
 UNBOUNDED FOLLOWING means that the frame ends with the last
 row of the partition, regardless
 of RANGE, ROWS
 or GROUPS mode.
 In ROWS mode, CURRENT ROW means
 that the frame starts or ends with the current row; but
 in RANGE or GROUPS mode it means
 that the frame starts or ends with the current row's first or last peer
 in the ORDER BY ordering.
 The offset PRECEDING and
 offset FOLLOWING options
 vary in meaning depending on the frame mode.
 In ROWS mode, the offset
 is an integer indicating that the frame starts or ends that many rows
 before or after the current row.
 In GROUPS mode, the offset
 is an integer indicating that the frame starts or ends that many peer
 groups before or after the current row's peer group, where
 a peer group is a group of rows that are
 equivalent according to the window's ORDER BY clause.
 In RANGE mode, use of
 an offset option requires that there be
 exactly one ORDER BY column in the window definition.
 Then the frame contains those rows whose ordering column value is no
 more than offset less than
 (for PRECEDING) or more than
 (for FOLLOWING) the current row's ordering column
 value. In these cases the data type of
 the offset expression depends on the data
 type of the ordering column. For numeric ordering columns it is
 typically of the same type as the ordering column, but for datetime
 ordering columns it is an interval.
 In all these cases, the value of the offset
 must be non-null and non-negative. Also, while
 the offset does not have to be a simple
 constant, it cannot contain variables, aggregate functions, or window
 functions.

 The frame_exclusion option allows rows around
 the current row to be excluded from the frame, even if they would be
 included according to the frame start and frame end options.
 EXCLUDE CURRENT ROW excludes the current row from the
 frame.
 EXCLUDE GROUP excludes the current row and its
 ordering peers from the frame.
 EXCLUDE TIES excludes any peers of the current
 row from the frame, but not the current row itself.
 EXCLUDE NO OTHERS simply specifies explicitly the
 default behavior of not excluding the current row or its peers.

 Beware that the ROWS mode can produce unpredictable
 results if the ORDER BY ordering does not order the rows
 uniquely. The RANGE and GROUPS
 modes are designed to ensure that rows that are peers in
 the ORDER BY ordering are treated alike: all rows of
 a given peer group will be in the frame or excluded from it.

 The purpose of a WINDOW clause is to specify the
 behavior of window functions appearing in the query's
 SELECT list or
 ORDER BY clause.
 These functions
 can reference the WINDOW clause entries by name
 in their OVER clauses. A WINDOW clause
 entry does not have to be referenced anywhere, however; if it is not
 used in the query it is simply ignored. It is possible to use window
 functions without any WINDOW clause at all, since
 a window function call can specify its window definition directly in
 its OVER clause. However, the WINDOW
 clause saves typing when the same window definition is needed for more
 than one window function.

 Currently, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE and FOR KEY SHARE cannot be
 specified with WINDOW.

 Window functions are described in detail in
 the section called “Window Functions”,
 the section called “Window Function Calls”, and
 the section called “Window Function Processing”.

SELECT List

 The SELECT list (between the key words
 SELECT and FROM) specifies expressions
 that form the output rows of the SELECT
 statement. The expressions can (and usually do) refer to columns
 computed in the FROM clause.

 Just as in a table, every output column of a SELECT
 has a name. In a simple SELECT this name is just
 used to label the column for display, but when the SELECT
 is a sub-query of a larger query, the name is seen by the larger query
 as the column name of the virtual table produced by the sub-query.
 To specify the name to use for an output column, write
 AS output_name
 after the column's expression. (You can omit AS,
 but only if the desired output name does not match any
 PostgreSQL™ keyword (see Appendix C, SQL Key Words). For protection against possible
 future keyword additions, it is recommended that you always either
 write AS or double-quote the output name.)
 If you do not specify a column name, a name is chosen automatically
 by PostgreSQL™. If the column's expression
 is a simple column reference then the chosen name is the same as that
 column's name. In more complex cases a function or type name may be
 used, or the system may fall back on a generated name such as
 ?column?.

 An output column's name can be used to refer to the column's value in
 ORDER BY and GROUP BY clauses, but not in the
 WHERE or HAVING clauses; there you must write
 out the expression instead.

 Instead of an expression, * can be written in
 the output list as a shorthand for all the columns of the selected
 rows. Also, you can write table_name.* as a
 shorthand for the columns coming from just that table. In these
 cases it is not possible to specify new names with AS;
 the output column names will be the same as the table columns' names.

 According to the SQL standard, the expressions in the output list should
 be computed before applying DISTINCT, ORDER
 BY, or LIMIT. This is obviously necessary
 when using DISTINCT, since otherwise it's not clear
 what values are being made distinct. However, in many cases it is
 convenient if output expressions are computed after ORDER
 BY and LIMIT; particularly if the output list
 contains any volatile or expensive functions. With that behavior, the
 order of function evaluations is more intuitive and there will not be
 evaluations corresponding to rows that never appear in the output.
 PostgreSQL™ will effectively evaluate output expressions
 after sorting and limiting, so long as those expressions are not
 referenced in DISTINCT, ORDER BY
 or GROUP BY. (As a counterexample, SELECT
 f(x) FROM tab ORDER BY 1 clearly must evaluate f(x)
 before sorting.) Output expressions that contain set-returning functions
 are effectively evaluated after sorting and before limiting, so
 that LIMIT will act to cut off the output from a
 set-returning function.

Note

 PostgreSQL™ versions before 9.6 did not provide any
 guarantees about the timing of evaluation of output expressions versus
 sorting and limiting; it depended on the form of the chosen query plan.

DISTINCT Clause

 If SELECT DISTINCT is specified, all duplicate rows are
 removed from the result set (one row is kept from each group of
 duplicates). SELECT ALL specifies the opposite: all rows are
 kept; that is the default.

 SELECT DISTINCT ON (expression [, ...])
 keeps only the first row of each set of rows where the given
 expressions evaluate to equal. The DISTINCT ON
 expressions are interpreted using the same rules as for
 ORDER BY (see above). Note that the “first
 row” of each set is unpredictable unless ORDER
 BY is used to ensure that the desired row appears first. For
 example:

SELECT DISTINCT ON (location) location, time, report
 FROM weather_reports
 ORDER BY location, time DESC;

 retrieves the most recent weather report for each location. But
 if we had not used ORDER BY to force descending order
 of time values for each location, we'd have gotten a report from
 an unpredictable time for each location.

 The DISTINCT ON expression(s) must match the leftmost
 ORDER BY expression(s). The ORDER BY clause
 will normally contain additional expression(s) that determine the
 desired precedence of rows within each DISTINCT ON group.

 Currently, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE and FOR KEY SHARE cannot be
 specified with DISTINCT.

UNION Clause

 The UNION clause has this general form:

select_statement UNION [ALL | DISTINCT] select_statement

select_statement is
 any SELECT statement without an ORDER
 BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE, or FOR KEY SHARE clause.
 (ORDER BY and LIMIT can be attached to a
 subexpression if it is enclosed in parentheses. Without
 parentheses, these clauses will be taken to apply to the result of
 the UNION, not to its right-hand input
 expression.)

 The UNION operator computes the set union of
 the rows returned by the involved SELECT
 statements. A row is in the set union of two result sets if it
 appears in at least one of the result sets. The two
 SELECT statements that represent the direct
 operands of the UNION must produce the same
 number of columns, and corresponding columns must be of compatible
 data types.

 The result of UNION does not contain any duplicate
 rows unless the ALL option is specified.
 ALL prevents elimination of duplicates. (Therefore,
 UNION ALL is usually significantly quicker than
 UNION; use ALL when you can.)
 DISTINCT can be written to explicitly specify the
 default behavior of eliminating duplicate rows.

 Multiple UNION operators in the same
 SELECT statement are evaluated left to right,
 unless otherwise indicated by parentheses.

 Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and
 FOR KEY SHARE cannot be
 specified either for a UNION result or for any input of a
 UNION.

INTERSECT Clause

 The INTERSECT clause has this general form:

select_statement INTERSECT [ALL | DISTINCT] select_statement

select_statement is
 any SELECT statement without an ORDER
 BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE, or FOR KEY SHARE clause.

 The INTERSECT operator computes the set
 intersection of the rows returned by the involved
 SELECT statements. A row is in the
 intersection of two result sets if it appears in both result sets.

 The result of INTERSECT does not contain any
 duplicate rows unless the ALL option is specified.
 With ALL, a row that has m duplicates in the
 left table and n duplicates in the right table will appear
 min(m,n) times in the result set.
 DISTINCT can be written to explicitly specify the
 default behavior of eliminating duplicate rows.

 Multiple INTERSECT operators in the same
 SELECT statement are evaluated left to right,
 unless parentheses dictate otherwise.
 INTERSECT binds more tightly than
 UNION. That is, A UNION B INTERSECT
 C will be read as A UNION (B INTERSECT
 C).

 Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and
 FOR KEY SHARE cannot be
 specified either for an INTERSECT result or for any input of
 an INTERSECT.

EXCEPT Clause

 The EXCEPT clause has this general form:

select_statement EXCEPT [ALL | DISTINCT] select_statement

select_statement is
 any SELECT statement without an ORDER
 BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE,
 FOR SHARE, or FOR KEY SHARE clause.

 The EXCEPT operator computes the set of rows
 that are in the result of the left SELECT
 statement but not in the result of the right one.

 The result of EXCEPT does not contain any
 duplicate rows unless the ALL option is specified.
 With ALL, a row that has m duplicates in the
 left table and n duplicates in the right table will appear
 max(m-n,0) times in the result set.
 DISTINCT can be written to explicitly specify the
 default behavior of eliminating duplicate rows.

 Multiple EXCEPT operators in the same
 SELECT statement are evaluated left to right,
 unless parentheses dictate otherwise. EXCEPT binds at
 the same level as UNION.

 Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and
 FOR KEY SHARE cannot be
 specified either for an EXCEPT result or for any input of
 an EXCEPT.

ORDER BY Clause

 The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]

 The ORDER BY clause causes the result rows to
 be sorted according to the specified expression(s). If two rows are
 equal according to the leftmost expression, they are compared
 according to the next expression and so on. If they are equal
 according to all specified expressions, they are returned in
 an implementation-dependent order.

 Each expression can be the
 name or ordinal number of an output column
 (SELECT list item), or it can be an arbitrary
 expression formed from input-column values.

 The ordinal number refers to the ordinal (left-to-right) position
 of the output column. This feature makes it possible to define an
 ordering on the basis of a column that does not have a unique
 name. This is never absolutely necessary because it is always
 possible to assign a name to an output column using the
 AS clause.

 It is also possible to use arbitrary expressions in the
 ORDER BY clause, including columns that do not
 appear in the SELECT output list. Thus the
 following statement is valid:

SELECT name FROM distributors ORDER BY code;

 A limitation of this feature is that an ORDER BY
 clause applying to the result of a UNION,
 INTERSECT, or EXCEPT clause can only
 specify an output column name or number, not an expression.

 If an ORDER BY expression is a simple name that
 matches both an output column name and an input column name,
 ORDER BY will interpret it as the output column name.
 This is the opposite of the choice that GROUP BY will
 make in the same situation. This inconsistency is made to be
 compatible with the SQL standard.

 Optionally one can add the key word ASC (ascending) or
 DESC (descending) after any expression in the
 ORDER BY clause. If not specified, ASC is
 assumed by default. Alternatively, a specific ordering operator
 name can be specified in the USING clause.
 An ordering operator must be a less-than or greater-than
 member of some B-tree operator family.
 ASC is usually equivalent to USING < and
 DESC is usually equivalent to USING >.
 (But the creator of a user-defined data type can define exactly what the
 default sort ordering is, and it might correspond to operators with other
 names.)

 If NULLS LAST is specified, null values sort after all
 non-null values; if NULLS FIRST is specified, null values
 sort before all non-null values. If neither is specified, the default
 behavior is NULLS LAST when ASC is specified
 or implied, and NULLS FIRST when DESC is specified
 (thus, the default is to act as though nulls are larger than non-nulls).
 When USING is specified, the default nulls ordering depends
 on whether the operator is a less-than or greater-than operator.

 Note that ordering options apply only to the expression they follow;
 for example ORDER BY x, y DESC does not mean
 the same thing as ORDER BY x DESC, y DESC.

 Character-string data is sorted according to the collation that applies
 to the column being sorted. That can be overridden at need by including
 a COLLATE clause in the
 expression, for example
 ORDER BY mycolumn COLLATE "en_US".
 For more information see the section called “Collation Expressions” and
 the section called “Collation Support”.

LIMIT Clause

 The LIMIT clause consists of two independent
 sub-clauses:

LIMIT { count | ALL }
OFFSET start

 The parameter count specifies the
 maximum number of rows to return, while start specifies the number of rows
 to skip before starting to return rows. When both are specified,
 start rows are skipped
 before starting to count the count rows to be returned.

 If the count expression
 evaluates to NULL, it is treated as LIMIT ALL, i.e., no
 limit. If start evaluates
 to NULL, it is treated the same as OFFSET 0.

 SQL:2008 introduced a different syntax to achieve the same result,
 which PostgreSQL™ also supports. It is:

OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }

 In this syntax, the start
 or count value is required by
 the standard to be a literal constant, a parameter, or a variable name;
 as a PostgreSQL™ extension, other expressions
 are allowed, but will generally need to be enclosed in parentheses to avoid
 ambiguity.
 If count is
 omitted in a FETCH clause, it defaults to 1.
 The WITH TIES option is used to return any additional
 rows that tie for the last place in the result set according to
 the ORDER BY clause; ORDER BY
 is mandatory in this case, and SKIP LOCKED is
 not allowed.
 ROW and ROWS as well as
 FIRST and NEXT are noise
 words that don't influence the effects of these clauses.
 According to the standard, the OFFSET clause must come
 before the FETCH clause if both are present; but
 PostgreSQL™ is laxer and allows either order.

 When using LIMIT, it is a good idea to use an
 ORDER BY clause that constrains the result rows into a
 unique order. Otherwise you will get an unpredictable subset of
 the query's rows — you might be asking for the tenth through
 twentieth rows, but tenth through twentieth in what ordering? You
 don't know what ordering unless you specify ORDER BY.

 The query planner takes LIMIT into account when
 generating a query plan, so you are very likely to get different
 plans (yielding different row orders) depending on what you use
 for LIMIT and OFFSET. Thus, using
 different LIMIT/OFFSET values to select
 different subsets of a query result will give
 inconsistent results unless you enforce a predictable
 result ordering with ORDER BY. This is not a bug; it
 is an inherent consequence of the fact that SQL does not promise
 to deliver the results of a query in any particular order unless
 ORDER BY is used to constrain the order.

 It is even possible for repeated executions of the same LIMIT
 query to return different subsets of the rows of a table, if there
 is not an ORDER BY to enforce selection of a deterministic
 subset. Again, this is not a bug; determinism of the results is
 simply not guaranteed in such a case.

The Locking Clause

 FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE
 and FOR KEY SHARE
 are locking clauses; they affect how SELECT
 locks rows as they are obtained from the table.

 The locking clause has the general form

FOR lock_strength [OF table_name [, ...]] [NOWAIT | SKIP LOCKED]

 where lock_strength can be one of

UPDATE
NO KEY UPDATE
SHARE
KEY SHARE

 For more information on each row-level lock mode, refer to
 the section called “Row-Level Locks”.

 To prevent the operation from waiting for other transactions to commit,
 use either the NOWAIT or SKIP LOCKED
 option. With NOWAIT, the statement reports an error, rather
 than waiting, if a selected row cannot be locked immediately.
 With SKIP LOCKED, any selected rows that cannot be
 immediately locked are skipped. Skipping locked rows provides an
 inconsistent view of the data, so this is not suitable for general purpose
 work, but can be used to avoid lock contention with multiple consumers
 accessing a queue-like table.
 Note that NOWAIT and SKIP LOCKED apply only
 to the row-level lock(s) — the required ROW SHARE
 table-level lock is still taken in the ordinary way (see
 Chapter 13, Concurrency Control). You can use
 LOCK
 with the NOWAIT option first,
 if you need to acquire the table-level lock without waiting.

 If specific tables are named in a locking clause,
 then only rows coming from those tables are locked; any other
 tables used in the SELECT are simply read as
 usual. A locking
 clause without a table list affects all tables used in the statement.
 If a locking clause is
 applied to a view or sub-query, it affects all tables used in
 the view or sub-query.
 However, these clauses
 do not apply to WITH queries referenced by the primary query.
 If you want row locking to occur within a WITH query, specify
 a locking clause within the WITH query.

 Multiple locking
 clauses can be written if it is necessary to specify different locking
 behavior for different tables. If the same table is mentioned (or
 implicitly affected) by more than one locking clause,
 then it is processed as if it was only specified by the strongest one.
 Similarly, a table is processed
 as NOWAIT if that is specified in any of the clauses
 affecting it. Otherwise, it is processed
 as SKIP LOCKED if that is specified in any of the
 clauses affecting it.

 The locking clauses cannot be
 used in contexts where returned rows cannot be clearly identified with
 individual table rows; for example they cannot be used with aggregation.

 When a locking clause
 appears at the top level of a SELECT query, the rows that
 are locked are exactly those that are returned by the query; in the
 case of a join query, the rows locked are those that contribute to
 returned join rows. In addition, rows that satisfied the query
 conditions as of the query snapshot will be locked, although they
 will not be returned if they were updated after the snapshot
 and no longer satisfy the query conditions. If a
 LIMIT is used, locking stops
 once enough rows have been returned to satisfy the limit (but note that
 rows skipped over by OFFSET will get locked). Similarly,
 if a locking clause
 is used in a cursor's query, only rows actually fetched or stepped past
 by the cursor will be locked.

 When a locking clause
 appears in a sub-SELECT, the rows locked are those
 returned to the outer query by the sub-query. This might involve
 fewer rows than inspection of the sub-query alone would suggest,
 since conditions from the outer query might be used to optimize
 execution of the sub-query. For example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

 will lock only rows having col1 = 5, even though that
 condition is not textually within the sub-query.

 Previous releases failed to preserve a lock which is upgraded by a later
 savepoint. For example, this code:

BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;

 would fail to preserve the FOR UPDATE lock after the
 ROLLBACK TO. This has been fixed in release 9.3.

Caution

 It is possible for a SELECT command running at the READ
 COMMITTED transaction isolation level and using ORDER
 BY and a locking clause to return rows out of
 order. This is because ORDER BY is applied first.
 The command sorts the result, but might then block trying to obtain a lock
 on one or more of the rows. Once the SELECT unblocks, some
 of the ordering column values might have been modified, leading to those
 rows appearing to be out of order (though they are in order in terms
 of the original column values). This can be worked around at need by
 placing the FOR UPDATE/SHARE clause in a sub-query,
 for example

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

 Note that this will result in locking all rows of mytable,
 whereas FOR UPDATE at the top level would lock only the
 actually returned rows. This can make for a significant performance
 difference, particularly if the ORDER BY is combined with
 LIMIT or other restrictions. So this technique is recommended
 only if concurrent updates of the ordering columns are expected and a
 strictly sorted result is required.

 At the REPEATABLE READ or SERIALIZABLE
 transaction isolation level this would cause a serialization failure (with
 an SQLSTATE of '40001'), so there is
 no possibility of receiving rows out of order under these isolation levels.

TABLE Command

 The command

TABLE name

 is equivalent to

SELECT * FROM name

 It can be used as a top-level command or as a space-saving syntax
 variant in parts of complex queries. Only the WITH,
 UNION, INTERSECT, EXCEPT,
 ORDER BY, LIMIT, OFFSET,
 FETCH and FOR locking clauses can be used
 with TABLE; the WHERE clause and any form of
 aggregation cannot
 be used.

Examples

 To join the table films with the table
 distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d JOIN films f USING (did);

 title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------
 The Third Man | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 ...

 To sum the column len of all films and group
 the results by kind:

SELECT kind, sum(len) AS total FROM films GROUP BY kind;

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38

 To sum the column len of all films, group
 the results by kind and show those group totals
 that are less than 5 hours:

SELECT kind, sum(len) AS total
 FROM films
 GROUP BY kind
 HAVING sum(len) < interval '5 hours';

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38

 The following two examples are identical ways of sorting the individual
 results according to the contents of the second column
 (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward

 The next example shows how to obtain the union of the tables
 distributors and
 actors, restricting the results to those that begin
 with the letter W in each table. Only distinct rows are wanted, so the
 key word ALL is omitted.

distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen
 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE 'W%'
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE 'W%';

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

 This example shows how to use a function in the FROM
 clause, both with and without a column definition list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
 did | name
-----+-------------
 111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
 f1 | f2
-----+-------------
 111 | Walt Disney

 Here is an example of a function with an ordinality column added:

SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
 unnest | ordinality
--------+----------
 a | 1
 b | 2
 c | 3
 d | 4
 e | 5
 f | 6
(6 rows)

 This example shows how to use a simple WITH clause:

WITH t AS (
 SELECT random() as x FROM generate_series(1, 3)
)
SELECT * FROM t
UNION ALL
SELECT * FROM t;
 x

 0.534150459803641
 0.520092216785997
 0.0735620250925422
 0.534150459803641
 0.520092216785997
 0.0735620250925422

 Notice that the WITH query was evaluated only once,
 so that we got two sets of the same three random values.

 This example uses WITH RECURSIVE to find all
 subordinates (direct or indirect) of the employee Mary, and their
 level of indirectness, from a table that shows only direct
 subordinates:

WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
 SELECT 1, employee_name, manager_name
 FROM employee
 WHERE manager_name = 'Mary'
 UNION ALL
 SELECT er.distance + 1, e.employee_name, e.manager_name
 FROM employee_recursive er, employee e
 WHERE er.employee_name = e.manager_name
)
SELECT distance, employee_name FROM employee_recursive;

 Notice the typical form of recursive queries:
 an initial condition, followed by UNION,
 followed by the recursive part of the query. Be sure that the
 recursive part of the query will eventually return no tuples, or
 else the query will loop indefinitely. (See the section called “WITH Queries (Common Table Expressions)”
 for more examples.)

 This example uses LATERAL to apply a set-returning function
 get_product_names() for each row of the
 manufacturers table:

SELECT m.name AS mname, pname
FROM manufacturers m, LATERAL get_product_names(m.id) pname;

 Manufacturers not currently having any products would not appear in the
 result, since it is an inner join. If we wished to include the names of
 such manufacturers in the result, we could do:

SELECT m.name AS mname, pname
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true;

Compatibility

 Of course, the SELECT statement is compatible
 with the SQL standard. But there are some extensions and some
 missing features.

Omitted FROM Clauses

 PostgreSQL™ allows one to omit the
 FROM clause. It has a straightforward use to
 compute the results of simple expressions:

SELECT 2+2;

 ?column?

 4

 Some other SQL databases cannot do this except
 by introducing a dummy one-row table from which to do the
 SELECT.

Empty SELECT Lists

 The list of output expressions after SELECT can be
 empty, producing a zero-column result table.
 This is not valid syntax according to the SQL standard.
 PostgreSQL™ allows it to be consistent with
 allowing zero-column tables.
 However, an empty list is not allowed when DISTINCT is used.

Omitting the AS Key Word

 In the SQL standard, the optional key word AS can be
 omitted before an output column name whenever the new column name
 is a valid column name (that is, not the same as any reserved
 keyword). PostgreSQL™ is slightly more
 restrictive: AS is required if the new column name
 matches any keyword at all, reserved or not. Recommended practice is
 to use AS or double-quote output column names, to prevent
 any possible conflict against future keyword additions.

 In FROM items, both the standard and
 PostgreSQL™ allow AS to
 be omitted before an alias that is an unreserved keyword. But
 this is impractical for output column names, because of syntactic
 ambiguities.

Omitting Sub-SELECT Aliases in FROM

 According to the SQL standard, a sub-SELECT in the
 FROM list must have an alias. In
 PostgreSQL™, this alias may be omitted.

ONLY and Inheritance

 The SQL standard requires parentheses around the table name when
 writing ONLY, for example SELECT * FROM ONLY
 (tab1), ONLY (tab2) WHERE PostgreSQL™
 considers these parentheses to be optional.

 PostgreSQL™ allows a trailing * to be written to
 explicitly specify the non-ONLY behavior of including
 child tables. The standard does not allow this.

 (These points apply equally to all SQL commands supporting the
 ONLY option.)

TABLESAMPLE Clause Restrictions

 The TABLESAMPLE clause is currently accepted only on
 regular tables and materialized views. According to the SQL standard
 it should be possible to apply it to any FROM item.

Function Calls in FROM

 PostgreSQL™ allows a function call to be
 written directly as a member of the FROM list. In the SQL
 standard it would be necessary to wrap such a function call in a
 sub-SELECT; that is, the syntax
 FROM func(...) alias
 is approximately equivalent to
 FROM LATERAL (SELECT func(...)) alias.
 Note that LATERAL is considered to be implicit; this is
 because the standard requires LATERAL semantics for an
 UNNEST() item in FROM.
 PostgreSQL™ treats UNNEST() the
 same as other set-returning functions.

Namespace Available to GROUP BY and ORDER BY

 In the SQL-92 standard, an ORDER BY clause can
 only use output column names or numbers, while a GROUP
 BY clause can only use expressions based on input column
 names. PostgreSQL™ extends each of
 these clauses to allow the other choice as well (but it uses the
 standard's interpretation if there is ambiguity).
 PostgreSQL™ also allows both clauses to
 specify arbitrary expressions. Note that names appearing in an
 expression will always be taken as input-column names, not as
 output-column names.

 SQL:1999 and later use a slightly different definition which is not
 entirely upward compatible with SQL-92.
 In most cases, however, PostgreSQL™
 will interpret an ORDER BY or GROUP
 BY expression the same way SQL:1999 does.

Functional Dependencies

 PostgreSQL™ recognizes functional dependency
 (allowing columns to be omitted from GROUP BY) only when
 a table's primary key is included in the GROUP BY list.
 The SQL standard specifies additional conditions that should be
 recognized.

LIMIT and OFFSET

 The clauses LIMIT and OFFSET
 are PostgreSQL™-specific syntax, also
 used by MySQL™. The SQL:2008 standard
 has introduced the clauses OFFSET ... FETCH {FIRST|NEXT}
 ... for the same functionality, as shown above
 in LIMIT Clause. This
 syntax is also used by IBM DB2™.
 (Applications written for Oracle™
 frequently use a workaround involving the automatically
 generated rownum column, which is not available in
 PostgreSQL, to implement the effects of these clauses.)

FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE

 Although FOR UPDATE appears in the SQL standard, the
 standard allows it only as an option of DECLARE CURSOR.
 PostgreSQL™ allows it in any SELECT
 query as well as in sub-SELECTs, but this is an extension.
 The FOR NO KEY UPDATE, FOR SHARE and
 FOR KEY SHARE variants, as well as the NOWAIT
 and SKIP LOCKED options, do not appear in the
 standard.

Data-Modifying Statements in WITH

 PostgreSQL™ allows INSERT,
 UPDATE, and DELETE to be used as WITH
 queries. This is not found in the SQL standard.

Nonstandard Clauses

 DISTINCT ON (...) is an extension of the
 SQL standard.

 ROWS FROM(...) is an extension of the SQL standard.

 The MATERIALIZED and NOT
 MATERIALIZED options of WITH are extensions
 of the SQL standard.

Name
SELECT INTO — define a new table from the results of a query

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [{ * | expression [[AS] output_name] } [, ...]]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

Description

 SELECT INTO creates a new table and fills it
 with data computed by a query. The data is not returned to the
 client, as it is with a normal SELECT. The new
 table's columns have the names and data types associated with the
 output columns of the SELECT.

Parameters
	TEMPORARY or TEMP
	
 If specified, the table is created as a temporary table. Refer
 to CREATE TABLE(7) for details.

	UNLOGGED
	
 If specified, the table is created as an unlogged table. Refer
 to CREATE TABLE(7) for details.

	new_table
	
 The name (optionally schema-qualified) of the table to be created.

 All other parameters are described in detail under SELECT(7).

Notes

 CREATE TABLE AS is functionally similar to
 SELECT INTO. CREATE TABLE AS
 is the recommended syntax, since this form of SELECT
 INTO is not available in ECPG
 or PL/pgSQL, because they interpret the
 INTO clause differently. Furthermore,
 CREATE TABLE AS offers a superset of the
 functionality provided by SELECT INTO.

 In contrast to CREATE TABLE AS, SELECT
 INTO does not allow specifying properties like a table's access
 method with USING method or the table's
 tablespace with TABLESPACE tablespace_name. Use
 CREATE TABLE AS if necessary. Therefore, the default table
 access method is chosen for the new table. See default_table_access_method for more information.

Examples

 Create a new table films_recent consisting of only
 recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';

Compatibility

 The SQL standard uses SELECT INTO to
 represent selecting values into scalar variables of a host program,
 rather than creating a new table. This indeed is the usage found
 in ECPG (see Chapter 36, ECPG — Embedded SQL in C) and
 PL/pgSQL (see Chapter 43, PL/pgSQL — SQL Procedural Language).
 The PostgreSQL™ usage of SELECT
 INTO to represent table creation is historical. Some other SQL
 implementations also use SELECT INTO in this way (but
 most SQL implementations support CREATE TABLE AS
 instead). Apart from such compatibility considerations, it is best to use
 CREATE TABLE AS for this purpose in new code.

See Also
CREATE TABLE AS(7)

Name
SET — change a run-time parameter

Synopsis

SET [SESSION | LOCAL] configuration_parameter { TO | = } { value | 'value' | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { value | 'value' | LOCAL | DEFAULT }

Description

 The SET command changes run-time configuration
 parameters. Many of the run-time parameters listed in
 Chapter 20, Server Configuration can be changed on-the-fly with
 SET.
 (Some parameters can only be changed by superusers and users who
 have been granted SET privilege on that parameter.
 There are also parameters that cannot be changed after server or
 session start.)
 SET only affects the value used by the current
 session.

 If SET (or equivalently SET SESSION)
 is issued within a transaction that is later aborted, the effects of the
 SET command disappear when the transaction is rolled
 back. Once the surrounding transaction is committed, the effects
 will persist until the end of the session, unless overridden by another
 SET.

 The effects of SET LOCAL last only till the end of
 the current transaction, whether committed or not. A special case is
 SET followed by SET LOCAL within
 a single transaction: the SET LOCAL value will be
 seen until the end of the transaction, but afterwards (if the transaction
 is committed) the SET value will take effect.

 The effects of SET or SET LOCAL are
 also canceled by rolling back to a savepoint that is earlier than the
 command.

 If SET LOCAL is used within a function that has a
 SET option for the same variable (see
 CREATE FUNCTION(7)),
 the effects of the SET LOCAL command disappear at
 function exit; that is, the value in effect when the function was called is
 restored anyway. This allows SET LOCAL to be used for
 dynamic or repeated changes of a parameter within a function, while still
 having the convenience of using the SET option to save and
 restore the caller's value. However, a regular SET command
 overrides any surrounding function's SET option; its effects
 will persist unless rolled back.

Note

 In PostgreSQL™ versions 8.0 through 8.2,
 the effects of a SET LOCAL would be canceled by
 releasing an earlier savepoint, or by successful exit from a
 PL/pgSQL exception block. This behavior
 has been changed because it was deemed unintuitive.

Parameters
	SESSION
	
 Specifies that the command takes effect for the current session.
 (This is the default if neither SESSION nor
 LOCAL appears.)

	LOCAL
	
 Specifies that the command takes effect for only the current
 transaction. After COMMIT or ROLLBACK,
 the session-level setting takes effect again. Issuing this
 outside of a transaction block emits a warning and otherwise has
 no effect.

	configuration_parameter
	
 Name of a settable run-time parameter. Available parameters are
 documented in Chapter 20, Server Configuration and below.

	value
	
 New value of parameter. Values can be specified as string
 constants, identifiers, numbers, or comma-separated lists of
 these, as appropriate for the particular parameter.
 DEFAULT can be written to specify
 resetting the parameter to its default value (that is, whatever
 value it would have had if no SET had been executed
 in the current session).

 Besides the configuration parameters documented in Chapter 20, Server Configuration, there are a few that can only be
 adjusted using the SET command or that have a
 special syntax:

	SCHEMA
	SET SCHEMA 'value' is an alias for
 SET search_path TO value. Only one
 schema can be specified using this syntax.

	NAMES
	SET NAMES value is an alias for
 SET client_encoding TO value.

	SEED
	
 Sets the internal seed for the random number generator (the
 function random). Allowed values are
 floating-point numbers between -1 and 1 inclusive.

 The seed can also be set by invoking the function
 setseed:

SELECT setseed(value);

	TIME ZONE
	SET TIME ZONE 'value' is an alias
 for SET timezone TO 'value'. The
 syntax SET TIME ZONE allows special syntax
 for the time zone specification. Here are examples of valid
 values:

	'America/Los_Angeles'
	
 The time zone for Berkeley, California.

	'Europe/Rome'
	
 The time zone for Italy.

	-7
	
 The time zone 7 hours west from UTC (equivalent
 to PDT). Positive values are east from UTC.

	INTERVAL '-08:00' HOUR TO MINUTE
	
 The time zone 8 hours west from UTC (equivalent
 to PST).

	LOCAL, DEFAULT
	
 Set the time zone to your local time zone (that is, the
 server's default value of timezone).

 Timezone settings given as numbers or intervals are internally
 translated to POSIX timezone syntax. For example, after
 SET TIME ZONE -7, SHOW TIME ZONE would
 report <-07>+07.

 Time zone abbreviations are not supported by SET;
 see the section called “Time Zones” for more information
 about time zones.

Notes

 The function set_config provides equivalent
 functionality; see the section called “Configuration Settings Functions”.
 Also, it is possible to UPDATE the
 pg_settings
 system view to perform the equivalent of SET.

Examples

 Set the schema search path:

SET search_path TO my_schema, public;

 Set the style of date to traditional
 POSTGRES™ with “day before month”
 input convention:

SET datestyle TO postgres, dmy;

 Set the time zone for Berkeley, California:

SET TIME ZONE 'America/Los_Angeles';

 Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility

 SET TIME ZONE extends syntax defined in the SQL
 standard. The standard allows only numeric time zone offsets while
 PostgreSQL™ allows more flexible
 time-zone specifications. All other SET
 features are PostgreSQL™ extensions.

See Also
RESET(7), SHOW(7)

Name
SET CONSTRAINTS — set constraint check timing for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

 SET CONSTRAINTS sets the behavior of constraint
 checking within the current transaction. IMMEDIATE
 constraints are checked at the end of each
 statement. DEFERRED constraints are not checked until
 transaction commit. Each constraint has its own
 IMMEDIATE or DEFERRED mode.

 Upon creation, a constraint is given one of three
 characteristics: DEFERRABLE INITIALLY DEFERRED,
 DEFERRABLE INITIALLY IMMEDIATE, or
 NOT DEFERRABLE. The third
 class is always IMMEDIATE and is not affected by the
 SET CONSTRAINTS command. The first two classes start
 every transaction in the indicated mode, but their behavior can be changed
 within a transaction by SET CONSTRAINTS.

 SET CONSTRAINTS with a list of constraint names changes
 the mode of just those constraints (which must all be deferrable). Each
 constraint name can be schema-qualified. The
 current schema search path is used to find the first matching name if
 no schema name is specified. SET CONSTRAINTS ALL
 changes the mode of all deferrable constraints.

 When SET CONSTRAINTS changes the mode of a constraint
 from DEFERRED
 to IMMEDIATE, the new mode takes effect
 retroactively: any outstanding data modifications that would have
 been checked at the end of the transaction are instead checked during the
 execution of the SET CONSTRAINTS command.
 If any such constraint is violated, the SET CONSTRAINTS
 fails (and does not change the constraint mode). Thus, SET
 CONSTRAINTS can be used to force checking of constraints to
 occur at a specific point in a transaction.

 Currently, only UNIQUE, PRIMARY KEY,
 REFERENCES (foreign key), and EXCLUDE
 constraints are affected by this setting.
 NOT NULL and CHECK constraints are
 always checked immediately when a row is inserted or modified
 (not at the end of the statement).
 Uniqueness and exclusion constraints that have not been declared
 DEFERRABLE are also checked immediately.

 The firing of triggers that are declared as “constraint triggers”
 is also controlled by this setting — they fire at the same time
 that the associated constraint should be checked.

Notes

 Because PostgreSQL™ does not require constraint
 names to be unique within a schema (but only per-table), it is possible
 that there is more than one match for a specified constraint name.
 In this case SET CONSTRAINTS will act on all matches.
 For a non-schema-qualified name, once a match or matches have been found in
 some schema in the search path, schemas appearing later in the path are not
 searched.

 This command only alters the behavior of constraints within the
 current transaction. Issuing this outside of a transaction block
 emits a warning and otherwise has no effect.

Compatibility

 This command complies with the behavior defined in the SQL
 standard, except for the limitation that, in
 PostgreSQL™, it does not apply to
 NOT NULL and CHECK constraints.
 Also, PostgreSQL™ checks non-deferrable
 uniqueness constraints immediately, not at end of statement as the
 standard would suggest.

Name
SET ROLE — set the current user identifier of the current session

Synopsis

SET [SESSION | LOCAL] ROLE role_name
SET [SESSION | LOCAL] ROLE NONE
RESET ROLE

Description

 This command sets the current user
 identifier of the current SQL session to be role_name. The role name can be
 written as either an identifier or a string literal.
 After SET ROLE, permissions checking for SQL commands
 is carried out as though the named role were the one that had logged
 in originally.

 The current session user must have the SET option for the
 specified role_name, either
 directly or indirectly via a chain of memberships with the
 SET option.
 (If the session user is a superuser, any role can be selected.)

 The SESSION and LOCAL modifiers act the same
 as for the regular SET
 command.

 SET ROLE NONE sets the current user identifier to the
 current session user identifier, as returned by
 session_user. RESET ROLE sets the
 current user identifier to the connection-time setting specified by the
 command-line options,
 ALTER ROLE, or
 ALTER DATABASE,
 if any such settings exist. Otherwise, RESET ROLE sets
 the current user identifier to the current session user identifier. These
 forms can be executed by any user.

Notes

 Using this command, it is possible to either add privileges or restrict
 one's privileges. If the session user role has been granted memberships
 WITH INHERIT TRUE, it automatically has all the
 privileges of every such role. In this case, SET ROLE
 effectively drops all the privileges except for those which the target role
 directly possesses or inherits. On the other hand, if the session user role
 has been granted memberships WITH INHERIT FALSE, the
 privileges of the granted roles can't be accessed by default. However, if
 the role was granted WITH SET TRUE, the
 session user can use SET ROLE to drop the privileges
 assigned directly to the session user and instead acquire the privileges
 available to the named role. If the role was granted WITH INHERIT
 FALSE, SET FALSE then the privileges of that role cannot be
 exercised either with or without SET ROLE.

 Note that when a superuser chooses to SET ROLE to a
 non-superuser role, they lose their superuser privileges.

 SET ROLE has effects comparable to
 SET SESSION AUTHORIZATION, but the privilege
 checks involved are quite different. Also,
 SET SESSION AUTHORIZATION determines which roles are
 allowable for later SET ROLE commands, whereas changing
 roles with SET ROLE does not change the set of roles
 allowed to a later SET ROLE.

 SET ROLE does not process session variables as specified by
 the role's ALTER ROLE settings; this only happens during
 login.

 SET ROLE cannot be used within a
 SECURITY DEFINER function.

Examples

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | paul

Compatibility

 PostgreSQL™
 allows identifier syntax ("rolename"), while
 the SQL standard requires the role name to be written as a string
 literal. SQL does not allow this command during a transaction;
 PostgreSQL™ does not make this
 restriction because there is no reason to.
 The SESSION and LOCAL modifiers are a
 PostgreSQL™ extension, as is the
 RESET syntax.

See Also
SET SESSION AUTHORIZATION(7)

Name
SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of the current session

Synopsis

SET [SESSION | LOCAL] SESSION AUTHORIZATION user_name
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description

 This command sets the session user identifier and the current user
 identifier of the current SQL session to be user_name. The user name can be
 written as either an identifier or a string literal. Using this
 command, it is possible, for example, to temporarily become an
 unprivileged user and later switch back to being a superuser.

 The session user identifier is initially set to be the (possibly
 authenticated) user name provided by the client. The current user
 identifier is normally equal to the session user identifier, but
 might change temporarily in the context of SECURITY DEFINER
 functions and similar mechanisms; it can also be changed by
 SET ROLE.
 The current user identifier is relevant for permission checking.

 The session user identifier can be changed only if the initial session
 user (the authenticated user) had the
 superuser privilege. Otherwise, the command is accepted only if it
 specifies the authenticated user name.

 The SESSION and LOCAL modifiers act the same
 as for the regular SET
 command.

 The DEFAULT and RESET forms reset the session
 and current user identifiers to be the originally authenticated user
 name. These forms can be executed by any user.

Notes

 SET SESSION AUTHORIZATION cannot be used within a
 SECURITY DEFINER function.

Examples

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 paul | paul

Compatibility

 The SQL standard allows some other expressions to appear in place
 of the literal user_name, but these options
 are not important in practice. PostgreSQL™
 allows identifier syntax ("username"), which SQL
 does not. SQL does not allow this command during a transaction;
 PostgreSQL™ does not make this
 restriction because there is no reason to.
 The SESSION and LOCAL modifiers are a
 PostgreSQL™ extension, as is the
 RESET syntax.

 The privileges necessary to execute this command are left
 implementation-defined by the standard.

See Also
SET ROLE(7)

Name
SET TRANSACTION — set the characteristics of the current transaction

Synopsis

SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description

 The SET TRANSACTION command sets the
 characteristics of the current transaction. It has no effect on any
 subsequent transactions. SET SESSION
 CHARACTERISTICS sets the default transaction
 characteristics for subsequent transactions of a session. These
 defaults can be overridden by SET TRANSACTION
 for an individual transaction.

 The available transaction characteristics are the transaction
 isolation level, the transaction access mode (read/write or
 read-only), and the deferrable mode.
 In addition, a snapshot can be selected, though only for the current
 transaction, not as a session default.

 The isolation level of a transaction determines what data the
 transaction can see when other transactions are running concurrently:

	READ COMMITTED
	
 A statement can only see rows committed before it began. This
 is the default.

	REPEATABLE READ
	
 All statements of the current transaction can only see rows committed
 before the first query or data-modification statement was executed in
 this transaction.

	SERIALIZABLE
	
 All statements of the current transaction can only see rows committed
 before the first query or data-modification statement was executed in
 this transaction. If a pattern of reads and writes among concurrent
 serializable transactions would create a situation which could not
 have occurred for any serial (one-at-a-time) execution of those
 transactions, one of them will be rolled back with a
 serialization_failure error.

 The SQL standard defines one additional level, READ
 UNCOMMITTED.
 In PostgreSQL™ READ
 UNCOMMITTED is treated as READ COMMITTED.

 The transaction isolation level cannot be changed after the first query or
 data-modification statement (SELECT,
 INSERT, DELETE,
 UPDATE, MERGE,
 FETCH, or
 COPY) of a transaction has been executed. See
 Chapter 13, Concurrency Control for more information about transaction
 isolation and concurrency control.

 The transaction access mode determines whether the transaction is
 read/write or read-only. Read/write is the default. When a
 transaction is read-only, the following SQL commands are
 disallowed: INSERT, UPDATE,
 DELETE, MERGE, and
 COPY FROM if the
 table they would write to is not a temporary table; all
 CREATE, ALTER, and
 DROP commands; COMMENT,
 GRANT, REVOKE,
 TRUNCATE; and EXPLAIN ANALYZE
 and EXECUTE if the command they would execute is
 among those listed. This is a high-level notion of read-only that
 does not prevent all writes to disk.

 The DEFERRABLE transaction property has no effect
 unless the transaction is also SERIALIZABLE and
 READ ONLY. When all three of these properties are
 selected for a
 transaction, the transaction may block when first acquiring its snapshot,
 after which it is able to run without the normal overhead of a
 SERIALIZABLE transaction and without any risk of
 contributing to or being canceled by a serialization failure. This mode
 is well suited for long-running reports or backups.

 The SET TRANSACTION SNAPSHOT command allows a new
 transaction to run with the same snapshot as an existing
 transaction. The pre-existing transaction must have exported its snapshot
 with the pg_export_snapshot function (see the section called “Snapshot Synchronization Functions”). That function returns a
 snapshot identifier, which must be given to SET TRANSACTION
 SNAPSHOT to specify which snapshot is to be imported. The
 identifier must be written as a string literal in this command, for example
 '00000003-0000001B-1'.
 SET TRANSACTION SNAPSHOT can only be executed at the
 start of a transaction, before the first query or
 data-modification statement (SELECT,
 INSERT, DELETE,
 UPDATE, MERGE,
 FETCH, or
 COPY) of the transaction. Furthermore, the transaction
 must already be set to SERIALIZABLE or
 REPEATABLE READ isolation level (otherwise, the snapshot
 would be discarded immediately, since READ COMMITTED mode takes
 a new snapshot for each command). If the importing transaction uses
 SERIALIZABLE isolation level, then the transaction that
 exported the snapshot must also use that isolation level. Also, a
 non-read-only serializable transaction cannot import a snapshot from a
 read-only transaction.

Notes

 If SET TRANSACTION is executed without a prior
 START TRANSACTION or BEGIN,
 it emits a warning and otherwise has no effect.

 It is possible to dispense with SET TRANSACTION
 by instead specifying the desired transaction_modes in
 BEGIN or START TRANSACTION.
 But that option is not available for SET TRANSACTION
 SNAPSHOT.

 The session default transaction modes can also be set or examined via the
 configuration parameters default_transaction_isolation,
 default_transaction_read_only, and
 default_transaction_deferrable.
 (In fact SET SESSION CHARACTERISTICS is just a
 verbose equivalent for setting these variables with SET.)
 This means the defaults can be set in the configuration file, via
 ALTER DATABASE, etc. Consult Chapter 20, Server Configuration
 for more information.

 The current transaction's modes can similarly be set or examined via the
 configuration parameters transaction_isolation,
 transaction_read_only, and
 transaction_deferrable. Setting one of these
 parameters acts the same as the corresponding SET
 TRANSACTION option, with the same restrictions on when it can
 be done. However, these parameters cannot be set in the configuration
 file, or from any source other than live SQL.

Examples

 To begin a new transaction with the same snapshot as an already
 existing transaction, first export the snapshot from the existing
 transaction. That will return the snapshot identifier, for example:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot

 00000003-0000001B-1
(1 row)

 Then give the snapshot identifier in a SET TRANSACTION
 SNAPSHOT command at the beginning of the newly opened
 transaction:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';

Compatibility

 These commands are defined in the SQL standard,
 except for the DEFERRABLE transaction mode
 and the SET TRANSACTION SNAPSHOT form, which are
 PostgreSQL™ extensions.

 SERIALIZABLE is the default transaction
 isolation level in the standard. In
 PostgreSQL™ the default is ordinarily
 READ COMMITTED, but you can change it as
 mentioned above.

 In the SQL standard, there is one other transaction characteristic
 that can be set with these commands: the size of the diagnostics
 area. This concept is specific to embedded SQL, and therefore is
 not implemented in the PostgreSQL™ server.

 The SQL standard requires commas between successive transaction_modes, but for historical
 reasons PostgreSQL™ allows the commas to be
 omitted.

Name
SHOW — show the value of a run-time parameter

Synopsis

SHOW name
SHOW ALL

Description

 SHOW will display the current setting of
 run-time parameters. These variables can be set using the
 SET statement, by editing the
 postgresql.conf configuration file, through
 the PGOPTIONS environmental variable (when using
 libpq or a libpq-based
 application), or through command-line flags when starting the
 postgres server. See Chapter 20, Server Configuration for details.

Parameters
	name
	
 The name of a run-time parameter. Available parameters are
 documented in Chapter 20, Server Configuration and on the SET(7) reference page. In
 addition, there are a few parameters that can be shown but not
 set:

	SERVER_VERSION
	
 Shows the server's version number.

	SERVER_ENCODING
	
 Shows the server-side character set encoding. At present,
 this parameter can be shown but not set, because the
 encoding is determined at database creation time.

	IS_SUPERUSER
	
 True if the current role has superuser privileges.

	ALL
	
 Show the values of all configuration parameters, with descriptions.

Notes

 The function current_setting produces
 equivalent output; see the section called “Configuration Settings Functions”.
 Also, the
 pg_settings
 system view produces the same information.

Examples

 Show the current setting of the parameter DateStyle:

SHOW DateStyle;
 DateStyle

 ISO, MDY
(1 row)

 Show the current setting of the parameter geqo:

SHOW geqo;
 geqo

 on
(1 row)

 Show all settings:

SHOW ALL;
 name | setting | description
-------------------------+---------+---
 allow_system_table_mods | off | Allows modifications of the structure of ...
 .
 .
 .
 xmloption | content | Sets whether XML data in implicit parsing ...
 zero_damaged_pages | off | Continues processing past damaged page headers.
(196 rows)

Compatibility

 The SHOW command is a
 PostgreSQL™ extension.

See Also
SET(7), RESET(7)

Name
START TRANSACTION — start a transaction block

Synopsis

START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description

 This command begins a new transaction block. If the isolation level,
 read/write mode, or deferrable mode is specified, the new transaction has those
 characteristics, as if SET TRANSACTION was executed. This is the same
 as the BEGIN command.

Parameters

 Refer to SET TRANSACTION(7) for information on the meaning
 of the parameters to this statement.

Compatibility

 In the standard, it is not necessary to issue START TRANSACTION
 to start a transaction block: any SQL command implicitly begins a block.
 PostgreSQL™'s behavior can be seen as implicitly
 issuing a COMMIT after each command that does not
 follow START TRANSACTION (or BEGIN),
 and it is therefore often called “autocommit”.
 Other relational database systems might offer an autocommit feature
 as a convenience.

 The DEFERRABLE
 transaction_mode
 is a PostgreSQL™ language extension.

 The SQL standard requires commas between successive transaction_modes, but for historical
 reasons PostgreSQL™ allows the commas to be
 omitted.

 See also the compatibility section of SET TRANSACTION(7).

See Also
BEGIN(7), COMMIT(7), ROLLBACK(7), SAVEPOINT(7), SET TRANSACTION(7)

Name
TRUNCATE — empty a table or set of tables

Synopsis

TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description

 TRUNCATE quickly removes all rows from a set of
 tables. It has the same effect as an unqualified
 DELETE on each table, but since it does not actually
 scan the tables it is faster. Furthermore, it reclaims disk space
 immediately, rather than requiring a subsequent VACUUM
 operation. This is most useful on large tables.

Parameters
	name
	
 The name (optionally schema-qualified) of a table to truncate.
 If ONLY is specified before the table name, only that table
 is truncated. If ONLY is not specified, the table and all
 its descendant tables (if any) are truncated. Optionally, *
 can be specified after the table name to explicitly indicate that
 descendant tables are included.

	RESTART IDENTITY
	
 Automatically restart sequences owned by columns of
 the truncated table(s).

	CONTINUE IDENTITY
	
 Do not change the values of sequences. This is the default.

	CASCADE
	
 Automatically truncate all tables that have foreign-key references
 to any of the named tables, or to any tables added to the group
 due to CASCADE.

	RESTRICT
	
 Refuse to truncate if any of the tables have foreign-key references
 from tables that are not listed in the command. This is the default.

Notes

 You must have the TRUNCATE privilege on a table
 to truncate it.

 TRUNCATE acquires an ACCESS EXCLUSIVE lock on each
 table it operates on, which blocks all other concurrent operations
 on the table. When RESTART IDENTITY is specified, any
 sequences that are to be restarted are likewise locked exclusively.
 If concurrent access to a table is required, then
 the DELETE command should be used instead.

 TRUNCATE cannot be used on a table that has foreign-key
 references from other tables, unless all such tables are also truncated
 in the same command. Checking validity in such cases would require table
 scans, and the whole point is not to do one. The CASCADE
 option can be used to automatically include all dependent tables —
 but be very careful when using this option, or else you might lose data you
 did not intend to!
 Note in particular that when the table to be truncated is a partition,
 siblings partitions are left untouched, but cascading occurs to all
 referencing tables and all their partitions with no distinction.

 TRUNCATE will not fire any ON DELETE
 triggers that might exist for the tables. But it will fire
 ON TRUNCATE triggers.
 If ON TRUNCATE triggers are defined for any of
 the tables, then all BEFORE TRUNCATE triggers are
 fired before any truncation happens, and all AFTER
 TRUNCATE triggers are fired after the last truncation is
 performed and any sequences are reset.
 The triggers will fire in the order that the tables are
 to be processed (first those listed in the command, and then any
 that were added due to cascading).

 TRUNCATE is not MVCC-safe. After truncation, the table will
 appear empty to concurrent transactions, if they are using a snapshot
 taken before the truncation occurred.
 See the section called “Caveats” for more details.

 TRUNCATE is transaction-safe with respect to the data
 in the tables: the truncation will be safely rolled back if the surrounding
 transaction does not commit.

 When RESTART IDENTITY is specified, the implied
 ALTER SEQUENCE RESTART operations are also done
 transactionally; that is, they will be rolled back if the surrounding
 transaction does not commit. Be aware that if any additional
 sequence operations are done on the restarted sequences before the
 transaction rolls back, the effects of these operations on the sequences
 will be rolled back, but not their effects on currval();
 that is, after the transaction currval() will continue to
 reflect the last sequence value obtained inside the failed transaction,
 even though the sequence itself may no longer be consistent with that.
 This is similar to the usual behavior of currval() after
 a failed transaction.

 TRUNCATE can be used for foreign tables if
 supported by the foreign data wrapper, for instance,
 see postgres_fdw.

Examples

 Truncate the tables bigtable and
 fattable:

TRUNCATE bigtable, fattable;

 The same, and also reset any associated sequence generators:

TRUNCATE bigtable, fattable RESTART IDENTITY;

 Truncate the table othertable, and cascade to any tables
 that reference othertable via foreign-key
 constraints:

TRUNCATE othertable CASCADE;

Compatibility

 The SQL:2008 standard includes a TRUNCATE command
 with the syntax TRUNCATE TABLE
 tablename. The clauses
 CONTINUE IDENTITY/RESTART IDENTITY
 also appear in that standard, but have slightly different though related
 meanings. Some of the concurrency behavior of this command is left
 implementation-defined by the standard, so the above notes should be
 considered and compared with other implementations if necessary.

See Also
DELETE(7)

Name
UNLISTEN — stop listening for a notification

Synopsis

UNLISTEN { channel | * }

Description

 UNLISTEN is used to remove an existing
 registration for NOTIFY events.
 UNLISTEN cancels any existing registration of
 the current PostgreSQL™ session as a
 listener on the notification channel named channel. The special wildcard
 * cancels all listener registrations for the
 current session.

 NOTIFY(7)
 contains a more extensive
 discussion of the use of LISTEN and
 NOTIFY.

Parameters
	channel
	
 Name of a notification channel (any identifier).

	*
	
 All current listen registrations for this session are cleared.

Notes

 You can unlisten something you were not listening for; no warning or error
 will appear.

 At the end of each session, UNLISTEN * is
 automatically executed.

 A transaction that has executed UNLISTEN cannot be
 prepared for two-phase commit.

Examples

 To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

 Once UNLISTEN has been executed, further NOTIFY
 messages will be ignored:

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

Compatibility

 There is no UNLISTEN command in the SQL standard.

See Also
LISTEN(7), NOTIFY(7)

Name
UPDATE — update rows of a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
 SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [FROM from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING { * | output_expression [[AS] output_name] } [, ...]]

Description

 UPDATE changes the values of the specified
 columns in all rows that satisfy the condition. Only the columns to
 be modified need be mentioned in the SET clause;
 columns not explicitly modified retain their previous values.

 There are two ways to modify a table using information contained in
 other tables in the database: using sub-selects, or specifying
 additional tables in the FROM clause. Which
 technique is more appropriate depends on the specific
 circumstances.

 The optional RETURNING clause causes UPDATE
 to compute and return value(s) based on each row actually updated.
 Any expression using the table's columns, and/or columns of other
 tables mentioned in FROM, can be computed.
 The new (post-update) values of the table's columns are used.
 The syntax of the RETURNING list is identical to that of the
 output list of SELECT.

 You must have the UPDATE privilege on the table,
 or at least on the column(s) that are listed to be updated.
 You must also have the SELECT
 privilege on any column whose values are read in the
 expressions or
 condition.

Parameters
	with_query
	
 The WITH clause allows you to specify one or more
 subqueries that can be referenced by name in the UPDATE
 query. See the section called “WITH Queries (Common Table Expressions)” and SELECT(7)
 for details.

	table_name
	
 The name (optionally schema-qualified) of the table to update.
 If ONLY is specified before the table name, matching rows
 are updated in the named table only. If ONLY is not
 specified, matching rows are also updated in any tables inheriting from
 the named table. Optionally, * can be specified after the
 table name to explicitly indicate that descendant tables are included.

	alias
	
 A substitute name for the target table. When an alias is
 provided, it completely hides the actual name of the table. For
 example, given UPDATE foo AS f, the remainder of the
 UPDATE statement must refer to this table as
 f not foo.

	column_name
	
 The name of a column in the table named by table_name.
 The column name can be qualified with a subfield name or array
 subscript, if needed. Do not include the table's name in the
 specification of a target column — for example,
 UPDATE table_name SET table_name.col = 1 is invalid.

	expression
	
 An expression to assign to the column. The expression can use the
 old values of this and other columns in the table.

	DEFAULT
	
 Set the column to its default value (which will be NULL if no specific
 default expression has been assigned to it). An identity column will be
 set to a new value generated by the associated sequence. For a
 generated column, specifying this is permitted but merely specifies the
 normal behavior of computing the column from its generation expression.

	sub-SELECT
	
 A SELECT sub-query that produces as many output columns
 as are listed in the parenthesized column list preceding it. The
 sub-query must yield no more than one row when executed. If it
 yields one row, its column values are assigned to the target columns;
 if it yields no rows, NULL values are assigned to the target columns.
 The sub-query can refer to old values of the current row of the table
 being updated.

	from_item
	
 A table expression allowing columns from other tables to appear in
 the WHERE condition and update expressions. This
 uses the same syntax as the FROM clause of
 a SELECT statement;
 for example, an alias for the table name can be specified. Do not
 repeat the target table as a from_item
 unless you intend a self-join (in which case it must appear with
 an alias in the from_item).

	condition
	
 An expression that returns a value of type boolean.
 Only rows for which this expression returns true
 will be updated.

	cursor_name
	
 The name of the cursor to use in a WHERE CURRENT OF
 condition. The row to be updated is the one most recently fetched
 from this cursor. The cursor must be a non-grouping
 query on the UPDATE's target table.
 Note that WHERE CURRENT OF cannot be
 specified together with a Boolean condition. See
 DECLARE(7)
 for more information about using cursors with
 WHERE CURRENT OF.

	output_expression
	
 An expression to be computed and returned by the UPDATE
 command after each row is updated. The expression can use any
 column names of the table named by table_name
 or table(s) listed in FROM.
 Write * to return all columns.

	output_name
	
 A name to use for a returned column.

Outputs

 On successful completion, an UPDATE command returns a command
 tag of the form

UPDATE count

 The count is the number
 of rows updated, including matched rows whose values did not change.
 Note that the number may be less than the number of rows that matched
 the condition when
 updates were suppressed by a BEFORE UPDATE trigger. If
 count is 0, no rows were
 updated by the query (this is not considered an error).

 If the UPDATE command contains a RETURNING
 clause, the result will be similar to that of a SELECT
 statement containing the columns and values defined in the
 RETURNING list, computed over the row(s) updated by the
 command.

Notes

 When a FROM clause is present, what essentially happens
 is that the target table is joined to the tables mentioned in the
 from_item list, and each output row of the join
 represents an update operation for the target table. When using
 FROM you should ensure that the join
 produces at most one output row for each row to be modified. In
 other words, a target row shouldn't join to more than one row from
 the other table(s). If it does, then only one of the join rows
 will be used to update the target row, but which one will be used
 is not readily predictable.

 Because of this indeterminacy, referencing other tables only within
 sub-selects is safer, though often harder to read and slower than
 using a join.

 In the case of a partitioned table, updating a row might cause it to no
 longer satisfy the partition constraint of the containing partition. In that
 case, if there is some other partition in the partition tree for which this
 row satisfies its partition constraint, then the row is moved to that
 partition. If there is no such partition, an error will occur. Behind the
 scenes, the row movement is actually a DELETE and
 INSERT operation.

 There is a possibility that a concurrent UPDATE or
 DELETE on the row being moved will get a serialization
 failure error. Suppose session 1 is performing an UPDATE
 on a partition key, and meanwhile a concurrent session 2 for which this
 row is visible performs an UPDATE or
 DELETE operation on this row. In such case,
 session 2's UPDATE or DELETE will
 detect the row movement and raise a serialization failure error (which
 always returns with an SQLSTATE code '40001'). Applications may wish to
 retry the transaction if this occurs. In the usual case where the table
 is not partitioned, or where there is no row movement, session 2 would
 have identified the newly updated row and carried out the
 UPDATE/DELETE on this new row
 version.

 Note that while rows can be moved from local partitions to a foreign-table
 partition (provided the foreign data wrapper supports tuple routing), they
 cannot be moved from a foreign-table partition to another partition.

 An attempt of moving a row from one partition to another will fail if a
 foreign key is found to directly reference an ancestor of the source
 partition that is not the same as the ancestor that's mentioned in the
 UPDATE query.

Examples

 Change the word Drama to Dramatic in the
 column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

 Adjust temperature entries and reset precipitation to its default
 value in one row of the table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03';

 Perform the same operation and return the updated entries:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03'
 RETURNING temp_lo, temp_hi, prcp;

 Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15, DEFAULT)
 WHERE city = 'San Francisco' AND date = '2003-07-03';

 Increment the sales count of the salesperson who manages the
 account for Acme Corporation, using the FROM
 clause syntax:

UPDATE employees SET sales_count = sales_count + 1 FROM accounts
 WHERE accounts.name = 'Acme Corporation'
 AND employees.id = accounts.sales_person;

 Perform the same operation, using a sub-select in the
 WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation');

 Update contact names in an accounts table to match the currently assigned
 salespeople:

UPDATE accounts SET (contact_first_name, contact_last_name) =
 (SELECT first_name, last_name FROM employees
 WHERE employees.id = accounts.sales_person);

 A similar result could be accomplished with a join:

UPDATE accounts SET contact_first_name = first_name,
 contact_last_name = last_name
 FROM employees WHERE employees.id = accounts.sales_person;

 However, the second query may give unexpected results
 if employees.id is not a unique key, whereas
 the first query is guaranteed to raise an error if there are multiple
 id matches. Also, if there is no match for a particular
 accounts.sales_person entry, the first query
 will set the corresponding name fields to NULL, whereas the second query
 will not update that row at all.

 Update statistics in a summary table to match the current data:

UPDATE summary s SET (sum_x, sum_y, avg_x, avg_y) =
 (SELECT sum(x), sum(y), avg(x), avg(y) FROM data d
 WHERE d.group_id = s.group_id);

 Attempt to insert a new stock item along with the quantity of stock. If
 the item already exists, instead update the stock count of the existing
 item. To do this without failing the entire transaction, use savepoints:

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau Lafite 2003';
-- continue with other operations, and eventually
COMMIT;

 Change the kind column of the table
 films in the row on which the cursor
 c_films is currently positioned:

UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;

Compatibility

 This command conforms to the SQL standard, except
 that the FROM and RETURNING clauses
 are PostgreSQL™ extensions, as is the ability
 to use WITH with UPDATE.

 Some other database systems offer a FROM option in which
 the target table is supposed to be listed again within FROM.
 That is not how PostgreSQL™ interprets
 FROM. Be careful when porting applications that use this
 extension.

 According to the standard, the source value for a parenthesized sub-list of
 target column names can be any row-valued expression yielding the correct
 number of columns. PostgreSQL™ only allows the
 source value to be a row
 constructor or a sub-SELECT. An individual column's
 updated value can be specified as DEFAULT in the
 row-constructor case, but not inside a sub-SELECT.

Name
VACUUM — garbage-collect and optionally analyze a database

Synopsis

VACUUM [(option [, ...])] [table_and_columns [, ...]]
VACUUM [FULL] [FREEZE] [VERBOSE] [ANALYZE] [table_and_columns [, ...]]

where option can be one of:

 FULL [boolean]
 FREEZE [boolean]
 VERBOSE [boolean]
 ANALYZE [boolean]
 DISABLE_PAGE_SKIPPING [boolean]
 SKIP_LOCKED [boolean]
 INDEX_CLEANUP { AUTO | ON | OFF }
 PROCESS_MAIN [boolean]
 PROCESS_TOAST [boolean]
 TRUNCATE [boolean]
 PARALLEL integer
 SKIP_DATABASE_STATS [boolean]
 ONLY_DATABASE_STATS [boolean]
 BUFFER_USAGE_LIMIT size

and table_and_columns is:

 table_name [(column_name [, ...])]

Description

 VACUUM reclaims storage occupied by dead tuples.
 In normal PostgreSQL™ operation, tuples that
 are deleted or obsoleted by an update are not physically removed from
 their table; they remain present until a VACUUM is
 done. Therefore it's necessary to do VACUUM
 periodically, especially on frequently-updated tables.

 Without a table_and_columns
 list, VACUUM processes every table and materialized view
 in the current database that the current user has permission to vacuum.
 With a list, VACUUM processes only those table(s).

 VACUUM ANALYZE performs a VACUUM
 and then an ANALYZE for each selected table. This
 is a handy combination form for routine maintenance scripts. See
 ANALYZE(7)
 for more details about its processing.

 Plain VACUUM (without FULL) simply reclaims
 space and makes it
 available for re-use. This form of the command can operate in parallel
 with normal reading and writing of the table, as an exclusive lock
 is not obtained. However, extra space is not returned to the operating
 system (in most cases); it's just kept available for re-use within the
 same table. It also allows us to leverage multiple CPUs in order to process
 indexes. This feature is known as parallel vacuum.
 To disable this feature, one can use PARALLEL option and
 specify parallel workers as zero. VACUUM FULL rewrites
 the entire contents of the table into a new disk file with no extra space,
 allowing unused space to be returned to the operating system. This form is
 much slower and requires an ACCESS EXCLUSIVE lock on
 each table while it is being processed.

 When the option list is surrounded by parentheses, the options can be
 written in any order. Without parentheses, options must be specified
 in exactly the order shown above.
 The parenthesized syntax was added in
 PostgreSQL™ 9.0; the unparenthesized
 syntax is deprecated.

Parameters
	FULL
	
 Selects “full” vacuum, which can reclaim more
 space, but takes much longer and exclusively locks the table.
 This method also requires extra disk space, since it writes a
 new copy of the table and doesn't release the old copy until
 the operation is complete. Usually this should only be used when a
 significant amount of space needs to be reclaimed from within the table.

	FREEZE
	
 Selects aggressive “freezing” of tuples.
 Specifying FREEZE is equivalent to performing
 VACUUM with the
 vacuum_freeze_min_age and
 vacuum_freeze_table_age parameters
 set to zero. Aggressive freezing is always performed when the
 table is rewritten, so this option is redundant when FULL
 is specified.

	VERBOSE
	
 Prints a detailed vacuum activity report for each table.

	ANALYZE
	
 Updates statistics used by the planner to determine the most
 efficient way to execute a query.

	DISABLE_PAGE_SKIPPING
	
 Normally, VACUUM will skip pages based on the visibility map. Pages where
 all tuples are known to be frozen can always be skipped, and those
 where all tuples are known to be visible to all transactions may be
 skipped except when performing an aggressive vacuum. Furthermore,
 except when performing an aggressive vacuum, some pages may be skipped
 in order to avoid waiting for other sessions to finish using them.
 This option disables all page-skipping behavior, and is intended to
 be used only when the contents of the visibility map are
 suspect, which should happen only if there is a hardware or software
 issue causing database corruption.

	SKIP_LOCKED
	
 Specifies that VACUUM should not wait for any
 conflicting locks to be released when beginning work on a relation:
 if a relation cannot be locked immediately without waiting, the relation
 is skipped. Note that even with this option,
 VACUUM may still block when opening the relation's
 indexes. Additionally, VACUUM ANALYZE may still
 block when acquiring sample rows from partitions, table inheritance
 children, and some types of foreign tables. Also, while
 VACUUM ordinarily processes all partitions of
 specified partitioned tables, this option will cause
 VACUUM to skip all partitions if there is a
 conflicting lock on the partitioned table.

	INDEX_CLEANUP
	
 Normally, VACUUM will skip index vacuuming
 when there are very few dead tuples in the table. The cost of
 processing all of the table's indexes is expected to greatly
 exceed the benefit of removing dead index tuples when this
 happens. This option can be used to force
 VACUUM to process indexes when there are more
 than zero dead tuples. The default is AUTO,
 which allows VACUUM to skip index vacuuming
 when appropriate. If INDEX_CLEANUP is set to
 ON, VACUUM will
 conservatively remove all dead tuples from indexes. This may be
 useful for backwards compatibility with earlier releases of
 PostgreSQL™ where this was the
 standard behavior.

 INDEX_CLEANUP can also be set to
 OFF to force VACUUM to
 always skip index vacuuming, even when
 there are many dead tuples in the table. This may be useful
 when it is necessary to make VACUUM run as
 quickly as possible to avoid imminent transaction ID wraparound
 (see the section called “Preventing Transaction ID Wraparound Failures”). However, the
 wraparound failsafe mechanism controlled by vacuum_failsafe_age will generally trigger
 automatically to avoid transaction ID wraparound failure, and
 should be preferred. If index cleanup is not performed
 regularly, performance may suffer, because as the table is
 modified indexes will accumulate dead tuples and the table
 itself will accumulate dead line pointers that cannot be removed
 until index cleanup is completed.

 This option has no effect for tables that have no index and is
 ignored if the FULL option is used. It also
 has no effect on the transaction ID wraparound failsafe
 mechanism. When triggered it will skip index vacuuming, even
 when INDEX_CLEANUP is set to
 ON.

	PROCESS_MAIN
	
 Specifies that VACUUM should attempt to process the
 main relation. This is usually the desired behavior and is the default.
 Setting this option to false may be useful when it is only necessary to
 vacuum a relation's corresponding TOAST table.

	PROCESS_TOAST
	
 Specifies that VACUUM should attempt to process the
 corresponding TOAST table for each relation, if one
 exists. This is usually the desired behavior and is the default.
 Setting this option to false may be useful when it is only necessary to
 vacuum the main relation. This option is required when the
 FULL option is used.

	TRUNCATE
	
 Specifies that VACUUM should attempt to
 truncate off any empty pages at the end of the table and allow
 the disk space for the truncated pages to be returned to
 the operating system. This is normally the desired behavior
 and is the default unless the vacuum_truncate
 option has been set to false for the table to be vacuumed.
 Setting this option to false may be useful to avoid
 ACCESS EXCLUSIVE lock on the table that
 the truncation requires. This option is ignored if the
 FULL option is used.

	PARALLEL
	
 Perform index vacuum and index cleanup phases of VACUUM
 in parallel using integer
 background workers (for the details of each vacuum phase, please
 refer to Table 28.45, “VACUUM Phases”). The number of workers used
 to perform the operation is equal to the number of indexes on the
 relation that support parallel vacuum which is limited by the number of
 workers specified with PARALLEL option if any which is
 further limited by max_parallel_maintenance_workers.
 An index can participate in parallel vacuum if and only if the size of the
 index is more than min_parallel_index_scan_size.
 Please note that it is not guaranteed that the number of parallel workers
 specified in integer will be
 used during execution. It is possible for a vacuum to run with fewer
 workers than specified, or even with no workers at all. Only one worker
 can be used per index. So parallel workers are launched only when there
 are at least 2 indexes in the table. Workers for
 vacuum are launched before the start of each phase and exit at the end of
 the phase. These behaviors might change in a future release. This
 option can't be used with the FULL option.

	SKIP_DATABASE_STATS
	
 Specifies that VACUUM should skip updating the
 database-wide statistics about oldest unfrozen XIDs. Normally
 VACUUM will update these statistics once at the
 end of the command. However, this can take awhile in a database
 with a very large number of tables, and it will accomplish nothing
 unless the table that had contained the oldest unfrozen XID was
 among those vacuumed. Moreover, if multiple VACUUM
 commands are issued in parallel, only one of them can update the
 database-wide statistics at a time. Therefore, if an application
 intends to issue a series of many VACUUM
 commands, it can be helpful to set this option in all but the last
 such command; or set it in all the commands and separately
 issue VACUUM (ONLY_DATABASE_STATS) afterwards.

	ONLY_DATABASE_STATS
	
 Specifies that VACUUM should do nothing except
 update the database-wide statistics about oldest unfrozen XIDs.
 When this option is specified,
 the table_and_columns
 list must be empty, and no other option may be enabled
 except VERBOSE.

	BUFFER_USAGE_LIMIT
	
 Specifies the
 Buffer Access Strategy
 ring buffer size for VACUUM. This size is used to
 calculate the number of shared buffers which will be reused as part of
 this strategy. 0 disables use of a
 Buffer Access Strategy. If ANALYZE
 is also specified, the BUFFER_USAGE_LIMIT value is used
 for both the vacuum and analyze stages. This option can't be used with
 the FULL option except if ANALYZE is
 also specified. When this option is not specified,
 VACUUM uses the value from
 vacuum_buffer_usage_limit. Higher settings can
 allow VACUUM to run more quickly, but having too
 large a setting may cause too many other useful pages to be evicted from
 shared buffers. The minimum value is 128 kB and the
 maximum value is 16 GB.

	boolean
	
 Specifies whether the selected option should be turned on or off.
 You can write TRUE, ON, or
 1 to enable the option, and FALSE,
 OFF, or 0 to disable it. The
 boolean value can also
 be omitted, in which case TRUE is assumed.

	integer
	
 Specifies a non-negative integer value passed to the selected option.

	size
	
 Specifies an amount of memory in kilobytes. Sizes may also be specified
 as a string containing the numerical size followed by any one of the
 following memory units: B (bytes),
 kB (kilobytes), MB (megabytes),
 GB (gigabytes), or TB (terabytes).

	table_name
	
 The name (optionally schema-qualified) of a specific table or
 materialized view to vacuum. If the specified table is a partitioned
 table, all of its leaf partitions are vacuumed.

	column_name
	
 The name of a specific column to analyze. Defaults to all columns.
 If a column list is specified, ANALYZE must also be
 specified.

Outputs

 When VERBOSE is specified, VACUUM emits
 progress messages to indicate which table is currently being
 processed. Various statistics about the tables are printed as well.

Notes

 To vacuum a table, one must ordinarily be the table's owner or a
 superuser. However, database owners are allowed to
 vacuum all tables in their databases, except shared catalogs.
 (The restriction for shared catalogs means that a true database-wide
 VACUUM can only be performed by a superuser.)
 VACUUM will skip over any tables that the calling user
 does not have permission to vacuum.

 VACUUM cannot be executed inside a transaction block.

 For tables with GIN indexes, VACUUM (in
 any form) also completes any pending index insertions, by moving pending
 index entries to the appropriate places in the main GIN index
 structure. See the section called “GIN Fast Update Technique” for details.

 We recommend that all databases be vacuumed regularly in
 order to remove dead rows. PostgreSQL™ includes
 an “autovacuum” facility which can automate routine vacuum
 maintenance. For more information about automatic and manual vacuuming,
 see the section called “Routine Vacuuming”.

 The FULL option is not recommended for routine use,
 but might be useful in special cases. An example is when you have deleted
 or updated most of the rows in a table and would like the table to
 physically shrink to occupy less disk space and allow faster table
 scans. VACUUM FULL will usually shrink the table
 more than a plain VACUUM would.

 The PARALLEL option is used only for vacuum purposes.
 If this option is specified with the ANALYZE option,
 it does not affect ANALYZE.

 VACUUM causes a substantial increase in I/O traffic,
 which might cause poor performance for other active sessions. Therefore,
 it is sometimes advisable to use the cost-based vacuum delay feature. For
 parallel vacuum, each worker sleeps in proportion to the work done by that
 worker. See the section called “Cost-based Vacuum Delay” for
 details.

 Each backend running VACUUM without the
 FULL option will report its progress in the
 pg_stat_progress_vacuum view. Backends running
 VACUUM FULL will instead report their progress in the
 pg_stat_progress_cluster view. See
 the section called “VACUUM Progress Reporting” and
 the section called “CLUSTER Progress Reporting” for details.

Examples

 To clean a single table onek, analyze it for
 the optimizer and print a detailed vacuum activity report:

VACUUM (VERBOSE, ANALYZE) onek;

Compatibility

 There is no VACUUM statement in the SQL standard.

See Also
vacuumdb(1), the section called “Cost-based Vacuum Delay”, the section called “The Autovacuum Daemon”, the section called “VACUUM Progress Reporting”, the section called “CLUSTER Progress Reporting”

Name
VALUES — compute a set of rows

Synopsis

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description

 VALUES computes a row value or set of row values
 specified by value expressions. It is most commonly used to generate
 a “constant table” within a larger command, but it can be
 used on its own.

 When more than one row is specified, all the rows must have the same
 number of elements. The data types of the resulting table's columns are
 determined by combining the explicit or inferred types of the expressions
 appearing in that column, using the same rules as for UNION
 (see the section called “UNION, CASE, and Related Constructs”).

 Within larger commands, VALUES is syntactically allowed
 anywhere that SELECT is. Because it is treated like a
 SELECT by the grammar, it is possible to use
 the ORDER BY, LIMIT (or
 equivalently FETCH FIRST),
 and OFFSET clauses with a
 VALUES command.

Parameters
	expression
	
 A constant or expression to compute and insert at the indicated place
 in the resulting table (set of rows). In a VALUES list
 appearing at the top level of an INSERT, an
 expression can be replaced
 by DEFAULT to indicate that the destination column's
 default value should be inserted. DEFAULT cannot
 be used when VALUES appears in other contexts.

	sort_expression
	
 An expression or integer constant indicating how to sort the result
 rows. This expression can refer to the columns of the
 VALUES result as column1, column2,
 etc. For more details see
 ORDER BY Clause
 in the SELECT(7) documentation.

	operator
	
 A sorting operator. For details see
 ORDER BY Clause
 in the SELECT(7) documentation.

	count
	
 The maximum number of rows to return. For details see
 LIMIT Clause
 in the SELECT(7) documentation.

	start
	
 The number of rows to skip before starting to return rows.
 For details see LIMIT Clause
 in the SELECT(7) documentation.

Notes

 VALUES lists with very large numbers of rows should be avoided,
 as you might encounter out-of-memory failures or poor performance.
 VALUES appearing within INSERT is a special case
 (because the desired column types are known from the INSERT's
 target table, and need not be inferred by scanning the VALUES
 list), so it can handle larger lists than are practical in other contexts.

Examples

 A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

 This will return a table of two columns and three rows. It's effectively
 equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

 More usually, VALUES is used within a larger SQL command.
 The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

 In the context of INSERT, entries of a VALUES list
 can be DEFAULT to indicate that the column default
 should be used here instead of specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes'),
 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

 VALUES can also be used where a sub-SELECT might
 be written, for example in a FROM clause:

SELECT f.*
 FROM films f, (VALUES('MGM', 'Horror'), ('UA', 'Sci-Fi')) AS t (studio, kind)
 WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
 FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target, increase)
 WHERE employees.depno = v.depno AND employees.sales >= v.target;

 Note that an AS clause is required when VALUES
 is used in a FROM clause, just as is true for
 SELECT. It is not required that the AS clause
 specify names for all the columns, but it's good practice to do so.
 (The default column names for VALUES are column1,
 column2, etc. in PostgreSQL™, but
 these names might be different in other database systems.)

 When VALUES is used in INSERT, the values are all
 automatically coerced to the data type of the corresponding destination
 column. When it's used in other contexts, it might be necessary to specify
 the correct data type. If the entries are all quoted literal constants,
 coercing the first is sufficient to determine the assumed type for all:

SELECT * FROM machines
WHERE ip_address IN (VALUES('192.168.0.1'::inet), ('192.168.0.10'), ('192.168.1.43'));

Tip

 For simple IN tests, it's better to rely on the
 list-of-scalars
 form of IN than to write a VALUES
 query as shown above. The list of scalars method requires less writing
 and is often more efficient.

Compatibility
VALUES conforms to the SQL standard.
 LIMIT and OFFSET are
 PostgreSQL™ extensions; see also
 under SELECT(7).

See Also
INSERT(7), SELECT(7)

PostgreSQL Client Applications

 This part contains reference information for
 PostgreSQL™ client applications and
 utilities. Not all of these commands are of general utility; some
 might require special privileges. The common feature of these
 applications is that they can be run on any host, independent of
 where the database server resides.

 When specified on the command line, user and database names have
 their case preserved — the presence of spaces or special
 characters might require quoting. Table names and other identifiers
 do not have their case preserved, except where documented, and
 might require quoting.

Name
clusterdb — cluster a PostgreSQL™ database

Synopsis
clusterdb [connection-option...] [--verbose | -v]
 [
 --table | -t
 table
]
 ... [dbname]

clusterdb [connection-option...] [--verbose | -v] --all | -a

Description

 clusterdb is a utility for reclustering tables
 in a PostgreSQL™ database. It finds tables
 that have previously been clustered, and clusters them again on the same
 index that was last used. Tables that have never been clustered are not
 affected.

 clusterdb is a wrapper around the SQL
 command CLUSTER(7).
 There is no effective difference between clustering databases via
 this utility and via other methods for accessing the server.

Options

 clusterdb accepts the following command-line arguments:

	-a, --all
	
 Cluster all databases.

	[-d] dbname, [--dbname=]dbname
	
 Specifies the name of the database to be clustered,
 when -a/--all is not used.
 If this is not specified, the database name is read
 from the environment variable PGDATABASE. If
 that is not set, the user name specified for the connection is
 used. The dbname can be a connection string. If so,
 connection string parameters will override any conflicting command
 line options.

	-e, --echo
	
 Echo the commands that clusterdb generates
 and sends to the server.

	-q, --quiet
	
 Do not display progress messages.

	-t table, --table=table
	
 Cluster table only.
 Multiple tables can be clustered by writing multiple
 -t switches.

	-v, --verbose
	
 Print detailed information during processing.

	-V, --version
	
 Print the clusterdb version and exit.

	-?, --help
	
 Show help about clusterdb command line
 arguments, and exit.

 clusterdb also accepts
 the following command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force clusterdb to prompt for a
 password before connecting to a database.

 This option is never essential, since
 clusterdb will automatically prompt
 for a password if the server demands password authentication.
 However, clusterdb will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--maintenance-db=dbname
	
 When the -a/--all is used, connect
 to this database to gather the list of databases to cluster.
 If not specified, the postgres database will be used,
 or if that does not exist, template1 will be used.
 This can be a connection
 string. If so, connection string parameters will override any
 conflicting command line options. Also, connection string parameters
 other than the database name itself will be re-used when connecting
 to other databases.

Environment
	PGDATABASE, PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see CLUSTER(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Examples

 To cluster the database test:

$ clusterdb test

 To cluster a single table
 foo in a database named
 xyzzy:

$ clusterdb --table=foo xyzzy

See Also
CLUSTER(7)

Name
createdb — create a new PostgreSQL™ database

Synopsis
createdb [connection-option...] [option...] [dbname
 [description]]

Description

 createdb creates a new PostgreSQL™
 database.

 Normally, the database user who executes this command becomes the owner of
 the new database.
 However, a different owner can be specified via the -O
 option, if the executing user has appropriate privileges.

 createdb is a wrapper around the
 SQL command CREATE DATABASE.
 There is no effective difference between creating databases via
 this utility and via other methods for accessing the server.

Options

 createdb accepts the following command-line arguments:

	dbname
	
 Specifies the name of the database to be created. The name must be
 unique among all PostgreSQL™ databases in this cluster.
 The default is to create a database with the same name as the
 current system user.

	description
	
 Specifies a comment to be associated with the newly created
 database.

	-D tablespace, --tablespace=tablespace
	
 Specifies the default tablespace for the database. (This name
 is processed as a double-quoted identifier.)

	-e, --echo
	
 Echo the commands that createdb generates
 and sends to the server.

	-E encoding, --encoding=encoding
	
 Specifies the character encoding scheme to be used in this
 database. The character sets supported by the
 PostgreSQL™ server are described in
 the section called “Supported Character Sets”.

	-l locale, --locale=locale
	
 Specifies the locale to be used in this database. This is equivalent
 to specifying --lc-collate,
 --lc-ctype, and --icu-locale to the
 same value. Some locales are only valid for ICU and must be set with
 --icu-locale.

	--lc-collate=locale
	
 Specifies the LC_COLLATE setting to be used in this database.

	--lc-ctype=locale
	
 Specifies the LC_CTYPE setting to be used in this database.

	--icu-locale=locale
	
 Specifies the ICU locale ID to be used in this database, if the
 ICU locale provider is selected.

	--icu-rules=rules
	
 Specifies additional collation rules to customize the behavior of the
 default collation of this database. This is supported for ICU only.

	--locale-provider={libc|icu}
	
 Specifies the locale provider for the database's default collation.

	-O owner, --owner=owner
	
 Specifies the database user who will own the new database.
 (This name is processed as a double-quoted identifier.)

	-S strategy, --strategy=strategy
	
 Specifies the database creation strategy. See
 CREATE DATABASE STRATEGY for more details.

	-T template, --template=template
	
 Specifies the template database from which to build this
 database. (This name is processed as a double-quoted identifier.)

	-V, --version
	
 Print the createdb version and exit.

	-?, --help
	
 Show help about createdb command line
 arguments, and exit.

 The options -D, -l, -E,
 -O, and
 -T correspond to options of the underlying
 SQL command CREATE DATABASE; see there for more information
 about them.

 createdb also accepts the following
 command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the
 server is running. If the value begins with a slash, it is used
 as the directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or the local Unix domain socket file
 extension on which the server is listening for connections.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force createdb to prompt for a
 password before connecting to a database.

 This option is never essential, since
 createdb will automatically prompt
 for a password if the server demands password authentication.
 However, createdb will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--maintenance-db=dbname
	
 Specifies the name of the database to connect to when creating the
 new database. If not specified, the postgres
 database will be used; if that does not exist (or if it is the name
 of the new database being created), template1 will
 be used.
 This can be a connection
 string. If so, connection string parameters will override any
 conflicting command line options.

Environment
	PGDATABASE
	
 If set, the name of the database to create, unless overridden on
 the command line.

	PGHOST, PGPORT, PGUSER
	
 Default connection parameters. PGUSER also
 determines the name of the database to create, if it is not
 specified on the command line or by PGDATABASE.

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see CREATE DATABASE(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Examples

 To create the database demo using the default
 database server:

$ createdb demo

 To create the database demo using the
 server on host eden, port 5000, using the
 template0 template database, here is the
 command-line command and the underlying SQL command:

$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;

See Also
dropdb(1), CREATE DATABASE(7)

Name
createuser — define a new PostgreSQL™ user account

Synopsis
createuser [connection-option...] [option...] [username]

Description

 createuser creates a
 new PostgreSQL™ user (or more precisely, a role).
 Only superusers and users with CREATEROLE privilege can create
 new users, so createuser must be
 invoked by someone who can connect as a superuser or a user with
 CREATEROLE privilege.

 If you wish to create a role with the SUPERUSER,
 REPLICATION, or BYPASSRLS privilege,
 you must connect as a superuser, not merely with
 CREATEROLE privilege.
 Being a superuser implies the ability to bypass all access permission
 checks within the database, so superuser access should not be granted
 lightly. CREATEROLE also conveys
 very extensive privileges.

 createuser is a wrapper around the
 SQL command CREATE ROLE.
 There is no effective difference between creating users via
 this utility and via other methods for accessing the server.

Options

 createuser accepts the following command-line arguments:

	username
	
 Specifies the name of the PostgreSQL™ user
 to be created.
 This name must be different from all existing roles in this
 PostgreSQL™ installation.

	-a role, --with-admin=role
	
 Specifies an existing role that will be automatically added as a member of the new
 role with admin option, giving it the right to grant membership in the
 new role to others. Multiple existing roles can be specified by
 writing multiple -a switches.

	-c number, --connection-limit=number
	
 Set a maximum number of connections for the new user.
 The default is to set no limit.

	-d, --createdb
	
 The new user will be allowed to create databases.

	-D, --no-createdb
	
 The new user will not be allowed to create databases. This is the
 default.

	-e, --echo
	
 Echo the commands that createuser generates
 and sends to the server.

	-E, --encrypted
	
 This option is obsolete but still accepted for backward
 compatibility.

	-g role, --member-of=role, --role=role (deprecated)
	
 Specifies the new role should be automatically added as a member
 of the specified existing role. Multiple existing roles can be
 specified by writing multiple -g switches.

	-i, --inherit
	
 The new role will automatically inherit privileges of roles
 it is a member of.
 This is the default.

	-I, --no-inherit
	
 The new role will not automatically inherit privileges of roles
 it is a member of.

	--interactive
	
 Prompt for the user name if none is specified on the command line, and
 also prompt for whichever of the options
 -d/-D,
 -r/-R,
 -s/-S is not specified on the command
 line. (This was the default behavior up to PostgreSQL 9.1.)

	-l, --login
	
 The new user will be allowed to log in (that is, the user name
 can be used as the initial session user identifier).
 This is the default.

	-L, --no-login
	
 The new user will not be allowed to log in.
 (A role without login privilege is still useful as a means of
 managing database permissions.)

	-m role, --with-member=role
	
 Specifies an existing role that will be automatically
 added as a member of the new role. Multiple existing roles can
 be specified by writing multiple -m switches.

	-P, --pwprompt
	
 If given, createuser will issue a prompt for
 the password of the new user. This is not necessary if you do not plan
 on using password authentication.

	-r, --createrole
	
 The new user will be allowed to create, alter, drop, comment on,
 change the security label for other roles; that is,
 this user will have CREATEROLE privilege.
 See role creation for more details about what
 capabilities are conferred by this privilege.

	-R, --no-createrole
	
 The new user will not be allowed to create new roles. This is the
 default.

	-s, --superuser
	
 The new user will be a superuser.

	-S, --no-superuser
	
 The new user will not be a superuser. This is the default.

	-v timestamp, --valid-until=timestamp
	
 Set a date and time after which the role's password is no longer valid.
 The default is to set no password expiry date.

	-V, --version
	
 Print the createuser version and exit.

	--bypassrls
	
 The new user will bypass every row-level security (RLS) policy.

	--no-bypassrls
	
 The new user will not bypass row-level security (RLS) policies. This is
 the default.

	--replication
	
 The new user will have the REPLICATION privilege,
 which is described more fully in the documentation for CREATE ROLE(7).

	--no-replication
	
 The new user will not have the REPLICATION
 privilege, which is described more fully in the documentation for CREATE ROLE(7). This is the default.

	-?, --help
	
 Show help about createuser command line
 arguments, and exit.

 createuser also accepts the following
 command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the
 server
 is running. If the value begins with a slash, it is used
 as the directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as (not the user name to create).

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force createuser to prompt for a
 password (for connecting to the server, not for the
 password of the new user).

 This option is never essential, since
 createuser will automatically prompt
 for a password if the server demands password authentication.
 However, createuser will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

Environment
	PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see CREATE ROLE(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Examples

 To create a user joe on the default database
 server:

$ createuser joe

 To create a user joe on the default database
 server with prompting for some additional attributes:

$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

 To create the same user joe using the
 server on host eden, port 5000, with attributes explicitly specified,
 taking a look at the underlying command:

$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

 To create the user joe as a superuser,
 and assign a password immediately:

$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'SCRAM-SHA-256$4096:44560wPMLfjqiAzyPDZ/eQ==$4CA054rZlSFEq8Z3FEhToBTa2X6KnWFxFkPwIbKoDe0=:L/nbSZRCjp6RhOhKK56GoR1zibCCSePKshCJ9lnl3yw=' SUPERUSER CREATEDB CREATEROLE INHERIT LOGIN NOREPLICATION NOBYPASSRLS;

 In the above example, the new password isn't actually echoed when typed,
 but we show what was typed for clarity. As you see, the password is
 encrypted before it is sent to the client.

See Also
dropuser(1), CREATE ROLE(7), createrole_self_grant

Name
dropdb — remove a PostgreSQL™ database

Synopsis
dropdb [connection-option...] [option...] dbname

Description

 dropdb destroys an existing
 PostgreSQL™ database.
 The user who executes this command must be a database
 superuser or the owner of the database.

 dropdb is a wrapper around the
 SQL command DROP DATABASE.
 There is no effective difference between dropping databases via
 this utility and via other methods for accessing the server.

Options

 dropdb accepts the following command-line arguments:

	dbname
	
 Specifies the name of the database to be removed.

	-e, --echo
	
 Echo the commands that dropdb generates
 and sends to the server.

	-f, --force
	
 Attempt to terminate all existing connections to the target database
 before dropping it. See DROP DATABASE(7) for more
 information on this option.

	-i, --interactive
	
 Issues a verification prompt before doing anything destructive.

	-V, --version
	
 Print the dropdb version and exit.

	--if-exists
	
 Do not throw an error if the database does not exist. A notice is issued
 in this case.

	-?, --help
	
 Show help about dropdb command line
 arguments, and exit.

 dropdb also accepts the following
 command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the
 server
 is running. If the value begins with a slash, it is used
 as the directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force dropdb to prompt for a
 password before connecting to a database.

 This option is never essential, since
 dropdb will automatically prompt
 for a password if the server demands password authentication.
 However, dropdb will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--maintenance-db=dbname
	
 Specifies the name of the database to connect to in order to drop the
 target database. If not specified, the postgres
 database will be used; if that does not exist (or is the database
 being dropped), template1 will be used.
 This can be a connection
 string. If so, connection string parameters will override any
 conflicting command line options.

Environment
	PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see DROP DATABASE(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Examples

 To destroy the database demo on the default
 database server:

$ dropdb demo

 To destroy the database demo using the
 server on host eden, port 5000, with verification and a peek
 at the underlying command:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;

See Also
createdb(1), DROP DATABASE(7)

Name
dropuser — remove a PostgreSQL™ user account

Synopsis
dropuser [connection-option...] [option...] [username]

Description

 dropuser removes an existing
 PostgreSQL™ user.
 Superusers can use this command to remove any role; otherwise, only
 non-superuser roles can be removed, and only by a user who possesses
 the CREATEROLE privilege and has been granted
 ADMIN OPTION on the target role.

 dropuser is a wrapper around the
 SQL command DROP ROLE.
 There is no effective difference between dropping users via
 this utility and via other methods for accessing the server.

Options

 dropuser accepts the following command-line arguments:

	username
	
 Specifies the name of the PostgreSQL™ user to be removed.
 You will be prompted for a name if none is specified on the command
 line and the -i/--interactive option
 is used.

	-e, --echo
	
 Echo the commands that dropuser generates
 and sends to the server.

	-i, --interactive
	
 Prompt for confirmation before actually removing the user, and prompt
 for the user name if none is specified on the command line.

	-V, --version
	
 Print the dropuser version and exit.

	--if-exists
	
 Do not throw an error if the user does not exist. A notice is
 issued in this case.

	-?, --help
	
 Show help about dropuser command line
 arguments, and exit.

 dropuser also accepts the following
 command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the
 server
 is running. If the value begins with a slash, it is used
 as the directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as (not the user name to drop).

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force dropuser to prompt for a
 password before connecting to a database.

 This option is never essential, since
 dropuser will automatically prompt
 for a password if the server demands password authentication.
 However, dropuser will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

Environment
	PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see DROP ROLE(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Examples

 To remove user joe from the default database
 server:

$ dropuser joe

 To remove user joe using the server on host
 eden, port 5000, with verification and a peek at the underlying
 command:

$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE joe;

See Also
createuser(1), DROP ROLE(7)

Name
ecpg — embedded SQL C preprocessor

Synopsis
ecpg [option...] file...

Description

 ecpg is the embedded SQL preprocessor for C
 programs. It converts C programs with embedded SQL statements to
 normal C code by replacing the SQL invocations with special
 function calls. The output files can then be processed with any C
 compiler tool chain.

 ecpg will convert each input file given on the
 command line to the corresponding C output file. If an input file
 name does not have any extension, .pgc is
 assumed. The file's extension will be replaced
 by .c to construct the output file name.
 But the output file name can be overridden using the
 -o option.

 If an input file name is just -,
 ecpg reads the program from standard input
 (and writes to standard output, unless that is overridden
 with -o).

 This reference page does not describe the embedded SQL language.
 See Chapter 36, ECPG — Embedded SQL in C for more information on that topic.

Options

 ecpg accepts the following command-line
 arguments:

	-c
	
 Automatically generate certain C code from SQL code. Currently, this
 works for EXEC SQL TYPE.

	-C mode
	
 Set a compatibility mode. mode can
 be INFORMIX,
 INFORMIX_SE, or ORACLE.

	-D symbol[=value]
	
 Define a preprocessor symbol, equivalently to the EXEC SQL
 DEFINE directive. If no value is
 specified, the symbol is defined with the value 1.

	-h
	
 Process header files. When this option is specified, the output file
 extension becomes .h not .c,
 and the default input file extension is .pgh
 not .pgc. Also, the -c option is
 forced on.

	-i
	
 Parse system include files as well.

	-I directory
	
 Specify an additional include path, used to find files included
 via EXEC SQL INCLUDE. Defaults are
 . (current directory),
 /usr/local/include, the
 PostgreSQL™ include directory which
 is defined at compile time (default:
 /usr/local/pgsql/include), and
 /usr/include, in that order.

	-o filename
	
 Specifies that ecpg should write all
 its output to the given filename.
 Write -o - to send all output to standard output.

	-r option
	
 Selects run-time behavior. Option can be
 one of the following:

	no_indicator
	
 Do not use indicators but instead use special values to represent
 null values. Historically there have been databases using this approach.

	prepare
	
 Prepare all statements before using them. Libecpg will keep a cache of
 prepared statements and reuse a statement if it gets executed again. If the
 cache runs full, libecpg will free the least used statement.

	questionmarks
	
 Allow question mark as placeholder for compatibility reasons.
 This used to be the default long ago.

	-t
	
 Turn on autocommit of transactions. In this mode, each SQL command is
 automatically committed unless it is inside an explicit
 transaction block. In the default mode, commands are committed
 only when EXEC SQL COMMIT is issued.

	-v
	
 Print additional information including the version and the
 "include" path.

	--version
	
 Print the ecpg version and exit.

	-?, --help
	
 Show help about ecpg command line
 arguments, and exit.

Notes

 When compiling the preprocessed C code files, the compiler needs to
 be able to find the ECPG header files in the
 PostgreSQL™ include directory. Therefore, you might
 have to use the -I option when invoking the compiler
 (e.g., -I/usr/local/pgsql/include).

 Programs using C code with embedded SQL have to be linked against
 the libecpg library, for example using the
 linker options -L/usr/local/pgsql/lib -lecpg.

 The value of either of these directories that is appropriate for
 the installation can be found out using pg_config(1).

Examples

 If you have an embedded SQL C source file named
 prog1.pgc, you can create an executable
 program using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

Name
pg_amcheck — checks for corruption in one or more
 PostgreSQL™ databases

Synopsis
pg_amcheck [option...] [dbname]

Description

 pg_amcheck supports running
 amcheck's corruption checking functions against one or
 more databases, with options to select which schemas, tables and indexes to
 check, which kinds of checking to perform, and whether to perform the checks
 in parallel, and if so, the number of parallel connections to establish and
 use.

 Only ordinary and toast table relations, materialized views, sequences, and
 btree indexes are currently supported. Other relation types are silently
 skipped.

 If dbname is specified, it should be the name of a
 single database to check, and no other database selection options should
 be present. Otherwise, if any database selection options are present,
 all matching databases will be checked. If no such options are present,
 the default database will be checked. Database selection options include
 --all, --database and
 --exclude-database. They also include
 --relation, --exclude-relation,
 --table, --exclude-table,
 --index, and --exclude-index,
 but only when such options are used with a three-part pattern
 (e.g. mydb*.myschema*.myrel*). Finally, they include
 --schema and --exclude-schema
 when such options are used with a two-part pattern
 (e.g. mydb*.myschema*).

 dbname can also be a
 connection string.

Options

 The following command-line options control what is checked:

	-a, --all
	
 Check all databases, except for any excluded via
 --exclude-database.

	-d pattern, --database=pattern
	
 Check databases matching the specified
 pattern,
 except for any excluded by --exclude-database.
 This option can be specified more than once.

	-D pattern, --exclude-database=pattern
	
 Exclude databases matching the given
 pattern.
 This option can be specified more than once.

	-i pattern, --index=pattern
	
 Check indexes matching the specified
 pattern,
 unless they are otherwise excluded.
 This option can be specified more than once.

 This is similar to the --relation option, except that
 it applies only to indexes, not to other relation types.

	-I pattern, --exclude-index=pattern
	
 Exclude indexes matching the specified
 pattern.
 This option can be specified more than once.

 This is similar to the --exclude-relation option,
 except that it applies only to indexes, not other relation types.

	-r pattern, --relation=pattern
	
 Check relations matching the specified
 pattern,
 unless they are otherwise excluded.
 This option can be specified more than once.

 Patterns may be unqualified, e.g. myrel*, or they
 may be schema-qualified, e.g. myschema*.myrel* or
 database-qualified and schema-qualified, e.g.
 mydb*.myschema*.myrel*. A database-qualified
 pattern will add matching databases to the list of databases to be
 checked.

	-R pattern, --exclude-relation=pattern
	
 Exclude relations matching the specified
 pattern.
 This option can be specified more than once.

 As with --relation, the
 pattern may be unqualified, schema-qualified,
 or database- and schema-qualified.

	-s pattern, --schema=pattern
	
 Check tables and indexes in schemas matching the specified
 pattern, unless they are otherwise excluded.
 This option can be specified more than once.

 To select only tables in schemas matching a particular pattern,
 consider using something like
 --table=SCHEMAPAT.* --no-dependent-indexes.
 To select only indexes, consider using something like
 --index=SCHEMAPAT.*.

 A schema pattern may be database-qualified. For example, you may
 write --schema=mydb*.myschema* to select
 schemas matching myschema* in databases matching
 mydb*.

	-S pattern, --exclude-schema=pattern
	
 Exclude tables and indexes in schemas matching the specified
 pattern.
 This option can be specified more than once.

 As with --schema, the pattern may be
 database-qualified.

	-t pattern, --table=pattern
	
 Check tables matching the specified
 pattern,
 unless they are otherwise excluded.
 This option can be specified more than once.

 This is similar to the --relation option, except that
 it applies only to tables, materialized views, and sequences, not to
 indexes.

	-T pattern, --exclude-table=pattern
	
 Exclude tables matching the specified
 pattern.
 This option can be specified more than once.

 This is similar to the --exclude-relation option,
 except that it applies only to tables, materialized views, and
 sequences, not to indexes.

	--no-dependent-indexes
	
 By default, if a table is checked, any btree indexes of that table
 will also be checked, even if they are not explicitly selected by
 an option such as --index or
 --relation. This option suppresses that behavior.

	--no-dependent-toast
	
 By default, if a table is checked, its toast table, if any, will also
 be checked, even if it is not explicitly selected by an option
 such as --table or --relation.
 This option suppresses that behavior.

	--no-strict-names
	
 By default, if an argument to --database,
 --table, --index,
 or --relation matches no objects, it is a fatal
 error. This option downgrades that error to a warning.

 The following command-line options control checking of tables:

	--exclude-toast-pointers
	
 By default, whenever a toast pointer is encountered in a table,
 a lookup is performed to ensure that it references apparently-valid
 entries in the toast table. These checks can be quite slow, and this
 option can be used to skip them.

	--on-error-stop
	
 After reporting all corruptions on the first page of a table where
 corruption is found, stop processing that table relation and move on
 to the next table or index.

 Note that index checking always stops after the first corrupt page.
 This option only has meaning relative to table relations.

	--skip=option
	
 If all-frozen is given, table corruption checks
 will skip over pages in all tables that are marked as all frozen.

 If all-visible is given, table corruption checks
 will skip over pages in all tables that are marked as all visible.

 By default, no pages are skipped. This can be specified as
 none, but since this is the default, it need not be
 mentioned.

	--startblock=block
	
 Start checking at the specified block number. An error will occur if
 the table relation being checked has fewer than this number of blocks.
 This option does not apply to indexes, and is probably only useful
 when checking a single table relation. See --endblock
 for further caveats.

	--endblock=block
	
 End checking at the specified block number. An error will occur if the
 table relation being checked has fewer than this number of blocks.
 This option does not apply to indexes, and is probably only useful when
 checking a single table relation. If both a regular table and a toast
 table are checked, this option will apply to both, but higher-numbered
 toast blocks may still be accessed while validating toast pointers,
 unless that is suppressed using
 --exclude-toast-pointers.

 The following command-line options control checking of B-tree indexes:

	--heapallindexed
	
 For each index checked, verify the presence of all heap tuples as index
 tuples in the index using amcheck's
 heapallindexed option.

	--parent-check
	
 For each btree index checked, use amcheck's
 bt_index_parent_check function, which performs
 additional checks of parent/child relationships during index checking.

 The default is to use amcheck's
 bt_index_check function, but note that use of the
 --rootdescend option implicitly selects
 bt_index_parent_check.

	--rootdescend
	
 For each index checked, re-find tuples on the leaf level by performing a
 new search from the root page for each tuple using
 amcheck's rootdescend option.

 Use of this option implicitly also selects the
 --parent-check option.

 This form of verification was originally written to help in the
 development of btree index features. It may be of limited use or even
 of no use in helping detect the kinds of corruption that occur in
 practice. It may also cause corruption checking to take considerably
 longer and consume considerably more resources on the server.

Warning

 The extra checks performed against B-tree indexes when the
 --parent-check option or the
 --rootdescend option is specified require
 relatively strong relation-level locks. These checks are the only
 checks that will block concurrent data modification from
 INSERT, UPDATE, and
 DELETE commands.

 The following command-line options control the connection to the server:

	-h hostname, --host=hostname
	
 Specifies the host name of the machine on which the server is running.
 If the value begins with a slash, it is used as the directory for the
 Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file extension on
 which the server is listening for connections.

	-U, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires password
 authentication and a password is not available by other means such as
 a .pgpass file, the connection attempt will fail.
 This option can be useful in batch jobs and scripts where no user is
 present to enter a password.

	-W, --password
	
 Force pg_amcheck to prompt for a password
 before connecting to a database.

 This option is never essential, since
 pg_amcheck will automatically prompt for a
 password if the server demands password authentication. However,
 pg_amcheck will waste a connection attempt
 finding out that the server wants a password. In some cases it is
 worth typing -W to avoid the extra connection attempt.

	--maintenance-db=dbname
	
 Specifies a database or
 connection string to be
 used to discover the list of databases to be checked. If neither
 --all nor any option including a database pattern is
 used, no such connection is required and this option does nothing.
 Otherwise, any connection string parameters other than
 the database name which are included in the value for this option
 will also be used when connecting to the databases
 being checked. If this option is omitted, the default is
 postgres or, if that fails,
 template1.

 Other options are also available:

	-e, --echo
	
 Echo to stdout all SQL sent to the server.

	-j num, --jobs=num
	
 Use num concurrent connections to the server,
 or one per object to be checked, whichever is less.

 The default is to use a single connection.

	-P, --progress
	
 Show progress information. Progress information includes the number
 of relations for which checking has been completed, and the total
 size of those relations. It also includes the total number of relations
 that will eventually be checked, and the estimated size of those
 relations.

	-v, --verbose
	
 Print more messages. In particular, this will print a message for
 each relation being checked, and will increase the level of detail
 shown for server errors.

	-V, --version
	
 Print the pg_amcheck version and exit.

	--install-missing, --install-missing=schema
	
 Install any missing extensions that are required to check the
 database(s). If not yet installed, each extension's objects will be
 installed into the given
 schema, or if not specified
 into schema pg_catalog.

 At present, the only required extension is amcheck.

	-?, --help
	
 Show help about pg_amcheck command line
 arguments, and exit.

Notes

 pg_amcheck is designed to work with
 PostgreSQL™ 14.0 and later.

See Also
amcheck

Name
pg_basebackup — take a base backup of a PostgreSQL™ cluster

Synopsis
pg_basebackup [option...]

Description

 pg_basebackup is used to take a base backup of
 a running PostgreSQL™ database cluster. The backup
 is taken without affecting other clients of the database, and can be used
 both for point-in-time recovery (see the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”)
 and as the starting point for a log-shipping or streaming-replication standby
 server (see the section called “Log-Shipping Standby Servers”).

 pg_basebackup makes an exact copy of the database
 cluster's files, while making sure the server is put into and
 out of backup mode automatically. Backups are always taken of the entire
 database cluster; it is not possible to back up individual databases or
 database objects. For selective backups, another tool such as
 pg_dump(1) must be used.

 The backup is made over a regular PostgreSQL™
 connection that uses the replication protocol. The connection must be made
 with a user ID that has REPLICATION permissions
 (see the section called “Role Attributes”) or is a superuser,
 and pg_hba.conf
 must permit the replication connection. The server must also be configured
 with max_wal_senders set high enough to provide at
 least one walsender for the backup plus one for WAL streaming (if used).

 There can be multiple pg_basebackups running at the same time, but it is usually
 better from a performance point of view to take only one backup, and copy
 the result.

 pg_basebackup can make a base backup from
 not only a primary server but also a standby. To take a backup from a standby,
 set up the standby so that it can accept replication connections (that is, set
 max_wal_senders and hot_standby,
 and configure its pg_hba.conf appropriately).
 You will also need to enable full_page_writes on the primary.

 Note that there are some limitations in taking a backup from a standby:

	
 The backup history file is not created in the database cluster backed up.

	
 pg_basebackup cannot force the standby
 to switch to a new WAL file at the end of backup.
 When you are using -X none, if write activity on
 the primary is low, pg_basebackup may
 need to wait a long time for the last WAL file required for the backup
 to be switched and archived. In this case, it may be useful to run
 pg_switch_wal on the primary in order to
 trigger an immediate WAL file switch.

	
 If the standby is promoted to be primary during backup, the backup fails.

	
 All WAL records required for the backup must contain sufficient full-page writes,
 which requires you to enable full_page_writes on the primary.

 Whenever pg_basebackup is taking a base
 backup, the server's pg_stat_progress_basebackup
 view will report the progress of the backup.
 See the section called “Base Backup Progress Reporting” for details.

Options

 The following command-line options control the location and format of the
 output:

	-D directory, --pgdata=directory
	
 Sets the target directory to write the output to.
 pg_basebackup will create this directory
 (and any missing parent directories) if it does not exist. If it
 already exists, it must be empty.

 When the backup is in tar format, the target directory may be
 specified as - (dash), causing the tar file to be
 written to stdout.

 This option is required.

	-F format, --format=format
	
 Selects the format for the output. format
 can be one of the following:

	p, plain
	
 Write the output as plain files, with the same layout as the
 source server's data directory and tablespaces. When the cluster has
 no additional tablespaces, the whole database will be placed in
 the target directory. If the cluster contains additional
 tablespaces, the main data directory will be placed in the
 target directory, but all other tablespaces will be placed
 in the same absolute path as they have on the source server.
 (See --tablespace-mapping to change that.)

 This is the default format.

	t, tar
	
 Write the output as tar files in the target directory. The main
 data directory's contents will be written to a file named
 base.tar, and each other tablespace will be
 written to a separate tar file named after that tablespace's OID.

 If the target directory is specified as -
 (dash), the tar contents will be written to
 standard output, suitable for piping to (for example)
 gzip™. This is only allowed if
 the cluster has no additional tablespaces and WAL
 streaming is not used.

	-R, --write-recovery-conf
	
 Creates a
 standby.signal

 file and appends
 connection settings to the postgresql.auto.conf
 file in the target directory (or within the base archive file when
 using tar format). This eases setting up a standby server using the
 results of the backup.

 The postgresql.auto.conf file will record the connection
 settings and, if specified, the replication slot
 that pg_basebackup is using, so that
 streaming replication will use the same settings later on.

	-t target, --target=target
	
 Instructs the server where to place the base backup. The default target
 is client, which specifies that the backup should
 be sent to the machine where pg_basebackup
 is running. If the target is instead set to
 server:/some/path, the backup will be stored on
 the machine where the server is running in the
 /some/path directory. Storing a backup on the
 server requires superuser privileges or having privileges of the
 pg_write_server_files role. If the target is set to
 blackhole, the contents are discarded and not
 stored anywhere. This should only be used for testing purposes, as you
 will not end up with an actual backup.

 Since WAL streaming is implemented by
 pg_basebackup rather than by the server,
 this option cannot be used together with -Xstream.
 Since that is the default, when this option is specified, you must also
 specify either -Xfetch or -Xnone.

	-T olddir=newdir, --tablespace-mapping=olddir=newdir
	
 Relocates the tablespace in directory olddir
 to newdir during the backup. To be
 effective, olddir must exactly match the
 path specification of the tablespace as it is defined on the source
 server. (But it is not an error if there is no tablespace
 in olddir on the source server.)
 Meanwhile newdir is a directory in the
 receiving host's filesystem. As with the main target directory,
 newdir need not exist already, but if
 it does exist it must be empty.
 Both olddir
 and newdir must be absolute paths. If
 either path needs to contain an equal sign (=),
 precede that with a backslash. This option can be specified multiple
 times for multiple tablespaces.

 If a tablespace is relocated in this way, the symbolic links inside
 the main data directory are updated to point to the new location. So
 the new data directory is ready to be used for a new server instance
 with all tablespaces in the updated locations.

 Currently, this option only works with plain output format; it is
 ignored if tar format is selected.

	--waldir=waldir
	
 Sets the directory to write WAL (write-ahead log) files to.
 By default WAL files will be placed in
 the pg_wal subdirectory of the target
 directory, but this option can be used to place them elsewhere.
 waldir must be an absolute path.
 As with the main target directory,
 waldir need not exist already, but if
 it does exist it must be empty.
 This option can only be specified when
 the backup is in plain format.

	-X method, --wal-method=method
	
 Includes the required WAL (write-ahead log) files in the
 backup. This will include all write-ahead logs generated during
 the backup. Unless the method none is specified,
 it is possible to start a postmaster in the target
 directory without the need to consult the WAL archive, thus
 making the output a completely standalone backup.

 The following methods for collecting the
 write-ahead logs are supported:

	n, none
	
 Don't include write-ahead logs in the backup.

	f, fetch
	
 The write-ahead log files are collected at the end of the backup.
 Therefore, it is necessary for the source server's
 wal_keep_size parameter to be set high
 enough that the required log data is not removed before the end
 of the backup. If the required log data has been recycled
 before it's time to transfer it, the backup will fail and be
 unusable.

 When tar format is used, the write-ahead log files will be
 included in the base.tar file.

	s, stream
	
 Stream write-ahead log data while the backup is being taken.
 This method will open a second connection to the server and
 start streaming the write-ahead log in parallel while running
 the backup. Therefore, it will require two replication
 connections not just one. As long as the client can keep up
 with the write-ahead log data, using this method requires no
 extra write-ahead logs to be saved on the source server.

 When tar format is used, the write-ahead log files will be
 written to a separate file named pg_wal.tar
 (if the server is a version earlier than 10, the file will be named
 pg_xlog.tar).

 This value is the default.

	-z, --gzip
	
 Enables gzip compression of tar file output, with the default
 compression level. Compression is only available when using
 the tar format, and the suffix .gz will
 automatically be added to all tar filenames.

	-Z level, -Z [{client|server}-]method[:detail], --compress=level, --compress=[{client|server}-]method[:detail]
	
 Requests compression of the backup. If client or
 server is included, it specifies where the
 compression is to be performed. Compressing on the server will reduce
 transfer bandwidth but will increase server CPU consumption. The
 default is client except when
 --target is used. In that case, the backup is not
 being sent to the client, so only server compression is sensible.
 When -Xstream, which is the default, is used,
 server-side compression will not be applied to the WAL. To compress
 the WAL, use client-side compression, or
 specify -Xfetch.

 The compression method can be set to gzip,
 lz4, zstd,
 none for no compression or an integer (no
 compression if 0, gzip if greater than 0).
 A compression detail string can optionally be specified.
 If the detail string is an integer, it specifies the compression
 level. Otherwise, it should be a comma-separated list of items,
 each of the form keyword or
 keyword=value.
 Currently, the supported keywords are level,
 long, and workers.
 The detail string cannot be used when the compression method
 is specified as a plain integer.

 If no compression level is specified, the default compression level
 will be used. If only a level is specified without mentioning an
 algorithm, gzip compression will be used if the
 level is greater than 0, and no compression will be used if the level
 is 0.

 When the tar format is used with gzip,
 lz4, or zstd, the suffix
 .gz, .lz4, or
 .zst, respectively, will be automatically added to
 all tar filenames. When the plain format is used, client-side
 compression may not be specified, but it is still possible to request
 server-side compression. If this is done, the server will compress the
 backup for transmission, and the client will decompress and extract it.

 When this option is used in combination with
 -Xstream, pg_wal.tar will
 be compressed using gzip if client-side gzip
 compression is selected, but will not be compressed if any other
 compression algorithm is selected, or if server-side compression
 is selected.

 The following command-line options control the generation of the
 backup and the invocation of the program:

	-c {fast|spread}, --checkpoint={fast|spread}
	
 Sets checkpoint mode to fast (immediate) or spread (the default)
 (see the section called “Making a Base Backup Using the Low Level API”).

	-C, --create-slot
	
 Specifies that the replication slot named by the
 --slot option should be created before starting
 the backup. An error is raised if the slot already exists.

	-l label, --label=label
	
 Sets the label for the backup. If none is specified, a default value of
 “pg_basebackup base backup” will be used.

	-n, --no-clean
	
 By default, when pg_basebackup aborts with an
 error, it removes any directories it might have created before
 discovering that it cannot finish the job (for example, the target
 directory and write-ahead log directory). This option inhibits
 tidying-up and is thus useful for debugging.

 Note that tablespace directories are not cleaned up either way.

	-N, --no-sync
	
 By default, pg_basebackup will wait for all files
 to be written safely to disk. This option causes
 pg_basebackup to return without waiting, which is
 faster, but means that a subsequent operating system crash can leave
 the base backup corrupt. Generally, this option is useful for testing
 but should not be used when creating a production installation.

	-P, --progress
	
 Enables progress reporting. Turning this on will deliver an approximate
 progress report during the backup. Since the database may change during
 the backup, this is only an approximation and may not end at exactly
 100%. In particular, when WAL log is included in the
 backup, the total amount of data cannot be estimated in advance, and
 in this case the estimated target size will increase once it passes the
 total estimate without WAL.

	-r rate, --max-rate=rate
	
 Sets the maximum transfer rate at which data is collected from the
 source server. This can be useful to limit the impact
 of pg_basebackup on the server. Values
 are in kilobytes per second. Use a suffix of M
 to indicate megabytes per second. A suffix of k
 is also accepted, and has no effect. Valid values are between 32
 kilobytes per second and 1024 megabytes per second.

 This option always affects transfer of the data directory. Transfer of
 WAL files is only affected if the collection method
 is fetch.

	-S slotname, --slot=slotname
	
 This option can only be used together with -X
 stream. It causes WAL streaming to use the specified
 replication slot. If the base backup is intended to be used as a
 streaming-replication standby using a replication slot, the standby
 should then use the same replication slot name as
 primary_slot_name. This ensures that the
 primary server does not remove any necessary WAL data in the time
 between the end of the base backup and the start of streaming
 replication on the new standby.

 The specified replication slot has to exist unless the
 option -C is also used.

 If this option is not specified and the server supports temporary
 replication slots (version 10 and later), then a temporary replication
 slot is automatically used for WAL streaming.

	-v, --verbose
	
 Enables verbose mode. Will output some extra steps during startup and
 shutdown, as well as show the exact file name that is currently being
 processed if progress reporting is also enabled.

	--manifest-checksums=algorithm
	
 Specifies the checksum algorithm that should be applied to each file
 included in the backup manifest. Currently, the available
 algorithms are NONE, CRC32C,
 SHA224, SHA256,
 SHA384, and SHA512.
 The default is CRC32C.

 If NONE is selected, the backup manifest will
 not contain any checksums. Otherwise, it will contain a checksum
 of each file in the backup using the specified algorithm. In addition,
 the manifest will always contain a SHA256
 checksum of its own contents. The SHA algorithms
 are significantly more CPU-intensive than CRC32C,
 so selecting one of them may increase the time required to complete
 the backup.

 Using a SHA hash function provides a cryptographically secure digest
 of each file for users who wish to verify that the backup has not been
 tampered with, while the CRC32C algorithm provides a checksum that is
 much faster to calculate; it is good at catching errors due to accidental
 changes but is not resistant to malicious modifications. Note that, to
 be useful against an adversary who has access to the backup, the backup
 manifest would need to be stored securely elsewhere or otherwise
 verified not to have been modified since the backup was taken.

 pg_verifybackup(1) can be used to check the
 integrity of a backup against the backup manifest.

	--manifest-force-encode
	
 Forces all filenames in the backup manifest to be hex-encoded.
 If this option is not specified, only non-UTF8 filenames are
 hex-encoded. This option is mostly intended to test that tools which
 read a backup manifest file properly handle this case.

	--no-estimate-size
	
 Prevents the server from estimating the total
 amount of backup data that will be streamed, resulting in the
 backup_total column in the
 pg_stat_progress_basebackup view
 always being NULL.

 Without this option, the backup will start by enumerating
 the size of the entire database, and then go back and send
 the actual contents. This may make the backup take slightly
 longer, and in particular it will take longer before the first
 data is sent. This option is useful to avoid such estimation
 time if it's too long.

 This option is not allowed when using --progress.

	--no-manifest
	
 Disables generation of a backup manifest. If this option is not
 specified, the server will generate and send a backup manifest
 which can be verified using pg_verifybackup(1).
 The manifest is a list of every file present in the backup with the
 exception of any WAL files that may be included. It also stores the
 size, last modification time, and an optional checksum for each file.

	--no-slot
	
 Prevents the creation of a temporary replication slot
 for the backup.

 By default, if log streaming is selected but no slot name is given
 with the -S option, then a temporary replication
 slot is created (if supported by the source server).

 The main purpose of this option is to allow taking a base backup when
 the server has no free replication slots. Using a replication slot
 is almost always preferred, because it prevents needed WAL from being
 removed by the server during the backup.

	--no-verify-checksums
	
 Disables verification of checksums, if they are enabled on the server
 the base backup is taken from.

 By default, checksums are verified and checksum failures will result
 in a non-zero exit status. However, the base backup will not be
 removed in such a case, as if the --no-clean option
 had been used. Checksum verification failures will also be reported
 in the
 pg_stat_database view.

 The following command-line options control the connection to the source
 server:

	-d connstr, --dbname=connstr
	
 Specifies parameters used to connect to the server, as a connection string; these
 will override any conflicting command line options.

 The option is called --dbname for consistency with other
 client applications, but because pg_basebackup
 doesn't connect to any particular database in the cluster, any database
 name in the connection string will be ignored.

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for a Unix domain socket. The default is taken
 from the PGHOST environment variable, if set,
 else a Unix domain socket connection is attempted.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-s interval, --status-interval=interval
	
 Specifies the number of seconds between status packets sent back to
 the source server. Smaller values allow more accurate monitoring of
 backup progress from the server.
 A value of zero disables periodic status updates completely,
 although an update will still be sent when requested by the server, to
 avoid timeout-based disconnects. The default value is 10 seconds.

	-U username, --username=username
	
 Specifies the user name to connect as.

	-w, --no-password
	
 Prevents issuing a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Forces pg_basebackup to prompt for a
 password before connecting to the source server.

 This option is never essential, since
 pg_basebackup will automatically prompt
 for a password if the server demands password authentication.
 However, pg_basebackup will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

 Other options are also available:

	-V, --version
	
 Prints the pg_basebackup version and exits.

	-?, --help
	
 Shows help about pg_basebackup command line
 arguments, and exits.

Environment

 This utility, like most other PostgreSQL™ utilities,
 uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 At the beginning of the backup, a checkpoint needs to be performed on the
 source server. This can take some time (especially if the option
 --checkpoint=fast is not used), during
 which pg_basebackup will appear to be idle.

 The backup will include all files in the data directory and tablespaces,
 including the configuration files and any additional files placed in the
 directory by third parties, except certain temporary files managed by
 PostgreSQL and operating system files. But only regular files and
 directories are copied, except that
 symbolic links used for tablespaces are preserved. Symbolic links pointing
 to certain directories known to PostgreSQL are copied as empty directories.
 Other symbolic links and special device files are skipped.
 See the section called “Streaming Replication Protocol” for the precise details.

 In plain format, tablespaces will be backed up to the same path
 they have on the source server, unless the
 option --tablespace-mapping is used. Without
 this option, running a plain format base backup on the same host as the
 server will not work if tablespaces are in use, because the backup would
 have to be written to the same directory locations as the original
 tablespaces.

 When tar format is used, it is the user's responsibility to unpack each
 tar file before starting a PostgreSQL server that uses the data. If there
 are additional tablespaces, the
 tar files for them need to be unpacked in the correct locations. In this
 case the symbolic links for those tablespaces will be created by the server
 according to the contents of the tablespace_map file that is
 included in the base.tar file.

 pg_basebackup works with servers of the same
 or an older major version, down to 9.1. However, WAL streaming mode (-X
 stream) only works with server version 9.3 and later, and tar format
 (--format=tar) only works with server version 9.5
 and later.

 pg_basebackup will preserve group permissions
 for data files if group permissions are enabled on the source cluster.

Examples

 To create a base backup of the server at mydbserver
 and store it in the local directory
 /usr/local/pgsql/data:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

 To create a backup of the local server with one compressed
 tar file for each tablespace, and store it in the directory
 backup, showing a progress report while running:

$ pg_basebackup -D backup -Ft -z -P

 To create a backup of a single-tablespace local database and compress
 this with bzip2™:

$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2

 (This command will fail if there are multiple tablespaces in the
 database.)

 To create a backup of a local database where the tablespace in
 /opt/ts is relocated
 to ./backup/ts:

$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts

 To create a backup of a local server with one tar file for each tablespace
 compressed with gzip at level 9, stored in the
 directory backup:

$ pg_basebackup -D backup -Ft --compress=gzip:9

See Also
pg_dump(1), the section called “Base Backup Progress Reporting”

Name
pgbench — run a benchmark test on PostgreSQL™

Synopsis
pgbench -i [option...] [dbname]

pgbench [option...] [dbname]

Description

 pgbench is a simple program for running benchmark
 tests on PostgreSQL™. It runs the same sequence of SQL
 commands over and over, possibly in multiple concurrent database sessions,
 and then calculates the average transaction rate (transactions per second).
 By default, pgbench tests a scenario that is
 loosely based on TPC-B, involving five SELECT,
 UPDATE, and INSERT commands per transaction.
 However, it is easy to test other cases by writing your own transaction
 script files.

 Typical output from pgbench looks like:

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
latency average = 11.013 ms
latency stddev = 7.351 ms
initial connection time = 45.758 ms
tps = 896.967014 (without initial connection time)

 The first seven lines report some of the most important parameter
 settings.
 The sixth line reports the maximum number of tries for transactions with
 serialization or deadlock errors (see Failures and Serialization/Deadlock Retries
 for more information).
 The eighth line reports the number of transactions completed
 and intended (the latter being just the product of number of clients
 and number of transactions per client); these will be equal unless the run
 failed before completion or some SQL command(s) failed. (In
 -T mode, only the actual number of transactions is printed.)
 The next line reports the number of failed transactions due to
 serialization or deadlock errors (see Failures and Serialization/Deadlock Retries
 for more information).
 The last line reports the number of transactions per second.

 The default TPC-B-like transaction test requires specific tables to be
 set up beforehand. pgbench should be invoked with
 the -i (initialize) option to create and populate these
 tables. (When you are testing a custom script, you don't need this
 step, but will instead need to do whatever setup your test needs.)
 Initialization looks like:

pgbench -i [other-options] dbname

 where dbname is the name of the already-created
 database to test in. (You may also need -h,
 -p, and/or -U options to specify how to
 connect to the database server.)

Caution

 pgbench -i creates four tables pgbench_accounts,
 pgbench_branches, pgbench_history, and
 pgbench_tellers,
 destroying any existing tables of these names.
 Be very careful to use another database if you have tables having these
 names!

 At the default “scale factor” of 1, the tables initially
 contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

 You can (and, for most purposes, probably should) increase the number
 of rows by using the -s (scale factor) option. The
 -F (fillfactor) option might also be used at this point.

 Once you have done the necessary setup, you can run your benchmark
 with a command that doesn't include -i, that is

pgbench [options] dbname

 In nearly all cases, you'll need some options to make a useful test.
 The most important options are -c (number of clients),
 -t (number of transactions), -T (time limit),
 and -f (specify a custom script file).
 See below for a full list.

Options

 The following is divided into three subsections. Different options are
 used during database initialization and while running benchmarks, but some
 options are useful in both cases.

Initialization Options

 pgbench accepts the following command-line
 initialization arguments:

	dbname
	
 Specifies the name of the database to test in. If this is
 not specified, the environment variable
 PGDATABASE is used. If that is not set, the
 user name specified for the connection is used.

	-i, --initialize
	
 Required to invoke initialization mode.

	-I init_steps, --init-steps=init_steps
	
 Perform just a selected set of the normal initialization steps.
 init_steps specifies the
 initialization steps to be performed, using one character per step.
 Each step is invoked in the specified order.
 The default is dtgvp.
 The available steps are:

	d (Drop)
	
 Drop any existing pgbench tables.

	t (create Tables)
	
 Create the tables used by the
 standard pgbench scenario, namely
 pgbench_accounts,
 pgbench_branches,
 pgbench_history, and
 pgbench_tellers.

	g or G (Generate data, client-side or server-side)
	
 Generate data and load it into the standard tables,
 replacing any data already present.

 With g (client-side data generation),
 data is generated in pgbench client and then
 sent to the server. This uses the client/server bandwidth
 extensively through a COPY.
 pgbench uses the FREEZE option with version 14 or later
 of PostgreSQL™ to speed up
 subsequent VACUUM, unless partitions are enabled.
 Using g causes logging to print one message
 every 100,000 rows while generating data for the
 pgbench_accounts table.

 With G (server-side data generation),
 only small queries are sent from the pgbench
 client and then data is actually generated in the server.
 No significant bandwidth is required for this variant, but
 the server will do more work.
 Using G causes logging not to print any progress
 message while generating data.

 The default initialization behavior uses client-side data
 generation (equivalent to g).

	v (Vacuum)
	
 Invoke VACUUM on the standard tables.

	p (create Primary keys)
	
 Create primary key indexes on the standard tables.

	f (create Foreign keys)
	
 Create foreign key constraints between the standard tables.
 (Note that this step is not performed by default.)

	-F fillfactor, --fillfactor=fillfactor
	
 Create the pgbench_accounts,
 pgbench_tellers and
 pgbench_branches tables with the given fillfactor.
 Default is 100.

	-n, --no-vacuum
	
 Perform no vacuuming during initialization.
 (This option suppresses the v initialization step,
 even if it was specified in -I.)

	-q, --quiet
	
 Switch logging to quiet mode, producing only one progress message per 5
 seconds. The default logging prints one message each 100,000 rows, which
 often outputs many lines per second (especially on good hardware).

 This setting has no effect if G is specified
 in -I.

	-s scale_factor, --scale=scale_factor
	
 Multiply the number of rows generated by the scale factor.
 For example, -s 100 will create 10,000,000 rows
 in the pgbench_accounts table. Default is 1.
 When the scale is 20,000 or larger, the columns used to
 hold account identifiers (aid columns)
 will switch to using larger integers (bigint),
 in order to be big enough to hold the range of account
 identifiers.

	--foreign-keys
	
 Create foreign key constraints between the standard tables.
 (This option adds the f step to the initialization
 step sequence, if it is not already present.)

	--index-tablespace=index_tablespace
	
 Create indexes in the specified tablespace, rather than the default
 tablespace.

	--partition-method=NAME
	
 Create a partitioned pgbench_accounts table with
 NAME method.
 Expected values are range or hash.
 This option requires that --partitions is set to non-zero.
 If unspecified, default is range.

	--partitions=NUM
	
 Create a partitioned pgbench_accounts table with
 NUM partitions of nearly equal size for
 the scaled number of accounts.
 Default is 0, meaning no partitioning.

	--tablespace=tablespace
	
 Create tables in the specified tablespace, rather than the default
 tablespace.

	--unlogged-tables
	
 Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options

 pgbench accepts the following command-line
 benchmarking arguments:

	-b scriptname[@weight], --builtin=scriptname[@weight]
	
 Add the specified built-in script to the list of scripts to be executed.
 Available built-in scripts are: tpcb-like,
 simple-update and select-only.
 Unambiguous prefixes of built-in names are accepted.
 With the special name list, show the list of built-in scripts
 and exit immediately.

 Optionally, write an integer weight after @ to
 adjust the probability of selecting this script versus other ones.
 The default weight is 1.
 See below for details.

	-c clients, --client=clients
	
 Number of clients simulated, that is, number of concurrent database
 sessions. Default is 1.

	-C, --connect
	
 Establish a new connection for each transaction, rather than
 doing it just once per client session.
 This is useful to measure the connection overhead.

	-d, --debug
	
 Print debugging output.

	-D varname=value, --define=varname=value
	
 Define a variable for use by a custom script (see below).
 Multiple -D options are allowed.

	-f filename[@weight], --file=filename[@weight]
	
 Add a transaction script read from filename
 to the list of scripts to be executed.

 Optionally, write an integer weight after @ to
 adjust the probability of selecting this script versus other ones.
 The default weight is 1.
 (To use a script file name that includes an @
 character, append a weight so that there is no ambiguity, for
 example filen@me@1.)
 See below for details.

	-j threads, --jobs=threads
	
 Number of worker threads within pgbench.
 Using more than one thread can be helpful on multi-CPU machines.
 Clients are distributed as evenly as possible among available threads.
 Default is 1.

	-l, --log
	
 Write information about each transaction to a log file.
 See below for details.

	-L limit, --latency-limit=limit
	
 Transactions that last more than limit milliseconds
 are counted and reported separately, as late.

 When throttling is used (--rate=...), transactions that
 lag behind schedule by more than limit ms, and thus
 have no hope of meeting the latency limit, are not sent to the server
 at all. They are counted and reported separately as
 skipped.

 When the --max-tries option is used, a transaction
 which fails due to a serialization anomaly or from a deadlock will not
 be retried if the total time of all its tries is greater than
 limit ms. To limit only the time of tries
 and not their number, use --max-tries=0. By
 default, the option --max-tries is set to 1 and
 transactions with serialization/deadlock errors are not retried. See
 Failures and Serialization/Deadlock Retries for more information about
 retrying such transactions.

	-M querymode, --protocol=querymode
	
 Protocol to use for submitting queries to the server:

	simple: use simple query protocol.

	extended: use extended query protocol.

	prepared: use extended query protocol with prepared statements.

 In the prepared mode, pgbench
 reuses the parse analysis result starting from the second query
 iteration, so pgbench runs faster
 than in other modes.

 The default is simple query protocol. (See Chapter 55, Frontend/Backend Protocol
 for more information.)

	-n, --no-vacuum
	
 Perform no vacuuming before running the test.
 This option is necessary
 if you are running a custom test scenario that does not include
 the standard tables pgbench_accounts,
 pgbench_branches, pgbench_history, and
 pgbench_tellers.

	-N, --skip-some-updates
	
 Run built-in simple-update script.
 Shorthand for -b simple-update.

	-P sec, --progress=sec
	
 Show progress report every sec seconds. The report
 includes the time since the beginning of the run, the TPS since the
 last report, and the transaction latency average, standard deviation,
 and the number of failed transactions since the last report. Under
 throttling (-R), the latency is computed with respect
 to the transaction scheduled start time, not the actual transaction
 beginning time, thus it also includes the average schedule lag time.
 When --max-tries is used to enable transaction retries
 after serialization/deadlock errors, the report includes the number of
 retried transactions and the sum of all retries.

	-r, --report-per-command
	
 Report the following statistics for each command after the benchmark
 finishes: the average per-statement latency (execution time from the
 perspective of the client), the number of failures, and the number of
 retries after serialization or deadlock errors in this command. The
 report displays retry statistics only if the
 --max-tries option is not equal to 1.

	-R rate, --rate=rate
	
 Execute transactions targeting the specified rate instead of running
 as fast as possible (the default). The rate is given in transactions
 per second. If the targeted rate is above the maximum possible rate,
 the rate limit won't impact the results.

 The rate is targeted by starting transactions along a
 Poisson-distributed schedule time line. The expected start time
 schedule moves forward based on when the client first started, not
 when the previous transaction ended. That approach means that when
 transactions go past their original scheduled end time, it is
 possible for later ones to catch up again.

 When throttling is active, the transaction latency reported at the
 end of the run is calculated from the scheduled start times, so it
 includes the time each transaction had to wait for the previous
 transaction to finish. The wait time is called the schedule lag time,
 and its average and maximum are also reported separately. The
 transaction latency with respect to the actual transaction start time,
 i.e., the time spent executing the transaction in the database, can be
 computed by subtracting the schedule lag time from the reported
 latency.

 If --latency-limit is used together with --rate,
 a transaction can lag behind so much that it is already over the
 latency limit when the previous transaction ends, because the latency
 is calculated from the scheduled start time. Such transactions are
 not sent to the server, but are skipped altogether and counted
 separately.

 A high schedule lag time is an indication that the system cannot
 process transactions at the specified rate, with the chosen number of
 clients and threads. When the average transaction execution time is
 longer than the scheduled interval between each transaction, each
 successive transaction will fall further behind, and the schedule lag
 time will keep increasing the longer the test run is. When that
 happens, you will have to reduce the specified transaction rate.

	-s scale_factor, --scale=scale_factor
	
 Report the specified scale factor in pgbench's
 output. With the built-in tests, this is not necessary; the
 correct scale factor will be detected by counting the number of
 rows in the pgbench_branches table.
 However, when testing only custom benchmarks (-f option),
 the scale factor will be reported as 1 unless this option is used.

	-S, --select-only
	
 Run built-in select-only script.
 Shorthand for -b select-only.

	-t transactions, --transactions=transactions
	
 Number of transactions each client runs. Default is 10.

	-T seconds, --time=seconds
	
 Run the test for this many seconds, rather than a fixed number of
 transactions per client. -t and
 -T are mutually exclusive.

	-v, --vacuum-all
	
 Vacuum all four standard tables before running the test.
 With neither -n nor -v, pgbench will vacuum the
 pgbench_tellers and pgbench_branches
 tables, and will truncate pgbench_history.

	--aggregate-interval=seconds
	
 Length of aggregation interval (in seconds). May be used only
 with -l option. With this option, the log contains
 per-interval summary data, as described below.

	--failures-detailed
	
 Report failures in per-transaction and aggregation logs, as well as in
 the main and per-script reports, grouped by the following types:

	serialization failures;

	deadlock failures;

 See Failures and Serialization/Deadlock Retries for more information.

	--log-prefix=prefix
	
 Set the filename prefix for the log files created by
 --log. The default is pgbench_log.

	--max-tries=number_of_tries
	
 Enable retries for transactions with serialization/deadlock errors and
 set the maximum number of these tries. This option can be combined with
 the --latency-limit option which limits the total time
 of all transaction tries; moreover, you cannot use an unlimited number
 of tries (--max-tries=0) without
 --latency-limit or --time.
 The default value is 1 and transactions with serialization/deadlock
 errors are not retried. See Failures and Serialization/Deadlock Retries
 for more information about retrying such transactions.

	--progress-timestamp
	
 When showing progress (option -P), use a timestamp
 (Unix epoch) instead of the number of seconds since the
 beginning of the run. The unit is in seconds, with millisecond
 precision after the dot.
 This helps compare logs generated by various tools.

	--random-seed=seed
	
 Set random generator seed. Seeds the system random number generator,
 which then produces a sequence of initial generator states, one for
 each thread.
 Values for seed may be:
 time (the default, the seed is based on the current time),
 rand (use a strong random source, failing if none
 is available), or an unsigned decimal integer value.
 The random generator is invoked explicitly from a pgbench script
 (random... functions) or implicitly (for instance option
 --rate uses it to schedule transactions).
 When explicitly set, the value used for seeding is shown on the terminal.
 Any value allowed for seed may also be
 provided through the environment variable
 PGBENCH_RANDOM_SEED.
 To ensure that the provided seed impacts all possible uses, put this option
 first or use the environment variable.

 Setting the seed explicitly allows to reproduce a pgbench
 run exactly, as far as random numbers are concerned.
 As the random state is managed per thread, this means the exact same
 pgbench run for an identical invocation if there is one
 client per thread and there are no external or data dependencies.
 From a statistical viewpoint reproducing runs exactly is a bad idea because
 it can hide the performance variability or improve performance unduly,
 e.g., by hitting the same pages as a previous run.
 However, it may also be of great help for debugging, for instance
 re-running a tricky case which leads to an error.
 Use wisely.

	--sampling-rate=rate
	
 Sampling rate, used when writing data into the log, to reduce the
 amount of log generated. If this option is given, only the specified
 fraction of transactions are logged. 1.0 means all transactions will
 be logged, 0.05 means only 5% of the transactions will be logged.

 Remember to take the sampling rate into account when processing the
 log file. For example, when computing TPS values, you need to multiply
 the numbers accordingly (e.g., with 0.01 sample rate, you'll only get
 1/100 of the actual TPS).

	--show-script=scriptname
	
 Show the actual code of builtin script scriptname
 on stderr, and exit immediately.

	--verbose-errors
	
 Print messages about all errors and failures (errors without retrying)
 including which limit for retries was exceeded and how far it was
 exceeded for the serialization/deadlock failures. (Note that in this
 case the output can be significantly increased.)
 See Failures and Serialization/Deadlock Retries for more information.

Common Options

 pgbench also accepts the following common command-line
 arguments for connection parameters:

	-h hostname, --host=hostname
	
 The database server's host name

	-p port, --port=port
	
 The database server's port number

	-U login, --username=login
	
 The user name to connect as

	-V, --version
	
 Print the pgbench version and exit.

	-?, --help
	
 Show help about pgbench command line
 arguments, and exit.

Exit Status

 A successful run will exit with status 0. Exit status 1 indicates static
 problems such as invalid command-line options or internal errors which
 are supposed to never occur. Early errors that occur when starting
 benchmark such as initial connection failures also exit with status 1.
 Errors during the run such as database errors or problems in the script
 will result in exit status 2. In the latter case,
 pgbench will print partial results.

Environment
	PGDATABASE, PGHOST, PGPORT, PGUSER
	
 Default connection parameters.

 This utility, like most other PostgreSQL™ utilities,
 uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes
What Is the “Transaction” Actually Performed in pgbench?

 pgbench executes test scripts chosen randomly
 from a specified list.
 The scripts may include built-in scripts specified with -b
 and user-provided scripts specified with -f.
 Each script may be given a relative weight specified after an
 @ so as to change its selection probability.
 The default weight is 1.
 Scripts with a weight of 0 are ignored.

 The default built-in transaction script (also invoked with -b tpcb-like)
 issues seven commands per transaction over randomly chosen aid,
 tid, bid and delta.
 The scenario is inspired by the TPC-B benchmark, but is not actually TPC-B,
 hence the name.

	BEGIN;

	UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

	SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

	UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

	UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

	INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

	END;

 If you select the simple-update built-in (also -N),
 steps 4 and 5 aren't included in the transaction.
 This will avoid update contention on these tables, but
 it makes the test case even less like TPC-B.

 If you select the select-only built-in (also -S),
 only the SELECT is issued.

Custom Scripts

 pgbench has support for running custom
 benchmark scenarios by replacing the default transaction script
 (described above) with a transaction script read from a file
 (-f option). In this case a “transaction”
 counts as one execution of a script file.

 A script file contains one or more SQL commands terminated by
 semicolons. Empty lines and lines beginning with
 -- are ignored. Script files can also contain
 “meta commands”, which are interpreted by pgbench
 itself, as described below.

Note

 Before PostgreSQL™ 9.6, SQL commands in script files
 were terminated by newlines, and so they could not be continued across
 lines. Now a semicolon is required to separate consecutive
 SQL commands (though an SQL command does not need one if it is followed
 by a meta command). If you need to create a script file that works with
 both old and new versions of pgbench, be sure to write
 each SQL command on a single line ending with a semicolon.

 It is assumed that pgbench scripts do not contain incomplete blocks of SQL
 transactions. If at runtime the client reaches the end of the script without
 completing the last transaction block, it will be aborted.

 There is a simple variable-substitution facility for script files.
 Variable names must consist of letters (including non-Latin letters),
 digits, and underscores, with the first character not being a digit.
 Variables can be set by the command-line -D option,
 explained above, or by the meta commands explained below.
 In addition to any variables preset by -D command-line options,
 there are a few variables that are preset automatically, listed in
 Table 293, “pgbench Automatic Variables”. A value specified for these
 variables using -D takes precedence over the automatic presets.
 Once set, a variable's
 value can be inserted into an SQL command by writing
 :variablename. When running more than
 one client session, each session has its own set of variables.
 pgbench supports up to 255 variable uses in one
 statement.

Table 293. pgbench Automatic Variables
	Variable	Description
	 client_id 	unique number identifying the client session (starts from zero)
	 default_seed 	seed used in hash and pseudorandom permutation functions by default
	 random_seed 	random generator seed (unless overwritten with -D)
	 scale 	current scale factor

 Script file meta commands begin with a backslash (\) and
 normally extend to the end of the line, although they can be continued
 to additional lines by writing backslash-return.
 Arguments to a meta command are separated by white space.
 These meta commands are supported:

	
 \gset [prefix]
 \aset [prefix]

	
 These commands may be used to end SQL queries, taking the place of the
 terminating semicolon (;).

 When the \gset command is used, the preceding SQL query is
 expected to return one row, the columns of which are stored into variables
 named after column names, and prefixed with prefix
 if provided.

 When the \aset command is used, all combined SQL queries
 (separated by \;) have their columns stored into variables
 named after column names, and prefixed with prefix
 if provided. If a query returns no row, no assignment is made and the variable
 can be tested for existence to detect this. If a query returns more than one
 row, the last value is kept.

 \gset and \aset cannot be used in
 pipeline mode, since the query results are not yet available by the time
 the commands would need them.

 The following example puts the final account balance from the first query
 into variable abalance, and fills variables
 p_two and p_three
 with integers from the third query.
 The result of the second query is discarded.
 The result of the two last combined queries are stored in variables
 four and five.

UPDATE pgbench_accounts
 SET abalance = abalance + :delta
 WHERE aid = :aid
 RETURNING abalance \gset
-- compound of two queries
SELECT 1 \;
SELECT 2 AS two, 3 AS three \gset p_
SELECT 4 AS four \; SELECT 5 AS five \aset

	\if expression, \elif expression, \else, \endif
	
 This group of commands implements nestable conditional blocks,
 similarly to psql's \if expression.
 Conditional expressions are identical to those with \set,
 with non-zero values interpreted as true.

	
 \set varname expression

	
 Sets variable varname to a value calculated
 from expression.
 The expression may contain the NULL constant,
 Boolean constants TRUE and FALSE,
 integer constants such as 5432,
 double constants such as 3.14159,
 references to variables :variablename,
 operators
 with their usual SQL precedence and associativity,
 function calls,
 SQL CASE generic conditional
 expressions and parentheses.

 Functions and most operators return NULL on
 NULL input.

 For conditional purposes, non zero numerical values are
 TRUE, zero numerical values and NULL
 are FALSE.

 Too large or small integer and double constants, as well as
 integer arithmetic operators (+,
 -, * and /)
 raise errors on overflows.

 When no final ELSE clause is provided to a
 CASE, the default value is NULL.

 Examples:

\set ntellers 10 * :scale
\set aid (1021 * random(1, 100000 * :scale)) % \
 (100000 * :scale) + 1
\set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END

	
 \sleep number [us | ms | s]

	
 Causes script execution to sleep for the specified duration in
 microseconds (us), milliseconds (ms) or seconds
 (s). If the unit is omitted then seconds are the default.
 number can be either an integer constant or a
 :variablename reference to a variable
 having an integer value.

 Example:

\sleep 10 ms

	
 \setshell varname command [argument ...]

	
 Sets variable varname to the result of the shell command
 command with the given argument(s).
 The command must return an integer value through its standard output.

 command and each argument can be either
 a text constant or a :variablename reference
 to a variable. If you want to use an argument starting
 with a colon, write an additional colon at the beginning of
 argument.

 Example:

\setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon

	
 \shell command [argument ...]

	
 Same as \setshell, but the result of the command
 is discarded.

 Example:

\shell command literal_argument :variable ::literal_starting_with_colon

	\startpipeline, \endpipeline
	
 These commands delimit the start and end of a pipeline of SQL
 statements. In pipeline mode, statements are sent to the server
 without waiting for the results of previous statements. See
 the section called “Pipeline Mode” for more details.
 Pipeline mode requires the use of extended query protocol.

Built-in Operators

 The arithmetic, bitwise, comparison and logical operators listed in
 Table 294, “pgbench Operators” are built into pgbench
 and may be used in expressions appearing in
 \set.
 The operators are listed in increasing precedence order.
 Except as noted, operators taking two numeric inputs will produce
 a double value if either input is double, otherwise they produce
 an integer result.

Table 294. pgbench Operators
	
 Operator

 Description

 Example(s)

	
 boolean OR boolean
 boolean

 Logical OR

 5 or 0
 TRUE

	
 boolean AND boolean
 boolean

 Logical AND

 3 and 0
 FALSE

	
 NOT boolean
 boolean

 Logical NOT

 not false
 TRUE

	
 boolean IS [NOT] (NULL|TRUE|FALSE)
 boolean

 Boolean value tests

 1 is null
 FALSE

	
 value ISNULL|NOTNULL
 boolean

 Nullness tests

 1 notnull
 TRUE

	
 number = number
 boolean

 Equal

 5 = 4
 FALSE

	
 number <> number
 boolean

 Not equal

 5 <> 4
 TRUE

	
 number != number
 boolean

 Not equal

 5 != 5
 FALSE

	
 number < number
 boolean

 Less than

 5 < 4
 FALSE

	
 number <= number
 boolean

 Less than or equal to

 5 <= 4
 FALSE

	
 number > number
 boolean

 Greater than

 5 > 4
 TRUE

	
 number >= number
 boolean

 Greater than or equal to

 5 >= 4
 TRUE

	
 integer | integer
 integer

 Bitwise OR

 1 | 2
 3

	
 integer # integer
 integer

 Bitwise XOR

 1 # 3
 2

	
 integer & integer
 integer

 Bitwise AND

 1 & 3
 1

	
 ~ integer
 integer

 Bitwise NOT

 ~ 1
 -2

	
 integer << integer
 integer

 Bitwise shift left

 1 << 2
 4

	
 integer >> integer
 integer

 Bitwise shift right

 8 >> 2
 2

	
 number + number
 number

 Addition

 5 + 4
 9

	
 number - number
 number

 Subtraction

 3 - 2.0
 1.0

	
 number * number
 number

 Multiplication

 5 * 4
 20

	
 number / number
 number

 Division (truncates the result towards zero if both inputs are integers)

 5 / 3
 1

	
 integer % integer
 integer

 Modulo (remainder)

 3 % 2
 1

	
 - number
 number

 Negation

 - 2.0
 -2.0

Built-In Functions

 The functions listed in Table 295, “pgbench Functions” are built
 into pgbench and may be used in expressions appearing in
 \set.

Table 295. pgbench Functions
	
 Function

 Description

 Example(s)

	
 abs (number)
 same type as input

 Absolute value

 abs(-17)
 17

	
 debug (number)
 same type as input

 Prints the argument to stderr,
 and returns the argument.

 debug(5432.1)
 5432.1

	
 double (number)
 double

 Casts to double.

 double(5432)
 5432.0

	
 exp (number)
 double

 Exponential (e raised to the given power)

 exp(1.0)
 2.718281828459045

	
 greatest (number [, ...])
 double if any argument is double, else integer

 Selects the largest value among the arguments.

 greatest(5, 4, 3, 2)
 5

	
 hash (value [, seed])
 integer

 This is an alias for hash_murmur2.

 hash(10, 5432)
 -5817877081768721676

	
 hash_fnv1a (value [, seed])
 integer

 Computes FNV-1a hash.

 hash_fnv1a(10, 5432)
 -7793829335365542153

	
 hash_murmur2 (value [, seed])
 integer

 Computes MurmurHash2 hash.

 hash_murmur2(10, 5432)
 -5817877081768721676

	
 int (number)
 integer

 Casts to integer.

 int(5.4 + 3.8)
 9

	
 least (number [, ...])
 double if any argument is double, else integer

 Selects the smallest value among the arguments.

 least(5, 4, 3, 2.1)
 2.1

	
 ln (number)
 double

 Natural logarithm

 ln(2.718281828459045)
 1.0

	
mod (integer, integer)
 integer

 Modulo (remainder)

 mod(54, 32)
 22

	
 permute (i, size [, seed])
 integer

 Permuted value of i, in the range
 [0, size). This is the new position of
 i (modulo size) in a
 pseudorandom permutation of the integers 0...size-1,
 parameterized by seed, see below.

 permute(0, 4)
 an integer between 0 and 3

	
 pi ()
 double

 Approximate value of π

 pi()
 3.14159265358979323846

	
 pow (x, y)
 double

 power (x, y)
 double

 x raised to the power of y

 pow(2.0, 10)
 1024.0

	
 random (lb, ub)
 integer

 Computes a uniformly-distributed random integer in [lb,
 ub].

 random(1, 10)
 an integer between 1 and 10

	
 random_exponential (lb, ub, parameter)
 integer

 Computes an exponentially-distributed random integer in [lb,
 ub], see below.

 random_exponential(1, 10, 3.0)
 an integer between 1 and 10

	
 random_gaussian (lb, ub, parameter)
 integer

 Computes a Gaussian-distributed random integer in [lb,
 ub], see below.

 random_gaussian(1, 10, 2.5)
 an integer between 1 and 10

	
 random_zipfian (lb, ub, parameter)
 integer

 Computes a Zipfian-distributed random integer in [lb,
 ub], see below.

 random_zipfian(1, 10, 1.5)
 an integer between 1 and 10

	
 sqrt (number)
 double

 Square root

 sqrt(2.0)
 1.414213562

 The random function generates values using a uniform
 distribution, that is all the values are drawn within the specified
 range with equal probability. The random_exponential,
 random_gaussian and random_zipfian
 functions require an additional double parameter which determines the precise
 shape of the distribution.

	
 For an exponential distribution, parameter
 controls the distribution by truncating a quickly-decreasing
 exponential distribution at parameter, and then
 projecting onto integers between the bounds.
 To be precise, with

f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))

 Then value i between min and
 max inclusive is drawn with probability:
 f(i) - f(i + 1).

 Intuitively, the larger the parameter, the more
 frequently values close to min are accessed, and the
 less frequently values close to max are accessed.
 The closer to 0 parameter is, the flatter (more
 uniform) the access distribution.
 A crude approximation of the distribution is that the most frequent 1%
 values in the range, close to min, are drawn
 parameter% of the time.
 The parameter value must be strictly positive.

	
 For a Gaussian distribution, the interval is mapped onto a standard
 normal distribution (the classical bell-shaped Gaussian curve) truncated
 at -parameter on the left and +parameter
 on the right.
 Values in the middle of the interval are more likely to be drawn.
 To be precise, if PHI(x) is the cumulative distribution
 function of the standard normal distribution, with mean mu
 defined as (max + min) / 2.0, with

f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /

 (2.0 * PHI(parameter) - 1)

 then value i between min and
 max inclusive is drawn with probability:
 f(i + 0.5) - f(i - 0.5).
 Intuitively, the larger the parameter, the more
 frequently values close to the middle of the interval are drawn, and the
 less frequently values close to the min and
 max bounds. About 67% of values are drawn from the
 middle 1.0 / parameter, that is a relative
 0.5 / parameter around the mean, and 95% in the middle
 2.0 / parameter, that is a relative
 1.0 / parameter around the mean; for instance, if
 parameter is 4.0, 67% of values are drawn from the
 middle quarter (1.0 / 4.0) of the interval (i.e., from
 3.0 / 8.0 to 5.0 / 8.0) and 95% from
 the middle half (2.0 / 4.0) of the interval (second and third
 quartiles). The minimum allowed parameter
 value is 2.0.

	
 random_zipfian generates a bounded Zipfian
 distribution.
 parameter defines how skewed the distribution
 is. The larger the parameter, the more
 frequently values closer to the beginning of the interval are drawn.
 The distribution is such that, assuming the range starts from 1,
 the ratio of the probability of drawing k
 versus drawing k+1 is
 ((k+1)/k)**parameter.
 For example, random_zipfian(1, ..., 2.5) produces
 the value 1 about (2/1)**2.5 =
 5.66 times more frequently than 2, which
 itself is produced (3/2)**2.5 = 2.76 times more
 frequently than 3, and so on.

 pgbench's implementation is based on
 "Non-Uniform Random Variate Generation", Luc Devroye, p. 550-551,
 Springer 1986. Due to limitations of that algorithm,
 the parameter value is restricted to
 the range [1.001, 1000].

Note

 When designing a benchmark which selects rows non-uniformly, be aware
 that the rows chosen may be correlated with other data such as IDs from
 a sequence or the physical row ordering, which may skew performance
 measurements.

 To avoid this, you may wish to use the permute
 function, or some other additional step with similar effect, to shuffle
 the selected rows and remove such correlations.

 Hash functions hash, hash_murmur2 and
 hash_fnv1a accept an input value and an optional seed parameter.
 In case the seed isn't provided the value of :default_seed
 is used, which is initialized randomly unless set by the command-line
 -D option.

 permute accepts an input value, a size, and an optional
 seed parameter. It generates a pseudorandom permutation of integers in
 the range [0, size), and returns the index of the input
 value in the permuted values. The permutation chosen is parameterized by
 the seed, which defaults to :default_seed, if not
 specified. Unlike the hash functions, permute ensures
 that there are no collisions or holes in the output values. Input values
 outside the interval are interpreted modulo the size. The function raises
 an error if the size is not positive. permute can be
 used to scatter the distribution of non-uniform random functions such as
 random_zipfian or random_exponential
 so that values drawn more often are not trivially correlated. For
 instance, the following pgbench script
 simulates a possible real world workload typical for social media and
 blogging platforms where a few accounts generate excessive load:

\set size 1000000
\set r random_zipfian(1, :size, 1.07)
\set k 1 + permute(:r, :size)

 In some cases several distinct distributions are needed which don't correlate
 with each other and this is when the optional seed parameter comes in handy:

\set k1 1 + permute(:r, :size, :default_seed + 123)
\set k2 1 + permute(:r, :size, :default_seed + 321)

 A similar behavior can also be approximated with hash:

\set size 1000000
\set r random_zipfian(1, 100 * :size, 1.07)
\set k 1 + abs(hash(:r)) % :size

 However, since hash generates collisions, some values
 will not be reachable and others will be more frequent than expected from
 the original distribution.

 As an example, the full definition of the built-in TPC-B-like
 transaction is:

\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

 This script allows each iteration of the transaction to reference
 different, randomly-chosen rows. (This example also shows why it's
 important for each client session to have its own variables —
 otherwise they'd not be independently touching different rows.)

Per-Transaction Logging

 With the -l option (but without
 the --aggregate-interval option),
 pgbench writes information about each transaction
 to a log file. The log file will be named
 prefix.nnn,
 where prefix defaults to pgbench_log, and
 nnn is the PID of the
 pgbench process.
 The prefix can be changed by using the --log-prefix option.
 If the -j option is 2 or higher, so that there are multiple
 worker threads, each will have its own log file. The first worker will
 use the same name for its log file as in the standard single worker case.
 The additional log files for the other workers will be named
 prefix.nnn.mmm,
 where mmm is a sequential number for each worker starting
 with 1.

 Each line in a log file describes one transaction.
 It contains the following space-separated fields:

	client_id
	
 identifies the client session that ran the transaction

	transaction_no
	
 counts how many transactions have been run by that session

	time
	
 transaction's elapsed time, in microseconds

	script_no
	
 identifies the script file that was used for the transaction
 (useful when multiple scripts are specified
 with -f or -b)

	time_epoch
	
 transaction's completion time, as a Unix-epoch time stamp

	time_us
	
 fractional-second part of transaction's completion time, in
 microseconds

	schedule_lag
	
 transaction start delay, that is the difference between the
 transaction's scheduled start time and the time it actually
 started, in microseconds
 (present only if --rate is specified)

	retries
	
 count of retries after serialization or deadlock errors during the
 transaction
 (present only if --max-tries is not equal to one)

 When both --rate and --latency-limit are used,
 the time for a skipped transaction will be reported as
 skipped.
 If the transaction ends with a failure, its time
 will be reported as failed. If you use the
 --failures-detailed option, the
 time of the failed transaction will be reported as
 serialization or
 deadlock depending on the type of failure (see
 Failures and Serialization/Deadlock Retries for more information).

 Here is a snippet of a log file generated in a single-client run:

0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663

 Another example with --rate=100
 and --latency-limit=5 (note the additional
 schedule_lag column):

0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740

 In this example, transaction 82 was late, because its latency (6.173 ms) was
 over the 5 ms limit. The next two transactions were skipped, because they
 were already late before they were even started.

 The following example shows a snippet of a log file with failures and
 retries, with the maximum number of tries set to 10 (note the additional
 retries column):

3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 failed 0 1499414498 84905 9
2 0 failed 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0

 If the --failures-detailed option is used, the type of
 failure is reported in the time like this:

3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 serialization 0 1499414498 84905 9
2 0 serialization 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0

 When running a long test on hardware that can handle a lot of transactions,
 the log files can become very large. The --sampling-rate option
 can be used to log only a random sample of transactions.

Aggregated Logging

 With the --aggregate-interval option, a different
 format is used for the log files. Each log line describes one
 aggregation interval. It contains the following space-separated
 fields:

	interval_start
	
 start time of the interval, as a Unix-epoch time stamp

	num_transactions
	
 number of transactions within the interval

	sum_latency
	
 sum of transaction latencies

	sum_latency_2
	
 sum of squares of transaction latencies

	min_latency
	
 minimum transaction latency

	max_latency
	
 maximum transaction latency

	sum_lag
	
 sum of transaction start delays
 (zero unless --rate is specified)

	sum_lag_2
	
 sum of squares of transaction start delays
 (zero unless --rate is specified)

	min_lag
	
 minimum transaction start delay
 (zero unless --rate is specified)

	max_lag
	
 maximum transaction start delay
 (zero unless --rate is specified)

	skipped
	
 number of transactions skipped because they would have started too late
 (zero unless --rate
 and --latency-limit are specified)

	retried
	
 number of retried transactions
 (zero unless --max-tries is not equal to one)

	retries
	
 number of retries after serialization or deadlock errors
 (zero unless --max-tries is not equal to one)

	serialization_failures
	
 number of transactions that got a serialization error and were not
 retried afterwards
 (zero unless --failures-detailed is specified)

	deadlock_failures
	
 number of transactions that got a deadlock error and were not
 retried afterwards
 (zero unless --failures-detailed is specified)

 Here is some example output generated with these options:

pgbench --aggregate-interval=10 --time=20 --client=10 --log --rate=1000 --latency-limit=10 --failures-detailed --max-tries=10 test

1650260552 5178 26171317 177284491527 1136 44462 2647617 7321113867 0 9866 64 7564 28340 4148 0
1650260562 4808 25573984 220121792172 1171 62083 3037380 9666800914 0 9998 598 7392 26621 4527 0

 Notice that while the plain (unaggregated) log format shows which script
 was used for each transaction, the aggregated format does not. Therefore if
 you need per-script data, you need to aggregate the data on your own.

Per-Statement Report

 With the -r option, pgbench
 collects the following statistics for each statement:

	
 latency — elapsed transaction time for each
 statement. pgbench reports an average value
 of all successful runs of the statement.

	
 The number of failures in this statement. See
 Failures and Serialization/Deadlock Retries for more information.

	
 The number of retries after a serialization or a deadlock error in this
 statement. See Failures and Serialization/Deadlock Retries for more information.

 The report displays retry statistics only if the --max-tries
 option is not equal to 1.

 All values are computed for each statement executed by every client and are
 reported after the benchmark has finished.

 For the default script, the output will look similar to this:

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
number of transactions above the 50.0 ms latency limit: 1311/10000 (13.110 %)
latency average = 28.488 ms
latency stddev = 21.009 ms
initial connection time = 69.068 ms
tps = 346.224794 (without initial connection time)
statement latencies in milliseconds and failures:
 0.012 0 \set aid random(1, 100000 * :scale)
 0.002 0 \set bid random(1, 1 * :scale)
 0.002 0 \set tid random(1, 10 * :scale)
 0.002 0 \set delta random(-5000, 5000)
 0.319 0 BEGIN;
 0.834 0 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
 0.641 0 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 11.126 0 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
 12.961 0 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
 0.634 0 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.957 0 END;

 Another example of output for the default script using serializable default
 transaction isolation level (PGOPTIONS='-c
 default_transaction_isolation=serializable' pgbench ...):

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 10
number of transactions per client: 1000
number of transactions actually processed: 6317/10000
number of failed transactions: 3683 (36.830%)
number of transactions retried: 7667 (76.670%)
total number of retries: 45339
number of transactions above the 50.0 ms latency limit: 106/6317 (1.678 %)
latency average = 17.016 ms
latency stddev = 13.283 ms
initial connection time = 45.017 ms
tps = 186.792667 (without initial connection time)
statement latencies in milliseconds, failures and retries:
 0.006 0 0 \set aid random(1, 100000 * :scale)
 0.001 0 0 \set bid random(1, 1 * :scale)
 0.001 0 0 \set tid random(1, 10 * :scale)
 0.001 0 0 \set delta random(-5000, 5000)
 0.385 0 0 BEGIN;
 0.773 0 1 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
 0.624 0 0 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 1.098 320 3762 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
 0.582 3363 41576 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
 0.465 0 0 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.933 0 0 END;

 If multiple script files are specified, all statistics are reported
 separately for each script file.

 Note that collecting the additional timing information needed for
 per-statement latency computation adds some overhead. This will slow
 average execution speed and lower the computed TPS. The amount
 of slowdown varies significantly depending on platform and hardware.
 Comparing average TPS values with and without latency reporting enabled
 is a good way to measure if the timing overhead is significant.

Failures and Serialization/Deadlock Retries

 When executing pgbench, there are three main types
 of errors:

	
 Errors of the main program. They are the most serious and always result
 in an immediate exit from pgbench with the
 corresponding error message. They include:

	
 errors at the beginning of pgbench
 (e.g. an invalid option value);

	
 errors in the initialization mode (e.g. the query to create
 tables for built-in scripts fails);

	
 errors before starting threads (e.g. could not connect to the
 database server, syntax error in the meta command, thread
 creation failure);

	
 internal pgbench errors (which are
 supposed to never occur...).

	
 Errors when the thread manages its clients (e.g. the client could not
 start a connection to the database server / the socket for connecting
 the client to the database server has become invalid). In such cases
 all clients of this thread stop while other threads continue to work.

	
 Direct client errors. They lead to immediate exit from
 pgbench with the corresponding error message
 only in the case of an internal pgbench
 error (which are supposed to never occur...). Otherwise in the worst
 case they only lead to the abortion of the failed client while other
 clients continue their run (but some client errors are handled without
 an abortion of the client and reported separately, see below). Later in
 this section it is assumed that the discussed errors are only the
 direct client errors and they are not internal
 pgbench errors.

 A client's run is aborted in case of a serious error; for example, the
 connection with the database server was lost or the end of script was reached
 without completing the last transaction. In addition, if execution of an SQL
 or meta command fails for reasons other than serialization or deadlock errors,
 the client is aborted. Otherwise, if an SQL command fails with serialization or
 deadlock errors, the client is not aborted. In such cases, the current
 transaction is rolled back, which also includes setting the client variables
 as they were before the run of this transaction (it is assumed that one
 transaction script contains only one transaction; see
 What Is the "Transaction" Actually Performed in pgbench? for more information).
 Transactions with serialization or deadlock errors are repeated after
 rollbacks until they complete successfully or reach the maximum
 number of tries (specified by the --max-tries option) / the maximum
 time of retries (specified by the --latency-limit option) / the end
 of benchmark (specified by the --time option). If
 the last trial run fails, this transaction will be reported as failed but
 the client is not aborted and continues to work.

Note

 Without specifying the --max-tries option, a transaction will
 never be retried after a serialization or deadlock error because its default
 value is 1. Use an unlimited number of tries (--max-tries=0)
 and the --latency-limit option to limit only the maximum time
 of tries. You can also use the --time option to limit the
 benchmark duration under an unlimited number of tries.

 Be careful when repeating scripts that contain multiple transactions: the
 script is always retried completely, so successful transactions can be
 performed several times.

 Be careful when repeating transactions with shell commands. Unlike the
 results of SQL commands, the results of shell commands are not rolled back,
 except for the variable value of the \setshell command.

 The latency of a successful transaction includes the entire time of
 transaction execution with rollbacks and retries. The latency is measured
 only for successful transactions and commands but not for failed transactions
 or commands.

 The main report contains the number of failed transactions. If the
 --max-tries option is not equal to 1, the main report also
 contains statistics related to retries: the total number of retried
 transactions and total number of retries. The per-script report inherits all
 these fields from the main report. The per-statement report displays retry
 statistics only if the --max-tries option is not equal to 1.

 If you want to group failures by basic types in per-transaction and
 aggregation logs, as well as in the main and per-script reports, use the
 --failures-detailed option. If you also want to distinguish
 all errors and failures (errors without retrying) by type including which
 limit for retries was exceeded and how much it was exceeded by for the
 serialization/deadlock failures, use the --verbose-errors
 option.

Table Access Methods

 You may specify the Table Access Method
 for the pgbench tables. The environment variable PGOPTIONS
 specifies database configuration options that are passed to PostgreSQL via
 the command line (See the section called “Parameter Interaction via the Shell”).
 For example, a hypothetical default Table Access Method for the tables that
 pgbench creates called wuzza can be specified with:

PGOPTIONS='-c default_table_access_method=wuzza'

Good Practices

 It is very easy to use pgbench to produce completely
 meaningless numbers. Here are some guidelines to help you get useful
 results.

 In the first place, never believe any test that runs
 for only a few seconds. Use the -t or -T option
 to make the run last at least a few minutes, so as to average out noise.
 In some cases you could need hours to get numbers that are reproducible.
 It's a good idea to try the test run a few times, to find out if your
 numbers are reproducible or not.

 For the default TPC-B-like test scenario, the initialization scale factor
 (-s) should be at least as large as the largest number of
 clients you intend to test (-c); else you'll mostly be
 measuring update contention. There are only -s rows in
 the pgbench_branches table, and every transaction wants to
 update one of them, so -c values in excess of -s
 will undoubtedly result in lots of transactions blocked waiting for
 other transactions.

 The default test scenario is also quite sensitive to how long it's been
 since the tables were initialized: accumulation of dead rows and dead space
 in the tables changes the results. To understand the results you must keep
 track of the total number of updates and when vacuuming happens. If
 autovacuum is enabled it can result in unpredictable changes in measured
 performance.

 A limitation of pgbench is that it can itself become
 the bottleneck when trying to test a large number of client sessions.
 This can be alleviated by running pgbench on a different
 machine from the database server, although low network latency will be
 essential. It might even be useful to run several pgbench
 instances concurrently, on several client machines, against the same
 database server.

Security

 If untrusted users have access to a database that has not adopted a
 secure schema usage pattern,
 do not run pgbench in that
 database. pgbench uses unqualified names and
 does not manipulate the search path.

Name
pg_config — retrieve information about the installed version of PostgreSQL™

Synopsis
pg_config [option...]

Description

 The pg_config utility prints configuration parameters
 of the currently installed version of PostgreSQL™. It is
 intended, for example, to be used by software packages that want to interface
 to PostgreSQL™ to facilitate finding the required header files
 and libraries.

Options

 To use pg_config, supply one or more of the following
 options:

	--bindir
	
 Print the location of user executables. Use this, for example, to find
 the psql program. This is normally also the location
 where the pg_config program resides.

	--docdir
	
 Print the location of documentation files.

	--htmldir
	
 Print the location of HTML documentation files.

	--includedir
	
 Print the location of C header files of the client interfaces.

	--pkgincludedir
	
 Print the location of other C header files.

	--includedir-server
	
 Print the location of C header files for server programming.

	--libdir
	
 Print the location of object code libraries.

	--pkglibdir
	
 Print the location of dynamically loadable modules, or where
 the server would search for them. (Other
 architecture-dependent data files might also be installed in this
 directory.)

	--localedir
	
 Print the location of locale support files. (This will be an empty
 string if locale support was not configured when
 PostgreSQL™ was built.)

	--mandir
	
 Print the location of manual pages.

	--sharedir
	
 Print the location of architecture-independent support files.

	--sysconfdir
	
 Print the location of system-wide configuration files.

	--pgxs
	
 Print the location of extension makefiles.

	--configure
	
 Print the options that were given to the configure
 script when PostgreSQL™ was configured for building.
 This can be used to reproduce the identical configuration, or
 to find out with what options a binary package was built. (Note
 however that binary packages often contain vendor-specific custom
 patches.) See also the examples below.

	--cc
	
 Print the value of the CC variable that was used for building
 PostgreSQL™. This shows the C compiler used.

	--cppflags
	
 Print the value of the CPPFLAGS variable that was used for building
 PostgreSQL™. This shows C compiler switches needed
 at preprocessing time (typically, -I switches).

	--cflags
	
 Print the value of the CFLAGS variable that was used for building
 PostgreSQL™. This shows C compiler switches.

	--cflags_sl
	
 Print the value of the CFLAGS_SL variable that was used for building
 PostgreSQL™. This shows extra C compiler switches
 used for building shared libraries.

	--ldflags
	
 Print the value of the LDFLAGS variable that was used for building
 PostgreSQL™. This shows linker switches.

	--ldflags_ex
	
 Print the value of the LDFLAGS_EX variable that was used for building
 PostgreSQL™. This shows linker switches
 used for building executables only.

	--ldflags_sl
	
 Print the value of the LDFLAGS_SL variable that was used for building
 PostgreSQL™. This shows linker switches
 used for building shared libraries only.

	--libs
	
 Print the value of the LIBS variable that was used for building
 PostgreSQL™. This normally contains -l
 switches for external libraries linked into PostgreSQL™.

	--version
	
 Print the version of PostgreSQL™.

	-?, --help
	
 Show help about pg_config command line
 arguments, and exit.

 If more than one option is given, the information is printed in that order,
 one item per line. If no options are given, all available information
 is printed, with labels.

Notes

 The options --docdir, --pkgincludedir,
 --localedir, --mandir,
 --sharedir, --sysconfdir,
 --cc, --cppflags,
 --cflags, --cflags_sl,
 --ldflags, --ldflags_sl,
 and --libs were added in PostgreSQL™ 8.1.
 The option --htmldir was added in PostgreSQL™ 8.4.
 The option --ldflags_ex was added in PostgreSQL™ 9.0.

Example

 To reproduce the build configuration of the current PostgreSQL
 installation, run the following command:

eval ./configure `pg_config --configure`

 The output of pg_config --configure contains
 shell quotation marks so arguments with spaces are represented
 correctly. Therefore, using eval is required
 for proper results.

Name
pg_dump —
 extract a PostgreSQL™ database into a script file or other archive file

Synopsis
pg_dump [connection-option...] [option...] [dbname]

Description

 pg_dump is a utility for backing up a
 PostgreSQL™ database. It makes consistent
 backups even if the database is being used concurrently.
 pg_dump does not block other users
 accessing the database (readers or writers).

 pg_dump only dumps a single database.
 To back up an entire cluster, or to back up global objects that are
 common to all databases in a cluster (such as roles and tablespaces),
 use pg_dumpall(1).

 Dumps can be output in script or archive file formats. Script
 dumps are plain-text files containing the SQL commands required
 to reconstruct the database to the state it was in at the time it was
 saved. To restore from such a script, feed it to psql(1). Script files
 can be used to reconstruct the database even on other machines and
 other architectures; with some modifications, even on other SQL
 database products.

 The alternative archive file formats must be used with
 pg_restore(1) to rebuild the database. They
 allow pg_restore to be selective about
 what is restored, or even to reorder the items prior to being
 restored.
 The archive file formats are designed to be portable across
 architectures.

 When used with one of the archive file formats and combined with
 pg_restore,
 pg_dump provides a flexible archival and
 transfer mechanism. pg_dump can be used to
 backup an entire database, then pg_restore
 can be used to examine the archive and/or select which parts of the
 database are to be restored. The most flexible output file formats are
 the “custom” format (-Fc) and the
 “directory” format (-Fd). They allow
 for selection and reordering of all archived items, support parallel
 restoration, and are compressed by default. The “directory”
 format is the only format that supports parallel dumps.

 While running pg_dump, one should examine the
 output for any warnings (printed on standard error), especially in
 light of the limitations listed below.

Warning

 Restoring a dump causes the destination to execute arbitrary code of the
 source superusers' choice. Partial dumps and partial restores do not limit
 that. If the source superusers are not trusted, the dumped SQL statements
 must be inspected before restoring. Non-plain-text dumps can be inspected
 by using pg_restore's --file
 option. Note that the client running the dump and restore need not trust
 the source or destination superusers.

Options

 The following command-line options control the content and
 format of the output.

	dbname
	
 Specifies the name of the database to be dumped. If this is
 not specified, the environment variable
 PGDATABASE is used. If that is not set, the
 user name specified for the connection is used.

	-a, --data-only
	
 Dump only the data, not the schema (data definitions).
 Table data, large objects, and sequence values are dumped.

 This option is similar to, but for historical reasons not identical
 to, specifying --section=data.

	-b, --large-objects, --blobs (deprecated)
	
 Include large objects in the dump. This is the default behavior
 except when --schema, --table, or
 --schema-only is specified. The -b
 switch is therefore only useful to add large objects to dumps
 where a specific schema or table has been requested. Note that
 large objects are considered data and therefore will be included when
 --data-only is used, but not
 when --schema-only is.

	-B, --no-large-objects, --no-blobs (deprecated)
	
 Exclude large objects in the dump.

 When both -b and -B are given, the behavior
 is to output large objects, when data is being dumped, see the
 -b documentation.

	-c, --clean
	
 Output commands to DROP all the dumped
 database objects prior to outputting the commands for creating them.
 This option is useful when the restore is to overwrite an existing
 database. If any of the objects do not exist in the destination
 database, ignorable error messages will be reported during
 restore, unless --if-exists is also specified.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	-C, --create
	
 Begin the output with a command to create the
 database itself and reconnect to the created database. (With a
 script of this form, it doesn't matter which database in the
 destination installation you connect to before running the script.)
 If --clean is also specified, the script drops and
 recreates the target database before reconnecting to it.

 With --create, the output also includes the
 database's comment if any, and any configuration variable settings
 that are specific to this database, that is,
 any ALTER DATABASE ... SET ...
 and ALTER ROLE ... IN DATABASE ... SET ...
 commands that mention this database.
 Access privileges for the database itself are also dumped,
 unless --no-acl is specified.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	-e pattern, --extension=pattern
	
 Dump only extensions matching pattern. When this option is not
 specified, all non-system extensions in the target database will be
 dumped. Multiple extensions can be selected by writing multiple
 -e switches. The pattern parameter is interpreted as a
 pattern according to the same rules used by
 psql's \d commands (see
 Patterns), so multiple extensions can also
 be selected by writing wildcard characters in the pattern. When using
 wildcards, be careful to quote the pattern if needed to prevent the
 shell from expanding the wildcards.

 Any configuration relation registered by
 pg_extension_config_dump is included in the
 dump if its extension is specified by --extension.

Note

 When -e is specified,
 pg_dump makes no attempt to dump any other
 database objects that the selected extension(s) might depend upon.
 Therefore, there is no guarantee that the results of a
 specific-extension dump can be successfully restored by themselves
 into a clean database.

	-E encoding, --encoding=encoding
	
 Create the dump in the specified character set encoding. By default,
 the dump is created in the database encoding. (Another way to get the
 same result is to set the PGCLIENTENCODING environment
 variable to the desired dump encoding.) The supported encodings are
 described in the section called “Supported Character Sets”.

	-f file, --file=file
	
 Send output to the specified file. This parameter can be omitted for
 file based output formats, in which case the standard output is used.
 It must be given for the directory output format however, where it
 specifies the target directory instead of a file. In this case the
 directory is created by pg_dump and must not exist
 before.

	-F format, --format=format
	
 Selects the format of the output.
 format can be one of the following:

	p, plain
	
 Output a plain-text SQL script file (the default).

	c, custom
	
 Output a custom-format archive suitable for input into
 pg_restore.
 Together with the directory output format, this is the most flexible
 output format in that it allows manual selection and reordering of
 archived items during restore. This format is also compressed by
 default.

	d, directory
	
 Output a directory-format archive suitable for input into
 pg_restore. This will create a directory
 with one file for each table and large object being dumped, plus a
 so-called Table of Contents file describing the dumped objects in a
 machine-readable format that pg_restore
 can read. A directory format archive can be manipulated with
 standard Unix tools; for example, files in an uncompressed archive
 can be compressed with the gzip,
 lz4, or
 zstd tools.
 This format is compressed by default using gzip
 and also supports parallel dumps.

	t, tar
	
 Output a tar-format archive suitable for input
 into pg_restore. The tar format is
 compatible with the directory format: extracting a tar-format
 archive produces a valid directory-format archive.
 However, the tar format does not support compression. Also, when
 using tar format the relative order of table data items cannot be
 changed during restore.

	-j njobs, --jobs=njobs
	
 Run the dump in parallel by dumping njobs
 tables simultaneously. This option may reduce the time needed to perform the dump but it also
 increases the load on the database server. You can only use this option with the
 directory output format because this is the only output format where multiple processes
 can write their data at the same time.

pg_dump will open njobs
 + 1 connections to the database, so make sure your max_connections
 setting is high enough to accommodate all connections.

 Requesting exclusive locks on database objects while running a parallel dump could
 cause the dump to fail. The reason is that the pg_dump leader process
 requests shared locks (ACCESS SHARE) on the
 objects that the worker processes are going to dump later in order to
 make sure that nobody deletes them and makes them go away while the dump is running.
 If another client then requests an exclusive lock on a table, that lock will not be
 granted but will be queued waiting for the shared lock of the leader process to be
 released. Consequently any other access to the table will not be granted either and
 will queue after the exclusive lock request. This includes the worker process trying
 to dump the table. Without any precautions this would be a classic deadlock situation.
 To detect this conflict, the pg_dump worker process requests another
 shared lock using the NOWAIT option. If the worker process is not granted
 this shared lock, somebody else must have requested an exclusive lock in the meantime
 and there is no way to continue with the dump, so pg_dump has no choice
 but to abort the dump.

 To perform a parallel dump, the database server needs to support
 synchronized snapshots, a feature that was introduced in
 PostgreSQL™ 9.2 for primary servers and 10
 for standbys. With this feature, database clients can ensure they see
 the same data set even though they use different connections.
 pg_dump -j uses multiple database connections; it
 connects to the database once with the leader process and once again
 for each worker job. Without the synchronized snapshot feature, the
 different worker jobs wouldn't be guaranteed to see the same data in
 each connection, which could lead to an inconsistent backup.

	-n pattern, --schema=pattern
	
 Dump only schemas matching pattern; this selects both the
 schema itself, and all its contained objects. When this option is
 not specified, all non-system schemas in the target database will be
 dumped. Multiple schemas can be
 selected by writing multiple -n switches. The
 pattern parameter is
 interpreted as a pattern according to the same rules used by
 psql's \d commands
 (see Patterns),
 so multiple schemas can also be selected by writing wildcard characters
 in the pattern. When using wildcards, be careful to quote the pattern
 if needed to prevent the shell from expanding the wildcards; see
 Examples below.

Note

 When -n is specified, pg_dump
 makes no attempt to dump any other database objects that the selected
 schema(s) might depend upon. Therefore, there is no guarantee
 that the results of a specific-schema dump can be successfully
 restored by themselves into a clean database.

Note

 Non-schema objects such as large objects are not dumped when -n is
 specified. You can add large objects back to the dump with the
 --large-objects switch.

	-N pattern, --exclude-schema=pattern
	
 Do not dump any schemas matching pattern. The pattern is
 interpreted according to the same rules as for -n.
 -N can be given more than once to exclude schemas
 matching any of several patterns.

 When both -n and -N are given, the behavior
 is to dump just the schemas that match at least one -n
 switch but no -N switches. If -N appears
 without -n, then schemas matching -N are
 excluded from what is otherwise a normal dump.

	-O, --no-owner
	
 Do not output commands to set
 ownership of objects to match the original database.
 By default, pg_dump issues
 ALTER OWNER or
 SET SESSION AUTHORIZATION
 statements to set ownership of created database objects.
 These statements
 will fail when the script is run unless it is started by a superuser
 (or the same user that owns all of the objects in the script).
 To make a script that can be restored by any user, but will give
 that user ownership of all the objects, specify -O.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	-R, --no-reconnect
	
 This option is obsolete but still accepted for backwards
 compatibility.

	-s, --schema-only
	
 Dump only the object definitions (schema), not data.

 This option is the inverse of --data-only.
 It is similar to, but for historical reasons not identical to,
 specifying
 --section=pre-data --section=post-data.

 (Do not confuse this with the --schema option, which
 uses the word “schema” in a different meaning.)

 To exclude table data for only a subset of tables in the database,
 see --exclude-table-data.

	-S username, --superuser=username
	
 Specify the superuser user name to use when disabling triggers.
 This is relevant only if --disable-triggers is used.
 (Usually, it's better to leave this out, and instead start the
 resulting script as superuser.)

	-t pattern, --table=pattern
	
 Dump only tables with names matching
 pattern. Multiple tables
 can be selected by writing multiple -t switches. The
 pattern parameter is
 interpreted as a pattern according to the same rules used by
 psql's \d commands
 (see Patterns),
 so multiple tables can also be selected by writing wildcard characters
 in the pattern. When using wildcards, be careful to quote the pattern
 if needed to prevent the shell from expanding the wildcards; see
 Examples below.

 As well as tables, this option can be used to dump the definition of matching
 views, materialized views, foreign tables, and sequences. It will not dump the
 contents of views or materialized views, and the contents of foreign tables will
 only be dumped if the corresponding foreign server is specified with
 --include-foreign-data.

 The -n and -N switches have no effect when
 -t is used, because tables selected by -t will
 be dumped regardless of those switches, and non-table objects will not
 be dumped.

Note

 When -t is specified, pg_dump
 makes no attempt to dump any other database objects that the selected
 table(s) might depend upon. Therefore, there is no guarantee
 that the results of a specific-table dump can be successfully
 restored by themselves into a clean database.

	-T pattern, --exclude-table=pattern
	
 Do not dump any tables matching pattern. The pattern is
 interpreted according to the same rules as for -t.
 -T can be given more than once to exclude tables
 matching any of several patterns.

 When both -t and -T are given, the behavior
 is to dump just the tables that match at least one -t
 switch but no -T switches. If -T appears
 without -t, then tables matching -T are
 excluded from what is otherwise a normal dump.

	-v, --verbose
	
 Specifies verbose mode. This will cause
 pg_dump to output detailed object
 comments and start/stop times to the dump file, and progress
 messages to standard error.
 Repeating the option causes additional debug-level messages
 to appear on standard error.

	-V, --version
	
 Print the pg_dump version and exit.

	-x, --no-privileges, --no-acl
	
 Prevent dumping of access privileges (grant/revoke commands).

	-Z level, -Z method[:detail], --compress=level, --compress=method[:detail]
	
 Specify the compression method and/or the compression level to use.
 The compression method can be set to gzip,
 lz4, zstd,
 or none for no compression.
 A compression detail string can optionally be specified. If the
 detail string is an integer, it specifies the compression level.
 Otherwise, it should be a comma-separated list of items, each of the
 form keyword or keyword=value.
 Currently, the supported keywords are level and
 long.

 If no compression level is specified, the default compression
 level will be used. If only a level is specified without mentioning
 an algorithm, gzip compression will be used if
 the level is greater than 0, and no compression
 will be used if the level is 0.

 For the custom and directory archive formats, this specifies compression of
 individual table-data segments, and the default is to compress using
 gzip at a moderate level. For plain text output,
 setting a nonzero compression level causes the entire output file to be compressed,
 as though it had been fed through gzip,
 lz4, or zstd;
 but the default is not to compress.
 With zstd compression, long mode may improve the
 compression ratio, at the cost of increased memory use.

 The tar archive format currently does not support compression at all.

	--binary-upgrade
	
 This option is for use by in-place upgrade utilities. Its use
 for other purposes is not recommended or supported. The
 behavior of the option may change in future releases without
 notice.

	--column-inserts, --attribute-inserts
	
 Dump data as INSERT commands with explicit
 column names (INSERT INTO
 table
 (column, ...) VALUES
 ...). This will make restoration very slow; it is mainly
 useful for making dumps that can be loaded into
 non-PostgreSQL™ databases.
 Any error during restoring will cause only rows that are part of the
 problematic INSERT to be lost, rather than the
 entire table contents.

	--disable-dollar-quoting
	
 This option disables the use of dollar quoting for function bodies,
 and forces them to be quoted using SQL standard string syntax.

	--disable-triggers
	
 This option is relevant only when creating a data-only dump.
 It instructs pg_dump to include commands
 to temporarily disable triggers on the target tables while
 the data is restored. Use this if you have referential
 integrity checks or other triggers on the tables that you
 do not want to invoke during data restore.

 Presently, the commands emitted for --disable-triggers
 must be done as superuser. So, you should also specify
 a superuser name with -S, or preferably be careful to
 start the resulting script as a superuser.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	--enable-row-security
	
 This option is relevant only when dumping the contents of a table
 which has row security. By default, pg_dump will set
 row_security to off, to ensure
 that all data is dumped from the table. If the user does not have
 sufficient privileges to bypass row security, then an error is thrown.
 This parameter instructs pg_dump to set
 row_security to on instead, allowing the user
 to dump the parts of the contents of the table that they have access to.

 Note that if you use this option currently, you probably also want
 the dump be in INSERT format, as the
 COPY FROM during restore does not support row security.

	--exclude-table-and-children=pattern
	
 This is the same as
 the -T/--exclude-table option,
 except that it also excludes any partitions or inheritance child
 tables of the table(s) matching the
 pattern.

	--exclude-table-data=pattern
	
 Do not dump data for any tables matching pattern. The pattern is
 interpreted according to the same rules as for -t.
 --exclude-table-data can be given more than once to
 exclude tables matching any of several patterns. This option is
 useful when you need the definition of a particular table even
 though you do not need the data in it.

 To exclude data for all tables in the database, see --schema-only.

	--exclude-table-data-and-children=pattern
	
 This is the same as the --exclude-table-data option,
 except that it also excludes data of any partitions or inheritance
 child tables of the table(s) matching the
 pattern.

	--extra-float-digits=ndigits
	
 Use the specified value of extra_float_digits when dumping
 floating-point data, instead of the maximum available precision.
 Routine dumps made for backup purposes should not use this option.

	--if-exists
	
 Use DROP ... IF EXISTS commands to drop objects
 in --clean mode. This suppresses “does not
 exist” errors that might otherwise be reported. This
 option is not valid unless --clean is also
 specified.

	--include-foreign-data=foreignserver
	
 Dump the data for any foreign table with a foreign server
 matching foreignserver
 pattern. Multiple foreign servers can be selected by writing multiple
 --include-foreign-data switches.
 Also, the foreignserver parameter is
 interpreted as a pattern according to the same rules used by
 psql's \d commands
 (see Patterns),
 so multiple foreign servers can also be selected by writing wildcard characters
 in the pattern. When using wildcards, be careful to quote the pattern
 if needed to prevent the shell from expanding the wildcards; see
 Examples below.
 The only exception is that an empty pattern is disallowed.

Note

 Using wildcards in --include-foreign-data may result
 in access to unexpected foreign servers. Also, to use this option securely,
 make sure that the named server must have a trusted owner.

Note

 When --include-foreign-data is specified,
 pg_dump does not check that the foreign
 table is writable. Therefore, there is no guarantee that the
 results of a foreign table dump can be successfully restored.

	--inserts
	
 Dump data as INSERT commands (rather
 than COPY). This will make restoration very slow;
 it is mainly useful for making dumps that can be loaded into
 non-PostgreSQL™ databases.
 Any error during restoring will cause only rows that are part of the
 problematic INSERT to be lost, rather than the
 entire table contents. Note that the restore might fail altogether if
 you have rearranged column order. The
 --column-inserts option is safe against column order
 changes, though even slower.

	--load-via-partition-root
	
 When dumping data for a table partition, make
 the COPY or INSERT statements
 target the root of the partitioning hierarchy that contains it, rather
 than the partition itself. This causes the appropriate partition to
 be re-determined for each row when the data is loaded. This may be
 useful when restoring data on a server where rows do not always fall
 into the same partitions as they did on the original server. That
 could happen, for example, if the partitioning column is of type text
 and the two systems have different definitions of the collation used
 to sort the partitioning column.

	--lock-wait-timeout=timeout
	
 Do not wait forever to acquire shared table locks at the beginning of
 the dump. Instead fail if unable to lock a table within the specified
 timeout. The timeout may be
 specified in any of the formats accepted by SET
 statement_timeout. (Allowed formats vary depending on the server
 version you are dumping from, but an integer number of milliseconds
 is accepted by all versions.)

	--no-comments
	
 Do not dump comments.

	--no-publications
	
 Do not dump publications.

	--no-security-labels
	
 Do not dump security labels.

	--no-subscriptions
	
 Do not dump subscriptions.

	--no-sync
	
 By default, pg_dump will wait for all files
 to be written safely to disk. This option causes
 pg_dump to return without waiting, which is
 faster, but means that a subsequent operating system crash can leave
 the dump corrupt. Generally, this option is useful for testing
 but should not be used when dumping data from production installation.

	--no-table-access-method
	
 Do not output commands to select table access methods.
 With this option, all objects will be created with whichever
 table access method is the default during restore.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	--no-tablespaces
	
 Do not output commands to select tablespaces.
 With this option, all objects will be created in whichever
 tablespace is the default during restore.

 This option is ignored when emitting an archive (non-text) output
 file. For the archive formats, you can specify the option when you
 call pg_restore.

	--no-toast-compression
	
 Do not output commands to set TOAST compression
 methods.
 With this option, all columns will be restored with the default
 compression setting.

	--no-unlogged-table-data
	
 Do not dump the contents of unlogged tables and sequences. This
 option has no effect on whether or not the table and sequence
 definitions (schema) are dumped; it only suppresses dumping the table
 and sequence data. Data in unlogged tables and sequences
 is always excluded when dumping from a standby server.

	--on-conflict-do-nothing
	
 Add ON CONFLICT DO NOTHING to
 INSERT commands.
 This option is not valid unless --inserts,
 --column-inserts or
 --rows-per-insert is also specified.

	--quote-all-identifiers
	
 Force quoting of all identifiers. This option is recommended when
 dumping a database from a server whose PostgreSQL™
 major version is different from pg_dump's, or when
 the output is intended to be loaded into a server of a different
 major version. By default, pg_dump quotes only
 identifiers that are reserved words in its own major version.
 This sometimes results in compatibility issues when dealing with
 servers of other versions that may have slightly different sets
 of reserved words. Using --quote-all-identifiers prevents
 such issues, at the price of a harder-to-read dump script.

	--restrict-key=restrict_key
	
 Use the provided string as the psql
 \restrict key in the dump output. This can only be
 specified for plain-text dumps, i.e., when --format is
 set to plain or the --format option
 is omitted. If no restrict key is specified,
 pg_dump will generate a random one as
 needed. Keys may contain only alphanumeric characters.

 This option is primarily intended for testing purposes and other
 scenarios that require repeatable output (e.g., comparing dump files).
 It is not recommended for general use, as a malicious server with
 advance knowledge of the key may be able to inject arbitrary code that
 will be executed on the machine that runs
 psql with the dump output.

	--rows-per-insert=nrows
	
 Dump data as INSERT commands (rather than
 COPY). Controls the maximum number of rows per
 INSERT command. The value specified must be a
 number greater than zero. Any error during restoring will cause only
 rows that are part of the problematic INSERT to be
 lost, rather than the entire table contents.

	--section=sectionname
	
 Only dump the named section. The section name can be
 pre-data, data, or post-data.
 This option can be specified more than once to select multiple
 sections. The default is to dump all sections.

 The data section contains actual table data, large-object
 contents, and sequence values.
 Post-data items include definitions of indexes, triggers, rules,
 and constraints other than validated check constraints.
 Pre-data items include all other data definition items.

	--serializable-deferrable
	
 Use a serializable transaction for the dump, to
 ensure that the snapshot used is consistent with later database
 states; but do this by waiting for a point in the transaction stream
 at which no anomalies can be present, so that there isn't a risk of
 the dump failing or causing other transactions to roll back with a
 serialization_failure. See Chapter 13, Concurrency Control
 for more information about transaction isolation and concurrency
 control.

 This option is not beneficial for a dump which is intended only for
 disaster recovery. It could be useful for a dump used to load a
 copy of the database for reporting or other read-only load sharing
 while the original database continues to be updated. Without it the
 dump may reflect a state which is not consistent with any serial
 execution of the transactions eventually committed. For example, if
 batch processing techniques are used, a batch may show as closed in
 the dump without all of the items which are in the batch appearing.

 This option will make no difference if there are no read-write
 transactions active when pg_dump is started. If read-write
 transactions are active, the start of the dump may be delayed for an
 indeterminate length of time. Once running, performance with or
 without the switch is the same.

	--snapshot=snapshotname
	
 Use the specified synchronized snapshot when making a dump of the
 database (see
 Table 9.94, “Snapshot Synchronization Functions” for more
 details).

 This option is useful when needing to synchronize the dump with
 a logical replication slot (see Chapter 49, Logical Decoding)
 or with a concurrent session.

 In the case of a parallel dump, the snapshot name defined by this
 option is used rather than taking a new snapshot.

	--strict-names
	
 Require that each
 extension (-e/--extension),
 schema (-n/--schema) and
 table (-t/--table) pattern
 match at least one extension/schema/table in the database to be dumped.
 Note that if none of the extension/schema/table patterns find
 matches, pg_dump will generate an error
 even without --strict-names.

 This option has no effect
 on -N/--exclude-schema,
 -T/--exclude-table,
 or --exclude-table-data. An exclude pattern failing
 to match any objects is not considered an error.

	--table-and-children=pattern
	
 This is the same as
 the -t/--table option,
 except that it also includes any partitions or inheritance child
 tables of the table(s) matching the
 pattern.

	--use-set-session-authorization
	
 Output SQL-standard SET SESSION AUTHORIZATION commands
 instead of ALTER OWNER commands to determine object
 ownership. This makes the dump more standards-compatible, but
 depending on the history of the objects in the dump, might not restore
 properly. Also, a dump using SET SESSION AUTHORIZATION
 will certainly require superuser privileges to restore correctly,
 whereas ALTER OWNER requires lesser privileges.

	-?, --help
	
 Show help about pg_dump command line
 arguments, and exit.

 The following command-line options control the database connection parameters.

	-d dbname, --dbname=dbname
	
 Specifies the name of the database to connect to. This is
 equivalent to specifying dbname as the first non-option
 argument on the command line. The dbname
 can be a connection string.
 If so, connection string parameters will override any conflicting
 command line options.

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket. The default is taken
 from the PGHOST environment variable, if set,
 else a Unix domain socket connection is attempted.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force pg_dump to prompt for a
 password before connecting to a database.

 This option is never essential, since
 pg_dump will automatically prompt
 for a password if the server demands password authentication.
 However, pg_dump will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--role=rolename
	
 Specifies a role name to be used to create the dump.
 This option causes pg_dump to issue a
 SET ROLE rolename
 command after connecting to the database. It is useful when the
 authenticated user (specified by -U) lacks privileges
 needed by pg_dump, but can switch to a role with
 the required rights. Some installations have a policy against
 logging in directly as a superuser, and use of this option allows
 dumps to be made without violating the policy.

Environment
	PGDATABASE, PGHOST, PGOPTIONS, PGPORT, PGUSER
	
 Default connection parameters.

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 pg_dump internally executes
 SELECT statements. If you have problems running
 pg_dump, make sure you are able to
 select information from the database using, for example, psql(1). Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

 The database activity of pg_dump is
 normally collected by the cumulative statistics system. If this is
 undesirable, you can set parameter track_counts
 to false via PGOPTIONS or the ALTER
 USER command.

Notes

 If your database cluster has any local additions to the template1 database,
 be careful to restore the output of pg_dump into a
 truly empty database; otherwise you are likely to get errors due to
 duplicate definitions of the added objects. To make an empty database
 without any local additions, copy from template0 not template1,
 for example:

CREATE DATABASE foo WITH TEMPLATE template0;

 When a data-only dump is chosen and the option --disable-triggers
 is used, pg_dump emits commands
 to disable triggers on user tables before inserting the data,
 and then commands to re-enable them after the data has been
 inserted. If the restore is stopped in the middle, the system
 catalogs might be left in the wrong state.

 The dump file produced by pg_dump
 does not contain the statistics used by the optimizer to make
 query planning decisions. Therefore, it is wise to run
 ANALYZE after restoring from a dump file
 to ensure optimal performance; see the section called “Updating Planner Statistics”
 and the section called “The Autovacuum Daemon” for more information.

 Because pg_dump is used to transfer data
 to newer versions of PostgreSQL™, the output of
 pg_dump can be expected to load into
 PostgreSQL™ server versions newer than
 pg_dump's version. pg_dump can also
 dump from PostgreSQL™ servers older than its own version.
 (Currently, servers back to version 9.2 are supported.)
 However, pg_dump cannot dump from
 PostgreSQL™ servers newer than its own major version;
 it will refuse to even try, rather than risk making an invalid dump.
 Also, it is not guaranteed that pg_dump's output can
 be loaded into a server of an older major version — not even if the
 dump was taken from a server of that version. Loading a dump file
 into an older server may require manual editing of the dump file
 to remove syntax not understood by the older server.
 Use of the --quote-all-identifiers option is recommended
 in cross-version cases, as it can prevent problems arising from varying
 reserved-word lists in different PostgreSQL™ versions.

 When dumping logical replication subscriptions,
 pg_dump will generate CREATE
 SUBSCRIPTION commands that use the connect = false
 option, so that restoring the subscription does not make remote connections
 for creating a replication slot or for initial table copy. That way, the
 dump can be restored without requiring network access to the remote
 servers. It is then up to the user to reactivate the subscriptions in a
 suitable way. If the involved hosts have changed, the connection
 information might have to be changed. It might also be appropriate to
 truncate the target tables before initiating a new full table copy. If users
 intend to copy initial data during refresh they must create the slot with
 two_phase = false. After the initial sync, the
 two_phase
 option will be automatically enabled by the subscriber if the subscription
 had been originally created with two_phase = true option.

 It is generally recommended to use the -X
 (--no-psqlrc) option when restoring a database from a
 plain-text pg_dump script to ensure a clean
 restore process and prevent potential conflicts with
 non-default psql configurations.

Examples

 To dump a database called mydb into an SQL-script file:

$ pg_dump mydb > db.sql

 To reload such a script into a (freshly created) database named
 newdb:

$ psql -X -d newdb -f db.sql

 To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

 To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

 To dump a database into a directory-format archive in parallel with
 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

 To reload an archive file into a (freshly created) database named
 newdb:

$ pg_restore -d newdb db.dump

 To reload an archive file into the same database it was dumped from,
 discarding the current contents of that database:

$ pg_restore -d postgres --clean --create db.dump

 To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

 To dump all tables whose names start with emp in the
 detroit schema, except for the table named
 employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

 To dump all schemas whose names start with east or
 west and end in gsm, excluding any schemas whose
 names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

 The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

 To dump all database objects except for tables whose names begin with
 ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

 To specify an upper-case or mixed-case name in -t and related
 switches, you need to double-quote the name; else it will be folded to
 lower case (see Patterns). But
 double quotes are special to the shell, so in turn they must be quoted.
 Thus, to dump a single table with a mixed-case name, you need something
 like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

See Also
pg_dumpall(1), pg_restore(1), psql(1)

Name
pg_dumpall — extract a PostgreSQL™ database cluster into a script file

Synopsis
pg_dumpall [connection-option...] [option...]

Description

 pg_dumpall is a utility for writing out
 (“dumping”) all PostgreSQL™ databases
 of a cluster into one script file. The script file contains
 SQL commands that can be used as input to psql(1) to restore the databases. It does this by
 calling pg_dump(1) for each database in the cluster.
 pg_dumpall also dumps global objects
 that are common to all databases, namely database roles, tablespaces,
 and privilege grants for configuration parameters.
 (pg_dump does not save these objects.)

 Since pg_dumpall reads tables from all
 databases you will most likely have to connect as a database
 superuser in order to produce a complete dump. Also you will need
 superuser privileges to execute the saved script in order to be
 allowed to add roles and create databases.

 The SQL script will be written to the standard output. Use the
 -f/--file option or shell operators to
 redirect it into a file.

 pg_dumpall needs to connect several
 times to the PostgreSQL™ server (once per
 database). If you use password authentication it will ask for
 a password each time. It is convenient to have a
 ~/.pgpass file in such cases. See the section called “The Password File” for more information.

Warning

 Restoring a dump causes the destination to execute arbitrary code of the
 source superusers' choice. Partial dumps and partial restores do not limit
 that. If the source superusers are not trusted, the dumped SQL statements
 must be inspected before restoring. Note that the client running the dump
 and restore need not trust the source or destination superusers.

Options

 The following command-line options control the content and
 format of the output.

	-a, --data-only
	
 Dump only the data, not the schema (data definitions).

	-c, --clean
	
 Emit SQL commands to DROP all the dumped
 databases, roles, and tablespaces before recreating them.
 This option is useful when the restore is to overwrite an existing
 cluster. If any of the objects do not exist in the destination
 cluster, ignorable error messages will be reported during
 restore, unless --if-exists is also specified.

	-E encoding, --encoding=encoding
	
 Create the dump in the specified character set encoding. By default,
 the dump is created in the database encoding. (Another way to get the
 same result is to set the PGCLIENTENCODING environment
 variable to the desired dump encoding.)

	-f filename, --file=filename
	
 Send output to the specified file. If this is omitted, the
 standard output is used.

	-g, --globals-only
	
 Dump only global objects (roles and tablespaces), no databases.

	-O, --no-owner
	
 Do not output commands to set
 ownership of objects to match the original database.
 By default, pg_dumpall issues
 ALTER OWNER or
 SET SESSION AUTHORIZATION
 statements to set ownership of created schema elements.
 These statements
 will fail when the script is run unless it is started by a superuser
 (or the same user that owns all of the objects in the script).
 To make a script that can be restored by any user, but will give
 that user ownership of all the objects, specify -O.

	-r, --roles-only
	
 Dump only roles, no databases or tablespaces.

	-s, --schema-only
	
 Dump only the object definitions (schema), not data.

	-S username, --superuser=username
	
 Specify the superuser user name to use when disabling triggers.
 This is relevant only if --disable-triggers is used.
 (Usually, it's better to leave this out, and instead start the
 resulting script as superuser.)

	-t, --tablespaces-only
	
 Dump only tablespaces, no databases or roles.

	-v, --verbose
	
 Specifies verbose mode. This will cause
 pg_dumpall to output start/stop
 times to the dump file, and progress messages to standard error.
 Repeating the option causes additional debug-level messages
 to appear on standard error.
 The option is also passed down to pg_dump.

	-V, --version
	
 Print the pg_dumpall version and exit.

	-x, --no-privileges, --no-acl
	
 Prevent dumping of access privileges (grant/revoke commands).

	--binary-upgrade
	
 This option is for use by in-place upgrade utilities. Its use
 for other purposes is not recommended or supported. The
 behavior of the option may change in future releases without
 notice.

	--column-inserts, --attribute-inserts
	
 Dump data as INSERT commands with explicit
 column names (INSERT INTO
 table
 (column, ...) VALUES
 ...). This will make restoration very slow; it is mainly
 useful for making dumps that can be loaded into
 non-PostgreSQL™ databases.

	--disable-dollar-quoting
	
 This option disables the use of dollar quoting for function bodies,
 and forces them to be quoted using SQL standard string syntax.

	--disable-triggers
	
 This option is relevant only when creating a data-only dump.
 It instructs pg_dumpall to include commands
 to temporarily disable triggers on the target tables while
 the data is restored. Use this if you have referential
 integrity checks or other triggers on the tables that you
 do not want to invoke during data restore.

 Presently, the commands emitted for --disable-triggers
 must be done as superuser. So, you should also specify
 a superuser name with -S, or preferably be careful to
 start the resulting script as a superuser.

	--exclude-database=pattern
	
 Do not dump databases whose name matches
 pattern.
 Multiple patterns can be excluded by writing multiple
 --exclude-database switches. The
 pattern parameter is
 interpreted as a pattern according to the same rules used by
 psql's \d
 commands (see Patterns),
 so multiple databases can also be excluded by writing wildcard
 characters in the pattern. When using wildcards, be careful to
 quote the pattern if needed to prevent shell wildcard expansion.

	--extra-float-digits=ndigits
	
 Use the specified value of extra_float_digits when dumping
 floating-point data, instead of the maximum available precision.
 Routine dumps made for backup purposes should not use this option.

	--if-exists
	
 Use DROP ... IF EXISTS commands to drop objects
 in --clean mode. This suppresses “does not
 exist” errors that might otherwise be reported. This
 option is not valid unless --clean is also
 specified.

	--inserts
	
 Dump data as INSERT commands (rather
 than COPY). This will make restoration very slow;
 it is mainly useful for making dumps that can be loaded into
 non-PostgreSQL™ databases. Note that
 the restore might fail altogether if you have rearranged column order.
 The --column-inserts option is safer, though even
 slower.

	--load-via-partition-root
	
 When dumping data for a table partition, make
 the COPY or INSERT statements
 target the root of the partitioning hierarchy that contains it, rather
 than the partition itself. This causes the appropriate partition to
 be re-determined for each row when the data is loaded. This may be
 useful when restoring data on a server where rows do not always fall
 into the same partitions as they did on the original server. That
 could happen, for example, if the partitioning column is of type text
 and the two systems have different definitions of the collation used
 to sort the partitioning column.

	--lock-wait-timeout=timeout
	
 Do not wait forever to acquire shared table locks at the beginning of
 the dump. Instead, fail if unable to lock a table within the specified
 timeout. The timeout may be
 specified in any of the formats accepted by SET
 statement_timeout.

	--no-comments
	
 Do not dump comments.

	--no-publications
	
 Do not dump publications.

	--no-role-passwords
	
 Do not dump passwords for roles. When restored, roles will have a
 null password, and password authentication will always fail until the
 password is set. Since password values aren't needed when this option
 is specified, the role information is read from the catalog
 view pg_roles instead
 of pg_authid. Therefore, this option also
 helps if access to pg_authid is restricted by
 some security policy.

	--no-security-labels
	
 Do not dump security labels.

	--no-subscriptions
	
 Do not dump subscriptions.

	--no-sync
	
 By default, pg_dumpall will wait for all files
 to be written safely to disk. This option causes
 pg_dumpall to return without waiting, which is
 faster, but means that a subsequent operating system crash can leave
 the dump corrupt. Generally, this option is useful for testing
 but should not be used when dumping data from production installation.

	--no-table-access-method
	
 Do not output commands to select table access methods.
 With this option, all objects will be created with whichever
 table access method is the default during restore.

	--no-tablespaces
	
 Do not output commands to create tablespaces nor select tablespaces
 for objects.
 With this option, all objects will be created in whichever
 tablespace is the default during restore.

	--no-toast-compression
	
 Do not output commands to set TOAST compression
 methods.
 With this option, all columns will be restored with the default
 compression setting.

	--no-unlogged-table-data
	
 Do not dump the contents of unlogged tables. This option has no
 effect on whether or not the table definitions (schema) are dumped;
 it only suppresses dumping the table data.

	--on-conflict-do-nothing
	
 Add ON CONFLICT DO NOTHING to
 INSERT commands.
 This option is not valid unless --inserts or
 --column-inserts is also specified.

	--quote-all-identifiers
	
 Force quoting of all identifiers. This option is recommended when
 dumping a database from a server whose PostgreSQL™
 major version is different from pg_dumpall's, or when
 the output is intended to be loaded into a server of a different
 major version. By default, pg_dumpall quotes only
 identifiers that are reserved words in its own major version.
 This sometimes results in compatibility issues when dealing with
 servers of other versions that may have slightly different sets
 of reserved words. Using --quote-all-identifiers prevents
 such issues, at the price of a harder-to-read dump script.

	--restrict-key=restrict_key
	
 Use the provided string as the psql
 \restrict key in the dump output. If no restrict
 key is specified, pg_dumpall will generate a
 random one as needed. Keys may contain only alphanumeric characters.

 This option is primarily intended for testing purposes and other
 scenarios that require repeatable output (e.g., comparing dump files).
 It is not recommended for general use, as a malicious server with
 advance knowledge of the key may be able to inject arbitrary code that
 will be executed on the machine that runs
 psql with the dump output.

	--rows-per-insert=nrows
	
 Dump data as INSERT commands (rather than
 COPY). Controls the maximum number of rows per
 INSERT command. The value specified must be a
 number greater than zero. Any error during restoring will cause only
 rows that are part of the problematic INSERT to be
 lost, rather than the entire table contents.

	--use-set-session-authorization
	
 Output SQL-standard SET SESSION AUTHORIZATION commands
 instead of ALTER OWNER commands to determine object
 ownership. This makes the dump more standards compatible, but
 depending on the history of the objects in the dump, might not restore
 properly.

	-?, --help
	
 Show help about pg_dumpall command line
 arguments, and exit.

 The following command-line options control the database connection parameters.

	-d connstr, --dbname=connstr
	
 Specifies parameters used to connect to the server, as a connection string; these
 will override any conflicting command line options.

 The option is called --dbname for consistency with other
 client applications, but because pg_dumpall
 needs to connect to many databases, the database name in the
 connection string will be ignored. Use the -l
 option to specify the name of the database used for the initial
 connection, which will dump global objects and discover what other
 databases should be dumped.

	-h host, --host=host
	
 Specifies the host name of the machine on which the database
 server is running. If the value begins with a slash, it is
 used as the directory for the Unix domain socket. The default
 is taken from the PGHOST environment variable,
 if set, else a Unix domain socket connection is attempted.

	-l dbname, --database=dbname
	
 Specifies the name of the database to connect to for dumping global
 objects and discovering what other databases should be dumped. If
 not specified, the postgres database will be used,
 and if that does not exist, template1 will be used.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force pg_dumpall to prompt for a
 password before connecting to a database.

 This option is never essential, since
 pg_dumpall will automatically prompt
 for a password if the server demands password authentication.
 However, pg_dumpall will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

 Note that the password prompt will occur again for each database
 to be dumped. Usually, it's better to set up a
 ~/.pgpass file than to rely on manual password entry.

	--role=rolename
	
 Specifies a role name to be used to create the dump.
 This option causes pg_dumpall to issue a
 SET ROLE rolename
 command after connecting to the database. It is useful when the
 authenticated user (specified by -U) lacks privileges
 needed by pg_dumpall, but can switch to a role with
 the required rights. Some installations have a policy against
 logging in directly as a superuser, and use of this option allows
 dumps to be made without violating the policy.

Environment
	PGHOST, PGOPTIONS, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Notes

 Since pg_dumpall calls
 pg_dump internally, some diagnostic
 messages will refer to pg_dump.

 The --clean option can be useful even when your
 intention is to restore the dump script into a fresh cluster. Use of
 --clean authorizes the script to drop and re-create the
 built-in postgres and template1
 databases, ensuring that those databases will retain the same properties
 (for instance, locale and encoding) that they had in the source cluster.
 Without the option, those databases will retain their existing
 database-level properties, as well as any pre-existing contents.

 Once restored, it is wise to run ANALYZE on each
 database so the optimizer has useful statistics. You
 can also run vacuumdb -a -z to analyze all
 databases.

 The dump script should not be expected to run completely without errors.
 In particular, because the script will issue CREATE ROLE
 for every role existing in the source cluster, it is certain to get a
 “role already exists” error for the bootstrap superuser,
 unless the destination cluster was initialized with a different bootstrap
 superuser name. This error is harmless and should be ignored. Use of
 the --clean option is likely to produce additional
 harmless error messages about non-existent objects, although you can
 minimize those by adding --if-exists.

 pg_dumpall requires all needed
 tablespace directories to exist before the restore; otherwise,
 database creation will fail for databases in non-default
 locations.

 It is generally recommended to use the -X
 (--no-psqlrc) option when restoring a database from a
 pg_dumpall script to ensure a clean restore
 process and prevent potential conflicts with non-default
 psql configurations. Additionally, because
 the pg_dumpall script may
 include psql meta-commands, it may be
 incompatible with clients other than psql.

Examples

 To dump all databases:

$ pg_dumpall > db.out

 To restore database(s) from this file, you can use:

$ psql -X -f db.out -d postgres

 It is not important which database you connect to here since the
 script file created by pg_dumpall will
 contain the appropriate commands to create and connect to the saved
 databases. An exception is that if you specified --clean,
 you must connect to the postgres database initially;
 the script will attempt to drop other databases immediately, and that
 will fail for the database you are connected to.

See Also

 Check pg_dump(1) for details on possible
 error conditions.

Name
pg_isready — check the connection status of a PostgreSQL™ server

Synopsis
pg_isready [connection-option...] [option...]

Description

 pg_isready is a utility for checking the connection
 status of a PostgreSQL™ database server. The exit
 status specifies the result of the connection check.

Options
	-d dbname, --dbname=dbname
	
 Specifies the name of the database to connect to. The
 dbname can be a connection string. If so,
 connection string parameters will override any conflicting command
 line options.

	-h hostname, --host=hostname
	
 Specifies the host name of the machine on which the
 server is running. If the value begins
 with a slash, it is used as the directory for the Unix-domain
 socket.

	-p port, --port=port
	
 Specifies the TCP port or the local Unix-domain
 socket file extension on which the server is listening for
 connections. Defaults to the value of the PGPORT
 environment variable or, if not set, to the port specified at
 compile time, usually 5432.

	-q, --quiet
	
 Do not display status message. This is useful when scripting.

	-t seconds, --timeout=seconds
	
 The maximum number of seconds to wait when attempting connection before
 returning that the server is not responding. Setting to 0 disables. The
 default is 3 seconds.

	-U username, --username=username
	
 Connect to the database as the user username instead of the default.

	-V, --version
	
 Print the pg_isready version and exit.

	-?, --help
	
 Show help about pg_isready command line
 arguments, and exit.

Exit Status

 pg_isready returns 0 to the shell if the server
 is accepting connections normally, 1 if the server is rejecting
 connections (for example during startup), 2 if there was no response to the
 connection attempt, and 3 if no attempt was made (for example due to invalid
 parameters).

Environment

 pg_isready, like most other PostgreSQL™
 utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 It is not necessary to supply correct user name, password, or database
 name values to obtain the server status; however, if incorrect values
 are provided, the server will log a failed connection attempt.

Examples

 Standard Usage:

$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0

 Running with connection parameters to a PostgreSQL™ cluster in startup:

$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1

 Running with connection parameters to a non-responsive PostgreSQL™ cluster:

$ pg_isready -h someremotehost
someremotehost:5432 - no response
$ echo $?
2

Name
pg_receivewal — stream write-ahead logs from a PostgreSQL™ server

Synopsis
pg_receivewal [option...]

Description

 pg_receivewal is used to stream the write-ahead log
 from a running PostgreSQL™ cluster. The write-ahead
 log is streamed using the streaming replication protocol, and is written
 to a local directory of files. This directory can be used as the archive
 location for doing a restore using point-in-time recovery (see
 the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”).

 pg_receivewal streams the write-ahead
 log in real time as it's being generated on the server, and does not wait
 for segments to complete like archive_command and
 archive_library do.
 For this reason, it is not necessary to set
 archive_timeout when using
 pg_receivewal.

 Unlike the WAL receiver of a PostgreSQL standby server, pg_receivewal
 by default flushes WAL data only when a WAL file is closed.
 The option --synchronous must be specified to flush WAL data
 in real time. Since pg_receivewal does not
 apply WAL, you should not allow it to become a synchronous standby when
 synchronous_commit equals
 remote_apply. If it does, it will appear to be a
 standby that never catches up, and will cause transaction commits to
 block. To avoid this, you should either configure an appropriate value
 for synchronous_standby_names, or specify
 application_name for
 pg_receivewal that does not match it, or
 change the value of synchronous_commit to
 something other than remote_apply.

 The write-ahead log is streamed over a regular
 PostgreSQL™ connection and uses the replication
 protocol. The connection must be made with a user having
 REPLICATION permissions (see
 the section called “Role Attributes”) or a superuser, and
 pg_hba.conf must permit the replication connection.
 The server must also be configured with
 max_wal_senders set high enough to leave at least
 one session available for the stream.

 The starting point of the write-ahead log streaming is calculated when
 pg_receivewal starts:

	
 First, scan the directory where the WAL segment files are written and
 find the newest completed segment file, using as the starting point the
 beginning of the next WAL segment file.

	
 If a starting point cannot be calculated with the previous method,
 and if a replication slot is used, an extra
 READ_REPLICATION_SLOT command is issued to retrieve
 the slot's restart_lsn to use as the starting point.
 This option is only available when streaming write-ahead logs from
 PostgreSQL™ 15 and up.

	
 If a starting point cannot be calculated with the previous method,
 the latest WAL flush location is used as reported by the server from
 an IDENTIFY_SYSTEM command.

 If the connection is lost, or if it cannot be initially established,
 with a non-fatal error, pg_receivewal will
 retry the connection indefinitely, and reestablish streaming as soon
 as possible. To avoid this behavior, use the -n
 parameter.

 In the absence of fatal errors, pg_receivewal
 will run until terminated by the SIGINT
 (Control+C)
 or SIGTERM signal.

Options
	-D directory, --directory=directory
	
 Directory to write the output to.

 This parameter is required.

	-E lsn, --endpos=lsn
	
 Automatically stop replication and exit with normal exit status 0 when
 receiving reaches the specified LSN.

 If there is a record with LSN exactly equal to lsn,
 the record will be processed.

	--if-not-exists
	
 Do not error out when --create-slot is specified
 and a slot with the specified name already exists.

	-n, --no-loop
	
 Don't loop on connection errors. Instead, exit right away with
 an error.

	--no-sync
	
 This option causes pg_receivewal to not force WAL
 data to be flushed to disk. This is faster, but means that a
 subsequent operating system crash can leave the WAL segments corrupt.
 Generally, this option is useful for testing but should not be used
 when doing WAL archiving on a production deployment.

 This option is incompatible with --synchronous.

	-s interval, --status-interval=interval
	
 Specifies the number of seconds between status packets sent back to the
 server. This allows for easier monitoring of the progress from server.
 A value of zero disables the periodic status updates completely,
 although an update will still be sent when requested by the server, to
 avoid timeout disconnect. The default value is 10 seconds.

	-S slotname, --slot=slotname
	
 Require pg_receivewal to use an existing
 replication slot (see the section called “Replication Slots”).
 When this option is used, pg_receivewal will report
 a flush position to the server, indicating when each segment has been
 synchronized to disk so that the server can remove that segment if it
 is not otherwise needed.

 When the replication client
 of pg_receivewal is configured on the
 server as a synchronous standby, then using a replication slot will
 report the flush position to the server, but only when a WAL file is
 closed. Therefore, that configuration will cause transactions on the
 primary to wait for a long time and effectively not work
 satisfactorily. The option --synchronous (see
 below) must be specified in addition to make this work correctly.

	--synchronous
	
 Flush the WAL data to disk immediately after it has been received. Also
 send a status packet back to the server immediately after flushing,
 regardless of --status-interval.

 This option should be specified if the replication client
 of pg_receivewal is configured on the
 server as a synchronous standby, to ensure that timely feedback is
 sent to the server.

	-v, --verbose
	
 Enables verbose mode.

	-Z level, -Z method[:detail], --compress=level, --compress=method[:detail]
	
 Enables compression of write-ahead logs.

 The compression method can be set to gzip,
 lz4 (if PostgreSQL™
 was compiled with --with-lz4) or
 none for no compression.
 A compression detail string can optionally be specified. If the
 detail string is an integer, it specifies the compression level.
 Otherwise, it should be a comma-separated list of items, each of the
 form keyword or keyword=value.
 Currently, the only supported keyword is level.

 If no compression level is specified, the default compression level
 will be used. If only a level is specified without mentioning an
 algorithm, gzip compression will be used if the
 level is greater than 0, and no compression will be used if the level
 is 0.

 The suffix .gz will automatically be added to
 all filenames when using gzip, and the suffix
 .lz4 is added when using lz4.

 The following command-line options control the database connection parameters.

	-d connstr, --dbname=connstr
	
 Specifies parameters used to connect to the server, as a connection string; these
 will override any conflicting command line options.

 The option is called --dbname for consistency with other
 client applications, but because pg_receivewal
 doesn't connect to any particular database in the cluster, database
 name in the connection string will be ignored.

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket. The default is taken
 from the PGHOST environment variable, if set,
 else a Unix domain socket connection is attempted.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force pg_receivewal to prompt for a
 password before connecting to a database.

 This option is never essential, since
 pg_receivewal will automatically prompt
 for a password if the server demands password authentication.
 However, pg_receivewal will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

 pg_receivewal can perform one of the two
 following actions in order to control physical replication slots:

	--create-slot
	
 Create a new physical replication slot with the name specified in
 --slot, then exit.

	--drop-slot
	
 Drop the replication slot with the name specified in
 --slot, then exit.

 Other options are also available:

	-V, --version
	
 Print the pg_receivewal version and exit.

	-?, --help
	
 Show help about pg_receivewal command line
 arguments, and exit.

Exit Status

 pg_receivewal will exit with status 0 when
 terminated by the SIGINT or
 SIGTERM signal. (That is the
 normal way to end it. Hence it is not an error.) For fatal errors or
 other signals, the exit status will be nonzero.

Environment

 This utility, like most other PostgreSQL™ utilities,
 uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 When using pg_receivewal instead of
 archive_command or
 archive_library as the main WAL backup method, it is
 strongly recommended to use replication slots. Otherwise, the server is
 free to recycle or remove write-ahead log files before they are backed up,
 because it does not have any information, either
 from archive_command or
 archive_library or the replication slots, about
 how far the WAL stream has been archived. Note, however, that a
 replication slot will fill up the server's disk space if the receiver does
 not keep up with fetching the WAL data.

 pg_receivewal will preserve group permissions on
 the received WAL files if group permissions are enabled on the source
 cluster.

Examples

 To stream the write-ahead log from the server at
 mydbserver and store it in the local directory
 /usr/local/pgsql/archive:

$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive

See Also
pg_basebackup(1)

Name
pg_recvlogical — control PostgreSQL™ logical decoding streams

Synopsis
pg_recvlogical [option...]

Description

 pg_recvlogical controls logical decoding replication
 slots and streams data from such replication slots.

 It creates a replication-mode connection, so it is subject to the same
 constraints as pg_receivewal(1), plus those for logical
 replication (see Chapter 49, Logical Decoding).

 pg_recvlogical has no equivalent to the logical decoding
 SQL interface's peek and get modes. It sends replay confirmations for
 data lazily as it receives it and on clean exit. To examine pending data on
 a slot without consuming it, use
 pg_logical_slot_peek_changes.

 In the absence of fatal errors, pg_recvlogical
 will run until terminated by the SIGINT
 (Control+C)
 or SIGTERM signal.

 When pg_recvlogical receives
 a SIGHUP signal, it closes the current output file
 and opens a new one using the filename specified by
 the --file option. This allows us to rotate
 the output file by first renaming the current file and then sending
 a SIGHUP signal to
 pg_recvlogical.

Options

 At least one of the following options must be specified to select an action:

	--create-slot
	
 Create a new logical replication slot with the name specified by
 --slot, using the output plugin specified by
 --plugin, for the database specified
 by --dbname.

 The --two-phase can be specified with
 --create-slot to enable decoding of prepared transactions.

	--drop-slot
	
 Drop the replication slot with the name specified
 by --slot, then exit.

	--start
	
 Begin streaming changes from the logical replication slot specified
 by --slot, continuing until terminated by a
 signal. If the server side change stream ends with a server shutdown
 or disconnect, retry in a loop unless
 --no-loop is specified.

 The stream format is determined by the output plugin specified when
 the slot was created.

 The connection must be to the same database used to create the slot.

 --create-slot and --start can be
 specified together. --drop-slot cannot be combined with
 another action.

 The following command-line options control the location and format of the
 output and other replication behavior:

	-E lsn, --endpos=lsn
	
 In --start mode, automatically stop replication
 and exit with normal exit status 0 when receiving reaches the
 specified LSN. If specified when not in --start
 mode, an error is raised.

 If there's a record with LSN exactly equal to lsn,
 the record will be output.

 The --endpos option is not aware of transaction
 boundaries and may truncate output partway through a transaction.
 Any partially output transaction will not be consumed and will be
 replayed again when the slot is next read from. Individual messages
 are never truncated.

	-f filename, --file=filename
	
 Write received and decoded transaction data into this
 file. Use - for stdout.

	-F interval_seconds, --fsync-interval=interval_seconds
	
 Specifies how often pg_recvlogical should
 issue fsync() calls to ensure the output file is
 safely flushed to disk.

 The server will occasionally request the client to perform a flush and
 report the flush position to the server. This setting is in addition
 to that, to perform flushes more frequently.

 Specifying an interval of 0 disables
 issuing fsync() calls altogether, while still
 reporting progress to the server. In this case, data could be lost in
 the event of a crash.

	-I lsn, --startpos=lsn
	
 In --start mode, start replication from the given
 LSN. For details on the effect of this, see the documentation
 in Chapter 49, Logical Decoding
 and the section called “Streaming Replication Protocol”. Ignored in other modes.

	--if-not-exists
	
 Do not error out when --create-slot is specified
 and a slot with the specified name already exists.

	-n, --no-loop
	
 When the connection to the server is lost, do not retry in a loop, just exit.

	-o name[=value], --option=name[=value]
	
 Pass the option name to the output plugin with,
 if specified, the option value value. Which
 options exist and their effects depends on the used output plugin.

	-P plugin, --plugin=plugin
	
 When creating a slot, use the specified logical decoding output
 plugin. See Chapter 49, Logical Decoding. This option has no
 effect if the slot already exists.

	-s interval_seconds, --status-interval=interval_seconds
	
 This option has the same effect as the option of the same name
 in pg_receivewal(1). See the description there.

	-S slot_name, --slot=slot_name
	
 In --start mode, use the existing logical replication slot named
 slot_name. In --create-slot
 mode, create the slot with this name. In --drop-slot
 mode, delete the slot with this name.

	-t, --two-phase
	
 Enables decoding of prepared transactions. This option may only be specified with
 --create-slot

	-v, --verbose
	
 Enables verbose mode.

 The following command-line options control the database connection parameters.

	-d dbname, --dbname=dbname
	
 The database to connect to. See the description
 of the actions for what this means in detail.
 The dbname can be a connection string. If so,
 connection string parameters will override any conflicting
 command line options. Defaults to the user name.

	-h hostname-or-ip, --host=hostname-or-ip
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket. The default is taken
 from the PGHOST environment variable, if set,
 else a Unix domain socket connection is attempted.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-U user, --username=user
	
 User name to connect as. Defaults to current operating system user
 name.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force pg_recvlogical to prompt for a
 password before connecting to a database.

 This option is never essential, since
 pg_recvlogical will automatically prompt
 for a password if the server demands password authentication.
 However, pg_recvlogical will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

 The following additional options are available:

	-V, --version
	
 Print the pg_recvlogical version and exit.

	-?, --help
	
 Show help about pg_recvlogical command line
 arguments, and exit.

Exit Status

 pg_recvlogical will exit with status 0 when
 terminated by the SIGINT or
 SIGTERM signal. (That is the
 normal way to end it. Hence it is not an error.) For fatal errors or
 other signals, the exit status will be nonzero.

Environment

 This utility, like most other PostgreSQL™ utilities,
 uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 pg_recvlogical will preserve group permissions on
 the received WAL files if group permissions are enabled on the source
 cluster.

Examples

 See the section called “Logical Decoding Examples” for an example.

See Also
pg_receivewal(1)

Name
pg_restore —
 restore a PostgreSQL™ database from an
 archive file created by pg_dump

Synopsis
pg_restore [connection-option...] [option...] [filename]

Description

 pg_restore is a utility for restoring a
 PostgreSQL™ database from an archive
 created by pg_dump(1) in one of the non-plain-text
 formats. It will issue the commands necessary to reconstruct the
 database to the state it was in at the time it was saved. The
 archive files also allow pg_restore to
 be selective about what is restored, or even to reorder the items
 prior to being restored. The archive files are designed to be
 portable across architectures.

 pg_restore can operate in two modes.
 If a database name is specified, pg_restore
 connects to that database and restores archive contents directly into
 the database. Otherwise, a script containing the SQL
 commands necessary to rebuild the database is created and written
 to a file or standard output. This script output is equivalent to
 the plain text output format of pg_dump.
 Some of the options controlling the output are therefore analogous to
 pg_dump options.

 Obviously, pg_restore cannot restore information
 that is not present in the archive file. For instance, if the
 archive was made using the “dump data as
 INSERT commands” option,
 pg_restore will not be able to load the data
 using COPY statements.

Warning

 Restoring a dump causes the destination to execute arbitrary code of the
 source superusers' choice. Partial dumps and partial restores do not limit
 that. If the source superusers are not trusted, the dumped SQL statements
 must be inspected before restoring. Non-plain-text dumps can be inspected
 by using pg_restore's --file
 option. Note that the client running the dump and restore need not trust
 the source or destination superusers.

Options

 pg_restore accepts the following command
 line arguments.

	filename
	
 Specifies the location of the archive file (or directory, for a
 directory-format archive) to be restored.
 If not specified, the standard input is used.

	-a, --data-only
	
 Restore only the data, not the schema (data definitions).
 Table data, large objects, and sequence values are restored,
 if present in the archive.

 This option is similar to, but for historical reasons not identical
 to, specifying --section=data.

	-c, --clean
	
 Before restoring database objects, issue commands
 to DROP all the objects that will be restored.
 This option is useful for overwriting an existing database.
 If any of the objects do not exist in the destination database,
 ignorable error messages will be reported,
 unless --if-exists is also specified.

	-C, --create
	
 Create the database before restoring into it.
 If --clean is also specified, drop and
 recreate the target database before connecting to it.

 With --create, pg_restore
 also restores the database's comment if any, and any configuration
 variable settings that are specific to this database, that is,
 any ALTER DATABASE ... SET ...
 and ALTER ROLE ... IN DATABASE ... SET ...
 commands that mention this database.
 Access privileges for the database itself are also restored,
 unless --no-acl is specified.

 When this option is used, the database named with -d
 is used only to issue the initial DROP DATABASE and
 CREATE DATABASE commands. All data is restored into the
 database name that appears in the archive.

	-d dbname, --dbname=dbname
	
 Connect to database dbname and restore directly
 into the database. The dbname can
 be a connection string.
 If so, connection string parameters will override any conflicting
 command line options.

	-e, --exit-on-error
	
 Exit if an error is encountered while sending SQL commands to
 the database. The default is to continue and to display a count of
 errors at the end of the restoration.

	-f filename, --file=filename
	
 Specify output file for generated script, or for the listing
 when used with -l. Use -
 for stdout.

	-F format, --format=format
	
 Specify format of the archive. It is not necessary to specify
 the format, since pg_restore will
 determine the format automatically. If specified, it can be
 one of the following:

	c, custom
	
 The archive is in the custom format of
 pg_dump.

	d, directory
	
 The archive is a directory archive.

	t, tar
	
 The archive is a tar archive.

	-I index, --index=index
	
 Restore definition of named index only. Multiple indexes
 may be specified with multiple -I switches.

	-j number-of-jobs, --jobs=number-of-jobs
	
 Run the most time-consuming steps
 of pg_restore — those that load data,
 create indexes, or create constraints — concurrently, using up
 to number-of-jobs
 concurrent sessions. This option can dramatically reduce the time
 to restore a large database to a server running on a
 multiprocessor machine. This option is ignored when emitting a script
 rather than connecting directly to a database server.

 Each job is one process or one thread, depending on the
 operating system, and uses a separate connection to the
 server.

 The optimal value for this option depends on the hardware
 setup of the server, of the client, and of the network.
 Factors include the number of CPU cores and the disk setup. A
 good place to start is the number of CPU cores on the server,
 but values larger than that can also lead to faster restore
 times in many cases. Of course, values that are too high will
 lead to decreased performance because of thrashing.

 Only the custom and directory archive formats are supported
 with this option.
 The input must be a regular file or directory (not, for example, a
 pipe or standard input). Also, multiple
 jobs cannot be used together with the
 option --single-transaction.

	-l, --list
	
 List the table of contents of the archive. The output of this operation
 can be used as input to the -L option. Note that
 if filtering switches such as -n or -t are
 used with -l, they will restrict the items listed.

	-L list-file, --use-list=list-file
	
 Restore only those archive elements that are listed in list-file, and restore them in the
 order they appear in the file. Note that
 if filtering switches such as -n or -t are
 used with -L, they will further restrict the items restored.

list-file is normally created by
 editing the output of a previous -l operation.
 Lines can be moved or removed, and can also
 be commented out by placing a semicolon (;) at the
 start of the line. See below for examples.

	-n schema, --schema=schema
	
 Restore only objects that are in the named schema. Multiple schemas
 may be specified with multiple -n switches. This can be
 combined with the -t option to restore just a
 specific table.

	-N schema, --exclude-schema=schema
	
 Do not restore objects that are in the named schema. Multiple schemas
 to be excluded may be specified with multiple -N switches.

 When both -n and -N are given for the same
 schema name, the -N switch wins and the schema is excluded.

	-O, --no-owner
	
 Do not output commands to set
 ownership of objects to match the original database.
 By default, pg_restore issues
 ALTER OWNER or
 SET SESSION AUTHORIZATION
 statements to set ownership of created schema elements.
 These statements will fail unless the initial connection to the
 database is made by a superuser
 (or the same user that owns all of the objects in the script).
 With -O, any user name can be used for the
 initial connection, and this user will own all the created objects.

	-P function-name(argtype [, ...]), --function=function-name(argtype [, ...])
	
 Restore the named function only. Be careful to spell the function
 name and arguments exactly as they appear in the dump file's table
 of contents. Multiple functions may be specified with multiple
 -P switches.

	-R, --no-reconnect
	
 This option is obsolete but still accepted for backwards
 compatibility.

	-s, --schema-only
	
 Restore only the schema (data definitions), not data,
 to the extent that schema entries are present in the archive.

 This option is the inverse of --data-only.
 It is similar to, but for historical reasons not identical to,
 specifying
 --section=pre-data --section=post-data.

 (Do not confuse this with the --schema option, which
 uses the word “schema” in a different meaning.)

	-S username, --superuser=username
	
 Specify the superuser user name to use when disabling triggers.
 This is relevant only if --disable-triggers is used.

	-t table, --table=table
	
 Restore definition and/or data of only the named table.
 For this purpose, “table” includes views, materialized views,
 sequences, and foreign tables. Multiple tables
 can be selected by writing multiple -t switches.
 This option can be combined with the -n option to
 specify table(s) in a particular schema.

Note

 When -t is specified, pg_restore
 makes no attempt to restore any other database objects that the
 selected table(s) might depend upon. Therefore, there is no
 guarantee that a specific-table restore into a clean database will
 succeed.

Note

 This flag does not behave identically to the -t
 flag of pg_dump. There is not currently
 any provision for wild-card matching in pg_restore,
 nor can you include a schema name within its -t.
 And, while pg_dump's -t
 flag will also dump subsidiary objects (such as indexes) of the
 selected table(s),
 pg_restore's -t
 flag does not include such subsidiary objects.

Note

 In versions prior to PostgreSQL™ 9.6, this flag
 matched only tables, not any other type of relation.

	-T trigger, --trigger=trigger
	
 Restore named trigger only. Multiple triggers may be specified with
 multiple -T switches.

	-v, --verbose
	
 Specifies verbose mode. This will cause
 pg_restore to output detailed object
 comments and start/stop times to the output file, and progress
 messages to standard error.
 Repeating the option causes additional debug-level messages
 to appear on standard error.

	-V, --version
	
 Print the pg_restore version and exit.

	-x, --no-privileges, --no-acl
	
 Prevent restoration of access privileges (grant/revoke commands).

	-1, --single-transaction
	
 Execute the restore as a single transaction (that is, wrap the
 emitted commands in BEGIN/COMMIT). This
 ensures that either all the commands complete successfully, or no
 changes are applied. This option implies
 --exit-on-error.

	--disable-triggers
	
 This option is relevant only when performing a data-only restore.
 It instructs pg_restore to execute commands
 to temporarily disable triggers on the target tables while
 the data is restored. Use this if you have referential
 integrity checks or other triggers on the tables that you
 do not want to invoke during data restore.

 Presently, the commands emitted for
 --disable-triggers must be done as superuser. So you
 should also specify a superuser name with -S or,
 preferably, run pg_restore as a
 PostgreSQL™ superuser.

	--enable-row-security
	
 This option is relevant only when restoring the contents of a table
 which has row security. By default, pg_restore will set
 row_security to off, to ensure
 that all data is restored in to the table. If the user does not have
 sufficient privileges to bypass row security, then an error is thrown.
 This parameter instructs pg_restore to set
 row_security to on instead, allowing the user to attempt to restore
 the contents of the table with row security enabled. This might still
 fail if the user does not have the right to insert the rows from the
 dump into the table.

 Note that this option currently also requires the dump be in INSERT
 format, as COPY FROM does not support row security.

	--if-exists
	
 Use DROP ... IF EXISTS commands to drop objects
 in --clean mode. This suppresses “does not
 exist” errors that might otherwise be reported. This
 option is not valid unless --clean is also
 specified.

	--no-comments
	
 Do not output commands to restore comments, even if the archive
 contains them.

	--no-data-for-failed-tables
	
 By default, table data is restored even if the creation command
 for the table failed (e.g., because it already exists).
 With this option, data for such a table is skipped.
 This behavior is useful if the target database already
 contains the desired table contents. For example,
 auxiliary tables for PostgreSQL™ extensions
 such as PostGIS™ might already be loaded in
 the target database; specifying this option prevents duplicate
 or obsolete data from being loaded into them.

 This option is effective only when restoring directly into a
 database, not when producing SQL script output.

	--no-publications
	
 Do not output commands to restore publications, even if the archive
 contains them.

	--no-security-labels
	
 Do not output commands to restore security labels,
 even if the archive contains them.

	--no-subscriptions
	
 Do not output commands to restore subscriptions, even if the archive
 contains them.

	--no-table-access-method
	
 Do not output commands to select table access methods.
 With this option, all objects will be created with whichever
 access method is the default during restore.

	--no-tablespaces
	
 Do not output commands to select tablespaces.
 With this option, all objects will be created in whichever
 tablespace is the default during restore.

	--restrict-key=restrict_key
	
 Use the provided string as the psql
 \restrict key in the dump output. This can only be
 specified for SQL script output, i.e., when the --file
 option is used. If no restrict key is specified,
 pg_restore will generate a random one as
 needed. Keys may contain only alphanumeric characters.

 This option is primarily intended for testing purposes and other
 scenarios that require repeatable output (e.g., comparing dump files).
 It is not recommended for general use, as a malicious server with
 advance knowledge of the key may be able to inject arbitrary code that
 will be executed on the machine that runs
 psql with the dump output.

	--section=sectionname
	
 Only restore the named section. The section name can be
 pre-data, data, or post-data.
 This option can be specified more than once to select multiple
 sections. The default is to restore all sections.

 The data section contains actual table data as well as large-object
 definitions.
 Post-data items consist of definitions of indexes, triggers, rules
 and constraints other than validated check constraints.
 Pre-data items consist of all other data definition items.

	--strict-names
	
 Require that each schema
 (-n/--schema) and table
 (-t/--table) qualifier match at
 least one schema/table in the backup file.

	--use-set-session-authorization
	
 Output SQL-standard SET SESSION AUTHORIZATION commands
 instead of ALTER OWNER commands to determine object
 ownership. This makes the dump more standards-compatible, but
 depending on the history of the objects in the dump, might not restore
 properly.

	-?, --help
	
 Show help about pg_restore command line
 arguments, and exit.

 pg_restore also accepts
 the following command line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket. The default is taken
 from the PGHOST environment variable, if set,
 else a Unix domain socket connection is attempted.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server is listening for connections.
 Defaults to the PGPORT environment variable, if
 set, or a compiled-in default.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force pg_restore to prompt for a
 password before connecting to a database.

 This option is never essential, since
 pg_restore will automatically prompt
 for a password if the server demands password authentication.
 However, pg_restore will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--role=rolename
	
 Specifies a role name to be used to perform the restore.
 This option causes pg_restore to issue a
 SET ROLE rolename
 command after connecting to the database. It is useful when the
 authenticated user (specified by -U) lacks privileges
 needed by pg_restore, but can switch to a role with
 the required rights. Some installations have a policy against
 logging in directly as a superuser, and use of this option allows
 restores to be performed without violating the policy.

Environment
	PGHOST, PGOPTIONS, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”). However, it does not read
 PGDATABASE when a database name is not supplied.

Diagnostics

 When a direct database connection is specified using the
 -d option, pg_restore
 internally executes SQL statements. If you have
 problems running pg_restore, make sure
 you are able to select information from the database using, for
 example, psql(1). Also, any default connection
 settings and environment variables used by the
 libpq front-end library will apply.

Notes

 If your installation has any local additions to the
 template1 database, be careful to load the output of
 pg_restore into a truly empty database;
 otherwise you are likely to get errors due to duplicate definitions
 of the added objects. To make an empty database without any local
 additions, copy from template0 not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

 The limitations of pg_restore are detailed below.

	
 When restoring data to a pre-existing table and the option
 --disable-triggers is used,
 pg_restore emits commands
 to disable triggers on user tables before inserting the data, then emits commands to
 re-enable them after the data has been inserted. If the restore is stopped in the
 middle, the system catalogs might be left in the wrong state.

	pg_restore cannot restore large objects
 selectively; for instance, only those for a specific table. If
 an archive contains large objects, then all large objects will be
 restored, or none of them if they are excluded via -L,
 -t, or other options.

 See also the pg_dump(1) documentation for details on
 limitations of pg_dump.

 Once restored, it is wise to run ANALYZE on each
 restored table so the optimizer has useful statistics; see
 the section called “Updating Planner Statistics” and
 the section called “The Autovacuum Daemon” for more information.

Examples

 Assume we have dumped a database called mydb into a
 custom-format dump file:

$ pg_dump -Fc mydb > db.dump

 To drop the database and recreate it from the dump:

$ dropdb mydb
$ pg_restore -C -d postgres db.dump

 The database named in the -d switch can be any database existing
 in the cluster; pg_restore only uses it to issue the
 CREATE DATABASE command for mydb. With
 -C, data is always restored into the database name that appears
 in the dump file.

 To restore the dump into a new database called newdb:

$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump

 Notice we don't use -C, and instead connect directly to the
 database to be restored into. Also note that we clone the new database
 from template0 not template1, to ensure it is
 initially empty.

 To reorder database items, it is first necessary to dump the table of
 contents of the archive:

$ pg_restore -l db.dump > db.list

 The listing file consists of a header and one line for each item, e.g.:

;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

 Semicolons start a comment, and the numbers at the start of lines refer to the
 internal archive ID assigned to each item.

 Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

 could be used as input to pg_restore and would only restore
 items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

See Also
pg_dump(1), pg_dumpall(1), psql(1)

Name
pg_verifybackup — verify the integrity of a base backup of a
 PostgreSQL™ cluster

Synopsis
pg_verifybackup [option...]

Description

 pg_verifybackup is used to check the
 integrity of a database cluster backup taken using
 pg_basebackup against a
 backup_manifest generated by the server at the time
 of the backup. The backup must be stored in the "plain"
 format; a "tar" format backup can be checked after extracting it.

 It is important to note that the validation which is performed by
 pg_verifybackup does not and cannot include
 every check which will be performed by a running server when attempting
 to make use of the backup. Even if you use this tool, you should still
 perform test restores and verify that the resulting databases work as
 expected and that they appear to contain the correct data. However,
 pg_verifybackup can detect many problems
 that commonly occur due to storage problems or user error.

 Backup verification proceeds in four stages. First,
 pg_verifybackup reads the
 backup_manifest file. If that file
 does not exist, cannot be read, is malformed, or fails verification
 against its own internal checksum, pg_verifybackup
 will terminate with a fatal error.

 Second, pg_verifybackup will attempt to verify that
 the data files currently stored on disk are exactly the same as the data
 files which the server intended to send, with some exceptions that are
 described below. Extra and missing files will be detected, with a few
 exceptions. This step will ignore the presence or absence of, or any
 modifications to, postgresql.auto.conf,
 standby.signal, and recovery.signal,
 because it is expected that these files may have been created or modified
 as part of the process of taking the backup. It also won't complain about
 a backup_manifest file in the target directory or
 about anything inside pg_wal, even though these
 files won't be listed in the backup manifest. Only files are checked;
 the presence or absence of directories is not verified, except
 indirectly: if a directory is missing, any files it should have contained
 will necessarily also be missing.

 Next, pg_verifybackup will checksum all the files,
 compare the checksums against the values in the manifest, and emit errors
 for any files for which the computed checksum does not match the
 checksum stored in the manifest. This step is not performed for any files
 which produced errors in the previous step, since they are already known
 to have problems. Files which were ignored in the previous step are also
 ignored in this step.

 Finally, pg_verifybackup will use the manifest to
 verify that the write-ahead log records which will be needed to recover
 the backup are present and that they can be read and parsed. The
 backup_manifest contains information about which
 write-ahead log records will be needed, and
 pg_verifybackup will use that information to
 invoke pg_waldump to parse those write-ahead log
 records. The --quiet flag will be used, so that
 pg_waldump will only report errors, without producing
 any other output. While this level of verification is sufficient to
 detect obvious problems such as a missing file or one whose internal
 checksums do not match, they aren't extensive enough to detect every
 possible problem that might occur when attempting to recover. For
 instance, a server bug that produces write-ahead log records that have
 the correct checksums but specify nonsensical actions can't be detected
 by this method.

 Note that if extra WAL files which are not required to recover the backup
 are present, they will not be checked by this tool, although
 a separate invocation of pg_waldump could be used for
 that purpose. Also note that WAL verification is version-specific: you
 must use the version of pg_verifybackup, and thus of
 pg_waldump, which pertains to the backup being checked.
 In contrast, the data file integrity checks should work with any version
 of the server that generates a backup_manifest file.

Options

 pg_verifybackup accepts the following
 command-line arguments:

	-e, --exit-on-error
	
 Exit as soon as a problem with the backup is detected. If this option
 is not specified, pg_verifybackup will continue
 checking the backup even after a problem has been detected, and will
 report all problems detected as errors.

	-i path, --ignore=path
	
 Ignore the specified file or directory, which should be expressed
 as a relative path name, when comparing the list of data files
 actually present in the backup to those listed in the
 backup_manifest file. If a directory is
 specified, this option affects the entire subtree rooted at that
 location. Complaints about extra files, missing files, file size
 differences, or checksum mismatches will be suppressed if the
 relative path name matches the specified path name. This option
 can be specified multiple times.

	-m path, --manifest-path=path
	
 Use the manifest file at the specified path, rather than one located
 in the root of the backup directory.

	-n, --no-parse-wal
	
 Don't attempt to parse write-ahead log data that will be needed
 to recover from this backup.

	-P, --progress
	
 Enable progress reporting. Turning this on will deliver a progress
 report while verifying checksums.

 This option cannot be used together with the option
 --quiet.

	-q, --quiet
	
 Don't print anything when a backup is successfully verified.

	-s, --skip-checksums
	
 Do not verify data file checksums. The presence or absence of
 files and the sizes of those files will still be checked. This is
 much faster, because the files themselves do not need to be read.

	-w path, --wal-directory=path
	
 Try to parse WAL files stored in the specified directory, rather than
 in pg_wal. This may be useful if the backup is
 stored in a separate location from the WAL archive.

 Other options are also available:

	-V, --version
	
 Print the pg_verifybackup version and exit.

	-?, --help
	
 Show help about pg_verifybackup command
 line arguments, and exit.

Examples

 To create a base backup of the server at mydbserver and
 verify the integrity of the backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ pg_verifybackup /usr/local/pgsql/data

 To create a base backup of the server at mydbserver, move
 the manifest somewhere outside the backup directory, and verify the
 backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/backup1234
$ mv /usr/local/pgsql/backup1234/backup_manifest /my/secure/location/backup_manifest.1234
$ pg_verifybackup -m /my/secure/location/backup_manifest.1234 /usr/local/pgsql/backup1234

 To verify a backup while ignoring a file that was added manually to the
 backup directory, and also skipping checksum verification:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ edit /usr/local/pgsql/data/note.to.self
$ pg_verifybackup --ignore=note.to.self --skip-checksums /usr/local/pgsql/data

See Also
pg_basebackup(1)

Name
psql —
 PostgreSQL™ interactive terminal

Synopsis
psql [option...] [dbname
 [username]]

Description

 psql is a terminal-based front-end to
 PostgreSQL™. It enables you to type in
 queries interactively, issue them to
 PostgreSQL™, and see the query results.
 Alternatively, input can be from a file or from command line
 arguments. In addition, psql provides a
 number of meta-commands and various shell-like features to
 facilitate writing scripts and automating a wide variety of tasks.

Options
	-a, --echo-all
	
 Print all nonempty input lines to standard output as they are read.
 (This does not apply to lines read interactively.) This is
 equivalent to setting the variable ECHO to
 all.

	-A, --no-align
	
 Switches to unaligned output mode. (The default output mode is
 aligned.) This is equivalent to
 \pset format unaligned.

	-b, --echo-errors
	
 Print failed SQL commands to standard error output. This is
 equivalent to setting the variable ECHO to
 errors.

	-c command, --command=command
	
 Specifies that psql is to execute the given
 command string, command.
 This option can be repeated and combined in any order with
 the -f option. When either -c
 or -f is specified, psql
 does not read commands from standard input; instead it terminates
 after processing all the -c and -f
 options in sequence.

 command must be either
 a command string that is completely parsable by the server (i.e.,
 it contains no psql-specific features),
 or a single backslash command. Thus you cannot mix
 SQL and psql
 meta-commands within a -c option. To achieve that,
 you could use repeated -c options or pipe the string
 into psql, for example:

psql -c '\x' -c 'SELECT * FROM foo;'

 or

echo '\x \\ SELECT * FROM foo;' | psql

 (\\ is the separator meta-command.)

 Each SQL command string passed
 to -c is sent to the server as a single request.
 Because of this, the server executes it as a single transaction even
 if the string contains multiple SQL commands,
 unless there are explicit BEGIN/COMMIT
 commands included in the string to divide it into multiple
 transactions. (See the section called “Multiple Statements in a Simple Query”
 for more details about how the server handles multi-query strings.)

 If having several commands executed in one transaction is not desired,
 use repeated -c commands or feed multiple commands to
 psql's standard input,
 either using echo as illustrated above, or
 via a shell here-document, for example:

psql <<EOF
\x
SELECT * FROM foo;
EOF

	--csv
	
 Switches to CSV (Comma-Separated Values) output
 mode. This is equivalent to \pset format csv.

	-d dbname, --dbname=dbname
	
 Specifies the name of the database to connect to. This is
 equivalent to specifying dbname as the first non-option
 argument on the command line. The dbname
 can be a connection string.
 If so, connection string parameters will override any conflicting
 command line options.

	-e, --echo-queries
	
 Copy all SQL commands sent to the server to standard output as well.
 This is equivalent
 to setting the variable ECHO to
 queries.

	-E, --echo-hidden
	
 Echo the actual queries generated by \d and other backslash
 commands. You can use this to study psql's
 internal operations. This is equivalent to
 setting the variable ECHO_HIDDEN to on.

	-f filename, --file=filename
	
 Read commands from the
 file filename,
 rather than standard input.
 This option can be repeated and combined in any order with
 the -c option. When either -c
 or -f is specified, psql
 does not read commands from standard input; instead it terminates
 after processing all the -c and -f
 options in sequence.
 Except for that, this option is largely equivalent to the
 meta-command \i.

 If filename is -
 (hyphen), then standard input is read until an EOF indication
 or \q meta-command. This can be used to intersperse
 interactive input with input from files. Note however that Readline
 is not used in this case (much as if -n had been
 specified).

 Using this option is subtly different from writing psql
 < filename. In general,
 both will do what you expect, but using -f
 enables some nice features such as error messages with line
 numbers. There is also a slight chance that using this option will
 reduce the start-up overhead. On the other hand, the variant using
 the shell's input redirection is (in theory) guaranteed to yield
 exactly the same output you would have received had you entered
 everything by hand.

	-F separator, --field-separator=separator
	
 Use separator as the
 field separator for unaligned output. This is equivalent to
 \pset fieldsep or \f.

	-h hostname, --host=hostname
	
 Specifies the host name of the machine on which the
 server is running. If the value begins
 with a slash, it is used as the directory for the Unix-domain
 socket.

	-H, --html
	
 Switches to HTML output mode. This is
 equivalent to \pset format html or the
 \H command.

	-l, --list
	
 List all available databases, then exit. Other non-connection
 options are ignored. This is similar to the meta-command
 \list.

 When this option is used, psql will connect
 to the database postgres, unless a different database
 is named on the command line (option -d or non-option
 argument, possibly via a service entry, but not via an environment
 variable).

	-L filename, --log-file=filename
	
 Write all query output into file filename, in addition to the
 normal output destination.

	-n, --no-readline
	
 Do not use Readline for line editing and
 do not use the command history (see
 the section called “Command-Line Editing” below).

	-o filename, --output=filename
	
 Put all query output into file filename. This is equivalent to
 the command \o.

	-p port, --port=port
	
 Specifies the TCP port or the local Unix-domain
 socket file extension on which the server is listening for
 connections. Defaults to the value of the PGPORT
 environment variable or, if not set, to the port specified at
 compile time, usually 5432.

	-P assignment, --pset=assignment
	
 Specifies printing options, in the style of
 \pset. Note that here you
 have to separate name and value with an equal sign instead of a
 space. For example, to set the output format to LaTeX, you could write
 -P format=latex.

	-q, --quiet
	
 Specifies that psql should do its work
 quietly. By default, it prints welcome messages and various
 informational output. If this option is used, none of this
 happens. This is useful with the -c option.
 This is equivalent to setting the variable QUIET
 to on.

	-R separator, --record-separator=separator
	
 Use separator as the
 record separator for unaligned output. This is equivalent to
 \pset recordsep.

	-s, --single-step
	
 Run in single-step mode. That means the user is prompted before
 each command is sent to the server, with the option to cancel
 execution as well. Use this to debug scripts.

	-S, --single-line
	
 Runs in single-line mode where a newline terminates an SQL command, as a
 semicolon does.

Note

 This mode is provided for those who insist on it, but you are not
 necessarily encouraged to use it. In particular, if you mix
 SQL and meta-commands on a line the order of
 execution might not always be clear to the inexperienced user.

	-t, --tuples-only
	
 Turn off printing of column names and result row count footers,
 etc. This is equivalent to \t or
 \pset tuples_only.

	-T table_options, --table-attr=table_options
	
 Specifies options to be placed within the
 HTML table tag. See
 \pset tableattr for details.

	-U username, --username=username
	
 Connect to the database as the user username instead of the default.
 (You must have permission to do so, of course.)

	-v assignment, --set=assignment, --variable=assignment
	
 Perform a variable assignment, like the \set
 meta-command. Note that you must separate name and value, if
 any, by an equal sign on the command line. To unset a variable,
 leave off the equal sign. To set a variable with an empty value,
 use the equal sign but leave off the value. These assignments are
 done during command line processing, so variables that reflect
 connection state will get overwritten later.

	-V, --version
	
 Print the psql version and exit.

	-w, --no-password
	
 Never issue a password prompt. If the server requires password
 authentication and a password is not available from other sources
 such as a .pgpass file, the connection
 attempt will fail. This option can be useful in batch jobs and
 scripts where no user is present to enter a password.

 Note that this option will remain set for the entire session,
 and so it affects uses of the meta-command
 \connect as well as the initial connection attempt.

	-W, --password
	
 Force psql to prompt for a
 password before connecting to a database, even if the password will
 not be used.

 If the server requires password authentication and a password is not
 available from other sources such as a .pgpass
 file, psql will prompt for a
 password in any case. However, psql
 will waste a connection attempt finding out that the server wants a
 password. In some cases it is worth typing -W to avoid
 the extra connection attempt.

 Note that this option will remain set for the entire session,
 and so it affects uses of the meta-command
 \connect as well as the initial connection attempt.

	-x, --expanded
	
 Turn on the expanded table formatting mode. This is equivalent to
 \x or \pset expanded.

	-X, --no-psqlrc
	
 Do not read the start-up file (neither the system-wide
 psqlrc file nor the user's
 ~/.psqlrc file).

	-z, --field-separator-zero
	
 Set the field separator for unaligned output to a zero byte. This is
 equivalent to \pset fieldsep_zero.

	-0, --record-separator-zero
	
 Set the record separator for unaligned output to a zero byte. This is
 useful for interfacing, for example, with xargs -0.
 This is equivalent to \pset recordsep_zero.

	-1, --single-transaction
	
 This option can only be used in combination with one or more
 -c and/or -f options. It causes
 psql to issue a BEGIN command
 before the first such option and a COMMIT command after
 the last one, thereby wrapping all the commands into a single
 transaction. If any of the commands fails and the variable
 ON_ERROR_STOP was set, a
 ROLLBACK command is sent instead. This ensures that
 either all the commands complete successfully, or no changes are
 applied.

 If the commands themselves
 contain BEGIN, COMMIT,
 or ROLLBACK, this option will not have the desired
 effects. Also, if an individual command cannot be executed inside a
 transaction block, specifying this option will cause the whole
 transaction to fail.

	-?, --help[=topic]
	
 Show help about psql and exit. The optional
 topic parameter (defaulting
 to options) selects which part of psql is
 explained: commands describes psql's
 backslash commands; options describes the command-line
 options that can be passed to psql;
 and variables shows help about psql configuration
 variables.

Exit Status

 psql returns 0 to the shell if it
 finished normally, 1 if a fatal error of its own occurs (e.g., out of memory,
 file not found), 2 if the connection to the server went bad
 and the session was not interactive, and 3 if an error occurred in a
 script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

 psql is a regular
 PostgreSQL™ client application. In order
 to connect to a database you need to know the name of your target
 database, the host name and port number of the server, and what
 database user name you want to connect as. psql
 can be told about those parameters via command line options, namely
 -d, -h, -p, and
 -U respectively. If an argument is found that does
 not belong to any option it will be interpreted as the database name
 (or the database user name, if the database name is already given). Not all
 of these options are required; there are useful defaults. If you omit the host
 name, psql will connect via a Unix-domain socket
 to a server on the local host, or via TCP/IP to localhost on
 Windows. The default port number is
 determined at compile time.
 Since the database server uses the same default, you will not have
 to specify the port in most cases. The default database user name is your
 operating-system user name. Once the database user name is determined, it
 is used as the default database name.
 Note that you cannot
 just connect to any database under any database user name. Your database
 administrator should have informed you about your access rights.

 When the defaults aren't quite right, you can save yourself
 some typing by setting the environment variables
 PGDATABASE, PGHOST,
 PGPORT and/or PGUSER to appropriate
 values. (For additional environment variables, see the section called “Environment Variables”.) It is also convenient to have a
 ~/.pgpass file to avoid regularly having to type in
 passwords. See the section called “The Password File” for more information.

 An alternative way to specify connection parameters is in a
 conninfo string or
 a URI, which is used instead of a database
 name. This mechanism give you very wide control over the
 connection. For example:

$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require

 This way you can also use LDAP for connection
 parameter lookup as described in the section called “LDAP Lookup of Connection Parameters”.
 See the section called “Parameter Key Words” for more information on all the
 available connection options.

 If the connection could not be made for any reason (e.g., insufficient
 privileges, server is not running on the targeted host, etc.),
 psql will return an error and terminate.

 If both standard input and standard output are a
 terminal, then psql sets the client
 encoding to “auto”, which will detect the
 appropriate client encoding from the locale settings
 (LC_CTYPE environment variable on Unix systems).
 If this doesn't work out as expected, the client encoding can be
 overridden using the environment
 variable PGCLIENTENCODING.

Entering SQL Commands

 In normal operation, psql provides a
 prompt with the name of the database to which
 psql is currently connected, followed by
 the string =>. For example:

$ psql testdb
psql (16.12)
Type "help" for help.

testdb=>

 At the prompt, the user can type in SQL commands.
 Ordinarily, input lines are sent to the server when a
 command-terminating semicolon is reached. An end of line does not
 terminate a command. Thus commands can be spread over several lines for
 clarity. If the command was sent and executed without error, the results
 of the command are displayed on the screen.

 If untrusted users have access to a database that has not adopted a
 secure schema usage pattern,
 begin your session by removing publicly-writable schemas
 from search_path. One can
 add options=-csearch_path= to the connection string or
 issue SELECT pg_catalog.set_config('search_path', '',
 false) before other SQL commands. This consideration is not
 specific to psql; it applies to every interface
 for executing arbitrary SQL commands.

 Whenever a command is executed, psql also polls
 for asynchronous notification events generated by
 LISTEN and
 NOTIFY.

 While C-style block comments are passed to the server for
 processing and removal, SQL-standard comments are removed by
 psql.

Meta-Commands

 Anything you enter in psql that begins
 with an unquoted backslash is a psql
 meta-command that is processed by psql
 itself. These commands make
 psql more useful for administration or
 scripting. Meta-commands are often called slash or backslash commands.

 The format of a psql command is the backslash,
 followed immediately by a command verb, then any arguments. The arguments
 are separated from the command verb and each other by any number of
 whitespace characters.

 To include whitespace in an argument you can quote it with
 single quotes. To include a single quote in an argument,
 write two single quotes within single-quoted text.
 Anything contained in single quotes is
 furthermore subject to C-like substitutions for
 \n (new line), \t (tab),
 \b (backspace), \r (carriage return),
 \f (form feed),
 \digits (octal), and
 \xdigits (hexadecimal).
 A backslash preceding any other character within single-quoted text
 quotes that single character, whatever it is.

 If an unquoted colon (:) followed by a
 psql variable name appears within an argument, it is
 replaced by the variable's value, as described in SQL Interpolation below.
 The forms :'variable_name' and
 :"variable_name" described there
 work as well.
 The :{?variable_name} syntax allows
 testing whether a variable is defined. It is substituted by
 TRUE or FALSE.
 Escaping the colon with a backslash protects it from substitution.

 Within an argument, text that is enclosed in backquotes
 (`) is taken as a command line that is passed to the
 shell. The output of the command (with any trailing newline removed)
 replaces the backquoted text. Within the text enclosed in backquotes,
 no special quoting or other processing occurs, except that appearances
 of :variable_name where
 variable_name is a psql variable name
 are replaced by the variable's value. Also, appearances of
 :'variable_name' are replaced by the
 variable's value suitably quoted to become a single shell command
 argument. (The latter form is almost always preferable, unless you are
 very sure of what is in the variable.) Because carriage return and line
 feed characters cannot be safely quoted on all platforms, the
 :'variable_name' form prints an
 error message and does not substitute the variable value when such
 characters appear in the value.

 Some commands take an SQL identifier (such as a
 table name) as argument. These arguments follow the syntax rules
 of SQL: Unquoted letters are forced to
 lowercase, while double quotes (") protect letters
 from case conversion and allow incorporation of whitespace into
 the identifier. Within double quotes, paired double quotes reduce
 to a single double quote in the resulting name. For example,
 FOO"BAR"BAZ is interpreted as fooBARbaz,
 and "A weird"" name" becomes A weird"
 name.

 Parsing for arguments stops at the end of the line, or when another
 unquoted backslash is found. An unquoted backslash
 is taken as the beginning of a new meta-command. The special
 sequence \\ (two backslashes) marks the end of
 arguments and continues parsing SQL commands, if
 any. That way SQL and
 psql commands can be freely mixed on a
 line. But in any case, the arguments of a meta-command cannot
 continue beyond the end of the line.

 Many of the meta-commands act on the current query buffer.
 This is simply a buffer holding whatever SQL command text has been typed
 but not yet sent to the server for execution. This will include previous
 input lines as well as any text appearing before the meta-command on the
 same line.

 The following meta-commands are defined:

	\a
	
 If the current table output format is unaligned, it is switched to aligned.
 If it is not unaligned, it is set to unaligned. This command is
 kept for backwards compatibility. See \pset for a
 more general solution.

	\bind [parameter] ...
	
 Sets query parameters for the next query execution, with the
 specified parameters passed for any parameter placeholders
 ($1 etc.).

 Example:

INSERT INTO tbl1 VALUES ($1, $2) \bind 'first value' 'second value' \g

 This also works for query-execution commands besides
 \g, such as \gx and
 \gset.

 This command causes the extended query protocol (see the section called “Extended Query Overview”) to be used, unlike normal
 psql operation, which uses the simple
 query protocol. So this command can be useful to test the extended
 query protocol from psql. (The extended query protocol is used even
 if the query has no parameters and this command specifies zero
 parameters.) This command affects only the next query executed; all
 subsequent queries will use the simple query protocol by default.

	\c or \connect [-reuse-previous=on|off] [dbname [username] [host] [port] | conninfo]
	
 Establishes a new connection to a PostgreSQL™
 server. The connection parameters to use can be specified either
 using a positional syntax (one or more of database name, user,
 host, and port), or using a conninfo
 connection string as detailed in
 the section called “Connection Strings”. If no arguments are given, a
 new connection is made using the same parameters as before.

 Specifying any
 of dbname,
 username,
 host or
 port
 as - is equivalent to omitting that parameter.

 The new connection can re-use connection parameters from the previous
 connection; not only database name, user, host, and port, but other
 settings such as sslmode. By default,
 parameters are re-used in the positional syntax, but not when
 a conninfo string is given. Passing a
 first argument of -reuse-previous=on
 or -reuse-previous=off overrides that default. If
 parameters are re-used, then any parameter not explicitly specified as
 a positional parameter or in the conninfo
 string is taken from the existing connection's parameters. An
 exception is that if the host setting
 is changed from its previous value using the positional syntax,
 any hostaddr setting present in the
 existing connection's parameters is dropped.
 Also, any password used for the existing connection will be re-used
 only if the user, host, and port settings are not changed.
 When the command neither specifies nor reuses a particular parameter,
 the libpq default is used.

 If the new connection is successfully made, the previous
 connection is closed.
 If the connection attempt fails (wrong user name, access
 denied, etc.), the previous connection will be kept if
 psql is in interactive mode. But when
 executing a non-interactive script, the old connection is closed
 and an error is reported. That may or may not terminate the
 script; if it does not, all database-accessing commands will fail
 until another \connect command is successfully
 executed. This distinction was chosen as
 a user convenience against typos on the one hand, and a safety
 mechanism that scripts are not accidentally acting on the
 wrong database on the other hand.
 Note that whenever a \connect command attempts
 to re-use parameters, the values re-used are those of the last
 successful connection, not of any failed attempts made subsequently.
 However, in the case of a
 non-interactive \connect failure, no parameters
 are allowed to be re-used later, since the script would likely be
 expecting the values from the failed \connect
 to be re-used.

 Examples:

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10 sslmode=disable"
=> \c -reuse-previous=on sslmode=require -- changes only sslmode
=> \c postgresql://tom@localhost/mydb?application_name=myapp

	\C [title]
	
 Sets the title of any tables being printed as the result of a
 query or unset any such title. This command is equivalent to
 \pset title title. (The name of
 this command derives from “caption”, as it was
 previously only used to set the caption in an
 HTML table.)

	\cd [directory]
	
 Changes the current working directory to
 directory. Without argument, changes
 to the current user's home directory.

Tip

 To print your current working directory, use \! pwd.

	\conninfo
	
 Outputs information about the current database connection.

	\copy { table [(column_list)] }
 from
 { 'filename' | program 'command' | stdin | pstdin }
 [[with] (option [, ...])]
 [where condition], \copy { table [(column_list)] | (query) }
 to
 { 'filename' | program 'command' | stdout | pstdout }
 [[with] (option [, ...])]
	
 Performs a frontend (client) copy. This is an operation that
 runs an SQL COPY
 command, but instead of the server
 reading or writing the specified file,
 psql reads or writes the file and
 routes the data between the server and the local file system.
 This means that file accessibility and privileges are those of
 the local user, not the server, and no SQL superuser
 privileges are required.

 When program is specified,
 command is
 executed by psql and the data passed from
 or to command is
 routed between the server and the client.
 Again, the execution privileges are those of
 the local user, not the server, and no SQL superuser
 privileges are required.

 For \copy ... from stdin, data rows are read from the same
 source that issued the command, continuing until \.
 is read or the stream reaches EOF. This option is useful
 for populating tables in-line within an SQL script file.
 For \copy ... to stdout, output is sent to the same place
 as psql command output, and
 the COPY count command status is
 not printed (since it might be confused with a data row).
 To read/write psql's standard input or
 output regardless of the current command source or \o
 option, write from pstdin or to pstdout.

 The syntax of this command is similar to that of the
 SQL COPY
 command. All options other than the data source/destination are
 as specified for COPY.
 Because of this, special parsing rules apply to the \copy
 meta-command. Unlike most other meta-commands, the entire remainder
 of the line is always taken to be the arguments of \copy,
 and neither variable interpolation nor backquote expansion are
 performed in the arguments.

Tip

 Another way to obtain the same result as \copy
 ... to is to use the SQL COPY
 ... TO STDOUT command and terminate it
 with \g filename
 or \g |program.
 Unlike \copy, this method allows the command to
 span multiple lines; also, variable interpolation and backquote
 expansion can be used.

Tip

 These operations are not as efficient as the SQL
 COPY command with a file or program data source or
 destination, because all data must pass through the client/server
 connection. For large amounts of data the SQL
 command might be preferable.
 Also, because of this pass-through method, \copy
 ... from in CSV mode will erroneously
 treat a \. data value alone on a line as an
 end-of-input marker.

	\copyright
	
 Shows the copyright and distribution terms of
 PostgreSQL™.

	\crosstabview [
 colV
 [colH
 [colD
 [sortcolH
]]]]
	
 Executes the current query buffer (like \g) and
 shows the results in a crosstab grid.
 The query must return at least three columns.
 The output column identified by colV
 becomes a vertical header and the output column identified by
 colH
 becomes a horizontal header.
 colD identifies
 the output column to display within the grid.
 sortcolH identifies
 an optional sort column for the horizontal header.

 Each column specification can be a column number (starting at 1) or
 a column name. The usual SQL case folding and quoting rules apply to
 column names. If omitted,
 colV is taken as column 1
 and colH as column 2.
 colH must differ from
 colV.
 If colD is not
 specified, then there must be exactly three columns in the query
 result, and the column that is neither
 colV nor
 colH
 is taken to be colD.

 The vertical header, displayed as the leftmost column, contains the
 values found in column colV, in the
 same order as in the query results, but with duplicates removed.

 The horizontal header, displayed as the first row, contains the values
 found in column colH,
 with duplicates removed. By default, these appear in the same order
 as in the query results. But if the
 optional sortcolH argument is given,
 it identifies a column whose values must be integer numbers, and the
 values from colH will
 appear in the horizontal header sorted according to the
 corresponding sortcolH values.

 Inside the crosstab grid, for each distinct value x
 of colH and each distinct
 value y
 of colV, the cell located
 at the intersection (x,y) contains the value of
 the colD column in the query result row for which
 the value of colH
 is x and the value
 of colV
 is y. If there is no such row, the cell is empty. If
 there are multiple such rows, an error is reported.

	\d[S+] [pattern]
	
 For each relation (table, view, materialized view, index, sequence,
 or foreign table)
 or composite type matching the
 pattern, show all
 columns, their types, the tablespace (if not the default) and any
 special attributes such as NOT NULL or defaults.
 Associated indexes, constraints, rules, and triggers are
 also shown. For foreign tables, the associated foreign
 server is shown as well.
 (“Matching the pattern” is defined in
 Patterns below.)

 For some types of relation, \d shows additional information
 for each column: column values for sequences, indexed expressions for
 indexes, and foreign data wrapper options for foreign tables.

 The command form \d+ is identical, except that
 more information is displayed: any comments associated with the
 columns of the table are shown, as is the presence of OIDs in the
 table, the view definition if the relation is a view, a non-default
 replica
 identity setting and the
 access method name
 if the relation has an access method.

 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.

Note

 If \d is used without a
 pattern argument, it is
 equivalent to \dtvmsE which will show a list of
 all visible tables, views, materialized views, sequences and
 foreign tables.
 This is purely a convenience measure.

	\da[S] [pattern]
	
 Lists aggregate functions, together with their
 return type and the data types they operate on. If pattern
 is specified, only aggregates whose names match the pattern are shown.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.

	\dA[+] [pattern]
	
 Lists access methods. If pattern is specified, only access
 methods whose names match the pattern are shown. If
 + is appended to the command name, each access
 method is listed with its associated handler function and description.

	
 \dAc[+]
 [access-method-pattern
 [input-type-pattern]]

	
 Lists operator classes
 (see the section called “Index Methods and Operator Classes”).
 If access-method-pattern
 is specified, only operator classes associated with access methods whose
 names match that pattern are listed.
 If input-type-pattern
 is specified, only operator classes associated with input types whose
 names match that pattern are listed.
 If + is appended to the command name, each operator
 class is listed with its associated operator family and owner.

	
 \dAf[+]
 [access-method-pattern
 [input-type-pattern]]

	
 Lists operator families
 (see the section called “Operator Classes and Operator Families”).
 If access-method-pattern
 is specified, only operator families associated with access methods whose
 names match that pattern are listed.
 If input-type-pattern
 is specified, only operator families associated with input types whose
 names match that pattern are listed.
 If + is appended to the command name, each operator
 family is listed with its owner.

	
 \dAo[+]
 [access-method-pattern
 [operator-family-pattern]]

	
 Lists operators associated with operator families
 (see the section called “Index Method Strategies”).
 If access-method-pattern
 is specified, only members of operator families associated with access
 methods whose names match that pattern are listed.
 If operator-family-pattern
 is specified, only members of operator families whose names match that
 pattern are listed.
 If + is appended to the command name, each operator
 is listed with its sort operator family (if it is an ordering operator).

	
 \dAp[+]
 [access-method-pattern
 [operator-family-pattern]]

	
 Lists support functions associated with operator families
 (see the section called “Index Method Support Routines”).
 If access-method-pattern
 is specified, only functions of operator families associated with
 access methods whose names match that pattern are listed.
 If operator-family-pattern
 is specified, only functions of operator families whose names match
 that pattern are listed.
 If + is appended to the command name, functions are
 displayed verbosely, with their actual parameter lists.

	\db[+] [pattern]
	
 Lists tablespaces. If pattern
 is specified, only tablespaces whose names match the pattern are shown.
 If + is appended to the command name, each tablespace
 is listed with its associated options, on-disk size, permissions and
 description.

	\dc[S+] [pattern]
	
 Lists conversions between character-set encodings.
 If pattern
 is specified, only conversions whose names match the pattern are
 listed.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.
 If + is appended to the command name, each object
 is listed with its associated description.

	\dconfig[+] [pattern]
	
 Lists server configuration parameters and their values.
 If pattern is specified,
 only parameters whose names match the pattern are listed. Without
 a pattern, only
 parameters that are set to non-default values are listed.
 (Use \dconfig * to see all parameters.)
 If + is appended to the command name, each
 parameter is listed with its data type, context in which the
 parameter can be set, and access privileges (if non-default access
 privileges have been granted).

	\dC[+] [pattern]
	
 Lists type casts.
 If pattern
 is specified, only casts whose source or target types match the
 pattern are listed.
 If + is appended to the command name, each object
 is listed with its associated description.

	\dd[S] [pattern]
	
 Shows the descriptions of objects of type constraint,
 operator class, operator family,
 rule, and trigger. All
 other comments may be viewed by the respective backslash commands for
 those object types.

\dd displays descriptions for objects matching the
 pattern, or of visible
 objects of the appropriate type if no argument is given. But in either
 case, only objects that have a description are listed.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.

 Descriptions for objects can be created with the COMMENT
 SQL command.

	\dD[S+] [pattern]
	
 Lists domains. If pattern
 is specified, only domains whose names match the pattern are shown.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.
 If + is appended to the command name, each object
 is listed with its associated permissions and description.

	\ddp [pattern]
	
 Lists default access privilege settings. An entry is shown for
 each role (and schema, if applicable) for which the default
 privilege settings have been changed from the built-in defaults.
 If pattern is
 specified, only entries whose role name or schema name matches
 the pattern are listed.

 The ALTER DEFAULT
 PRIVILEGES command is used to set default access
 privileges. The meaning of the privilege display is explained in
 the section called “Privileges”.

	\dE[S+] [pattern], \di[S+] [pattern], \dm[S+] [pattern], \ds[S+] [pattern], \dt[S+] [pattern], \dv[S+] [pattern]
	
 In this group of commands, the letters E,
 i, m, s,
 t, and v
 stand for foreign table, index, materialized view,
 sequence, table, and view,
 respectively.
 You can specify any or all of
 these letters, in any order, to obtain a listing of objects
 of these types. For example, \dti lists
 tables and indexes. If + is
 appended to the command name, each object is listed with its
 persistence status (permanent, temporary, or unlogged),
 physical size on disk, and associated description if any.
 If pattern is
 specified, only objects whose names match the pattern are listed.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.

	\des[+] [pattern]
	
 Lists foreign servers (mnemonic: “external
 servers”).
 If pattern is
 specified, only those servers whose name matches the pattern
 are listed. If the form \des+ is used, a
 full description of each server is shown, including the
 server's access privileges, type, version, options, and description.

	\det[+] [pattern]
	
 Lists foreign tables (mnemonic: “external tables”).
 If pattern is
 specified, only entries whose table name or schema name matches
 the pattern are listed. If the form \det+
 is used, generic options and the foreign table description
 are also displayed.

	\deu[+] [pattern]
	
 Lists user mappings (mnemonic: “external
 users”).
 If pattern is
 specified, only those mappings whose user names match the
 pattern are listed. If the form \deu+ is
 used, additional information about each mapping is shown.

Caution

 \deu+ might also display the user name and
 password of the remote user, so care should be taken not to
 disclose them.

	\dew[+] [pattern]
	
 Lists foreign-data wrappers (mnemonic: “external
 wrappers”).
 If pattern is
 specified, only those foreign-data wrappers whose name matches
 the pattern are listed. If the form \dew+
 is used, the access privileges, options, and description of the
 foreign-data wrapper are also shown.

	\df[anptwS+] [pattern [arg_pattern ...]]
	
 Lists functions, together with their result data types, argument data
 types, and function types, which are classified as “agg”
 (aggregate), “normal”, “procedure”, “trigger”, or “window”.
 To display only functions
 of specific type(s), add the corresponding letters a,
 n, p, t, or w to the command.
 If pattern is specified, only
 functions whose names match the pattern are shown.
 Any additional arguments are type-name patterns, which are matched
 to the type names of the first, second, and so on arguments of the
 function. (Matching functions can have more arguments than what
 you specify. To prevent that, write a dash - as
 the last arg_pattern.)
 By default, only user-created
 objects are shown; supply a pattern or the S
 modifier to include system objects.
 If the form \df+ is used, additional information
 about each function is shown, including volatility,
 parallel safety, owner, security classification, access privileges,
 language, internal name (for C and internal functions only),
 and description.
 Source code for a specific function can be seen
 using \sf.

	\dF[+] [pattern]
	
 Lists text search configurations.
 If pattern is specified,
 only configurations whose names match the pattern are shown.
 If the form \dF+ is used, a full description of
 each configuration is shown, including the underlying text search
 parser and the dictionary list for each parser token type.

	\dFd[+] [pattern]
	
 Lists text search dictionaries.
 If pattern is specified,
 only dictionaries whose names match the pattern are shown.
 If the form \dFd+ is used, additional information
 is shown about each selected dictionary, including the underlying
 text search template and the option values.

	\dFp[+] [pattern]
	
 Lists text search parsers.
 If pattern is specified,
 only parsers whose names match the pattern are shown.
 If the form \dFp+ is used, a full description of
 each parser is shown, including the underlying functions and the
 list of recognized token types.

	\dFt[+] [pattern]
	
 Lists text search templates.
 If pattern is specified,
 only templates whose names match the pattern are shown.
 If the form \dFt+ is used, additional information
 is shown about each template, including the underlying function names.

	\dg[S+] [pattern]
	
 Lists database roles.
 (Since the concepts of “users” and “groups” have been
 unified into “roles”, this command is now equivalent to
 \du.)
 By default, only user-created roles are shown; supply the
 S modifier to include system roles.
 If pattern is specified,
 only those roles whose names match the pattern are listed.
 If the form \dg+ is used, additional information
 is shown about each role; currently this adds the comment for each
 role.

	\dl[+]
	
 This is an alias for \lo_list, which shows a
 list of large objects.
 If + is appended to the command name,
 each large object is listed with its associated permissions,
 if any.

	\dL[S+] [pattern]
	
 Lists procedural languages. If pattern
 is specified, only languages whose names match the pattern are listed.
 By default, only user-created languages
 are shown; supply the S modifier to include system
 objects. If + is appended to the command name, each
 language is listed with its call handler, validator, access privileges,
 and whether it is a system object.

	\dn[S+] [pattern]
	
 Lists schemas (namespaces). If pattern
 is specified, only schemas whose names match the pattern are listed.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system objects.
 If + is appended to the command name, each object
 is listed with its associated permissions and description, if any.

	\do[S+] [pattern [arg_pattern [arg_pattern]]]
	
 Lists operators with their operand and result types.
 If pattern is
 specified, only operators whose names match the pattern are listed.
 If one arg_pattern is
 specified, only prefix operators whose right argument's type name
 matches that pattern are listed.
 If two arg_patterns
 are specified, only binary operators whose argument type names match
 those patterns are listed. (Alternatively, write -
 for the unused argument of a unary operator.)
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.
 If + is appended to the command name,
 additional information about each operator is shown, currently just
 the name of the underlying function.

	\dO[S+] [pattern]
	
 Lists collations.
 If pattern is
 specified, only collations whose names match the pattern are
 listed. By default, only user-created objects are shown;
 supply a pattern or the S modifier to
 include system objects. If + is appended
 to the command name, each collation is listed with its associated
 description, if any.
 Note that only collations usable with the current database's encoding
 are shown, so the results may vary in different databases of the
 same installation.

	\dp[S] [pattern]
	
 Lists tables, views and sequences with their
 associated access privileges.
 If pattern is
 specified, only tables, views and sequences whose names match the
 pattern are listed. By default only user-created objects are shown;
 supply a pattern or the S modifier to include
 system objects.

 The GRANT and
 REVOKE
 commands are used to set access privileges. The meaning of the
 privilege display is explained in
 the section called “Privileges”.

	\dP[itn+] [pattern]
	
 Lists partitioned relations.
 If pattern
 is specified, only entries whose name matches the pattern are listed.
 The modifiers t (tables) and i
 (indexes) can be appended to the command, filtering the kind of
 relations to list. By default, partitioned tables and indexes are
 listed.

 If the modifier n (“nested”) is used,
 or a pattern is specified, then non-root partitioned relations are
 included, and a column is shown displaying the parent of each
 partitioned relation.

 If + is appended to the command name, the sum of the
 sizes of each relation's partitions is also displayed, along with the
 relation's description.
 If n is combined with +, two
 sizes are shown: one including the total size of directly-attached
 leaf partitions, and another showing the total size of all partitions,
 including indirectly attached sub-partitions.

	\drds [role-pattern [database-pattern]]
	
 Lists defined configuration settings. These settings can be
 role-specific, database-specific, or both.
 role-pattern and
 database-pattern are used to select
 specific roles and databases to list, respectively. If omitted, or if
 * is specified, all settings are listed, including those
 not role-specific or database-specific, respectively.

 The ALTER ROLE and
 ALTER DATABASE
 commands are used to define per-role and per-database configuration
 settings.

	\drg[S] [pattern]
	
 Lists information about each granted role membership, including
 assigned options (ADMIN,
 INHERIT and/or SET) and grantor.
 See the GRANT
 command for information about role memberships.

 By default, only grants to user-created roles are shown; supply the
 S modifier to include system roles.
 If pattern is specified,
 only grants to those roles whose names match the pattern are listed.

	\dRp[+] [pattern]
	
 Lists replication publications.
 If pattern is
 specified, only those publications whose names match the pattern are
 listed.
 If + is appended to the command name, the tables and
 schemas associated with each publication are shown as well.

	\dRs[+] [pattern]
	
 Lists replication subscriptions.
 If pattern is
 specified, only those subscriptions whose names match the pattern are
 listed.
 If + is appended to the command name, additional
 properties of the subscriptions are shown.

	\dT[S+] [pattern]
	
 Lists data types.
 If pattern is
 specified, only types whose names match the pattern are listed.
 If + is appended to the command name, each type is
 listed with its internal name and size, its allowed values
 if it is an enum type, and its associated permissions.
 By default, only user-created objects are shown; supply a
 pattern or the S modifier to include system
 objects.

	\du[S+] [pattern]
	
 Lists database roles.
 (Since the concepts of “users” and “groups” have been
 unified into “roles”, this command is now equivalent to
 \dg.)
 By default, only user-created roles are shown; supply the
 S modifier to include system roles.
 If pattern is specified,
 only those roles whose names match the pattern are listed.
 If the form \du+ is used, additional information
 is shown about each role; currently this adds the comment for each
 role.

	\dx[+] [pattern]
	
 Lists installed extensions.
 If pattern
 is specified, only those extensions whose names match the pattern
 are listed.
 If the form \dx+ is used, all the objects belonging
 to each matching extension are listed.

	\dX [pattern]
	
 Lists extended statistics.
 If pattern
 is specified, only those extended statistics whose names match the
 pattern are listed.

 The status of each kind of extended statistics is shown in a column
 named after its statistic kind (e.g. Ndistinct).
 defined means that it was requested when creating
 the statistics, and NULL means it wasn't requested.
 You can use pg_stats_ext if you'd like to
 know whether ANALYZE
 was run and statistics are available to the planner.

	\dy[+] [pattern]
	
 Lists event triggers.
 If pattern
 is specified, only those event triggers whose names match the pattern
 are listed.
 If + is appended to the command name, each object
 is listed with its associated description.

	\e or \edit [filename] [line_number]
	
 If filename is
 specified, the file is edited; after the editor exits, the file's
 content is copied into the current query buffer. If no filename is given, the current query
 buffer is copied to a temporary file which is then edited in the same
 fashion. Or, if the current query buffer is empty, the most recently
 executed query is copied to a temporary file and edited in the same
 fashion.

 If you edit a file or the previous query, and you quit the editor without
 modifying the file, the query buffer is cleared.
 Otherwise, the new contents of the query buffer are re-parsed according to
 the normal rules of psql, treating the
 whole buffer as a single line. Any complete queries are immediately
 executed; that is, if the query buffer contains or ends with a
 semicolon, everything up to that point is executed and removed from
 the query buffer. Whatever remains in the query buffer is
 redisplayed. Type semicolon or \g to send it,
 or \r to cancel it by clearing the query buffer.

 Treating the buffer as a single line primarily affects meta-commands:
 whatever is in the buffer after a meta-command will be taken as
 argument(s) to the meta-command, even if it spans multiple lines.
 (Thus you cannot make meta-command-using scripts this way.
 Use \i for that.)

 If a line number is specified, psql will
 position the cursor on the specified line of the file or query buffer.
 Note that if a single all-digits argument is given,
 psql assumes it is a line number,
 not a file name.

Tip

 See Environment, below, for how to
 configure and customize your editor.

	\echo text [...]
	
 Prints the evaluated arguments to standard output, separated by
 spaces and followed by a newline. This can be useful to
 intersperse information in the output of scripts. For example:

=> \echo `date`
Tue Oct 26 21:40:57 CEST 1999

 If the first argument is an unquoted -n the trailing
 newline is not written (nor is the first argument).

Tip

 If you use the \o command to redirect your
 query output you might wish to use \qecho
 instead of this command. See also \warn.

	\ef [function_description [line_number]]
	
 This command fetches and edits the definition of the named function or procedure,
 in the form of a CREATE OR REPLACE FUNCTION or
 CREATE OR REPLACE PROCEDURE command.
 Editing is done in the same way as for \edit.
 If you quit the editor without saving, the statement is discarded.
 If you save and exit the editor, the updated command is executed immediately
 if you added a semicolon to it. Otherwise it is redisplayed;
 type semicolon or \g to send it, or \r
 to cancel.

 The target function can be specified by name alone, or by name
 and arguments, for example foo(integer, text).
 The argument types must be given if there is more
 than one function of the same name.

 If no function is specified, a blank CREATE FUNCTION
 template is presented for editing.

 If a line number is specified, psql will
 position the cursor on the specified line of the function body.
 (Note that the function body typically does not begin on the first
 line of the file.)

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \ef, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments.

Tip

 See Environment, below, for how to
 configure and customize your editor.

	\encoding [encoding]
	
 Sets the client character set encoding. Without an argument, this command
 shows the current encoding.

	\errverbose
	
 Repeats the most recent server error message at maximum
 verbosity, as though VERBOSITY were set
 to verbose and SHOW_CONTEXT were
 set to always.

	\ev [view_name [line_number]]
	
 This command fetches and edits the definition of the named view,
 in the form of a CREATE OR REPLACE VIEW command.
 Editing is done in the same way as for \edit.
 If you quit the editor without saving, the statement is discarded.
 If you save and exit the editor, the updated command is executed immediately
 if you added a semicolon to it. Otherwise it is redisplayed;
 type semicolon or \g to send it, or \r
 to cancel.

 If no view is specified, a blank CREATE VIEW
 template is presented for editing.

 If a line number is specified, psql will
 position the cursor on the specified line of the view definition.

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \ev, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments.

	\f [string]
	
 Sets the field separator for unaligned query output. The default
 is the vertical bar (|). It is equivalent to
 \pset fieldsep.

	\g [(option=value [...])] [filename], \g [(option=value [...])] [|command]
	
 Sends the current query buffer to the server for execution.

 If parentheses appear after \g, they surround a
 space-separated list
 of option=value
 formatting-option clauses, which are interpreted in the same way
 as \pset
 option
 value commands, but take
 effect only for the duration of this query. In this list, spaces are
 not allowed around = signs, but are required
 between option clauses.
 If =value
 is omitted, the
 named option is changed
 in the same way as for
 \pset option
 with no explicit value.

 If a filename
 or |command
 argument is given, the query's output is written to the named
 file or piped to the given shell command, instead of displaying it as
 usual. The file or command is written to only if the query
 successfully returns zero or more tuples, not if the query fails or
 is a non-data-returning SQL command.

 If the current query buffer is empty, the most recently sent query is
 re-executed instead. Except for that behavior, \g
 without any arguments is essentially equivalent to a semicolon.
 With arguments, \g provides
 a “one-shot” alternative to the \o
 command, and additionally allows one-shot adjustments of the
 output formatting options normally set by \pset.

 When the last argument begins with |, the entire
 remainder of the line is taken to be
 the command to execute,
 and neither variable interpolation nor backquote expansion are
 performed in it. The rest of the line is simply passed literally to
 the shell.

	\gdesc
	
 Shows the description (that is, the column names and data types)
 of the result of the current query buffer. The query is not
 actually executed; however, if it contains some type of syntax
 error, that error will be reported in the normal way.

 If the current query buffer is empty, the most recently sent query
 is described instead.

	\getenv psql_var env_var
	
 Gets the value of the environment
 variable env_var
 and assigns it to the psql
 variable psql_var.
 If env_var is
 not defined in the psql process's
 environment, psql_var
 is not changed. Example:

=> \getenv home HOME
=> \echo :home
/home/postgres

	\gexec
	
 Sends the current query buffer to the server, then treats
 each column of each row of the query's output (if any) as an SQL
 statement to be executed. For example, to create an index on each
 column of my_table:

=> SELECT format('create index on my_table(%I)', attname)
-> FROM pg_attribute
-> WHERE attrelid = 'my_table'::regclass AND attnum > 0
-> ORDER BY attnum
-> \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

 The generated queries are executed in the order in which the rows
 are returned, and left-to-right within each row if there is more
 than one column. NULL fields are ignored. The generated queries
 are sent literally to the server for processing, so they cannot be
 psql meta-commands nor contain psql
 variable references. If any individual query fails, execution of
 the remaining queries continues
 unless ON_ERROR_STOP is set. Execution of each
 query is subject to ECHO processing.
 (Setting ECHO to all
 or queries is often advisable when
 using \gexec.) Query logging, single-step mode,
 timing, and other query execution features apply to each generated
 query as well.

 If the current query buffer is empty, the most recently sent query
 is re-executed instead.

	\gset [prefix]
	
 Sends the current query buffer to the server and stores the
 query's output into psql variables
 (see Variables below).
 The query to be executed must return exactly one row. Each column of
 the row is stored into a separate variable, named the same as the
 column. For example:

=> SELECT 'hello' AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10

 If you specify a prefix,
 that string is prepended to the query's column names to create the
 variable names to use:

=> SELECT 'hello' AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

 If a column result is NULL, the corresponding variable is unset
 rather than being set.

 If the query fails or does not return one row,
 no variables are changed.

 If the current query buffer is empty, the most recently sent query
 is re-executed instead.

	\gx [(option=value [...])] [filename], \gx [(option=value [...])] [|command]
	
 \gx is equivalent to \g, except
 that it forces expanded output mode for this query, as
 if expanded=on were included in the list of
 \pset options. See also \x.

	\h or \help [command]
	
 Gives syntax help on the specified SQL
 command. If command
 is not specified, then psql will list
 all the commands for which syntax help is available. If
 command is an
 asterisk (*), then syntax help on all
 SQL commands is shown.

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \help, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments.

Note

 To simplify typing, commands that consists of several words do
 not have to be quoted. Thus it is fine to type \help
 alter table.

	\H or \html
	
 Turns on HTML query output format. If the
 HTML format is already on, it is switched
 back to the default aligned text format. This command is for
 compatibility and convenience, but see \pset
 about setting other output options.

	\i or \include filename
	
 Reads input from the file filename and executes it as
 though it had been typed on the keyboard.

 If filename is -
 (hyphen), then standard input is read until an EOF indication
 or \q meta-command. This can be used to intersperse
 interactive input with input from files. Note that Readline behavior
 will be used only if it is active at the outermost level.

Note

 If you want to see the lines on the screen as they are read you
 must set the variable ECHO to
 all.

	\if expression, \elif expression, \else, \endif
	
 This group of commands implements nestable conditional blocks.
 A conditional block must begin with an \if and end
 with an \endif. In between there may be any number
 of \elif clauses, which may optionally be followed
 by a single \else clause. Ordinary queries and
 other types of backslash commands may (and usually do) appear between
 the commands forming a conditional block.

 The \if and \elif commands read
 their argument(s) and evaluate them as a Boolean expression. If the
 expression yields true then processing continues
 normally; otherwise, lines are skipped until a
 matching \elif, \else,
 or \endif is reached. Once
 an \if or \elif test has
 succeeded, the arguments of later \elif commands in
 the same block are not evaluated but are treated as false. Lines
 following an \else are processed only if no earlier
 matching \if or \elif succeeded.

 The expression argument
 of an \if or \elif command
 is subject to variable interpolation and backquote expansion, just
 like any other backslash command argument. After that it is evaluated
 like the value of an on/off option variable. So a valid value
 is any unambiguous case-insensitive match for one of:
 true, false, 1,
 0, on, off,
 yes, no. For example,
 t, T, and tR
 will all be considered to be true.

 Expressions that do not properly evaluate to true or false will
 generate a warning and be treated as false.

 Lines being skipped are parsed normally to identify queries and
 backslash commands, but queries are not sent to the server, and
 backslash commands other than conditionals
 (\if, \elif,
 \else, \endif) are
 ignored. Conditional commands are checked only for valid nesting.
 Variable references in skipped lines are not expanded, and backquote
 expansion is not performed either.

 All the backslash commands of a given conditional block must appear in
 the same source file. If EOF is reached on the main input file or an
 \include-ed file before all local
 \if-blocks have been closed,
 then psql will raise an error.

 Here is an example:

-- check for the existence of two separate records in the database and store
-- the results in separate psql variables
SELECT
 EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as is_customer,
 EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as is_employee
\gset
\if :is_customer
 SELECT * FROM customer WHERE customer_id = 123;
\elif :is_employee
 \echo 'is not a customer but is an employee'
 SELECT * FROM employee WHERE employee_id = 456;
\else
 \if yes
 \echo 'not a customer or employee'
 \else
 \echo 'this will never print'
 \endif
\endif

	\ir or \include_relative filename
	
 The \ir command is similar to \i, but resolves
 relative file names differently. When executing in interactive mode,
 the two commands behave identically. However, when invoked from a
 script, \ir interprets file names relative to the
 directory in which the script is located, rather than the current
 working directory.

	\l[+] or \list[+] [pattern]
	
 List the databases in the server and show their names, owners,
 character set encodings, and access privileges.
 If pattern is specified,
 only databases whose names match the pattern are listed.
 If + is appended to the command name, database
 sizes, default tablespaces, and descriptions are also displayed.
 (Size information is only available for databases that the current
 user can connect to.)

	\lo_export loid filename
	
 Reads the large object with OID loid from the database and
 writes it to filename. Note that this is
 subtly different from the server function
 lo_export, which acts with the permissions
 of the user that the database server runs as and on the server's
 file system.

Tip

 Use \lo_list to find out the large object's
 OID.

	\lo_import filename [comment]
	
 Stores the file into a PostgreSQL™
 large object. Optionally, it associates the given
 comment with the object. Example:

foo=> \lo_import '/home/peter/pictures/photo.xcf' 'a picture of me'
lo_import 152801

 The response indicates that the large object received object
 ID 152801, which can be used to access the newly-created large
 object in the future. For the sake of readability, it is
 recommended to always associate a human-readable comment with
 every object. Both OIDs and comments can be viewed with the
 \lo_list command.

 Note that this command is subtly different from the server-side
 lo_import because it acts as the local user
 on the local file system, rather than the server's user and file
 system.

	\lo_list[+]
	
 Shows a list of all PostgreSQL™
 large objects currently stored in the database,
 along with any comments provided for them.
 If + is appended to the command name,
 each large object is listed with its associated permissions,
 if any.

	\lo_unlink loid
	
 Deletes the large object with OID
 loid from the
 database.

Tip

 Use \lo_list to find out the large object's
 OID.

	\o or \out [filename], \o or \out [|command]
	
 Arranges to save future query results to the file filename or pipe future results
 to the shell command command. If no argument is
 specified, the query output is reset to the standard output.

 If the argument begins with |, then the entire remainder
 of the line is taken to be
 the command to execute,
 and neither variable interpolation nor backquote expansion are
 performed in it. The rest of the line is simply passed literally to
 the shell.

 “Query results” includes all tables, command
 responses, and notices obtained from the database server, as
 well as output of various backslash commands that query the
 database (such as \d); but not error
 messages.

Tip

 To intersperse text output in between query results, use
 \qecho.

	\p or \print
	
 Print the current query buffer to the standard output.
 If the current query buffer is empty, the most recently executed query
 is printed instead.

	\password [username]
	
 Changes the password of the specified user (by default, the current
 user). This command prompts for the new password, encrypts it, and
 sends it to the server as an ALTER ROLE command. This
 makes sure that the new password does not appear in cleartext in the
 command history, the server log, or elsewhere.

	\prompt [text] name
	
 Prompts the user to supply text, which is assigned to the variable
 name.
 An optional prompt string, text, can be specified. (For multiword
 prompts, surround the text with single quotes.)

 By default, \prompt uses the terminal for input and
 output. However, if the -f command line switch was
 used, \prompt uses standard input and standard output.

	\pset [option [value]]
	
 This command sets options affecting the output of query result tables.
 option
 indicates which option is to be set. The semantics of
 value vary depending
 on the selected option. For some options, omitting value causes the option to be toggled
 or unset, as described under the particular option. If no such
 behavior is mentioned, then omitting
 value just results in
 the current setting being displayed.

 \pset without any arguments displays the current status
 of all printing options.

 Adjustable printing options are:

	border
	
 The value must be a
 number. In general, the higher
 the number the more borders and lines the tables will have,
 but details depend on the particular format.
 In HTML format, this will translate directly
 into the border=... attribute.
 In most other formats only values 0 (no border), 1 (internal
 dividing lines), and 2 (table frame) make sense, and values above 2
 will be treated the same as border = 2.
 The latex and latex-longtable
 formats additionally allow a value of 3 to add dividing lines
 between data rows.

	columns
	
 Sets the target width for the wrapped format, and also
 the width limit for determining whether output is wide enough to
 require the pager or switch to the vertical display in expanded auto
 mode.
 Zero (the default) causes the target width to be controlled by the
 environment variable COLUMNS, or the detected screen width
 if COLUMNS is not set.
 In addition, if columns is zero then the
 wrapped format only affects screen output.
 If columns is nonzero then file and pipe output is
 wrapped to that width as well.

	csv_fieldsep
	
 Specifies the field separator to be used in
 CSV output format. If the separator character
 appears in a field's value, that field is output within double
 quotes, following standard CSV rules.
 The default is a comma.

	expanded (or x)
	
 If value is specified it
 must be either on or off, which
 will enable or disable expanded mode, or auto.
 If value is omitted the
 command toggles between the on and off settings. When expanded mode
 is enabled, query results are displayed in two columns, with the
 column name on the left and the data on the right. This mode is
 useful if the data wouldn't fit on the screen in the
 normal “horizontal” mode. In the auto setting, the
 expanded mode is used whenever the query output has more than one
 column and is wider than the screen; otherwise, the regular mode is
 used. The auto setting is only
 effective in the aligned and wrapped formats. In other formats, it
 always behaves as if the expanded mode is off.

	fieldsep
	
 Specifies the field separator to be used in unaligned output
 format. That way one can create, for example, tab-separated
 output, which other programs might prefer. To
 set a tab as field separator, type \pset fieldsep
 '\t'. The default field separator is
 '|' (a vertical bar).

	fieldsep_zero
	
 Sets the field separator to use in unaligned output format to a zero
 byte.

	footer
	
 If value is specified
 it must be either on or off
 which will enable or disable display of the table footer
 (the (n rows) count).
 If value is omitted the
 command toggles footer display on or off.

	format
	
 Sets the output format to one of aligned,
 asciidoc,
 csv,
 html,
 latex,
 latex-longtable, troff-ms,
 unaligned, or wrapped.
 Unique abbreviations are allowed.

aligned format is the standard,
 human-readable, nicely formatted text output; this is the default.

unaligned format writes all columns of a row on one
 line, separated by the currently active field separator. This
 is useful for creating output that might be intended to be read
 in by other programs, for example, tab-separated or comma-separated
 format. However, the field separator character is not treated
 specially if it appears in a column's value;
 so CSV format may be better suited for such
 purposes.

csv format

 writes column values separated by commas, applying the quoting
 rules described in
 RFC 4180.
 This output is compatible with the CSV format of the server's
 COPY command.
 A header line with column names is generated unless
 the tuples_only parameter is
 on. Titles and footers are not printed.
 Each row is terminated by the system-dependent end-of-line character,
 which is typically a single newline (\n) for
 Unix-like systems or a carriage return and newline sequence
 (\r\n) for Microsoft Windows.
 Field separator characters other than comma can be selected with
 \pset csv_fieldsep.

wrapped format is like aligned but wraps
 wide data values across lines to make the output fit in the target
 column width. The target width is determined as described under
 the columns option. Note that psql will
 not attempt to wrap column header titles; therefore,
 wrapped format behaves the same as aligned
 if the total width needed for column headers exceeds the target.

 The asciidoc, html,
 latex, latex-longtable, and
 troff-ms formats put out tables that are intended
 to be included in documents using the respective mark-up
 language. They are not complete documents! This might not be
 necessary in HTML, but in
 LaTeX you must have a complete
 document wrapper.
 The latex format
 uses LaTeX's tabular
 environment.
 The latex-longtable format
 requires the LaTeX
 longtable and booktabs packages.

	linestyle
	
 Sets the border line drawing style to one
 of ascii, old-ascii,
 or unicode.
 Unique abbreviations are allowed. (That would mean one
 letter is enough.)
 The default setting is ascii.
 This option only affects the aligned and
 wrapped output formats.

ascii style uses plain ASCII
 characters. Newlines in data are shown using
 a + symbol in the right-hand margin.
 When the wrapped format wraps data from
 one line to the next without a newline character, a dot
 (.) is shown in the right-hand margin of the first line,
 and again in the left-hand margin of the following line.

old-ascii style uses plain ASCII
 characters, using the formatting style used
 in PostgreSQL™ 8.4 and earlier.
 Newlines in data are shown using a :
 symbol in place of the left-hand column separator.
 When the data is wrapped from one line
 to the next without a newline character, a ;
 symbol is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters.
 Newlines in data are shown using a carriage return symbol
 in the right-hand margin. When the data is wrapped from one line
 to the next without a newline character, an ellipsis symbol
 is shown in the right-hand margin of the first line, and
 again in the left-hand margin of the following line.

 When the border setting is greater than zero,
 the linestyle option also determines the
 characters with which the border lines are drawn.
 Plain ASCII characters work everywhere, but
 Unicode characters look nicer on displays that recognize them.

	null
	
 Sets the string to be printed in place of a null value.
 The default is to print nothing, which can easily be mistaken for
 an empty string. For example, one might prefer \pset null
 '(null)'.

	numericlocale
	
 If value is specified
 it must be either on or off
 which will enable or disable display of a locale-specific character
 to separate groups of digits to the left of the decimal marker.
 If value is omitted the
 command toggles between regular and locale-specific numeric output.

	pager
	
 Controls use of a pager program for query and psql
 help output.
 When the pager option is off, the pager
 program is not used. When the pager option is
 on, the pager is used when appropriate, i.e., when the
 output is to a terminal and will not fit on the screen.
 The pager option can also be set to always,
 which causes the pager to be used for all terminal output regardless
 of whether it fits on the screen. \pset pager
 without a value
 toggles pager use on and off.

 If the environment variable PSQL_PAGER
 or PAGER is set, output to be paged is piped to the
 specified program. Otherwise a platform-dependent default program
 (such as more) is used.

 When using the \watch command to execute a query
 repeatedly, the environment variable PSQL_WATCH_PAGER
 is used to find the pager program instead, on Unix systems. This is
 configured separately because it may confuse traditional pagers, but
 can be used to send output to tools that understand
 psql's output format (such as
 pspg --stream).

	pager_min_lines
	
 If pager_min_lines is set to a number greater than the
 page height, the pager program will not be called unless there are
 at least this many lines of output to show. The default setting
 is 0.

	recordsep
	
 Specifies the record (line) separator to use in unaligned
 output format. The default is a newline character.

	recordsep_zero
	
 Sets the record separator to use in unaligned output format to a zero
 byte.

	tableattr (or T)
	
 In HTML format, this specifies attributes
 to be placed inside the table tag. This
 could for example be cellpadding or
 bgcolor. Note that you probably don't want
 to specify border here, as that is already
 taken care of by \pset border.
 If no
 value is given,
 the table attributes are unset.

 In latex-longtable format, this controls
 the proportional width of each column containing a left-aligned
 data type. It is specified as a whitespace-separated list of values,
 e.g., '0.2 0.2 0.6'. Unspecified output columns
 use the last specified value.

	title (or C)
	
 Sets the table title for any subsequently printed tables. This
 can be used to give your output descriptive tags. If no
 value is given,
 the title is unset.

	tuples_only (or t)
	
 If value is specified
 it must be either on or off
 which will enable or disable tuples-only mode.
 If value is omitted the
 command toggles between regular and tuples-only output.
 Regular output includes extra information such
 as column headers, titles, and various footers. In tuples-only
 mode, only actual table data is shown.

	unicode_border_linestyle
	
 Sets the border drawing style for the unicode
 line style to one of single
 or double.

	unicode_column_linestyle
	
 Sets the column drawing style for the unicode
 line style to one of single
 or double.

	unicode_header_linestyle
	
 Sets the header drawing style for the unicode
 line style to one of single
 or double.

	xheader_width
	
 Sets the maximum width of the header for expanded output to one of
 full (the default value),
 column, page, or an
 integer value.

 full: the expanded header is not truncated,
 and will be as wide as the widest output line.

 column: truncate the header line to the
 width of the first column.

 page: truncate the header line to the terminal
 width.

 integer value: specify
 the exact maximum width of the header line.

 Illustrations of how these different formats look can be seen in
 Examples, below.

Tip

 There are various shortcut commands for \pset. See
 \a, \C, \f,
 \H, \t, \T,
 and \x.

	\q or \quit
	
 Quits the psql program.
 In a script file, only execution of that script is terminated.

	\qecho text [...]
	
 This command is identical to \echo except
 that the output will be written to the query output channel, as
 set by \o.

	\r or \reset
	
 Resets (clears) the query buffer.

	\restrict restrict_key
	
 Enter "restricted" mode with the provided key. In this mode, the only
 allowed meta-command is \unrestrict, to exit
 restricted mode. The key may contain only alphanumeric characters.

 This command is primarily intended for use in plain-text dumps
 generated by pg_dump,
 pg_dumpall, and
 pg_restore, but it may be useful elsewhere.

	\s [filename]
	
 Print psql's command line history
 to filename.
 If filename is omitted,
 the history is written to the standard output (using the pager if
 appropriate). This command is not available
 if psql was built
 without Readline support.

	\set [name [value [...]]]
	
 Sets the psql variable name to value, or if more than one value
 is given, to the concatenation of all of them. If only one
 argument is given, the variable is set to an empty-string value. To
 unset a variable, use the \unset command.

\set without any arguments displays the names and values
 of all currently-set psql variables.

 Valid variable names can contain letters, digits, and
 underscores. See Variables below for details.
 Variable names are case-sensitive.

 Certain variables are special, in that they
 control psql's behavior or are
 automatically set to reflect connection state. These variables are
 documented in Variables, below.

Note

 This command is unrelated to the SQL
 command SET.

	\setenv name [value]
	
 Sets the environment variable name to value, or if the
 value is
 not supplied, unsets the environment variable. Example:

testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

	\sf[+] function_description
	
 This command fetches and shows the definition of the named function or procedure,
 in the form of a CREATE OR REPLACE FUNCTION or
 CREATE OR REPLACE PROCEDURE command.
 The definition is printed to the current query output channel,
 as set by \o.

 The target function can be specified by name alone, or by name
 and arguments, for example foo(integer, text).
 The argument types must be given if there is more
 than one function of the same name.

 If + is appended to the command name, then the
 output lines are numbered, with the first line of the function body
 being line 1.

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \sf, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments.

	\sv[+] view_name
	
 This command fetches and shows the definition of the named view,
 in the form of a CREATE OR REPLACE VIEW command.
 The definition is printed to the current query output channel,
 as set by \o.

 If + is appended to the command name, then the
 output lines are numbered from 1.

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \sv, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments.

	\t
	
 Toggles the display of output column name headings and row count
 footer. This command is equivalent to \pset
 tuples_only and is provided for convenience.

	\T table_options
	
 Specifies attributes to be placed within the
 table tag in HTML
 output format. This command is equivalent to \pset
 tableattr table_options.

	\timing [on | off]
	
 With a parameter, turns displaying of how long each SQL statement
 takes on or off. Without a parameter, toggles the display between
 on and off. The display is in milliseconds; intervals longer than
 1 second are also shown in minutes:seconds format, with hours and
 days fields added if needed.

	\unrestrict restrict_key
	
 Exit "restricted" mode (i.e., where all other meta-commands are
 blocked), provided the specified key matches the one given to
 \restrict when restricted mode was entered.

 This command is primarily intended for use in plain-text dumps
 generated by pg_dump,
 pg_dumpall, and
 pg_restore, but it may be useful elsewhere.

	\unset name
	
 Unsets (deletes) the psql variable name.

 Most variables that control psql's behavior
 cannot be unset; instead, an \unset command is interpreted
 as setting them to their default values.
 See Variables below.

	\w or \write filename, \w or \write |command
	
 Writes the current query buffer to the file filename or pipes it to the shell
 command command.
 If the current query buffer is empty, the most recently executed query
 is written instead.

 If the argument begins with |, then the entire remainder
 of the line is taken to be
 the command to execute,
 and neither variable interpolation nor backquote expansion are
 performed in it. The rest of the line is simply passed literally to
 the shell.

	\warn text [...]
	
 This command is identical to \echo except
 that the output will be written to psql's
 standard error channel, rather than standard output.

	\watch [i[nterval]=seconds] [c[ount]=times] [seconds]
	
 Repeatedly execute the current query buffer (as \g does)
 until interrupted, or the query fails, or the execution count limit
 (if given) is reached. Wait the specified number of
 seconds (default 2) between executions. For backwards compatibility,
 seconds can be specified
 with or without an interval= prefix.
 Each query result is
 displayed with a header that includes the \pset title
 string (if any), the time as of query start, and the delay interval.

 If the current query buffer is empty, the most recently sent query
 is re-executed instead.

	\x [on | off | auto]
	
 Sets or toggles expanded table formatting mode. As such it is equivalent to
 \pset expanded.

	\z[S] [pattern]
	
 Lists tables, views and sequences with their
 associated access privileges.
 If a pattern is
 specified, only tables, views and sequences whose names match the
 pattern are listed. By default only user-created objects are shown;
 supply a pattern or the S modifier to include
 system objects.

 This is an alias for \dp (“display
 privileges”).

	\! [command]
	
 With no argument, escapes to a sub-shell; psql
 resumes when the sub-shell exits. With an argument, executes the
 shell command command.

 Unlike most other meta-commands, the entire remainder of the line is
 always taken to be the argument(s) of \!, and neither
 variable interpolation nor backquote expansion are performed in the
 arguments. The rest of the line is simply passed literally to the
 shell.

	\? [topic]
	
 Shows help information. The optional
 topic parameter
 (defaulting to commands) selects which part of psql is
 explained: commands describes psql's
 backslash commands; options describes the command-line
 options that can be passed to psql;
 and variables shows help about psql configuration
 variables.

	\;
	
 Backslash-semicolon is not a meta-command in the same way as the
 preceding commands; rather, it simply causes a semicolon to be
 added to the query buffer without any further processing.

 Normally, psql will dispatch an SQL command to the
 server as soon as it reaches the command-ending semicolon, even if
 more input remains on the current line. Thus for example entering

select 1; select 2; select 3;

 will result in the three SQL commands being individually sent to
 the server, with each one's results being displayed before
 continuing to the next command. However, a semicolon entered
 as \; will not trigger command processing, so that the
 command before it and the one after are effectively combined and
 sent to the server in one request. So for example

select 1\; select 2\; select 3;

 results in sending the three SQL commands to the server in a single
 request, when the non-backslashed semicolon is reached.
 The server executes such a request as a single transaction,
 unless there are explicit BEGIN/COMMIT
 commands included in the string to divide it into multiple
 transactions. (See the section called “Multiple Statements in a Simple Query”
 for more details about how the server handles multi-query strings.)

Patterns

 The various \d commands accept a pattern parameter to specify the
 object name(s) to be displayed. In the simplest case, a pattern
 is just the exact name of the object. The characters within a
 pattern are normally folded to lower case, just as in SQL names;
 for example, \dt FOO will display the table named
 foo. As in SQL names, placing double quotes around
 a pattern stops folding to lower case. Should you need to include
 an actual double quote character in a pattern, write it as a pair
 of double quotes within a double-quote sequence; again this is in
 accord with the rules for SQL quoted identifiers. For example,
 \dt "FOO""BAR" will display the table named
 FOO"BAR (not foo"bar). Unlike the normal
 rules for SQL names, you can put double quotes around just part
 of a pattern, for instance \dt FOO"FOO"BAR will display
 the table named fooFOObar.

 Whenever the pattern parameter
 is omitted completely, the \d commands display all objects
 that are visible in the current schema search path — this is
 equivalent to using * as the pattern.
 (An object is said to be visible if its
 containing schema is in the search path and no object of the same
 kind and name appears earlier in the search path. This is equivalent to the
 statement that the object can be referenced by name without explicit
 schema qualification.)
 To see all objects in the database regardless of visibility,
 use *.* as the pattern.

 Within a pattern, * matches any sequence of characters
 (including no characters) and ? matches any single character.
 (This notation is comparable to Unix shell file name patterns.)
 For example, \dt int* displays tables whose names
 begin with int. But within double quotes, *
 and ? lose these special meanings and are just matched
 literally.

 A relation pattern that contains a dot (.) is interpreted as a schema
 name pattern followed by an object name pattern. For example,
 \dt foo*.*bar* displays all tables whose table name
 includes bar that are in schemas whose schema name
 starts with foo. When no dot appears, then the pattern
 matches only objects that are visible in the current schema search path.
 Again, a dot within double quotes loses its special meaning and is matched
 literally. A relation pattern that contains two dots (.)
 is interpreted as a database name followed by a schema name pattern followed
 by an object name pattern. The database name portion will not be treated as
 a pattern and must match the name of the currently connected database, else
 an error will be raised.

 A schema pattern that contains a dot (.) is interpreted
 as a database name followed by a schema name pattern. For example,
 \dn mydb.*foo* displays all schemas whose schema name
 includes foo. The database name portion will not be
 treated as a pattern and must match the name of the currently connected
 database, else an error will be raised.

 Advanced users can use regular-expression notations such as character
 classes, for example [0-9] to match any digit. All regular
 expression special characters work as specified in
 the section called “POSIX Regular Expressions”, except for . which
 is taken as a separator as mentioned above, * which is
 translated to the regular-expression notation .*,
 ? which is translated to ., and
 $ which is matched literally. You can emulate
 these pattern characters at need by writing
 ? for .,
 (R+|) for
 R*, or
 (R|) for
 R?.
 $ is not needed as a regular-expression character since
 the pattern must match the whole name, unlike the usual
 interpretation of regular expressions (in other words, $
 is automatically appended to your pattern). Write * at the
 beginning and/or end if you don't wish the pattern to be anchored.
 Note that within double quotes, all regular expression special characters
 lose their special meanings and are matched literally. Also, the regular
 expression special characters are matched literally in operator name
 patterns (i.e., the argument of \do).

Advanced Features
Variables

 psql provides variable substitution
 features similar to common Unix command shells.
 Variables are simply name/value pairs, where the value
 can be any string of any length. The name must consist of letters
 (including non-Latin letters), digits, and underscores.

 To set a variable, use the psql meta-command
 \set. For example,

testdb=> \set foo bar

 sets the variable foo to the value
 bar. To retrieve the content of the variable, precede
 the name with a colon, for example:

testdb=> \echo :foo
bar

 This works in both regular SQL commands and meta-commands; there is
 more detail in SQL Interpolation, below.

 If you call \set without a second argument, the
 variable is set to an empty-string value. To unset (i.e., delete)
 a variable, use the command \unset. To show the
 values of all variables, call \set without any argument.

Note

 The arguments of \set are subject to the same
 substitution rules as with other commands. Thus you can construct
 interesting references such as \set :foo
 'something' and get “soft links” or
 “variable variables” of Perl™
 or PHP™ fame,
 respectively. Unfortunately (or fortunately?), there is no way to do
 anything useful with these constructs. On the other hand,
 \set bar :foo is a perfectly valid way to copy a
 variable.

 A number of these variables are treated specially
 by psql. They represent certain option
 settings that can be changed at run time by altering the value of
 the variable, or in some cases represent changeable state of
 psql.
 By convention, all specially treated variables' names
 consist of all upper-case ASCII letters (and possibly digits and
 underscores). To ensure maximum compatibility in the future, avoid
 using such variable names for your own purposes.

 Variables that control psql's behavior
 generally cannot be unset or set to invalid values. An \unset
 command is allowed but is interpreted as setting the variable to its
 default value. A \set command without a second argument is
 interpreted as setting the variable to on, for control
 variables that accept that value, and is rejected for others. Also,
 control variables that accept the values on
 and off will also accept other common spellings of Boolean
 values, such as true and false.

 The specially treated variables are:

	
 AUTOCOMMIT

	
 When on (the default), each SQL command is automatically
 committed upon successful completion. To postpone commit in this
 mode, you must enter a BEGIN or START
 TRANSACTION SQL command. When off or unset, SQL
 commands are not committed until you explicitly issue
 COMMIT or END. The autocommit-off
 mode works by issuing an implicit BEGIN for you, just
 before any command that is not already in a transaction block and
 is not itself a BEGIN or other transaction-control
 command, nor a command that cannot be executed inside a transaction
 block (such as VACUUM).

Note

 In autocommit-off mode, you must explicitly abandon any failed
 transaction by entering ABORT or ROLLBACK.
 Also keep in mind that if you exit the session
 without committing, your work will be lost.

Note

 The autocommit-on mode is PostgreSQL™'s traditional
 behavior, but autocommit-off is closer to the SQL spec. If you
 prefer autocommit-off, you might wish to set it in the system-wide
 psqlrc file or your
 ~/.psqlrc file.

	COMP_KEYWORD_CASE
	
 Determines which letter case to use when completing an SQL key word.
 If set to lower or upper, the
 completed word will be in lower or upper case, respectively. If set
 to preserve-lower
 or preserve-upper (the default), the completed word
 will be in the case of the word already entered, but words being
 completed without anything entered will be in lower or upper case,
 respectively.

	DBNAME
	
 The name of the database you are currently connected to. This is
 set every time you connect to a database (including program
 start-up), but can be changed or unset.

	ECHO
	
 If set to all, all nonempty input lines are printed
 to standard output as they are read. (This does not apply to lines
 read interactively.) To select this behavior on program
 start-up, use the switch -a. If set to
 queries,
 psql prints each query to standard output
 as it is sent to the server. The switch to select this behavior is
 -e. If set to errors, then only
 failed queries are displayed on standard error output. The switch
 for this behavior is -b. If set to
 none (the default), then no queries are displayed.

	ECHO_HIDDEN
	
 When this variable is set to on and a backslash command
 queries the database, the query is first shown.
 This feature helps you to study
 PostgreSQL™ internals and provide
 similar functionality in your own programs. (To select this behavior
 on program start-up, use the switch -E.) If you set
 this variable to the value noexec, the queries are
 just shown but are not actually sent to the server and executed.
 The default value is off.

	ENCODING
	
 The current client character set encoding.
 This is set every time you connect to a database (including
 program start-up), and when you change the encoding
 with \encoding, but it can be changed or unset.

	ERROR
	
 true if the last SQL query failed, false if
 it succeeded. See also SQLSTATE.

	FETCH_COUNT
	
 If this variable is set to an integer value greater than zero,
 the results of SELECT queries are fetched
 and displayed in groups of that many rows, rather than the
 default behavior of collecting the entire result set before
 display. Therefore only a
 limited amount of memory is used, regardless of the size of
 the result set. Settings of 100 to 1000 are commonly used
 when enabling this feature.
 Keep in mind that when using this feature, a query might
 fail after having already displayed some rows.

Tip

 Although you can use any output format with this feature,
 the default aligned format tends to look bad
 because each group of FETCH_COUNT rows
 will be formatted separately, leading to varying column
 widths across the row groups. The other output formats work better.

	HIDE_TABLEAM
	
 If this variable is set to true, a table's access
 method details are not displayed. This is mainly useful for
 regression tests.

	HIDE_TOAST_COMPRESSION
	
 If this variable is set to true, column
 compression method details are not displayed. This is mainly
 useful for regression tests.

	HISTCONTROL
	
 If this variable is set to ignorespace,
 lines which begin with a space are not entered into the history
 list. If set to a value of ignoredups, lines
 matching the previous history line are not entered. A value of
 ignoreboth combines the two options. If
 set to none (the default), all lines
 read in interactive mode are saved on the history list.

Note

 This feature was shamelessly plagiarized from
 Bash.

	HISTFILE
	
 The file name that will be used to store the history list. If unset,
 the file name is taken from the PSQL_HISTORY
 environment variable. If that is not set either, the default
 is ~/.psql_history,
 or %APPDATA%\postgresql\psql_history on Windows.
 For example, putting:

\set HISTFILE ~/.psql_history-:DBNAME

 in ~/.psqlrc will cause
 psql to maintain a separate history for
 each database.

Note

 This feature was shamelessly plagiarized from
 Bash.

	HISTSIZE
	
 The maximum number of commands to store in the command history
 (default 500). If set to a negative value, no limit is applied.

Note

 This feature was shamelessly plagiarized from
 Bash.

	HOST
	
 The database server host you are currently connected to. This is
 set every time you connect to a database (including program
 start-up), but can be changed or unset.

	IGNOREEOF
	
 If set to 1 or less, sending an EOF character (usually
 Control+D)
 to an interactive session of psql
 will terminate the application. If set to a larger numeric value,
 that many consecutive EOF characters must be typed to
 make an interactive session terminate. If the variable is set to a
 non-numeric value, it is interpreted as 10. The default is 0.

Note

 This feature was shamelessly plagiarized from
 Bash.

	LASTOID
	
 The value of the last affected OID, as returned from an
 INSERT or \lo_import
 command. This variable is only guaranteed to be valid until
 after the result of the next SQL command has
 been displayed.
 PostgreSQL™ servers since version 12 do not
 support OID system columns anymore, thus LASTOID will always be 0
 following INSERT when targeting such servers.

	LAST_ERROR_MESSAGE, LAST_ERROR_SQLSTATE
	
 The primary error message and associated SQLSTATE code for the most
 recent failed query in the current psql session, or
 an empty string and 00000 if no error has occurred in
 the current session.

	
 ON_ERROR_ROLLBACK

	
 When set to on, if a statement in a transaction block
 generates an error, the error is ignored and the transaction
 continues. When set to interactive, such errors are only
 ignored in interactive sessions, and not when reading script
 files. When set to off (the default), a statement in a
 transaction block that generates an error aborts the entire
 transaction. The error rollback mode works by issuing an
 implicit SAVEPOINT for you, just before each command
 that is in a transaction block, and then rolling back to the
 savepoint if the command fails.

	ON_ERROR_STOP
	
 By default, command processing continues after an error. When this
 variable is set to on, processing will instead stop
 immediately. In interactive mode,
 psql will return to the command prompt;
 otherwise, psql will exit, returning
 error code 3 to distinguish this case from fatal error
 conditions, which are reported using error code 1. In either case,
 any currently running scripts (the top-level script, if any, and any
 other scripts which it may have in invoked) will be terminated
 immediately. If the top-level command string contained multiple SQL
 commands, processing will stop with the current command.

	PORT
	
 The database server port to which you are currently connected.
 This is set every time you connect to a database (including
 program start-up), but can be changed or unset.

	PROMPT1, PROMPT2, PROMPT3
	
 These specify what the prompts psql
 issues should look like. See Prompting below.

	QUIET
	
 Setting this variable to on is equivalent to the command
 line option -q. It is probably not too useful in
 interactive mode.

	ROW_COUNT
	
 The number of rows returned or affected by the last SQL query, or 0
 if the query failed or did not report a row count.

	SERVER_VERSION_NAME, SERVER_VERSION_NUM
	
 The server's version number as a string, for
 example 9.6.2, 10.1 or 11beta1,
 and in numeric form, for
 example 90602 or 100001.
 These are set every time you connect to a database
 (including program start-up), but can be changed or unset.

	SHELL_ERROR
	
 true if the last shell command
 failed, false if it succeeded.
 This applies to shell commands invoked via the \!,
 \g, \o, \w,
 and \copy meta-commands, as well as backquote
 (`) expansion. Note that
 for \o, this variable is updated when the output
 pipe is closed by the next \o command.
 See also SHELL_EXIT_CODE.

	SHELL_EXIT_CODE
	
 The exit status returned by the last shell command.
 0–127 represent program exit codes, 128–255
 indicate termination by a signal, and -1 indicates failure
 to launch a program or to collect its exit status.
 This applies to shell commands invoked via the \!,
 \g, \o, \w,
 and \copy meta-commands, as well as backquote
 (`) expansion. Note that
 for \o, this variable is updated when the output
 pipe is closed by the next \o command.
 See also SHELL_ERROR.

	SHOW_ALL_RESULTS
	
 When this variable is set to off, only the last
 result of a combined query (\;) is shown instead of
 all of them. The default is on. The off behavior
 is for compatibility with older versions of psql.

	SHOW_CONTEXT
	
 This variable can be set to the
 values never, errors, or always
 to control whether CONTEXT fields are displayed in
 messages from the server. The default is errors (meaning
 that context will be shown in error messages, but not in notice or
 warning messages). This setting has no effect
 when VERBOSITY is set to terse
 or sqlstate.
 (See also \errverbose, for use when you want a verbose
 version of the error you just got.)

	SINGLELINE
	
 Setting this variable to on is equivalent to the command
 line option -S.

	SINGLESTEP
	
 Setting this variable to on is equivalent to the command
 line option -s.

	SQLSTATE
	
 The error code (see Appendix A, PostgreSQL™ Error Codes) associated
 with the last SQL query's failure, or 00000 if it
 succeeded.

	USER
	
 The database user you are currently connected as. This is set
 every time you connect to a database (including program
 start-up), but can be changed or unset.

	VERBOSITY
	
 This variable can be set to the values default,
 verbose, terse,
 or sqlstate to control the verbosity of error
 reports.
 (See also \errverbose, for use when you want a verbose
 version of the error you just got.)

	VERSION, VERSION_NAME, VERSION_NUM
	
 These variables are set at program start-up to reflect
 psql's version, respectively as a verbose string,
 a short string (e.g., 9.6.2, 10.1,
 or 11beta1), and a number (e.g., 90602
 or 100001). They can be changed or unset.

SQL Interpolation

 A key feature of psql
 variables is that you can substitute (“interpolate”)
 them into regular SQL statements, as well as the
 arguments of meta-commands. Furthermore,
 psql provides facilities for
 ensuring that variable values used as SQL literals and identifiers are
 properly quoted. The syntax for interpolating a value without
 any quoting is to prepend the variable name with a colon
 (:). For example,

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

 would query the table my_table. Note that this
 may be unsafe: the value of the variable is copied literally, so it can
 contain unbalanced quotes, or even backslash commands. You must make sure
 that it makes sense where you put it.

 When a value is to be used as an SQL literal or identifier, it is
 safest to arrange for it to be quoted. To quote the value of
 a variable as an SQL literal, write a colon followed by the variable
 name in single quotes. To quote the value as an SQL identifier, write
 a colon followed by the variable name in double quotes.
 These constructs deal correctly with quotes and other special
 characters embedded within the variable value.
 The previous example would be more safely written this way:

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :"foo";

 Variable interpolation will not be performed within quoted
 SQL literals and identifiers. Therefore, a
 construction such as ':foo' doesn't work to produce a quoted
 literal from a variable's value (and it would be unsafe if it did work,
 since it wouldn't correctly handle quotes embedded in the value).

 One example use of this mechanism is to
 copy the contents of a file into a table column.
 First load the file into a variable and then interpolate the variable's
 value as a quoted string:

testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');

 (Note that this still won't work if my_file.txt contains NUL bytes.
 psql does not support embedded NUL bytes in variable values.)

 Since colons can legally appear in SQL commands, an apparent attempt
 at interpolation (that is, :name,
 :'name', or :"name") is not
 replaced unless the named variable is currently set. In any case, you
 can escape a colon with a backslash to protect it from substitution.

 The :{?name} special syntax returns TRUE
 or FALSE depending on whether the variable exists or not, and is thus
 always substituted, unless the colon is backslash-escaped.

 The colon syntax for variables is standard SQL for
 embedded query languages, such as ECPG.
 The colon syntaxes for array slices and type casts are
 PostgreSQL™ extensions, which can sometimes
 conflict with the standard usage. The colon-quote syntax for escaping a
 variable's value as an SQL literal or identifier is a
 psql extension.

Prompting

 The prompts psql issues can be customized
 to your preference. The three variables PROMPT1,
 PROMPT2, and PROMPT3 contain strings
 and special escape sequences that describe the appearance of the
 prompt. Prompt 1 is the normal prompt that is issued when
 psql requests a new command. Prompt 2 is
 issued when more input is expected during command entry, for example
 because the command was not terminated with a semicolon or a quote
 was not closed.
 Prompt 3 is issued when you are running an SQL
 COPY FROM STDIN command and you need to type in
 a row value on the terminal.

 The value of the selected prompt variable is printed literally,
 except where a percent sign (%) is encountered.
 Depending on the next character, certain other text is substituted
 instead. Defined substitutions are:

	%M
	
 The full host name (with domain name) of the database server,
 or [local] if the connection is over a Unix
 domain socket, or
 [local:/dir/name],
 if the Unix domain socket is not at the compiled in default
 location.

	%m
	
 The host name of the database server, truncated at the
 first dot, or [local] if the connection is
 over a Unix domain socket.

	%>
	The port number at which the database server is listening.

	%n
	
 The database session user name. (The expansion of this
 value might change during a database session as the result
 of the command SET SESSION
 AUTHORIZATION.)

	%/
	The name of the current database.

	%~
	Like %/, but the output is ~
 (tilde) if the database is your default database.

	%#
	
 If the session user is a database superuser, then a
 #, otherwise a >.
 (The expansion of this value might change during a database
 session as the result of the command SET SESSION
 AUTHORIZATION.)

	%p
	The process ID of the backend currently connected to.

	%R
	
 In prompt 1 normally =,
 but @ if the session is in an inactive branch of a
 conditional block, or ^ if in single-line mode,
 or ! if the session is disconnected from the
 database (which can happen if \connect fails).
 In prompt 2 %R is replaced by a character that
 depends on why psql expects more input:
 - if the command simply wasn't terminated yet,
 but * if there is an unfinished
 /* ... */ comment,
 a single quote if there is an unfinished quoted string,
 a double quote if there is an unfinished quoted identifier,
 a dollar sign if there is an unfinished dollar-quoted string,
 or (if there is an unmatched left parenthesis.
 In prompt 3 %R doesn't produce anything.

	%x
	
 Transaction status: an empty string when not in a transaction
 block, or * when in a transaction block, or
 ! when in a failed transaction block, or ?
 when the transaction state is indeterminate (for example, because
 there is no connection).

	%l
	
 The line number inside the current statement, starting from 1.

	%digits
	
 The character with the indicated octal code is substituted.

	%:name:
	
 The value of the psql variable
 name. See
 Variables, above, for details.

	%`command`
	
 The output of command, similar to ordinary
 “back-tick” substitution.

	%[... %]
	
 Prompts can contain terminal control characters which, for
 example, change the color, background, or style of the prompt
 text, or change the title of the terminal window. In order for
 the line editing features of Readline to work properly, these
 non-printing control characters must be designated as invisible
 by surrounding them with %[and
 %]. Multiple pairs of these can occur within
 the prompt. For example:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# '

 results in a boldfaced (1;) yellow-on-black
 (33;40) prompt on VT100-compatible, color-capable
 terminals.

	%w
	
 Whitespace of the same width as the most recent output of
 PROMPT1. This can be used as a
 PROMPT2 setting, so that multi-line statements are
 aligned with the first line, but there is no visible secondary prompt.

 To insert a percent sign into your prompt, write
 %%. The default prompts are
 '%/%R%x%# ' for prompts 1 and 2, and
 '>> ' for prompt 3.

Note

 This feature was shamelessly plagiarized from
 tcsh.

Command-Line Editing

 psql uses
 the Readline
 or libedit library, if available, for
 convenient line editing and retrieval. The command history is
 automatically saved when psql exits and is
 reloaded when psql starts up. Type
 up-arrow or control-P to retrieve previous lines.

 You can also use tab completion to fill in partially-typed keywords
 and SQL object names in many (by no means all) contexts. For example,
 at the start of a command, typing ins and pressing
 TAB will fill in insert into . Then, typing a few
 characters of a table or schema name and pressing TAB
 will fill in the unfinished name, or offer a menu of possible completions
 when there's more than one. (Depending on the library in use, you may need to
 press TAB more than once to get a menu.)

 Tab completion for SQL object names requires sending queries to the
 server to find possible matches. In some contexts this can interfere
 with other operations. For example, after BEGIN
 it will be too late to issue SET TRANSACTION ISOLATION
 LEVEL if a tab-completion query is issued in between.
 If you do not want tab completion at all, you
 can turn it off permanently by putting this in a file named
 .inputrc in your home directory:

$if psql
set disable-completion on
$endif

 (This is not a psql but a
 Readline feature. Read its documentation
 for further details.)

 The -n (--no-readline) command line
 option can also be useful to disable use
 of Readline for a single run
 of psql. This prevents tab completion,
 use or recording of command line history, and editing of multi-line
 commands. It is particularly useful when you need to copy-and-paste
 text that contains TAB characters.

Environment
	COLUMNS
	
 If \pset columns is zero, controls the
 width for the wrapped format and width for determining
 if wide output requires the pager or should be switched to the
 vertical format in expanded auto mode.

	PGDATABASE, PGHOST, PGPORT, PGUSER
	
 Default connection parameters (see the section called “Environment Variables”).

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

	PSQL_EDITOR, EDITOR, VISUAL
	
 Editor used by the \e, \ef,
 and \ev commands.
 These variables are examined in the order listed;
 the first that is set is used.
 If none of them is set, the default is to use vi
 on Unix systems or notepad.exe on Windows systems.

	PSQL_EDITOR_LINENUMBER_ARG
	
 When \e, \ef, or
 \ev is used
 with a line number argument, this variable specifies the
 command-line argument used to pass the starting line number to
 the user's editor. For editors such as Emacs™ or
 vi™, this is a plus sign. Include a trailing
 space in the value of the variable if there needs to be space
 between the option name and the line number. Examples:

PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '

 The default is + on Unix systems
 (corresponding to the default editor vi,
 and useful for many other common editors); but there is no
 default on Windows systems.

	PSQL_HISTORY
	
 Alternative location for the command history file. Tilde (~) expansion is performed.

	PSQL_PAGER, PAGER
	
 If a query's results do not fit on the screen, they are piped
 through this command. Typical values are more
 or less.
 Use of the pager can be disabled by setting PSQL_PAGER
 or PAGER to an empty string, or by adjusting the
 pager-related options of the \pset command.
 These variables are examined in the order listed;
 the first that is set is used.
 If neither of them is set, the default is to use more on most
 platforms, but less on Cygwin.

	PSQL_WATCH_PAGER
	
 When a query is executed repeatedly with the \watch
 command, a pager is not used by default. This behavior can be changed
 by setting PSQL_WATCH_PAGER to a pager command, on Unix
 systems. The pspg pager (not part of
 PostgreSQL™ but available in many open source
 software distributions) can display the output of
 \watch if started with the option
 --stream.

	PSQLRC
	
 Alternative location of the user's .psqlrc file. Tilde (~) expansion is performed.

	SHELL
	
 Command executed by the \! command.

	TMPDIR
	
 Directory for storing temporary files. The default is
 /tmp.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Files
	psqlrc and ~/.psqlrc
	
 Unless it is passed an -X option,
 psql attempts to read and execute commands
 from the system-wide startup file (psqlrc) and then
 the user's personal startup file (~/.psqlrc), after
 connecting to the database but before accepting normal commands.
 These files can be used to set up the client and/or the server to taste,
 typically with \set and SET
 commands.

 The system-wide startup file is named psqlrc.
 By default it is
 sought in the installation's “system configuration” directory,
 which is most reliably identified by running pg_config
 --sysconfdir.
 Typically this directory will be ../etc/
 relative to the directory containing
 the PostgreSQL™ executables.
 The directory to look in can be set explicitly via
 the PGSYSCONFDIR environment variable.

 The user's personal startup file is named .psqlrc
 and is sought in the invoking user's home directory.
 On Windows the personal startup file is instead named
 %APPDATA%\postgresql\psqlrc.conf.
 In either case, this default file path can be overridden by setting
 the PSQLRC environment variable.

 Both the system-wide startup file and the user's personal startup file
 can be made psql-version-specific
 by appending a dash and the PostgreSQL™
 major or minor release identifier to the file name,
 for example ~/.psqlrc-16 or
 ~/.psqlrc-16.12.
 The most specific version-matching file will be read in preference
 to a non-version-specific file.
 These version suffixes are added after determining the file path
 as explained above.

	.psql_history
	
 The command-line history is stored in the file
 ~/.psql_history, or
 %APPDATA%\postgresql\psql_history on Windows.

 The location of the history file can be set explicitly via
 the HISTFILE psql variable or
 the PSQL_HISTORY environment variable.

Notes
	psql works best with servers of the same
 or an older major version. Backslash commands are particularly likely
 to fail if the server is of a newer version than psql
 itself. However, backslash commands of the \d family should
 work with servers of versions back to 9.2, though not necessarily with
 servers newer than psql itself. The general
 functionality of running SQL commands and displaying query results
 should also work with servers of a newer major version, but this cannot
 be guaranteed in all cases.

 If you want to use psql to connect to several
 servers of different major versions, it is recommended that you use the
 newest version of psql. Alternatively, you
 can keep around a copy of psql from each
 major version and be sure to use the version that matches the
 respective server. But in practice, this additional complication should
 not be necessary.

	
 Before PostgreSQL™ 9.6,
 the -c option implied -X
 (--no-psqlrc); this is no longer the case.

	
 Before PostgreSQL™ 8.4,
 psql allowed the
 first argument of a single-letter backslash command to start
 directly after the command, without intervening whitespace.
 Now, some whitespace is required.

Notes for Windows Users

 psql is built as a “console
 application”. Since the Windows console windows use a different
 encoding than the rest of the system, you must take special care
 when using 8-bit characters within psql.
 If psql detects a problematic
 console code page, it will warn you at startup. To change the
 console code page, two things are necessary:

	
 Set the code page by entering cmd.exe /c chcp
 1252. (1252 is a code page that is appropriate for
 German; replace it with your value.) If you are using Cygwin,
 you can put this command in /etc/profile.

	
 Set the console font to Lucida Console, because the
 raster font does not work with the ANSI code page.

Examples

 The first example shows how to spread a command over several lines of
 input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

 Now look at the table definition again:

testdb=> \d my_table
 Table "public.my_table"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 first | integer | | not null | 0
 second | text | | |

 Now we change the prompt to something more interesting:

testdb=> \set PROMPT1 '%n@%m %~%R%# '
peter@localhost testdb=>

 Let's assume you have filled the table with data and want to take a
 look at it:

peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
 1 | one
 2 | two
 3 | three
 4 | four
(4 rows)

 You can display tables in different ways by using the
 \pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format csv
Output format is csv.
peter@localhost testdb=> \pset tuples_only
Tuples only is on.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep '\t'
Field separator is " ".
peter@localhost testdb=> SELECT second, first FROM my_table;
one 1
two 2
three 3
four 4

 Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

 Also, these output format options can be set for just one query by using
 \g:

peter@localhost testdb=> SELECT * FROM my_table
peter@localhost testdb-> \g (format=aligned tuples_only=off expanded=on)
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

 Here is an example of using the \df command to
 find only functions with names matching int*pl
 and whose second argument is of type bigint:

testdb=> \df int*pl * bigint
 List of functions
 Schema | Name | Result data type | Argument data types | Type
------------+---------+------------------+---------------------+------
 pg_catalog | int28pl | bigint | smallint, bigint | func
 pg_catalog | int48pl | bigint | integer, bigint | func
 pg_catalog | int8pl | bigint | bigint, bigint | func
(3 rows)

 When suitable, query results can be shown in a crosstab representation
 with the \crosstabview command:

testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
 first | second | gt2
-------+--------+-----
 1 | one | f
 2 | two | f
 3 | three | t
 4 | four | t
(4 rows)

testdb=> \crosstabview first second
 first | one | two | three | four
-------+-----+-----+-------+------
 1 | f | | |
 2 | | f | |
 3 | | | t |
 4 | | | | t
(4 rows)

This second example shows a multiplication table with rows sorted in reverse
numerical order and columns with an independent, ascending numerical order.

testdb=> SELECT t1.first as "A", t2.first+100 AS "B", t1.first*(t2.first+100) as "AxB",
testdb(> row_number() over(order by t2.first) AS ord
testdb(> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb(> \crosstabview "A" "B" "AxB" ord
 A | 101 | 102 | 103 | 104
---+-----+-----+-----+-----
 4 | 404 | 408 | 412 | 416
 3 | 303 | 306 | 309 | 312
 2 | 202 | 204 | 206 | 208
 1 | 101 | 102 | 103 | 104
(4 rows)

Name
reindexdb — reindex a PostgreSQL™ database

Synopsis
reindexdb [connection-option...] [option...]
 [
 -S | --schema
 schema
]
 ...
 [
 -t | --table
 table
]
 ...
 [
 -i | --index
 index
]
 ... [dbname]

reindexdb [connection-option...] [option...] -a | --all

reindexdb [connection-option...] [option...] -s | --system [dbname]

Description

 reindexdb is a utility for rebuilding indexes
 in a PostgreSQL™ database.

 reindexdb is a wrapper around the SQL
 command REINDEX.
 There is no effective difference between reindexing databases via
 this utility and via other methods for accessing the server.

Options

 reindexdb accepts the following command-line arguments:

	-a, --all
	
 Reindex all databases.

	--concurrently
	
 Use the CONCURRENTLY option. See
 REINDEX(7), where all the caveats of this option
 are explained in detail.

	[-d] dbname, [--dbname=]dbname
	
 Specifies the name of the database to be reindexed,
 when -a/--all is not used.
 If this is not specified, the database name is read
 from the environment variable PGDATABASE. If
 that is not set, the user name specified for the connection is
 used. The dbname can be a connection string. If so,
 connection string parameters will override any conflicting command
 line options.

	-e, --echo
	
 Echo the commands that reindexdb generates
 and sends to the server.

	-i index, --index=index
	
 Recreate index only.
 Multiple indexes can be recreated by writing multiple
 -i switches.

	-j njobs, --jobs=njobs
	
 Execute the reindex commands in parallel by running
 njobs
 commands simultaneously. This option may reduce the processing time
 but it also increases the load on the database server.

 reindexdb will open
 njobs connections to the
 database, so make sure your max_connections
 setting is high enough to accommodate all connections.

 Note that this option is incompatible with the --index
 and --system options.

	-q, --quiet
	
 Do not display progress messages.

	-s, --system
	
 Reindex database's system catalogs only.

	-S schema, --schema=schema
	
 Reindex schema only.
 Multiple schemas can be reindexed by writing multiple
 -S switches.

	-t table, --table=table
	
 Reindex table only.
 Multiple tables can be reindexed by writing multiple
 -t switches.

	--tablespace=tablespace
	
 Specifies the tablespace where indexes are rebuilt. (This name is
 processed as a double-quoted identifier.)

	-v, --verbose
	
 Print detailed information during processing.

	-V, --version
	
 Print the reindexdb version and exit.

	-?, --help
	
 Show help about reindexdb command line
 arguments, and exit.

 reindexdb also accepts
 the following command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the server is
 running. If the value begins with a slash, it is used as the
 directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force reindexdb to prompt for a
 password before connecting to a database.

 This option is never essential, since
 reindexdb will automatically prompt
 for a password if the server demands password authentication.
 However, reindexdb will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--maintenance-db=dbname
	
 When the -a/--all is used, connect
 to this database to gather the list of databases to reindex.
 If not specified, the postgres database will be used,
 or if that does not exist, template1 will be used.
 This can be a connection
 string. If so, connection string parameters will override any
 conflicting command line options. Also, connection string parameters
 other than the database name itself will be re-used when connecting
 to other databases.

Environment
	PGDATABASE, PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see REINDEX(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Notes

 reindexdb might need to connect several
 times to the PostgreSQL™ server, asking
 for a password each time. It is convenient to have a
 ~/.pgpass file in such cases. See the section called “The Password File” for more information.

Examples

 To reindex the database test:

$ reindexdb test

 To reindex the table foo and the index
 bar in a database named abcd:

$ reindexdb --table=foo --index=bar abcd

See Also
REINDEX(7)

Name
vacuumdb — garbage-collect and analyze a PostgreSQL™ database

Synopsis
vacuumdb [connection-option...] [option...]
 [
 -t | --table
 table
 [(column [,...])]
]
 ... [dbname]

vacuumdb [connection-option...] [option...]
 [

 [
 -n | --schema
 schema
]
 |
 [
 -N | --exclude-schema
 schema
]

]
 ... [dbname]

vacuumdb [connection-option...] [option...] -a | --all

Description

 vacuumdb is a utility for cleaning a
 PostgreSQL™ database.
 vacuumdb will also generate internal statistics
 used by the PostgreSQL™ query optimizer.

 vacuumdb is a wrapper around the SQL
 command VACUUM.
 There is no effective difference between vacuuming and analyzing
 databases via this utility and via other methods for accessing the
 server.

Options

 vacuumdb accepts the following command-line arguments:

	-a, --all
	
 Vacuum all databases.

	--buffer-usage-limit size
	
 Specifies the
 Buffer Access Strategy
 ring buffer size for a given invocation of vacuumdb.
 This size is used to calculate the number of shared buffers which will
 be reused as part of this strategy. See VACUUM(7).

	[-d] dbname, [--dbname=]dbname
	
 Specifies the name of the database to be cleaned or analyzed,
 when -a/--all is not used.
 If this is not specified, the database name is read
 from the environment variable PGDATABASE. If
 that is not set, the user name specified for the connection is
 used. The dbname can be a connection string. If so,
 connection string parameters will override any conflicting command
 line options.

	--disable-page-skipping
	
 Disable skipping pages based on the contents of the visibility map.

	-e, --echo
	
 Echo the commands that vacuumdb generates
 and sends to the server.

	-f, --full
	
 Perform “full” vacuuming.

	-F, --freeze
	
 Aggressively “freeze” tuples.

	--force-index-cleanup
	
 Always remove index entries pointing to dead tuples.

	-j njobs, --jobs=njobs
	
 Execute the vacuum or analyze commands in parallel by running
 njobs
 commands simultaneously. This option may reduce the processing time
 but it also increases the load on the database server.

 vacuumdb will open
 njobs connections to the
 database, so make sure your max_connections
 setting is high enough to accommodate all connections.

 Note that using this mode together with the -f
 (FULL) option might cause deadlock failures if
 certain system catalogs are processed in parallel.

	--min-mxid-age mxid_age
	
 Only execute the vacuum or analyze commands on tables with a multixact
 ID age of at least mxid_age.
 This setting is useful for prioritizing tables to process to prevent
 multixact ID wraparound (see
 the section called “Multixacts and Wraparound”).

 For the purposes of this option, the multixact ID age of a relation is
 the greatest of the ages of the main relation and its associated
 TOAST table, if one exists. Since the commands
 issued by vacuumdb will also process the
 TOAST table for the relation if necessary, it does
 not need to be considered separately.

	--min-xid-age xid_age
	
 Only execute the vacuum or analyze commands on tables with a
 transaction ID age of at least
 xid_age. This setting
 is useful for prioritizing tables to process to prevent transaction
 ID wraparound (see the section called “Preventing Transaction ID Wraparound Failures”).

 For the purposes of this option, the transaction ID age of a relation
 is the greatest of the ages of the main relation and its associated
 TOAST table, if one exists. Since the commands
 issued by vacuumdb will also process the
 TOAST table for the relation if necessary, it does
 not need to be considered separately.

	-n schema, --schema=schema
	
 Clean or analyze all tables in
 schema only. Multiple
 schemas can be vacuumed by writing multiple -n switches.

	-N schema, --exclude-schema=schema
	
 Do not clean or analyze any tables in
 schema. Multiple schemas
 can be excluded by writing multiple -N switches.

	--no-index-cleanup
	
 Do not remove index entries pointing to dead tuples.

	--no-process-main
	
 Skip the main relation.

	--no-process-toast
	
 Skip the TOAST table associated with the table to vacuum, if any.

	--no-truncate
	
 Do not truncate empty pages at the end of the table.

	-P parallel_workers, --parallel=parallel_workers
	
 Specify the number of parallel workers for parallel vacuum.
 This allows the vacuum to leverage multiple CPUs to process indexes.
 See VACUUM(7).

	-q, --quiet
	
 Do not display progress messages.

	--skip-locked
	
 Skip relations that cannot be immediately locked for processing.

	-t table [(column [,...])], --table=table [(column [,...])]
	
 Clean or analyze table only.
 Column names can be specified only in conjunction with
 the --analyze or --analyze-only options.
 Multiple tables can be vacuumed by writing multiple
 -t switches.

Tip

 If you specify columns, you probably have to escape the parentheses
 from the shell. (See examples below.)

	-v, --verbose
	
 Print detailed information during processing.

	-V, --version
	
 Print the vacuumdb version and exit.

	-z, --analyze
	
 Also calculate statistics for use by the optimizer.

	-Z, --analyze-only
	
 Only calculate statistics for use by the optimizer (no vacuum).

	--analyze-in-stages
	
 Only calculate statistics for use by the optimizer (no vacuum),
 like --analyze-only. Run three
 stages of analyze; the first stage uses the lowest possible statistics
 target (see default_statistics_target)
 to produce usable statistics faster, and subsequent stages build the
 full statistics.

 This option is only useful to analyze a database that currently has
 no statistics or has wholly incorrect ones, such as if it is newly
 populated from a restored dump or by pg_upgrade.
 Be aware that running with this option in a database with existing
 statistics may cause the query optimizer choices to become
 transiently worse due to the low statistics targets of the early
 stages.

	-?, --help
	
 Show help about vacuumdb command line
 arguments, and exit.

 vacuumdb also accepts
 the following command-line arguments for connection parameters:

	-h host, --host=host
	
 Specifies the host name of the machine on which the server
 is running. If the value begins with a slash, it is used
 as the directory for the Unix domain socket.

	-p port, --port=port
	
 Specifies the TCP port or local Unix domain socket file
 extension on which the server
 is listening for connections.

	-U username, --username=username
	
 User name to connect as.

	-w, --no-password
	
 Never issue a password prompt. If the server requires
 password authentication and a password is not available by
 other means such as a .pgpass file, the
 connection attempt will fail. This option can be useful in
 batch jobs and scripts where no user is present to enter a
 password.

	-W, --password
	
 Force vacuumdb to prompt for a
 password before connecting to a database.

 This option is never essential, since
 vacuumdb will automatically prompt
 for a password if the server demands password authentication.
 However, vacuumdb will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

	--maintenance-db=dbname
	
 When the -a/--all is used, connect
 to this database to gather the list of databases to vacuum.
 If not specified, the postgres database will be used,
 or if that does not exist, template1 will be used.
 This can be a connection
 string. If so, connection string parameters will override any
 conflicting command line options. Also, connection string parameters
 other than the database name itself will be re-used when connecting
 to other databases.

Environment
	PGDATABASE, PGHOST, PGPORT, PGUSER
	
 Default connection parameters

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

Diagnostics

 In case of difficulty, see VACUUM(7)
 and psql(1) for
 discussions of potential problems and error messages.
 The database server must be running at the
 targeted host. Also, any default connection settings and environment
 variables used by the libpq front-end
 library will apply.

Notes

 vacuumdb might need to connect several
 times to the PostgreSQL™ server, asking
 for a password each time. It is convenient to have a
 ~/.pgpass file in such cases. See the section called “The Password File” for more information.

Examples

 To clean the database test:

$ vacuumdb test

 To clean and analyze for the optimizer a database named
 bigdb:

$ vacuumdb --analyze bigdb

 To clean a single table
 foo in a database named
 xyzzy, and analyze a single column
 bar of the table for the optimizer:

$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy

 To clean all tables in the foo and bar schemas
 in a database named xyzzy:

$ vacuumdb --schema='foo' --schema='bar' xyzzy

See Also
VACUUM(7)

PostgreSQL Server Applications

 This part contains reference information for
 PostgreSQL™ server applications and
 support utilities. These commands can only be run usefully on the
 host where the database server resides. Other utility programs
 are listed in PostgreSQL Client Applications.

Name
initdb — create a new PostgreSQL™ database cluster

Synopsis
initdb [option...] [--pgdata | -D] directory

Description

 initdb creates a new
 PostgreSQL™ database cluster.

 Creating a database cluster consists of creating the
 directories in
 which the cluster data will live, generating the shared catalog
 tables (tables that belong to the whole cluster rather than to any
 particular database), and creating the postgres,
 template1, and template0 databases.
 The postgres database is a default database meant
 for use by users, utilities and third party applications.
 template1 and template0 are
 meant as source databases to be copied by later CREATE
 DATABASE commands. template0 should never
 be modified, but you can add objects to template1,
 which by default will be copied into databases created later. See
 the section called “Template Databases” for more details.

 Although initdb will attempt to create the
 specified data directory, it might not have permission if the parent
 directory of the desired data directory is root-owned. To initialize
 in such a setup, create an empty data directory as root, then use
 chown to assign ownership of that directory to the
 database user account, then su to become the
 database user to run initdb.

 initdb must be run as the user that will own the
 server process, because the server needs to have access to the
 files and directories that initdb creates.
 Since the server cannot be run as root, you must not run
 initdb as root either. (It will in fact refuse
 to do so.)

 For security reasons the new cluster created by initdb
 will only be accessible by the cluster owner by default. The
 --allow-group-access option allows any user in the same
 group as the cluster owner to read files in the cluster. This is useful
 for performing backups as a non-privileged user.

 initdb initializes the database cluster's default locale
 and character set encoding. These can also be set separately for each
 database when it is created. initdb determines those
 settings for the template databases, which will serve as the default for
 all other databases.

 By default, initdb uses the locale provider
 libc (see the section called “Locale Providers”). The
 libc locale provider takes the locale settings from the
 environment, and determines the encoding from the locale settings.

 To choose a different locale for the cluster, use the option
 --locale. There are also individual options
 --lc-* and --icu-locale (see below) to
 set values for the individual locale categories. Note that inconsistent
 settings for different locale categories can give nonsensical results, so
 this should be used with care.

 Alternatively, initdb can use the ICU library to provide
 locale services by specifying --locale-provider=icu. The
 server must be built with ICU support. To choose the specific ICU locale ID
 to apply, use the option --icu-locale. Note that for
 implementation reasons and to support legacy code,
 initdb will still select and initialize libc locale
 settings when the ICU locale provider is used.

 When initdb runs, it will print out the locale settings
 it has chosen. If you have complex requirements or specified multiple
 options, it is advisable to check that the result matches what was
 intended.

 More details about locale settings can be found in the section called “Locale Support”.

 To alter the default encoding, use the --encoding.
 More details can be found in the section called “Character Set Support”.

Options

	-A authmethod, --auth=authmethod
	
 This option specifies the default authentication method for local
 users used in pg_hba.conf (host
 and local lines). See the section called “The pg_hba.conf File”
 for an overview of valid values.

 initdb will
 prepopulate pg_hba.conf entries using the
 specified authentication method for non-replication as well as
 replication connections.

 Do not use trust unless you trust all local users on your
 system. trust is the default for ease of installation.

	--auth-host=authmethod
	
 This option specifies the authentication method for local users via
 TCP/IP connections used in pg_hba.conf
 (host lines).

	--auth-local=authmethod
	
 This option specifies the authentication method for local users via
 Unix-domain socket connections used in pg_hba.conf
 (local lines).

	-D directory, --pgdata=directory
	
 This option specifies the directory where the database cluster
 should be stored. This is the only information required by
 initdb, but you can avoid writing it by
 setting the PGDATA environment variable, which
 can be convenient since the database server
 (postgres) can find the data
 directory later by the same variable.

	-E encoding, --encoding=encoding
	
 Selects the encoding of the template databases. This will also be the
 default encoding of any database you create later, unless you override
 it then. The character sets supported by the
 PostgreSQL™ server are described in the section called “Supported Character Sets”.

 By default, the template database encoding is derived from the
 locale. If --no-locale is specified
 (or equivalently, if the locale is C or
 POSIX), then the default is UTF8
 for the ICU provider and SQL_ASCII for the
 libc provider.

	-g, --allow-group-access
	
 Allows users in the same group as the cluster owner to read all cluster
 files created by initdb. This option is ignored
 on Windows™ as it does not support
 POSIX-style group permissions.

	--icu-locale=locale
	
 Specifies the ICU locale when the ICU provider is used. Locale support
 is described in the section called “Locale Support”.

	--icu-rules=rules
	
 Specifies additional collation rules to customize the behavior of the
 default collation. This is supported for ICU only.

	-k, --data-checksums
	
 Use checksums on data pages to help detect corruption by the
 I/O system that would otherwise be silent. Enabling checksums
 may incur a noticeable performance penalty. If set, checksums
 are calculated for all objects, in all databases. All checksum
 failures will be reported in the

 pg_stat_database view.
 See the section called “Data Checksums” for details.

	--locale=locale
	
 Sets the default locale for the database cluster. If this
 option is not specified, the locale is inherited from the
 environment that initdb runs in. Locale
 support is described in the section called “Locale Support”.

	--lc-collate=locale, --lc-ctype=locale, --lc-messages=locale, --lc-monetary=locale, --lc-numeric=locale, --lc-time=locale
	
 Like --locale, but only sets the locale in
 the specified category.

	--no-locale
	
 Equivalent to --locale=C.

	--locale-provider={libc|icu}
	
 This option sets the locale provider for databases created in the new
 cluster. It can be overridden in the CREATE
 DATABASE command when new databases are subsequently
 created. The default is libc (see the section called “Locale Providers”).

	-N, --no-sync
	
 By default, initdb will wait for all files to be
 written safely to disk. This option causes initdb
 to return without waiting, which is faster, but means that a
 subsequent operating system crash can leave the data directory
 corrupt. Generally, this option is useful for testing, but should not
 be used when creating a production installation.

	--no-instructions
	
 By default, initdb will write instructions for how
 to start the cluster at the end of its output. This option causes
 those instructions to be left out. This is primarily intended for use
 by tools that wrap initdb in platform-specific
 behavior, where those instructions are likely to be incorrect.

	--pwfile=filename
	
 Makes initdb read the bootstrap superuser's password
 from a file. The first line of the file is taken as the password.

	-S, --sync-only
	
 Safely write all database files to disk and exit. This does not
 perform any of the normal initdb operations.
 Generally, this option is useful for ensuring reliable recovery after
 changing fsync from off to
 on.

	-T config, --text-search-config=config
	
 Sets the default text search configuration.
 See default_text_search_config for further information.

	-U username, --username=username
	
 Sets the user name of the
 bootstrap superuser.
 This defaults to the name of the operating-system user running
 initdb.

	-W, --pwprompt
	
 Makes initdb prompt for a password
 to give the bootstrap superuser. If you don't plan on using password
 authentication, this is not important. Otherwise you won't be
 able to use password authentication until you have a password
 set up.

	-X directory, --waldir=directory
	
 This option specifies the directory where the write-ahead log
 should be stored.

	--wal-segsize=size
	
 Set the WAL segment size, in megabytes. This
 is the size of each individual file in the WAL log. The default size
 is 16 megabytes. The value must be a power of 2 between 1 and 1024
 (megabytes). This option can only be set during initialization, and
 cannot be changed later.

 It may be useful to adjust this size to control the granularity of
 WAL log shipping or archiving. Also, in databases with a high volume
 of WAL, the sheer number of WAL files per directory can become a
 performance and management problem. Increasing the WAL file size
 will reduce the number of WAL files.

 Other, less commonly used, options are also available:

	-c name=value, --set name=value
	
 Forcibly set the server parameter name
 to value during initdb,
 and also install that setting in the
 generated postgresql.conf file,
 so that it will apply during future server runs.
 This option can be given more than once to set several parameters.
 It is primarily useful when the environment is such that the server
 will not start at all using the default parameters.

	-d, --debug
	
 Print debugging output from the bootstrap backend and a few other
 messages of lesser interest for the general public.
 The bootstrap backend is the program initdb
 uses to create the catalog tables. This option generates a tremendous
 amount of extremely boring output.

	--discard-caches
	
 Run the bootstrap backend with the
 debug_discard_caches=1 option.
 This takes a very long time and is only of use for deep debugging.

	-L directory
	
 Specifies where initdb should find
 its input files to initialize the database cluster. This is
 normally not necessary. You will be told if you need to
 specify their location explicitly.

	-n, --no-clean
	
 By default, when initdb
 determines that an error prevented it from completely creating the database
 cluster, it removes any files it might have created before discovering
 that it cannot finish the job. This option inhibits tidying-up and is
 thus useful for debugging.

 Other options:

	-V, --version
	
 Print the initdb version and exit.

	-?, --help
	
 Show help about initdb command line
 arguments, and exit.

Environment
	PGDATA
	
 Specifies the directory where the database cluster is to be
 stored; can be overridden using the -D option.

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

	TZ
	
 Specifies the default time zone of the created database cluster. The
 value should be a full time zone name
 (see the section called “Time Zones”).

Notes

 initdb can also be invoked via
 pg_ctl initdb.

See Also
pg_ctl(1), postgres(1), the section called “The pg_hba.conf File”

Name
pg_archivecleanup — clean up PostgreSQL™ WAL archive files

Synopsis
pg_archivecleanup [option...] archivelocation oldestkeptwalfile

Description

 pg_archivecleanup is designed to be used as an
 archive_cleanup_command to clean up WAL file archives when
 running as a standby server (see the section called “Log-Shipping Standby Servers”).
 pg_archivecleanup can also be used as a standalone program to
 clean WAL file archives.

 To configure a standby
 server to use pg_archivecleanup, put this into its
 postgresql.conf configuration file:

archive_cleanup_command = 'pg_archivecleanup archivelocation %r'

 where archivelocation is the directory from which WAL segment
 files should be removed.

 When used within archive_cleanup_command, all WAL files
 logically preceding the value of the %r argument will be removed
 from archivelocation. This minimizes the number of files
 that need to be retained, while preserving crash-restart capability. Use of
 this parameter is appropriate if the archivelocation is a
 transient staging area for this particular standby server, but
 not when the archivelocation is intended as a
 long-term WAL archive area, or when multiple standby servers are recovering
 from the same archive location.

 When used as a standalone program all WAL files logically preceding the
 oldestkeptwalfile will be removed from archivelocation.
 In this mode, if you specify a .partial or .backup
 file name, then only the file prefix will be used as the
 oldestkeptwalfile. This treatment of .backup
 file name allows you to remove
 all WAL files archived prior to a specific base backup without error.
 For example, the following example will remove all files older than
 WAL file name 000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"
pg_archivecleanup: removing file "archive/00000001000000370000000E"

 pg_archivecleanup assumes that
 archivelocation is a directory readable and writable by the
 server-owning user.

Options

 pg_archivecleanup accepts the following command-line arguments:

	-d
	
 Print lots of debug logging output on stderr.

	-n
	
 Print the names of the files that would have been removed on stdout (performs a dry run).

	-V, --version
	
 Print the pg_archivecleanup version and exit.

	-x extension
	
 Provide an extension
 that will be stripped from all file names before deciding if they
 should be deleted. This is typically useful for cleaning up archives
 that have been compressed during storage, and therefore have had an
 extension added by the compression program. For example: -x
 .gz.

	-?, --help
	
 Show help about pg_archivecleanup command line
 arguments, and exit.

Environment

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 pg_archivecleanup is designed to work with
 PostgreSQL™ 8.0 and later when used as a standalone utility,
 or with PostgreSQL™ 9.0 and later when used as an
 archive cleanup command.

 pg_archivecleanup is written in C and has an
 easy-to-modify source code, with specifically designated sections to modify
 for your own needs

Examples
On Linux or Unix systems, you might use:

archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive %r 2>>cleanup.log'

 where the archive directory is physically located on the standby server,
 so that the archive_command is accessing it across NFS,
 but the files are local to the standby.
 This will:

	
 produce debugging output in cleanup.log

	
 remove no-longer-needed files from the archive directory

Name
pg_checksums — enable, disable or check data checksums in a PostgreSQL™ database cluster

Synopsis
pg_checksums [option...] [[-D | --pgdata]datadir]

Description

 pg_checksums checks, enables or disables data
 checksums in a PostgreSQL™ cluster. The server
 must be shut down cleanly before running
 pg_checksums. When verifying checksums, the exit
 status is zero if there are no checksum errors, and nonzero if at least one
 checksum failure is detected. When enabling or disabling checksums, the
 exit status is nonzero if the operation failed.

 When verifying checksums, every file in the cluster is scanned. When
 enabling checksums, each relation file block with a changed checksum is
 rewritten in-place.
 Disabling checksums only updates the file pg_control.

Options

 The following command-line options are available:

	-D directory, --pgdata=directory
	
 Specifies the directory where the database cluster is stored.

	-c, --check
	
 Checks checksums. This is the default mode if nothing else is
 specified.

	-d, --disable
	
 Disables checksums.

	-e, --enable
	
 Enables checksums.

	-f filenode, --filenode=filenode
	
 Only validate checksums in the relation with filenode
 filenode.

	-N, --no-sync
	
 By default, pg_checksums will wait for all files
 to be written safely to disk. This option causes
 pg_checksums to return without waiting, which is
 faster, but means that a subsequent operating system crash can leave
 the updated data directory corrupt. Generally, this option is useful
 for testing but should not be used on a production installation.
 This option has no effect when using --check.

	-P, --progress
	
 Enable progress reporting. Turning this on will deliver a progress
 report while checking or enabling checksums.

	-v, --verbose
	
 Enable verbose output. Lists all checked files.

	-V, --version
	
 Print the pg_checksums version and exit.

	-?, --help
	
 Show help about pg_checksums command line
 arguments, and exit.

Environment
	PGDATA
	
 Specifies the directory where the database cluster is
 stored; can be overridden using the -D option.

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

Notes

 Enabling checksums in a large cluster can potentially take a long time.
 During this operation, the cluster or other programs that write to the
 data directory must not be started or else data loss may occur.

 When using a replication setup with tools which perform direct copies
 of relation file blocks (for example pg_rewind(1)),
 enabling or disabling checksums can lead to page corruptions in the
 shape of incorrect checksums if the operation is not done consistently
 across all nodes. When enabling or disabling checksums in a replication
 setup, it is thus recommended to stop all the clusters before switching
 them all consistently. Destroying all standbys, performing the operation
 on the primary and finally recreating the standbys from scratch is also
 safe.

 If pg_checksums is aborted or killed while
 enabling or disabling checksums, the cluster's data checksum configuration
 remains unchanged, and pg_checksums can be
 re-run to perform the same operation.

Name
pg_controldata — display control information of a PostgreSQL™ database cluster

Synopsis
pg_controldata [option] [[-D | --pgdata]datadir]

Description

 pg_controldata prints information initialized during
 initdb, such as the catalog version.
 It also shows information about write-ahead logging and checkpoint
 processing. This information is cluster-wide, and not specific to any one
 database.

 This utility can only be run by the user who initialized the cluster because
 it requires read access to the data directory.
 You can specify the data directory on the command line, or use
 the environment variable PGDATA. This utility supports the options
 -V and --version, which print the
 pg_controldata version and exit. It also
 supports options -? and --help, which output the
 supported arguments.

Environment
	PGDATA
	
 Default data directory location

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

Name
pg_ctl — initialize, start, stop, or control a PostgreSQL™ server

Synopsis
pg_ctl init[db] [-D datadir] [-s] [-o initdb-options]

pg_ctl start [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path] [-c]

pg_ctl stop [-D datadir] [-m
 s[mart] | f[ast] | i[mmediate]
] [-W] [-t seconds] [-s]

pg_ctl restart [-D datadir] [-m
 s[mart] | f[ast] | i[mmediate]
] [-W] [-t seconds] [-s] [-o options] [-c]

pg_ctl reload [-D datadir] [-s]

pg_ctl status [-D datadir]

pg_ctl promote [-D datadir] [-W] [-t seconds] [-s]

pg_ctl logrotate [-D datadir] [-s]

pg_ctl kill signal_name process_id

On Microsoft Windows, also:
pg_ctl register [-D datadir] [-N servicename] [-U username] [-P password] [-S
 a[uto] | d[emand]
] [-e source] [-W] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Description

 pg_ctl is a utility for initializing a
 PostgreSQL™ database cluster, starting,
 stopping, or restarting the PostgreSQL™
 database server (postgres(1)), or displaying the
 status of a running server. Although the server can be started
 manually, pg_ctl encapsulates tasks such
 as redirecting log output and properly detaching from the terminal
 and process group. It also provides convenient options for
 controlled shutdown.

 The init or initdb mode creates a new
 PostgreSQL™ database cluster, that is,
 a collection of databases that will be managed by a single
 server instance. This mode invokes the initdb
 command. See initdb(1) for details.

 start mode launches a new server. The
 server is started in the background, and its standard input is attached
 to /dev/null (or nul on Windows).
 On Unix-like systems, by default, the server's standard output and
 standard error are sent to pg_ctl's
 standard output (not standard error). The standard output of
 pg_ctl should then be redirected to a
 file or piped to another process such as a log rotating program
 like rotatelogs; otherwise postgres
 will write its output to the controlling terminal (from the
 background) and will not leave the shell's process group. On
 Windows, by default the server's standard output and standard error
 are sent to the terminal. These default behaviors can be changed
 by using -l to append the server's output to a log file.
 Use of either -l or output redirection is recommended.

 stop mode shuts down the server that is running in
 the specified data directory. Three different
 shutdown methods can be selected with the -m
 option. “Smart” mode disallows new connections, then waits
 for all existing clients to disconnect.
 If the server is in hot standby, recovery and streaming replication
 will be terminated once all clients have disconnected.
 “Fast” mode (the default) does not wait for clients to disconnect.
 All active transactions are
 rolled back and clients are forcibly disconnected, then the
 server is shut down. “Immediate” mode will abort
 all server processes immediately, without a clean shutdown. This choice
 will lead to a crash-recovery cycle during the next server start.

 restart mode effectively executes a stop followed
 by a start. This allows changing the postgres
 command-line options, or changing configuration-file options that
 cannot be changed without restarting the server.
 If relative paths were used on the command line during server
 start, restart might fail unless
 pg_ctl is executed in the same current
 directory as it was during server start.

 reload mode simply sends the
 postgres server process a SIGHUP
 signal, causing it to reread its configuration files
 (postgresql.conf,
 pg_hba.conf, etc.). This allows changing
 configuration-file options that do not require a full server restart
 to take effect.

 status mode checks whether a server is running in
 the specified data directory. If it is, the server's PID
 and the command line options that were used to invoke it are displayed.
 If the server is not running, pg_ctl returns
 an exit status of 3. If an accessible data directory is not
 specified, pg_ctl returns an exit status of 4.

 promote mode commands the standby server that is
 running in the specified data directory to end standby mode
 and begin read-write operations.

 logrotate mode rotates the server log file.
 For details on how to use this mode with external log rotation tools, see
 the section called “Log File Maintenance”.

 kill mode sends a signal to a specified process.
 This is primarily valuable on Microsoft Windows™
 which does not have a built-in kill command. Use
 --help to see a list of supported signal names.

 register mode registers the PostgreSQL™
 server as a system service on Microsoft Windows™.
 The -S option allows selection of service start type,
 either “auto” (start service automatically on system startup)
 or “demand” (start service on demand).

 unregister mode unregisters a system service
 on Microsoft Windows™. This undoes the effects of the
 register command.

Options
	-c, --core-files
	
 Attempt to allow server crashes to produce core files, on platforms
 where this is possible, by lifting any soft resource limit placed on
 core files.
 This is useful in debugging or diagnosing problems by allowing a
 stack trace to be obtained from a failed server process.

	-D datadir, --pgdata=datadir
	
 Specifies the file system location of the database configuration files. If
 this option is omitted, the environment variable
 PGDATA is used.

	-l filename, --log=filename
	
 Append the server log output to
 filename. If the file does not
 exist, it is created. The umask is set to 077,
 so access to the log file is disallowed to other users by default.

	-m mode, --mode=mode
	
 Specifies the shutdown mode. mode
 can be smart, fast, or
 immediate, or the first letter of one of
 these three. If this option is omitted, fast is
 the default.

	-o options, --options=options
	
 Specifies options to be passed directly to the
 postgres command.
 -o can be specified multiple times, with all the given
 options being passed through.

 The options should usually be surrounded by single or
 double quotes to ensure that they are passed through as a group.

	-o initdb-options, --options=initdb-options
	
 Specifies options to be passed directly to the
 initdb command.
 -o can be specified multiple times, with all the given
 options being passed through.

 The initdb-options should usually be surrounded by single or
 double quotes to ensure that they are passed through as a group.

	-p path
	
 Specifies the location of the postgres
 executable. By default the postgres executable is taken from the same
 directory as pg_ctl, or failing that, the hard-wired
 installation directory. It is not necessary to use this
 option unless you are doing something unusual and get errors
 that the postgres executable was not found.

 In init mode, this option analogously
 specifies the location of the initdb
 executable.

	-s, --silent
	
 Print only errors, no informational messages.

	-t seconds, --timeout=seconds
	
 Specifies the maximum number of seconds to wait when waiting for an
 operation to complete (see option -w). Defaults to
 the value of the PGCTLTIMEOUT environment variable or, if
 not set, to 60 seconds.

	-V, --version
	
 Print the pg_ctl version and exit.

	-w, --wait
	
 Wait for the operation to complete. This is supported for the
 modes start, stop,
 restart, promote,
 and register, and is the default for those modes.

 When waiting, pg_ctl repeatedly checks the
 server's PID file, sleeping for a short amount
 of time between checks. Startup is considered complete when
 the PID file indicates that the server is ready to
 accept connections. Shutdown is considered complete when the server
 removes the PID file.
 pg_ctl returns an exit code based on the
 success of the startup or shutdown.

 If the operation does not complete within the timeout (see
 option -t), then pg_ctl exits with
 a nonzero exit status. But note that the operation might continue in
 the background and eventually succeed.

	-W, --no-wait
	
 Do not wait for the operation to complete. This is the opposite of
 the option -w.

 If waiting is disabled, the requested action is triggered, but there
 is no feedback about its success. In that case, the server log file
 or an external monitoring system would have to be used to check the
 progress and success of the operation.

 In prior releases of PostgreSQL, this was the default except for
 the stop mode.

	-?, --help
	
 Show help about pg_ctl command line
 arguments, and exit.

 If an option is specified that is valid, but not relevant to the selected
 operating mode, pg_ctl ignores it.

Options for Windows
	-e source
	
 Name of the event source for pg_ctl to use
 for logging to the event log when running as a Windows service. The
 default is PostgreSQL. Note that this only controls
 messages sent from pg_ctl itself; once
 started, the server will use the event source specified
 by its event_source parameter. Should the server
 fail very early in startup, before that parameter has been set,
 it might also log using the default event
 source name PostgreSQL.

	-N servicename
	
 Name of the system service to register. This name will be used
 as both the service name and the display name.
 The default is PostgreSQL.

	-P password
	
 Password for the user to run the service as.

	-S start-type
	
 Start type of the system service. start-type can
 be auto, or demand, or
 the first letter of one of these two. If this option is omitted,
 auto is the default.

	-U username
	
 User name for the user to run the service as. For domain users, use the
 format DOMAIN\username.

Environment
	PGCTLTIMEOUT
	
 Default limit on the number of seconds to wait when waiting for startup
 or shutdown to complete. If not set, the default is 60 seconds.

	PGDATA
	
 Default data directory location.

 Most pg_ctl modes require knowing the data directory
 location; therefore, the -D option is required
 unless PGDATA is set.

 For additional variables that affect the server,
 see postgres(1).

Files
	postmaster.pid
	
 pg_ctl examines this file in the data
 directory to determine whether the server is currently running.

	postmaster.opts
	If this file exists in the data directory,
 pg_ctl (in restart mode)
 will pass the contents of the file as options to
 postgres, unless overridden
 by the -o option. The contents of this file
 are also displayed in status mode.

Examples
Starting the Server

 To start the server, waiting until the server is
 accepting connections:

$ pg_ctl start

 To start the server using port 5433, and
 running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server

 To stop the server, use:

$ pg_ctl stop

 The -m option allows control over
 how the server shuts down:

$ pg_ctl stop -m smart

Restarting the Server

 Restarting the server is almost equivalent to stopping the
 server and starting it again, except that by default,
 pg_ctl saves and reuses the command line options that
 were passed to the previously-running instance. To restart
 the server using the same options as before, use:

$ pg_ctl restart

 But if -o is specified, that replaces any previous options.
 To restart using port 5433, disabling fsync upon restart:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status

 Here is sample status output from
 pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"

 The second line is the command that would be invoked in restart mode.

See Also
initdb(1), postgres(1)

Name
pg_resetwal — reset the write-ahead log and other control information of a PostgreSQL™ database cluster

Synopsis
pg_resetwal [-f | --force] [-n | --dry-run] [option...] [-D | --pgdata]datadir

Description

 pg_resetwal clears the write-ahead log (WAL) and
 optionally resets some other control information stored in the
 pg_control file. This function is sometimes needed
 if these files have become corrupted. It should be used only as a
 last resort, when the server will not start due to such corruption.

 After running this command, it should be possible to start the server,
 but bear in mind that the database might contain inconsistent data due to
 partially-committed transactions. You should immediately dump your data,
 run initdb, and restore. After restore, check for
 inconsistencies and repair as needed.

 This utility can only be run by the user who installed the server, because
 it requires read/write access to the data directory.
 For safety reasons, you must specify the data directory on the command line.
 pg_resetwal does not use the environment variable
 PGDATA.

 If pg_resetwal complains that it cannot determine
 valid data for pg_control, you can force it to proceed anyway
 by specifying the -f (force) option. In this case plausible
 values will be substituted for the missing data. Most of the fields can be
 expected to match, but manual assistance might be needed for the next OID,
 next transaction ID and epoch, next multitransaction ID and offset, and
 WAL starting location fields. These fields can be set using the options
 discussed below. If you are not able to determine correct values for all
 these fields, -f can still be used, but
 the recovered database must be treated with even more suspicion than
 usual: an immediate dump and restore is imperative. Do not
 execute any data-modifying operations in the database before you dump,
 as any such action is likely to make the corruption worse.

Options
	-f, --force
	
 Force pg_resetwal to proceed even if it cannot determine
 valid data for pg_control, as explained above.

	-n, --dry-run
	
 The -n/--dry-run option instructs
 pg_resetwal to print the values reconstructed from
 pg_control and values about to be changed, and then exit
 without modifying anything. This is mainly a debugging tool, but can be
 useful as a sanity check before allowing pg_resetwal
 to proceed for real.

	-V, --version
	Display version information, then exit.

	-?, --help
	Show help, then exit.

 The following options are only needed when
 pg_resetwal is unable to determine appropriate values
 by reading pg_control. Safe values can be determined as
 described below. For values that take numeric arguments, hexadecimal
 values can be specified by using the prefix 0x.

	-c xid,xid, --commit-timestamp-ids=xid,xid
	
 Manually set the oldest and newest transaction IDs for which the commit
 time can be retrieved.

 A safe value for the oldest transaction ID for which the commit time can
 be retrieved (first part) can be determined by looking
 for the numerically smallest file name in the directory
 pg_commit_ts under the data directory. Conversely, a safe
 value for the newest transaction ID for which the commit time can be
 retrieved (second part) can be determined by looking for the numerically
 greatest file name in the same directory. The file names are in
 hexadecimal.

	-e xid_epoch, --epoch=xid_epoch
	
 Manually set the next transaction ID's epoch.

 The transaction ID epoch is not actually stored anywhere in the database
 except in the field that is set by pg_resetwal,
 so any value will work so far as the database itself is concerned.
 You might need to adjust this value to ensure that replication
 systems such as Slony-I and
 Skytools work correctly —
 if so, an appropriate value should be obtainable from the state of
 the downstream replicated database.

	-l walfile, --next-wal-file=walfile
	
 Manually set the WAL starting location by specifying the name of the
 next WAL segment file.

 The name of next WAL segment file should be
 larger than any WAL segment file name currently existing in
 the directory pg_wal under the data directory.
 These names are also in hexadecimal and have three parts. The first
 part is the “timeline ID” and should usually be kept the same.
 For example, if 00000001000000320000004A is the
 largest entry in pg_wal, use -l 00000001000000320000004B or higher.

 Note that when using nondefault WAL segment sizes, the numbers in the WAL
 file names are different from the LSNs that are reported by system
 functions and system views. This option takes a WAL file name, not an
 LSN.

Note

 pg_resetwal itself looks at the files in
 pg_wal and chooses a default -l setting
 beyond the last existing file name. Therefore, manual adjustment of
 -l should only be needed if you are aware of WAL segment
 files that are not currently present in pg_wal, such as
 entries in an offline archive; or if the contents of
 pg_wal have been lost entirely.

	-m mxid,mxid, --multixact-ids=mxid,mxid
	
 Manually set the next and oldest multitransaction ID.

 A safe value for the next multitransaction ID (first part) can be
 determined by looking for the numerically largest file name in the
 directory pg_multixact/offsets under the data directory,
 adding one, and then multiplying by 65536 (0x10000). Conversely, a safe
 value for the oldest multitransaction ID (second part of
 -m) can be determined by looking for the numerically smallest
 file name in the same directory and multiplying by 65536. The file
 names are in hexadecimal, so the easiest way to do this is to specify
 the option value in hexadecimal and append four zeroes.

	-o oid, --next-oid=oid
	
 Manually set the next OID.

 There is no comparably easy way to determine a next OID that's beyond
 the largest one in the database, but fortunately it is not critical to
 get the next-OID setting right.

	-O mxoff, --multixact-offset=mxoff
	
 Manually set the next multitransaction offset.

 A safe value can be determined by looking for the numerically largest
 file name in the directory pg_multixact/members under the
 data directory, adding one, and then multiplying by 52352 (0xCC80).
 The file names are in hexadecimal. There is no simple recipe such as
 the ones for other options of appending zeroes.

	--wal-segsize=wal_segment_size
	
 Set the new WAL segment size, in megabytes. The value must be set to a
 power of 2 between 1 and 1024 (megabytes). See the same option of initdb(1) for more information.

Note

 While pg_resetwal will set the WAL starting address
 beyond the latest existing WAL segment file, some segment size changes
 can cause previous WAL file names to be reused. It is recommended to
 use -l together with this option to manually set the
 WAL starting address if WAL file name overlap will cause problems with
 your archiving strategy.

	-u xid, --oldest-transaction-id=xid
	
 Manually set the oldest unfrozen transaction ID.

 A safe value can be determined by looking for the numerically smallest
 file name in the directory pg_xact under the data directory
 and then multiplying by 1048576 (0x100000). Note that the file names are in
 hexadecimal. It is usually easiest to specify the option value in
 hexadecimal too. For example, if 0007 is the smallest entry
 in pg_xact, -u 0x700000 will work (five
 trailing zeroes provide the proper multiplier).

	-x xid, --next-transaction-id=xid
	
 Manually set the next transaction ID.

 A safe value can be determined by looking for the numerically largest
 file name in the directory pg_xact under the data directory,
 adding one,
 and then multiplying by 1048576 (0x100000). Note that the file names are in
 hexadecimal. It is usually easiest to specify the option value in
 hexadecimal too. For example, if 0011 is the largest entry
 in pg_xact, -x 0x1200000 will work (five
 trailing zeroes provide the proper multiplier).

Environment
	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

Notes

 This command must not be used when the server is
 running. pg_resetwal will refuse to start up if
 it finds a server lock file in the data directory. If the
 server crashed then a lock file might have been left
 behind; in that case you can remove the lock file to allow
 pg_resetwal to run. But before you do
 so, make doubly certain that there is no server process still alive.

 pg_resetwal works only with servers of the same
 major version.

See Also
pg_controldata(1)

Name
pg_rewind — synchronize a PostgreSQL™ data directory with another data directory that was forked from it

Synopsis
pg_rewind [option...] { -D | --target-pgdata } directory { --source-pgdata=directory | --source-server=connstr }

Description

 pg_rewind is a tool for synchronizing a PostgreSQL cluster
 with another copy of the same cluster, after the clusters' timelines have
 diverged. A typical scenario is to bring an old primary server back online
 after failover as a standby that follows the new primary.

 After a successful rewind, the state of the target data directory is
 analogous to a base backup of the source data directory. Unlike taking
 a new base backup or using a tool like rsync,
 pg_rewind does not require comparing or copying
 unchanged relation blocks in the cluster. Only changed blocks from existing
 relation files are copied; all other files, including new relation files,
 configuration files, and WAL segments, are copied in full. As such the
 rewind operation is significantly faster than other approaches when the
 database is large and only a small fraction of blocks differ between the
 clusters.

 pg_rewind examines the timeline histories of the source
 and target clusters to determine the point where they diverged, and
 expects to find WAL in the target cluster's pg_wal directory
 reaching all the way back to the point of divergence. The point of divergence
 can be found either on the target timeline, the source timeline, or their common
 ancestor. In the typical failover scenario where the target cluster was
 shut down soon after the divergence, this is not a problem, but if the
 target cluster ran for a long time after the divergence, its old WAL
 files might no longer be present. In this case, you can manually copy them
 from the WAL archive to the pg_wal directory, or run
 pg_rewind with the -c option to
 automatically retrieve them from the WAL archive. The use of
 pg_rewind is not limited to failover, e.g., a standby
 server can be promoted, run some write transactions, and then rewound
 to become a standby again.

 After running pg_rewind, WAL replay needs to
 complete for the data directory to be in a consistent state. When the
 target server is started again it will enter archive recovery and replay
 all WAL generated in the source server from the last checkpoint before
 the point of divergence. If some of the WAL was no longer available in the
 source server when pg_rewind was run, and
 therefore could not be copied by the pg_rewind
 session, it must be made available when the target server is started.
 This can be done by creating a recovery.signal file
 in the target data directory and by configuring a suitable
 restore_command in
 postgresql.conf.

 pg_rewind requires that the target server either has
 the wal_log_hints option enabled
 in postgresql.conf or data checksums enabled when
 the cluster was initialized with initdb. Neither of these
 are currently on by default. full_page_writes
 must also be set to on, but is enabled by default.

Warning: Failures While Rewinding

 If pg_rewind fails while processing, then
 the data folder of the target is likely not in a state that can be
 recovered. In such a case, taking a new fresh backup is recommended.

 As pg_rewind copies configuration files
 entirely from the source, it may be required to correct the configuration
 used for recovery before restarting the target server, especially if
 the target is reintroduced as a standby of the source. If you restart
 the server after the rewind operation has finished but without configuring
 recovery, the target may again diverge from the primary.

 pg_rewind will fail immediately if it finds
 files it cannot write directly to. This can happen for example when
 the source and the target server use the same file mapping for read-only
 SSL keys and certificates. If such files are present on the target server
 it is recommended to remove them before running
 pg_rewind. After doing the rewind, some of
 those files may have been copied from the source, in which case it may
 be necessary to remove the data copied and restore back the set of links
 used before the rewind.

Options

 pg_rewind accepts the following command-line
 arguments:

	-D directory, --target-pgdata=directory
	
 This option specifies the target data directory that is synchronized
 with the source. The target server must be shut down cleanly before
 running pg_rewind

	--source-pgdata=directory
	
 Specifies the file system path to the data directory of the source
 server to synchronize the target with. This option requires the
 source server to be cleanly shut down.

	--source-server=connstr
	
 Specifies a libpq connection string to connect to the source
 PostgreSQL™ server to synchronize the target
 with. The connection must be a normal (non-replication) connection
 with a role having sufficient permissions to execute the functions
 used by pg_rewind on the source server
 (see Notes section for details) or a superuser role. This option
 requires the source server to be running and accepting connections.

	-R, --write-recovery-conf
	
 Create standby.signal and append connection
 settings to postgresql.auto.conf in the output
 directory. --source-server is mandatory with
 this option.

	-n, --dry-run
	
 Do everything except actually modifying the target directory.

	-N, --no-sync
	
 By default, pg_rewind will wait for all files
 to be written safely to disk. This option causes
 pg_rewind to return without waiting, which is
 faster, but means that a subsequent operating system crash can leave
 the data directory corrupt. Generally, this option is useful for
 testing but should not be used on a production
 installation.

	-P, --progress
	
 Enables progress reporting. Turning this on will deliver an approximate
 progress report while copying data from the source cluster.

	-c, --restore-target-wal
	
 Use restore_command defined in the target cluster
 configuration to retrieve WAL files from the WAL archive if these
 files are no longer available in the pg_wal
 directory.

	--config-file=filename
	
 Use the specified main server configuration file for the target
 cluster. This affects pg_rewind when
 it uses internally the postgres command
 for the rewind operation on this cluster (when retrieving
 restore_command with the option
 -c/--restore-target-wal and when forcing a
 completion of crash recovery).

	--debug
	
 Print verbose debugging output that is mostly useful for developers
 debugging pg_rewind.

	--no-ensure-shutdown
	
 pg_rewind requires that the target server
 is cleanly shut down before rewinding. By default, if the target server
 is not shut down cleanly, pg_rewind starts
 the target server in single-user mode to complete crash recovery first,
 and stops it.
 By passing this option, pg_rewind skips
 this and errors out immediately if the server is not cleanly shut
 down. Users are expected to handle the situation themselves in that
 case.

	-V, --version
	Display version information, then exit.

	-?, --help
	Show help, then exit.

Environment

 When --source-server option is used,
 pg_rewind also uses the environment variables
 supported by libpq (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 When executing pg_rewind using an online
 cluster as source, a role having sufficient permissions to execute the
 functions used by pg_rewind on the source
 cluster can be used instead of a superuser. Here is how to create such
 a role, named rewind_user here:

CREATE USER rewind_user LOGIN;
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean) TO rewind_user;

How It Works

 The basic idea is to copy all file system-level changes from the source
 cluster to the target cluster:

	
 Scan the WAL log of the target cluster, starting from the last
 checkpoint before the point where the source cluster's timeline
 history forked off from the target cluster. For each WAL record,
 record each data block that was touched. This yields a list of all
 the data blocks that were changed in the target cluster, after the
 source cluster forked off. If some of the WAL files are no longer
 available, try re-running pg_rewind with
 the -c option to search for the missing files in
 the WAL archive.

	
 Copy all those changed blocks from the source cluster to
 the target cluster, either using direct file system access
 (--source-pgdata) or SQL (--source-server).
 Relation files are now in a state equivalent to the moment of the last
 completed checkpoint prior to the point at which the WAL timelines of the
 source and target diverged plus the current state on the source of any
 blocks changed on the target after that divergence.

	
 Copy all other files, including new relation files, WAL segments,
 pg_xact, and configuration files from the source
 cluster to the target cluster. Similarly to base backups, the contents
 of the directories pg_dynshmem/,
 pg_notify/, pg_replslot/,
 pg_serial/, pg_snapshots/,
 pg_stat_tmp/, and pg_subtrans/
 are omitted from the data copied from the source cluster. The files
 backup_label,
 tablespace_map,
 pg_internal.init,
 postmaster.opts,
 postmaster.pid and
 .DS_Store as well as any file or directory
 beginning with pgsql_tmp, are omitted.

	
 Create a backup_label file to begin WAL replay at
 the checkpoint created at failover and configure the
 pg_control file with a minimum consistency LSN
 defined as the result of pg_current_wal_insert_lsn()
 when rewinding from a live source or the last checkpoint LSN when
 rewinding from a stopped source.

	
 When starting the target, PostgreSQL™ replays
 all the required WAL, resulting in a data directory in a consistent
 state.

Name
pg_test_fsync — determine fastest wal_sync_method for PostgreSQL™

Synopsis
pg_test_fsync [option...]

Description

 pg_test_fsync is intended to give you a reasonable
 idea of what the fastest wal_sync_method is on your
 specific system,
 as well as supplying diagnostic information in the event of an identified I/O
 problem. However, differences shown by
 pg_test_fsync might not make any significant
 difference in real database throughput, especially since many database servers
 are not speed-limited by their write-ahead logs.
 pg_test_fsync reports average file sync operation
 time in microseconds for each wal_sync_method, which can also be used to
 inform efforts to optimize the value of commit_delay.

Options

 pg_test_fsync accepts the following
 command-line options:

	-f, --filename
	
 Specifies the file name to write test data in.
 This file should be in the same file system that the
 pg_wal directory is or will be placed in.
 (pg_wal contains the WAL files.)
 The default is pg_test_fsync.out in the current
 directory.

	-s, --secs-per-test
	
 Specifies the number of seconds for each test. The more time
 per test, the greater the test's accuracy, but the longer it takes
 to run. The default is 5 seconds, which allows the program to
 complete in under 2 minutes.

	-V, --version
	
 Print the pg_test_fsync version and exit.

	-?, --help
	
 Show help about pg_test_fsync command line
 arguments, and exit.

Environment

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

See Also
postgres(1)

Name
pg_test_timing — measure timing overhead

Synopsis
pg_test_timing [option...]

Description

 pg_test_timing is a tool to measure the timing overhead
 on your system and confirm that the system time never moves backwards.
 Systems that are slow to collect timing data can give less accurate
 EXPLAIN ANALYZE results.

Options

 pg_test_timing accepts the following
 command-line options:

	-d duration, --duration=duration
	
 Specifies the test duration, in seconds. Longer durations
 give slightly better accuracy, and are more likely to discover
 problems with the system clock moving backwards. The default
 test duration is 3 seconds.

	-V, --version
	
 Print the pg_test_timing version and exit.

	-?, --help
	
 Show help about pg_test_timing command line
 arguments, and exit.

Usage
Interpreting Results

 Good results will show most (>90%) individual timing calls take less than
 one microsecond. Average per loop overhead will be even lower, below 100
 nanoseconds. This example from an Intel i7-860 system using a TSC clock
 source shows excellent performance:

Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
 < us % of total count
 1 96.40465 80435604
 2 3.59518 2999652
 4 0.00015 126
 8 0.00002 13
 16 0.00000 2

 Note that different units are used for the per loop time than the
 histogram. The loop can have resolution within a few nanoseconds (ns),
 while the individual timing calls can only resolve down to one microsecond
 (us).

Measuring Executor Timing Overhead

 When the query executor is running a statement using
 EXPLAIN ANALYZE, individual operations are timed as well
 as showing a summary. The overhead of your system can be checked by
 counting rows with the psql program:

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

 The i7-860 system measured runs the count query in 9.8 ms while
 the EXPLAIN ANALYZE version takes 16.6 ms, each
 processing just over 100,000 rows. That 6.8 ms difference means the timing
 overhead per row is 68 ns, about twice what pg_test_timing estimated it
 would be. Even that relatively small amount of overhead is making the fully
 timed count statement take almost 70% longer. On more substantial queries,
 the timing overhead would be less problematic.

Changing Time Sources

 On some newer Linux systems, it's possible to change the clock source used
 to collect timing data at any time. A second example shows the slowdown
 possible from switching to the slower acpi_pm time source, on the same
 system used for the fast results above:

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
 < us % of total count
 1 27.84870 1155682
 2 72.05956 2990371
 4 0.07810 3241
 8 0.01357 563
 16 0.00007 3

 In this configuration, the sample EXPLAIN ANALYZE above
 takes 115.9 ms. That's 1061 ns of timing overhead, again a small multiple
 of what's measured directly by this utility. That much timing overhead
 means the actual query itself is only taking a tiny fraction of the
 accounted for time, most of it is being consumed in overhead instead. In
 this configuration, any EXPLAIN ANALYZE totals involving
 many timed operations would be inflated significantly by timing overhead.

 FreeBSD also allows changing the time source on the fly, and it logs
 information about the timer selected during boot:

dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

 Other systems may only allow setting the time source on boot. On older
 Linux systems the "clock" kernel setting is the only way to make this sort
 of change. And even on some more recent ones, the only option you'll see
 for a clock source is "jiffies". Jiffies are the older Linux software clock
 implementation, which can have good resolution when it's backed by fast
 enough timing hardware, as in this example:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:
 < us % of total count
 1 90.23734 27694571
 2 9.75277 2993204
 4 0.00981 3010
 8 0.00007 22
 16 0.00000 1
 32 0.00000 1

Clock Hardware and Timing Accuracy

 Collecting accurate timing information is normally done on computers using
 hardware clocks with various levels of accuracy. With some hardware the
 operating systems can pass the system clock time almost directly to
 programs. A system clock can also be derived from a chip that simply
 provides timing interrupts, periodic ticks at some known time interval. In
 either case, operating system kernels provide a clock source that hides
 these details. But the accuracy of that clock source and how quickly it can
 return results varies based on the underlying hardware.

 Inaccurate time keeping can result in system instability. Test any change
 to the clock source very carefully. Operating system defaults are sometimes
 made to favor reliability over best accuracy. And if you are using a virtual
 machine, look into the recommended time sources compatible with it. Virtual
 hardware faces additional difficulties when emulating timers, and there are
 often per operating system settings suggested by vendors.

 The Time Stamp Counter (TSC) clock source is the most accurate one available
 on current generation CPUs. It's the preferred way to track the system time
 when it's supported by the operating system and the TSC clock is
 reliable. There are several ways that TSC can fail to provide an accurate
 timing source, making it unreliable. Older systems can have a TSC clock that
 varies based on the CPU temperature, making it unusable for timing. Trying
 to use TSC on some older multicore CPUs can give a reported time that's
 inconsistent among multiple cores. This can result in the time going
 backwards, a problem this program checks for. And even the newest systems
 can fail to provide accurate TSC timing with very aggressive power saving
 configurations.

 Newer operating systems may check for the known TSC problems and switch to a
 slower, more stable clock source when they are seen. If your system
 supports TSC time but doesn't default to that, it may be disabled for a good
 reason. And some operating systems may not detect all the possible problems
 correctly, or will allow using TSC even in situations where it's known to be
 inaccurate.

 The High Precision Event Timer (HPET) is the preferred timer on systems
 where it's available and TSC is not accurate. The timer chip itself is
 programmable to allow up to 100 nanosecond resolution, but you may not see
 that much accuracy in your system clock.

 Advanced Configuration and Power Interface (ACPI) provides a Power
 Management (PM) Timer, which Linux refers to as the acpi_pm. The clock
 derived from acpi_pm will at best provide 300 nanosecond resolution.

 Timers used on older PC hardware include the 8254 Programmable Interval
 Timer (PIT), the real-time clock (RTC), the Advanced Programmable Interrupt
 Controller (APIC) timer, and the Cyclone timer. These timers aim for
 millisecond resolution.

See Also
EXPLAIN(7)

Name
pg_upgrade — upgrade a PostgreSQL™ server instance

Synopsis
pg_upgrade -b oldbindir [-B newbindir] -d oldconfigdir -D newconfigdir [option...]

Description

 pg_upgrade (formerly called pg_migrator) allows data
 stored in PostgreSQL™ data files to be upgraded to a later PostgreSQL™
 major version without the data dump/restore typically required for
 major version upgrades, e.g., from 12.14 to 13.10 or from 14.9 to 15.5.
 It is not required for minor version upgrades, e.g., from 12.7 to 12.8
 or from 14.1 to 14.5.

 Major PostgreSQL releases regularly add new features that often
 change the layout of the system tables, but the internal data storage
 format rarely changes. pg_upgrade uses this fact
 to perform rapid upgrades by creating new system tables and simply
 reusing the old user data files. If a future major release ever
 changes the data storage format in a way that makes the old data
 format unreadable, pg_upgrade will not be usable
 for such upgrades. (The community will attempt to avoid such
 situations.)

 pg_upgrade does its best to
 make sure the old and new clusters are binary-compatible, e.g., by
 checking for compatible compile-time settings, including 32/64-bit
 binaries. It is important that
 any external modules are also binary compatible, though this cannot
 be checked by pg_upgrade.

 pg_upgrade supports upgrades from 9.2.X and later to the current
 major release of PostgreSQL™, including snapshot and beta releases.

Warning

 Upgrading a cluster causes the destination to execute arbitrary code of the
 source superusers' choice. Ensure that the source superusers are trusted
 before upgrading.

Options

 pg_upgrade accepts the following command-line arguments:

	-b bindir, --old-bindir=bindir
	the old PostgreSQL executable directory;
 environment variable PGBINOLD

	-B bindir, --new-bindir=bindir
	the new PostgreSQL executable directory;
 default is the directory where pg_upgrade resides;
 environment variable PGBINNEW

	-c, --check
	check clusters only, don't change any data

	-d configdir, --old-datadir=configdir
	the old database cluster configuration directory; environment
 variable PGDATAOLD

	-D configdir, --new-datadir=configdir
	the new database cluster configuration directory; environment
 variable PGDATANEW

	-j njobs, --jobs=njobs
	number of simultaneous processes or threads to use

	-k, --link
	use hard links instead of copying files to the new
 cluster

	-N, --no-sync
	
 By default, pg_upgrade will wait for all files
 of the upgraded cluster to be written safely to disk. This option
 causes pg_upgrade to return without waiting, which
 is faster, but means that a subsequent operating system crash can leave
 the data directory corrupt. Generally, this option is
 useful for testing but should not be used on a production
 installation.

	-o options, --old-options options
	options to be passed directly to the
 old postgres command; multiple
 option invocations are appended

	-O options, --new-options options
	options to be passed directly to the
 new postgres command; multiple
 option invocations are appended

	-p port, --old-port=port
	the old cluster port number; environment
 variable PGPORTOLD

	-P port, --new-port=port
	the new cluster port number; environment
 variable PGPORTNEW

	-r, --retain
	retain SQL and log files even after successful completion

	-s dir, --socketdir=dir
	directory to use for postmaster sockets during upgrade;
 default is current working directory; environment
 variable PGSOCKETDIR

	-U username, --username=username
	cluster's install user name; environment
 variable PGUSER

	-v, --verbose
	enable verbose internal logging

	-V, --version
	display version information, then exit

	--clone
	
 Use efficient file cloning (also known as “reflinks” on
 some systems) instead of copying files to the new cluster. This can
 result in near-instantaneous copying of the data files, giving the
 speed advantages of -k/--link while
 leaving the old cluster untouched.

 File cloning is only supported on some operating systems and file
 systems. If it is selected but not supported, the
 pg_upgrade run will error. At present, it
 is supported on Linux (kernel 4.5 or later) with Btrfs and XFS (on
 file systems created with reflink support), and on macOS with APFS.

	--copy
	
 Copy files to the new cluster. This is the default. (See also
 --link and --clone.)

	-?, --help
	show help, then exit

Usage

 These are the steps to perform an upgrade
 with pg_upgrade:

	Optionally move the old cluster

 If you are using a version-specific installation directory, e.g.,
 /opt/PostgreSQL/16, you do not need to move the old cluster. The
 graphical installers all use version-specific installation directories.

 If your installation directory is not version-specific, e.g.,
 /usr/local/pgsql, it is necessary to move the current PostgreSQL install
 directory so it does not interfere with the new PostgreSQL™ installation.
 Once the current PostgreSQL™ server is shut down, it is safe to rename the
 PostgreSQL installation directory; assuming the old directory is
 /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

 to rename the directory.

	For source installs, build the new version

 Build the new PostgreSQL source with configure flags that are compatible
 with the old cluster. pg_upgrade will check pg_controldata to make
 sure all settings are compatible before starting the upgrade.

	Install the new PostgreSQL binaries

 Install the new server's binaries and support
 files. pg_upgrade is included in a default installation.

 For source installs, if you wish to install the new server in a custom
 location, use the prefix variable:

make prefix=/usr/local/pgsql.new install

	Initialize the new PostgreSQL cluster

 Initialize the new cluster using initdb.
 Again, use compatible initdb
 flags that match the old cluster. Many
 prebuilt installers do this step automatically. There is no need to
 start the new cluster.

	Install extension shared object files

 Many extensions and custom modules, whether from
 contrib or another source, use shared object
 files (or DLLs), e.g., pgcrypto.so. If the old
 cluster used these, shared object files matching the new server binary
 must be installed in the new cluster, usually via operating system
 commands. Do not load the schema definitions, e.g., CREATE
 EXTENSION pgcrypto, because these will be duplicated from
 the old cluster. If extension updates are available,
 pg_upgrade will report this and create
 a script that can be run later to update them.

	Copy custom full-text search files

 Copy any custom full text search files (dictionary, synonym,
 thesaurus, stop words) from the old to the new cluster.

	Adjust authentication

 pg_upgrade will connect to the old and new servers several
 times, so you might want to set authentication to peer
 in pg_hba.conf or use a ~/.pgpass file
 (see the section called “The Password File”).

	Stop both servers

 Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/PostgreSQL/12 stop
pg_ctl -D /opt/PostgreSQL/16 stop

 or on Windows, using the proper service names:

NET STOP postgresql-12
NET STOP postgresql-16

 Streaming replication and log-shipping standby servers must be
 running during this shutdown so they receive all changes.

	Prepare for standby server upgrades

 If you are upgrading standby servers using methods outlined in section Step 11, verify that the old standby
 servers are caught up by running pg_controldata
 against the old primary and standby clusters. Verify that the
 “Latest checkpoint location” values match in all clusters.
 Also, make sure wal_level is not set to
 minimal in the postgresql.conf file on the
 new primary cluster.

	Run pg_upgrade

 Always run the pg_upgrade binary of the new server, not the old one.
 pg_upgrade requires the specification of the old and new cluster's
 data and executable (bin) directories. You can also specify
 user and port values, and whether you want the data files linked or cloned
 instead of the default copy behavior.

 If you use link mode, the upgrade will be much faster (no file
 copying) and use less disk space, but you will not be able to access
 your old cluster
 once you start the new cluster after the upgrade. Link mode also
 requires that the old and new cluster data directories be in the
 same file system. (Tablespaces and pg_wal can be on
 different file systems.)
 Clone mode provides the same speed and disk space advantages but
 does not cause the old cluster to be unusable once the new cluster
 is started. Clone mode also requires that the old and new data
 directories be in the same file system. This mode is only available
 on certain operating systems and file systems.

 The --jobs option allows multiple CPU cores to be used
 for copying/linking of files and to dump and restore database schemas
 in parallel; a good place to start is the maximum of the number of
 CPU cores and tablespaces. This option can dramatically reduce the
 time to upgrade a multi-database server running on a multiprocessor
 machine.

 For Windows users, you must be logged into an administrative account, and
 then start a shell as the postgres user and set the proper path:

RUNAS /USER:postgres "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\PostgreSQL\16\bin;

 and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe
 --old-datadir "C:/Program Files/PostgreSQL/12/data"
 --new-datadir "C:/Program Files/PostgreSQL/16/data"
 --old-bindir "C:/Program Files/PostgreSQL/12/bin"
 --new-bindir "C:/Program Files/PostgreSQL/16/bin"

 Once started, pg_upgrade will verify the two clusters are compatible
 and then do the upgrade. You can use pg_upgrade --check
 to perform only the checks, even if the old server is still
 running. pg_upgrade --check will also outline any
 manual adjustments you will need to make after the upgrade. If you
 are going to be using link or clone mode, you should use the option
 --link or --clone with
 --check to enable mode-specific checks.
 pg_upgrade requires write permission in the current directory.

 Obviously, no one should be accessing the clusters during the
 upgrade. pg_upgrade defaults to running servers
 on port 50432 to avoid unintended client connections.
 You can use the same port number for both clusters when doing an
 upgrade because the old and new clusters will not be running at the
 same time. However, when checking an old running server, the old
 and new port numbers must be different.

 If an error occurs while restoring the database schema, pg_upgrade will
 exit and you will have to revert to the old cluster as outlined in Step 17
 below. To try pg_upgrade again, you will need to modify the old
 cluster so the pg_upgrade schema restore succeeds. If the problem is a
 contrib module, you might need to uninstall the contrib module from
 the old cluster and install it in the new cluster after the upgrade,
 assuming the module is not being used to store user data.

	Upgrade streaming replication and log-shipping standby servers

 If you used link mode and have Streaming Replication (see the section called “Streaming Replication”) or Log-Shipping (see the section called “Log-Shipping Standby Servers”) standby servers, you can follow these steps to
 quickly upgrade them. You will not be running pg_upgrade on
 the standby servers, but rather rsync on the primary.
 Do not start any servers yet.

 If you did not use link mode, do not have or do not
 want to use rsync, or want an easier solution, skip
 the instructions in this section and simply recreate the standby
 servers once pg_upgrade completes and the new primary
 is running.

	Install the new PostgreSQL binaries on standby servers

 Make sure the new binaries and support files are installed on all
 standby servers.

	Make sure the new standby data directories do not exist

 Make sure the new standby data directories do not
 exist or are empty. If initdb was run, delete
 the standby servers' new data directories.

	Install extension shared object files

 Install the same extension shared object files on the new standbys
 that you installed in the new primary cluster.

	Stop standby servers

 If the standby servers are still running, stop them now using the
 above instructions.

	Save configuration files

 Save any configuration files from the old standbys' configuration
 directories you need to keep, e.g., postgresql.conf
 (and any files included by it), postgresql.auto.conf,
 pg_hba.conf, because these will be overwritten
 or removed in the next step.

	Run rsync

 When using link mode, standby servers can be quickly upgraded using
 rsync. To accomplish this, from a directory on
 the primary server that is above the old and new database cluster
 directories, run this on the primary for each standby
 server:

rsync --archive --delete --hard-links --size-only --no-inc-recursive old_cluster new_cluster remote_dir

 where old_cluster and new_cluster are relative
 to the current directory on the primary, and remote_dir
 is above the old and new cluster directories
 on the standby. The directory structure under the specified
 directories on the primary and standbys must match. Consult the
 rsync manual page for details on specifying the
 remote directory, e.g.,

rsync --archive --delete --hard-links --size-only --no-inc-recursive /opt/PostgreSQL/12 \
 /opt/PostgreSQL/16 standby.example.com:/opt/PostgreSQL

 You can verify what the command will do using
 rsync's --dry-run option. While
 rsync must be run on the primary for at least one
 standby, it is possible to run rsync on an upgraded
 standby to upgrade other standbys, as long as the upgraded standby
 has not been started.

 What this does is to record the links created by
 pg_upgrade's link mode that connect files in the
 old and new clusters on the primary server. It then finds matching
 files in the standby's old cluster and creates links for them in the
 standby's new cluster. Files that were not linked on the primary
 are copied from the primary to the standby. (They are usually
 small.) This provides rapid standby upgrades. Unfortunately,
 rsync needlessly copies files associated with
 temporary and unlogged tables because these files don't normally
 exist on standby servers.

 If you have tablespaces, you will need to run a similar
 rsync command for each tablespace directory, e.g.:

rsync --archive --delete --hard-links --size-only --no-inc-recursive /vol1/pg_tblsp/PG_12_201909212 \
 /vol1/pg_tblsp/PG_16_202307071 standby.example.com:/vol1/pg_tblsp

 If you have relocated pg_wal outside the data
 directories, rsync must be run on those directories
 too.

	Configure streaming replication and log-shipping standby servers

 Configure the servers for log shipping. (You do not need to run
 pg_backup_start() and pg_backup_stop()
 or take a file system backup as the standbys are still synchronized
 with the primary.) Replication slots are not copied and must
 be recreated.

	Restore pg_hba.conf

 If you modified pg_hba.conf, restore its original settings.
 It might also be necessary to adjust other configuration files in the new
 cluster to match the old cluster, e.g., postgresql.conf
 (and any files included by it), postgresql.auto.conf.

	Start the new server

 The new server can now be safely started, and then any
 rsync'ed standby servers.

	Post-upgrade processing

 If any post-upgrade processing is required, pg_upgrade will issue
 warnings as it completes. It will also generate script files that must
 be run by the administrator. The script files will connect to each
 database that needs post-upgrade processing. Each script should be
 run using:

psql --username=postgres --file=script.sql postgres

 The scripts can be run in any order and can be deleted once they have
 been run.

Caution

 In general it is unsafe to access tables referenced in rebuild scripts
 until the rebuild scripts have run to completion; doing so could yield
 incorrect results or poor performance. Tables not referenced in rebuild
 scripts can be accessed immediately.

	Statistics

 Because optimizer statistics are not transferred by pg_upgrade, you will
 be instructed to run a command to regenerate that information at the end
 of the upgrade. You might need to set connection parameters to
 match your new cluster.

	Delete old cluster

 Once you are satisfied with the upgrade, you can delete the old
 cluster's data directories by running the script mentioned when
 pg_upgrade completes. (Automatic deletion is not
 possible if you have user-defined tablespaces inside the old data
 directory.) You can also delete the old installation directories
 (e.g., bin, share).

	Reverting to old cluster

 If, after running pg_upgrade, you wish to revert to the old cluster,
 there are several options:

	
 If the --check option was used, the old cluster
 was unmodified; it can be restarted.

	
 If the --link option was not
 used, the old cluster was unmodified; it can be restarted.

	
 If the --link option was used, the data
 files might be shared between the old and new cluster:

	
 If pg_upgrade aborted before linking started,
 the old cluster was unmodified; it can be restarted.

	
 If you did not start the new cluster, the old
 cluster was unmodified except that, when linking started, a
 .old suffix was appended to
 $PGDATA/global/pg_control. To reuse the old
 cluster, remove the .old suffix from
 $PGDATA/global/pg_control; you can then restart
 the old cluster.

	
 If you did start the new cluster, it has written to shared files
 and it is unsafe to use the old cluster. The old cluster will
 need to be restored from backup in this case.

Notes

 pg_upgrade creates various working files, such
 as schema dumps, stored within pg_upgrade_output.d in
 the directory of the new cluster. Each run creates a new subdirectory named
 with a timestamp formatted as per ISO 8601
 (%Y%m%dT%H%M%S), where all its generated files are
 stored.
 pg_upgrade_output.d and its contained files will be
 removed automatically if pg_upgrade completes
 successfully; but in the event of trouble, the files there may provide
 useful debugging information.

 pg_upgrade launches short-lived postmasters in
 the old and new data directories. Temporary Unix socket files for
 communication with these postmasters are, by default, made in the current
 working directory. In some situations the path name for the current
 directory might be too long to be a valid socket name. In that case you
 can use the -s option to put the socket files in some
 directory with a shorter path name. For security, be sure that that
 directory is not readable or writable by any other users.
 (This is not supported on Windows.)

 All failure, rebuild, and reindex cases will be reported by
 pg_upgrade if they affect your installation;
 post-upgrade scripts to rebuild tables and indexes will be
 generated automatically. If you are trying to automate the upgrade
 of many clusters, you should find that clusters with identical database
 schemas require the same post-upgrade steps for all cluster upgrades;
 this is because the post-upgrade steps are based on the database
 schemas, and not user data.

 For deployment testing, create a schema-only copy of the old cluster,
 insert dummy data, and upgrade that.

 pg_upgrade does not support upgrading of databases
 containing table columns using these reg* OID-referencing system data types:

	regcollation
	regconfig
	regdictionary
	regnamespace
	regoper
	regoperator
	regproc
	regprocedure

 (regclass, regrole, and regtype can be upgraded.)

 If you want to use link mode and you do not want your old cluster
 to be modified when the new cluster is started, consider using the clone mode.
 If that is not available, make a copy of the
 old cluster and upgrade that in link mode. To make a valid copy
 of the old cluster, use rsync to create a dirty
 copy of the old cluster while the server is running, then shut down
 the old server and run rsync --checksum again to update the
 copy with any changes to make it consistent. (--checksum
 is necessary because rsync only has file modification-time
 granularity of one second.) You might want to exclude some
 files, e.g., postmaster.pid, as documented in the section called “Making a Base Backup Using the Low Level API”. If your file system supports
 file system snapshots or copy-on-write file copies, you can use that
 to make a backup of the old cluster and tablespaces, though the snapshot
 and copies must be created simultaneously or while the database server
 is down.

See Also
initdb(1), pg_ctl(1), pg_dump(1), postgres(1)

Name
pg_waldump — display a human-readable rendering of the write-ahead log of a PostgreSQL™ database cluster

Synopsis
pg_waldump [option...] [startseg [endseg]]

Description

 pg_waldump displays the write-ahead log (WAL) and is mainly
 useful for debugging or educational purposes.

 This utility can only be run by the user who installed the server, because
 it requires read-only access to the data directory.

Options

 The following command-line options control the location and format of the
 output:

	startseg
	
 Start reading at the specified WAL segment file. This implicitly determines
 the path in which files will be searched for, and the timeline to use.

	endseg
	
 Stop after reading the specified WAL segment file.

	-b, --bkp-details
	
 Output detailed information about backup blocks.

	-B block, --block=block
	
 Only display records that modify the given block. The relation must
 also be provided with --relation or
 -R.

	-e end, --end=end
	
 Stop reading at the specified WAL location, instead of reading to the
 end of the log stream.

	-f, --follow
	
 After reaching the end of valid WAL, keep polling once per second for
 new WAL to appear.

	-F fork, --fork=fork
	
 If provided, only display records that modify blocks in the given fork.
 The valid values are main for the main fork,
 fsm for the free space map,
 vm for the visibility map,
 and init for the init fork.

	-n limit, --limit=limit
	
 Display the specified number of records, then stop.

	-p path, --path=path
	
 Specifies a directory to search for WAL segment files or a
 directory with a pg_wal subdirectory that
 contains such files. The default is to search in the current
 directory, the pg_wal subdirectory of the
 current directory, and the pg_wal subdirectory
 of PGDATA.

	-q, --quiet
	
 Do not print any output, except for errors. This option can be useful
 when you want to know whether a range of WAL records can be
 successfully parsed but don't care about the record contents.

	-r rmgr, --rmgr=rmgr
	
 Only display records generated by the specified resource manager. You can
 specify the option multiple times to select multiple resource managers.
 If list is passed as name, print a list of valid resource manager
 names, and exit.

 Extensions may define custom resource managers, but pg_waldump does
 not load the extension module and therefore does not recognize custom
 resource managers by name. Instead, you can specify the custom
 resource managers as custom### where
 "###" is the three-digit resource manager ID. Names
 of this form will always be considered valid.

	-R tblspc/db/rel, --relation=tblspc/db/rel
	
 Only display records that modify blocks in the given relation. The
 relation is specified with tablespace OID, database OID, and relfilenode
 separated by slashes, for example 1234/12345/12345.
 This is the same format used for relations in the program's output.

	-s start, --start=start
	
 WAL location at which to start reading. The default is to start reading
 the first valid WAL record found in the earliest file found.

	-t timeline, --timeline=timeline
	
 Timeline from which to read WAL records. The default is to use the
 value in startseg, if that is specified; otherwise, the
 default is 1. The value can be specified in decimal or hexadecimal,
 for example 17 or 0x11.

	-V, --version
	
 Print the pg_waldump version and exit.

	-w, --fullpage
	
 Only display records that include full page images.

	-x xid, --xid=xid
	
 Only display records marked with the given transaction ID.

	-z, --stats[=record]
	
 Display summary statistics (number and size of records and
 full-page images) instead of individual records. Optionally
 generate statistics per-record instead of per-rmgr.

 If pg_waldump is terminated by signal
 SIGINT
 (Control+C),
 the summary of the statistics computed is displayed up to the
 termination point. This operation is not supported on
 Windows™.

	--save-fullpage=save_path
	
 Save full page images found in the WAL records to the
 save_path directory. The images saved
 are subject to the same filtering and limiting criteria as the
 records displayed.

 The full page images are saved with the following file name format:
 TIMELINE-LSN.RELTABLESPACE.DATOID.RELNODE.BLKNO_FORK

 The file names are composed of the following parts:

	Component	Description
	TIMELINE	The timeline of the WAL segment file where the record
 is located formatted as one 8-character hexadecimal number
 %08X
	LSN	The LSN of the record with this image,
 formatted as two 8-character hexadecimal numbers
 %08X-%08X
	RELTABLESPACE	tablespace OID of the block
	DATOID	database OID of the block
	RELNODE	filenode of the block
	BLKNO	block number of the block
	FORK	
 The name of the fork the full page image came from, such as
 main, fsm,
 vm, or init.

	-?, --help
	
 Show help about pg_waldump command line
 arguments, and exit.

Environment
	PGDATA
	
 Data directory; see also the -p option.

	PG_COLOR
	
 Specifies whether to use color in diagnostic messages. Possible values
 are always, auto and
 never.

Notes

 Can give wrong results when the server is running.

 Only the specified timeline is displayed (or the default, if none is
 specified). Records in other timelines are ignored.

 pg_waldump cannot read WAL files with suffix
 .partial. If those files need to be read, .partial
 suffix needs to be removed from the file name.

See Also
the section called “WAL Internals”

Name
postgres — PostgreSQL™ database server

Synopsis
postgres [option...]

Description

 postgres is the
 PostgreSQL™ database server. In order
 for a client application to access a database it connects (over a
 network or locally) to a running postgres instance.
 The postgres instance then starts a separate server
 process to handle the connection.

 One postgres instance always manages the data of
 exactly one database cluster. A database cluster is a collection
 of databases that is stored at a common file system location (the
 “data area”). More than one
 postgres instance can run on a system at one
 time, so long as they use different data areas and different
 communication ports (see below). When
 postgres starts it needs to know the location
 of the data area. The location must be specified by the
 -D option or the PGDATA environment
 variable; there is no default. Typically, -D or
 PGDATA points directly to the data area directory
 created by initdb(1). Other possible file layouts are
 discussed in the section called “File Locations”.

 By default postgres starts in the
 foreground and prints log messages to the standard error stream. In
 practical applications postgres
 should be started as a background process, perhaps at boot time.

 The postgres command can also be called in
 single-user mode. The primary use for this mode is during
 bootstrapping by initdb(1). Sometimes it is used
 for debugging or disaster recovery; note that running a single-user
 server is not truly suitable for debugging the server, since no
 realistic interprocess communication and locking will happen.
 When invoked in single-user
 mode from the shell, the user can enter queries and the results
 will be printed to the screen, but in a form that is more useful
 for developers than end users. In the single-user mode,
 the session user will be set to the user with ID 1, and implicit
 superuser powers are granted to this user.
 This user does not actually have to exist, so the single-user mode
 can be used to manually recover from certain
 kinds of accidental damage to the system catalogs.

Options

 postgres accepts the following command-line
 arguments. For a detailed discussion of the options consult Chapter 20, Server Configuration. You can save typing most of these
 options by setting up a configuration file. Some (safe) options
 can also be set from the connecting client in an
 application-dependent way to apply only for that session. For
 example, if the environment variable PGOPTIONS is
 set, then libpq-based clients will pass that
 string to the server, which will interpret it as
 postgres command-line options.

General Purpose
	-B nbuffers
	
 Sets the number of shared buffers for use by the server
 processes. The default value of this parameter is chosen
 automatically by initdb.
 Specifying this option is equivalent to setting the
 shared_buffers configuration parameter.

	-c name=value
	
 Sets a named run-time parameter. The configuration parameters
 supported by PostgreSQL™ are
 described in Chapter 20, Server Configuration. Most of the
 other command line options are in fact short forms of such a
 parameter assignment. -c can appear multiple times
 to set multiple parameters.

	-C name
	
 Prints the value of the named run-time parameter, and exits.
 (See the -c option above for details.) This
 returns values from
 postgresql.conf, modified by any parameters
 supplied in this invocation. It does not reflect parameters
 supplied when the cluster was started.

 This can be used on a running server for most parameters. However,
 the server must be shut down for some runtime-computed parameters
 (e.g., shared_memory_size,
 shared_memory_size_in_huge_pages, and
 wal_segment_size).

 This option is meant for other programs that interact with a server
 instance, such as pg_ctl(1), to query configuration
 parameter values. User-facing applications should instead use SHOW or the pg_settings view.

	-d debug-level
	
 Sets the debug level. The higher this value is set, the more
 debugging output is written to the server log. Values are
 from 1 to 5. It is also possible to pass -d
 0 for a specific session, which will prevent the
 server log level of the parent postgres process from being
 propagated to this session.

	-D datadir
	
 Specifies the file system location of the database
 configuration files. See
 the section called “File Locations” for details.

	-e
	
 Sets the default date style to “European”, that is
 DMY ordering of input date fields. This also causes
 the day to be printed before the month in certain date output formats.
 See the section called “Date/Time Types” for more information.

	-F
	
 Disables fsync calls for improved
 performance, at the risk of data corruption in the event of a
 system crash. Specifying this option is equivalent to
 disabling the fsync configuration
 parameter. Read the detailed documentation before using this!

	-h hostname
	
 Specifies the IP host name or address on which
 postgres is to listen for TCP/IP
 connections from client applications. The value can also be a
 comma-separated list of addresses, or * to specify
 listening on all available interfaces. An empty value
 specifies not listening on any IP addresses, in which case
 only Unix-domain sockets can be used to connect to the
 server. Defaults to listening only on
 localhost.
 Specifying this option is equivalent to setting the listen_addresses configuration parameter.

	-i
	
 Allows remote clients to connect via TCP/IP (Internet domain)
 connections. Without this option, only local connections are
 accepted. This option is equivalent to setting
 listen_addresses to * in
 postgresql.conf or via -h.

 This option is deprecated since it does not allow access to the
 full functionality of listen_addresses.
 It's usually better to set listen_addresses directly.

	-k directory
	
 Specifies the directory of the Unix-domain socket on which
 postgres is to listen for
 connections from client applications. The value can also be a
 comma-separated list of directories. An empty value
 specifies not listening on any Unix-domain sockets, in which case
 only TCP/IP sockets can be used to connect to the server.
 The default value is normally
 /tmp, but that can be changed at build time.
 Specifying this option is equivalent to setting the unix_socket_directories configuration parameter.

	-l
	
 Enables secure connections using SSL.
 PostgreSQL™ must have been compiled with
 support for SSL for this option to be
 available. For more information on using SSL,
 refer to the section called “Secure TCP/IP Connections with SSL”.

	-N max-connections
	
 Sets the maximum number of client connections that this
 server will accept. The default value of this parameter is chosen
 automatically by initdb.
 Specifying this option is equivalent to setting the
 max_connections configuration parameter.

	-p port
	
 Specifies the TCP/IP port or local Unix domain socket file
 extension on which postgres
 is to listen for connections from client applications.
 Defaults to the value of the PGPORT environment
 variable, or if PGPORT is not set, then
 defaults to the value established during compilation (normally
 5432). If you specify a port other than the default port,
 then all client applications must specify the same port using
 either command-line options or PGPORT.

	-s
	
 Print time information and other statistics at the end of each command.
 This is useful for benchmarking or for use in tuning the number of
 buffers.

	-S work-mem
	
 Specifies the base amount of memory to be used by sorts and
 hash tables before resorting to temporary disk files. See the
 description of the work_mem configuration
 parameter in the section called “Memory”.

	-V, --version
	
 Print the postgres version and exit.

	--name=value
	
 Sets a named run-time parameter; a shorter form of
 -c.

	--describe-config
	
 This option dumps out the server's internal configuration variables,
 descriptions, and defaults in tab-delimited COPY format.
 It is designed primarily for use by administration tools.

	-?, --help
	
 Show help about postgres command line
 arguments, and exit.

Semi-Internal Options

 The options described here are used
 mainly for debugging purposes, and in some cases to assist with
 recovery of severely damaged databases. There should be no reason
 to use them in a production database setup. They are listed
 here only for use by PostgreSQL™
 system developers. Furthermore, these options might
 change or be removed in a future release without notice.

	-f { s | i | o | b | t | n | m | h }
	
 Forbids the use of particular scan and join methods:
 s and i
 disable sequential and index scans respectively,
 o, b and t
 disable index-only scans, bitmap index scans, and TID scans
 respectively, while
 n, m, and h
 disable nested-loop, merge and hash joins respectively.

 Neither sequential scans nor nested-loop joins can be disabled
 completely; the -fs and
 -fn options simply discourage the optimizer
 from using those plan types if it has any other alternative.

	-O
	
 Allows the structure of system tables to be modified. This is
 used by initdb.

	-P
	
 Ignore system indexes when reading system tables, but still update
 the indexes when modifying the tables. This is useful when
 recovering from damaged system indexes.

	-t pa[rser] | pl[anner] | e[xecutor]
	
 Print timing statistics for each query relating to each of the
 major system modules. This option cannot be used together
 with the -s option.

	-T
	
 This option is for debugging problems that cause a server
 process to die abnormally. The ordinary strategy in this
 situation is to notify all other server processes that they
 must terminate, by sending them SIGQUIT
 signals. With this option, SIGABRT
 will be sent instead, resulting in production of core dump files.

	-v protocol
	
 Specifies the version number of the frontend/backend protocol
 to be used for a particular session. This option is for
 internal use only.

	-W seconds
	
 A delay of this many seconds occurs when a new server process
 is started, after it conducts the authentication procedure.
 This is intended to give an opportunity to attach to the
 server process with a debugger.

Options for Single-User Mode

 The following options only apply to the single-user mode
 (see Single-User Mode below).

	--single
	
 Selects the single-user mode. This must be the first argument
 on the command line.

	database
	
 Specifies the name of the database to be accessed. This must be
 the last argument on the command line. If it is
 omitted it defaults to the user name.

	-E
	
 Echo all commands to standard output before executing them.

	-j
	
 Use semicolon followed by two newlines, rather than just newline,
 as the command entry terminator.

	-r filename
	
 Send all server log output to filename. This option is only
 honored when supplied as a command-line option.

Environment
	PGCLIENTENCODING
	
 Default character encoding used by clients. (The clients can
 override this individually.) This value can also be set in the
 configuration file.

	PGDATA
	
 Default data directory location

	PGDATESTYLE
	
 Default value of the DateStyle run-time
 parameter. (The use of this environment variable is deprecated.)

	PGPORT
	
 Default port number (preferably set in the configuration file)

Diagnostics

 A failure message mentioning semget or
 shmget probably indicates you need to configure your
 kernel to provide adequate shared memory and semaphores. For more
 discussion see the section called “Managing Kernel Resources”. You might be able
 to postpone reconfiguring your kernel by decreasing shared_buffers to reduce the shared memory
 consumption of PostgreSQL™, and/or by reducing
 max_connections to reduce the semaphore
 consumption.

 A failure message suggesting that another server is already running
 should be checked carefully, for example by using the command

$ ps ax | grep postgres

 or

$ ps -ef | grep postgres

 depending on your system. If you are certain that no conflicting
 server is running, you can remove the lock file mentioned in the
 message and try again.

 A failure message indicating inability to bind to a port might
 indicate that that port is already in use by some
 non-PostgreSQL™ process. You might also
 get this error if you terminate postgres
 and immediately restart it using the same port; in this case, you
 must simply wait a few seconds until the operating system closes
 the port before trying again. Finally, you might get this error if
 you specify a port number that your operating system considers to
 be reserved. For example, many versions of Unix consider port
 numbers under 1024 to be “trusted” and only permit
 the Unix superuser to access them.

Notes

 The utility command pg_ctl(1) can be used to
 start and shut down the postgres server
 safely and comfortably.

 If at all possible, do not use
 SIGKILL to kill the main
 postgres server. Doing so will prevent
 postgres from freeing the system
 resources (e.g., shared memory and semaphores) that it holds before
 terminating. This might cause problems for starting a fresh
 postgres run.

 To terminate the postgres server normally, the
 signals SIGTERM, SIGINT, or
 SIGQUIT can be used. The first will wait for
 all clients to terminate before quitting, the second will
 forcefully disconnect all clients, and the third will quit
 immediately without proper shutdown, resulting in a recovery run
 during restart.

 The SIGHUP signal will reload
 the server configuration files. It is also possible to send
 SIGHUP to an individual server process, but that
 is usually not sensible.

 To cancel a running query, send the SIGINT signal
 to the process running that command. To terminate a backend process
 cleanly, send SIGTERM to that process. See
 also pg_cancel_backend and pg_terminate_backend
 in the section called “Server Signaling Functions” for the SQL-callable equivalents
 of these two actions.

 The postgres server uses SIGQUIT
 to tell subordinate server processes to terminate without normal
 cleanup.
 This signal should not be used by users. It
 is also unwise to send SIGKILL to a server
 process — the main postgres process will
 interpret this as a crash and will force all the sibling processes
 to quit as part of its standard crash-recovery procedure.

Bugs

 The -- options will not work on FreeBSD or OpenBSD.
 Use -c instead. This is a bug in the affected operating
 systems; a future release of PostgreSQL™
 will provide a workaround if this is not fixed.

Single-User Mode

 To start a single-user mode server, use a command like

postgres --single -D /usr/local/pgsql/data other-options my_database

 Provide the correct path to the database directory with -D, or
 make sure that the environment variable PGDATA is set.
 Also specify the name of the particular database you want to work in.

 Normally, the single-user mode server treats newline as the command
 entry terminator; there is no intelligence about semicolons,
 as there is in psql. To continue a command
 across multiple lines, you must type backslash just before each
 newline except the last one. The backslash and adjacent newline are
 both dropped from the input command. Note that this will happen even
 when within a string literal or comment.

 But if you use the -j command line switch, a single newline
 does not terminate command entry; instead, the sequence
 semicolon-newline-newline does. That is, type a semicolon immediately
 followed by a completely empty line. Backslash-newline is not
 treated specially in this mode. Again, there is no intelligence about
 such a sequence appearing within a string literal or comment.

 In either input mode, if you type a semicolon that is not just before or
 part of a command entry terminator, it is considered a command separator.
 When you do type a command entry terminator, the multiple statements
 you've entered will be executed as a single transaction.

 To quit the session, type EOF
 (Control+D, usually).
 If you've entered any text since the last command entry terminator,
 then EOF will be taken as a command entry terminator,
 and another EOF will be needed to exit.

 Note that the single-user mode server does not provide sophisticated
 line-editing features (no command history, for example).
 Single-user mode also does not do any background processing, such as
 automatic checkpoints or replication.

Examples

 To start postgres in the background
 using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

 To start postgres with a specific
 port, e.g., 1234:

$ postgres -p 1234

 To connect to this server using psql, specify this port with the -p option:

$ psql -p 1234

 or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

 Named run-time parameters can be set in either of these styles:

$ postgres -c work_mem=1234
$ postgres --work-mem=1234

 Either form overrides whatever setting might exist for
 work_mem in postgresql.conf. Notice that
 underscores in parameter names can be written as either underscore
 or dash on the command line. Except for short-term experiments,
 it's probably better practice to edit the setting in
 postgresql.conf than to rely on a command-line switch
 to set a parameter.

See Also

 initdb(1),
 pg_ctl(1)

Part VII. Internals

 This part contains assorted information that might be of use to
 PostgreSQL™ developers.

Chapter 52. Overview of PostgreSQL Internals

Author

 This chapter originated as part of
 [sim98] Stefan Simkovics'
 Master's Thesis prepared at Vienna University of Technology under the direction
 of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

 This chapter gives an overview of the internal structure of the
 backend of PostgreSQL™. After having
 read the following sections you should have an idea of how a query
 is processed. This chapter is intended to help the reader
 understand the general sequence of operations that occur within the
 backend from the point at which a query is received, to the point
 at which the results are returned to the client.

The Path of a Query

 Here we give a short overview of the stages a query has to pass
 to obtain a result.

	
 A connection from an application program to the PostgreSQL™
 server has to be established. The application program transmits a
 query to the server and waits to receive the results sent back by the
 server.

	
 The parser stage checks the query
 transmitted by the application
 program for correct syntax and creates
 a query tree.

	
 The rewrite system takes
 the query tree created by the parser stage and looks for
 any rules (stored in the
 system catalogs) to apply to
 the query tree. It performs the
 transformations given in the rule bodies.

 One application of the rewrite system is in the realization of
 views.
 Whenever a query against a view
 (i.e., a virtual table) is made,
 the rewrite system rewrites the user's query to
 a query that accesses the base tables given in
 the view definition instead.

	
 The planner/optimizer takes
 the (rewritten) query tree and creates a
 query plan that will be the input to the
 executor.

 It does so by first creating all possible paths
 leading to the same result. For example if there is an index on a
 relation to be scanned, there are two paths for the
 scan. One possibility is a simple sequential scan and the other
 possibility is to use the index. Next the cost for the execution of
 each path is estimated and the cheapest path is chosen. The cheapest
 path is expanded into a complete plan that the executor can use.

	
 The executor recursively steps through
 the plan tree and
 retrieves rows in the way represented by the plan.
 The executor makes use of the
 storage system while scanning
 relations, performs sorts and joins,
 evaluates qualifications and finally hands back the rows derived.

 In the following sections we will cover each of the above listed items
 in more detail to give a better understanding of PostgreSQL™'s internal
 control and data structures.

How Connections Are Established

 PostgreSQL™ implements a
 “process per user” client/server model.
 In this model, every
 client process
 connects to exactly one
 backend process.
 As we do not know ahead of time how many connections will be made,
 we have to use a “supervisor process” that spawns a new
 backend process every time a connection is requested. This supervisor
 process is called
 postmaster
 and listens at a specified TCP/IP port for incoming connections.
 Whenever it detects a request for a connection, it spawns a new
 backend process. Those backend processes communicate with each
 other and with other processes of the
 instance
 using semaphores and
 shared memory
 to ensure data integrity throughout concurrent data access.

 The client process can be any program that understands the
 PostgreSQL™ protocol described in
 Chapter 55, Frontend/Backend Protocol. Many clients are based on the
 C-language library libpq, but several independent
 implementations of the protocol exist, such as the Java
 JDBC driver.

 Once a connection is established, the client process can send a query
 to the backend process it's connected to. The query is transmitted using
 plain text, i.e., there is no parsing done in the client. The backend
 process parses the query, creates an execution plan,
 executes the plan, and returns the retrieved rows to the client
 by transmitting them over the established connection.

The Parser Stage

 The parser stage consists of two parts:

	
 The parser defined in
 gram.y and scan.l is
 built using the Unix tools bison
 and flex.

	
 The transformation process does
 modifications and augmentations to the data structures returned by the parser.

Parser

 The parser has to check the query string (which arrives as plain
 text) for valid syntax. If the syntax is correct a
 parse tree is built up and handed back;
 otherwise an error is returned. The parser and lexer are
 implemented using the well-known Unix tools bison
 and flex.

 The lexer is defined in the file
 scan.l and is responsible
 for recognizing identifiers,
 the SQL key words etc. For
 every key word or identifier that is found, a token
 is generated and handed to the parser.

 The parser is defined in the file gram.y and
 consists of a set of grammar rules and
 actions that are executed whenever a rule
 is fired. The code of the actions (which is actually C code) is
 used to build up the parse tree.

 The file scan.l is transformed to the C
 source file scan.c using the program
 flex and gram.y is
 transformed to gram.c using
 bison. After these transformations
 have taken place a normal C compiler can be used to create the
 parser. Never make any changes to the generated C files as they
 will be overwritten the next time flex
 or bison is called.

Note

 The mentioned transformations and compilations are normally done
 automatically using the makefiles
 shipped with the PostgreSQL™
 source distribution.

 A detailed description of bison or
 the grammar rules given in gram.y would be
 beyond the scope of this manual. There are many books and
 documents dealing with flex and
 bison. You should be familiar with
 bison before you start to study the
 grammar given in gram.y otherwise you won't
 understand what happens there.

Transformation Process

 The parser stage creates a parse tree using only fixed rules about
 the syntactic structure of SQL. It does not make any lookups in the
 system catalogs, so there is no possibility to understand the detailed
 semantics of the requested operations. After the parser completes,
 the transformation process takes the tree handed
 back by the parser as input and does the semantic interpretation needed
 to understand which tables, functions, and operators are referenced by
 the query. The data structure that is built to represent this
 information is called the query tree.

 The reason for separating raw parsing from semantic analysis is that
 system catalog lookups can only be done within a transaction, and we
 do not wish to start a transaction immediately upon receiving a query
 string. The raw parsing stage is sufficient to identify the transaction
 control commands (BEGIN, ROLLBACK, etc.), and
 these can then be correctly executed without any further analysis.
 Once we know that we are dealing with an actual query (such as
 SELECT or UPDATE), it is okay to
 start a transaction if we're not already in one. Only then can the
 transformation process be invoked.

 The query tree created by the transformation process is structurally
 similar to the raw parse tree in most places, but it has many differences
 in detail. For example, a FuncCall node in the
 parse tree represents something that looks syntactically like a function
 call. This might be transformed to either a FuncExpr
 or Aggref node depending on whether the referenced
 name turns out to be an ordinary function or an aggregate function.
 Also, information about the actual data types of columns and expression
 results is added to the query tree.

The PostgreSQL™ Rule System

 PostgreSQL™ supports a powerful
 rule system for the specification
 of views and ambiguous view updates.
 Originally the PostgreSQL™
 rule system consisted of two implementations:

	
 The first one worked using row level processing and was
 implemented deep in the executor. The rule system was
 called whenever an individual row had been accessed. This
 implementation was removed in 1995 when the last official release
 of the Berkeley Postgres™ project was
 transformed into Postgres95™.

	
 The second implementation of the rule system is a technique
 called query rewriting.
 The rewrite system is a module
 that exists between the parser stage and the
 planner/optimizer. This technique is still implemented.

 The query rewriter is discussed in some detail in
 Chapter 41, The Rule System, so there is no need to cover it here.
 We will only point out that both the input and the output of the
 rewriter are query trees, that is, there is no change in the
 representation or level of semantic detail in the trees. Rewriting
 can be thought of as a form of macro expansion.

Planner/Optimizer

 The task of the planner/optimizer is to
 create an optimal execution plan. A given SQL query (and hence, a
 query tree) can be actually executed in a wide variety of
 different ways, each of which will produce the same set of
 results. If it is computationally feasible, the query optimizer
 will examine each of these possible execution plans, ultimately
 selecting the execution plan that is expected to run the fastest.

Note

 In some situations, examining each possible way in which a query
 can be executed would take an excessive amount of time and memory.
 In particular, this occurs when executing queries
 involving large numbers of join operations. In order to determine
 a reasonable (not necessarily optimal) query plan in a reasonable amount
 of time, PostgreSQL™ uses a Genetic
 Query Optimizer (see Chapter 62, Genetic Query Optimizer) when the number of joins
 exceeds a threshold (see geqo_threshold).

 The planner's search procedure actually works with data structures
 called paths, which are simply cut-down representations of
 plans containing only as much information as the planner needs to make
 its decisions. After the cheapest path is determined, a full-fledged
 plan tree is built to pass to the executor. This represents
 the desired execution plan in sufficient detail for the executor to run it.
 In the rest of this section we'll ignore the distinction between paths
 and plans.

Generating Possible Plans

 The planner/optimizer starts by generating plans for scanning each
 individual relation (table) used in the query. The possible plans
 are determined by the available indexes on each relation.
 There is always the possibility of performing a
 sequential scan on a relation, so a sequential scan plan is always
 created. Assume an index is defined on a
 relation (for example a B-tree index) and a query contains the
 restriction
 relation.attribute OPR constant. If
 relation.attribute happens to match the key of the B-tree
 index and OPR is one of the operators listed in
 the index's operator class, another plan is created using
 the B-tree index to scan the relation. If there are further indexes
 present and the restrictions in the query happen to match a key of an
 index, further plans will be considered. Index scan plans are also
 generated for indexes that have a sort ordering that can match the
 query's ORDER BY clause (if any), or a sort ordering that
 might be useful for merge joining (see below).

 If the query requires joining two or more relations,
 plans for joining relations are considered
 after all feasible plans have been found for scanning single relations.
 The three available join strategies are:

	
 nested loop join: The right relation is scanned
 once for every row found in the left relation. This strategy
 is easy to implement but can be very time consuming. (However,
 if the right relation can be scanned with an index scan, this can
 be a good strategy. It is possible to use values from the current
 row of the left relation as keys for the index scan of the right.)

	
 merge join: Each relation is sorted on the join
 attributes before the join starts. Then the two relations are
 scanned in parallel, and matching rows are combined to form
 join rows. This kind of join is
 attractive because each relation has to be scanned only once.
 The required sorting might be achieved either by an explicit sort
 step, or by scanning the relation in the proper order using an
 index on the join key.

	
 hash join: the right relation is first scanned
 and loaded into a hash table, using its join attributes as hash keys.
 Next the left relation is scanned and the
 appropriate values of every row found are used as hash keys to
 locate the matching rows in the table.

 When the query involves more than two relations, the final result
 must be built up by a tree of join steps, each with two inputs.
 The planner examines different possible join sequences to find the
 cheapest one.

 If the query uses fewer than geqo_threshold
 relations, a near-exhaustive search is conducted to find the best
 join sequence. The planner preferentially considers joins between any
 two relations for which there exists a corresponding join clause in the
 WHERE qualification (i.e., for
 which a restriction like where rel1.attr1=rel2.attr2
 exists). Join pairs with no join clause are considered only when there
 is no other choice, that is, a particular relation has no available
 join clauses to any other relation. All possible plans are generated for
 every join pair considered by the planner, and the one that is
 (estimated to be) the cheapest is chosen.

 When geqo_threshold is exceeded, the join
 sequences considered are determined by heuristics, as described
 in Chapter 62, Genetic Query Optimizer. Otherwise the process is the same.

 The finished plan tree consists of sequential or index scans of
 the base relations, plus nested-loop, merge, or hash join nodes as
 needed, plus any auxiliary steps needed, such as sort nodes or
 aggregate-function calculation nodes. Most of these plan node
 types have the additional ability to do selection
 (discarding rows that do not meet a specified Boolean condition)
 and projection (computation of a derived column set
 based on given column values, that is, evaluation of scalar
 expressions where needed). One of the responsibilities of the
 planner is to attach selection conditions from the
 WHERE clause and computation of required
 output expressions to the most appropriate nodes of the plan
 tree.

Executor

 The executor takes the plan created by the
 planner/optimizer and recursively processes it to extract the required set
 of rows. This is essentially a demand-pull pipeline mechanism.
 Each time a plan node is called, it must deliver one more row, or
 report that it is done delivering rows.

 To provide a concrete example, assume that the top
 node is a MergeJoin node.
 Before any merge can be done two rows have to be fetched (one from
 each subplan). So the executor recursively calls itself to
 process the subplans (it starts with the subplan attached to
 lefttree). The new top node (the top node of the left
 subplan) is, let's say, a
 Sort node and again recursion is needed to obtain
 an input row. The child node of the Sort might
 be a SeqScan node, representing actual reading of a table.
 Execution of this node causes the executor to fetch a row from the
 table and return it up to the calling node. The Sort
 node will repeatedly call its child to obtain all the rows to be sorted.
 When the input is exhausted (as indicated by the child node returning
 a NULL instead of a row), the Sort code performs
 the sort, and finally is able to return its first output row, namely
 the first one in sorted order. It keeps the remaining rows stored so
 that it can deliver them in sorted order in response to later demands.

 The MergeJoin node similarly demands the first row
 from its right subplan. Then it compares the two rows to see if they
 can be joined; if so, it returns a join row to its caller. On the next
 call, or immediately if it cannot join the current pair of inputs,
 it advances to the next row of one table
 or the other (depending on how the comparison came out), and again
 checks for a match. Eventually, one subplan or the other is exhausted,
 and the MergeJoin node returns NULL to indicate that
 no more join rows can be formed.

 Complex queries can involve many levels of plan nodes, but the general
 approach is the same: each node computes and returns its next output
 row each time it is called. Each node is also responsible for applying
 any selection or projection expressions that were assigned to it by
 the planner.

 The executor mechanism is used to evaluate all five basic SQL query
 types: SELECT, INSERT,
 UPDATE, DELETE, and
 MERGE.
 For SELECT, the top-level executor code
 only needs to send each row returned by the query plan tree
 off to the client. INSERT ... SELECT,
 UPDATE, DELETE, and
 MERGE
 are effectively SELECTs under a special
 top-level plan node called ModifyTable.

 INSERT ... SELECT feeds the rows up
 to ModifyTable for insertion. For
 UPDATE, the planner arranges that each
 computed row includes all the updated column values, plus the
 TID (tuple ID, or row ID) of the original
 target row; this data is fed up to the ModifyTable
 node, which uses the information to create a new updated row and
 mark the old row deleted. For DELETE, the only
 column that is actually returned by the plan is the TID, and the
 ModifyTable node simply uses the TID to visit each
 target row and mark it deleted. For MERGE, the
 planner joins the source and target relations, and includes all
 column values required by any of the WHEN clauses,
 plus the TID of the target row; this data is fed up to the
 ModifyTable node, which uses the information to
 work out which WHEN clause to execute, and then
 inserts, updates or deletes the target row, as required.

 A simple INSERT ... VALUES command creates a
 trivial plan tree consisting of a single Result
 node, which computes just one result row, feeding that up
 to ModifyTable to perform the insertion.

Chapter 53. System Catalogs

 The system catalogs are the place where a relational database
 management system stores schema metadata, such as information about
 tables and columns, and internal bookkeeping information.
 PostgreSQL™'s system catalogs are regular
 tables. You can drop and recreate the tables, add columns, insert
 and update values, and severely mess up your system that way.
 Normally, one should not change the system catalogs by hand, there
 are normally SQL commands to do that. (For example, CREATE
 DATABASE inserts a row into the
 pg_database catalog — and actually
 creates the database on disk.) There are some exceptions for
 particularly esoteric operations, but many of those have been made
 available as SQL commands over time, and so the need for direct manipulation
 of the system catalogs is ever decreasing.

Overview

 Table 53.1, “System Catalogs” lists the system catalogs.
 More detailed documentation of each catalog follows below.

 Most system catalogs are copied from the template database during
 database creation and are thereafter database-specific. A few
 catalogs are physically shared across all databases in a cluster;
 these are noted in the descriptions of the individual catalogs.

Table 53.1. System Catalogs
	Catalog Name	Purpose
	pg_aggregate	aggregate functions
	pg_am	relation access methods
	pg_amop	access method operators
	pg_amproc	access method support functions
	pg_attrdef	column default values
	pg_attribute	table columns (“attributes”)
	pg_authid	authorization identifiers (roles)
	pg_auth_members	authorization identifier membership relationships
	pg_cast	casts (data type conversions)
	pg_class	tables, indexes, sequences, views (“relations”)
	pg_collation	collations (locale information)
	pg_constraint	check constraints, unique constraints, primary key constraints, foreign key constraints
	pg_conversion	encoding conversion information
	pg_database	databases within this database cluster
	pg_db_role_setting	per-role and per-database settings
	pg_default_acl	default privileges for object types
	pg_depend	dependencies between database objects
	pg_description	descriptions or comments on database objects
	pg_enum	enum label and value definitions
	pg_event_trigger	event triggers
	pg_extension	installed extensions
	pg_foreign_data_wrapper	foreign-data wrapper definitions
	pg_foreign_server	foreign server definitions
	pg_foreign_table	additional foreign table information
	pg_index	additional index information
	pg_inherits	table inheritance hierarchy
	pg_init_privs	object initial privileges
	pg_language	languages for writing functions
	pg_largeobject	data pages for large objects
	pg_largeobject_metadata	metadata for large objects
	pg_namespace	schemas
	pg_opclass	access method operator classes
	pg_operator	operators
	pg_opfamily	access method operator families
	pg_parameter_acl	configuration parameters for which privileges have been granted
	pg_partitioned_table	information about partition key of tables
	pg_policy	row-security policies
	pg_proc	functions and procedures
	pg_publication	publications for logical replication
	pg_publication_namespace	schema to publication mapping
	pg_publication_rel	relation to publication mapping
	pg_range	information about range types
	pg_replication_origin	registered replication origins
	pg_rewrite	query rewrite rules
	pg_seclabel	security labels on database objects
	pg_sequence	information about sequences
	pg_shdepend	dependencies on shared objects
	pg_shdescription	comments on shared objects
	pg_shseclabel	security labels on shared database objects
	pg_statistic	planner statistics
	pg_statistic_ext	extended planner statistics (definition)
	pg_statistic_ext_data	extended planner statistics (built statistics)
	pg_subscription	logical replication subscriptions
	pg_subscription_rel	relation state for subscriptions
	pg_tablespace	tablespaces within this database cluster
	pg_transform	transforms (data type to procedural language conversions)
	pg_trigger	triggers
	pg_ts_config	text search configurations
	pg_ts_config_map	text search configurations' token mappings
	pg_ts_dict	text search dictionaries
	pg_ts_parser	text search parsers
	pg_ts_template	text search templates
	pg_type	data types
	pg_user_mapping	mappings of users to foreign servers

pg_aggregate

 The catalog pg_aggregate stores information about
 aggregate functions. An aggregate function is a function that
 operates on a set of values (typically one column from each row
 that matches a query condition) and returns a single value computed
 from all these values. Typical aggregate functions are
 sum, count, and
 max. Each entry in
 pg_aggregate is an extension of an entry
 in pg_proc.
 The pg_proc entry carries the aggregate's name,
 input and output data types, and other information that is similar to
 ordinary functions.

Table 53.2. pg_aggregate Columns
	
 Column Type

 Description

	
 aggfnoid regproc
 (references pg_proc.oid)

 pg_proc OID of the aggregate function

	
 aggkind char

 Aggregate kind:
 n for “normal” aggregates,
 o for “ordered-set” aggregates, or
 h for “hypothetical-set” aggregates

	
 aggnumdirectargs int2

 Number of direct (non-aggregated) arguments of an ordered-set or
 hypothetical-set aggregate, counting a variadic array as one argument.
 If equal to pronargs, the aggregate must be variadic
 and the variadic array describes the aggregated arguments as well as
 the final direct arguments.
 Always zero for normal aggregates.

	
 aggtransfn regproc
 (references pg_proc.oid)

 Transition function

	
 aggfinalfn regproc
 (references pg_proc.oid)

 Final function (zero if none)

	
 aggcombinefn regproc
 (references pg_proc.oid)

 Combine function (zero if none)

	
 aggserialfn regproc
 (references pg_proc.oid)

 Serialization function (zero if none)

	
 aggdeserialfn regproc
 (references pg_proc.oid)

 Deserialization function (zero if none)

	
 aggmtransfn regproc
 (references pg_proc.oid)

 Forward transition function for moving-aggregate mode (zero if none)

	
 aggminvtransfn regproc
 (references pg_proc.oid)

 Inverse transition function for moving-aggregate mode (zero if none)

	
 aggmfinalfn regproc
 (references pg_proc.oid)

 Final function for moving-aggregate mode (zero if none)

	
 aggfinalextra bool

 True to pass extra dummy arguments to aggfinalfn

	
 aggmfinalextra bool

 True to pass extra dummy arguments to aggmfinalfn

	
 aggfinalmodify char

 Whether aggfinalfn modifies the
 transition state value:
 r if it is read-only,
 s if the aggtransfn
 cannot be applied after the aggfinalfn, or
 w if it writes on the value

	
 aggmfinalmodify char

 Like aggfinalmodify, but for
 the aggmfinalfn

	
 aggsortop oid
 (references pg_operator.oid)

 Associated sort operator (zero if none)

	
 aggtranstype oid
 (references pg_type.oid)

 Data type of the aggregate function's internal transition (state) data

	
 aggtransspace int4

 Approximate average size (in bytes) of the transition state
 data, or zero to use a default estimate

	
 aggmtranstype oid
 (references pg_type.oid)

 Data type of the aggregate function's internal transition (state)
 data for moving-aggregate mode (zero if none)

	
 aggmtransspace int4

 Approximate average size (in bytes) of the transition state data
 for moving-aggregate mode, or zero to use a default estimate

	
 agginitval text

 The initial value of the transition state. This is a text
 field containing the initial value in its external string
 representation. If this field is null, the transition state
 value starts out null.

	
 aggminitval text

 The initial value of the transition state for moving-aggregate mode.
 This is a text field containing the initial value in its external
 string representation. If this field is null, the transition state
 value starts out null.

 New aggregate functions are registered with the CREATE AGGREGATE
 command. See the section called “User-Defined Aggregates” for more information about
 writing aggregate functions and the meaning of the transition
 functions, etc.

pg_am

 The catalog pg_am stores information about
 relation access methods. There is one row for each access method supported
 by the system.
 Currently, only tables and indexes have access methods. The requirements for table
 and index access methods are discussed in detail in Chapter 63, Table Access Method Interface Definition and
 Chapter 64, Index Access Method Interface Definition respectively.

Table 53.3. pg_am Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 amname name

 Name of the access method

	
 amhandler regproc
 (references pg_proc.oid)

 OID of a handler function that is responsible for supplying information
 about the access method

	
 amtype char

 t = table (including materialized views),
 i = index.

Note

 Before PostgreSQL™ 9.6, pg_am
 contained many additional columns representing properties of index access
 methods. That data is now only directly visible at the C code level.
 However, pg_index_column_has_property() and related
 functions have been added to allow SQL queries to inspect index access
 method properties; see Table 9.72, “System Catalog Information Functions”.

pg_amop

 The catalog pg_amop stores information about
 operators associated with access method operator families. There is one
 row for each operator that is a member of an operator family. A family
 member can be either a search operator or an
 ordering operator. An operator
 can appear in more than one family, but cannot appear in more than one
 search position nor more than one ordering position within a family.
 (It is allowed, though unlikely, for an operator to be used for both
 search and ordering purposes.)

Table 53.4. pg_amop Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 amopfamily oid
 (references pg_opfamily.oid)

 The operator family this entry is for

	
 amoplefttype oid
 (references pg_type.oid)

 Left-hand input data type of operator

	
 amoprighttype oid
 (references pg_type.oid)

 Right-hand input data type of operator

	
 amopstrategy int2

 Operator strategy number

	
 amoppurpose char

 Operator purpose, either s for search or
 o for ordering

	
 amopopr oid
 (references pg_operator.oid)

 OID of the operator

	
 amopmethod oid
 (references pg_am.oid)

 Index access method operator family is for

	
 amopsortfamily oid
 (references pg_opfamily.oid)

 The B-tree operator family this entry sorts according to, if an
 ordering operator; zero if a search operator

 A “search” operator entry indicates that an index of this operator
 family can be searched to find all rows satisfying
 WHERE
 indexed_column
 operator
 constant.
 Obviously, such an operator must return boolean, and its left-hand input
 type must match the index's column data type.

 An “ordering” operator entry indicates that an index of this
 operator family can be scanned to return rows in the order represented by
 ORDER BY
 indexed_column
 operator
 constant.
 Such an operator could return any sortable data type, though again
 its left-hand input type must match the index's column data type.
 The exact semantics of the ORDER BY are specified by the
 amopsortfamily column, which must reference
 a B-tree operator family for the operator's result type.

Note

 At present, it's assumed that the sort order for an ordering operator
 is the default for the referenced operator family, i.e., ASC NULLS
 LAST. This might someday be relaxed by adding additional columns
 to specify sort options explicitly.

 An entry's amopmethod must match the
 opfmethod of its containing operator family (including
 amopmethod here is an intentional denormalization of the
 catalog structure for performance reasons). Also,
 amoplefttype and amoprighttype must match
 the oprleft and oprright fields of the
 referenced pg_operator entry.

pg_amproc

 The catalog pg_amproc stores information about
 support functions associated with access method operator families. There
 is one row for each support function belonging to an operator family.

Table 53.5. pg_amproc Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 amprocfamily oid
 (references pg_opfamily.oid)

 The operator family this entry is for

	
 amproclefttype oid
 (references pg_type.oid)

 Left-hand input data type of associated operator

	
 amprocrighttype oid
 (references pg_type.oid)

 Right-hand input data type of associated operator

	
 amprocnum int2

 Support function number

	
 amproc regproc
 (references pg_proc.oid)

 OID of the function

 The usual interpretation of the
 amproclefttype and amprocrighttype fields
 is that they identify the left and right input types of the operator(s)
 that a particular support function supports. For some access methods
 these match the input data type(s) of the support function itself, for
 others not. There is a notion of “default” support functions for
 an index, which are those with amproclefttype and
 amprocrighttype both equal to the index operator class's
 opcintype.

pg_attrdef

 The catalog pg_attrdef stores column default
 values. The main information about columns is stored in
 pg_attribute.
 Only columns for which a default value has been explicitly set will have
 an entry here.

Table 53.6. pg_attrdef Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 adrelid oid
 (references pg_class.oid)

 The table this column belongs to

	
 adnum int2
 (references pg_attribute.attnum)

 The number of the column

	
 adbin pg_node_tree

 The column default value, in nodeToString()
 representation. Use pg_get_expr(adbin, adrelid) to
 convert it to an SQL expression.

pg_attribute

 The catalog pg_attribute stores information about
 table columns. There will be exactly one
 pg_attribute row for every column in every
 table in the database. (There will also be attribute entries for
 indexes, and indeed all objects that have
 pg_class
 entries.)

 The term attribute is equivalent to column and is used for
 historical reasons.

Table 53.7. pg_attribute Columns
	
 Column Type

 Description

	
 attrelid oid
 (references pg_class.oid)

 The table this column belongs to

	
 attname name

 The column name

	
 atttypid oid
 (references pg_type.oid)

 The data type of this column (zero for a dropped column)

	
 attlen int2

 A copy of pg_type.typlen of this column's
 type

	
 attnum int2

 The number of the column. Ordinary columns are numbered from 1
 up. System columns, such as ctid,
 have (arbitrary) negative numbers.

	
 attcacheoff int4

 Always -1 in storage, but when loaded into a row descriptor
 in memory this might be updated to cache the offset of the attribute
 within the row

	
 atttypmod int4

 atttypmod records type-specific data
 supplied at table creation time (for example, the maximum
 length of a varchar column). It is passed to
 type-specific input functions and length coercion functions.
 The value will generally be -1 for types that do not need atttypmod.

	
 attndims int2

 Number of dimensions, if the column is an array type; otherwise 0.
 (Presently, the number of dimensions of an array is not enforced,
 so any nonzero value effectively means “it's an array”.)

	
 attbyval bool

 A copy of pg_type.typbyval of this column's type

	
 attalign char

 A copy of pg_type.typalign of this column's type

	
 attstorage char

 Normally a copy of pg_type.typstorage of this
 column's type. For TOAST-able data types, this can be altered
 after column creation to control storage policy.

	
 attcompression char

 The current compression method of the column. Typically this is
 '\0' to specify use of the current default setting
 (see default_toast_compression). Otherwise,
 'p' selects pglz compression, while
 'l' selects LZ4™
 compression. However, this field is ignored
 whenever attstorage does not allow
 compression.

	
 attnotnull bool

 This represents a not-null constraint.

	
 atthasdef bool

 This column has a default expression or generation expression, in which
 case there will be a corresponding entry in the
 pg_attrdef catalog that actually defines the
 expression. (Check attgenerated to
 determine whether this is a default or a generation expression.)

	
 atthasmissing bool

 This column has a value which is used where the column is entirely
 missing from the row, as happens when a column is added with a
 non-volatile DEFAULT value after the row is created.
 The actual value used is stored in the
 attmissingval column.

	
 attidentity char

 If a zero byte (''), then not an identity column.
 Otherwise, a = generated
 always, d = generated by default.

	
 attgenerated char

 If a zero byte (''), then not a generated column.
 Otherwise, s = stored. (Other values might be added
 in the future.)

	
 attisdropped bool

 This column has been dropped and is no longer valid. A dropped
 column is still physically present in the table, but is
 ignored by the parser and so cannot be accessed via SQL.

	
 attislocal bool

 This column is defined locally in the relation. Note that a column can
 be locally defined and inherited simultaneously.

	
 attinhcount int2

 The number of direct ancestors this column has. A column with a
 nonzero number of ancestors cannot be dropped nor renamed.

	
 attstattarget int2

 attstattarget controls the level of detail
 of statistics accumulated for this column by
 ANALYZE.
 A zero value indicates that no statistics should be collected.
 A negative value says to use the system default statistics target.
 The exact meaning of positive values is data type-dependent.
 For scalar data types, attstattarget
 is both the target number of “most common values”
 to collect, and the target number of histogram bins to create.

	
 attcollation oid
 (references pg_collation.oid)

 The defined collation of the column, or zero if the column is
 not of a collatable data type

	
 attacl aclitem[]

 Column-level access privileges, if any have been granted specifically
 on this column

	
 attoptions text[]

 Attribute-level options, as “keyword=value” strings

	
 attfdwoptions text[]

 Attribute-level foreign data wrapper options, as “keyword=value” strings

	
 attmissingval anyarray

 This column has a one element array containing the value used when the
 column is entirely missing from the row, as happens when the column is
 added with a non-volatile DEFAULT value after the
 row is created. The value is only used when
 atthasmissing is true. If there is no value
 the column is null.

 In a dropped column's pg_attribute entry,
 atttypid is reset to zero, but
 attlen and the other fields copied from
 pg_type are still valid. This arrangement is needed
 to cope with the situation where the dropped column's data type was
 later dropped, and so there is no pg_type row anymore.
 attlen and the other fields can be used
 to interpret the contents of a row of the table.

pg_authid

 The catalog pg_authid contains information about
 database authorization identifiers (roles). A role subsumes the concepts
 of “users” and “groups”. A user is essentially just a
 role with the rolcanlogin flag set. Any role (with or
 without rolcanlogin) can have other roles as members; see
 pg_auth_members.

 Since this catalog contains passwords, it must not be publicly readable.
 pg_roles
 is a publicly readable view on
 pg_authid that blanks out the password field.

 Chapter 22, Database Roles contains detailed information about user and
 privilege management.

 Because user identities are cluster-wide,
 pg_authid
 is shared across all databases of a cluster: there is only one
 copy of pg_authid per cluster, not
 one per database.

Table 53.8. pg_authid Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 rolname name

 Role name

	
 rolsuper bool

 Role has superuser privileges

	
 rolinherit bool

 Role automatically inherits privileges of roles it is a
 member of

	
 rolcreaterole bool

 Role can create more roles

	
 rolcreatedb bool

 Role can create databases

	
 rolcanlogin bool

 Role can log in. That is, this role can be given as the initial
 session authorization identifier.

	
 rolreplication bool

 Role is a replication role. A replication role can initiate replication
 connections and create and drop replication slots.

	
 rolbypassrls bool

 Role bypasses every row-level security policy, see
 the section called “Row Security Policies” for more information.

	
 rolconnlimit int4

 For roles that can log in, this sets maximum number of concurrent
 connections this role can make. -1 means no limit.

	
 rolpassword text

 Encrypted password; null if none. The format depends
 on the form of encryption used.

	
 rolvaliduntil timestamptz

 Password expiry time (only used for password authentication);
 null if no expiration

 For an MD5 encrypted password, rolpassword
 column will begin with the string md5 followed by a
 32-character hexadecimal MD5 hash. The MD5 hash will be of the user's
 password concatenated to their user name. For example, if user
 joe has password xyzzy, PostgreSQL™
 will store the md5 hash of xyzzyjoe.

 If the password is encrypted with SCRAM-SHA-256, it has the format:

SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>

 where salt, StoredKey and
 ServerKey are in Base64 encoded format. This format is
 the same as that specified by RFC 5803.

pg_auth_members

 The catalog pg_auth_members shows the membership
 relations between roles. Any non-circular set of relationships is allowed.

 Because user identities are cluster-wide,
 pg_auth_members
 is shared across all databases of a cluster: there is only one
 copy of pg_auth_members per cluster, not
 one per database.

Table 53.9. pg_auth_members Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 roleid oid
 (references pg_authid.oid)

 ID of a role that has a member

	
 member oid
 (references pg_authid.oid)

 ID of a role that is a member of roleid

	
 grantor oid
 (references pg_authid.oid)

 ID of the role that granted this membership

	
 admin_option bool

 True if member can grant membership in
 roleid to others

	
 inherit_option bool

 True if the member automatically inherits the privileges of the
 granted role

	
 set_option bool

 True if the member can
 SET ROLE
 to the granted role

pg_cast

 The catalog pg_cast stores data type conversion
 paths, both built-in and user-defined.

 It should be noted that pg_cast does not represent
 every type conversion that the system knows how to perform; only those that
 cannot be deduced from some generic rule. For example, casting between a
 domain and its base type is not explicitly represented in
 pg_cast. Another important exception is that
 “automatic I/O conversion casts”, those performed using a data
 type's own I/O functions to convert to or from text or other
 string types, are not explicitly represented in
 pg_cast.

Table 53.10. pg_cast Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 castsource oid
 (references pg_type.oid)

 OID of the source data type

	
 casttarget oid
 (references pg_type.oid)

 OID of the target data type

	
 castfunc oid
 (references pg_proc.oid)

 The OID of the function to use to perform this cast. Zero is
 stored if the cast method doesn't require a function.

	
 castcontext char

 Indicates what contexts the cast can be invoked in.
 e means only as an explicit cast (using
 CAST or :: syntax).
 a means implicitly in assignment
 to a target column, as well as explicitly.
 i means implicitly in expressions, as well as the
 other cases.

	
 castmethod char

 Indicates how the cast is performed.
 f means that the function specified in the castfunc field is used.
 i means that the input/output functions are used.
 b means that the types are binary-coercible, thus no conversion is required.

 The cast functions listed in pg_cast must
 always take the cast source type as their first argument type, and
 return the cast destination type as their result type. A cast
 function can have up to three arguments. The second argument,
 if present, must be type integer; it receives the type
 modifier associated with the destination type, or -1
 if there is none. The third argument,
 if present, must be type boolean; it receives true
 if the cast is an explicit cast, false otherwise.

 It is legitimate to create a pg_cast entry
 in which the source and target types are the same, if the associated
 function takes more than one argument. Such entries represent
 “length coercion functions” that coerce values of the type
 to be legal for a particular type modifier value.

 When a pg_cast entry has different source and
 target types and a function that takes more than one argument, it
 represents converting from one type to another and applying a length
 coercion in a single step. When no such entry is available, coercion
 to a type that uses a type modifier involves two steps, one to
 convert between data types and a second to apply the modifier.

pg_class

 The catalog pg_class describes tables and
 other objects that have columns or are otherwise similar to a
 table. This includes indexes (but see also pg_index),
 sequences (but see also pg_sequence),
 views, materialized views, composite types, and TOAST tables;
 see relkind.
 Below, when we mean all of these kinds of objects we speak of
 “relations”. Not all of pg_class's
 columns are meaningful for all relation kinds.

Table 53.11. pg_class Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 relname name

 Name of the table, index, view, etc.

	
 relnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this relation

	
 reltype oid
 (references pg_type.oid)

 The OID of the data type that corresponds to this table's row type,
 if any; zero for indexes, sequences, and toast tables, which have
 no pg_type entry

	
 reloftype oid
 (references pg_type.oid)

 For typed tables, the OID of the underlying composite type;
 zero for all other relations

	
 relowner oid
 (references pg_authid.oid)

 Owner of the relation

	
 relam oid
 (references pg_am.oid)

 If this is a table or an index, the access method used (heap,
 B-tree, hash, etc.); otherwise zero (zero occurs for sequences,
 as well as relations without storage, such as views)

	
 relfilenode oid

 Name of the on-disk file of this relation; zero means this
 is a “mapped” relation whose disk file name is determined
 by low-level state

	
 reltablespace oid
 (references pg_tablespace.oid)

 The tablespace in which this relation is stored.
 If zero, the database's default tablespace is implied.
 Not meaningful if the relation has no on-disk file,
 except for partitioned tables, where this is the tablespace
 in which partitions will be created when one is not
 specified in the creation command.

	
 relpages int4

 Size of the on-disk representation of this table in pages (of size
 BLCKSZ). This is only an estimate used by the
 planner. It is updated by VACUUM,
 ANALYZE, and a few DDL commands such as
 CREATE INDEX.

	
 reltuples float4

 Number of live rows in the table. This is only an estimate used by
 the planner. It is updated by VACUUM,
 ANALYZE, and a few DDL commands such as
 CREATE INDEX.
 If the table has never yet been vacuumed or
 analyzed, reltuples
 contains -1 indicating that the row count is
 unknown.

	
 relallvisible int4

 Number of pages that are marked all-visible in the table's
 visibility map. This is only an estimate used by the
 planner. It is updated by VACUUM,
 ANALYZE, and a few DDL commands such as
 CREATE INDEX.

	
 reltoastrelid oid
 (references pg_class.oid)

 OID of the TOAST table associated with this table, zero if none. The
 TOAST table stores large attributes “out of line” in a
 secondary table.

	
 relhasindex bool

 True if this is a table and it has (or recently had) any indexes

	
 relisshared bool

 True if this table is shared across all databases in the cluster. Only
 certain system catalogs (such as pg_database)
 are shared.

	
 relpersistence char

 p = permanent table/sequence, u = unlogged table/sequence,
 t = temporary table/sequence

	
 relkind char

 r = ordinary table,
 i = index,
 S = sequence,
 t = TOAST table,
 v = view,
 m = materialized view,
 c = composite type,
 f = foreign table,
 p = partitioned table,
 I = partitioned index

	
 relnatts int2

 Number of user columns in the relation (system columns not
 counted). There must be this many corresponding entries in
 pg_attribute. See also
 pg_attribute.attnum.

	
 relchecks int2

 Number of CHECK constraints on the table; see
 pg_constraint catalog

	
 relhasrules bool

 True if table has (or once had) rules; see
 pg_rewrite catalog

	
 relhastriggers bool

 True if table has (or once had) triggers; see
 pg_trigger catalog

	
 relhassubclass bool

 True if table or index has (or once had) any inheritance children or partitions

	
 relrowsecurity bool

 True if table has row-level security enabled; see
 pg_policy catalog

	
 relforcerowsecurity bool

 True if row-level security (when enabled) will also apply to table owner; see
 pg_policy catalog

	
 relispopulated bool

 True if relation is populated (this is true for all
 relations other than some materialized views)

	
 relreplident char

 Columns used to form “replica identity” for rows:
 d = default (primary key, if any),
 n = nothing,
 f = all columns,
 i = index with
 indisreplident set (same as nothing if the
 index used has been dropped)

	
 relispartition bool

 True if table or index is a partition

	
 relrewrite oid
 (references pg_class.oid)

 For new relations being written during a DDL operation that requires a
 table rewrite, this contains the OID of the original relation;
 otherwise zero. That state is only visible internally; this field should
 never contain anything other than zero for a user-visible relation.

	
 relfrozenxid xid

 All transaction IDs before this one have been replaced with a permanent
 (“frozen”) transaction ID in this table. This is used to track
 whether the table needs to be vacuumed in order to prevent transaction
 ID wraparound or to allow pg_xact to be shrunk. Zero
 (InvalidTransactionId) if the relation is not a table.

	
 relminmxid xid

 All multixact IDs before this one have been replaced by a
 transaction ID in this table. This is used to track
 whether the table needs to be vacuumed in order to prevent multixact ID
 wraparound or to allow pg_multixact to be shrunk. Zero
 (InvalidMultiXactId) if the relation is not a table.

	
 relacl aclitem[]

 Access privileges; see the section called “Privileges” for details

	
 reloptions text[]

 Access-method-specific options, as “keyword=value” strings

	
 relpartbound pg_node_tree

 If table is a partition (see relispartition),
 internal representation of the partition bound

 Several of the Boolean flags in pg_class are maintained
 lazily: they are guaranteed to be true if that's the correct state, but
 may not be reset to false immediately when the condition is no longer
 true. For example, relhasindex is set by
 CREATE INDEX, but it is never cleared by
 DROP INDEX. Instead, VACUUM clears
 relhasindex if it finds the table has no indexes. This
 arrangement avoids race conditions and improves concurrency.

pg_collation

 The catalog pg_collation describes the
 available collations, which are essentially mappings from an SQL
 name to operating system locale categories.
 See the section called “Collation Support” for more information.

Table 53.12. pg_collation Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 collname name

 Collation name (unique per namespace and encoding)

	
 collnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this collation

	
 collowner oid
 (references pg_authid.oid)

 Owner of the collation

	
 collprovider char

 Provider of the collation: d = database
 default, c = libc, i = icu

	
 collisdeterministic bool

 Is the collation deterministic?

	
 collencoding int4

 Encoding in which the collation is applicable, or -1 if it
 works for any encoding

	
 collcollate text

 LC_COLLATE for this collation object

	
 collctype text

 LC_CTYPE for this collation object

	
 colliculocale text

 ICU locale ID for this collation object

	
 collicurules text

 ICU collation rules for this collation object

	
 collversion text

 Provider-specific version of the collation. This is recorded when the
 collation is created and then checked when it is used, to detect
 changes in the collation definition that could lead to data corruption.

 Note that the unique key on this catalog is (collname,
 collencoding, collnamespace) not just
 (collname, collnamespace).
 PostgreSQL™ generally ignores all
 collations that do not have collencoding equal to
 either the current database's encoding or -1, and creation of new entries
 with the same name as an entry with collencoding = -1
 is forbidden. Therefore it is sufficient to use a qualified SQL name
 (schema.name) to identify a collation,
 even though this is not unique according to the catalog definition.
 The reason for defining the catalog this way is that
 initdb fills it in at cluster initialization time with
 entries for all locales available on the system, so it must be able to
 hold entries for all encodings that might ever be used in the cluster.

 In the template0 database, it could be useful to create
 collations whose encoding does not match the database encoding,
 since they could match the encodings of databases later cloned from
 template0. This would currently have to be done manually.

pg_constraint

 The catalog pg_constraint stores check, primary
 key, unique, foreign key, and exclusion constraints on tables.
 (Column constraints are not treated specially. Every column constraint is
 equivalent to some table constraint.)
 Not-null constraints are represented in the
 pg_attribute
 catalog, not here.

 User-defined constraint triggers (created with
 CREATE CONSTRAINT TRIGGER) also give rise to an entry in this table.

 Check constraints on domains are stored here, too.

Table 53.13. pg_constraint Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 conname name

 Constraint name (not necessarily unique!)

	
 connamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this constraint

	
 contype char

 c = check constraint,
 f = foreign key constraint,
 p = primary key constraint,
 u = unique constraint,
 t = constraint trigger,
 x = exclusion constraint

	
 condeferrable bool

 Is the constraint deferrable?

	
 condeferred bool

 Is the constraint deferred by default?

	
 convalidated bool

 Has the constraint been validated?
 Currently, can be false only for foreign keys and CHECK constraints

	
 conrelid oid
 (references pg_class.oid)

 The table this constraint is on; zero if not a table constraint

	
 contypid oid
 (references pg_type.oid)

 The domain this constraint is on; zero if not a domain constraint

	
 conindid oid
 (references pg_class.oid)

 The index supporting this constraint, if it's a unique, primary
 key, foreign key, or exclusion constraint; else zero

	
 conparentid oid
 (references pg_constraint.oid)

 The corresponding constraint of the parent partitioned table,
 if this is a constraint on a partition; else zero

	
 confrelid oid
 (references pg_class.oid)

 If a foreign key, the referenced table; else zero

	
 confupdtype char

 Foreign key update action code:
 a = no action,
 r = restrict,
 c = cascade,
 n = set null,
 d = set default

	
 confdeltype char

 Foreign key deletion action code:
 a = no action,
 r = restrict,
 c = cascade,
 n = set null,
 d = set default

	
 confmatchtype char

 Foreign key match type:
 f = full,
 p = partial,
 s = simple

	
 conislocal bool

 This constraint is defined locally for the relation. Note that a
 constraint can be locally defined and inherited simultaneously.

	
 coninhcount int2

 The number of direct inheritance ancestors this constraint has.
 A constraint with
 a nonzero number of ancestors cannot be dropped nor renamed.

	
 connoinherit bool

 This constraint is defined locally for the relation. It is a
 non-inheritable constraint.

	
 conkey int2[]
 (references pg_attribute.attnum)

 If a table constraint (including foreign keys, but not constraint
 triggers), list of the constrained columns

	
 confkey int2[]
 (references pg_attribute.attnum)

 If a foreign key, list of the referenced columns

	
 conpfeqop oid[]
 (references pg_operator.oid)

 If a foreign key, list of the equality operators for PK = FK comparisons

	
 conppeqop oid[]
 (references pg_operator.oid)

 If a foreign key, list of the equality operators for PK = PK comparisons

	
 conffeqop oid[]
 (references pg_operator.oid)

 If a foreign key, list of the equality operators for FK = FK comparisons

	
 confdelsetcols int2[]
 (references pg_attribute.attnum)

 If a foreign key with a SET NULL or SET
 DEFAULT delete action, the columns that will be updated.
 If null, all of the referencing columns will be updated.

	
 conexclop oid[]
 (references pg_operator.oid)

 If an exclusion constraint, list of the per-column exclusion operators

	
 conbin pg_node_tree

 If a check constraint, an internal representation of the
 expression. (It's recommended to use
 pg_get_constraintdef() to extract the definition of
 a check constraint.)

 In the case of an exclusion constraint, conkey
 is only useful for constraint elements that are simple column references.
 For other cases, a zero appears in conkey
 and the associated index must be consulted to discover the expression
 that is constrained. (conkey thus has the
 same contents as pg_index.indkey for the
 index.)

Note

 pg_class.relchecks needs to agree with the
 number of check-constraint entries found in this table for each
 relation.

pg_conversion

 The catalog pg_conversion describes
 encoding conversion functions. See CREATE CONVERSION(7)
 for more information.

Table 53.14. pg_conversion Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 conname name

 Conversion name (unique within a namespace)

	
 connamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this conversion

	
 conowner oid
 (references pg_authid.oid)

 Owner of the conversion

	
 conforencoding int4

 Source encoding ID (pg_encoding_to_char()
 can translate this number to the encoding name)

	
 contoencoding int4

 Destination encoding ID (pg_encoding_to_char()
 can translate this number to the encoding name)

	
 conproc regproc
 (references pg_proc.oid)

 Conversion function

	
 condefault bool

 True if this is the default conversion

pg_database

 The catalog pg_database stores information about
 the available databases. Databases are created with the CREATE DATABASE command.
 Consult Chapter 23, Managing Databases for details about the meaning
 of some of the parameters.

 Unlike most system catalogs, pg_database
 is shared across all databases of a cluster: there is only one
 copy of pg_database per cluster, not
 one per database.

Table 53.15. pg_database Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 datname name

 Database name

	
 datdba oid
 (references pg_authid.oid)

 Owner of the database, usually the user who created it

	
 encoding int4

 Character encoding for this database
 (pg_encoding_to_char() can translate
 this number to the encoding name)

	
 datlocprovider char

 Locale provider for this database: c = libc,
 i = icu

	
 datistemplate bool

 If true, then this database can be cloned by
 any user with CREATEDB privileges;
 if false, then only superusers or the owner of
 the database can clone it.

	
 datallowconn bool

 If false then no one can connect to this database. This is
 used to protect the template0 database from being altered.

	
 datconnlimit int4

 Sets maximum number of concurrent connections that can be made
 to this database. -1 means no limit, -2 indicates the database is
 invalid.

	
 datfrozenxid xid

 All transaction IDs before this one have been replaced with a permanent
 (“frozen”) transaction ID in this database. This is used to
 track whether the database needs to be vacuumed in order to prevent
 transaction ID wraparound or to allow pg_xact to be shrunk.
 It is the minimum of the per-table
 pg_class.relfrozenxid values.

	
 datminmxid xid

 All multixact IDs before this one have been replaced with a
 transaction ID in this database. This is used to
 track whether the database needs to be vacuumed in order to prevent
 multixact ID wraparound or to allow pg_multixact to be shrunk.
 It is the minimum of the per-table
 pg_class.relminmxid values.

	
 dattablespace oid
 (references pg_tablespace.oid)

 The default tablespace for the database.
 Within this database, all tables for which
 pg_class.reltablespace is zero
 will be stored in this tablespace; in particular, all the non-shared
 system catalogs will be there.

	
 datcollate text

 LC_COLLATE for this database

	
 datctype text

 LC_CTYPE for this database

	
 daticulocale text

 ICU locale ID for this database

	
 daticurules text

 ICU collation rules for this database

	
 datcollversion text

 Provider-specific version of the collation. This is recorded when the
 database is created and then checked when it is used, to detect
 changes in the collation definition that could lead to data corruption.

	
 datacl aclitem[]

 Access privileges; see the section called “Privileges” for details

pg_db_role_setting

 The catalog pg_db_role_setting records the default
 values that have been set for run-time configuration variables,
 for each role and database combination.

 Unlike most system catalogs, pg_db_role_setting
 is shared across all databases of a cluster: there is only one
 copy of pg_db_role_setting per cluster, not
 one per database.

Table 53.16. pg_db_role_setting Columns
	
 Column Type

 Description

	
 setdatabase oid
 (references pg_database.oid)

 The OID of the database the setting is applicable to, or zero if not database-specific

	
 setrole oid
 (references pg_authid.oid)

 The OID of the role the setting is applicable to, or zero if not role-specific

	
 setconfig text[]

 Defaults for run-time configuration variables

pg_default_acl

 The catalog pg_default_acl stores initial
 privileges to be assigned to newly created objects.

Table 53.17. pg_default_acl Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 defaclrole oid
 (references pg_authid.oid)

 The OID of the role associated with this entry

	
 defaclnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace associated with this entry,
 or zero if none

	
 defaclobjtype char

 Type of object this entry is for:
 r = relation (table, view),
 S = sequence,
 f = function,
 T = type,
 n = schema

	
 defaclacl aclitem[]

 Access privileges that this type of object should have on creation

 A pg_default_acl entry shows the initial privileges to
 be assigned to an object belonging to the indicated user. There are
 currently two types of entry: “global” entries with
 defaclnamespace = zero, and “per-schema” entries
 that reference a particular schema. If a global entry is present then
 it overrides the normal hard-wired default privileges
 for the object type. A per-schema entry, if present, represents privileges
 to be added to the global or hard-wired default privileges.

 Note that when an ACL entry in another catalog is null, it is taken
 to represent the hard-wired default privileges for its object,
 not whatever might be in pg_default_acl
 at the moment. pg_default_acl is only consulted during
 object creation.

pg_depend

 The catalog pg_depend records the dependency
 relationships between database objects. This information allows
 DROP commands to find which other objects must be dropped
 by DROP CASCADE or prevent dropping in the DROP
 RESTRICT case.

 See also pg_shdepend,
 which performs a similar function for dependencies involving objects
 that are shared across a database cluster.

Table 53.18. pg_depend Columns
	
 Column Type

 Description

	
 classid oid
 (references pg_class.oid)

 The OID of the system catalog the dependent object is in

	
 objid oid
 (references any OID column)

 The OID of the specific dependent object

	
 objsubid int4

 For a table column, this is the column number (the
 objid and classid refer to the
 table itself). For all other object types, this column is
 zero.

	
 refclassid oid
 (references pg_class.oid)

 The OID of the system catalog the referenced object is in

	
 refobjid oid
 (references any OID column)

 The OID of the specific referenced object

	
 refobjsubid int4

 For a table column, this is the column number (the
 refobjid and refclassid refer
 to the table itself). For all other object types, this column
 is zero.

	
 deptype char

 A code defining the specific semantics of this dependency relationship; see text

 In all cases, a pg_depend entry indicates that the
 referenced object cannot be dropped without also dropping the dependent
 object. However, there are several subflavors identified by
 deptype:

	DEPENDENCY_NORMAL (n)
	
 A normal relationship between separately-created objects. The
 dependent object can be dropped without affecting the
 referenced object. The referenced object can only be dropped
 by specifying CASCADE, in which case the dependent
 object is dropped, too. Example: a table column has a normal
 dependency on its data type.

	DEPENDENCY_AUTO (a)
	
 The dependent object can be dropped separately from the
 referenced object, and should be automatically dropped
 (regardless of RESTRICT or CASCADE
 mode) if the referenced object is dropped. Example: a named
 constraint on a table is made auto-dependent on the table, so
 that it will go away if the table is dropped.

	DEPENDENCY_INTERNAL (i)
	
 The dependent object was created as part of creation of the
 referenced object, and is really just a part of its internal
 implementation. A direct DROP of the dependent
 object will be disallowed outright (we'll tell the user to issue
 a DROP against the referenced object, instead).
 A DROP of the referenced object will result in
 automatically dropping the dependent object
 whether CASCADE is specified or not. If the
 dependent object has to be dropped due to a dependency on some other
 object being removed, its drop is converted to a drop of the referenced
 object, so that NORMAL and AUTO
 dependencies of the dependent object behave much like they were
 dependencies of the referenced object.
 Example: a view's ON SELECT rule is made
 internally dependent on the view, preventing it from being dropped
 while the view remains. Dependencies of the rule (such as tables it
 refers to) act as if they were dependencies of the view.

	DEPENDENCY_PARTITION_PRI (P), DEPENDENCY_PARTITION_SEC (S)
	
 The dependent object was created as part of creation of the
 referenced object, and is really just a part of its internal
 implementation; however, unlike INTERNAL,
 there is more than one such referenced object. The dependent object
 must not be dropped unless at least one of these referenced objects
 is dropped; if any one is, the dependent object should be dropped
 whether or not CASCADE is specified. Also
 unlike INTERNAL, a drop of some other object
 that the dependent object depends on does not result in automatic
 deletion of any partition-referenced object. Hence, if the drop
 does not cascade to at least one of these objects via some other
 path, it will be refused. (In most cases, the dependent object
 shares all its non-partition dependencies with at least one
 partition-referenced object, so that this restriction does not
 result in blocking any cascaded delete.)
 Primary and secondary partition dependencies behave identically
 except that the primary dependency is preferred for use in error
 messages; hence, a partition-dependent object should have one
 primary partition dependency and one or more secondary partition
 dependencies.
 Note that partition dependencies are made in addition to, not
 instead of, any dependencies the object would normally have. This
 simplifies ATTACH/DETACH PARTITION operations:
 the partition dependencies need only be added or removed.
 Example: a child partitioned index is made partition-dependent
 on both the partition table it is on and the parent partitioned
 index, so that it goes away if either of those is dropped, but
 not otherwise. The dependency on the parent index is primary,
 so that if the user tries to drop the child partitioned index,
 the error message will suggest dropping the parent index instead
 (not the table).

	DEPENDENCY_EXTENSION (e)
	
 The dependent object is a member of the extension that is
 the referenced object (see
 pg_extension).
 The dependent object can be dropped only via
 DROP EXTENSION on the referenced object.
 Functionally this dependency type acts the same as
 an INTERNAL dependency, but it's kept separate for
 clarity and to simplify pg_dump.

	DEPENDENCY_AUTO_EXTENSION (x)
	
 The dependent object is not a member of the extension that is the
 referenced object (and so it should not be ignored
 by pg_dump), but it cannot function
 without the extension and should be auto-dropped if the extension is.
 The dependent object may be dropped on its own as well.
 Functionally this dependency type acts the same as
 an AUTO dependency, but it's kept separate for
 clarity and to simplify pg_dump.

 Other dependency flavors might be needed in future.

 Note that it's quite possible for two objects to be linked by more than
 one pg_depend entry. For example, a child
 partitioned index would have both a partition-type dependency on its
 associated partition table, and an auto dependency on each column of
 that table that it indexes. This sort of situation expresses the union
 of multiple dependency semantics. A dependent object can be dropped
 without CASCADE if any of its dependencies satisfies
 its condition for automatic dropping. Conversely, all the
 dependencies' restrictions about which objects must be dropped together
 must be satisfied.

 Most objects created during initdb are
 considered “pinned”, which means that the system itself
 depends on them. Therefore, they are never allowed to be dropped.
 Also, knowing that pinned objects will not be dropped, the dependency
 mechanism doesn't bother to make pg_depend
 entries showing dependencies on them. Thus, for example, a table
 column of type numeric notionally has
 a NORMAL dependency on the numeric
 data type, but no such entry actually appears
 in pg_depend.

pg_description

 The catalog pg_description stores optional descriptions
 (comments) for each database object. Descriptions can be manipulated
 with the COMMENT command and viewed with
 psql's \d commands.
 Descriptions of many built-in system objects are provided in the initial
 contents of pg_description.

 See also pg_shdescription,
 which performs a similar function for descriptions involving objects that
 are shared across a database cluster.

Table 53.19. pg_description Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the object this description pertains to

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog this object appears in

	
 objsubid int4

 For a comment on a table column, this is the column number (the
 objoid and classoid refer to
 the table itself). For all other object types, this column is
 zero.

	
 description text

 Arbitrary text that serves as the description of this object

pg_enum

 The pg_enum catalog contains entries
 showing the values and labels for each enum type. The
 internal representation of a given enum value is actually the OID
 of its associated row in pg_enum.

Table 53.20. pg_enum Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 enumtypid oid
 (references pg_type.oid)

 The OID of the pg_type entry owning this enum value

	
 enumsortorder float4

 The sort position of this enum value within its enum type

	
 enumlabel name

 The textual label for this enum value

 The OIDs for pg_enum rows follow a special
 rule: even-numbered OIDs are guaranteed to be ordered in the same way
 as the sort ordering of their enum type. That is, if two even OIDs
 belong to the same enum type, the smaller OID must have the smaller
 enumsortorder value. Odd-numbered OID values
 need bear no relationship to the sort order. This rule allows the
 enum comparison routines to avoid catalog lookups in many common cases.
 The routines that create and alter enum types attempt to assign even
 OIDs to enum values whenever possible.

 When an enum type is created, its members are assigned sort-order
 positions 1..n. But members added later might be given
 negative or fractional values of enumsortorder.
 The only requirement on these values is that they be correctly
 ordered and unique within each enum type.

pg_event_trigger

 The catalog pg_event_trigger stores event triggers.
 See Chapter 40, Event Triggers for more information.

Table 53.21. pg_event_trigger Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 evtname name

 Trigger name (must be unique)

	
 evtevent name

 Identifies the event for which this trigger fires

	
 evtowner oid
 (references pg_authid.oid)

 Owner of the event trigger

	
 evtfoid oid
 (references pg_proc.oid)

 The function to be called

	
 evtenabled char

 Controls in which session_replication_role modes
 the event trigger fires.
 O = trigger fires in “origin” and “local” modes,
 D = trigger is disabled,
 R = trigger fires in “replica” mode,
 A = trigger fires always.

	
 evttags text[]

 Command tags for which this trigger will fire. If NULL, the firing
 of this trigger is not restricted on the basis of the command tag.

pg_extension

 The catalog pg_extension stores information
 about the installed extensions. See the section called “Packaging Related Objects into an Extension”
 for details about extensions.

Table 53.22. pg_extension Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 extname name

 Name of the extension

	
 extowner oid
 (references pg_authid.oid)

 Owner of the extension

	
 extnamespace oid
 (references pg_namespace.oid)

 Schema containing the extension's exported objects

	
 extrelocatable bool

 True if extension can be relocated to another schema

	
 extversion text

 Version name for the extension

	
 extconfig oid[]
 (references pg_class.oid)

 Array of regclass OIDs for the extension's configuration
 table(s), or NULL if none

	
 extcondition text[]

 Array of WHERE-clause filter conditions for the
 extension's configuration table(s), or NULL if none

 Note that unlike most catalogs with a “namespace” column,
 extnamespace is not meant to imply
 that the extension belongs to that schema. Extension names are never
 schema-qualified. Rather, extnamespace
 indicates the schema that contains most or all of the extension's
 objects. If extrelocatable is true, then
 this schema must in fact contain all schema-qualifiable objects
 belonging to the extension.

pg_foreign_data_wrapper

 The catalog pg_foreign_data_wrapper stores
 foreign-data wrapper definitions. A foreign-data wrapper is the
 mechanism by which external data, residing on foreign servers, is
 accessed.

Table 53.23. pg_foreign_data_wrapper Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 fdwname name

 Name of the foreign-data wrapper

	
 fdwowner oid
 (references pg_authid.oid)

 Owner of the foreign-data wrapper

	
 fdwhandler oid
 (references pg_proc.oid)

 References a handler function that is responsible for
 supplying execution routines for the foreign-data wrapper.
 Zero if no handler is provided

	
 fdwvalidator oid
 (references pg_proc.oid)

 References a validator function that is responsible for
 checking the validity of the options given to the
 foreign-data wrapper, as well as options for foreign servers and user
 mappings using the foreign-data wrapper. Zero if no validator
 is provided

	
 fdwacl aclitem[]

 Access privileges; see the section called “Privileges” for details

	
 fdwoptions text[]

 Foreign-data wrapper specific options, as “keyword=value” strings

pg_foreign_server

 The catalog pg_foreign_server stores
 foreign server definitions. A foreign server describes a source
 of external data, such as a remote server. Foreign
 servers are accessed via foreign-data wrappers.

Table 53.24. pg_foreign_server Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 srvname name

 Name of the foreign server

	
 srvowner oid
 (references pg_authid.oid)

 Owner of the foreign server

	
 srvfdw oid
 (references pg_foreign_data_wrapper.oid)

 OID of the foreign-data wrapper of this foreign server

	
 srvtype text

 Type of the server (optional)

	
 srvversion text

 Version of the server (optional)

	
 srvacl aclitem[]

 Access privileges; see the section called “Privileges” for details

	
 srvoptions text[]

 Foreign server specific options, as “keyword=value” strings

pg_foreign_table

 The catalog pg_foreign_table contains
 auxiliary information about foreign tables. A foreign table is
 primarily represented by a
 pg_class
 entry, just like a regular table. Its pg_foreign_table
 entry contains the information that is pertinent only to foreign tables
 and not any other kind of relation.

Table 53.25. pg_foreign_table Columns
	
 Column Type

 Description

	
 ftrelid oid
 (references pg_class.oid)

 The OID of the pg_class entry for this foreign table

	
 ftserver oid
 (references pg_foreign_server.oid)

 OID of the foreign server for this foreign table

	
 ftoptions text[]

 Foreign table options, as “keyword=value” strings

pg_index

 The catalog pg_index contains part of the information
 about indexes. The rest is mostly in
 pg_class.

Table 53.26. pg_index Columns
	
 Column Type

 Description

	
 indexrelid oid
 (references pg_class.oid)

 The OID of the pg_class entry for this index

	
 indrelid oid
 (references pg_class.oid)

 The OID of the pg_class entry for the table this index is for

	
 indnatts int2

 The total number of columns in the index (duplicates
 pg_class.relnatts); this number includes both key and included attributes

	
 indnkeyatts int2

 The number of key columns in the index,
 not counting any included columns, which are
 merely stored and do not participate in the index semantics

	
 indisunique bool

 If true, this is a unique index

	
 indnullsnotdistinct bool

 This value is only used for unique indexes. If false, this unique
 index will consider null values distinct (so the index can contain
 multiple null values in a column, the default PostgreSQL behavior). If
 it is true, it will consider null values to be equal (so the index can
 only contain one null value in a column).

	
 indisprimary bool

 If true, this index represents the primary key of the table
 (indisunique should always be true when this is true)

	
 indisexclusion bool

 If true, this index supports an exclusion constraint

	
 indimmediate bool

 If true, the uniqueness check is enforced immediately on
 insertion
 (irrelevant if indisunique is not true)

	
 indisclustered bool

 If true, the table was last clustered on this index

	
 indisvalid bool

 If true, the index is currently valid for queries. False means the
 index is possibly incomplete: it must still be modified by
 INSERT/UPDATE operations, but it cannot safely
 be used for queries. If it is unique, the uniqueness property is not
 guaranteed true either.

	
 indcheckxmin bool

 If true, queries must not use the index until the xmin
 of this pg_index row is below their TransactionXmin
 event horizon, because the table may contain broken HOT chains with
 incompatible rows that they can see

	
 indisready bool

 If true, the index is currently ready for inserts. False means the
 index must be ignored by INSERT/UPDATE
 operations.

	
 indislive bool

 If false, the index is in process of being dropped, and should be
 ignored for all purposes (including HOT-safety decisions)

	
 indisreplident bool

 If true this index has been chosen as “replica identity”
 using ALTER TABLE ...
 REPLICA IDENTITY USING INDEX ...

	
 indkey int2vector
 (references pg_attribute.attnum)

 This is an array of indnatts values that
 indicate which table columns this index indexes. For example, a value
 of 1 3 would mean that the first and the third table
 columns make up the index entries. Key columns come before non-key
 (included) columns. A zero in this array indicates that the
 corresponding index attribute is an expression over the table columns,
 rather than a simple column reference.

	
 indcollation oidvector
 (references pg_collation.oid)

 For each column in the index key
 (indnkeyatts values), this contains the OID
 of the collation to use for the index, or zero if the column is not of
 a collatable data type.

	
 indclass oidvector
 (references pg_opclass.oid)

 For each column in the index key
 (indnkeyatts values), this contains the OID
 of the operator class to use. See
 pg_opclass for details.

	
 indoption int2vector

 This is an array of indnkeyatts values that
 store per-column flag bits. The meaning of the bits is defined by
 the index's access method.

	
 indexprs pg_node_tree

 Expression trees (in nodeToString()
 representation) for index attributes that are not simple column
 references. This is a list with one element for each zero
 entry in indkey. Null if all index attributes
 are simple references.

	
 indpred pg_node_tree

 Expression tree (in nodeToString()
 representation) for partial index predicate. Null if not a
 partial index.

pg_inherits

 The catalog pg_inherits records information about
 table and index inheritance hierarchies. There is one entry for each direct
 parent-child table or index relationship in the database. (Indirect
 inheritance can be determined by following chains of entries.)

Table 53.27. pg_inherits Columns
	
 Column Type

 Description

	
 inhrelid oid
 (references pg_class.oid)

 The OID of the child table or index

	
 inhparent oid
 (references pg_class.oid)

 The OID of the parent table or index

	
 inhseqno int4

 If there is more than one direct parent for a child table (multiple
 inheritance), this number tells the order in which the
 inherited columns are to be arranged. The count starts at 1.

 Indexes cannot have multiple inheritance, since they can only inherit
 when using declarative partitioning.

	
 inhdetachpending bool

 true for a partition that is in the process of
 being detached; false otherwise.

pg_init_privs

 The catalog pg_init_privs records information about
 the initial privileges of objects in the system. There is one entry
 for each object in the database which has a non-default (non-NULL)
 initial set of privileges.

 Objects can have initial privileges either by having those privileges set
 when the system is initialized (by initdb) or when the
 object is created during a CREATE EXTENSION and the
 extension script sets initial privileges using the GRANT
 system. Note that the system will automatically handle recording of the
 privileges during the extension script and that extension authors need
 only use the GRANT and REVOKE
 statements in their script to have the privileges recorded. The
 privtype column indicates if the initial privilege was
 set by initdb or during a
 CREATE EXTENSION command.

 Objects which have initial privileges set by initdb will
 have entries where privtype is
 'i', while objects which have initial privileges set
 by CREATE EXTENSION will have entries where
 privtype is 'e'.

Table 53.28. pg_init_privs Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the specific object

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog the object is in

	
 objsubid int4

 For a table column, this is the column number (the
 objoid and classoid refer to the
 table itself). For all other object types, this column is
 zero.

	
 privtype char

 A code defining the type of initial privilege of this object; see text

	
 initprivs aclitem[]

 The initial access privileges; see
 the section called “Privileges” for details

pg_language

 The catalog pg_language registers
 languages in which you can write functions or stored procedures.
 See CREATE LANGUAGE(7)
 and Chapter 42, Procedural Languages for more information about language handlers.

Table 53.29. pg_language Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 lanname name

 Name of the language

	
 lanowner oid
 (references pg_authid.oid)

 Owner of the language

	
 lanispl bool

 This is false for internal languages (such as
 SQL) and true for user-defined languages.
 Currently, pg_dump still uses this
 to determine which languages need to be dumped, but this might be
 replaced by a different mechanism in the future.

	
 lanpltrusted bool

 True if this is a trusted language, which means that it is believed
 not to grant access to anything outside the normal SQL execution
 environment. Only superusers can create functions in untrusted
 languages.

	
 lanplcallfoid oid
 (references pg_proc.oid)

 For noninternal languages this references the language
 handler, which is a special function that is responsible for
 executing all functions that are written in the particular
 language. Zero for internal languages.

	
 laninline oid
 (references pg_proc.oid)

 This references a function that is responsible for executing
 “inline” anonymous code blocks
 (DO(7) blocks).
 Zero if inline blocks are not supported.

	
 lanvalidator oid
 (references pg_proc.oid)

 This references a language validator function that is responsible
 for checking the syntax and validity of new functions when they
 are created. Zero if no validator is provided.

	
 lanacl aclitem[]

 Access privileges; see the section called “Privileges” for details

pg_largeobject

 The catalog pg_largeobject holds the data making up
 “large objects”. A large object is identified by an OID
 assigned when it is created. Each large object is broken into
 segments or “pages” small enough to be conveniently stored as rows
 in pg_largeobject.
 The amount of data per page is defined to be LOBLKSIZE (which is currently
 BLCKSZ/4, or typically 2 kB).

 Prior to PostgreSQL™ 9.0, there was no permission structure
 associated with large objects. As a result,
 pg_largeobject was publicly readable and could be
 used to obtain the OIDs (and contents) of all large objects in the system.
 This is no longer the case; use
 pg_largeobject_metadata
 to obtain a list of large object OIDs.

Table 53.30. pg_largeobject Columns
	
 Column Type

 Description

	
 loid oid
 (references pg_largeobject_metadata.oid)

 Identifier of the large object that includes this page

	
 pageno int4

 Page number of this page within its large object
 (counting from zero)

	
 data bytea

 Actual data stored in the large object.
 This will never be more than LOBLKSIZE bytes and might be less.

 Each row of pg_largeobject holds data
 for one page of a large object, beginning at
 byte offset (pageno * LOBLKSIZE) within the object. The implementation
 allows sparse storage: pages might be missing, and might be shorter than
 LOBLKSIZE bytes even if they are not the last page of the object.
 Missing regions within a large object read as zeroes.

pg_largeobject_metadata

 The catalog pg_largeobject_metadata
 holds metadata associated with large objects. The actual large object
 data is stored in
 pg_largeobject.

Table 53.31. pg_largeobject_metadata Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 lomowner oid
 (references pg_authid.oid)

 Owner of the large object

	
 lomacl aclitem[]

 Access privileges; see the section called “Privileges” for details

pg_namespace

 The catalog pg_namespace stores namespaces.
 A namespace is the structure underlying SQL schemas: each namespace
 can have a separate collection of relations, types, etc. without name
 conflicts.

Table 53.32. pg_namespace Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 nspname name

 Name of the namespace

	
 nspowner oid
 (references pg_authid.oid)

 Owner of the namespace

	
 nspacl aclitem[]

 Access privileges; see the section called “Privileges” for details

pg_opclass

 The catalog pg_opclass defines
 index access method operator classes. Each operator class defines
 semantics for index columns of a particular data type and a particular
 index access method. An operator class essentially specifies that a
 particular operator family is applicable to a particular indexable column
 data type. The set of operators from the family that are actually usable
 with the indexed column are whichever ones accept the column's data type
 as their left-hand input.

 Operator classes are described at length in the section called “Interfacing Extensions to Indexes”.

Table 53.33. pg_opclass Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 opcmethod oid
 (references pg_am.oid)

 Index access method operator class is for

	
 opcname name

 Name of this operator class

	
 opcnamespace oid
 (references pg_namespace.oid)

 Namespace of this operator class

	
 opcowner oid
 (references pg_authid.oid)

 Owner of the operator class

	
 opcfamily oid
 (references pg_opfamily.oid)

 Operator family containing the operator class

	
 opcintype oid
 (references pg_type.oid)

 Data type that the operator class indexes

	
 opcdefault bool

 True if this operator class is the default for opcintype

	
 opckeytype oid
 (references pg_type.oid)

 Type of data stored in index, or zero if same as opcintype

 An operator class's opcmethod must match the
 opfmethod of its containing operator family.
 Also, there must be no more than one pg_opclass
 row having opcdefault true for any given combination of
 opcmethod and opcintype.

pg_operator

 The catalog pg_operator stores information about operators.
 See CREATE OPERATOR(7)
 and the section called “User-Defined Operators” for more information.

Table 53.34. pg_operator Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 oprname name

 Name of the operator

	
 oprnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this operator

	
 oprowner oid
 (references pg_authid.oid)

 Owner of the operator

	
 oprkind char

 b = infix operator (“both”),
 or l = prefix operator (“left”)

	
 oprcanmerge bool

 This operator supports merge joins

	
 oprcanhash bool

 This operator supports hash joins

	
 oprleft oid
 (references pg_type.oid)

 Type of the left operand (zero for a prefix operator)

	
 oprright oid
 (references pg_type.oid)

 Type of the right operand

	
 oprresult oid
 (references pg_type.oid)

 Type of the result
 (zero for a not-yet-defined “shell” operator)

	
 oprcom oid
 (references pg_operator.oid)

 Commutator of this operator (zero if none)

	
 oprnegate oid
 (references pg_operator.oid)

 Negator of this operator (zero if none)

	
 oprcode regproc
 (references pg_proc.oid)

 Function that implements this operator
 (zero for a not-yet-defined “shell” operator)

	
 oprrest regproc
 (references pg_proc.oid)

 Restriction selectivity estimation function for this operator
 (zero if none)

	
 oprjoin regproc
 (references pg_proc.oid)

 Join selectivity estimation function for this operator
 (zero if none)

pg_opfamily

 The catalog pg_opfamily defines operator families.
 Each operator family is a collection of operators and associated
 support routines that implement the semantics specified for a particular
 index access method. Furthermore, the operators in a family are all
 “compatible”, in a way that is specified by the access method.
 The operator family concept allows cross-data-type operators to be used
 with indexes and to be reasoned about using knowledge of access method
 semantics.

 Operator families are described at length in the section called “Interfacing Extensions to Indexes”.

Table 53.35. pg_opfamily Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 opfmethod oid
 (references pg_am.oid)

 Index access method operator family is for

	
 opfname name

 Name of this operator family

	
 opfnamespace oid
 (references pg_namespace.oid)

 Namespace of this operator family

	
 opfowner oid
 (references pg_authid.oid)

 Owner of the operator family

 The majority of the information defining an operator family is not in its
 pg_opfamily row, but in the associated rows in
 pg_amop,
 pg_amproc,
 and
 pg_opclass.

pg_parameter_acl

 The catalog pg_parameter_acl records configuration
 parameters for which privileges have been granted to one or more roles.
 No entry is made for parameters that have default privileges.

 Unlike most system catalogs, pg_parameter_acl
 is shared across all databases of a cluster: there is only one
 copy of pg_parameter_acl per cluster, not
 one per database.

Table 53.36. pg_parameter_acl Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 parname text

 The name of a configuration parameter for which privileges are granted

	
 paracl aclitem[]

 Access privileges; see the section called “Privileges” for details

pg_partitioned_table

 The catalog pg_partitioned_table stores
 information about how tables are partitioned.

Table 53.37. pg_partitioned_table Columns
	
 Column Type

 Description

	
 partrelid oid
 (references pg_class.oid)

 The OID of the pg_class entry for this partitioned table

	
 partstrat char

 Partitioning strategy; h = hash partitioned table,
 l = list partitioned table, r = range partitioned table

	
 partnatts int2

 The number of columns in the partition key

	
 partdefid oid
 (references pg_class.oid)

 The OID of the pg_class entry for the default partition
 of this partitioned table, or zero if this partitioned table does not
 have a default partition

	
 partattrs int2vector
 (references pg_attribute.attnum)

 This is an array of partnatts values that
 indicate which table columns are part of the partition key. For
 example, a value of 1 3 would mean that the first
 and the third table columns make up the partition key. A zero in this
 array indicates that the corresponding partition key column is an
 expression, rather than a simple column reference.

	
 partclass oidvector
 (references pg_opclass.oid)

 For each column in the partition key, this contains the OID of the
 operator class to use. See
 pg_opclass for details.

	
 partcollation oidvector
 (references pg_collation.oid)

 For each column in the partition key, this contains the OID of the
 collation to use for partitioning, or zero if the column is not
 of a collatable data type.

	
 partexprs pg_node_tree

 Expression trees (in nodeToString()
 representation) for partition key columns that are not simple column
 references. This is a list with one element for each zero
 entry in partattrs. Null if all partition key columns
 are simple references.

pg_policy

 The catalog pg_policy stores row-level
 security policies for tables. A policy includes the kind of
 command that it applies to (possibly all commands), the roles that it
 applies to, the expression to be added as a security-barrier
 qualification to queries that include the table, and the expression
 to be added as a WITH CHECK option for queries that attempt to
 add new records to the table.

Table 53.38. pg_policy Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 polname name

 The name of the policy

	
 polrelid oid
 (references pg_class.oid)

 The table to which the policy applies

	
 polcmd char

 The command type to which the policy is applied:
 r for SELECT(7),
 a for INSERT(7),
 w for UPDATE(7),
 d for DELETE(7),
 or * for all

	
 polpermissive bool

 Is the policy permissive or restrictive?

	
 polroles oid[]
 (references pg_authid.oid)

 The roles to which the policy is applied;
 zero means PUBLIC
 (and normally appears alone in the array)

	
 polqual pg_node_tree

 The expression tree to be added to the security barrier qualifications for queries that use the table

	
 polwithcheck pg_node_tree

 The expression tree to be added to the WITH CHECK qualifications for queries that attempt to add rows to the table

Note

 Policies stored in pg_policy are applied only when
 pg_class.relrowsecurity is set for
 their table.

pg_proc

 The catalog pg_proc stores information about
 functions, procedures, aggregate functions, and window functions
 (collectively also known as routines). See CREATE FUNCTION(7), CREATE PROCEDURE(7), and
 the section called “User-Defined Functions” for more information.

 If prokind indicates that the entry is for an
 aggregate function, there should be a matching row in
 pg_aggregate.

Table 53.39. pg_proc Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 proname name

 Name of the function

	
 pronamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this function

	
 proowner oid
 (references pg_authid.oid)

 Owner of the function

	
 prolang oid
 (references pg_language.oid)

 Implementation language or call interface of this function

	
 procost float4

 Estimated execution cost (in units of
 cpu_operator_cost); if proretset,
 this is cost per row returned

	
 prorows float4

 Estimated number of result rows (zero if not proretset)

	
 provariadic oid
 (references pg_type.oid)

 Data type of the variadic array parameter's elements,
 or zero if the function does not have a variadic parameter

	
 prosupport regproc
 (references pg_proc.oid)

 Planner support function for this function
 (see the section called “Function Optimization Information”), or zero if none

	
 prokind char

 f for a normal function, p
 for a procedure, a for an aggregate function, or
 w for a window function

	
 prosecdef bool

 Function is a security definer (i.e., a “setuid”
 function)

	
 proleakproof bool

 The function has no side effects. No information about the
 arguments is conveyed except via the return value. Any function
 that might throw an error depending on the values of its arguments
 is not leak-proof.

	
 proisstrict bool

 Function returns null if any call argument is null. In that
 case the function won't actually be called at all. Functions
 that are not “strict” must be prepared to handle
 null inputs.

	
 proretset bool

 Function returns a set (i.e., multiple values of the specified
 data type)

	
 provolatile char

 provolatile tells whether the function's
 result depends only on its input arguments, or is affected by outside
 factors.
 It is i for “immutable” functions,
 which always deliver the same result for the same inputs.
 It is s for “stable” functions,
 whose results (for fixed inputs) do not change within a scan.
 It is v for “volatile” functions,
 whose results might change at any time. (Use v also
 for functions with side-effects, so that calls to them cannot get
 optimized away.)

	
 proparallel char

 proparallel tells whether the function
 can be safely run in parallel mode.
 It is s for functions which are safe to run in
 parallel mode without restriction.
 It is r for functions which can be run in parallel
 mode, but their execution is restricted to the parallel group leader;
 parallel worker processes cannot invoke these functions.
 It is u for functions which are unsafe in parallel
 mode; the presence of such a function forces a serial execution plan.

	
 pronargs int2

 Number of input arguments

	
 pronargdefaults int2

 Number of arguments that have defaults

	
 prorettype oid
 (references pg_type.oid)

 Data type of the return value

	
 proargtypes oidvector
 (references pg_type.oid)

 An array of the data types of the function arguments. This includes
 only input arguments (including INOUT and
 VARIADIC arguments), and thus represents
 the call signature of the function.

	
 proallargtypes oid[]
 (references pg_type.oid)

 An array of the data types of the function arguments. This includes
 all arguments (including OUT and
 INOUT arguments); however, if all the
 arguments are IN arguments, this field will be null.
 Note that subscripting is 1-based, whereas for historical reasons
 proargtypes is subscripted from 0.

	
 proargmodes char[]

 An array of the modes of the function arguments, encoded as
 i for IN arguments,
 o for OUT arguments,
 b for INOUT arguments,
 v for VARIADIC arguments,
 t for TABLE arguments.
 If all the arguments are IN arguments,
 this field will be null.
 Note that subscripts correspond to positions of
 proallargtypes not proargtypes.

	
 proargnames text[]

 An array of the names of the function arguments.
 Arguments without a name are set to empty strings in the array.
 If none of the arguments have a name, this field will be null.
 Note that subscripts correspond to positions of
 proallargtypes not proargtypes.

	
 proargdefaults pg_node_tree

 Expression trees (in nodeToString() representation)
 for default values. This is a list with
 pronargdefaults elements, corresponding to the last
 N input arguments (i.e., the last
 N proargtypes positions).
 If none of the arguments have defaults, this field will be null.

	
 protrftypes oid[]
 (references pg_type.oid)

 An array of the argument/result data type(s) for which to apply
 transforms (from the function's TRANSFORM
 clause). Null if none.

	
 prosrc text

 This tells the function handler how to invoke the function. It
 might be the actual source code of the function for interpreted
 languages, a link symbol, a file name, or just about anything
 else, depending on the implementation language/call convention.

	
 probin text

 Additional information about how to invoke the function.
 Again, the interpretation is language-specific.

	
 prosqlbody pg_node_tree

 Pre-parsed SQL function body. This is used for SQL-language
 functions when the body is given in SQL-standard notation
 rather than as a string literal. It's null in other cases.

	
 proconfig text[]

 Function's local settings for run-time configuration variables

	
 proacl aclitem[]

 Access privileges; see the section called “Privileges” for details

 For compiled functions, both built-in and dynamically loaded,
 prosrc contains the function's C-language
 name (link symbol).
 For SQL-language functions, prosrc contains
 the function's source text if that is specified as a string literal;
 but if the function body is specified in SQL-standard style,
 prosrc is unused (typically it's an empty
 string) and prosqlbody contains the
 pre-parsed definition.
 For all other currently-known language types,
 prosrc contains the function's source
 text. probin is null except for
 dynamically-loaded C functions, for which it gives the name of the
 shared library file containing the function.

pg_publication

 The catalog pg_publication contains all
 publications created in the database. For more on publications see
 the section called “Publication”.

Table 53.40. pg_publication Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 pubname name

 Name of the publication

	
 pubowner oid
 (references pg_authid.oid)

 Owner of the publication

	
 puballtables bool

 If true, this publication automatically includes all tables
 in the database, including any that will be created in the future.

	
 pubinsert bool

 If true, INSERT(7) operations are replicated for
 tables in the publication.

	
 pubupdate bool

 If true, UPDATE(7) operations are replicated for
 tables in the publication.

	
 pubdelete bool

 If true, DELETE(7) operations are replicated for
 tables in the publication.

	
 pubtruncate bool

 If true, TRUNCATE(7) operations are replicated for
 tables in the publication.

	
 pubviaroot bool

 If true, operations on a leaf partition are replicated using the
 identity and schema of its topmost partitioned ancestor mentioned in the
 publication instead of its own.

pg_publication_namespace

 The catalog pg_publication_namespace contains the
 mapping between schemas and publications in the database. This is a
 many-to-many mapping.

Table 53.41. pg_publication_namespace Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 pnpubid oid
 (references pg_publication.oid)

 Reference to publication

	
 pnnspid oid
 (references pg_namespace.oid)

 Reference to schema

pg_publication_rel

 The catalog pg_publication_rel contains the
 mapping between relations and publications in the database. This is a
 many-to-many mapping. See also the section called “pg_publication_tables”
 for a more user-friendly view of this information.

Table 53.42. pg_publication_rel Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 prpubid oid
 (references pg_publication.oid)

 Reference to publication

	
 prrelid oid
 (references pg_class.oid)

 Reference to relation

	
 prqual pg_node_tree

 Expression tree (in nodeToString()
 representation) for the relation's publication qualifying condition. Null
 if there is no publication qualifying condition.

	
 prattrs int2vector
 (references pg_attribute.attnum)

 This is an array of values that indicates which table columns are
 part of the publication. For example, a value of 1 3
 would mean that the first and the third table columns are published.
 A null value indicates that all columns are published.

pg_range

 The catalog pg_range stores information about
 range types. This is in addition to the types' entries in
 pg_type.

Table 53.43. pg_range Columns
	
 Column Type

 Description

	
 rngtypid oid
 (references pg_type.oid)

 OID of the range type

	
 rngsubtype oid
 (references pg_type.oid)

 OID of the element type (subtype) of this range type

	
 rngmultitypid oid
 (references pg_type.oid)

 OID of the multirange type for this range type

	
 rngcollation oid
 (references pg_collation.oid)

 OID of the collation used for range comparisons, or zero if none

	
 rngsubopc oid
 (references pg_opclass.oid)

 OID of the subtype's operator class used for range comparisons

	
 rngcanonical regproc
 (references pg_proc.oid)

 OID of the function to convert a range value into canonical form,
 or zero if none

	
 rngsubdiff regproc
 (references pg_proc.oid)

 OID of the function to return the difference between two element
 values as double precision, or zero if none

 rngsubopc (plus rngcollation, if the
 element type is collatable) determines the sort ordering used by the range
 type. rngcanonical is used when the element type is
 discrete. rngsubdiff is optional but should be supplied to
 improve performance of GiST indexes on the range type.

pg_replication_origin

 The pg_replication_origin catalog contains
 all replication origins created. For more on replication origins
 see Chapter 50, Replication Progress Tracking.

 Unlike most system catalogs, pg_replication_origin
 is shared across all databases of a cluster: there is only one copy
 of pg_replication_origin per cluster, not one per
 database.

Table 53.44. pg_replication_origin Columns
	
 Column Type

 Description

	
 roident oid

 A unique, cluster-wide identifier for the replication
 origin. Should never leave the system.

	
 roname text

 The external, user defined, name of a replication
 origin.

pg_rewrite

 The catalog pg_rewrite stores rewrite rules for tables and views.

Table 53.45. pg_rewrite Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 rulename name

 Rule name

	
 ev_class oid
 (references pg_class.oid)

 The table this rule is for

	
 ev_type char

 Event type that the rule is for: 1 = SELECT(7), 2 =
 UPDATE(7), 3 = INSERT(7), 4 =
 DELETE(7)

	
 ev_enabled char

 Controls in which session_replication_role modes
 the rule fires.
 O = rule fires in “origin” and “local” modes,
 D = rule is disabled,
 R = rule fires in “replica” mode,
 A = rule fires always.

	
 is_instead bool

 True if the rule is an INSTEAD rule

	
 ev_qual pg_node_tree

 Expression tree (in the form of a
 nodeToString() representation) for the
 rule's qualifying condition

	
 ev_action pg_node_tree

 Query tree (in the form of a
 nodeToString() representation) for the
 rule's action

Note

 pg_class.relhasrules
 must be true if a table has any rules in this catalog.

pg_seclabel

 The catalog pg_seclabel stores security
 labels on database objects. Security labels can be manipulated
 with the SECURITY LABEL command. For an easier
 way to view security labels, see the section called “pg_seclabels”.

 See also pg_shseclabel,
 which performs a similar function for security labels of database objects
 that are shared across a database cluster.

Table 53.46. pg_seclabel Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the object this security label pertains to

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog this object appears in

	
 objsubid int4

 For a security label on a table column, this is the column number (the
 objoid and classoid refer to
 the table itself). For all other object types, this column is
 zero.

	
 provider text

 The label provider associated with this label.

	
 label text

 The security label applied to this object.

pg_sequence

 The catalog pg_sequence contains information about
 sequences. Some of the information about sequences, such as the name and
 the schema, is in
 pg_class

Table 53.47. pg_sequence Columns
	
 Column Type

 Description

	
 seqrelid oid
 (references pg_class.oid)

 The OID of the pg_class entry for this sequence

	
 seqtypid oid
 (references pg_type.oid)

 Data type of the sequence

	
 seqstart int8

 Start value of the sequence

	
 seqincrement int8

 Increment value of the sequence

	
 seqmax int8

 Maximum value of the sequence

	
 seqmin int8

 Minimum value of the sequence

	
 seqcache int8

 Cache size of the sequence

	
 seqcycle bool

 Whether the sequence cycles

pg_shdepend

 The catalog pg_shdepend records the
 dependency relationships between database objects and shared objects,
 such as roles. This information allows
 PostgreSQL™ to ensure that those objects are
 unreferenced before attempting to delete them.

 See also pg_depend,
 which performs a similar function for dependencies involving objects
 within a single database.

 Unlike most system catalogs, pg_shdepend
 is shared across all databases of a cluster: there is only one
 copy of pg_shdepend per cluster, not
 one per database.

Table 53.48. pg_shdepend Columns
	
 Column Type

 Description

	
 dbid oid
 (references pg_database.oid)

 The OID of the database the dependent object is in,
 or zero for a shared object

	
 classid oid
 (references pg_class.oid)

 The OID of the system catalog the dependent object is in

	
 objid oid
 (references any OID column)

 The OID of the specific dependent object

	
 objsubid int4

 For a table column, this is the column number (the
 objid and classid refer to the
 table itself). For all other object types, this column is zero.

	
 refclassid oid
 (references pg_class.oid)

 The OID of the system catalog the referenced object is in
 (must be a shared catalog)

	
 refobjid oid
 (references any OID column)

 The OID of the specific referenced object

	
 deptype char

 A code defining the specific semantics of this dependency relationship; see text

 In all cases, a pg_shdepend entry indicates that
 the referenced object cannot be dropped without also dropping the dependent
 object. However, there are several subflavors identified by
 deptype:

	SHARED_DEPENDENCY_OWNER (o)
	
 The referenced object (which must be a role) is the owner of the
 dependent object.

	SHARED_DEPENDENCY_ACL (a)
	
 The referenced object (which must be a role) is mentioned in the
 ACL (access control list, i.e., privileges list) of the
 dependent object. (A SHARED_DEPENDENCY_ACL entry is
 not made for the owner of the object, since the owner will have
 a SHARED_DEPENDENCY_OWNER entry anyway.)

	SHARED_DEPENDENCY_POLICY (r)
	
 The referenced object (which must be a role) is mentioned as the
 target of a dependent policy object.

	SHARED_DEPENDENCY_TABLESPACE (t)
	
 The referenced object (which must be a tablespace) is mentioned as
 the tablespace for a relation that doesn't have storage.

 Other dependency flavors might be needed in future. Note in particular
 that the current definition only supports roles and tablespaces as referenced
 objects.

 As in the pg_depend catalog, most objects
 created during initdb are
 considered “pinned”. No entries are made
 in pg_shdepend that would have a pinned
 object as either referenced or dependent object.

pg_shdescription

 The catalog pg_shdescription stores optional
 descriptions (comments) for shared database objects. Descriptions can be
 manipulated with the COMMENT command and viewed with
 psql's \d commands.

 See also pg_description,
 which performs a similar function for descriptions involving objects
 within a single database.

 Unlike most system catalogs, pg_shdescription
 is shared across all databases of a cluster: there is only one
 copy of pg_shdescription per cluster, not
 one per database.

Table 53.49. pg_shdescription Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the object this description pertains to

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog this object appears in

	
 description text

 Arbitrary text that serves as the description of this object

pg_shseclabel

 The catalog pg_shseclabel stores security
 labels on shared database objects. Security labels can be manipulated
 with the SECURITY LABEL command. For an easier
 way to view security labels, see the section called “pg_seclabels”.

 See also pg_seclabel,
 which performs a similar function for security labels involving objects
 within a single database.

 Unlike most system catalogs, pg_shseclabel
 is shared across all databases of a cluster: there is only one
 copy of pg_shseclabel per cluster, not
 one per database.

Table 53.50. pg_shseclabel Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the object this security label pertains to

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog this object appears in

	
 provider text

 The label provider associated with this label.

	
 label text

 The security label applied to this object.

pg_statistic

 The catalog pg_statistic stores
 statistical data about the contents of the database. Entries are
 created by ANALYZE
 and subsequently used by the query planner. Note that all the
 statistical data is inherently approximate, even assuming that it
 is up-to-date.

 Normally there is one entry, with stainherit =
 false, for each table column that has been analyzed.
 If the table has inheritance children or partitions, a second entry with
 stainherit = true is also created. This row
 represents the column's statistics over the inheritance tree, i.e.,
 statistics for the data you'd see with
 SELECT column FROM table*,
 whereas the stainherit = false row represents
 the results of
 SELECT column FROM ONLY table.

 pg_statistic also stores statistical data about
 the values of index expressions. These are described as if they were
 actual data columns; in particular, starelid
 references the index. No entry is made for an ordinary non-expression
 index column, however, since it would be redundant with the entry
 for the underlying table column. Currently, entries for index expressions
 always have stainherit = false.

 Since different kinds of statistics might be appropriate for different
 kinds of data, pg_statistic is designed not
 to assume very much about what sort of statistics it stores. Only
 extremely general statistics (such as nullness) are given dedicated
 columns in pg_statistic. Everything else
 is stored in “slots”, which are groups of associated columns
 whose content is identified by a code number in one of the slot's columns.
 For more information see
 src/include/catalog/pg_statistic.h.

 pg_statistic should not be readable by the
 public, since even statistical information about a table's contents
 might be considered sensitive. (Example: minimum and maximum values
 of a salary column might be quite interesting.)
 pg_stats
 is a publicly readable view on
 pg_statistic that only exposes information
 about those tables that are readable by the current user.

Table 53.51. pg_statistic Columns
	
 Column Type

 Description

	
 starelid oid
 (references pg_class.oid)

 The table or index that the described column belongs to

	
 staattnum int2
 (references pg_attribute.attnum)

 The number of the described column

	
 stainherit bool

 If true, the stats include values from child tables, not just the
 values in the specified relation

	
 stanullfrac float4

 The fraction of the column's entries that are null

	
 stawidth int4

 The average stored width, in bytes, of nonnull entries

	
 stadistinct float4

 The number of distinct nonnull data values in the column.
 A value greater than zero is the actual number of distinct values.
 A value less than zero is the negative of a multiplier for the number
 of rows in the table; for example, a column in which about 80% of the
 values are nonnull and each nonnull value appears about twice on
 average could be represented by stadistinct = -0.4.
 A zero value means the number of distinct values is unknown.

	
 stakindN int2

 A code number indicating the kind of statistics stored in the
 Nth “slot” of the
 pg_statistic row.

	
 staopN oid
 (references pg_operator.oid)

 An operator used to derive the statistics stored in the
 Nth “slot”. For example, a
 histogram slot would show the < operator
 that defines the sort order of the data.
 Zero if the statistics kind does not require an operator.

	
 stacollN oid
 (references pg_collation.oid)

 The collation used to derive the statistics stored in the
 Nth “slot”. For example, a
 histogram slot for a collatable column would show the collation that
 defines the sort order of the data. Zero for noncollatable data.

	
 stanumbersN float4[]

 Numerical statistics of the appropriate kind for the
 Nth “slot”, or null if the slot
 kind does not involve numerical values

	
 stavaluesN anyarray

 Column data values of the appropriate kind for the
 Nth “slot”, or null if the slot
 kind does not store any data values. Each array's element
 values are actually of the specific column's data type, or a related
 type such as an array's element type, so there is no way to define
 these columns' type more specifically than anyarray.

pg_statistic_ext

 The catalog pg_statistic_ext
 holds definitions of extended planner statistics.
 Each row in this catalog corresponds to a statistics object
 created with CREATE STATISTICS.

Table 53.52. pg_statistic_ext Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 stxrelid oid
 (references pg_class.oid)

 Table containing the columns described by this object

	
 stxname name

 Name of the statistics object

	
 stxnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this statistics object

	
 stxowner oid
 (references pg_authid.oid)

 Owner of the statistics object

	
 stxstattarget int4

 stxstattarget controls the level of detail
 of statistics accumulated for this statistics object by
 ANALYZE.
 A zero value indicates that no statistics should be collected.
 A negative value says to use the maximum of the statistics targets of
 the referenced columns, if set, or the system default statistics target.
 Positive values of stxstattarget
 determine the target number of “most common values”
 to collect.

	
 stxkeys int2vector
 (references pg_attribute.attnum)

 An array of attribute numbers, indicating which table columns are
 covered by this statistics object;
 for example a value of 1 3 would
 mean that the first and the third table columns are covered

	
 stxkind char[]

 An array containing codes for the enabled statistics kinds;
 valid values are:
 d for n-distinct statistics,
 f for functional dependency statistics,
 m for most common values (MCV) list statistics, and
 e for expression statistics

	
 stxexprs pg_node_tree

 Expression trees (in nodeToString()
 representation) for statistics object attributes that are not simple
 column references. This is a list with one element per expression.
 Null if all statistics object attributes are simple references.

 The pg_statistic_ext entry is filled in
 completely during CREATE STATISTICS, but the actual
 statistical values are not computed then.
 Subsequent ANALYZE commands compute the desired values
 and populate an entry in the
 pg_statistic_ext_data
 catalog.

pg_statistic_ext_data

 The catalog pg_statistic_ext_data
 holds data for extended planner statistics defined in
 pg_statistic_ext.
 Each row in this catalog corresponds to a statistics object
 created with CREATE STATISTICS.

 Normally there is one entry, with stxdinherit =
 false, for each statistics object that has been analyzed.
 If the table has inheritance children or partitions, a second entry with
 stxdinherit = true is also created.
 This row represents the statistics object over the inheritance tree, i.e.,
 statistics for the data you'd see with
 SELECT * FROM table*,
 whereas the stxdinherit = false row
 represents the results of
 SELECT * FROM ONLY table.

 Like pg_statistic,
 pg_statistic_ext_data should not be
 readable by the public, since the contents might be considered sensitive.
 (Example: most common combinations of values in columns might be quite
 interesting.)
 pg_stats_ext
 is a publicly readable view
 on pg_statistic_ext_data (after joining
 with pg_statistic_ext) that only exposes
 information about tables the current user owns.

Table 53.53. pg_statistic_ext_data Columns
	
 Column Type

 Description

	
 stxoid oid
 (references pg_statistic_ext.oid)

 Extended statistics object containing the definition for this data

	
 stxdinherit bool

 If true, the stats include values from child tables, not just the
 values in the specified relation

	
 stxdndistinct pg_ndistinct

 N-distinct counts, serialized as pg_ndistinct type

	
 stxddependencies pg_dependencies

 Functional dependency statistics, serialized
 as pg_dependencies type

	
 stxdmcv pg_mcv_list

 MCV (most-common values) list statistics, serialized as
 pg_mcv_list type

	
 stxdexpr pg_statistic[]

 Per-expression statistics, serialized as an array of
 pg_statistic type

pg_subscription

 The catalog pg_subscription contains all existing
 logical replication subscriptions. For more information about logical
 replication see Chapter 31, Logical Replication.

 Unlike most system catalogs, pg_subscription is
 shared across all databases of a cluster: there is only one copy
 of pg_subscription per cluster, not one per
 database.

 Access to the column subconninfo is revoked from
 normal users, because it could contain plain-text passwords.

Table 53.54. pg_subscription Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 subdbid oid
 (references pg_database.oid)

 OID of the database that the subscription resides in

	
 subskiplsn pg_lsn

 Finish LSN of the transaction whose changes are to be skipped, if a valid
 LSN; otherwise 0/0.

	
 subname name

 Name of the subscription

	
 subowner oid
 (references pg_authid.oid)

 Owner of the subscription

	
 subenabled bool

 If true, the subscription is enabled and should be replicating

	
 subbinary bool

 If true, the subscription will request that the publisher send data
 in binary format

	
 substream char

 Controls how to handle the streaming of in-progress transactions:
 f = disallow streaming of in-progress transactions,
 t = spill the changes of in-progress transactions to
 disk and apply at once after the transaction is committed on the
 publisher and received by the subscriber,
 p = apply changes directly using a parallel apply
 worker if available (same as 't' if no worker is available)

	
 subtwophasestate char

 State codes for two-phase mode:
 d = disabled,
 p = pending enablement,
 e = enabled

	
 subdisableonerr bool

 If true, the subscription will be disabled if one of its workers
 detects an error

	
 subpasswordrequired bool

 If true, the subscription will be required to specify a password
 for authentication

	
 subrunasowner bool

 If true, the subscription will be run with the permissions
 of the subscription owner

	
 subconninfo text

 Connection string to the upstream database

	
 subslotname name

 Name of the replication slot in the upstream database (also used
 for the local replication origin name);
 null represents NONE

	
 subsynccommit text

 The synchronous_commit
 setting for the subscription's workers to use

	
 subpublications text[]

 Array of subscribed publication names. These reference
 publications defined in the upstream database. For more on publications
 see the section called “Publication”.

	
 suborigin text

 The origin value must be either none or
 any. The default is any.
 If none, the subscription will request the publisher
 to only send changes that don't have an origin. If
 any, the publisher sends changes regardless of their
 origin.

pg_subscription_rel

 The catalog pg_subscription_rel contains the
 state for each replicated relation in each subscription. This is a
 many-to-many mapping.

 This catalog only contains tables known to the subscription after running
 either CREATE SUBSCRIPTION or
 ALTER SUBSCRIPTION ... REFRESH
 PUBLICATION.

Table 53.55. pg_subscription_rel Columns
	
 Column Type

 Description

	
 srsubid oid
 (references pg_subscription.oid)

 Reference to subscription

	
 srrelid oid
 (references pg_class.oid)

 Reference to relation

	
 srsubstate char

 State code:
 i = initialize,
 d = data is being copied,
 f = finished table copy,
 s = synchronized,
 r = ready (normal replication)

	
 srsublsn pg_lsn

 Remote LSN of the state change used for synchronization coordination
 when in s or r states,
 otherwise null

pg_tablespace

 The catalog pg_tablespace stores information
 about the available tablespaces. Tables can be placed in particular
 tablespaces to aid administration of disk layout.

 Unlike most system catalogs, pg_tablespace
 is shared across all databases of a cluster: there is only one
 copy of pg_tablespace per cluster, not
 one per database.

Table 53.56. pg_tablespace Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 spcname name

 Tablespace name

	
 spcowner oid
 (references pg_authid.oid)

 Owner of the tablespace, usually the user who created it

	
 spcacl aclitem[]

 Access privileges; see the section called “Privileges” for details

	
 spcoptions text[]

 Tablespace-level options, as “keyword=value” strings

pg_transform

 The catalog pg_transform stores information about
 transforms, which are a mechanism to adapt data types to procedural
 languages. See CREATE TRANSFORM(7) for more information.

Table 53.57. pg_transform Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 trftype oid
 (references pg_type.oid)

 OID of the data type this transform is for

	
 trflang oid
 (references pg_language.oid)

 OID of the language this transform is for

	
 trffromsql regproc
 (references pg_proc.oid)

 The OID of the function to use when converting the data type for input
 to the procedural language (e.g., function parameters). Zero is stored
 if the default behavior should be used.

	
 trftosql regproc
 (references pg_proc.oid)

 The OID of the function to use when converting output from the
 procedural language (e.g., return values) to the data type. Zero is
 stored if the default behavior should be used.

pg_trigger

 The catalog pg_trigger stores triggers on tables
 and views.
 See CREATE TRIGGER(7)
 for more information.

Table 53.58. pg_trigger Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 tgrelid oid
 (references pg_class.oid)

 The table this trigger is on

	
 tgparentid oid
 (references pg_trigger.oid)

 Parent trigger that this trigger is cloned from (this happens when
 partitions are created or attached to a partitioned table);
 zero if not a clone

	
 tgname name

 Trigger name (must be unique among triggers of same table)

	
 tgfoid oid
 (references pg_proc.oid)

 The function to be called

	
 tgtype int2

 Bit mask identifying trigger firing conditions

	
 tgenabled char

 Controls in which session_replication_role modes
 the trigger fires.
 O = trigger fires in “origin” and “local” modes,
 D = trigger is disabled,
 R = trigger fires in “replica” mode,
 A = trigger fires always.

	
 tgisinternal bool

 True if trigger is internally generated (usually, to enforce
 the constraint identified by tgconstraint)

	
 tgconstrrelid oid
 (references pg_class.oid)

 The table referenced by a referential integrity constraint
 (zero if trigger is not for a referential integrity constraint)

	
 tgconstrindid oid
 (references pg_class.oid)

 The index supporting a unique, primary key, referential integrity,
 or exclusion constraint
 (zero if trigger is not for one of these types of constraint)

	
 tgconstraint oid
 (references pg_constraint.oid)

 The pg_constraint entry associated with the trigger
 (zero if trigger is not for a constraint)

	
 tgdeferrable bool

 True if constraint trigger is deferrable

	
 tginitdeferred bool

 True if constraint trigger is initially deferred

	
 tgnargs int2

 Number of argument strings passed to trigger function

	
 tgattr int2vector
 (references pg_attribute.attnum)

 Column numbers, if trigger is column-specific; otherwise an
 empty array

	
 tgargs bytea

 Argument strings to pass to trigger, each NULL-terminated

	
 tgqual pg_node_tree

 Expression tree (in nodeToString()
 representation) for the trigger's WHEN condition, or null
 if none

	
 tgoldtable name

 REFERENCING clause name for OLD TABLE,
 or null if none

	
 tgnewtable name

 REFERENCING clause name for NEW TABLE,
 or null if none

 Currently, column-specific triggering is supported only for
 UPDATE events, and so tgattr is relevant
 only for that event type. tgtype might
 contain bits for other event types as well, but those are presumed
 to be table-wide regardless of what is in tgattr.

Note

 When tgconstraint is nonzero,
 tgconstrrelid, tgconstrindid,
 tgdeferrable, and tginitdeferred are
 largely redundant with the referenced pg_constraint entry.
 However, it is possible for a non-deferrable trigger to be associated
 with a deferrable constraint: foreign key constraints can have some
 deferrable and some non-deferrable triggers.

Note

 pg_class.relhastriggers
 must be true if a relation has any triggers in this catalog.

pg_ts_config

 The pg_ts_config catalog contains entries
 representing text search configurations. A configuration specifies
 a particular text search parser and a list of dictionaries to use
 for each of the parser's output token types. The parser is shown
 in the pg_ts_config entry, but the
 token-to-dictionary mapping is defined by subsidiary entries in pg_ts_config_map.

 PostgreSQL™'s text search features are
 described at length in Chapter 12, Full Text Search.

Table 53.59. pg_ts_config Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 cfgname name

 Text search configuration name

	
 cfgnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this configuration

	
 cfgowner oid
 (references pg_authid.oid)

 Owner of the configuration

	
 cfgparser oid
 (references pg_ts_parser.oid)

 The OID of the text search parser for this configuration

pg_ts_config_map

 The pg_ts_config_map catalog contains entries
 showing which text search dictionaries should be consulted, and in
 what order, for each output token type of each text search configuration's
 parser.

 PostgreSQL™'s text search features are
 described at length in Chapter 12, Full Text Search.

Table 53.60. pg_ts_config_map Columns
	
 Column Type

 Description

	
 mapcfg oid
 (references pg_ts_config.oid)

 The OID of the pg_ts_config entry owning this map entry

	
 maptokentype int4

 A token type emitted by the configuration's parser

	
 mapseqno int4

 Order in which to consult this entry (lower
 mapseqnos first)

	
 mapdict oid
 (references pg_ts_dict.oid)

 The OID of the text search dictionary to consult

pg_ts_dict

 The pg_ts_dict catalog contains entries
 defining text search dictionaries. A dictionary depends on a text
 search template, which specifies all the implementation functions
 needed; the dictionary itself provides values for the user-settable
 parameters supported by the template. This division of labor allows
 dictionaries to be created by unprivileged users. The parameters
 are specified by a text string dictinitoption,
 whose format and meaning vary depending on the template.

 PostgreSQL™'s text search features are
 described at length in Chapter 12, Full Text Search.

Table 53.61. pg_ts_dict Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 dictname name

 Text search dictionary name

	
 dictnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this dictionary

	
 dictowner oid
 (references pg_authid.oid)

 Owner of the dictionary

	
 dicttemplate oid
 (references pg_ts_template.oid)

 The OID of the text search template for this dictionary

	
 dictinitoption text

 Initialization option string for the template

pg_ts_parser

 The pg_ts_parser catalog contains entries
 defining text search parsers. A parser is responsible for splitting
 input text into lexemes and assigning a token type to each lexeme.
 Since a parser must be implemented by C-language-level functions,
 creation of new parsers is restricted to database superusers.

 PostgreSQL™'s text search features are
 described at length in Chapter 12, Full Text Search.

Table 53.62. pg_ts_parser Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 prsname name

 Text search parser name

	
 prsnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this parser

	
 prsstart regproc
 (references pg_proc.oid)

 OID of the parser's startup function

	
 prstoken regproc
 (references pg_proc.oid)

 OID of the parser's next-token function

	
 prsend regproc
 (references pg_proc.oid)

 OID of the parser's shutdown function

	
 prsheadline regproc
 (references pg_proc.oid)

 OID of the parser's headline function (zero if none)

	
 prslextype regproc
 (references pg_proc.oid)

 OID of the parser's lextype function

pg_ts_template

 The pg_ts_template catalog contains entries
 defining text search templates. A template is the implementation
 skeleton for a class of text search dictionaries.
 Since a template must be implemented by C-language-level functions,
 creation of new templates is restricted to database superusers.

 PostgreSQL™'s text search features are
 described at length in Chapter 12, Full Text Search.

Table 53.63. pg_ts_template Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 tmplname name

 Text search template name

	
 tmplnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this template

	
 tmplinit regproc
 (references pg_proc.oid)

 OID of the template's initialization function (zero if none)

	
 tmpllexize regproc
 (references pg_proc.oid)

 OID of the template's lexize function

pg_type

 The catalog pg_type stores information about data
 types. Base types and enum types (scalar types) are created with
 CREATE TYPE, and
 domains with
 CREATE DOMAIN.
 A composite type is automatically created for each table in the database, to
 represent the row structure of the table. It is also possible to create
 composite types with CREATE TYPE AS.

Table 53.64. pg_type Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 typname name

 Data type name

	
 typnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace that contains this type

	
 typowner oid
 (references pg_authid.oid)

 Owner of the type

	
 typlen int2

 For a fixed-size type, typlen is the number
 of bytes in the internal representation of the type. But for a
 variable-length type, typlen is negative.
 -1 indicates a “varlena” type (one that has a length word),
 -2 indicates a null-terminated C string.

	
 typbyval bool

 typbyval determines whether internal
 routines pass a value of this type by value or by reference.
 typbyval had better be false if
 typlen is not 1, 2, or 4 (or 8 on machines
 where Datum is 8 bytes).
 Variable-length types are always passed by reference. Note that
 typbyval can be false even if the
 length would allow pass-by-value.

	
 typtype char

 typtype is
 b for a base type,
 c for a composite type (e.g., a table's row type),
 d for a domain,
 e for an enum type,
 p for a pseudo-type,
 r for a range type, or
 m for a multirange type.
 See also typrelid and
 typbasetype.

	
 typcategory char

 typcategory is an arbitrary classification
 of data types that is used by the parser to determine which implicit
 casts should be “preferred”.
 See Table 53.65, “typcategory Codes”.

	
 typispreferred bool

 True if the type is a preferred cast target within its
 typcategory

	
 typisdefined bool

 True if the type is defined, false if this is a placeholder
 entry for a not-yet-defined type. When
 typisdefined is false, nothing
 except the type name, namespace, and OID can be relied on.

	
 typdelim char

 Character that separates two values of this type when parsing
 array input. Note that the delimiter is associated with the array
 element data type, not the array data type.

	
 typrelid oid
 (references pg_class.oid)

 If this is a composite type (see
 typtype), then this column points to
 the pg_class entry that defines the
 corresponding table. (For a free-standing composite type, the
 pg_class entry doesn't really represent
 a table, but it is needed anyway for the type's
 pg_attribute entries to link to.)
 Zero for non-composite types.

	
 typsubscript regproc
 (references pg_proc.oid)

 Subscripting handler function's OID, or zero if this type doesn't
 support subscripting. Types that are “true” array
 types have typsubscript
 = array_subscript_handler, but other types may
 have other handler functions to implement specialized subscripting
 behavior.

	
 typelem oid
 (references pg_type.oid)

 If typelem is not zero then it
 identifies another row in pg_type,
 defining the type yielded by subscripting. This should be zero
 if typsubscript is zero. However, it can
 be zero when typsubscript isn't zero, if the
 handler doesn't need typelem to
 determine the subscripting result type.
 Note that a typelem dependency is
 considered to imply physical containment of the element type in
 this type; so DDL changes on the element type might be restricted
 by the presence of this type.

	
 typarray oid
 (references pg_type.oid)

 If typarray is not zero then it
 identifies another row in pg_type, which
 is the “true” array type having this type as element

	
 typinput regproc
 (references pg_proc.oid)

 Input conversion function (text format)

	
 typoutput regproc
 (references pg_proc.oid)

 Output conversion function (text format)

	
 typreceive regproc
 (references pg_proc.oid)

 Input conversion function (binary format), or zero if none

	
 typsend regproc
 (references pg_proc.oid)

 Output conversion function (binary format), or zero if none

	
 typmodin regproc
 (references pg_proc.oid)

 Type modifier input function, or zero if type does not support modifiers

	
 typmodout regproc
 (references pg_proc.oid)

 Type modifier output function, or zero to use the standard format

	
 typanalyze regproc
 (references pg_proc.oid)

 Custom ANALYZE(7) function,
 or zero to use the standard function

	
 typalign char

 typalign is the alignment required
 when storing a value of this type. It applies to storage on
 disk as well as most representations of the value inside
 PostgreSQL™.
 When multiple values are stored consecutively, such
 as in the representation of a complete row on disk, padding is
 inserted before a datum of this type so that it begins on the
 specified boundary. The alignment reference is the beginning
 of the first datum in the sequence.
 Possible values are:

	c = char alignment, i.e., no alignment needed.

	s = short alignment (2 bytes on most machines).

	i = int alignment (4 bytes on most machines).

	d = double alignment (8 bytes on many machines, but by no means all).

	
 typstorage char

 typstorage tells for varlena
 types (those with typlen = -1) if
 the type is prepared for toasting and what the default strategy
 for attributes of this type should be.
 Possible values are:

	
 p (plain): Values must always be stored plain
 (non-varlena types always use this value).

	
 e (external): Values can be stored in a
 secondary “TOAST” relation (if relation has one, see
 pg_class.reltoastrelid).

	
 m (main): Values can be compressed and stored
 inline.

	
 x (extended): Values can be compressed and/or
 moved to a secondary relation.

 x is the usual choice for toast-able types.
 Note that m values can also be moved out to
 secondary storage, but only as a last resort (e
 and x values are moved first).

	
 typnotnull bool

 typnotnull represents a not-null
 constraint on a type. Used for domains only.

	
 typbasetype oid
 (references pg_type.oid)

 If this is a domain (see typtype), then
 typbasetype identifies the type that this
 one is based on. Zero if this type is not a domain.

	
 typtypmod int4

 Domains use typtypmod to record the typmod
 to be applied to their base type (-1 if base type does not use a
 typmod). -1 if this type is not a domain.

	
 typndims int4

 typndims is the number of array dimensions
 for a domain over an array (that is, typbasetype is
 an array type).
 Zero for types other than domains over array types.

	
 typcollation oid
 (references pg_collation.oid)

 typcollation specifies the collation
 of the type. If the type does not support collations, this will
 be zero. A base type that supports collations will have a nonzero
 value here, typically DEFAULT_COLLATION_OID.
 A domain over a collatable type can have a collation OID different
 from its base type's, if one was specified for the domain.

	
 typdefaultbin pg_node_tree

 If typdefaultbin is not null, it is the
 nodeToString()
 representation of a default expression for the type. This is
 only used for domains.

	
 typdefault text

 typdefault is null if the type has no associated
 default value. If typdefaultbin is not null,
 typdefault must contain a human-readable version of the
 default expression represented by typdefaultbin. If
 typdefaultbin is null and typdefault is
 not, then typdefault is the external representation of
 the type's default value, which can be fed to the type's input
 converter to produce a constant.

	
 typacl aclitem[]

 Access privileges; see the section called “Privileges” for details

Note

 For fixed-width types used in system tables, it is critical that the size
 and alignment defined in pg_type
 agree with the way that the compiler will lay out the column in
 a structure representing a table row.

 Table 53.65, “typcategory Codes” lists the system-defined values
 of typcategory. Any future additions to this list will
 also be upper-case ASCII letters. All other ASCII characters are reserved
 for user-defined categories.

Table 53.65. typcategory Codes
	Code	Category
	A	Array types
	B	Boolean types
	C	Composite types
	D	Date/time types
	E	Enum types
	G	Geometric types
	I	Network address types
	N	Numeric types
	P	Pseudo-types
	R	Range types
	S	String types
	T	Timespan types
	U	User-defined types
	V	Bit-string types
	X	unknown type
	Z	Internal-use types

pg_user_mapping

 The catalog pg_user_mapping stores
 the mappings from local user to remote. Access to this catalog is
 restricted from normal users, use the view
 pg_user_mappings
 instead.

Table 53.66. pg_user_mapping Columns
	
 Column Type

 Description

	
 oid oid

 Row identifier

	
 umuser oid
 (references pg_authid.oid)

 OID of the local role being mapped, or zero if the user mapping is public

	
 umserver oid
 (references pg_foreign_server.oid)

 The OID of the foreign server that contains this mapping

	
 umoptions text[]

 User mapping specific options, as “keyword=value” strings

Chapter 54. System Views

 In addition to the system catalogs, PostgreSQL™
 provides a number of built-in views. Some system views provide convenient
 access to some commonly used queries on the system catalogs. Other views
 provide access to internal server state.

 The information schema (Chapter 37, The Information Schema) provides
 an alternative set of views which overlap the functionality of the system
 views. Since the information schema is SQL-standard whereas the views
 described here are PostgreSQL™-specific,
 it's usually better to use the information schema if it provides all
 the information you need.

 Table 54.1, “System Views” lists the system views described here.
 More detailed documentation of each view follows below.
 There are some additional views that provide access to accumulated
 statistics; they are described in
 Table 28.2, “Collected Statistics Views”.

Overview

 Table 54.1, “System Views” lists the system views.
 More detailed documentation of each catalog follows below.
 Except where noted, all the views described here are read-only.

Table 54.1. System Views
	View Name	Purpose
	pg_available_extensions	available extensions
	pg_available_extension_versions	available versions of extensions
	pg_backend_memory_contexts	backend memory contexts
	pg_config	compile-time configuration parameters
	pg_cursors	open cursors
	pg_file_settings	summary of configuration file contents
	pg_group	groups of database users
	pg_hba_file_rules	summary of client authentication configuration file contents
	pg_ident_file_mappings	summary of client user name mapping configuration file contents
	pg_indexes	indexes
	pg_locks	locks currently held or awaited
	pg_matviews	materialized views
	pg_policies	policies
	pg_prepared_statements	prepared statements
	pg_prepared_xacts	prepared transactions
	pg_publication_tables	publications and information of their associated tables
	pg_replication_origin_status	information about replication origins, including replication progress
	pg_replication_slots	replication slot information
	pg_roles	database roles
	pg_rules	rules
	pg_seclabels	security labels
	pg_sequences	sequences
	pg_settings	parameter settings
	pg_shadow	database users
	pg_shmem_allocations	shared memory allocations
	pg_stats	planner statistics
	pg_stats_ext	extended planner statistics
	pg_stats_ext_exprs	extended planner statistics for expressions
	pg_tables	tables
	pg_timezone_abbrevs	time zone abbreviations
	pg_timezone_names	time zone names
	pg_user	database users
	pg_user_mappings	user mappings
	pg_views	views

pg_available_extensions

 The pg_available_extensions view lists the
 extensions that are available for installation.
 See also the
 pg_extension
 catalog, which shows the extensions currently installed.

Table 54.2. pg_available_extensions Columns
	
 Column Type

 Description

	
 name name

 Extension name

	
 default_version text

 Name of default version, or NULL if none is
 specified

	
 installed_version text

 Currently installed version of the extension,
 or NULL if not installed

	
 comment text

 Comment string from the extension's control file

 The pg_available_extensions view is read-only.

pg_available_extension_versions

 The pg_available_extension_versions view lists the
 specific extension versions that are available for installation.
 See also the pg_extension
 catalog, which shows the extensions currently installed.

Table 54.3. pg_available_extension_versions Columns
	
 Column Type

 Description

	
 name name

 Extension name

	
 version text

 Version name

	
 installed bool

 True if this version of this extension is currently
 installed

	
 superuser bool

 True if only superusers are allowed to install this extension
 (but see trusted)

	
 trusted bool

 True if the extension can be installed by non-superusers
 with appropriate privileges

	
 relocatable bool

 True if extension can be relocated to another schema

	
 schema name

 Name of the schema that the extension must be installed into,
 or NULL if partially or fully relocatable

	
 requires name[]

 Names of prerequisite extensions,
 or NULL if none

	
 comment text

 Comment string from the extension's control file

 The pg_available_extension_versions view is
 read-only.

pg_backend_memory_contexts

 The view pg_backend_memory_contexts displays all
 the memory contexts of the server process attached to the current session.

 pg_backend_memory_contexts contains one row
 for each memory context.

Table 54.4. pg_backend_memory_contexts Columns
	
 Column Type

 Description

	
 name text

 Name of the memory context

	
 ident text

 Identification information of the memory context. This field is truncated at 1024 bytes

	
 parent text

 Name of the parent of this memory context

	
 level int4

 Distance from TopMemoryContext in context tree

	
 total_bytes int8

 Total bytes allocated for this memory context

	
 total_nblocks int8

 Total number of blocks allocated for this memory context

	
 free_bytes int8

 Free space in bytes

	
 free_chunks int8

 Total number of free chunks

	
 used_bytes int8

 Used space in bytes

 By default, the pg_backend_memory_contexts view can be
 read only by superusers or roles with the privileges of the
 pg_read_all_stats role.

pg_config

 The view pg_config describes the
 compile-time configuration parameters of the currently installed
 version of PostgreSQL™. It is intended, for example, to
 be used by software packages that want to interface to
 PostgreSQL™ to facilitate finding the required header
 files and libraries. It provides the same basic information as the
 pg_config(1) PostgreSQL™ client
 application.

 By default, the pg_config view can be read
 only by superusers.

Table 54.5. pg_config Columns
	
 Column Type

 Description

	
 name text

 The parameter name

	
 setting text

 The parameter value

pg_cursors

 The pg_cursors view lists the cursors that
 are currently available. Cursors can be defined in several ways:

	
 via the DECLARE
 statement in SQL

	
 via the Bind message in the frontend/backend protocol, as
 described in the section called “Extended Query”

	
 via the Server Programming Interface (SPI), as described in
 the section called “Interface Functions”

 The pg_cursors view displays cursors
 created by any of these means. Cursors only exist for the duration
 of the transaction that defines them, unless they have been
 declared WITH HOLD. Therefore non-holdable
 cursors are only present in the view until the end of their
 creating transaction.

Note

 Cursors are used internally to implement some of the components
 of PostgreSQL™, such as procedural languages.
 Therefore, the pg_cursors view might include cursors
 that have not been explicitly created by the user.

Table 54.6. pg_cursors Columns
	
 Column Type

 Description

	
 name text

 The name of the cursor

	
 statement text

 The verbatim query string submitted to declare this cursor

	
 is_holdable bool

 true if the cursor is holdable (that is, it
 can be accessed after the transaction that declared the cursor
 has committed); false otherwise

	
 is_binary bool

 true if the cursor was declared
 BINARY; false
 otherwise

	
 is_scrollable bool

 true if the cursor is scrollable (that is, it
 allows rows to be retrieved in a nonsequential manner);
 false otherwise

	
 creation_time timestamptz

 The time at which the cursor was declared

 The pg_cursors view is read-only.

pg_file_settings

 The view pg_file_settings provides a summary of
 the contents of the server's configuration file(s). A row appears in
 this view for each “name = value” entry appearing in the files,
 with annotations indicating whether the value could be applied
 successfully. Additional row(s) may appear for problems not linked to
 a “name = value” entry, such as syntax errors in the files.

 This view is helpful for checking whether planned changes in the
 configuration files will work, or for diagnosing a previous failure.
 Note that this view reports on the current contents of the
 files, not on what was last applied by the server. (The
 pg_settings
 view is usually sufficient to determine that.)

 By default, the pg_file_settings view can be read
 only by superusers.

Table 54.7. pg_file_settings Columns
	
 Column Type

 Description

	
 sourcefile text

 Full path name of the configuration file

	
 sourceline int4

 Line number within the configuration file where the entry appears

	
 seqno int4

 Order in which the entries are processed (1..n)

	
 name text

 Configuration parameter name

	
 setting text

 Value to be assigned to the parameter

	
 applied bool

 True if the value can be applied successfully

	
 error text

 If not null, an error message indicating why this entry could
 not be applied

 If the configuration file contains syntax errors or invalid parameter
 names, the server will not attempt to apply any settings from it, and
 therefore all the applied fields will read as false.
 In such a case there will be one or more rows with
 non-null error fields indicating the
 problem(s). Otherwise, individual settings will be applied if possible.
 If an individual setting cannot be applied (e.g., invalid value, or the
 setting cannot be changed after server start) it will have an appropriate
 message in the error field. Another way that
 an entry might have applied = false is that it is
 overridden by a later entry for the same parameter name; this case is not
 considered an error so nothing appears in
 the error field.

 See the section called “Setting Parameters” for more information about the various
 ways to change run-time parameters.

pg_group

 The view pg_group exists for backwards
 compatibility: it emulates a catalog that existed in
 PostgreSQL™ before version 8.1.
 It shows the names and members of all roles that are marked as not
 rolcanlogin, which is an approximation to the set
 of roles that are being used as groups.

Table 54.8. pg_group Columns
	
 Column Type

 Description

	
 groname name
 (references pg_authid.rolname)

 Name of the group

	
 grosysid oid
 (references pg_authid.oid)

 ID of this group

	
 grolist oid[]
 (references pg_authid.oid)

 An array containing the IDs of the roles in this group

pg_hba_file_rules

 The view pg_hba_file_rules provides a summary of
 the contents of the client authentication configuration file,
 pg_hba.conf.
 A row appears in this view for each
 non-empty, non-comment line in the file, with annotations indicating
 whether the rule could be applied successfully.

 This view can be helpful for checking whether planned changes in the
 authentication configuration file will work, or for diagnosing a previous
 failure. Note that this view reports on the current contents
 of the file, not on what was last loaded by the server.

 By default, the pg_hba_file_rules view can be read
 only by superusers.

Table 54.9. pg_hba_file_rules Columns
	
 Column Type

 Description

	
 rule_number int4

 Number of this rule, if valid, otherwise NULL.
 This indicates the order in which each rule is considered
 until a match is found during authentication.

	
 file_name text

 Name of the file containing this rule

	
 line_number int4

 Line number of this rule in file_name

	
 type text

 Type of connection

	
 database text[]

 List of database name(s) to which this rule applies

	
 user_name text[]

 List of user and group name(s) to which this rule applies

	
 address text

 Host name or IP address, or one
 of all, samehost,
 or samenet, or null for local connections

	
 netmask text

 IP address mask, or null if not applicable

	
 auth_method text

 Authentication method

	
 options text[]

 Options specified for authentication method, if any

	
 error text

 If not null, an error message indicating why this
 line could not be processed

 Usually, a row reflecting an incorrect entry will have values for only
 the line_number and error fields.

 See Chapter 21, Client Authentication for more information about
 client authentication configuration.

pg_ident_file_mappings

 The view pg_ident_file_mappings provides a summary
 of the contents of the client user name mapping configuration file,
 pg_ident.conf.
 A row appears in this view for each non-empty, non-comment line in the file,
 with annotations indicating whether the map could be applied successfully.

 This view can be helpful for checking whether planned changes in the
 authentication configuration file will work, or for diagnosing a previous
 failure. Note that this view reports on the current
 contents of the file, not on what was last loaded by the server.

 By default, the pg_ident_file_mappings view can be
 read only by superusers.

Table 54.10. pg_ident_file_mappings Columns
	
 Column Type

 Description

	
 map_number int4

 Number of this map, in priority order, if valid, otherwise
 NULL

	
 file_name text

 Name of the file containing this map

	
 line_number int4

 Line number of this map in file_name

	
 map_name text

 Name of the map

	
 sys_name text

 Detected user name of the client

	
 pg_username text

 Requested PostgreSQL user name

	
 error text

 If not NULL, an error message indicating why this
 line could not be processed

 Usually, a row reflecting an incorrect entry will have values for only
 the line_number and error fields.

 See Chapter 21, Client Authentication for more information about
 client authentication configuration.

pg_indexes

 The view pg_indexes provides access to
 useful information about each index in the database.

Table 54.11. pg_indexes Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table and index

	
 tablename name
 (references pg_class.relname)

 Name of table the index is for

	
 indexname name
 (references pg_class.relname)

 Name of index

	
 tablespace name
 (references pg_tablespace.spcname)

 Name of tablespace containing index (null if default for database)

	
 indexdef text

 Index definition (a reconstructed CREATE INDEX(7)
 command)

pg_locks

 The view pg_locks provides access to
 information about the locks held by active processes within the
 database server. See Chapter 13, Concurrency Control for more discussion
 of locking.

 pg_locks contains one row per active lockable
 object, requested lock mode, and relevant process. Thus, the same
 lockable object might
 appear many times, if multiple processes are holding or waiting
 for locks on it. However, an object that currently has no locks on it
 will not appear at all.

 There are several distinct types of lockable objects:
 whole relations (e.g., tables), individual pages of relations,
 individual tuples of relations,
 transaction IDs (both virtual and permanent IDs),
 and general database objects (identified by class OID and object OID,
 in the same way as in pg_description or
 pg_depend). Also, the right to extend a
 relation is represented as a separate lockable object, as is the right to
 update pg_database.datfrozenxid.
 Also, “advisory” locks can be taken on numbers that have
 user-defined meanings.

Table 54.12. pg_locks Columns
	
 Column Type

 Description

	
 locktype text

 Type of the lockable object:
 relation,
 extend,
 frozenid,
 page,
 tuple,
 transactionid,
 virtualxid,
 spectoken,
 object,
 userlock,
 advisory, or
 applytransaction.
 (See also Table 28.11, “Wait Events of Type Lock”.)

	
 database oid
 (references pg_database.oid)

 OID of the database in which the lock target exists, or
 zero if the target is a shared object, or
 null if the target is a transaction ID

	
 relation oid
 (references pg_class.oid)

 OID of the relation targeted by the lock, or null if the target is not
 a relation or part of a relation

	
 page int4

 Page number targeted by the lock within the relation,
 or null if the target is not a relation page or tuple

	
 tuple int2

 Tuple number targeted by the lock within the page,
 or null if the target is not a tuple

	
 virtualxid text

 Virtual ID of the transaction targeted by the lock,
 or null if the target is not a virtual transaction ID; see
 Chapter 74, Transaction Processing

	
 transactionid xid

 ID of the transaction targeted by the lock, or null if the target
 is not a transaction ID; Chapter 74, Transaction Processing

	
 classid oid
 (references pg_class.oid)

 OID of the system catalog containing the lock target, or null if the
 target is not a general database object

	
 objid oid
 (references any OID column)

 OID of the lock target within its system catalog, or null if the
 target is not a general database object

	
 objsubid int2

 Column number targeted by the lock (the
 classid and objid refer to the
 table itself),
 or zero if the target is some other general database object,
 or null if the target is not a general database object

	
 virtualtransaction text

 Virtual ID of the transaction that is holding or awaiting this lock

	
 pid int4

 Process ID of the server process holding or awaiting this
 lock, or null if the lock is held by a prepared transaction

	
 mode text

 Name of the lock mode held or desired by this process (see the section called “Table-Level Locks” and the section called “Serializable Isolation Level”)

	
 granted bool

 True if lock is held, false if lock is awaited

	
 fastpath bool

 True if lock was taken via fast path, false if taken via main
 lock table

	
 waitstart timestamptz

 Time when the server process started waiting for this lock,
 or null if the lock is held.
 Note that this can be null for a very short period of time after
 the wait started even though granted
 is false.

 granted is true in a row representing a lock
 held by the indicated process. False indicates that this process is
 currently waiting to acquire this lock, which implies that at least one
 other process is holding or waiting for a conflicting lock mode on the same
 lockable object. The waiting process will sleep until the other lock is
 released (or a deadlock situation is detected). A single process can be
 waiting to acquire at most one lock at a time.

 Throughout running a transaction, a server process holds an exclusive lock
 on the transaction's virtual transaction ID. If a permanent ID is assigned
 to the transaction (which normally happens only if the transaction changes
 the state of the database), it also holds an exclusive lock on the
 transaction's permanent transaction ID until it ends. When a process finds
 it necessary to wait specifically for another transaction to end, it does
 so by attempting to acquire share lock on the other transaction's ID
 (either virtual or permanent ID depending on the situation). That will
 succeed only when the other transaction terminates and releases its locks.

 Although tuples are a lockable type of object,
 information about row-level locks is stored on disk, not in memory,
 and therefore row-level locks normally do not appear in this view.
 If a process is waiting for a
 row-level lock, it will usually appear in the view as waiting for the
 permanent transaction ID of the current holder of that row lock.

 A speculative insertion lock consists of a transaction ID and a speculative
 insertion token. The speculative insertion token is displayed in the
 objid column.

 Advisory locks can be acquired on keys consisting of either a single
 bigint value or two integer values.
 A bigint key is displayed with its
 high-order half in the classid column, its low-order half
 in the objid column, and objsubid equal
 to 1. The original bigint value can be reassembled with the
 expression (classid::bigint << 32) |
 objid::bigint. Integer keys are displayed with the
 first key in the
 classid column, the second key in the objid
 column, and objsubid equal to 2. The actual meaning of
 the keys is up to the user. Advisory locks are local to each database,
 so the database column is meaningful for an advisory lock.

 Apply transaction locks are used in parallel mode to apply the transaction
 in logical replication. The remote transaction ID is displayed in the
 transactionid column. The objsubid
 displays the lock subtype which is 0 for the lock used to synchronize the
 set of changes, and 1 for the lock used to wait for the transaction to
 finish to ensure commit order.

 pg_locks provides a global view of all locks
 in the database cluster, not only those relevant to the current database.
 Although its relation column can be joined
 against pg_class.oid to identify locked
 relations, this will only work correctly for relations in the current
 database (those for which the database column
 is either the current database's OID or zero).

 The pid column can be joined to the
 pid column of the

 pg_stat_activity
 view to get more
 information on the session holding or awaiting each lock,
 for example

SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
 ON pl.pid = psa.pid;

 Also, if you are using prepared transactions, the
 virtualtransaction column can be joined to the
 transaction column of the pg_prepared_xacts
 view to get more information on prepared transactions that hold locks.
 (A prepared transaction can never be waiting for a lock,
 but it continues to hold the locks it acquired while running.)
 For example:

SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
 ON pl.virtualtransaction = '-1/' || ppx.transaction;

 While it is possible to obtain information about which processes block
 which other processes by joining pg_locks against
 itself, this is very difficult to get right in detail. Such a query would
 have to encode knowledge about which lock modes conflict with which
 others. Worse, the pg_locks view does not expose
 information about which processes are ahead of which others in lock wait
 queues, nor information about which processes are parallel workers running
 on behalf of which other client sessions. It is better to use
 the pg_blocking_pids() function
 (see Table 9.67, “Session Information Functions”) to identify which
 process(es) a waiting process is blocked behind.

 The pg_locks view displays data from both the
 regular lock manager and the predicate lock manager, which are
 separate systems; in addition, the regular lock manager subdivides its
 locks into regular and fast-path locks.
 This data is not guaranteed to be entirely consistent.
 When the view is queried,
 data on fast-path locks (with fastpath = true)
 is gathered from each backend one at a time, without freezing the state of
 the entire lock manager, so it is possible for locks to be taken or
 released while information is gathered. Note, however, that these locks are
 known not to conflict with any other lock currently in place. After
 all backends have been queried for fast-path locks, the remainder of the
 regular lock manager is locked as a unit, and a consistent snapshot of all
 remaining locks is collected as an atomic action. After unlocking the
 regular lock manager, the predicate lock manager is similarly locked and all
 predicate locks are collected as an atomic action. Thus, with the exception
 of fast-path locks, each lock manager will deliver a consistent set of
 results, but as we do not lock both lock managers simultaneously, it is
 possible for locks to be taken or released after we interrogate the regular
 lock manager and before we interrogate the predicate lock manager.

 Locking the regular and/or predicate lock manager could have some
 impact on database performance if this view is very frequently accessed.
 The locks are held only for the minimum amount of time necessary to
 obtain data from the lock managers, but this does not completely eliminate
 the possibility of a performance impact.

pg_matviews

 The view pg_matviews provides access to
 useful information about each materialized view in the database.

Table 54.13. pg_matviews Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing materialized view

	
 matviewname name
 (references pg_class.relname)

 Name of materialized view

	
 matviewowner name
 (references pg_authid.rolname)

 Name of materialized view's owner

	
 tablespace name
 (references pg_tablespace.spcname)

 Name of tablespace containing materialized view (null if default for database)

	
 hasindexes bool

 True if materialized view has (or recently had) any indexes

	
 ispopulated bool

 True if materialized view is currently populated

	
 definition text

 Materialized view definition (a reconstructed SELECT(7) query)

pg_policies

 The view pg_policies provides access to
 useful information about each row-level security policy in the database.

Table 54.14. pg_policies Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table policy is on

	
 tablename name
 (references pg_class.relname)

 Name of table policy is on

	
 policyname name
 (references pg_policy.polname)

 Name of policy

	
 permissive text

 Is the policy permissive or restrictive?

	
 roles name[]

 The roles to which this policy applies

	
 cmd text

 The command type to which the policy is applied

	
 qual text

 The expression added to the security barrier qualifications for
 queries that this policy applies to

	
 with_check text

 The expression added to the WITH CHECK qualifications for
 queries that attempt to add rows to this table

pg_prepared_statements

 The pg_prepared_statements view displays
 all the prepared statements that are available in the current
 session. See PREPARE(7) for more information about prepared
 statements.

 pg_prepared_statements contains one row
 for each prepared statement. Rows are added to the view when a new
 prepared statement is created and removed when a prepared statement
 is released (for example, via the DEALLOCATE command).

Table 54.15. pg_prepared_statements Columns
	
 Column Type

 Description

	
 name text

 The identifier of the prepared statement

	
 statement text

 The query string submitted by the client to create this
 prepared statement. For prepared statements created via SQL,
 this is the PREPARE statement submitted by
 the client. For prepared statements created via the
 frontend/backend protocol, this is the text of the prepared
 statement itself.

	
 prepare_time timestamptz

 The time at which the prepared statement was created

	
 parameter_types regtype[]

 The expected parameter types for the prepared statement in the
 form of an array of regtype. The OID corresponding
 to an element of this array can be obtained by casting the
 regtype value to oid.

	
 result_types regtype[]

 The types of the columns returned by the prepared statement in the
 form of an array of regtype. The OID corresponding
 to an element of this array can be obtained by casting the
 regtype value to oid.
 If the prepared statement does not provide a result (e.g., a DML
 statement), then this field will be null.

	
 from_sql bool

 true if the prepared statement was created
 via the PREPARE SQL command;
 false if the statement was prepared via the
 frontend/backend protocol

	
 generic_plans int8

 Number of times generic plan was chosen

	
 custom_plans int8

 Number of times custom plan was chosen

 The pg_prepared_statements view is read-only.

pg_prepared_xacts

 The view pg_prepared_xacts displays
 information about transactions that are currently prepared for two-phase
 commit (see PREPARE TRANSACTION(7) for details).

 pg_prepared_xacts contains one row per prepared
 transaction. An entry is removed when the transaction is committed or
 rolled back.

Table 54.16. pg_prepared_xacts Columns
	
 Column Type

 Description

	
 transaction xid

 Numeric transaction identifier of the prepared transaction

	
 gid text

 Global transaction identifier that was assigned to the transaction

	
 prepared timestamptz

 Time at which the transaction was prepared for commit

	
 owner name
 (references pg_authid.rolname)

 Name of the user that executed the transaction

	
 database name
 (references pg_database.datname)

 Name of the database in which the transaction was executed

 When the pg_prepared_xacts view is accessed, the
 internal transaction manager data structures are momentarily locked, and
 a copy is made for the view to display. This ensures that the
 view produces a consistent set of results, while not blocking
 normal operations longer than necessary. Nonetheless
 there could be some impact on database performance if this view is
 frequently accessed.

pg_publication_tables

 The view pg_publication_tables provides
 information about the mapping between publications and information of
 tables they contain. Unlike the underlying catalog
 pg_publication_rel,
 this view expands publications defined as
 FOR ALL TABLES
 and FOR TABLES IN SCHEMA,
 so for such publications there will be a row for each eligible table.

Table 54.17. pg_publication_tables Columns
	
 Column Type

 Description

	
 pubname name
 (references pg_publication.pubname)

 Name of publication

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table

	
 attnames name[]
 (references pg_attribute.attname)

 Names of table columns included in the publication. This contains all
 the columns of the table when the user didn't specify the column list
 for the table.

	
 rowfilter text

 Expression for the table's publication qualifying condition

pg_replication_origin_status

 The pg_replication_origin_status view
 contains information about how far replay for a certain origin has
 progressed. For more on replication origins
 see Chapter 50, Replication Progress Tracking.

Table 54.18. pg_replication_origin_status Columns
	
 Column Type

 Description

	
 local_id oid
 (references pg_replication_origin.roident)

 internal node identifier

	
 external_id text
 (references pg_replication_origin.roname)

 external node identifier

	
 remote_lsn pg_lsn

 The origin node's LSN up to which data has been replicated.

	
 local_lsn pg_lsn

 This node's LSN at which remote_lsn has
 been replicated. Used to flush commit records before persisting
 data to disk when using asynchronous commits.

pg_replication_slots

 The pg_replication_slots view provides a listing
 of all replication slots that currently exist on the database cluster,
 along with their current state.

 For more on replication slots,
 see the section called “Replication Slots” and Chapter 49, Logical Decoding.

Table 54.19. pg_replication_slots Columns
	
 Column Type

 Description

	
 slot_name name

 A unique, cluster-wide identifier for the replication slot

	
 plugin name

 The base name of the shared object containing the output plugin this logical slot is using, or null for physical slots.

	
 slot_type text

 The slot type: physical or logical

	
 datoid oid
 (references pg_database.oid)

 The OID of the database this slot is associated with, or
 null. Only logical slots have an associated database.

	
 database name
 (references pg_database.datname)

 The name of the database this slot is associated with, or
 null. Only logical slots have an associated database.

	
 temporary bool

 True if this is a temporary replication slot. Temporary slots are
 not saved to disk and are automatically dropped on error or when
 the session has finished.

	
 active bool

 True if this slot is currently actively being used

	
 active_pid int4

 The process ID of the session using this slot if the slot
 is currently actively being used. NULL if
 inactive.

	
 xmin xid

 The oldest transaction that this slot needs the database to
 retain. VACUUM cannot remove tuples deleted
 by any later transaction.

	
 catalog_xmin xid

 The oldest transaction affecting the system catalogs that this
 slot needs the database to retain. VACUUM cannot
 remove catalog tuples deleted by any later transaction.

	
 restart_lsn pg_lsn

 The address (LSN) of oldest WAL which still
 might be required by the consumer of this slot and thus won't be
 automatically removed during checkpoints unless this LSN
 gets behind more than max_slot_wal_keep_size
 from the current LSN. NULL
 if the LSN of this slot has never been reserved.

	
 confirmed_flush_lsn pg_lsn

 The address (LSN) up to which the logical
 slot's consumer has confirmed receiving data. Data corresponding to the
 transactions committed before this LSN is not
 available anymore. NULL for physical slots.

	
 wal_status text

 Availability of WAL files claimed by this slot.
 Possible values are:

	reserved means that the claimed files
 are within max_wal_size.

	extended means
 that max_wal_size is exceeded but the files are
 still retained, either by the replication slot or
 by wal_keep_size.

	
 unreserved means that the slot no longer
 retains the required WAL files and some of them are to be removed at
 the next checkpoint. This typically occurs when
 max_slot_wal_keep_size is set to
 a non-negative value. This state can return
 to reserved or extended.

	
 lost means that this slot is no longer usable.

	
 safe_wal_size int8

 The number of bytes that can be written to WAL such that this slot
 is not in danger of getting in state "lost". It is NULL for lost
 slots, as well as if max_slot_wal_keep_size
 is -1.

	
 two_phase bool

 True if the slot is enabled for decoding prepared transactions. Always
 false for physical slots.

	
 conflicting bool

 True if this logical slot conflicted with recovery (and so is now
 invalidated). Always NULL for physical slots.

pg_roles

 The view pg_roles provides access to
 information about database roles. This is simply a publicly
 readable view of
 pg_authid
 that blanks out the password field.

Table 54.20. pg_roles Columns
	
 Column Type

 Description

	
 rolname name

 Role name

	
 rolsuper bool

 Role has superuser privileges

	
 rolinherit bool

 Role automatically inherits privileges of roles it is a
 member of

	
 rolcreaterole bool

 Role can create more roles

	
 rolcreatedb bool

 Role can create databases

	
 rolcanlogin bool

 Role can log in. That is, this role can be given as the initial
 session authorization identifier

	
 rolreplication bool

 Role is a replication role. A replication role can initiate replication
 connections and create and drop replication slots.

	
 rolconnlimit int4

 For roles that can log in, this sets maximum number of concurrent
 connections this role can make. -1 means no limit.

	
 rolpassword text

 Not the password (always reads as ********)

	
 rolvaliduntil timestamptz

 Password expiry time (only used for password authentication);
 null if no expiration

	
 rolbypassrls bool

 Role bypasses every row-level security policy, see
 the section called “Row Security Policies” for more information.

	
 rolconfig text[]

 Role-specific defaults for run-time configuration variables

	
 oid oid
 (references pg_authid.oid)

 ID of role

pg_rules

 The view pg_rules provides access to
 useful information about query rewrite rules.

Table 54.21. pg_rules Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table the rule is for

	
 rulename name
 (references pg_rewrite.rulename)

 Name of rule

	
 definition text

 Rule definition (a reconstructed creation command)

 The pg_rules view excludes the ON SELECT rules
 of views and materialized views; those can be seen in
 pg_views and pg_matviews.

pg_seclabels

 The view pg_seclabels provides information about
 security labels. It as an easier-to-query version of the
 pg_seclabel catalog.

Table 54.22. pg_seclabels Columns
	
 Column Type

 Description

	
 objoid oid
 (references any OID column)

 The OID of the object this security label pertains to

	
 classoid oid
 (references pg_class.oid)

 The OID of the system catalog this object appears in

	
 objsubid int4

 For a security label on a table column, this is the column number (the
 objoid and classoid refer to
 the table itself). For all other object types, this column is
 zero.

	
 objtype text

 The type of object to which this label applies, as text.

	
 objnamespace oid
 (references pg_namespace.oid)

 The OID of the namespace for this object, if applicable;
 otherwise NULL.

	
 objname text

 The name of the object to which this label applies, as text.

	
 provider text
 (references pg_seclabel.provider)

 The label provider associated with this label.

	
 label text
 (references pg_seclabel.label)

 The security label applied to this object.

pg_sequences

 The view pg_sequences provides access to
 useful information about each sequence in the database.

Table 54.23. pg_sequences Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing sequence

	
 sequencename name
 (references pg_class.relname)

 Name of sequence

	
 sequenceowner name
 (references pg_authid.rolname)

 Name of sequence's owner

	
 data_type regtype
 (references pg_type.oid)

 Data type of the sequence

	
 start_value int8

 Start value of the sequence

	
 min_value int8

 Minimum value of the sequence

	
 max_value int8

 Maximum value of the sequence

	
 increment_by int8

 Increment value of the sequence

	
 cycle bool

 Whether the sequence cycles

	
 cache_size int8

 Cache size of the sequence

	
 last_value int8

 The last sequence value written to disk. If caching is used,
 this value can be greater than the last value handed out from the
 sequence.

 The last_value column will read as null if any of
 the following are true:

	
 The sequence has not been read from yet.

	
 The current user does not have USAGE or
 SELECT privilege on the sequence.

	
 The sequence is unlogged and the server is a standby.

pg_settings

 The view pg_settings provides access to
 run-time parameters of the server. It is essentially an alternative
 interface to the SHOW
 and SET commands.
 It also provides access to some facts about each parameter that are
 not directly available from SHOW, such as minimum and
 maximum values.

Table 54.24. pg_settings Columns
	
 Column Type

 Description

	
 name text

 Run-time configuration parameter name

	
 setting text

 Current value of the parameter

	
 unit text

 Implicit unit of the parameter

	
 category text

 Logical group of the parameter

	
 short_desc text

 A brief description of the parameter

	
 extra_desc text

 Additional, more detailed, description of the parameter

	
 context text

 Context required to set the parameter's value (see below)

	
 vartype text

 Parameter type (bool, enum,
 integer, real, or string)

	
 source text

 Source of the current parameter value

	
 min_val text

 Minimum allowed value of the parameter (null for non-numeric
 values)

	
 max_val text

 Maximum allowed value of the parameter (null for non-numeric
 values)

	
 enumvals text[]

 Allowed values of an enum parameter (null for non-enum
 values)

	
 boot_val text

 Parameter value assumed at server startup if the parameter is
 not otherwise set

	
 reset_val text

 Value that RESET would reset the parameter to
 in the current session

	
 sourcefile text

 Configuration file the current value was set in (null for
 values set from sources other than configuration files, or when
 examined by a user who neither is a superuser nor has privileges of
 pg_read_all_settings); helpful when using
 include directives in configuration files

	
 sourceline int4

 Line number within the configuration file the current value was
 set at (null for values set from sources other than configuration files,
 or when examined by a user who neither is a superuser nor has privileges of
 pg_read_all_settings).

	
 pending_restart bool

 true if the value has been changed in the
 configuration file but needs a restart; or false
 otherwise.

 There are several possible values of context.
 In order of decreasing difficulty of changing the setting, they are:

	internal
	
 These settings cannot be changed directly; they reflect internally
 determined values. Some of them may be adjustable by rebuilding the
 server with different configuration options, or by changing options
 supplied to initdb.

	postmaster
	
 These settings can only be applied when the server starts, so any change
 requires restarting the server. Values for these settings are typically
 stored in the postgresql.conf file, or passed on
 the command line when starting the server. Of course, settings with any
 of the lower context types can also be
 set at server start time.

	sighup
	
 Changes to these settings can be made in
 postgresql.conf without restarting the server.
 Send a SIGHUP signal to the postmaster to
 cause it to re-read postgresql.conf and apply
 the changes. The postmaster will also forward the
 SIGHUP signal to its child processes so that
 they all pick up the new value.

	superuser-backend
	
 Changes to these settings can be made in
 postgresql.conf without restarting the server.
 They can also be set for a particular session in the connection request
 packet (for example, via libpq's PGOPTIONS
 environment variable), but only if the connecting user is a superuser
 or has been granted the appropriate SET privilege.
 However, these settings never change in a session after it is started.
 If you change them in postgresql.conf, send a
 SIGHUP signal to the postmaster to cause it to
 re-read postgresql.conf. The new values will only
 affect subsequently-launched sessions.

	backend
	
 Changes to these settings can be made in
 postgresql.conf without restarting the server.
 They can also be set for a particular session in the connection request
 packet (for example, via libpq's PGOPTIONS
 environment variable); any user can make such a change for their session.
 However, these settings never change in a session after it is started.
 If you change them in postgresql.conf, send a
 SIGHUP signal to the postmaster to cause it to
 re-read postgresql.conf. The new values will only
 affect subsequently-launched sessions.

	superuser
	
 These settings can be set from postgresql.conf,
 or within a session via the SET command; but only superusers
 and users with the appropriate SET privilege
 can change them via SET. Changes in
 postgresql.conf will affect existing sessions
 only if no session-local value has been established with SET.

	user
	
 These settings can be set from postgresql.conf,
 or within a session via the SET command. Any user is
 allowed to change their session-local value. Changes in
 postgresql.conf will affect existing sessions
 only if no session-local value has been established with SET.

 See the section called “Setting Parameters” for more information about the various
 ways to change these parameters.

 This view cannot be inserted into or deleted from, but it can be updated. An
 UPDATE applied to a row of pg_settings
 is equivalent to executing the SET command on that named
 parameter. The change only affects the value used by the current
 session. If an UPDATE is issued within a transaction
 that is later aborted, the effects of the UPDATE command
 disappear when the transaction is rolled back. Once the surrounding
 transaction is committed, the effects will persist until the end of the
 session, unless overridden by another UPDATE or
 SET.

 This view does not
 display customized options
 unless the extension module that defines them has been loaded by the
 backend process executing the query (e.g., via a mention in
 shared_preload_libraries,
 a call to a C function in the extension, or the
 LOAD command).
 For example, since archive modules
 are normally loaded only by the archiver process not regular sessions,
 this view will not display any customized options defined by such modules
 unless special action is taken to load them into the backend process
 executing the query.

pg_shadow

 The view pg_shadow exists for backwards
 compatibility: it emulates a catalog that existed in
 PostgreSQL™ before version 8.1.
 It shows properties of all roles that are marked as
 rolcanlogin in
 pg_authid.

 The name stems from the fact that this table
 should not be readable by the public since it contains passwords.
 pg_user
 is a publicly readable view on
 pg_shadow that blanks out the password field.

Table 54.25. pg_shadow Columns
	
 Column Type

 Description

	
 usename name
 (references pg_authid.rolname)

 User name

	
 usesysid oid
 (references pg_authid.oid)

 ID of this user

	
 usecreatedb bool

 User can create databases

	
 usesuper bool

 User is a superuser

	
 userepl bool

 User can initiate streaming replication and put the system in and
 out of backup mode.

	
 usebypassrls bool

 User bypasses every row-level security policy, see
 the section called “Row Security Policies” for more information.

	
 passwd text

 Encrypted password; null if none. See
 pg_authid
 for details of how encrypted passwords are stored.

	
 valuntil timestamptz

 Password expiry time (only used for password authentication)

	
 useconfig text[]

 Session defaults for run-time configuration variables

pg_shmem_allocations

 The pg_shmem_allocations view shows allocations
 made from the server's main shared memory segment. This includes both
 memory allocated by PostgreSQL™ itself and memory
 allocated by extensions using the mechanisms detailed in
 the section called “Shared Memory and LWLocks”.

 Note that this view does not include memory allocated using the dynamic
 shared memory infrastructure.

Table 54.26. pg_shmem_allocations Columns
	
 Column Type

 Description

	
 name text

 The name of the shared memory allocation. NULL for unused memory
 and <anonymous> for anonymous
 allocations.

	
 off int8

 The offset at which the allocation starts. NULL for anonymous
 allocations, since details related to them are not known.

	
 size int8

 Size of the allocation in bytes

	
 allocated_size int8

 Size of the allocation in bytes including padding. For anonymous
 allocations, no information about padding is available, so the
 size and allocated_size columns
 will always be equal. Padding is not meaningful for free memory, so
 the columns will be equal in that case also.

 Anonymous allocations are allocations that have been made
 with ShmemAlloc() directly, rather than via
 ShmemInitStruct() or
 ShmemInitHash().

 By default, the pg_shmem_allocations view can be
 read only by superusers or roles with privileges of the
 pg_read_all_stats role.

pg_stats

 The view pg_stats provides access to
 the information stored in the pg_statistic
 catalog. This view allows access only to rows of
 pg_statistic that correspond to tables the
 user has permission to read, and therefore it is safe to allow public
 read access to this view.

 pg_stats is also designed to present the
 information in a more readable format than the underlying catalog
 — at the cost that its schema must be extended whenever new slot types
 are defined for pg_statistic.

Table 54.27. pg_stats Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table

	
 attname name
 (references pg_attribute.attname)

 Name of column described by this row

	
 inherited bool

 If true, this row includes values from child tables, not just the
 values in the specified table

	
 null_frac float4

 Fraction of column entries that are null

	
 avg_width int4

 Average width in bytes of column's entries

	
 n_distinct float4

 If greater than zero, the estimated number of distinct values in the
 column. If less than zero, the negative of the number of distinct
 values divided by the number of rows. (The negated form is used when
 ANALYZE believes that the number of distinct values is
 likely to increase as the table grows; the positive form is used when
 the column seems to have a fixed number of possible values.) For
 example, -1 indicates a unique column in which the number of distinct
 values is the same as the number of rows.

	
 most_common_vals anyarray

 A list of the most common values in the column. (Null if
 no values seem to be more common than any others.)

	
 most_common_freqs float4[]

 A list of the frequencies of the most common values,
 i.e., number of occurrences of each divided by total number of rows.
 (Null when most_common_vals is.)

	
 histogram_bounds anyarray

 A list of values that divide the column's values into groups of
 approximately equal population. The values in
 most_common_vals, if present, are omitted from this
 histogram calculation. (This column is null if the column data type
 does not have a < operator or if the
 most_common_vals list accounts for the entire
 population.)

	
 correlation float4

 Statistical correlation between physical row ordering and
 logical ordering of the column values. This ranges from -1 to +1.
 When the value is near -1 or +1, an index scan on the column will
 be estimated to be cheaper than when it is near zero, due to reduction
 of random access to the disk. (This column is null if the column data
 type does not have a < operator.)

	
 most_common_elems anyarray

 A list of non-null element values most often appearing within values of
 the column. (Null for scalar types.)

	
 most_common_elem_freqs float4[]

 A list of the frequencies of the most common element values, i.e., the
 fraction of rows containing at least one instance of the given value.
 Two or three additional values follow the per-element frequencies;
 these are the minimum and maximum of the preceding per-element
 frequencies, and optionally the frequency of null elements.
 (Null when most_common_elems is.)

	
 elem_count_histogram float4[]

 A histogram of the counts of distinct non-null element values within the
 values of the column, followed by the average number of distinct
 non-null elements. (Null for scalar types.)

 The maximum number of entries in the array fields can be controlled on a
 column-by-column basis using the ALTER
 TABLE SET STATISTICS
 command, or globally by setting the
 default_statistics_target run-time parameter.

pg_stats_ext

 The view pg_stats_ext provides access to
 information about each extended statistics object in the database,
 combining information stored in the pg_statistic_ext
 and pg_statistic_ext_data
 catalogs. This view allows access only to rows of
 pg_statistic_ext and pg_statistic_ext_data
 that correspond to tables the user owns, and therefore
 it is safe to allow public read access to this view.

 pg_stats_ext is also designed to present the
 information in a more readable format than the underlying catalogs
 — at the cost that its schema must be extended whenever new types
 of extended statistics are added to pg_statistic_ext.

Table 54.28. pg_stats_ext Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table

	
 statistics_schemaname name
 (references pg_namespace.nspname)

 Name of schema containing extended statistics object

	
 statistics_name name
 (references pg_statistic_ext.stxname)

 Name of extended statistics object

	
 statistics_owner name
 (references pg_authid.rolname)

 Owner of the extended statistics object

	
 attnames name[]
 (references pg_attribute.attname)

 Names of the columns included in the extended statistics object

	
 exprs text[]

 Expressions included in the extended statistics object

	
 kinds char[]

 Types of extended statistics object enabled for this record

	
 inherited bool
 (references pg_statistic_ext_data.stxdinherit)

 If true, the stats include values from child tables, not just the
 values in the specified relation

	
 n_distinct pg_ndistinct

 N-distinct counts for combinations of column values. If greater
 than zero, the estimated number of distinct values in the combination.
 If less than zero, the negative of the number of distinct values divided
 by the number of rows.
 (The negated form is used when ANALYZE believes that
 the number of distinct values is likely to increase as the table grows;
 the positive form is used when the column seems to have a fixed number
 of possible values.) For example, -1 indicates a unique combination of
 columns in which the number of distinct combinations is the same as the
 number of rows.

	
 dependencies pg_dependencies

 Functional dependency statistics

	
 most_common_vals text[]

 A list of the most common combinations of values in the columns.
 (Null if no combinations seem to be more common than any others.)

	
 most_common_val_nulls bool[]

 A list of NULL flags for the most common combinations of values.
 (Null when most_common_vals is.)

	
 most_common_freqs float8[]

 A list of the frequencies of the most common combinations,
 i.e., number of occurrences of each divided by total number of rows.
 (Null when most_common_vals is.)

	
 most_common_base_freqs float8[]

 A list of the base frequencies of the most common combinations,
 i.e., product of per-value frequencies.
 (Null when most_common_vals is.)

 The maximum number of entries in the array fields can be controlled on a
 column-by-column basis using the ALTER
 TABLE SET STATISTICS command, or globally by setting the
 default_statistics_target run-time parameter.

pg_stats_ext_exprs

 The view pg_stats_ext_exprs provides access to
 information about all expressions included in extended statistics objects,
 combining information stored in the pg_statistic_ext
 and pg_statistic_ext_data
 catalogs. This view allows access only to rows of
 pg_statistic_ext and pg_statistic_ext_data
 that correspond to tables the user owns, and therefore
 it is safe to allow public read access to this view.

 pg_stats_ext_exprs is also designed to present
 the information in a more readable format than the underlying catalogs
 — at the cost that its schema must be extended whenever the structure
 of statistics in pg_statistic_ext changes.

Table 54.29. pg_stats_ext_exprs Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table the statistics object is defined on

	
 statistics_schemaname name
 (references pg_namespace.nspname)

 Name of schema containing extended statistics object

	
 statistics_name name
 (references pg_statistic_ext.stxname)

 Name of extended statistics object

	
 statistics_owner name
 (references pg_authid.rolname)

 Owner of the extended statistics object

	
 expr text

 Expression included in the extended statistics object

	
 inherited bool
 (references pg_statistic_ext_data.stxdinherit)

 If true, the stats include values from child tables, not just the
 values in the specified relation

	
 null_frac float4

 Fraction of expression entries that are null

	
 avg_width int4

 Average width in bytes of expression's entries

	
 n_distinct float4

 If greater than zero, the estimated number of distinct values in the
 expression. If less than zero, the negative of the number of distinct
 values divided by the number of rows. (The negated form is used when
 ANALYZE believes that the number of distinct values is
 likely to increase as the table grows; the positive form is used when
 the expression seems to have a fixed number of possible values.) For
 example, -1 indicates a unique expression in which the number of distinct
 values is the same as the number of rows.

	
 most_common_vals anyarray

 A list of the most common values in the expression. (Null if
 no values seem to be more common than any others.)

	
 most_common_freqs float4[]

 A list of the frequencies of the most common values,
 i.e., number of occurrences of each divided by total number of rows.
 (Null when most_common_vals is.)

	
 histogram_bounds anyarray

 A list of values that divide the expression's values into groups of
 approximately equal population. The values in
 most_common_vals, if present, are omitted from this
 histogram calculation. (This expression is null if the expression data type
 does not have a < operator or if the
 most_common_vals list accounts for the entire
 population.)

	
 correlation float4

 Statistical correlation between physical row ordering and
 logical ordering of the expression values. This ranges from -1 to +1.
 When the value is near -1 or +1, an index scan on the expression will
 be estimated to be cheaper than when it is near zero, due to reduction
 of random access to the disk. (This expression is null if the expression's
 data type does not have a < operator.)

	
 most_common_elems anyarray

 A list of non-null element values most often appearing within values of
 the expression. (Null for scalar types.)

	
 most_common_elem_freqs float4[]

 A list of the frequencies of the most common element values, i.e., the
 fraction of rows containing at least one instance of the given value.
 Two or three additional values follow the per-element frequencies;
 these are the minimum and maximum of the preceding per-element
 frequencies, and optionally the frequency of null elements.
 (Null when most_common_elems is.)

	
 elem_count_histogram float4[]

 A histogram of the counts of distinct non-null element values within the
 values of the expression, followed by the average number of distinct
 non-null elements. (Null for scalar types.)

 The maximum number of entries in the array fields can be controlled on a
 column-by-column basis using the ALTER
 TABLE SET STATISTICS command, or globally by setting the
 default_statistics_target run-time parameter.

pg_tables

 The view pg_tables provides access to
 useful information about each table in the database.

Table 54.30. pg_tables Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing table

	
 tablename name
 (references pg_class.relname)

 Name of table

	
 tableowner name
 (references pg_authid.rolname)

 Name of table's owner

	
 tablespace name
 (references pg_tablespace.spcname)

 Name of tablespace containing table (null if default for database)

	
 hasindexes bool
 (references pg_class.relhasindex)

 True if table has (or recently had) any indexes

	
 hasrules bool
 (references pg_class.relhasrules)

 True if table has (or once had) rules

	
 hastriggers bool
 (references pg_class.relhastriggers)

 True if table has (or once had) triggers

	
 rowsecurity bool
 (references pg_class.relrowsecurity)

 True if row security is enabled on the table

pg_timezone_abbrevs

 The view pg_timezone_abbrevs provides a list
 of time zone abbreviations that are currently recognized by the datetime
 input routines. The contents of this view change when the
 timezone_abbreviations run-time parameter is modified.

Table 54.31. pg_timezone_abbrevs Columns
	
 Column Type

 Description

	
 abbrev text

 Time zone abbreviation

	
 utc_offset interval

 Offset from UTC (positive means east of Greenwich)

	
 is_dst bool

 True if this is a daylight-savings abbreviation

 While most timezone abbreviations represent fixed offsets from UTC,
 there are some that have historically varied in value
 (see the section called “Date/Time Configuration Files” for more information).
 In such cases this view presents their current meaning.

pg_timezone_names

 The view pg_timezone_names provides a list
 of time zone names that are recognized by SET TIMEZONE,
 along with their associated abbreviations, UTC offsets,
 and daylight-savings status. (Technically,
 PostgreSQL™ does not use UTC because leap
 seconds are not handled.)
 Unlike the abbreviations shown in pg_timezone_abbrevs, many of these names imply a set of daylight-savings transition
 date rules. Therefore, the associated information changes across local DST
 boundaries. The displayed information is computed based on the current
 value of CURRENT_TIMESTAMP.

Table 54.32. pg_timezone_names Columns
	
 Column Type

 Description

	
 name text

 Time zone name

	
 abbrev text

 Time zone abbreviation

	
 utc_offset interval

 Offset from UTC (positive means east of Greenwich)

	
 is_dst bool

 True if currently observing daylight savings

pg_user

 The view pg_user provides access to
 information about database users. This is simply a publicly
 readable view of
 pg_shadow
 that blanks out the password field.

Table 54.33. pg_user Columns
	
 Column Type

 Description

	
 usename name

 User name

	
 usesysid oid

 ID of this user

	
 usecreatedb bool

 User can create databases

	
 usesuper bool

 User is a superuser

	
 userepl bool

 User can initiate streaming replication and put the system in and
 out of backup mode.

	
 usebypassrls bool

 User bypasses every row-level security policy, see
 the section called “Row Security Policies” for more information.

	
 passwd text

 Not the password (always reads as ********)

	
 valuntil timestamptz

 Password expiry time (only used for password authentication)

	
 useconfig text[]

 Session defaults for run-time configuration variables

pg_user_mappings

 The view pg_user_mappings provides access
 to information about user mappings. This is essentially a publicly
 readable view of
 pg_user_mapping
 that leaves out the options field if the user has no rights to use
 it.

Table 54.34. pg_user_mappings Columns
	
 Column Type

 Description

	
 umid oid
 (references pg_user_mapping.oid)

 OID of the user mapping

	
 srvid oid
 (references pg_foreign_server.oid)

 The OID of the foreign server that contains this mapping

	
 srvname name
 (references pg_foreign_server.srvname)

 Name of the foreign server

	
 umuser oid
 (references pg_authid.oid)

 OID of the local role being mapped, or zero if the user mapping is public

	
 usename name

 Name of the local user to be mapped

	
 umoptions text[]

 User mapping specific options, as “keyword=value” strings

 To protect password information stored as a user mapping option,
 the umoptions column will read as null
 unless one of the following applies:

	
 current user is the user being mapped, and owns the server or
 holds USAGE privilege on it

	
 current user is the server owner and mapping is for PUBLIC

	
 current user is a superuser

pg_views

 The view pg_views provides access to
 useful information about each view in the database.

Table 54.35. pg_views Columns
	
 Column Type

 Description

	
 schemaname name
 (references pg_namespace.nspname)

 Name of schema containing view

	
 viewname name
 (references pg_class.relname)

 Name of view

	
 viewowner name
 (references pg_authid.rolname)

 Name of view's owner

	
 definition text

 View definition (a reconstructed SELECT(7) query)

Chapter 55. Frontend/Backend Protocol

 PostgreSQL™ uses a message-based protocol
 for communication between frontends and backends (clients and servers).
 The protocol is supported over TCP/IP and also over
 Unix-domain sockets. Port number 5432 has been registered with IANA as
 the customary TCP port number for servers supporting this protocol, but
 in practice any non-privileged port number can be used.

 This document describes version 3.0 of the protocol, implemented in
 PostgreSQL™ 7.4 and later. For descriptions
 of the earlier protocol versions, see previous releases of the
 PostgreSQL™ documentation. A single server
 can support multiple protocol versions. The initial startup-request
 message tells the server which protocol version the client is attempting to
 use. If the major version requested by the client is not supported by
 the server, the connection will be rejected (for example, this would occur
 if the client requested protocol version 4.0, which does not exist as of
 this writing). If the minor version requested by the client is not
 supported by the server (e.g., the client requests version 3.1, but the
 server supports only 3.0), the server may either reject the connection or
 may respond with a NegotiateProtocolVersion message containing the highest
 minor protocol version which it supports. The client may then choose either
 to continue with the connection using the specified protocol version or
 to abort the connection.

 In order to serve multiple clients efficiently, the server launches
 a new “backend” process for each client.
 In the current implementation, a new child
 process is created immediately after an incoming connection is detected.
 This is transparent to the protocol, however. For purposes of the
 protocol, the terms “backend” and “server” are
 interchangeable; likewise “frontend” and “client”
 are interchangeable.

Overview

 The protocol has separate phases for startup and normal operation.
 In the startup phase, the frontend opens a connection to the server
 and authenticates itself to the satisfaction of the server. (This might
 involve a single message, or multiple messages depending on the
 authentication method being used.) If all goes well, the server then sends
 status information to the frontend, and finally enters normal operation.
 Except for the initial startup-request message, this part of the
 protocol is driven by the server.

 During normal operation, the frontend sends queries and
 other commands to the backend, and the backend sends back query results
 and other responses. There are a few cases (such as NOTIFY)
 wherein the
 backend will send unsolicited messages, but for the most part this portion
 of a session is driven by frontend requests.

 Termination of the session is normally by frontend choice, but can be
 forced by the backend in certain cases. In any case, when the backend
 closes the connection, it will roll back any open (incomplete) transaction
 before exiting.

 Within normal operation, SQL commands can be executed through either of
 two sub-protocols. In the “simple query” protocol, the frontend
 just sends a textual query string, which is parsed and immediately
 executed by the backend. In the “extended query” protocol,
 processing of queries is separated into multiple steps: parsing,
 binding of parameter values, and execution. This offers flexibility
 and performance benefits, at the cost of extra complexity.

 Normal operation has additional sub-protocols for special operations
 such as COPY.

Messaging Overview

 All communication is through a stream of messages. The first byte of a
 message identifies the message type, and the next four bytes specify the
 length of the rest of the message (this length count includes itself, but
 not the message-type byte). The remaining contents of the message are
 determined by the message type. For historical reasons, the very first
 message sent by the client (the startup message) has no initial
 message-type byte.

 To avoid losing synchronization with the message stream, both servers and
 clients typically read an entire message into a buffer (using the byte
 count) before attempting to process its contents. This allows easy
 recovery if an error is detected while processing the contents. In
 extreme situations (such as not having enough memory to buffer the
 message), the receiver can use the byte count to determine how much
 input to skip before it resumes reading messages.

 Conversely, both servers and clients must take care never to send an
 incomplete message. This is commonly done by marshaling the entire message
 in a buffer before beginning to send it. If a communications failure
 occurs partway through sending or receiving a message, the only sensible
 response is to abandon the connection, since there is little hope of
 recovering message-boundary synchronization.

Extended Query Overview

 In the extended-query protocol, execution of SQL commands is divided
 into multiple steps. The state retained between steps is represented
 by two types of objects: prepared statements and
 portals. A prepared statement represents the result of
 parsing and semantic analysis of a textual query string.
 A prepared statement is not in itself ready to execute, because it might
 lack specific values for parameters. A portal represents
 a ready-to-execute or already-partially-executed statement, with any
 missing parameter values filled in. (For SELECT statements,
 a portal is equivalent to an open cursor, but we choose to use a different
 term since cursors don't handle non-SELECT statements.)

 The overall execution cycle consists of a parse step,
 which creates a prepared statement from a textual query string; a
 bind step, which creates a portal given a prepared
 statement and values for any needed parameters; and an
 execute step that runs a portal's query. In the case of
 a query that returns rows (SELECT, SHOW, etc.),
 the execute step can be told to fetch only
 a limited number of rows, so that multiple execute steps might be needed
 to complete the operation.

 The backend can keep track of multiple prepared statements and portals
 (but note that these exist only within a session, and are never shared
 across sessions). Existing prepared statements and portals are
 referenced by names assigned when they were created. In addition,
 an “unnamed” prepared statement and portal exist. Although these
 behave largely the same as named objects, operations on them are optimized
 for the case of executing a query only once and then discarding it,
 whereas operations on named objects are optimized on the expectation
 of multiple uses.

Formats and Format Codes

 Data of a particular data type might be transmitted in any of several
 different formats. As of PostgreSQL™ 7.4
 the only supported formats are “text” and “binary”,
 but the protocol makes provision for future extensions. The desired
 format for any value is specified by a format code.
 Clients can specify a format code for each transmitted parameter value
 and for each column of a query result. Text has format code zero,
 binary has format code one, and all other format codes are reserved
 for future definition.

 The text representation of values is whatever strings are produced
 and accepted by the input/output conversion functions for the
 particular data type. In the transmitted representation, there is
 no trailing null character; the frontend must add one to received
 values if it wants to process them as C strings.
 (The text format does not allow embedded nulls, by the way.)

 Binary representations for integers use network byte order (most
 significant byte first). For other data types consult the documentation
 or source code to learn about the binary representation. Keep in mind
 that binary representations for complex data types might change across
 server versions; the text format is usually the more portable choice.

Message Flow

 This section describes the message flow and the semantics of each
 message type. (Details of the exact representation of each message
 appear in the section called “Message Formats”.) There are
 several different sub-protocols depending on the state of the
 connection: start-up, query, function call,
 COPY, and termination. There are also special
 provisions for asynchronous operations (including notification
 responses and command cancellation), which can occur at any time
 after the start-up phase.

Start-up

 To begin a session, a frontend opens a connection to the server and sends
 a startup message. This message includes the names of the user and of the
 database the user wants to connect to; it also identifies the particular
 protocol version to be used. (Optionally, the startup message can include
 additional settings for run-time parameters.)
 The server then uses this information and
 the contents of its configuration files (such as
 pg_hba.conf) to determine
 whether the connection is provisionally acceptable, and what additional
 authentication is required (if any).

 The server then sends an appropriate authentication request message,
 to which the frontend must reply with an appropriate authentication
 response message (such as a password).
 For all authentication methods except GSSAPI, SSPI and SASL, there is at
 most one request and one response. In some methods, no response
 at all is needed from the frontend, and so no authentication request
 occurs. For GSSAPI, SSPI and SASL, multiple exchanges of packets may be
 needed to complete the authentication.

 The authentication cycle ends with the server either rejecting the
 connection attempt (ErrorResponse), or sending AuthenticationOk.

 The possible messages from the server in this phase are:

	ErrorResponse
	
 The connection attempt has been rejected.
 The server then immediately closes the connection.

	AuthenticationOk
	
 The authentication exchange is successfully completed.

	AuthenticationKerberosV5
	
 The frontend must now take part in a Kerberos V5
 authentication dialog (not described here, part of the
 Kerberos specification) with the server. If this is
 successful, the server responds with an AuthenticationOk,
 otherwise it responds with an ErrorResponse. This is no
 longer supported.

	AuthenticationCleartextPassword
	
 The frontend must now send a PasswordMessage containing the
 password in clear-text form. If
 this is the correct password, the server responds with an
 AuthenticationOk, otherwise it responds with an ErrorResponse.

	AuthenticationMD5Password
	
 The frontend must now send a PasswordMessage containing the
 password (with user name) encrypted via MD5, then encrypted
 again using the 4-byte random salt specified in the
 AuthenticationMD5Password message. If this is the correct
 password, the server responds with an AuthenticationOk,
 otherwise it responds with an ErrorResponse. The actual
 PasswordMessage can be computed in SQL as concat('md5',
 md5(concat(md5(concat(password, username)), random-salt))).
 (Keep in mind the md5() function returns its
 result as a hex string.)

	AuthenticationGSS
	
 The frontend must now initiate a GSSAPI negotiation. The frontend
 will send a GSSResponse message with the first part of the GSSAPI
 data stream in response to this. If further messages are needed,
 the server will respond with AuthenticationGSSContinue.

	AuthenticationSSPI
	
 The frontend must now initiate an SSPI negotiation. The frontend
 will send a GSSResponse with the first part of the SSPI
 data stream in response to this. If further messages are needed,
 the server will respond with AuthenticationGSSContinue.

	AuthenticationGSSContinue
	
 This message contains the response data from the previous step
 of GSSAPI or SSPI negotiation (AuthenticationGSS, AuthenticationSSPI
 or a previous AuthenticationGSSContinue). If the GSSAPI
 or SSPI data in this message
 indicates more data is needed to complete the authentication,
 the frontend must send that data as another GSSResponse message. If
 GSSAPI or SSPI authentication is completed by this message, the server
 will next send AuthenticationOk to indicate successful authentication
 or ErrorResponse to indicate failure.

	AuthenticationSASL
	
 The frontend must now initiate a SASL negotiation, using one of the
 SASL mechanisms listed in the message. The frontend will send a
 SASLInitialResponse with the name of the selected mechanism, and the
 first part of the SASL data stream in response to this. If further
 messages are needed, the server will respond with
 AuthenticationSASLContinue. See the section called “SASL Authentication”
 for details.

	AuthenticationSASLContinue
	
 This message contains challenge data from the previous step of SASL
 negotiation (AuthenticationSASL, or a previous
 AuthenticationSASLContinue). The frontend must respond with a
 SASLResponse message.

	AuthenticationSASLFinal
	
 SASL authentication has completed with additional mechanism-specific
 data for the client. The server will next send AuthenticationOk to
 indicate successful authentication, or an ErrorResponse to indicate
 failure. This message is sent only if the SASL mechanism specifies
 additional data to be sent from server to client at completion.

	NegotiateProtocolVersion
	
 The server does not support the minor protocol version requested
 by the client, but does support an earlier version of the protocol;
 this message indicates the highest supported minor version. This
 message will also be sent if the client requested unsupported protocol
 options (i.e., beginning with _pq_.) in the
 startup packet. This message will be followed by an ErrorResponse or
 a message indicating the success or failure of authentication.

 If the frontend does not support the authentication method
 requested by the server, then it should immediately close the
 connection.

 After having received AuthenticationOk, the frontend must wait
 for further messages from the server. In this phase a backend process
 is being started, and the frontend is just an interested bystander.
 It is still possible for the startup attempt
 to fail (ErrorResponse) or the server to decline support for the requested
 minor protocol version (NegotiateProtocolVersion), but in the normal case
 the backend will send some ParameterStatus messages, BackendKeyData, and
 finally ReadyForQuery.

 During this phase the backend will attempt to apply any additional
 run-time parameter settings that were given in the startup message.
 If successful, these values become session defaults. An error causes
 ErrorResponse and exit.

 The possible messages from the backend in this phase are:

	BackendKeyData
	
 This message provides secret-key data that the frontend must
 save if it wants to be able to issue cancel requests later.
 The frontend should not respond to this message, but should
 continue listening for a ReadyForQuery message.

	ParameterStatus
	
 This message informs the frontend about the current (initial)
 setting of backend parameters, such as client_encoding or DateStyle.
 The frontend can ignore this message, or record the settings
 for its future use; see the section called “Asynchronous Operations” for
 more details. The frontend should not respond to this
 message, but should continue listening for a ReadyForQuery
 message.

	ReadyForQuery
	
 Start-up is completed. The frontend can now issue commands.

	ErrorResponse
	
 Start-up failed. The connection is closed after sending this
 message.

	NoticeResponse
	
 A warning message has been issued. The frontend should
 display the message but continue listening for ReadyForQuery
 or ErrorResponse.

 The ReadyForQuery message is the same one that the backend will
 issue after each command cycle. Depending on the coding needs of
 the frontend, it is reasonable to consider ReadyForQuery as
 starting a command cycle, or to consider ReadyForQuery as ending the
 start-up phase and each subsequent command cycle.

Simple Query

 A simple query cycle is initiated by the frontend sending a Query message
 to the backend. The message includes an SQL command (or commands)
 expressed as a text string.
 The backend then sends one or more response
 messages depending on the contents of the query command string,
 and finally a ReadyForQuery response message. ReadyForQuery
 informs the frontend that it can safely send a new command.
 (It is not actually necessary for the frontend to wait for
 ReadyForQuery before issuing another command, but the frontend must
 then take responsibility for figuring out what happens if the earlier
 command fails and already-issued later commands succeed.)

 The possible response messages from the backend are:

	CommandComplete
	
 An SQL command completed normally.

	CopyInResponse
	
 The backend is ready to copy data from the frontend to a
 table; see the section called “COPY Operations”.

	CopyOutResponse
	
 The backend is ready to copy data from a table to the
 frontend; see the section called “COPY Operations”.

	RowDescription
	
 Indicates that rows are about to be returned in response to
 a SELECT, FETCH, etc. query.
 The contents of this message describe the column layout of the rows.
 This will be followed by a DataRow message for each row being returned
 to the frontend.

	DataRow
	
 One of the set of rows returned by
 a SELECT, FETCH, etc. query.

	EmptyQueryResponse
	
 An empty query string was recognized.

	ErrorResponse
	
 An error has occurred.

	ReadyForQuery
	
 Processing of the query string is complete. A separate
 message is sent to indicate this because the query string might
 contain multiple SQL commands. (CommandComplete marks the
 end of processing one SQL command, not the whole string.)
 ReadyForQuery will always be sent, whether processing
 terminates successfully or with an error.

	NoticeResponse
	
 A warning message has been issued in relation to the query.
 Notices are in addition to other responses, i.e., the backend
 will continue processing the command.

 The response to a SELECT query (or other queries that
 return row sets, such as EXPLAIN or SHOW)
 normally consists of RowDescription, zero or more
 DataRow messages, and then CommandComplete.
 COPY to or from the frontend invokes special protocol
 as described in the section called “COPY Operations”.
 All other query types normally produce only
 a CommandComplete message.

 Since a query string could contain several queries (separated by
 semicolons), there might be several such response sequences before the
 backend finishes processing the query string. ReadyForQuery is issued
 when the entire string has been processed and the backend is ready to
 accept a new query string.

 If a completely empty (no contents other than whitespace) query string
 is received, the response is EmptyQueryResponse followed by ReadyForQuery.

 In the event of an error, ErrorResponse is issued followed by
 ReadyForQuery. All further processing of the query string is aborted by
 ErrorResponse (even if more queries remained in it). Note that this
 might occur partway through the sequence of messages generated by an
 individual query.

 In simple Query mode, the format of retrieved values is always text,
 except when the given command is a FETCH from a cursor
 declared with the BINARY option. In that case, the
 retrieved values are in binary format. The format codes given in
 the RowDescription message tell which format is being used.

 A frontend must be prepared to accept ErrorResponse and
 NoticeResponse messages whenever it is expecting any other type of
 message. See also the section called “Asynchronous Operations” concerning messages
 that the backend might generate due to outside events.

 Recommended practice is to code frontends in a state-machine style
 that will accept any message type at any time that it could make sense,
 rather than wiring in assumptions about the exact sequence of messages.

Multiple Statements in a Simple Query

 When a simple Query message contains more than one SQL statement
 (separated by semicolons), those statements are executed as a single
 transaction, unless explicit transaction control commands are included
 to force a different behavior. For example, if the message contains

INSERT INTO mytable VALUES(1);
SELECT 1/0;
INSERT INTO mytable VALUES(2);

 then the divide-by-zero failure in the SELECT will force
 rollback of the first INSERT. Furthermore, because
 execution of the message is abandoned at the first error, the second
 INSERT is never attempted at all.

 If instead the message contains

BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELECT 1/0;

 then the first INSERT is committed by the
 explicit COMMIT command. The second INSERT
 and the SELECT are still treated as a single transaction,
 so that the divide-by-zero failure will roll back the
 second INSERT, but not the first one.

 This behavior is implemented by running the statements in a
 multi-statement Query message in an implicit transaction
 block unless there is some explicit transaction block for them to
 run in. The main difference between an implicit transaction block and
 a regular one is that an implicit block is closed automatically at the
 end of the Query message, either by an implicit commit if there was no
 error, or an implicit rollback if there was an error. This is similar
 to the implicit commit or rollback that happens for a statement
 executed by itself (when not in a transaction block).

 If the session is already in a transaction block, as a result of
 a BEGIN in some previous message, then the Query message
 simply continues that transaction block, whether the message contains
 one statement or several. However, if the Query message contains
 a COMMIT or ROLLBACK closing the existing
 transaction block, then any following statements are executed in an
 implicit transaction block.
 Conversely, if a BEGIN appears in a multi-statement Query
 message, then it starts a regular transaction block that will only be
 terminated by an explicit COMMIT or ROLLBACK,
 whether that appears in this Query message or a later one.
 If the BEGIN follows some statements that were executed as
 an implicit transaction block, those statements are not immediately
 committed; in effect, they are retroactively included into the new
 regular transaction block.

 A COMMIT or ROLLBACK appearing in an implicit
 transaction block is executed as normal, closing the implicit block;
 however, a warning will be issued since a COMMIT
 or ROLLBACK without a previous BEGIN might
 represent a mistake. If more statements follow, a new implicit
 transaction block will be started for them.

 Savepoints are not allowed in an implicit transaction block, since
 they would conflict with the behavior of automatically closing the
 block upon any error.

 Remember that, regardless of any transaction control commands that may
 be present, execution of the Query message stops at the first error.
 Thus for example given

BEGIN;
SELECT 1/0;
ROLLBACK;

 in a single Query message, the session will be left inside a failed
 regular transaction block, since the ROLLBACK is not
 reached after the divide-by-zero error. Another ROLLBACK
 will be needed to restore the session to a usable state.

 Another behavior of note is that initial lexical and syntactic
 analysis is done on the entire query string before any of it is
 executed. Thus simple errors (such as a misspelled keyword) in later
 statements can prevent execution of any of the statements. This
 is normally invisible to users since the statements would all roll
 back anyway when done as an implicit transaction block. However,
 it can be visible when attempting to do multiple transactions within a
 multi-statement Query. For instance, if a typo turned our previous
 example into

BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELCT 1/0;

 then none of the statements would get run, resulting in the visible
 difference that the first INSERT is not committed.
 Errors detected at semantic analysis or later, such as a misspelled
 table or column name, do not have this effect.

 Lastly, note that all the statements within the Query message will
 observe the same value of statement_timestamp(),
 since that timestamp is updated only upon receipt of the Query
 message. This will result in them all observing the same
 value of transaction_timestamp() as well,
 except in cases where the query string ends a previously-started
 transaction and begins a new one.

Extended Query

 The extended query protocol breaks down the above-described simple
 query protocol into multiple steps. The results of preparatory
 steps can be re-used multiple times for improved efficiency.
 Furthermore, additional features are available, such as the possibility
 of supplying data values as separate parameters instead of having to
 insert them directly into a query string.

 In the extended protocol, the frontend first sends a Parse message,
 which contains a textual query string, optionally some information
 about data types of parameter placeholders, and the
 name of a destination prepared-statement object (an empty string
 selects the unnamed prepared statement). The response is
 either ParseComplete or ErrorResponse. Parameter data types can be
 specified by OID; if not given, the parser attempts to infer the
 data types in the same way as it would do for untyped literal string
 constants.

Note

 A parameter data type can be left unspecified by setting it to zero,
 or by making the array of parameter type OIDs shorter than the
 number of parameter symbols ($n)
 used in the query string. Another special case is that a parameter's
 type can be specified as void (that is, the OID of the
 void pseudo-type). This is meant to allow parameter symbols
 to be used for function parameters that are actually OUT parameters.
 Ordinarily there is no context in which a void parameter
 could be used, but if such a parameter symbol appears in a function's
 parameter list, it is effectively ignored. For example, a function
 call such as foo($1,$2,$3,$4) could match a function with
 two IN and two OUT arguments, if $3 and $4
 are specified as having type void.

Note

 The query string contained in a Parse message cannot include more
 than one SQL statement; else a syntax error is reported. This
 restriction does not exist in the simple-query protocol, but it
 does exist in the extended protocol, because allowing prepared
 statements or portals to contain multiple commands would complicate
 the protocol unduly.

 If successfully created, a named prepared-statement object lasts till
 the end of the current session, unless explicitly destroyed. An unnamed
 prepared statement lasts only until the next Parse statement specifying
 the unnamed statement as destination is issued. (Note that a simple
 Query message also destroys the unnamed statement.) Named prepared
 statements must be explicitly closed before they can be redefined by
 another Parse message, but this is not required for the unnamed statement.
 Named prepared statements can also be created and accessed at the SQL
 command level, using PREPARE and EXECUTE.

 Once a prepared statement exists, it can be readied for execution using a
 Bind message. The Bind message gives the name of the source prepared
 statement (empty string denotes the unnamed prepared statement), the name
 of the destination portal (empty string denotes the unnamed portal), and
 the values to use for any parameter placeholders present in the prepared
 statement. The
 supplied parameter set must match those needed by the prepared statement.
 (If you declared any void parameters in the Parse message,
 pass NULL values for them in the Bind message.)
 Bind also specifies the format to use for any data returned
 by the query; the format can be specified overall, or per-column.
 The response is either BindComplete or ErrorResponse.

Note

 The choice between text and binary output is determined by the format
 codes given in Bind, regardless of the SQL command involved. The
 BINARY attribute in cursor declarations is irrelevant when
 using extended query protocol.

 Query planning typically occurs when the Bind message is processed.
 If the prepared statement has no parameters, or is executed repeatedly,
 the server might save the created plan and re-use it during subsequent
 Bind messages for the same prepared statement. However, it will do so
 only if it finds that a generic plan can be created that is not much
 less efficient than a plan that depends on the specific parameter values
 supplied. This happens transparently so far as the protocol is concerned.

 If successfully created, a named portal object lasts till the end of the
 current transaction, unless explicitly destroyed. An unnamed portal is
 destroyed at the end of the transaction, or as soon as the next Bind
 statement specifying the unnamed portal as destination is issued. (Note
 that a simple Query message also destroys the unnamed portal.) Named
 portals must be explicitly closed before they can be redefined by another
 Bind message, but this is not required for the unnamed portal.
 Named portals can also be created and accessed at the SQL
 command level, using DECLARE CURSOR and FETCH.

 Once a portal exists, it can be executed using an Execute message.
 The Execute message specifies the portal name (empty string denotes the
 unnamed portal) and
 a maximum result-row count (zero meaning “fetch all rows”).
 The result-row count is only meaningful for portals
 containing commands that return row sets; in other cases the command is
 always executed to completion, and the row count is ignored.
 The possible
 responses to Execute are the same as those described above for queries
 issued via simple query protocol, except that Execute doesn't cause
 ReadyForQuery or RowDescription to be issued.

 If Execute terminates before completing the execution of a portal
 (due to reaching a nonzero result-row count), it will send a
 PortalSuspended message; the appearance of this message tells the frontend
 that another Execute should be issued against the same portal to
 complete the operation. The CommandComplete message indicating
 completion of the source SQL command is not sent until
 the portal's execution is completed. Therefore, an Execute phase is
 always terminated by the appearance of exactly one of these messages:
 CommandComplete, EmptyQueryResponse (if the portal was created from
 an empty query string), ErrorResponse, or PortalSuspended.

 At completion of each series of extended-query messages, the frontend
 should issue a Sync message. This parameterless message causes the
 backend to close the current transaction if it's not inside a
 BEGIN/COMMIT transaction block (“close”
 meaning to commit if no error, or roll back if error). Then a
 ReadyForQuery response is issued. The purpose of Sync is to provide
 a resynchronization point for error recovery. When an error is detected
 while processing any extended-query message, the backend issues
 ErrorResponse, then reads and discards messages until a Sync is reached,
 then issues ReadyForQuery and returns to normal message processing.
 (But note that no skipping occurs if an error is detected
 while processing Sync — this ensures that there is one
 and only one ReadyForQuery sent for each Sync.)

Note

 Sync does not cause a transaction block opened with BEGIN
 to be closed. It is possible to detect this situation since the
 ReadyForQuery message includes transaction status information.

 In addition to these fundamental, required operations, there are several
 optional operations that can be used with extended-query protocol.

 The Describe message (portal variant) specifies the name of an existing
 portal (or an empty string for the unnamed portal). The response is a
 RowDescription message describing the rows that will be returned by
 executing the portal; or a NoData message if the portal does not contain a
 query that will return rows; or ErrorResponse if there is no such portal.

 The Describe message (statement variant) specifies the name of an existing
 prepared statement (or an empty string for the unnamed prepared
 statement). The response is a ParameterDescription message describing the
 parameters needed by the statement, followed by a RowDescription message
 describing the rows that will be returned when the statement is eventually
 executed (or a NoData message if the statement will not return rows).
 ErrorResponse is issued if there is no such prepared statement. Note that
 since Bind has not yet been issued, the formats to be used for returned
 columns are not yet known to the backend; the format code fields in the
 RowDescription message will be zeroes in this case.

Tip

 In most scenarios the frontend should issue one or the other variant
 of Describe before issuing Execute, to ensure that it knows how to
 interpret the results it will get back.

 The Close message closes an existing prepared statement or portal
 and releases resources. It is not an error to issue Close against
 a nonexistent statement or portal name. The response is normally
 CloseComplete, but could be ErrorResponse if some difficulty is
 encountered while releasing resources. Note that closing a prepared
 statement implicitly closes any open portals that were constructed
 from that statement.

 The Flush message does not cause any specific output to be generated,
 but forces the backend to deliver any data pending in its output
 buffers. A Flush must be sent after any extended-query command except
 Sync, if the frontend wishes to examine the results of that command before
 issuing more commands. Without Flush, messages returned by the backend
 will be combined into the minimum possible number of packets to minimize
 network overhead.

Note

 The simple Query message is approximately equivalent to the series Parse,
 Bind, portal Describe, Execute, Close, Sync, using the unnamed prepared
 statement and portal objects and no parameters. One difference is that
 it will accept multiple SQL statements in the query string, automatically
 performing the bind/describe/execute sequence for each one in succession.
 Another difference is that it will not return ParseComplete, BindComplete,
 CloseComplete, or NoData messages.

Pipelining

 Use of the extended query protocol
 allows pipelining, which means sending a series
 of queries without waiting for earlier ones to complete. This reduces
 the number of network round trips needed to complete a given series of
 operations. However, the user must carefully consider the required
 behavior if one of the steps fails, since later queries will already
 be in flight to the server.

 One way to deal with that is to make the whole query series be a
 single transaction, that is wrap it in BEGIN ...
 COMMIT. However, this does not help if one wishes
 for some of the commands to commit independently of others.

 The extended query protocol provides another way to manage this
 concern, which is to omit sending Sync messages between steps that
 are dependent. Since, after an error, the backend will skip command
 messages until it finds Sync, this allows later commands in a pipeline
 to be skipped automatically when an earlier one fails, without the
 client having to manage that explicitly with BEGIN
 and COMMIT. Independently-committable segments
 of the pipeline can be separated by Sync messages.

 If the client has not issued an explicit BEGIN,
 then each Sync ordinarily causes an implicit COMMIT
 if the preceding step(s) succeeded, or an
 implicit ROLLBACK if they failed. However, there
 are a few DDL commands (such as CREATE DATABASE)
 that cannot be executed inside a transaction block. If one of
 these is executed in a pipeline, it will fail unless it is the first
 command in the pipeline. Furthermore, upon success it will force an
 immediate commit to preserve database consistency. Thus a Sync
 immediately following one of these commands has no effect except to
 respond with ReadyForQuery.

 When using this method, completion of the pipeline must be determined
 by counting ReadyForQuery messages and waiting for that to reach the
 number of Syncs sent. Counting command completion responses is
 unreliable, since some of the commands may be skipped and thus not
 produce a completion message.

Function Call

 The Function Call sub-protocol allows the client to request a direct
 call of any function that exists in the database's
 pg_proc system catalog. The client must have
 execute permission for the function.

Note

 The Function Call sub-protocol is a legacy feature that is probably best
 avoided in new code. Similar results can be accomplished by setting up
 a prepared statement that does SELECT function($1, ...).
 The Function Call cycle can then be replaced with Bind/Execute.

 A Function Call cycle is initiated by the frontend sending a
 FunctionCall message to the backend. The backend then sends one
 or more response messages depending on the results of the function
 call, and finally a ReadyForQuery response message. ReadyForQuery
 informs the frontend that it can safely send a new query or
 function call.

 The possible response messages from the backend are:

	ErrorResponse
	
 An error has occurred.

	FunctionCallResponse
	
 The function call was completed and returned the result given
 in the message.
 (Note that the Function Call protocol can only handle a single
 scalar result, not a row type or set of results.)

	ReadyForQuery
	
 Processing of the function call is complete. ReadyForQuery
 will always be sent, whether processing terminates
 successfully or with an error.

	NoticeResponse
	
 A warning message has been issued in relation to the function
 call. Notices are in addition to other responses, i.e., the
 backend will continue processing the command.

COPY Operations

 The COPY command allows high-speed bulk data transfer
 to or from the server. Copy-in and copy-out operations each switch
 the connection into a distinct sub-protocol, which lasts until the
 operation is completed.

 Copy-in mode (data transfer to the server) is initiated when the
 backend executes a COPY FROM STDIN SQL statement. The backend
 sends a CopyInResponse message to the frontend. The frontend should
 then send zero or more CopyData messages, forming a stream of input
 data. (The message boundaries are not required to have anything to do
 with row boundaries, although that is often a reasonable choice.)
 The frontend can terminate the copy-in mode by sending either a CopyDone
 message (allowing successful termination) or a CopyFail message (which
 will cause the COPY SQL statement to fail with an
 error). The backend then reverts to the command-processing mode it was
 in before the COPY started, which will be either simple or
 extended query protocol. It will next send either CommandComplete
 (if successful) or ErrorResponse (if not).

 In the event of a backend-detected error during copy-in mode (including
 receipt of a CopyFail message), the backend will issue an ErrorResponse
 message. If the COPY command was issued via an extended-query
 message, the backend will now discard frontend messages until a Sync
 message is received, then it will issue ReadyForQuery and return to normal
 processing. If the COPY command was issued in a simple
 Query message, the rest of that message is discarded and ReadyForQuery
 is issued. In either case, any subsequent CopyData, CopyDone, or CopyFail
 messages issued by the frontend will simply be dropped.

 The backend will ignore Flush and Sync messages received during copy-in
 mode. Receipt of any other non-copy message type constitutes an error
 that will abort the copy-in state as described above. (The exception for
 Flush and Sync is for the convenience of client libraries that always
 send Flush or Sync after an Execute message, without checking whether
 the command to be executed is a COPY FROM STDIN.)

 Copy-out mode (data transfer from the server) is initiated when the
 backend executes a COPY TO STDOUT SQL statement. The backend
 sends a CopyOutResponse message to the frontend, followed by
 zero or more CopyData messages (always one per row), followed by CopyDone.
 The backend then reverts to the command-processing mode it was
 in before the COPY started, and sends CommandComplete.
 The frontend cannot abort the transfer (except by closing the connection
 or issuing a Cancel request),
 but it can discard unwanted CopyData and CopyDone messages.

 In the event of a backend-detected error during copy-out mode,
 the backend will issue an ErrorResponse message and revert to normal
 processing. The frontend should treat receipt of ErrorResponse as
 terminating the copy-out mode.

 It is possible for NoticeResponse and ParameterStatus messages to be
 interspersed between CopyData messages; frontends must handle these cases,
 and should be prepared for other asynchronous message types as well (see
 the section called “Asynchronous Operations”). Otherwise, any message type other than
 CopyData or CopyDone may be treated as terminating copy-out mode.

 There is another Copy-related mode called copy-both, which allows
 high-speed bulk data transfer to and from the server.
 Copy-both mode is initiated when a backend in walsender mode
 executes a START_REPLICATION statement. The
 backend sends a CopyBothResponse message to the frontend. Both
 the backend and the frontend may then send CopyData messages
 until either end sends a CopyDone message. After the client
 sends a CopyDone message, the connection goes from copy-both mode to
 copy-out mode, and the client may not send any more CopyData messages.
 Similarly, when the server sends a CopyDone message, the connection
 goes into copy-in mode, and the server may not send any more CopyData
 messages. After both sides have sent a CopyDone message, the copy mode
 is terminated, and the backend reverts to the command-processing mode.
 In the event of a backend-detected error during copy-both mode,
 the backend will issue an ErrorResponse message, discard frontend messages
 until a Sync message is received, and then issue ReadyForQuery and return
 to normal processing. The frontend should treat receipt of ErrorResponse
 as terminating the copy in both directions; no CopyDone should be sent
 in this case. See the section called “Streaming Replication Protocol” for more
 information on the subprotocol transmitted over copy-both mode.

 The CopyInResponse, CopyOutResponse and CopyBothResponse messages
 include fields that inform the frontend of the number of columns
 per row and the format codes being used for each column. (As of
 the present implementation, all columns in a given COPY
 operation will use the same format, but the message design does not
 assume this.)

Asynchronous Operations

 There are several cases in which the backend will send messages that
 are not specifically prompted by the frontend's command stream.
 Frontends must be prepared to deal with these messages at any time,
 even when not engaged in a query.
 At minimum, one should check for these cases before beginning to
 read a query response.

 It is possible for NoticeResponse messages to be generated due to
 outside activity; for example, if the database administrator commands
 a “fast” database shutdown, the backend will send a NoticeResponse
 indicating this fact before closing the connection. Accordingly,
 frontends should always be prepared to accept and display NoticeResponse
 messages, even when the connection is nominally idle.

 ParameterStatus messages will be generated whenever the active
 value changes for any of the parameters the backend believes the
 frontend should know about. Most commonly this occurs in response
 to a SET SQL command executed by the frontend, and
 this case is effectively synchronous — but it is also possible
 for parameter status changes to occur because the administrator
 changed a configuration file and then sent the
 SIGHUP signal to the server. Also,
 if a SET command is rolled back, an appropriate
 ParameterStatus message will be generated to report the current
 effective value.

 At present there is a hard-wired set of parameters for which
 ParameterStatus will be generated. They are:

	application_name	is_superuser
	client_encoding	scram_iterations
	DateStyle	server_encoding
	default_transaction_read_only	server_version
	in_hot_standby	session_authorization
	integer_datetimes	standard_conforming_strings
	IntervalStyle	TimeZone

 (server_encoding, TimeZone, and
 integer_datetimes were not reported by releases before 8.0;
 standard_conforming_strings was not reported by releases
 before 8.1;
 IntervalStyle was not reported by releases before 8.4;
 application_name was not reported by releases before
 9.0;
 default_transaction_read_only and
 in_hot_standby were not reported by releases before
 14; scram_iterations was not reported by releases
 before 16.)
 Note that
 server_version,
 server_encoding and
 integer_datetimes
 are pseudo-parameters that cannot change after startup.
 This set might change in the future, or even become configurable.
 Accordingly, a frontend should simply ignore ParameterStatus for
 parameters that it does not understand or care about.

 If a frontend issues a LISTEN command, then the
 backend will send a NotificationResponse message (not to be
 confused with NoticeResponse!) whenever a
 NOTIFY command is executed for the same
 channel name.

Note

 At present, NotificationResponse can only be sent outside a
 transaction, and thus it will not occur in the middle of a
 command-response series, though it might occur just before ReadyForQuery.
 It is unwise to design frontend logic that assumes that, however.
 Good practice is to be able to accept NotificationResponse at any
 point in the protocol.

Canceling Requests in Progress

 During the processing of a query, the frontend might request
 cancellation of the query. The cancel request is not sent
 directly on the open connection to the backend for reasons of
 implementation efficiency: we don't want to have the backend
 constantly checking for new input from the frontend during query
 processing. Cancel requests should be relatively infrequent, so
 we make them slightly cumbersome in order to avoid a penalty in
 the normal case.

 To issue a cancel request, the frontend opens a new connection to
 the server and sends a CancelRequest message, rather than the
 StartupMessage message that would ordinarily be sent across a new
 connection. The server will process this request and then close
 the connection. For security reasons, no direct reply is made to
 the cancel request message.

 A CancelRequest message will be ignored unless it contains the
 same key data (PID and secret key) passed to the frontend during
 connection start-up. If the request matches the PID and secret
 key for a currently executing backend, the processing of the
 current query is aborted. (In the existing implementation, this is
 done by sending a special signal to the backend process that is
 processing the query.)

 The cancellation signal might or might not have any effect — for
 example, if it arrives after the backend has finished processing
 the query, then it will have no effect. If the cancellation is
 effective, it results in the current command being terminated
 early with an error message.

 The upshot of all this is that for reasons of both security and
 efficiency, the frontend has no direct way to tell whether a
 cancel request has succeeded. It must continue to wait for the
 backend to respond to the query. Issuing a cancel simply improves
 the odds that the current query will finish soon, and improves the
 odds that it will fail with an error message instead of
 succeeding.

 Since the cancel request is sent across a new connection to the
 server and not across the regular frontend/backend communication
 link, it is possible for the cancel request to be issued by any
 process, not just the frontend whose query is to be canceled.
 This might provide additional flexibility when building
 multiple-process applications. It also introduces a security
 risk, in that unauthorized persons might try to cancel queries.
 The security risk is addressed by requiring a dynamically
 generated secret key to be supplied in cancel requests.

Termination

 The normal, graceful termination procedure is that the frontend
 sends a Terminate message and immediately closes the connection.
 On receipt of this message, the backend closes the connection and
 terminates.

 In rare cases (such as an administrator-commanded database shutdown)
 the backend might disconnect without any frontend request to do so.
 In such cases the backend will attempt to send an error or notice message
 giving the reason for the disconnection before it closes the connection.

 Other termination scenarios arise from various failure cases, such as core
 dump at one end or the other, loss of the communications link, loss of
 message-boundary synchronization, etc. If either frontend or backend sees
 an unexpected closure of the connection, it should clean
 up and terminate. The frontend has the option of launching a new backend
 by recontacting the server if it doesn't want to terminate itself.
 Closing the connection is also advisable if an unrecognizable message type
 is received, since this probably indicates loss of message-boundary sync.

 For either normal or abnormal termination, any open transaction is
 rolled back, not committed. One should note however that if a
 frontend disconnects while a non-SELECT query
 is being processed, the backend will probably finish the query
 before noticing the disconnection. If the query is outside any
 transaction block (BEGIN ... COMMIT
 sequence) then its results might be committed before the
 disconnection is recognized.

SSL Session Encryption

 If PostgreSQL™ was built with
 SSL support, frontend/backend communications
 can be encrypted using SSL. This provides
 communication security in environments where attackers might be
 able to capture the session traffic. For more information on
 encrypting PostgreSQL™ sessions with
 SSL, see the section called “Secure TCP/IP Connections with SSL”.

 To initiate an SSL-encrypted connection, the
 frontend initially sends an SSLRequest message rather than a
 StartupMessage. The server then responds with a single byte
 containing S or N, indicating that it is
 willing or unwilling to perform SSL,
 respectively. The frontend might close the connection at this point
 if it is dissatisfied with the response. To continue after
 S, perform an SSL startup handshake
 (not described here, part of the SSL
 specification) with the server. If this is successful, continue
 with sending the usual StartupMessage. In this case the
 StartupMessage and all subsequent data will be
 SSL-encrypted. To continue after
 N, send the usual StartupMessage and proceed without
 encryption.
 (Alternatively, it is permissible to issue a GSSENCRequest message
 after an N response to try to
 use GSSAPI encryption instead
 of SSL.)

 The frontend should also be prepared to handle an ErrorMessage
 response to SSLRequest from the server. The frontend should not display
 this error message to the user/application, since the server has not been
 authenticated
 (CVE-2024-10977).
 In this case the connection must
 be closed, but the frontend might choose to open a fresh connection
 and proceed without requesting SSL.

 When SSL encryption can be performed, the server
 is expected to send only the single S byte and then
 wait for the frontend to initiate an SSL handshake.
 If additional bytes are available to read at this point, it likely
 means that a man-in-the-middle is attempting to perform a
 buffer-stuffing attack
 (CVE-2021-23222).
 Frontends should be coded either to read exactly one byte from the
 socket before turning the socket over to their SSL library, or to
 treat it as a protocol violation if they find they have read additional
 bytes.

 An initial SSLRequest can also be used in a connection that is being
 opened to send a CancelRequest message.

 While the protocol itself does not provide a way for the server to
 force SSL encryption, the administrator can
 configure the server to reject unencrypted sessions as a byproduct
 of authentication checking.

GSSAPI Session Encryption

 If PostgreSQL™ was built with
 GSSAPI support, frontend/backend communications
 can be encrypted using GSSAPI. This provides
 communication security in environments where attackers might be
 able to capture the session traffic. For more information on
 encrypting PostgreSQL™ sessions with
 GSSAPI, see the section called “Secure TCP/IP Connections with GSSAPI Encryption”.

 To initiate a GSSAPI-encrypted connection, the
 frontend initially sends a GSSENCRequest message rather than a
 StartupMessage. The server then responds with a single byte
 containing G or N, indicating that it
 is willing or unwilling to perform GSSAPI encryption,
 respectively. The frontend might close the connection at this point
 if it is dissatisfied with the response. To continue after
 G, using the GSSAPI C bindings as discussed in
 RFC 2744
 or equivalent, perform a GSSAPI initialization by
 calling gss_init_sec_context() in a loop and sending
 the result to the server, starting with an empty input and then with each
 result from the server, until it returns no output. When sending the
 results of gss_init_sec_context() to the server,
 prepend the length of the message as a four byte integer in network byte
 order.
 To continue after
 N, send the usual StartupMessage and proceed without
 encryption.
 (Alternatively, it is permissible to issue an SSLRequest message
 after an N response to try to
 use SSL encryption instead
 of GSSAPI.)

 The frontend should also be prepared to handle an ErrorMessage
 response to GSSENCRequest from the server. The frontend should not display
 this error message to the user/application, since the server has not been
 authenticated
 (CVE-2024-10977).
 In this case the connection must be closed, but the frontend might choose
 to open a fresh connection and proceed without requesting
 GSSAPI encryption.

 When GSSAPI encryption can be performed, the server
 is expected to send only the single G byte and then
 wait for the frontend to initiate a GSSAPI handshake.
 If additional bytes are available to read at this point, it likely
 means that a man-in-the-middle is attempting to perform a
 buffer-stuffing attack
 (CVE-2021-23222).
 Frontends should be coded either to read exactly one byte from the
 socket before turning the socket over to their GSSAPI library, or to
 treat it as a protocol violation if they find they have read additional
 bytes.

 An initial GSSENCRequest can also be used in a connection that is being
 opened to send a CancelRequest message.

 Once GSSAPI encryption has been successfully
 established, use gss_wrap() to
 encrypt the usual StartupMessage and all subsequent data, prepending the
 length of the result from gss_wrap() as a four byte
 integer in network byte order to the actual encrypted payload. Note that
 the server will only accept encrypted packets from the client which are less
 than 16kB; gss_wrap_size_limit() should be used by the
 client to determine the size of the unencrypted message which will fit
 within this limit and larger messages should be broken up into multiple
 gss_wrap() calls. Typical segments are 8kB of
 unencrypted data, resulting in encrypted packets of slightly larger than 8kB
 but well within the 16kB maximum. The server can be expected to not send
 encrypted packets of larger than 16kB to the client.

 While the protocol itself does not provide a way for the server to
 force GSSAPI encryption, the administrator can
 configure the server to reject unencrypted sessions as a byproduct
 of authentication checking.

SASL Authentication

 SASL is a framework for authentication in connection-oriented
 protocols. At the moment, PostgreSQL™ implements two SASL
 authentication mechanisms, SCRAM-SHA-256 and SCRAM-SHA-256-PLUS. More
 might be added in the future. The below steps illustrate how SASL
 authentication is performed in general, while the next subsection gives
 more details on SCRAM-SHA-256 and SCRAM-SHA-256-PLUS.

Procedure 55.1. SASL Authentication Message Flow
	
 To begin a SASL authentication exchange, the server sends an
 AuthenticationSASL message. It includes a list of SASL authentication
 mechanisms that the server can accept, in the server's preferred order.

	
 The client selects one of the supported mechanisms from the list, and sends
 a SASLInitialResponse message to the server. The message includes the name
 of the selected mechanism, and an optional Initial Client Response, if the
 selected mechanism uses that.

	
 One or more server-challenge and client-response message will follow. Each
 server-challenge is sent in an AuthenticationSASLContinue message, followed
 by a response from client in a SASLResponse message. The particulars of
 the messages are mechanism specific.

	
 Finally, when the authentication exchange is completed successfully, the
 server sends an AuthenticationSASLFinal message, followed
 immediately by an AuthenticationOk message. The AuthenticationSASLFinal
 contains additional server-to-client data, whose content is particular to the
 selected authentication mechanism. If the authentication mechanism doesn't
 use additional data that's sent at completion, the AuthenticationSASLFinal
 message is not sent.

 On error, the server can abort the authentication at any stage, and send an
 ErrorMessage.

SCRAM-SHA-256 Authentication

 The implemented SASL mechanisms at the moment
 are SCRAM-SHA-256 and its variant with channel
 binding SCRAM-SHA-256-PLUS. They are described in
 detail in RFC 7677
 and RFC 5802.

 When SCRAM-SHA-256 is used in PostgreSQL, the server will ignore the user name
 that the client sends in the client-first-message. The user name
 that was already sent in the startup message is used instead.
 PostgreSQL™ supports multiple character encodings, while SCRAM
 dictates UTF-8 to be used for the user name, so it might be impossible to
 represent the PostgreSQL user name in UTF-8.

 The SCRAM specification dictates that the password is also in UTF-8, and is
 processed with the SASLprep algorithm.
 PostgreSQL™, however, does not require UTF-8 to be used for
 the password. When a user's password is set, it is processed with SASLprep
 as if it was in UTF-8, regardless of the actual encoding used. However, if
 it is not a legal UTF-8 byte sequence, or it contains UTF-8 byte sequences
 that are prohibited by the SASLprep algorithm, the raw password will be used
 without SASLprep processing, instead of throwing an error. This allows the
 password to be normalized when it is in UTF-8, but still allows a non-UTF-8
 password to be used, and doesn't require the system to know which encoding
 the password is in.

 Channel binding is supported in PostgreSQL builds with
 SSL support. The SASL mechanism name for SCRAM with channel binding is
 SCRAM-SHA-256-PLUS. The channel binding type used by
 PostgreSQL is tls-server-end-point.

 In SCRAM without channel binding, the server chooses
 a random number that is transmitted to the client to be mixed with the
 user-supplied password in the transmitted password hash. While this
 prevents the password hash from being successfully retransmitted in
 a later session, it does not prevent a fake server between the real
 server and client from passing through the server's random value
 and successfully authenticating.

 SCRAM with channel binding prevents such
 man-in-the-middle attacks by mixing the signature of the server's
 certificate into the transmitted password hash. While a fake server can
 retransmit the real server's certificate, it doesn't have access to the
 private key matching that certificate, and therefore cannot prove it is
 the owner, causing SSL connection failure.

Procedure 55.2. Example
	
 The server sends an AuthenticationSASL message. It includes a list of
 SASL authentication mechanisms that the server can accept.
 This will be SCRAM-SHA-256-PLUS
 and SCRAM-SHA-256 if the server is built with SSL
 support, or else just the latter.

	
 The client responds by sending a SASLInitialResponse message, which
 indicates the chosen mechanism, SCRAM-SHA-256 or
 SCRAM-SHA-256-PLUS. (A client is free to choose either
 mechanism, but for better security it should choose the channel-binding
 variant if it can support it.) In the Initial Client response field, the
 message contains the SCRAM client-first-message.
 The client-first-message also contains the channel
 binding type chosen by the client.

	
 Server sends an AuthenticationSASLContinue message, with a SCRAM
 server-first-message as the content.

	
 Client sends a SASLResponse message, with SCRAM
 client-final-message as the content.

	
 Server sends an AuthenticationSASLFinal message, with the SCRAM
 server-final-message, followed immediately by
 an AuthenticationOk message.

Streaming Replication Protocol

 To initiate streaming replication, the frontend sends the
 replication parameter in the startup message. A Boolean
 value of true (or on,
 yes, 1) tells the backend to go into
 physical replication walsender mode, wherein a small set of replication
 commands, shown below, can be issued instead of SQL statements.

 Passing database as the value for the
 replication parameter instructs the backend to go into
 logical replication walsender mode, connecting to the database specified in
 the dbname parameter. In logical replication walsender
 mode, the replication commands shown below as well as normal SQL commands can
 be issued.

 In either physical replication or logical replication walsender mode, only the
 simple query protocol can be used.

 For the purpose of testing replication commands, you can make a replication
 connection via psql or any other
 libpq-using tool with a connection string including
 the replication option,
 e.g.:

psql "dbname=postgres replication=database" -c "IDENTIFY_SYSTEM;"

 However, it is often more useful to use
 pg_receivewal(1) (for physical replication) or
 pg_recvlogical(1) (for logical replication).

 Replication commands are logged in the server log when
 log_replication_commands is enabled.

 The commands accepted in replication mode are:

	IDENTIFY_SYSTEM

	
 Requests the server to identify itself. Server replies with a result
 set of a single row, containing four fields:

	systemid (text)
	
 The unique system identifier identifying the cluster. This
 can be used to check that the base backup used to initialize the
 standby came from the same cluster.

	timeline (int8)
	
 Current timeline ID. Also useful to check that the standby is
 consistent with the primary.

	xlogpos (text)
	
 Current WAL flush location. Useful to get a known location in the
 write-ahead log where streaming can start.

	dbname (text)
	
 Database connected to or null.

	SHOW name

	
 Requests the server to send the current setting of a run-time parameter.
 This is similar to the SQL command SHOW(7).

	name
	
 The name of a run-time parameter. Available parameters are documented
 in Chapter 20, Server Configuration.

	TIMELINE_HISTORY tli

	
 Requests the server to send over the timeline history file for timeline
 tli. Server replies with a
 result set of a single row, containing two fields. While the fields
 are labeled as text, they effectively return raw bytes,
 with no encoding conversion:

	filename (text)
	
 File name of the timeline history file, e.g., 00000002.history.

	content (text)
	
 Contents of the timeline history file.

	CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL | LOGICAL output_plugin } [(option [, ...])]

	
 Create a physical or logical replication
 slot. See the section called “Replication Slots” for more about
 replication slots.

	slot_name
	
 The name of the slot to create. Must be a valid replication slot
 name (see the section called “Querying and Manipulating Replication Slots”).

	output_plugin
	
 The name of the output plugin used for logical decoding
 (see the section called “Logical Decoding Output Plugins”).

	TEMPORARY
	
 Specify that this replication slot is a temporary one. Temporary
 slots are not saved to disk and are automatically dropped on error
 or when the session has finished.

The following options are supported:
	TWO_PHASE [boolean]
	
 If true, this logical replication slot supports decoding of two-phase
 commit. With this option, commands related to two-phase commit such as
 PREPARE TRANSACTION, COMMIT PREPARED
 and ROLLBACK PREPARED are decoded and transmitted.
 The transaction will be decoded and transmitted at
 PREPARE TRANSACTION time.
 The default is false.

	RESERVE_WAL [boolean]
	
 If true, this physical replication slot reserves WAL
 immediately. Otherwise, WAL is only reserved upon
 connection from a streaming replication client.
 The default is false.

	SNAPSHOT { 'export' | 'use' | 'nothing' }
	
 Decides what to do with the snapshot created during logical slot
 initialization. 'export', which is the default,
 will export the snapshot for use in other sessions. This option can't
 be used inside a transaction. 'use' will use the
 snapshot for the current transaction executing the command. This
 option must be used in a transaction, and
 CREATE_REPLICATION_SLOT must be the first command
 run in that transaction. Finally, 'nothing' will
 just use the snapshot for logical decoding as normal but won't do
 anything else with it.

 In response to this command, the server will send a one-row result set
 containing the following fields:

	slot_name (text)
	
 The name of the newly-created replication slot.

	consistent_point (text)
	
 The WAL location at which the slot became consistent. This is the
 earliest location from which streaming can start on this replication
 slot.

	snapshot_name (text)
	
 The identifier of the snapshot exported by the command. The
 snapshot is valid until a new command is executed on this connection
 or the replication connection is closed. Null if the created slot
 is physical.

	output_plugin (text)
	
 The name of the output plugin used by the newly-created replication
 slot. Null if the created slot is physical.

	CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL [RESERVE_WAL] | LOGICAL output_plugin [EXPORT_SNAPSHOT | NOEXPORT_SNAPSHOT | USE_SNAPSHOT | TWO_PHASE] }

	
 For compatibility with older releases, this alternative syntax for
 the CREATE_REPLICATION_SLOT command is still supported.

	READ_REPLICATION_SLOT slot_name

	
 Read some information associated with a replication slot. Returns a tuple
 with NULL values if the replication slot does not
 exist. This command is currently only supported for physical replication
 slots.

 In response to this command, the server will return a one-row result set,
 containing the following fields:

	slot_type (text)
	
 The replication slot's type, either physical or
 NULL.

	restart_lsn (text)
	
 The replication slot's restart_lsn.

	restart_tli (int8)
	
 The timeline ID associated with restart_lsn,
 following the current timeline history.

	START_REPLICATION [SLOT slot_name] [PHYSICAL] XXX/XXX [TIMELINE tli]

	
 Instructs server to start streaming WAL, starting at
 WAL location XXX/XXX.
 If TIMELINE option is specified,
 streaming starts on timeline tli;
 otherwise, the server's current timeline is selected. The server can
 reply with an error, for example if the requested section of WAL has already
 been recycled. On success, the server responds with a CopyBothResponse
 message, and then starts to stream WAL to the frontend.

 If a slot's name is provided
 via slot_name, it will be updated
 as replication progresses so that the server knows which WAL segments,
 and if hot_standby_feedback is on which transactions,
 are still needed by the standby.

 If the client requests a timeline that's not the latest but is part of
 the history of the server, the server will stream all the WAL on that
 timeline starting from the requested start point up to the point where
 the server switched to another timeline. If the client requests
 streaming at exactly the end of an old timeline, the server skips COPY
 mode entirely.

 After streaming all the WAL on a timeline that is not the latest one,
 the server will end streaming by exiting the COPY mode. When the client
 acknowledges this by also exiting COPY mode, the server sends a result
 set with one row and two columns, indicating the next timeline in this
 server's history. The first column is the next timeline's ID (type int8), and the
 second column is the WAL location where the switch happened (type text). Usually,
 the switch position is the end of the WAL that was streamed, but there
 are corner cases where the server can send some WAL from the old
 timeline that it has not itself replayed before promoting. Finally, the
 server sends two CommandComplete messages (one that ends the CopyData
 and the other ends the START_REPLICATION itself), and
 is ready to accept a new command.

 WAL data is sent as a series of CopyData messages. (This allows
 other information to be intermixed; in particular the server can send
 an ErrorResponse message if it encounters a failure after beginning
 to stream.) The payload of each CopyData message from server to the
 client contains a message of one of the following formats:

	XLogData (B)
		Byte1('w')
	
 Identifies the message as WAL data.

	Int64
	
 The starting point of the WAL data in this message.

	Int64
	
 The current end of WAL on the server.

	Int64
	
 The server's system clock at the time of transmission, as
 microseconds since midnight on 2000-01-01.

	Byten
	
 A section of the WAL data stream.

 A single WAL record is never split across two XLogData messages.
 When a WAL record crosses a WAL page boundary, and is therefore
 already split using continuation records, it can be split at the page
 boundary. In other words, the first main WAL record and its
 continuation records can be sent in different XLogData messages.

	Primary keepalive message (B)
		Byte1('k')
	
 Identifies the message as a sender keepalive.

	Int64
	
 The current end of WAL on the server.

	Int64
	
 The server's system clock at the time of transmission, as
 microseconds since midnight on 2000-01-01.

	Byte1
	
 1 means that the client should reply to this message as soon as
 possible, to avoid a timeout disconnect. 0 otherwise.

 The receiving process can send replies back to the sender at any time,
 using one of the following message formats (also in the payload of a
 CopyData message):

	Standby status update (F)
		Byte1('r')
	
 Identifies the message as a receiver status update.

	Int64
	
 The location of the last WAL byte + 1 received and written to disk
 in the standby.

	Int64
	
 The location of the last WAL byte + 1 flushed to disk in
 the standby.

	Int64
	
 The location of the last WAL byte + 1 applied in the standby.

	Int64
	
 The client's system clock at the time of transmission, as
 microseconds since midnight on 2000-01-01.

	Byte1
	
 If 1, the client requests the server to reply to this message
 immediately. This can be used to ping the server, to test if
 the connection is still healthy.

	Hot standby feedback message (F)
		Byte1('h')
	
 Identifies the message as a hot standby feedback message.

	Int64
	
 The client's system clock at the time of transmission, as
 microseconds since midnight on 2000-01-01.

	Int32
	
 The standby's current global xmin, excluding the catalog_xmin from any
 replication slots. If both this value and the following
 catalog_xmin are 0 this is treated as a notification that hot standby
 feedback will no longer be sent on this connection. Later non-zero
 messages may reinitiate the feedback mechanism.

	Int32
	
 The epoch of the global xmin xid on the standby.

	Int32
	
 The lowest catalog_xmin of any replication slots on the standby. Set to 0
 if no catalog_xmin exists on the standby or if hot standby feedback is being
 disabled.

	Int32
	
 The epoch of the catalog_xmin xid on the standby.

	START_REPLICATION SLOT slot_name LOGICAL XXX/XXX [(option_name [option_value] [, ...])]
	
 Instructs server to start streaming WAL for logical replication,
 starting at either WAL location XXX/XXX or the slot's
 confirmed_flush_lsn (see the section called “pg_replication_slots”), whichever is greater. This
 behavior makes it easier for clients to avoid updating their local LSN
 status when there is no data to process. However, starting at a
 different LSN than requested might not catch certain kinds of client
 errors; so the client may wish to check that
 confirmed_flush_lsn matches its expectations before
 issuing START_REPLICATION.

 The server can reply with an error, for example if the
 slot does not exist. On success, the server responds with a CopyBothResponse
 message, and then starts to stream WAL to the frontend.

 The messages inside the CopyBothResponse messages are of the same format
 documented for START_REPLICATION ... PHYSICAL, including
 two CommandComplete messages.

 The output plugin associated with the selected slot is used
 to process the output for streaming.

	SLOT slot_name
	
 The name of the slot to stream changes from. This parameter is required,
 and must correspond to an existing logical replication slot created
 with CREATE_REPLICATION_SLOT in
 LOGICAL mode.

	XXX/XXX
	
 The WAL location to begin streaming at.

	option_name
	
 The name of an option passed to the slot's logical decoding output
 plugin. See the section called “Logical Streaming Replication Protocol” for
 options that are accepted by the standard (pgoutput)
 plugin.

	option_value
	
 Optional value, in the form of a string constant, associated with the
 specified option.

	
 DROP_REPLICATION_SLOT slot_name [WAIT]

	
 Drops a replication slot, freeing any reserved server-side resources.

	slot_name
	
 The name of the slot to drop.

	WAIT
	
 This option causes the command to wait if the slot is active until
 it becomes inactive, instead of the default behavior of raising an
 error.

	BASE_BACKUP [(option [, ...])]

	
 Instructs the server to start streaming a base backup.
 The system will automatically be put in backup mode before the backup
 is started, and taken out of it when the backup is complete. The
 following options are accepted:

	LABEL 'label'
	
 Sets the label of the backup. If none is specified, a backup label
 of base backup will be used. The quoting rules
 for the label are the same as a standard SQL string with
 standard_conforming_strings turned on.

	TARGET 'target'
	
 Tells the server where to send the backup. If the target is
 client, which is the default, the backup data is
 sent to the client. If it is server, the backup
 data is written to the server at the pathname specified by the
 TARGET_DETAIL option. If it is
 blackhole, the backup data is not sent
 anywhere; it is simply discarded.

 The server target requires superuser privilege or
 being granted the pg_write_server_files role.

	TARGET_DETAIL 'detail'
	
 Provides additional information about the backup target.

 Currently, this option can only be used when the backup target is
 server. It specifies the server directory
 to which the backup should be written.

	PROGRESS [boolean]
	
 If set to true, request information required to generate a progress
 report. This will send back an approximate size in the header of each
 tablespace, which can be used to calculate how far along the stream
 is done. This is calculated by enumerating all the file sizes once
 before the transfer is even started, and might as such have a
 negative impact on the performance. In particular, it might take
 longer before the first data
 is streamed. Since the database files can change during the backup,
 the size is only approximate and might both grow and shrink between
 the time of approximation and the sending of the actual files.
 The default is false.

	CHECKPOINT { 'fast' | 'spread' }
	
 Sets the type of checkpoint to be performed at the beginning of the
 base backup. The default is spread.

	WAL [boolean]
	
 If set to true, include the necessary WAL segments in the backup.
 This will include all the files between start and stop backup in the
 pg_wal directory of the base directory tar
 file. The default is false.

	WAIT [boolean]
	
 If set to true, the backup will wait until the last required WAL
 segment has been archived, or emit a warning if WAL archiving is
 not enabled. If false, the backup will neither wait nor warn,
 leaving the client responsible for ensuring the required log is
 available. The default is true.

	COMPRESSION 'method'
	
 Instructs the server to compress the backup using the specified
 method. Currently, the supported methods are gzip,
 lz4, and zstd.

	COMPRESSION_DETAIL detail
	
 Specifies details for the chosen compression method. This should only
 be used in conjunction with the COMPRESSION
 option. If the value is an integer, it specifies the compression
 level. Otherwise, it should be a comma-separated list of items,
 each of the form keyword or
 keyword=value. Currently, the supported
 keywords are level, long and
 workers.

 The level keyword sets the compression level.
 For gzip the compression level should be an
 integer between 1 and 9
 (default Z_DEFAULT_COMPRESSION or
 -1), for lz4 an integer
 between 1 and 12 (default 0 for fast compression
 mode), and for zstd an integer between
 ZSTD_minCLevel() (usually -131072)
 and ZSTD_maxCLevel() (usually 22),
 (default ZSTD_CLEVEL_DEFAULT or
 3).

 The long keyword enables long-distance matching
 mode, for improved compression ratio, at the expense of higher memory
 use. Long-distance mode is supported only for
 zstd.

 The workers keyword sets the number of threads
 that should be used for parallel compression. Parallel compression
 is supported only for zstd.

	MAX_RATE rate
	
 Limit (throttle) the maximum amount of data transferred from server
 to client per unit of time. The expected unit is kilobytes per second.
 If this option is specified, the value must either be equal to zero
 or it must fall within the range from 32 kB through 1 GB (inclusive).
 If zero is passed or the option is not specified, no restriction is
 imposed on the transfer.

	TABLESPACE_MAP [boolean]
	
 If true, include information about symbolic links present in the
 directory pg_tblspc in a file named
 tablespace_map. The tablespace map file includes
 each symbolic link name as it exists in the directory
 pg_tblspc/ and the full path of that symbolic link.
 The default is false.

	VERIFY_CHECKSUMS [boolean]
	
 If true, checksums are verified during a base backup if they are
 enabled. If false, this is skipped. The default is true.

	MANIFEST manifest_option
	
 When this option is specified with a value of yes
 or force-encode, a backup manifest is created
 and sent along with the backup. The manifest is a list of every
 file present in the backup with the exception of any WAL files that
 may be included. It also stores the size, last modification time, and
 optionally a checksum for each file.
 A value of force-encode forces all filenames
 to be hex-encoded; otherwise, this type of encoding is performed only
 for files whose names are non-UTF8 octet sequences.
 force-encode is intended primarily for testing
 purposes, to be sure that clients which read the backup manifest
 can handle this case. For compatibility with previous releases,
 the default is MANIFEST 'no'.

	MANIFEST_CHECKSUMS checksum_algorithm
	
 Specifies the checksum algorithm that should be applied to each file included
 in the backup manifest. Currently, the available
 algorithms are NONE, CRC32C,
 SHA224, SHA256,
 SHA384, and SHA512.
 The default is CRC32C.

 When the backup is started, the server will first send two
 ordinary result sets, followed by one or more CopyOutResponse
 results.

 The first ordinary result set contains the starting position of the
 backup, in a single row with two columns. The first column contains
 the start position given in XLogRecPtr format, and the second column
 contains the corresponding timeline ID.

 The second ordinary result set has one row for each tablespace.
 The fields in this row are:

	spcoid (oid)
	
 The OID of the tablespace, or null if it's the base
 directory.

	spclocation (text)
	
 The full path of the tablespace directory, or null
 if it's the base directory.

	size (int8)
	
 The approximate size of the tablespace, in kilobytes (1024 bytes),
 if progress report has been requested; otherwise it's null.

 After the second regular result set, a CopyOutResponse will be sent.
 The payload of each CopyData message will contain a message in one of
 the following formats:

	new archive (B)
		Byte1('n')
	
 Identifies the message as indicating the start of a new archive.
 There will be one archive for the main data directory and one
 for each additional tablespace; each will use tar format
 (following the “ustar interchange format” specified
 in the POSIX 1003.1-2008 standard).

	String
	
 The file name for this archive.

	String
	
 For the main data directory, an empty string. For other
 tablespaces, the full path to the directory from which this
 archive was created.

	manifest (B)
		Byte1('m')
	
 Identifies the message as indicating the start of the backup
 manifest.

	archive or manifest data (B)
		Byte1('d')
	
 Identifies the message as containing archive or manifest data.

	Byten
	
 Data bytes.

	progress report (B)
		Byte1('p')
	
 Identifies the message as a progress report.

	Int64
	
 The number of bytes from the current tablespace for which
 processing has been completed.

 After the CopyOutResponse, or all such responses, have been sent, a
 final ordinary result set will be sent, containing the WAL end position
 of the backup, in the same format as the start position.

 The tar archive for the data directory and each tablespace will contain
 all files in the directories, regardless of whether they are
 PostgreSQL™ files or other files added to the same
 directory. The only excluded files are:

	
 postmaster.pid

	
 postmaster.opts

	
 pg_internal.init (found in multiple directories)

	
 Various temporary files and directories created during the operation
 of the PostgreSQL server, such as any file or directory beginning
 with pgsql_tmp and temporary relations.

	
 Unlogged relations, except for the init fork which is required to
 recreate the (empty) unlogged relation on recovery.

	
 pg_wal, including subdirectories. If the backup is run
 with WAL files included, a synthesized version of pg_wal will be
 included, but it will only contain the files necessary for the
 backup to work, not the rest of the contents.

	
 pg_dynshmem, pg_notify,
 pg_replslot, pg_serial,
 pg_snapshots, pg_stat_tmp, and
 pg_subtrans are copied as empty directories (even if
 they are symbolic links).

	
 Files other than regular files and directories, such as symbolic
 links (other than for the directories listed above) and special
 device and operating system files, are skipped. (Symbolic links
 in pg_tblspc are maintained.)

 Owner, group, and file mode are set if the underlying file system on
 the server supports it.

Logical Streaming Replication Protocol

 This section describes the logical replication protocol, which is the message
 flow started by the START_REPLICATION
 SLOT slot_name
 LOGICAL replication command.

 The logical streaming replication protocol builds on the primitives of
 the physical streaming replication protocol.

 PostgreSQL™ logical decoding supports output
 plugins. pgoutput is the standard one used for
 the built-in logical replication.

Logical Streaming Replication Parameters

 Using the START_REPLICATION command,
 pgoutput accepts the following options:

	
 proto_version

	
 Protocol version. Currently versions 1, 2,
 3, and 4 are supported. A valid
 version is required.

 Version 2 is supported only for server version 14
 and above, and it allows streaming of large in-progress transactions.

 Version 3 is supported only for server version 15
 and above, and it allows streaming of two-phase commits.

 Version 4 is supported only for server version 16
 and above, and it allows streams of large in-progress transactions to
 be applied in parallel.

	
 publication_names

	
 Comma separated list of publication names for which to subscribe
 (receive changes). The individual publication names are treated
 as standard objects names and can be quoted the same as needed.
 At least one publication name is required.

	
 binary

	
 Boolean option to use binary transfer mode. Binary mode is faster
 than the text mode but slightly less robust.

	
 messages

	
 Boolean option to enable sending the messages that are written
 by pg_logical_emit_message.

	
 streaming

	
 Option to enable streaming of in-progress transactions. Valid values are
 off (the default), on and
 parallel. The setting parallel
 enables sending extra information with some messages to be used for
 parallelization. Minimum protocol version 2 is required to turn it
 on. Minimum protocol version 4 is required for the
 parallel value.

	
 two_phase

	
 Boolean option to enable two-phase transactions. Minimum protocol
 version 3 is required to turn it on.

	
 origin

	
 Option to send changes by their origin. Possible values are "none"
 to only send the changes that have no origin associated, or "any"
 to send the changes regardless of their origin. This can be used
 to avoid loops (infinite replication of the same data) among
 replication nodes.

Logical Replication Protocol Messages

 The individual protocol messages are discussed in the following
 subsections. Individual messages are described in
 the section called “Logical Replication Message Formats”.

 All top-level protocol messages begin with a message type byte.
 While represented in code as a character, this is a signed byte with no
 associated encoding.

 Since the streaming replication protocol supplies a message length there
 is no need for top-level protocol messages to embed a length in their
 header.

Logical Replication Protocol Message Flow

 With the exception of the START_REPLICATION command and
 the replay progress messages, all information flows only from the backend
 to the frontend.

 The logical replication protocol sends individual transactions one by one.
 This means that all messages between a pair of Begin and Commit messages
 belong to the same transaction. Similarly, all messages between a pair of
 Begin Prepare and Prepare messages belong to the same transaction.
 It also sends changes of large in-progress transactions between a pair of
 Stream Start and Stream Stop messages. The last stream of such a transaction
 contains a Stream Commit or Stream Abort message.

 Every sent transaction contains zero or more DML messages (Insert,
 Update, Delete). In case of a cascaded setup it can also contain Origin
 messages. The origin message indicates that the transaction originated on
 different replication node. Since a replication node in the scope of logical
 replication protocol can be pretty much anything, the only identifier
 is the origin name. It's downstream's responsibility to handle this as
 needed (if needed). The Origin message is always sent before any DML
 messages in the transaction.

 Every DML message contains a relation OID, identifying the publisher's
 relation that was acted on. Before the first DML message for a given
 relation OID, a Relation message will be sent, describing the schema of
 that relation. Subsequently, a new Relation message will be sent if
 the relation's definition has changed since the last Relation message
 was sent for it. (The protocol assumes that the client is capable of
 remembering this metadata for as many relations as needed.)

 Relation messages identify column types by their OIDs. In the case
 of a built-in type, it is assumed that the client can look up that
 type OID locally, so no additional data is needed. For a non-built-in
 type OID, a Type message will be sent before the Relation message,
 to provide the type name associated with that OID. Thus, a client that
 needs to specifically identify the types of relation columns should
 cache the contents of Type messages, and first consult that cache to
 see if the type OID is defined there. If not, look up the type OID
 locally.

Message Data Types

 This section describes the base data types used in messages.

	Intn(i)
	
 An n-bit integer in network byte
 order (most significant byte first).
 If i is specified it
 is the exact value that will appear, otherwise the value
 is variable. Eg. Int16, Int32(42).

	Intn[k]
	
 An array of k
 n-bit integers, each in network
 byte order. The array length k
 is always determined by an earlier field in the message.
 Eg. Int16[M].

	String(s)
	
 A null-terminated string (C-style string). There is no
 specific length limitation on strings.
 If s is specified it is the exact
 value that will appear, otherwise the value is variable.
 Eg. String, String("user").

Note

 There is no predefined limit on the length of a string
 that can be returned by the backend. Good coding strategy for a frontend
 is to use an expandable buffer so that anything that fits in memory can be
 accepted. If that's not feasible, read the full string and discard trailing
 characters that don't fit into your fixed-size buffer.

	Byten(c)
	
 Exactly n bytes. If the field
 width n is not a constant, it is
 always determinable from an earlier field in the message.
 If c is specified it is the exact
 value. Eg. Byte2, Byte1('\n').

Message Formats

 This section describes the detailed format of each message. Each is marked to
 indicate that it can be sent by a frontend (F), a backend (B), or both
 (F & B).
 Notice that although each message includes a byte count at the beginning,
 the message format is defined so that the message end can be found without
 reference to the byte count. This aids validity checking. (The CopyData
 message is an exception, because it forms part of a data stream; the contents
 of any individual CopyData message cannot be interpretable on their own.)

	AuthenticationOk (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(0)
	
 Specifies that the authentication was successful.

	AuthenticationKerberosV5 (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(2)
	
 Specifies that Kerberos V5 authentication is required.

	AuthenticationCleartextPassword (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(3)
	
 Specifies that a clear-text password is required.

	AuthenticationMD5Password (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(12)
	
 Length of message contents in bytes, including self.

	Int32(5)
	
 Specifies that an MD5-encrypted password is required.

	Byte4
	
 The salt to use when encrypting the password.

	AuthenticationGSS (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(7)
	
 Specifies that GSSAPI authentication is required.

	AuthenticationGSSContinue (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32
	
 Length of message contents in bytes, including self.

	Int32(8)
	
 Specifies that this message contains GSSAPI or SSPI data.

	Byten
	
 GSSAPI or SSPI authentication data.

	AuthenticationSSPI (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(9)
	
 Specifies that SSPI authentication is required.

	AuthenticationSASL (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32
	
 Length of message contents in bytes, including self.

	Int32(10)
	
 Specifies that SASL authentication is required.

 The message body is a list of SASL authentication mechanisms, in the
 server's order of preference. A zero byte is required as terminator after
 the last authentication mechanism name. For each mechanism, there is the
 following:

	String
	
 Name of a SASL authentication mechanism.

	AuthenticationSASLContinue (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32
	
 Length of message contents in bytes, including self.

	Int32(11)
	
 Specifies that this message contains a SASL challenge.

	Byten
	
 SASL data, specific to the SASL mechanism being used.

	AuthenticationSASLFinal (B)
		Byte1('R')
	
 Identifies the message as an authentication request.

	Int32
	
 Length of message contents in bytes, including self.

	Int32(12)
	
 Specifies that SASL authentication has completed.

	Byten
	
 SASL outcome "additional data", specific to the SASL mechanism
 being used.

	BackendKeyData (B)
		Byte1('K')
	
 Identifies the message as cancellation key data.
 The frontend must save these values if it wishes to be
 able to issue CancelRequest messages later.

	Int32(12)
	
 Length of message contents in bytes, including self.

	Int32
	
 The process ID of this backend.

	Int32
	
 The secret key of this backend.

	Bind (F)
		Byte1('B')
	
 Identifies the message as a Bind command.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The name of the destination portal
 (an empty string selects the unnamed portal).

	String
	
 The name of the source prepared statement
 (an empty string selects the unnamed prepared statement).

	Int16
	
 The number of parameter format codes that follow
 (denoted C below).
 This can be zero to indicate that there are no parameters
 or that the parameters all use the default format (text);
 or one, in which case the specified format code is applied
 to all parameters; or it can equal the actual number of
 parameters.

	Int16[C]
	
 The parameter format codes. Each must presently be
 zero (text) or one (binary).

	Int16
	
 The number of parameter values that follow (possibly zero).
 This must match the number of parameters needed by the query.

 Next, the following pair of fields appear for each parameter:

	Int32
	
 The length of the parameter value, in bytes (this count
 does not include itself). Can be zero.
 As a special case, -1 indicates a NULL parameter value.
 No value bytes follow in the NULL case.

	Byten
	
 The value of the parameter, in the format indicated by the
 associated format code.
 n is the above length.

 After the last parameter, the following fields appear:

	Int16
	
 The number of result-column format codes that follow
 (denoted R below).
 This can be zero to indicate that there are no result columns
 or that the result columns should all use the default format
 (text);
 or one, in which case the specified format code is applied
 to all result columns (if any); or it can equal the actual
 number of result columns of the query.

	Int16[R]
	
 The result-column format codes. Each must presently be
 zero (text) or one (binary).

	BindComplete (B)
		Byte1('2')
	
 Identifies the message as a Bind-complete indicator.

	Int32(4)
	
 Length of message contents in bytes, including self.

	CancelRequest (F)
		Int32(16)
	
 Length of message contents in bytes, including self.

	Int32(80877102)
	
 The cancel request code. The value is chosen to contain
 1234 in the most significant 16 bits, and 5678 in the
 least significant 16 bits. (To avoid confusion, this code
 must not be the same as any protocol version number.)

	Int32
	
 The process ID of the target backend.

	Int32
	
 The secret key for the target backend.

	Close (F)
		Byte1('C')
	
 Identifies the message as a Close command.

	Int32
	
 Length of message contents in bytes, including self.

	Byte1
	
 'S' to close a prepared statement; or
 'P' to close a portal.

	String
	
 The name of the prepared statement or portal to close
 (an empty string selects the unnamed prepared statement
 or portal).

	CloseComplete (B)
		Byte1('3')
	
 Identifies the message as a Close-complete indicator.

	Int32(4)
	
 Length of message contents in bytes, including self.

	CommandComplete (B)
		Byte1('C')
	
 Identifies the message as a command-completed response.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The command tag. This is usually a single
 word that identifies which SQL command was completed.

 For an INSERT command, the tag is
 INSERT oid
 rows, where
 rows is the number of rows
 inserted. oid used to be the object ID
 of the inserted row if rows was 1
 and the target table had OIDs, but OIDs system columns are
 not supported anymore; therefore oid
 is always 0.

 For a DELETE command, the tag is
 DELETE rows where
 rows is the number of rows deleted.

 For an UPDATE command, the tag is
 UPDATE rows where
 rows is the number of rows updated.

 For a MERGE command, the tag is
 MERGE rows where
 rows is the number of rows inserted,
 updated, or deleted.

 For a SELECT or CREATE TABLE AS
 command, the tag is SELECT rows
 where rows is the number of rows retrieved.

 For a MOVE command, the tag is
 MOVE rows where
 rows is the number of rows the
 cursor's position has been changed by.

 For a FETCH command, the tag is
 FETCH rows where
 rows is the number of rows that
 have been retrieved from the cursor.

 For a COPY command, the tag is
 COPY rows where
 rows is the number of rows copied.
 (Note: the row count appears only in
 PostgreSQL™ 8.2 and later.)

	CopyData (F & B)
		Byte1('d')
	
 Identifies the message as COPY data.

	Int32
	
 Length of message contents in bytes, including self.

	Byten
	
 Data that forms part of a COPY data stream. Messages sent
 from the backend will always correspond to single data rows,
 but messages sent by frontends might divide the data stream
 arbitrarily.

	CopyDone (F & B)
		Byte1('c')
	
 Identifies the message as a COPY-complete indicator.

	Int32(4)
	
 Length of message contents in bytes, including self.

	CopyFail (F)
		Byte1('f')
	
 Identifies the message as a COPY-failure indicator.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 An error message to report as the cause of failure.

	CopyInResponse (B)
		Byte1('G')
	
 Identifies the message as a Start Copy In response.
 The frontend must now send copy-in data (if not
 prepared to do so, send a CopyFail message).

	Int32
	
 Length of message contents in bytes, including self.

	Int8
	
 0 indicates the overall COPY format is textual (rows
 separated by newlines, columns separated by separator
 characters, etc.).
 1 indicates the overall copy format is binary (similar
 to DataRow format).
 See COPY(7)
 for more information.

	Int16
	
 The number of columns in the data to be copied
 (denoted N below).

	Int16[N]
	
 The format codes to be used for each column.
 Each must presently be zero (text) or one (binary).
 All must be zero if the overall copy format is textual.

	CopyOutResponse (B)
		Byte1('H')
	
 Identifies the message as a Start Copy Out response.
 This message will be followed by copy-out data.

	Int32
	
 Length of message contents in bytes, including self.

	Int8
	
 0 indicates the overall COPY format
 is textual (rows separated by newlines, columns
 separated by separator characters, etc.). 1 indicates
 the overall copy format is binary (similar to DataRow
 format). See COPY(7) for more information.

	Int16
	
 The number of columns in the data to be copied
 (denoted N below).

	Int16[N]
	
 The format codes to be used for each column.
 Each must presently be zero (text) or one (binary).
 All must be zero if the overall copy format is textual.

	CopyBothResponse (B)
		Byte1('W')
	
 Identifies the message as a Start Copy Both response.
 This message is used only for Streaming Replication.

	Int32
	
 Length of message contents in bytes, including self.

	Int8
	
 0 indicates the overall COPY format
 is textual (rows separated by newlines, columns
 separated by separator characters, etc.). 1 indicates
 the overall copy format is binary (similar to DataRow
 format). See COPY(7) for more information.

	Int16
	
 The number of columns in the data to be copied
 (denoted N below).

	Int16[N]
	
 The format codes to be used for each column.
 Each must presently be zero (text) or one (binary).
 All must be zero if the overall copy format is textual.

	DataRow (B)
		Byte1('D')
	
 Identifies the message as a data row.

	Int32
	
 Length of message contents in bytes, including self.

	Int16
	
 The number of column values that follow (possibly zero).

 Next, the following pair of fields appear for each column:

	Int32
	
 The length of the column value, in bytes (this count
 does not include itself). Can be zero.
 As a special case, -1 indicates a NULL column value.
 No value bytes follow in the NULL case.

	Byten
	
 The value of the column, in the format indicated by the
 associated format code.
 n is the above length.

	Describe (F)
		Byte1('D')
	
 Identifies the message as a Describe command.

	Int32
	
 Length of message contents in bytes, including self.

	Byte1
	
 'S' to describe a prepared statement; or
 'P' to describe a portal.

	String
	
 The name of the prepared statement or portal to describe
 (an empty string selects the unnamed prepared statement
 or portal).

	EmptyQueryResponse (B)
		Byte1('I')
	
 Identifies the message as a response to an empty query string.
 (This substitutes for CommandComplete.)

	Int32(4)
	
 Length of message contents in bytes, including self.

	ErrorResponse (B)
		Byte1('E')
	
 Identifies the message as an error.

	Int32
	
 Length of message contents in bytes, including self.

 The message body consists of one or more identified fields,
 followed by a zero byte as a terminator. Fields can appear in
 any order. For each field there is the following:

	Byte1
	
 A code identifying the field type; if zero, this is
 the message terminator and no string follows.
 The presently defined field types are listed in
 the section called “Error and Notice Message Fields”.
 Since more field types might be added in future,
 frontends should silently ignore fields of unrecognized
 type.

	String
	
 The field value.

	Execute (F)
		Byte1('E')
	
 Identifies the message as an Execute command.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The name of the portal to execute
 (an empty string selects the unnamed portal).

	Int32
	
 Maximum number of rows to return, if portal contains
 a query that returns rows (ignored otherwise). Zero
 denotes “no limit”.

	Flush (F)
		Byte1('H')
	
 Identifies the message as a Flush command.

	Int32(4)
	
 Length of message contents in bytes, including self.

	FunctionCall (F)
		Byte1('F')
	
 Identifies the message as a function call.

	Int32
	
 Length of message contents in bytes, including self.

	Int32
	
 Specifies the object ID of the function to call.

	Int16
	
 The number of argument format codes that follow
 (denoted C below).
 This can be zero to indicate that there are no arguments
 or that the arguments all use the default format (text);
 or one, in which case the specified format code is applied
 to all arguments; or it can equal the actual number of
 arguments.

	Int16[C]
	
 The argument format codes. Each must presently be
 zero (text) or one (binary).

	Int16
	
 Specifies the number of arguments being supplied to the
 function.

 Next, the following pair of fields appear for each argument:

	Int32
	
 The length of the argument value, in bytes (this count
 does not include itself). Can be zero.
 As a special case, -1 indicates a NULL argument value.
 No value bytes follow in the NULL case.

	Byten
	
 The value of the argument, in the format indicated by the
 associated format code.
 n is the above length.

 After the last argument, the following field appears:

	Int16
	
 The format code for the function result. Must presently be
 zero (text) or one (binary).

	FunctionCallResponse (B)
		Byte1('V')
	
 Identifies the message as a function call result.

	Int32
	
 Length of message contents in bytes, including self.

	Int32
	
 The length of the function result value, in bytes (this count
 does not include itself). Can be zero.
 As a special case, -1 indicates a NULL function result.
 No value bytes follow in the NULL case.

	Byten
	
 The value of the function result, in the format indicated by
 the associated format code.
 n is the above length.

	GSSENCRequest (F)
		Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(80877104)
	
 The GSSAPI Encryption request code. The value is chosen to contain
 1234 in the most significant 16 bits, and 5680 in the
 least significant 16 bits. (To avoid confusion, this code
 must not be the same as any protocol version number.)

	GSSResponse (F)
		Byte1('p')
	
 Identifies the message as a GSSAPI or SSPI response. Note that
 this is also used for SASL and password response messages.
 The exact message type can be deduced from the context.

	Int32
	
 Length of message contents in bytes, including self.

	Byten
	
 GSSAPI/SSPI specific message data.

	NegotiateProtocolVersion (B)
		Byte1('v')
	
 Identifies the message as a protocol version negotiation
 message.

	Int32
	
 Length of message contents in bytes, including self.

	Int32
	
 Newest minor protocol version supported by the server
 for the major protocol version requested by the client.

	Int32
	
 Number of protocol options not recognized by the server.

 Then, for protocol option not recognized by the server, there
 is the following:

	String
	
 The option name.

	NoData (B)
		Byte1('n')
	
 Identifies the message as a no-data indicator.

	Int32(4)
	
 Length of message contents in bytes, including self.

	NoticeResponse (B)
		Byte1('N')
	
 Identifies the message as a notice.

	Int32
	
 Length of message contents in bytes, including self.

 The message body consists of one or more identified fields,
 followed by a zero byte as a terminator. Fields can appear in
 any order. For each field there is the following:

	Byte1
	
 A code identifying the field type; if zero, this is
 the message terminator and no string follows.
 The presently defined field types are listed in
 the section called “Error and Notice Message Fields”.
 Since more field types might be added in future,
 frontends should silently ignore fields of unrecognized
 type.

	String
	
 The field value.

	NotificationResponse (B)
		Byte1('A')
	
 Identifies the message as a notification response.

	Int32
	
 Length of message contents in bytes, including self.

	Int32
	
 The process ID of the notifying backend process.

	String
	
 The name of the channel that the notify has been raised on.

	String
	
 The “payload” string passed from the notifying process.

	ParameterDescription (B)
		Byte1('t')
	
 Identifies the message as a parameter description.

	Int32
	
 Length of message contents in bytes, including self.

	Int16
	
 The number of parameters used by the statement
 (can be zero).

 Then, for each parameter, there is the following:

	Int32
	
 Specifies the object ID of the parameter data type.

	ParameterStatus (B)
		Byte1('S')
	
 Identifies the message as a run-time parameter status report.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The name of the run-time parameter being reported.

	String
	
 The current value of the parameter.

	Parse (F)
		Byte1('P')
	
 Identifies the message as a Parse command.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The name of the destination prepared statement
 (an empty string selects the unnamed prepared statement).

	String
	
 The query string to be parsed.

	Int16
	
 The number of parameter data types specified
 (can be zero). Note that this is not an indication of
 the number of parameters that might appear in the
 query string, only the number that the frontend wants to
 prespecify types for.

 Then, for each parameter, there is the following:

	Int32
	
 Specifies the object ID of the parameter data type.
 Placing a zero here is equivalent to leaving the type
 unspecified.

	ParseComplete (B)
		Byte1('1')
	
 Identifies the message as a Parse-complete indicator.

	Int32(4)
	
 Length of message contents in bytes, including self.

	PasswordMessage (F)
		Byte1('p')
	
 Identifies the message as a password response. Note that
 this is also used for GSSAPI, SSPI and SASL response messages.
 The exact message type can be deduced from the context.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The password (encrypted, if requested).

	PortalSuspended (B)
		Byte1('s')
	
 Identifies the message as a portal-suspended indicator.
 Note this only appears if an Execute message's row-count limit
 was reached.

	Int32(4)
	
 Length of message contents in bytes, including self.

	Query (F)
		Byte1('Q')
	
 Identifies the message as a simple query.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 The query string itself.

	ReadyForQuery (B)
		Byte1('Z')
	
 Identifies the message type. ReadyForQuery is sent
 whenever the backend is ready for a new query cycle.

	Int32(5)
	
 Length of message contents in bytes, including self.

	Byte1
	
 Current backend transaction status indicator.
 Possible values are 'I' if idle (not in
 a transaction block); 'T' if in a transaction
 block; or 'E' if in a failed transaction
 block (queries will be rejected until block is ended).

	RowDescription (B)
		Byte1('T')
	
 Identifies the message as a row description.

	Int32
	
 Length of message contents in bytes, including self.

	Int16
	
 Specifies the number of fields in a row (can be zero).

 Then, for each field, there is the following:

	String
	
 The field name.

	Int32
	
 If the field can be identified as a column of a specific
 table, the object ID of the table; otherwise zero.

	Int16
	
 If the field can be identified as a column of a specific
 table, the attribute number of the column; otherwise zero.

	Int32
	
 The object ID of the field's data type.

	Int16
	
 The data type size (see pg_type.typlen).
 Note that negative values denote variable-width types.

	Int32
	
 The type modifier (see pg_attribute.atttypmod).
 The meaning of the modifier is type-specific.

	Int16
	
 The format code being used for the field. Currently will
 be zero (text) or one (binary). In a RowDescription
 returned from the statement variant of Describe, the
 format code is not yet known and will always be zero.

	SASLInitialResponse (F)
		Byte1('p')
	
 Identifies the message as an initial SASL response. Note that
 this is also used for GSSAPI, SSPI and password response messages.
 The exact message type is deduced from the context.

	Int32
	
 Length of message contents in bytes, including self.

	String
	
 Name of the SASL authentication mechanism that the client
 selected.

	Int32
	
 Length of SASL mechanism specific "Initial Client Response" that
 follows, or -1 if there is no Initial Response.

	Byten
	
 SASL mechanism specific "Initial Response".

	SASLResponse (F)
		Byte1('p')
	
 Identifies the message as a SASL response. Note that
 this is also used for GSSAPI, SSPI and password response messages.
 The exact message type can be deduced from the context.

	Int32
	
 Length of message contents in bytes, including self.

	Byten
	
 SASL mechanism specific message data.

	SSLRequest (F)
		Int32(8)
	
 Length of message contents in bytes, including self.

	Int32(80877103)
	
 The SSL request code. The value is chosen to contain
 1234 in the most significant 16 bits, and 5679 in the
 least significant 16 bits. (To avoid confusion, this code
 must not be the same as any protocol version number.)

	StartupMessage (F)
		Int32
	
 Length of message contents in bytes, including self.

	Int32(196608)
	
 The protocol version number. The most significant 16 bits are
 the major version number (3 for the protocol described here).
 The least significant 16 bits are the minor version number
 (0 for the protocol described here).

 The protocol version number is followed by one or more pairs of
 parameter name and value strings. A zero byte is required as a
 terminator after the last name/value pair.
 Parameters can appear in any
 order. user is required, others are optional.
 Each parameter is specified as:

	String
	
 The parameter name. Currently recognized names are:

	user
	
 The database user name to connect as. Required;
 there is no default.

	database
	
 The database to connect to. Defaults to the user name.

	options
	
 Command-line arguments for the backend. (This is
 deprecated in favor of setting individual run-time
 parameters.) Spaces within this string are
 considered to separate arguments, unless escaped with
 a backslash (\); write \\ to
 represent a literal backslash.

	replication
	
 Used to connect in streaming replication mode, where
 a small set of replication commands can be issued
 instead of SQL statements. Value can be
 true, false, or
 database, and the default is
 false. See
 the section called “Streaming Replication Protocol” for details.

 In addition to the above, other parameters may be listed.
 Parameter names beginning with _pq_. are
 reserved for use as protocol extensions, while others are
 treated as run-time parameters to be set at backend start
 time. Such settings will be applied during backend start
 (after parsing the command-line arguments if any) and will
 act as session defaults.

	String
	
 The parameter value.

	Sync (F)
		Byte1('S')
	
 Identifies the message as a Sync command.

	Int32(4)
	
 Length of message contents in bytes, including self.

	Terminate (F)
		Byte1('X')
	
 Identifies the message as a termination.

	Int32(4)
	
 Length of message contents in bytes, including self.

Error and Notice Message Fields

 This section describes the fields that can appear in ErrorResponse and
 NoticeResponse messages. Each field type has a single-byte identification
 token. Note that any given field type should appear at most once per
 message.

	S
	
 Severity: the field contents are
 ERROR, FATAL, or
 PANIC (in an error message), or
 WARNING, NOTICE, DEBUG,
 INFO, or LOG (in a notice message),
 or a localized translation of one of these. Always present.

	V
	
 Severity: the field contents are
 ERROR, FATAL, or
 PANIC (in an error message), or
 WARNING, NOTICE, DEBUG,
 INFO, or LOG (in a notice message).
 This is identical to the S field except
 that the contents are never localized. This is present only in
 messages generated by PostgreSQL™ versions 9.6
 and later.

	C
	
 Code: the SQLSTATE code for the error (see Appendix A, PostgreSQL™ Error Codes). Not localizable. Always present.

	M
	
 Message: the primary human-readable error message.
 This should be accurate but terse (typically one line).
 Always present.

	D
	
 Detail: an optional secondary error message carrying more
 detail about the problem. Might run to multiple lines.

	H
	
 Hint: an optional suggestion what to do about the problem.
 This is intended to differ from Detail in that it offers advice
 (potentially inappropriate) rather than hard facts.
 Might run to multiple lines.

	P
	
 Position: the field value is a decimal ASCII integer, indicating
 an error cursor position as an index into the original query string.
 The first character has index 1, and positions are measured in
 characters not bytes.

	p
	
 Internal position: this is defined the same as the P
 field, but it is used when the cursor position refers to an internally
 generated command rather than the one submitted by the client.
 The q field will always appear when this field appears.

	q
	
 Internal query: the text of a failed internally-generated command.
 This could be, for example, an SQL query issued by a PL/pgSQL function.

	W
	
 Where: an indication of the context in which the error occurred.
 Presently this includes a call stack traceback of active
 procedural language functions and internally-generated queries.
 The trace is one entry per line, most recent first.

	s
	
 Schema name: if the error was associated with a specific database
 object, the name of the schema containing that object, if any.

	t
	
 Table name: if the error was associated with a specific table, the
 name of the table. (Refer to the schema name field for the name of
 the table's schema.)

	c
	
 Column name: if the error was associated with a specific table column,
 the name of the column. (Refer to the schema and table name fields to
 identify the table.)

	d
	
 Data type name: if the error was associated with a specific data type,
 the name of the data type. (Refer to the schema name field for the
 name of the data type's schema.)

	n
	
 Constraint name: if the error was associated with a specific
 constraint, the name of the constraint. Refer to fields listed above
 for the associated table or domain. (For this purpose, indexes are
 treated as constraints, even if they weren't created with constraint
 syntax.)

	F
	
 File: the file name of the source-code location where the error
 was reported.

	L
	
 Line: the line number of the source-code location where the error
 was reported.

	R
	
 Routine: the name of the source-code routine reporting the error.

Note

 The fields for schema name, table name, column name, data type name, and
 constraint name are supplied only for a limited number of error types;
 see Appendix A, PostgreSQL™ Error Codes. Frontends should not assume that
 the presence of any of these fields guarantees the presence of another
 field. Core error sources observe the interrelationships noted above, but
 user-defined functions may use these fields in other ways. In the same
 vein, clients should not assume that these fields denote contemporary
 objects in the current database.

 The client is responsible for formatting displayed information to meet its
 needs; in particular it should break long lines as needed. Newline characters
 appearing in the error message fields should be treated as paragraph breaks,
 not line breaks.

Logical Replication Message Formats

 This section describes the detailed format of each logical replication
 message. These messages are either returned by the replication slot SQL
 interface or are sent by a walsender. In the case of a walsender, they are
 encapsulated inside replication protocol WAL messages as described in
 the section called “Streaming Replication Protocol”, and generally obey the same message
 flow as physical replication.

	Begin
		Byte1('B')
	
 Identifies the message as a begin message.

	Int64 (XLogRecPtr)
	
 The final LSN of the transaction.

	Int64 (TimestampTz)
	
 Commit timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	Message
		Byte1('M')
	
 Identifies the message as a logical decoding message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int8
	
 Flags; Either 0 for no flags or 1 if the logical decoding
 message is transactional.

	Int64 (XLogRecPtr)
	
 The LSN of the logical decoding message.

	String
	
 The prefix of the logical decoding message.

	Int32
	
 Length of the content.

	Byten
	
 The content of the logical decoding message.

	Commit
		Byte1('C')
	
 Identifies the message as a commit message.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The LSN of the commit.

	Int64 (XLogRecPtr)
	
 The end LSN of the transaction.

	Int64 (TimestampTz)
	
 Commit timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Origin
		Byte1('O')
	
 Identifies the message as an origin message.

	Int64 (XLogRecPtr)
	
 The LSN of the commit on the origin server.

	String
	
 Name of the origin.

 Note that there can be multiple Origin messages inside a single transaction.

	Relation
		Byte1('R')
	
 Identifies the message as a relation message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32 (Oid)
	
 OID of the relation.

	String
	
 Namespace (empty string for pg_catalog).

	String
	
 Relation name.

	Int8
	
 Replica identity setting for the relation (same as
 relreplident in pg_class).

	Int16
	
 Number of columns.

 Next, the following message part appears for each column included in
 the publication (except generated columns):

	Int8
	
 Flags for the column. Currently can be either 0 for no flags
 or 1 which marks the column as part of the key.

	String
	
 Name of the column.

	Int32 (Oid)
	
 OID of the column's data type.

	Int32
	
 Type modifier of the column (atttypmod).

	Type
		Byte1('Y')
	
 Identifies the message as a type message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32 (Oid)
	
 OID of the data type.

	String
	
 Namespace (empty string for pg_catalog).

	String
	
 Name of the data type.

	Insert
		Byte1('I')
	
 Identifies the message as an insert message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32 (Oid)
	
 OID of the relation corresponding to the ID in the relation
 message.

	Byte1('N')
	
 Identifies the following TupleData message as a new tuple.

	TupleData
	
 TupleData message part representing the contents of new tuple.

	Update
		Byte1('U')
	
 Identifies the message as an update message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32 (Oid)
	
 OID of the relation corresponding to the ID in the relation
 message.

	Byte1('K')
	
 Identifies the following TupleData submessage as a key.
 This field is optional and is only present if
 the update changed data in any of the column(s) that are
 part of the REPLICA IDENTITY index.

	Byte1('O')
	
 Identifies the following TupleData submessage as an old tuple.
 This field is optional and is only present if table in which
 the update happened has REPLICA IDENTITY set to FULL.

	TupleData
	
 TupleData message part representing the contents of the old tuple
 or primary key. Only present if the previous 'O' or 'K' part
 is present.

	Byte1('N')
	
 Identifies the following TupleData message as a new tuple.

	TupleData
	
 TupleData message part representing the contents of a new tuple.

 The Update message may contain either a 'K' message part or an 'O' message part
 or neither of them, but never both of them.

	Delete
		Byte1('D')
	
 Identifies the message as a delete message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32 (Oid)
	
 OID of the relation corresponding to the ID in the relation
 message.

	Byte1('K')
	
 Identifies the following TupleData submessage as a key.
 This field is present if the table in which the delete has
 happened uses an index as REPLICA IDENTITY.

	Byte1('O')
	
 Identifies the following TupleData message as an old tuple.
 This field is present if the table in which the delete
 happened has REPLICA IDENTITY set to FULL.

	TupleData
	
 TupleData message part representing the contents of the old tuple
 or primary key, depending on the previous field.

 The Delete message may contain either a 'K' message part or an 'O' message part,
 but never both of them.

	Truncate
		Byte1('T')
	
 Identifies the message as a truncate message.

	Int32 (TransactionId)
	
 Xid of the transaction (only present for streamed transactions).
 This field is available since protocol version 2.

	Int32
	
 Number of relations

	Int8
	
 Option bits for TRUNCATE:
 1 for CASCADE, 2 for RESTART IDENTITY

	Int32 (Oid)
	
 OID of the relation corresponding to the ID in the relation
 message. This field is repeated for each relation.

 The following messages (Stream Start, Stream Stop, Stream Commit, and
 Stream Abort) are available since protocol version 2.

	Stream Start
		Byte1('S')
	
 Identifies the message as a stream start message.

	Int32 (TransactionId)
	
 Xid of the transaction.

	Int8
	
 A value of 1 indicates this is the first stream segment for
 this XID, 0 for any other stream segment.

	Stream Stop
		Byte1('E')
	
 Identifies the message as a stream stop message.

	Stream Commit
		Byte1('c')
	
 Identifies the message as a stream commit message.

	Int32 (TransactionId)
	
 Xid of the transaction.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The LSN of the commit.

	Int64 (XLogRecPtr)
	
 The end LSN of the transaction.

	Int64 (TimestampTz)
	
 Commit timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Stream Abort
		Byte1('A')
	
 Identifies the message as a stream abort message.

	Int32 (TransactionId)
	
 Xid of the transaction.

	Int32 (TransactionId)
	
 Xid of the subtransaction (will be same as xid of the transaction for top-level
 transactions).

	Int64 (XLogRecPtr)
	
 The LSN of the abort operation, present only when streaming is set to parallel.
 This field is available since protocol version 4.

	Int64 (TimestampTz)
	
 Abort timestamp of the transaction, present only when streaming is set to
 parallel. The value is in number of microseconds since PostgreSQL epoch (2000-01-01).
 This field is available since protocol version 4.

 The following messages (Begin Prepare, Prepare, Commit Prepared, Rollback Prepared, Stream Prepare)
 are available since protocol version 3.

	Begin Prepare
		Byte1('b')
	
 Identifies the message as the beginning of a prepared transaction message.

	Int64 (XLogRecPtr)
	
 The LSN of the prepare.

	Int64 (XLogRecPtr)
	
 The end LSN of the prepared transaction.

	Int64 (TimestampTz)
	
 Prepare timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	String
	
 The user defined GID of the prepared transaction.

	Prepare
		Byte1('P')
	
 Identifies the message as a prepared transaction message.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The LSN of the prepare.

	Int64 (XLogRecPtr)
	
 The end LSN of the prepared transaction.

	Int64 (TimestampTz)
	
 Prepare timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	String
	
 The user defined GID of the prepared transaction.

	Commit Prepared
		Byte1('K')
	
 Identifies the message as the commit of a prepared transaction message.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The LSN of the commit of the prepared transaction.

	Int64 (XLogRecPtr)
	
 The end LSN of the commit of the prepared transaction.

	Int64 (TimestampTz)
	
 Commit timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	String
	
 The user defined GID of the prepared transaction.

	Rollback Prepared
		Byte1('r')
	
 Identifies the message as the rollback of a prepared transaction message.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The end LSN of the prepared transaction.

	Int64 (XLogRecPtr)
	
 The end LSN of the rollback of the prepared transaction.

	Int64 (TimestampTz)
	
 Prepare timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int64 (TimestampTz)
	
 Rollback timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	String
	
 The user defined GID of the prepared transaction.

	Stream Prepare
		Byte1('p')
	
 Identifies the message as a stream prepared transaction message.

	Int8(0)
	
 Flags; currently unused.

	Int64 (XLogRecPtr)
	
 The LSN of the prepare.

	Int64 (XLogRecPtr)
	
 The end LSN of the prepared transaction.

	Int64 (TimestampTz)
	
 Prepare timestamp of the transaction. The value is in number
 of microseconds since PostgreSQL epoch (2000-01-01).

	Int32 (TransactionId)
	
 Xid of the transaction.

	String
	
 The user defined GID of the prepared transaction.

 The following message parts are shared by the above messages.

	TupleData
		Int16
	
 Number of columns.

 Next, one of the following submessages appears for each column (except generated columns):

	Byte1('n')
	
 Identifies the data as NULL value.

 Or

	Byte1('u')
	
 Identifies unchanged TOASTed value (the actual value is not
 sent).

 Or

	Byte1('t')
	
 Identifies the data as text formatted value.

 Or

	Byte1('b')
	
 Identifies the data as binary formatted value.

	Int32
	
 Length of the column value.

	Byten
	
 The value of the column, either in binary or in text format.
 (As specified in the preceding format byte).
 n is the above length.

Summary of Changes since Protocol 2.0

 This section provides a quick checklist of changes, for the benefit of
 developers trying to update existing client libraries to protocol 3.0.

 The initial startup packet uses a flexible list-of-strings format
 instead of a fixed format. Notice that session default values for run-time
 parameters can now be specified directly in the startup packet. (Actually,
 you could do that before using the options field, but given the
 limited width of options and the lack of any way to quote
 whitespace in the values, it wasn't a very safe technique.)

 All messages now have a length count immediately following the message type
 byte (except for startup packets, which have no type byte). Also note that
 PasswordMessage now has a type byte.

 ErrorResponse and NoticeResponse ('E' and 'N')
 messages now contain multiple fields, from which the client code can
 assemble an error message of the desired level of verbosity. Note that
 individual fields will typically not end with a newline, whereas the single
 string sent in the older protocol always did.

 The ReadyForQuery ('Z') message includes a transaction status
 indicator.

 The distinction between BinaryRow and DataRow message types is gone; the
 single DataRow message type serves for returning data in all formats.
 Note that the layout of DataRow has changed to make it easier to parse.
 Also, the representation of binary values has changed: it is no longer
 directly tied to the server's internal representation.

 There is a new “extended query” sub-protocol, which adds the frontend
 message types Parse, Bind, Execute, Describe, Close, Flush, and Sync, and the
 backend message types ParseComplete, BindComplete, PortalSuspended,
 ParameterDescription, NoData, and CloseComplete. Existing clients do not
 have to concern themselves with this sub-protocol, but making use of it
 might allow improvements in performance or functionality.

 COPY data is now encapsulated into CopyData and CopyDone messages. There
 is a well-defined way to recover from errors during COPY. The special
 “\.” last line is not needed anymore, and is not sent
 during COPY OUT.
 (It is still recognized as a terminator during COPY IN, but its use is
 deprecated and will eventually be removed.) Binary COPY is supported.
 The CopyInResponse and CopyOutResponse messages include fields indicating
 the number of columns and the format of each column.

 The layout of FunctionCall and FunctionCallResponse messages has changed.
 FunctionCall can now support passing NULL arguments to functions. It also
 can handle passing parameters and retrieving results in either text or
 binary format. There is no longer any reason to consider FunctionCall a
 potential security hole, since it does not offer direct access to internal
 server data representations.

 The backend sends ParameterStatus ('S') messages during connection
 startup for all parameters it considers interesting to the client library.
 Subsequently, a ParameterStatus message is sent whenever the active value
 changes for any of these parameters.

 The RowDescription ('T') message carries new table OID and column
 number fields for each column of the described row. It also shows the format
 code for each column.

 The CursorResponse ('P') message is no longer generated by
 the backend.

 The NotificationResponse ('A') message has an additional string
 field, which can carry a “payload” string passed
 from the NOTIFY event sender.

 The EmptyQueryResponse ('I') message used to include an empty
 string parameter; this has been removed.

Chapter 56. PostgreSQL Coding Conventions

Formatting

 Source code formatting uses 4 column tab spacing, with
 tabs preserved (i.e., tabs are not expanded to spaces).
 Each logical indentation level is one additional tab stop.

 Layout rules (brace positioning, etc.) follow BSD conventions. In
 particular, curly braces for the controlled blocks of if,
 while, switch, etc. go on their own lines.

 Limit line lengths so that the code is readable in an 80-column window.
 (This doesn't mean that you must never go past 80 columns. For instance,
 breaking a long error message string in arbitrary places just to keep the
 code within 80 columns is probably not a net gain in readability.)

 To maintain a consistent coding style, do not use C++ style comments
 (// comments). pgindent
 will replace them with /* ... */.

 The preferred style for multi-line comment blocks is

/*
 * comment text begins here
 * and continues here
 */

 Note that comment blocks that begin in column 1 will be preserved as-is
 by pgindent, but it will re-flow indented comment blocks
 as though they were plain text. If you want to preserve the line breaks
 in an indented block, add dashes like this:

 /*----------
 * comment text begins here
 * and continues here
 *----------
 */

 While submitted patches do not absolutely have to follow these formatting
 rules, it's a good idea to do so. Your code will get run through
 pgindent before the next release, so there's no point in
 making it look nice under some other set of formatting conventions.
 A good rule of thumb for patches is “make the new code look like
 the existing code around it”.

 The src/tools/editors directory contains sample settings
 files that can be used with the Emacs™,
 xemacs™ or vim™
 editors to help ensure that they format code according to these
 conventions.

 If you'd like to run pgindent locally
 to help make your code match project style, see
 the src/tools/pgindent directory.

 The text browsing tools more and
 less can be invoked as:

more -x4
less -x4

 to make them show tabs appropriately.

Reporting Errors Within the Server

 Error, warning, and log messages generated within the server code
 should be created using ereport, or its older cousin
 elog. The use of this function is complex enough to
 require some explanation.

 There are two required elements for every message: a severity level
 (ranging from DEBUG to PANIC) and a primary
 message text. In addition there are optional elements, the most
 common of which is an error identifier code that follows the SQL spec's
 SQLSTATE conventions.
 ereport itself is just a shell macro that exists
 mainly for the syntactic convenience of making message generation
 look like a single function call in the C source code. The only parameter
 accepted directly by ereport is the severity level.
 The primary message text and any optional message elements are
 generated by calling auxiliary functions, such as errmsg,
 within the ereport call.

 A typical call to ereport might look like this:

ereport(ERROR,
 errcode(ERRCODE_DIVISION_BY_ZERO),
 errmsg("division by zero"));

 This specifies error severity level ERROR (a run-of-the-mill
 error). The errcode call specifies the SQLSTATE error code
 using a macro defined in src/include/utils/errcodes.h. The
 errmsg call provides the primary message text.

 You will also frequently see this older style, with an extra set of
 parentheses surrounding the auxiliary function calls:

ereport(ERROR,
 (errcode(ERRCODE_DIVISION_BY_ZERO),
 errmsg("division by zero")));

 The extra parentheses were required
 before PostgreSQL™ version 12, but are now
 optional.

 Here is a more complex example:

ereport(ERROR,
 errcode(ERRCODE_AMBIGUOUS_FUNCTION),
 errmsg("function %s is not unique",
 func_signature_string(funcname, nargs,
 NIL, actual_arg_types)),
 errhint("Unable to choose a best candidate function. "
 "You might need to add explicit typecasts."));

 This illustrates the use of format codes to embed run-time values into
 a message text. Also, an optional “hint” message is provided.
 The auxiliary function calls can be written in any order, but
 conventionally errcode
 and errmsg appear first.

 If the severity level is ERROR or higher,
 ereport aborts execution of the current query
 and does not return to the caller. If the severity level is
 lower than ERROR, ereport returns normally.

 The available auxiliary routines for ereport are:

	
 errcode(sqlerrcode) specifies the SQLSTATE error identifier
 code for the condition. If this routine is not called, the error
 identifier defaults to
 ERRCODE_INTERNAL_ERROR when the error severity level is
 ERROR or higher, ERRCODE_WARNING when the
 error level is WARNING, otherwise (for NOTICE
 and below) ERRCODE_SUCCESSFUL_COMPLETION.
 While these defaults are often convenient, always think whether they
 are appropriate before omitting the errcode() call.

	
 errmsg(const char *msg, ...) specifies the primary error
 message text, and possibly run-time values to insert into it. Insertions
 are specified by sprintf-style format codes. In addition to
 the standard format codes accepted by sprintf, the format
 code %m can be used to insert the error message returned
 by strerror for the current value of errno.
 [16]
 %m does not require any
 corresponding entry in the parameter list for errmsg.
 Note that the message string will be run through gettext
 for possible localization before format codes are processed.

	
 errmsg_internal(const char *msg, ...) is the same as
 errmsg, except that the message string will not be
 translated nor included in the internationalization message dictionary.
 This should be used for “cannot happen” cases that are probably
 not worth expending translation effort on.

	
 errmsg_plural(const char *fmt_singular, const char *fmt_plural,
 unsigned long n, ...) is like errmsg, but with
 support for various plural forms of the message.
 fmt_singular is the English singular format,
 fmt_plural is the English plural format,
 n is the integer value that determines which plural
 form is needed, and the remaining arguments are formatted according
 to the selected format string. For more information see
 the section called “Message-Writing Guidelines”.

	
 errdetail(const char *msg, ...) supplies an optional
 “detail” message; this is to be used when there is additional
 information that seems inappropriate to put in the primary message.
 The message string is processed in just the same way as for
 errmsg.

	
 errdetail_internal(const char *msg, ...) is the same
 as errdetail, except that the message string will not be
 translated nor included in the internationalization message dictionary.
 This should be used for detail messages that are not worth expending
 translation effort on, for instance because they are too technical to be
 useful to most users.

	
 errdetail_plural(const char *fmt_singular, const char *fmt_plural,
 unsigned long n, ...) is like errdetail, but with
 support for various plural forms of the message.
 For more information see the section called “Message-Writing Guidelines”.

	
 errdetail_log(const char *msg, ...) is the same as
 errdetail except that this string goes only to the server
 log, never to the client. If both errdetail (or one of
 its equivalents above) and
 errdetail_log are used then one string goes to the client
 and the other to the log. This is useful for error details that are
 too security-sensitive or too bulky to include in the report
 sent to the client.

	
 errdetail_log_plural(const char *fmt_singular, const char
 *fmt_plural, unsigned long n, ...) is like
 errdetail_log, but with support for various plural forms of
 the message.
 For more information see the section called “Message-Writing Guidelines”.

	
 errhint(const char *msg, ...) supplies an optional
 “hint” message; this is to be used when offering suggestions
 about how to fix the problem, as opposed to factual details about
 what went wrong.
 The message string is processed in just the same way as for
 errmsg.

	
 errhint_plural(const char *fmt_singular, const char *fmt_plural,
 unsigned long n, ...) is like errhint, but with
 support for various plural forms of the message.
 For more information see the section called “Message-Writing Guidelines”.

	
 errcontext(const char *msg, ...) is not normally called
 directly from an ereport message site; rather it is used
 in error_context_stack callback functions to provide
 information about the context in which an error occurred, such as the
 current location in a PL function.
 The message string is processed in just the same way as for
 errmsg. Unlike the other auxiliary functions, this can
 be called more than once per ereport call; the successive
 strings thus supplied are concatenated with separating newlines.

	
 errposition(int cursorpos) specifies the textual location
 of an error within a query string. Currently it is only useful for
 errors detected in the lexical and syntactic analysis phases of
 query processing.

	
 errtable(Relation rel) specifies a relation whose
 name and schema name should be included as auxiliary fields in the error
 report.

	
 errtablecol(Relation rel, int attnum) specifies
 a column whose name, table name, and schema name should be included as
 auxiliary fields in the error report.

	
 errtableconstraint(Relation rel, const char *conname)
 specifies a table constraint whose name, table name, and schema name
 should be included as auxiliary fields in the error report. Indexes
 should be considered to be constraints for this purpose, whether or
 not they have an associated pg_constraint entry. Be
 careful to pass the underlying heap relation, not the index itself, as
 rel.

	
 errdatatype(Oid datatypeOid) specifies a data
 type whose name and schema name should be included as auxiliary fields
 in the error report.

	
 errdomainconstraint(Oid datatypeOid, const char *conname)
 specifies a domain constraint whose name, domain name, and schema name
 should be included as auxiliary fields in the error report.

	
 errcode_for_file_access() is a convenience function that
 selects an appropriate SQLSTATE error identifier for a failure in a
 file-access-related system call. It uses the saved
 errno to determine which error code to generate.
 Usually this should be used in combination with %m in the
 primary error message text.

	
 errcode_for_socket_access() is a convenience function that
 selects an appropriate SQLSTATE error identifier for a failure in a
 socket-related system call.

	
 errhidestmt(bool hide_stmt) can be called to specify
 suppression of the STATEMENT: portion of a message in the
 postmaster log. Generally this is appropriate if the message text
 includes the current statement already.

	
 errhidecontext(bool hide_ctx) can be called to
 specify suppression of the CONTEXT: portion of a message in
 the postmaster log. This should only be used for verbose debugging
 messages where the repeated inclusion of context would bloat the log
 too much.

Note

 At most one of the functions errtable,
 errtablecol, errtableconstraint,
 errdatatype, or errdomainconstraint should
 be used in an ereport call. These functions exist to
 allow applications to extract the name of a database object associated
 with the error condition without having to examine the
 potentially-localized error message text.
 These functions should be used in error reports for which it's likely
 that applications would wish to have automatic error handling. As of
 PostgreSQL™ 9.3, complete coverage exists only for
 errors in SQLSTATE class 23 (integrity constraint violation), but this
 is likely to be expanded in future.

 There is an older function elog that is still heavily used.
 An elog call:

elog(level, "format string", ...);

 is exactly equivalent to:

ereport(level, errmsg_internal("format string", ...));

 Notice that the SQLSTATE error code is always defaulted, and the message
 string is not subject to translation.
 Therefore, elog should be used only for internal errors and
 low-level debug logging. Any message that is likely to be of interest to
 ordinary users should go through ereport. Nonetheless,
 there are enough internal “cannot happen” error checks in the
 system that elog is still widely used; it is preferred for
 those messages for its notational simplicity.

 Advice about writing good error messages can be found in
 the section called “Error Message Style Guide”.

[16]
 That is, the value that was current when the ereport call
 was reached; changes of errno within the auxiliary reporting
 routines will not affect it. That would not be true if you were to
 write strerror(errno) explicitly in errmsg's
 parameter list; accordingly, do not do so.

Error Message Style Guide

 This style guide is offered in the hope of maintaining a consistent,
 user-friendly style throughout all the messages generated by
 PostgreSQL™.

What Goes Where

 The primary message should be short, factual, and avoid reference to
 implementation details such as specific function names.
 “Short” means “should fit on one line under normal
 conditions”. Use a detail message if needed to keep the primary
 message short, or if you feel a need to mention implementation details
 such as the particular system call that failed. Both primary and detail
 messages should be factual. Use a hint message for suggestions about what
 to do to fix the problem, especially if the suggestion might not always be
 applicable.

 For example, instead of:

IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)

 write:

Primary: could not create shared memory segment: %m
Detail: Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint: the addendum

 Rationale: keeping the primary message short helps keep it to the point,
 and lets clients lay out screen space on the assumption that one line is
 enough for error messages. Detail and hint messages can be relegated to a
 verbose mode, or perhaps a pop-up error-details window. Also, details and
 hints would normally be suppressed from the server log to save
 space. Reference to implementation details is best avoided since users
 aren't expected to know the details.

Formatting

 Don't put any specific assumptions about formatting into the message
 texts. Expect clients and the server log to wrap lines to fit their own
 needs. In long messages, newline characters (\n) can be used to indicate
 suggested paragraph breaks. Don't end a message with a newline. Don't
 use tabs or other formatting characters. (In error context displays,
 newlines are automatically added to separate levels of context such as
 function calls.)

 Rationale: Messages are not necessarily displayed on terminal-type
 displays. In GUI displays or browsers these formatting instructions are
 at best ignored.

Quotation Marks

 English text should use double quotes when quoting is appropriate.
 Text in other languages should consistently use one kind of quotes that is
 consistent with publishing customs and computer output of other programs.

 Rationale: The choice of double quotes over single quotes is somewhat
 arbitrary, but tends to be the preferred use. Some have suggested
 choosing the kind of quotes depending on the type of object according to
 SQL conventions (namely, strings single quoted, identifiers double
 quoted). But this is a language-internal technical issue that many users
 aren't even familiar with, it won't scale to other kinds of quoted terms,
 it doesn't translate to other languages, and it's pretty pointless, too.

Use of Quotes

 Always use quotes to delimit file names, user-supplied identifiers, and
 other variables that might contain words. Do not use them to mark up
 variables that will not contain words (for example, operator names).

 There are functions in the backend that will double-quote their own output
 as needed (for example, format_type_be()). Do not put
 additional quotes around the output of such functions.

 Rationale: Objects can have names that create ambiguity when embedded in a
 message. Be consistent about denoting where a plugged-in name starts and
 ends. But don't clutter messages with unnecessary or duplicate quote
 marks.

Grammar and Punctuation

 The rules are different for primary error messages and for detail/hint
 messages:

 Primary error messages: Do not capitalize the first letter. Do not end a
 message with a period. Do not even think about ending a message with an
 exclamation point.

 Detail and hint messages: Use complete sentences, and end each with
 a period. Capitalize the first word of sentences. Put two spaces after
 the period if another sentence follows (for English text; might be
 inappropriate in other languages).

 Error context strings: Do not capitalize the first letter and do
 not end the string with a period. Context strings should normally
 not be complete sentences.

 Rationale: Avoiding punctuation makes it easier for client applications to
 embed the message into a variety of grammatical contexts. Often, primary
 messages are not grammatically complete sentences anyway. (And if they're
 long enough to be more than one sentence, they should be split into
 primary and detail parts.) However, detail and hint messages are longer
 and might need to include multiple sentences. For consistency, they should
 follow complete-sentence style even when there's only one sentence.

Upper Case vs. Lower Case

 Use lower case for message wording, including the first letter of a
 primary error message. Use upper case for SQL commands and key words if
 they appear in the message.

 Rationale: It's easier to make everything look more consistent this
 way, since some messages are complete sentences and some not.

Avoid Passive Voice

 Use the active voice. Use complete sentences when there is an acting
 subject (“A could not do B”). Use telegram style without
 subject if the subject would be the program itself; do not use
 “I” for the program.

 Rationale: The program is not human. Don't pretend otherwise.

Present vs. Past Tense

 Use past tense if an attempt to do something failed, but could perhaps
 succeed next time (perhaps after fixing some problem). Use present tense
 if the failure is certainly permanent.

 There is a nontrivial semantic difference between sentences of the form:

could not open file "%s": %m

and:

cannot open file "%s"

 The first one means that the attempt to open the file failed. The
 message should give a reason, such as “disk full” or
 “file doesn't exist”. The past tense is appropriate because
 next time the disk might not be full anymore or the file in question might
 exist.

 The second form indicates that the functionality of opening the named file
 does not exist at all in the program, or that it's conceptually
 impossible. The present tense is appropriate because the condition will
 persist indefinitely.

 Rationale: Granted, the average user will not be able to draw great
 conclusions merely from the tense of the message, but since the language
 provides us with a grammar we should use it correctly.

Type of the Object

 When citing the name of an object, state what kind of object it is.

 Rationale: Otherwise no one will know what “foo.bar.baz”
 refers to.

Brackets

 Square brackets are only to be used (1) in command synopses to denote
 optional arguments, or (2) to denote an array subscript.

 Rationale: Anything else does not correspond to widely-known customary
 usage and will confuse people.

Assembling Error Messages

 When a message includes text that is generated elsewhere, embed it in
 this style:

could not open file %s: %m

 Rationale: It would be difficult to account for all possible error codes
 to paste this into a single smooth sentence, so some sort of punctuation
 is needed. Putting the embedded text in parentheses has also been
 suggested, but it's unnatural if the embedded text is likely to be the
 most important part of the message, as is often the case.

Reasons for Errors

 Messages should always state the reason why an error occurred.
 For example:

BAD: could not open file %s
BETTER: could not open file %s (I/O failure)

 If no reason is known you better fix the code.

Function Names

 Don't include the name of the reporting routine in the error text. We have
 other mechanisms for finding that out when needed, and for most users it's
 not helpful information. If the error text doesn't make as much sense
 without the function name, reword it.

BAD: pg_strtoint32: error in "z": cannot parse "z"
BETTER: invalid input syntax for type integer: "z"

 Avoid mentioning called function names, either; instead say what the code
 was trying to do:

BAD: open() failed: %m
BETTER: could not open file %s: %m

 If it really seems necessary, mention the system call in the detail
 message. (In some cases, providing the actual values passed to the
 system call might be appropriate information for the detail message.)

 Rationale: Users don't know what all those functions do.

Tricky Words to Avoid

Unable.
 “Unable” is nearly the passive voice. Better use
 “cannot” or “could not”, as appropriate.

Bad.
 Error messages like “bad result” are really hard to interpret
 intelligently. It's better to write why the result is “bad”,
 e.g., “invalid format”.

Illegal.
 “Illegal” stands for a violation of the law, the rest is
 “invalid”. Better yet, say why it's invalid.

Unknown.
 Try to avoid “unknown”. Consider “error: unknown
 response”. If you don't know what the response is, how do you know
 it's erroneous? “Unrecognized” is often a better choice.
 Also, be sure to include the value being complained of.

BAD: unknown node type
BETTER: unrecognized node type: 42

Find vs. Exists.
 If the program uses a nontrivial algorithm to locate a resource (e.g., a
 path search) and that algorithm fails, it is fair to say that the program
 couldn't “find” the resource. If, on the other hand, the
 expected location of the resource is known but the program cannot access
 it there then say that the resource doesn't “exist”. Using
 “find” in this case sounds weak and confuses the issue.

May vs. Can vs. Might.
 “May” suggests permission (e.g., "You may borrow my rake."),
 and has little use in documentation or error messages.
 “Can” suggests ability (e.g., "I can lift that log."),
 and “might” suggests possibility (e.g., "It might rain
 today."). Using the proper word clarifies meaning and assists
 translation.

Contractions.
 Avoid contractions, like “can't”; use
 “cannot” instead.

Non-negative.
 Avoid “non-negative” as it is ambiguous
 about whether it accepts zero. It's better to use
 “greater than zero” or
 “greater than or equal to zero”.

Proper Spelling

 Spell out words in full. For instance, avoid:

	
 spec

	
 stats

	
 parens

	
 auth

	
 xact

 Rationale: This will improve consistency.

Localization

 Keep in mind that error message texts need to be translated into other
 languages. Follow the guidelines in the section called “Message-Writing Guidelines”
 to avoid making life difficult for translators.

Miscellaneous Coding Conventions

C Standard

 Code in PostgreSQL™ should only rely on language
 features available in the C99 standard. That means a conforming
 C99 compiler has to be able to compile postgres, at least aside
 from a few platform dependent pieces.

 A few features included in the C99 standard are, at this time, not
 permitted to be used in core PostgreSQL™
 code. This currently includes variable length arrays, intermingled
 declarations and code, // comments, universal
 character names. Reasons for that include portability and historical
 practices.

 Features from later revisions of the C standard or compiler specific
 features can be used, if a fallback is provided.

 For example _Static_assert() and
 __builtin_constant_p are currently used, even though
 they are from newer revisions of the C standard and a
 GCC™ extension respectively. If not available
 we respectively fall back to using a C99 compatible replacement that
 performs the same checks, but emits rather cryptic messages and do not
 use __builtin_constant_p.

Function-Like Macros and Inline Functions

 Both macros with arguments and static inline
 functions may be used. The latter are preferable if there are
 multiple-evaluation hazards when written as a macro, as e.g., the
 case with

#define Max(x, y) ((x) > (y) ? (x) : (y))

 or when the macro would be very long. In other cases it's only
 possible to use macros, or at least easier. For example because
 expressions of various types need to be passed to the macro.

 When the definition of an inline function references symbols
 (i.e., variables, functions) that are only available as part of the
 backend, the function may not be visible when included from frontend
 code.

#ifndef FRONTEND
static inline MemoryContext
MemoryContextSwitchTo(MemoryContext context)
{
 MemoryContext old = CurrentMemoryContext;

 CurrentMemoryContext = context;
 return old;
}
#endif /* FRONTEND */

 In this example CurrentMemoryContext, which is only
 available in the backend, is referenced and the function thus
 hidden with a #ifndef FRONTEND. This rule
 exists because some compilers emit references to symbols
 contained in inline functions even if the function is not used.

Writing Signal Handlers

 To be suitable to run inside a signal handler code has to be
 written very carefully. The fundamental problem is that, unless
 blocked, a signal handler can interrupt code at any time. If code
 inside the signal handler uses the same state as code outside
 chaos may ensue. As an example consider what happens if a signal
 handler tries to acquire a lock that's already held in the
 interrupted code.

 Barring special arrangements code in signal handlers may only
 call async-signal safe functions (as defined in POSIX) and access
 variables of type volatile sig_atomic_t. A few
 functions in postgres are also deemed signal safe, importantly
 SetLatch().

 In most cases signal handlers should do nothing more than note
 that a signal has arrived, and wake up code running outside of
 the handler using a latch. An example of such a handler is the
 following:

static void
handle_sighup(SIGNAL_ARGS)
{
 int save_errno = errno;

 got_SIGHUP = true;
 SetLatch(MyLatch);

 errno = save_errno;
}

 errno is saved and restored because
 SetLatch() might change it. If that were not done
 interrupted code that's currently inspecting errno might see the wrong
 value.

Calling Function Pointers

 For clarity, it is preferred to explicitly dereference a function pointer
 when calling the pointed-to function if the pointer is a simple variable,
 for example:

(*emit_log_hook) (edata);

 (even though emit_log_hook(edata) would also work).
 When the function pointer is part of a structure, then the extra
 punctuation can and usually should be omitted, for example:

paramInfo->paramFetch(paramInfo, paramId);

Chapter 57. Native Language Support

For the Translator

 PostgreSQL™
 programs (server and client) can issue their messages in
 your favorite language — if the messages have been translated.
 Creating and maintaining translated message sets needs the help of
 people who speak their own language well and want to contribute to
 the PostgreSQL™ effort. You do not have to be a
 programmer at all
 to do this. This section explains how to help.

Requirements

 We won't judge your language skills — this section is about
 software tools. Theoretically, you only need a text editor. But
 this is only in the unlikely event that you do not want to try out
 your translated messages. When you configure your source tree, be
 sure to use the --enable-nls option. This will
 also check for the libintl library and the
 msgfmt program, which all end users will need
 anyway. To try out your work, follow the applicable portions of
 the installation instructions.

 If you want to start a new translation effort or want to do a
 message catalog merge (described later), you will need the
 programs xgettext and
 msgmerge, respectively, in a GNU-compatible
 implementation. Later, we will try to arrange it so that if you
 use a packaged source distribution, you won't need
 xgettext. (If working from Git, you will still need
 it.) GNU Gettext 0.10.36 or later is currently recommended.

 Your local gettext implementation should come with its own
 documentation. Some of that is probably duplicated in what
 follows, but for additional details you should look there.

Concepts

 The pairs of original (English) messages and their (possibly)
 translated equivalents are kept in message
 catalogs, one for each program (although related
 programs can share a message catalog) and for each target
 language. There are two file formats for message catalogs: The
 first is the “PO” file (for Portable Object), which
 is a plain text file with special syntax that translators edit.
 The second is the “MO” file (for Machine Object),
 which is a binary file generated from the respective PO file and
 is used while the internationalized program is run. Translators
 do not deal with MO files; in fact hardly anyone does.

 The extension of the message catalog file is to no surprise either
 .po or .mo. The base
 name is either the name of the program it accompanies, or the
 language the file is for, depending on the situation. This is a
 bit confusing. Examples are psql.po (PO file
 for psql) or fr.mo (MO file in French).

 The file format of the PO files is illustrated here:

comment

msgid "original string"
msgstr "translated string"

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

...

 The msgid lines are extracted from the program source. (They need not
 be, but this is the most common way.) The msgstr lines are
 initially empty and are filled in with useful strings by the
 translator. The strings can contain C-style escape characters and
 can be continued across lines as illustrated. (The next line must
 start at the beginning of the line.)

 The # character introduces a comment. If whitespace immediately
 follows the # character, then this is a comment maintained by the
 translator. There can also be automatic comments, which have a
 non-whitespace character immediately following the #. These are
 maintained by the various tools that operate on the PO files and
 are intended to aid the translator.

#. automatic comment
#: filename.c:1023
#, flags, flags

 The #. style comments are extracted from the source file where the
 message is used. Possibly the programmer has inserted information
 for the translator, such as about expected alignment. The #:
 comments indicate the exact locations where the message is used
 in the source. The translator need not look at the program
 source, but can if there is doubt about the correct
 translation. The #, comments contain flags that describe the
 message in some way. There are currently two flags:
 fuzzy is set if the message has possibly been
 outdated because of changes in the program source. The translator
 can then verify this and possibly remove the fuzzy flag. Note
 that fuzzy messages are not made available to the end user. The
 other flag is c-format, which indicates that
 the message is a printf-style format
 template. This means that the translation should also be a format
 string with the same number and type of placeholders. There are
 tools that can verify this, which key off the c-format flag.

Creating and Maintaining Message Catalogs

 OK, so how does one create a “blank” message
 catalog? First, go into the directory that contains the program
 whose messages you want to translate. If there is a file
 nls.mk, then this program has been prepared
 for translation.

 If there are already some .po files, then
 someone has already done some translation work. The files are
 named language.po,
 where language is the

 ISO 639-1 two-letter language code (in lower case), e.g.,
 fr.po for French. If there is really a need
 for more than one translation effort per language then the files
 can also be named
 language_region.po
 where region is the

 ISO 3166-1 two-letter country code (in upper case),
 e.g.,
 pt_BR.po for Portuguese in Brazil. If you
 find the language you wanted you can just start working on that
 file.

 If you need to start a new translation effort, then first run the
 command:

make init-po

 This will create a file
 progname.pot.
 (.pot to distinguish it from PO files that
 are “in production”. The T stands for
 “template”.)
 Copy this file to
 language.po and
 edit it. To make it known that the new language is available,
 also edit the file po/LINGUAS and add the
 language (or language and country) code next to languages already listed,
 like:

de fr

 (Other languages can appear, of course.)

 As the underlying program or library changes, messages might be
 changed or added by the programmers. In this case you do not need
 to start from scratch. Instead, run the command:

make update-po

 which will create a new blank message catalog file (the pot file
 you started with) and will merge it with the existing PO files.
 If the merge algorithm is not sure about a particular message it
 marks it “fuzzy” as explained above. The new PO file
 is saved with a .po.new extension.

Editing the PO Files

 The PO files can be edited with a regular text editor. There are also
 several specialized editors for PO files which can help the process with
 translation-specific features.
 There is (unsurprisingly) a PO mode for Emacs, which can be quite
 useful.

 The translator should only change the area between the quotes after
 the msgstr directive, add comments, and alter the fuzzy flag.

 The PO files need not be completely filled in. The software will
 automatically fall back to the original string if no translation
 (or an empty translation) is available. It is no problem to
 submit incomplete translations for inclusions in the source tree;
 that gives room for other people to pick up your work. However,
 you are encouraged to give priority to removing fuzzy entries
 after doing a merge. Remember that fuzzy entries will not be
 installed; they only serve as reference for what might be the right
 translation.

 Here are some things to keep in mind while editing the
 translations:

	
 Make sure that if the original ends with a newline, the
 translation does, too. Similarly for tabs, etc.

	
 If the original is a printf format string, the translation
 also needs to be. The translation also needs to have the same
 format specifiers in the same order. Sometimes the natural
 rules of the language make this impossible or at least awkward.
 In that case you can modify the format specifiers like this:

msgstr "Die Datei %2$s hat %1$u Zeichen."

 Then the first placeholder will actually use the second
 argument from the list. The
 digits$ needs to
 follow the % immediately, before any other format manipulators.
 (This feature really exists in the printf
 family of functions. You might not have heard of it before because
 there is little use for it outside of message
 internationalization.)

	
 If the original string contains a linguistic mistake, report
 that (or fix it yourself in the program source) and translate
 normally. The corrected string can be merged in when the
 program sources have been updated. If the original string
 contains a factual mistake, report that (or fix it yourself)
 and do not translate it. Instead, you can mark the string with
 a comment in the PO file.

	
 Maintain the style and tone of the original string.
 Specifically, messages that are not sentences (cannot
 open file %s) should probably not start with a
 capital letter (if your language distinguishes letter case) or
 end with a period (if your language uses punctuation marks).
 It might help to read the section called “Error Message Style Guide”.

	
 If you don't know what a message means, or if it is ambiguous,
 ask on the developers' mailing list. Chances are that English
 speaking end users might also not understand it or find it
 ambiguous, so it's best to improve the message.

For the Programmer

Mechanics

 This section describes how to implement native language support in a
 program or library that is part of the
 PostgreSQL™ distribution.
 Currently, it only applies to C programs.

Procedure 57.1. Adding NLS Support to a Program
	
 Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h>
#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain("progname", LOCALEDIR);
textdomain("progname");
#endif

 (The progname can actually be chosen
 freely.)

	
 Wherever a message that is a candidate for translation is found,
 a call to gettext() needs to be inserted. E.g.:

fprintf(stderr, "panic level %d\n", lvl);

 would be changed to:

fprintf(stderr, gettext("panic level %d\n"), lvl);

 (gettext is defined as a no-op if NLS support is
 not configured.)

 This tends to add a lot of clutter. One common shortcut is to use:

#define _(x) gettext(x)

 Another solution is feasible if the program does much of its
 communication through one or a few functions, such as
 ereport() in the backend. Then you make this
 function call gettext internally on all
 input strings.

	
 Add a file nls.mk in the directory with the
 program sources. This file will be read as a makefile. The
 following variable assignments need to be made here:

	CATALOG_NAME
	
 The program name, as provided in the
 textdomain() call.

	GETTEXT_FILES
	
 List of files that contain translatable strings, i.e., those
 marked with gettext or an alternative
 solution. Eventually, this will include nearly all source
 files of the program. If this list gets too long you can
 make the first “file” be a +
 and the second word be a file that contains one file name per
 line.

	GETTEXT_TRIGGERS
	
 The tools that generate message catalogs for the translators
 to work on need to know what function calls contain
 translatable strings. By default, only
 gettext() calls are known. If you used
 _ or other identifiers you need to list
 them here. If the translatable string is not the first
 argument, the item needs to be of the form
 func:2 (for the second argument).
 If you have a function that supports pluralized messages,
 the item should look like func:1,2
 (identifying the singular and plural message arguments).

	
 Add a file po/LINGUAS, which will contain the list
 of provided translations — initially empty.

 The build system will automatically take care of building and
 installing the message catalogs.

Message-Writing Guidelines

 Here are some guidelines for writing messages that are easily
 translatable.

	
 Do not construct sentences at run-time, like:

printf("Files were %s.\n", flag ? "copied" : "removed");

 The word order within the sentence might be different in other
 languages. Also, even if you remember to call gettext() on
 each fragment, the fragments might not translate well separately. It's
 better to duplicate a little code so that each message to be
 translated is a coherent whole. Only numbers, file names, and
 such-like run-time variables should be inserted at run time into
 a message text.

	
 For similar reasons, this won't work:

printf("copied %d file%s", n, n!=1 ? "s" : "");

 because it assumes how the plural is formed. If you figured you
 could solve it like this:

if (n==1)
 printf("copied 1 file");
else
 printf("copied %d files", n):

 then be disappointed. Some languages have more than two forms,
 with some peculiar rules. It's often best to design the message
 to avoid the issue altogether, for instance like this:

printf("number of copied files: %d", n);

 If you really want to construct a properly pluralized message,
 there is support for this, but it's a bit awkward. When generating
 a primary or detail error message in ereport(), you can
 write something like this:

errmsg_plural("copied %d file",
 "copied %d files",
 n,
 n)

 The first argument is the format string appropriate for English
 singular form, the second is the format string appropriate for
 English plural form, and the third is the integer control value
 that determines which plural form to use. Subsequent arguments
 are formatted per the format string as usual. (Normally, the
 pluralization control value will also be one of the values to be
 formatted, so it has to be written twice.) In English it only
 matters whether n is 1 or not 1, but in other
 languages there can be many different plural forms. The translator
 sees the two English forms as a group and has the opportunity to
 supply multiple substitute strings, with the appropriate one being
 selected based on the run-time value of n.

 If you need to pluralize a message that isn't going directly to an
 errmsg or errdetail report, you have to use
 the underlying function ngettext. See the gettext
 documentation.

	
 If you want to communicate something to the translator, such as
 about how a message is intended to line up with other output,
 precede the occurrence of the string with a comment that starts
 with translator, e.g.:

/* translator: This message is not what it seems to be. */

 These comments are copied to the message catalog files so that
 the translators can see them.

Chapter 58. Writing a Procedural Language Handler

 All calls to functions that are written in a language other than
 the current “version 1” interface for compiled
 languages (this includes functions in user-defined procedural languages
 and functions written in SQL) go through a call handler
 function for the specific language. It is the responsibility of
 the call handler to execute the function in a meaningful way, such
 as by interpreting the supplied source text. This chapter outlines
 how a new procedural language's call handler can be written.

 The call handler for a procedural language is a
 “normal” function that must be written in a compiled
 language such as C, using the version-1 interface, and registered
 with PostgreSQL™ as taking no arguments
 and returning the type language_handler. This
 special pseudo-type identifies the function as a call handler and
 prevents it from being called directly in SQL commands.
 For more details on C language calling conventions and dynamic loading,
 see the section called “C-Language Functions”.

 The call handler is called in the same way as any other function:
 It receives a pointer to a
 FunctionCallInfoBaseData struct containing
 argument values and information about the called function, and it
 is expected to return a Datum result (and possibly
 set the isnull field of the
 FunctionCallInfoBaseData structure, if it wishes
 to return an SQL null result). The difference between a call
 handler and an ordinary callee function is that the
 flinfo->fn_oid field of the
 FunctionCallInfoBaseData structure will contain
 the OID of the actual function to be called, not of the call
 handler itself. The call handler must use this field to determine
 which function to execute. Also, the passed argument list has
 been set up according to the declaration of the target function,
 not of the call handler.

 It's up to the call handler to fetch the entry of the function from the
 pg_proc system catalog and to analyze the argument
 and return types of the called function. The AS clause from the
 CREATE FUNCTION command for the function will be found
 in the prosrc column of the
 pg_proc row. This is commonly source
 text in the procedural language, but in theory it could be something else,
 such as a path name to a file, or anything else that tells the call handler
 what to do in detail.

 Often, the same function is called many times per SQL statement.
 A call handler can avoid repeated lookups of information about the
 called function by using the
 flinfo->fn_extra field. This will
 initially be NULL, but can be set by the call handler to point at
 information about the called function. On subsequent calls, if
 flinfo->fn_extra is already non-NULL
 then it can be used and the information lookup step skipped. The
 call handler must make sure that
 flinfo->fn_extra is made to point at
 memory that will live at least until the end of the current query,
 since an FmgrInfo data structure could be
 kept that long. One way to do this is to allocate the extra data
 in the memory context specified by
 flinfo->fn_mcxt; such data will
 normally have the same lifespan as the
 FmgrInfo itself. But the handler could
 also choose to use a longer-lived memory context so that it can cache
 function definition information across queries.

 When a procedural-language function is invoked as a trigger, no arguments
 are passed in the usual way, but the
 FunctionCallInfoBaseData's
 context field points at a
 TriggerData structure, rather than being NULL
 as it is in a plain function call. A language handler should
 provide mechanisms for procedural-language functions to get at the trigger
 information.

 A template for a procedural-language handler written as a C extension is
 provided in src/test/modules/plsample. This is a
 working sample demonstrating one way to create a procedural-language
 handler, process parameters, and return a value.

 Although providing a call handler is sufficient to create a minimal
 procedural language, there are two other functions that can optionally
 be provided to make the language more convenient to use. These
 are a validator and an
 inline handler. A validator can be provided
 to allow language-specific checking to be done during
 CREATE FUNCTION(7).
 An inline handler can be provided to allow the language to support
 anonymous code blocks executed via the DO(7) command.

 If a validator is provided by a procedural language, it
 must be declared as a function taking a single parameter of type
 oid. The validator's result is ignored, so it is customarily
 declared to return void. The validator will be called at
 the end of a CREATE FUNCTION command that has created
 or updated a function written in the procedural language.
 The passed-in OID is the OID of the function's pg_proc
 row. The validator must fetch this row in the usual way, and do
 whatever checking is appropriate.
 First, call CheckFunctionValidatorAccess() to diagnose
 explicit calls to the validator that the user could not achieve through
 CREATE FUNCTION. Typical checks then include verifying
 that the function's argument and result types are supported by the
 language, and that the function's body is syntactically correct
 in the language. If the validator finds the function to be okay,
 it should just return. If it finds an error, it should report that
 via the normal ereport() error reporting mechanism.
 Throwing an error will force a transaction rollback and thus prevent
 the incorrect function definition from being committed.

 Validator functions should typically honor the check_function_bodies parameter: if it is turned off then
 any expensive or context-sensitive checking should be skipped. If the
 language provides for code execution at compilation time, the validator
 must suppress checks that would induce such execution. In particular,
 this parameter is turned off by pg_dump so that it can
 load procedural language functions without worrying about side effects or
 dependencies of the function bodies on other database objects.
 (Because of this requirement, the call handler should avoid
 assuming that the validator has fully checked the function. The point
 of having a validator is not to let the call handler omit checks, but
 to notify the user immediately if there are obvious errors in a
 CREATE FUNCTION command.)
 While the choice of exactly what to check is mostly left to the
 discretion of the validator function, note that the core
 CREATE FUNCTION code only executes SET clauses
 attached to a function when check_function_bodies is on.
 Therefore, checks whose results might be affected by GUC parameters
 definitely should be skipped when check_function_bodies is
 off, to avoid false failures when restoring a dump.

 If an inline handler is provided by a procedural language, it
 must be declared as a function taking a single parameter of type
 internal. The inline handler's result is ignored, so it is
 customarily declared to return void. The inline handler
 will be called when a DO statement is executed specifying
 the procedural language. The parameter actually passed is a pointer
 to an InlineCodeBlock struct, which contains information
 about the DO statement's parameters, in particular the
 text of the anonymous code block to be executed. The inline handler
 should execute this code and return.

 It's recommended that you wrap all these function declarations,
 as well as the CREATE LANGUAGE command itself, into
 an extension so that a simple CREATE EXTENSION
 command is sufficient to install the language. See
 the section called “Packaging Related Objects into an Extension” for information about writing
 extensions.

 The procedural languages included in the standard distribution
 are good references when trying to write your own language handler.
 Look into the src/pl subdirectory of the source tree.
 The CREATE LANGUAGE(7)
 reference page also has some useful details.

Chapter 59. Writing a Foreign Data Wrapper

 All operations on a foreign table are handled through its foreign data
 wrapper, which consists of a set of functions that the core server
 calls. The foreign data wrapper is responsible for fetching
 data from the remote data source and returning it to the
 PostgreSQL™ executor. If updating foreign
 tables is to be supported, the wrapper must handle that, too.
 This chapter outlines how to write a new foreign data wrapper.

 The foreign data wrappers included in the standard distribution are good
 references when trying to write your own. Look into the
 contrib subdirectory of the source tree.
 The CREATE FOREIGN DATA WRAPPER(7) reference page also has
 some useful details.

Note

 The SQL standard specifies an interface for writing foreign data wrappers.
 However, PostgreSQL does not implement that API, because the effort to
 accommodate it into PostgreSQL would be large, and the standard API hasn't
 gained wide adoption anyway.

Foreign Data Wrapper Functions

 The FDW author needs to implement a handler function, and optionally
 a validator function. Both functions must be written in a compiled
 language such as C, using the version-1 interface.
 For details on C language calling conventions and dynamic loading,
 see the section called “C-Language Functions”.

 The handler function simply returns a struct of function pointers to
 callback functions that will be called by the planner, executor, and
 various maintenance commands.
 Most of the effort in writing an FDW is in implementing these callback
 functions.
 The handler function must be registered with
 PostgreSQL™ as taking no arguments and
 returning the special pseudo-type fdw_handler. The
 callback functions are plain C functions and are not visible or
 callable at the SQL level. The callback functions are described in
 the section called “Foreign Data Wrapper Callback Routines”.

 The validator function is responsible for validating options given in
 CREATE and ALTER commands for its
 foreign data wrapper, as well as foreign servers, user mappings, and
 foreign tables using the wrapper.
 The validator function must be registered as taking two arguments, a
 text array containing the options to be validated, and an OID
 representing the type of object the options are associated with. The
 latter corresponds to the OID of the system catalog the object
 would be stored in, one of:

	AttributeRelationId

	ForeignDataWrapperRelationId

	ForeignServerRelationId

	ForeignTableRelationId

	UserMappingRelationId

 If no validator function is supplied, options are not checked at object
 creation time or object alteration time.

Foreign Data Wrapper Callback Routines

 The FDW handler function returns a palloc'd FdwRoutine
 struct containing pointers to the callback functions described below.
 The scan-related functions are required, the rest are optional.

 The FdwRoutine struct type is declared in
 src/include/foreign/fdwapi.h, which see for additional
 details.

FDW Routines for Scanning Foreign Tables

void
GetForeignRelSize(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

 Obtain relation size estimates for a foreign table. This is called
 at the beginning of planning for a query that scans a foreign table.
 root is the planner's global information about the query;
 baserel is the planner's information about this table; and
 foreigntableid is the pg_class OID of the
 foreign table. (foreigntableid could be obtained from the
 planner data structures, but it's passed explicitly to save effort.)

 This function should update baserel->rows to be the
 expected number of rows returned by the table scan, after accounting for
 the filtering done by the restriction quals. The initial value of
 baserel->rows is just a constant default estimate, which
 should be replaced if at all possible. The function may also choose to
 update baserel->width if it can compute a better estimate
 of the average result row width.
 (The initial value is based on column data types and on column
 average-width values measured by the last ANALYZE.)
 Also, this function may update baserel->tuples if
 it can compute a better estimate of the foreign table's total row count.
 (The initial value is
 from pg_class.reltuples
 which represents the total row count seen by the
 last ANALYZE; it will be -1 if
 no ANALYZE has been done on this foreign table.)

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

void
GetForeignPaths(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

 Create possible access paths for a scan on a foreign table.
 This is called during query planning.
 The parameters are the same as for GetForeignRelSize,
 which has already been called.

 This function must generate at least one access path
 (ForeignPath node) for a scan on the foreign table and
 must call add_path to add each such path to
 baserel->pathlist. It's recommended to use
 create_foreignscan_path to build the
 ForeignPath nodes. The function can generate multiple
 access paths, e.g., a path which has valid pathkeys to
 represent a pre-sorted result. Each access path must contain cost
 estimates, and can contain any FDW-private information that is needed to
 identify the specific scan method intended.

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

ForeignScan *
GetForeignPlan(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid,
 ForeignPath *best_path,
 List *tlist,
 List *scan_clauses,
 Plan *outer_plan);

 Create a ForeignScan plan node from the selected foreign
 access path. This is called at the end of query planning.
 The parameters are as for GetForeignRelSize, plus
 the selected ForeignPath (previously produced by
 GetForeignPaths, GetForeignJoinPaths,
 or GetForeignUpperPaths),
 the target list to be emitted by the plan node,
 the restriction clauses to be enforced by the plan node,
 and the outer subplan of the ForeignScan,
 which is used for rechecks performed by RecheckForeignScan.
 (If the path is for a join rather than a base
 relation, foreigntableid is InvalidOid.)

 This function must create and return a ForeignScan plan
 node; it's recommended to use make_foreignscan to build the
 ForeignScan node.

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

void
BeginForeignScan(ForeignScanState *node,
 int eflags);

 Begin executing a foreign scan. This is called during executor startup.
 It should perform any initialization needed before the scan can start,
 but not start executing the actual scan (that should be done upon the
 first call to IterateForeignScan).
 The ForeignScanState node has already been created, but
 its fdw_state field is still NULL. Information about
 the table to scan is accessible through the
 ForeignScanState node (in particular, from the underlying
 ForeignScan plan node, which contains any FDW-private
 information provided by GetForeignPlan).
 eflags contains flag bits describing the executor's
 operating mode for this plan node.

 Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is
 true, this function should not perform any externally-visible actions;
 it should only do the minimum required to make the node state valid
 for ExplainForeignScan and EndForeignScan.

TupleTableSlot *
IterateForeignScan(ForeignScanState *node);

 Fetch one row from the foreign source, returning it in a tuple table slot
 (the node's ScanTupleSlot should be used for this
 purpose). Return NULL if no more rows are available. The tuple table
 slot infrastructure allows either a physical or virtual tuple to be
 returned; in most cases the latter choice is preferable from a
 performance standpoint. Note that this is called in a short-lived memory
 context that will be reset between invocations. Create a memory context
 in BeginForeignScan if you need longer-lived storage, or use
 the es_query_cxt of the node's EState.

 The rows returned must match the fdw_scan_tlist target
 list if one was supplied, otherwise they must match the row type of the
 foreign table being scanned. If you choose to optimize away fetching
 columns that are not needed, you should insert nulls in those column
 positions, or else generate a fdw_scan_tlist list with
 those columns omitted.

 Note that PostgreSQL™'s executor doesn't care
 whether the rows returned violate any constraints that were defined on
 the foreign table — but the planner does care, and may optimize
 queries incorrectly if there are rows visible in the foreign table that
 do not satisfy a declared constraint. If a constraint is violated when
 the user has declared that the constraint should hold true, it may be
 appropriate to raise an error (just as you would need to do in the case
 of a data type mismatch).

void
ReScanForeignScan(ForeignScanState *node);

 Restart the scan from the beginning. Note that any parameters the
 scan depends on may have changed value, so the new scan does not
 necessarily return exactly the same rows.

void
EndForeignScan(ForeignScanState *node);

 End the scan and release resources. It is normally not important
 to release palloc'd memory, but for example open files and connections
 to remote servers should be cleaned up.

FDW Routines for Scanning Foreign Joins

 If an FDW supports performing foreign joins remotely (rather than
 by fetching both tables' data and doing the join locally), it should
 provide this callback function:

void
GetForeignJoinPaths(PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);

 Create possible access paths for a join of two (or more) foreign tables
 that all belong to the same foreign server. This optional
 function is called during query planning. As
 with GetForeignPaths, this function should
 generate ForeignPath path(s) for the
 supplied joinrel
 (use create_foreign_join_path to build them),
 and call add_path to add these
 paths to the set of paths considered for the join. But unlike
 GetForeignPaths, it is not necessary that this function
 succeed in creating at least one path, since paths involving local
 joining are always possible.

 Note that this function will be invoked repeatedly for the same join
 relation, with different combinations of inner and outer relations; it is
 the responsibility of the FDW to minimize duplicated work.

 If a ForeignPath path is chosen for the join, it will
 represent the entire join process; paths generated for the component
 tables and subsidiary joins will not be used. Subsequent processing of
 the join path proceeds much as it does for a path scanning a single
 foreign table. One difference is that the scanrelid of
 the resulting ForeignScan plan node should be set to zero,
 since there is no single relation that it represents; instead,
 the fs_relids field of the ForeignScan
 node represents the set of relations that were joined. (The latter field
 is set up automatically by the core planner code, and need not be filled
 by the FDW.) Another difference is that, because the column list for a
 remote join cannot be found from the system catalogs, the FDW must
 fill fdw_scan_tlist with an appropriate list
 of TargetEntry nodes, representing the set of columns
 it will supply at run time in the tuples it returns.

Note

 Beginning with PostgreSQL™ 16,
 fs_relids includes the rangetable indexes
 of outer joins, if any were involved in this join. The new field
 fs_base_relids includes only base
 relation indexes, and thus
 mimics fs_relids's old semantics.

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

FDW Routines for Planning Post-Scan/Join Processing

 If an FDW supports performing remote post-scan/join processing, such as
 remote aggregation, it should provide this callback function:

void
GetForeignUpperPaths(PlannerInfo *root,
 UpperRelationKind stage,
 RelOptInfo *input_rel,
 RelOptInfo *output_rel,
 void *extra);

 Create possible access paths for upper relation processing,
 which is the planner's term for all post-scan/join query processing, such
 as aggregation, window functions, sorting, and table updates. This
 optional function is called during query planning. Currently, it is
 called only if all base relation(s) involved in the query belong to the
 same FDW. This function should generate ForeignPath
 path(s) for any post-scan/join processing that the FDW knows how to
 perform remotely
 (use create_foreign_upper_path to build them),
 and call add_path to add these paths to
 the indicated upper relation. As with GetForeignJoinPaths,
 it is not necessary that this function succeed in creating any paths,
 since paths involving local processing are always possible.

 The stage parameter identifies which post-scan/join step is
 currently being considered. output_rel is the upper relation
 that should receive paths representing computation of this step,
 and input_rel is the relation representing the input to this
 step. The extra parameter provides additional details,
 currently, it is set only for UPPERREL_PARTIAL_GROUP_AGG
 or UPPERREL_GROUP_AGG, in which case it points to a
 GroupPathExtraData structure;
 or for UPPERREL_FINAL, in which case it points to a
 FinalPathExtraData structure.
 (Note that ForeignPath paths added
 to output_rel would typically not have any direct dependency
 on paths of the input_rel, since their processing is expected
 to be done externally. However, examining paths previously generated for
 the previous processing step can be useful to avoid redundant planning
 work.)

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

FDW Routines for Updating Foreign Tables

 If an FDW supports writable foreign tables, it should provide
 some or all of the following callback functions depending on
 the needs and capabilities of the FDW:

void
AddForeignUpdateTargets(PlannerInfo *root,
 Index rtindex,
 RangeTblEntry *target_rte,
 Relation target_relation);

 UPDATE and DELETE operations are performed
 against rows previously fetched by the table-scanning functions. The
 FDW may need extra information, such as a row ID or the values of
 primary-key columns, to ensure that it can identify the exact row to
 update or delete. To support that, this function can add extra hidden,
 or “junk”, target columns to the list of columns that are to be
 retrieved from the foreign table during an UPDATE or
 DELETE.

 To do that, construct a Var representing
 an extra value you need, and pass it
 to add_row_identity_var, along with a name for
 the junk column. (You can do this more than once if several columns
 are needed.) You must choose a distinct junk column name for each
 different Var you need, except
 that Vars that are identical except for
 the varno field can and should share a
 column name.
 The core system uses the junk column names
 tableoid for a
 table's tableoid column,
 ctid
 or ctidN
 for ctid,
 wholerow
 for a whole-row Var marked with
 vartype = RECORD,
 and wholerowN
 for a whole-row Var with
 vartype equal to the table's declared row type.
 Re-use these names when you can (the planner will combine duplicate
 requests for identical junk columns). If you need another kind of
 junk column besides these, it might be wise to choose a name prefixed
 with your extension name, to avoid conflicts against other FDWs.

 If the AddForeignUpdateTargets pointer is set to
 NULL, no extra target expressions are added.
 (This will make it impossible to implement DELETE
 operations, though UPDATE may still be feasible if the FDW
 relies on an unchanging primary key to identify rows.)

List *
PlanForeignModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

 Perform any additional planning actions needed for an insert, update, or
 delete on a foreign table. This function generates the FDW-private
 information that will be attached to the ModifyTable plan
 node that performs the update action. This private information must
 have the form of a List, and will be delivered to
 BeginForeignModify during the execution stage.

 root is the planner's global information about the query.
 plan is the ModifyTable plan node, which is
 complete except for the fdwPrivLists field.
 resultRelation identifies the target foreign table by its
 range table index. subplan_index identifies which target of
 the ModifyTable plan node this is, counting from zero;
 use this if you want to index into per-target-relation substructures of the
 plan node.

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

 If the PlanForeignModify pointer is set to
 NULL, no additional plan-time actions are taken, and the
 fdw_private list delivered to
 BeginForeignModify will be NIL.

void
BeginForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 int eflags);

 Begin executing a foreign table modification operation. This routine is
 called during executor startup. It should perform any initialization
 needed prior to the actual table modifications. Subsequently,
 ExecForeignInsert/ExecForeignBatchInsert,
 ExecForeignUpdate or
 ExecForeignDelete will be called for tuple(s) to be
 inserted, updated, or deleted.

 mtstate is the overall state of the
 ModifyTable plan node being executed; global data about
 the plan and execution state is available via this structure.
 rinfo is the ResultRelInfo struct describing
 the target foreign table. (The ri_FdwState field of
 ResultRelInfo is available for the FDW to store any
 private state it needs for this operation.)
 fdw_private contains the private data generated by
 PlanForeignModify, if any.
 subplan_index identifies which target of
 the ModifyTable plan node this is.
 eflags contains flag bits describing the executor's
 operating mode for this plan node.

 Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is
 true, this function should not perform any externally-visible actions;
 it should only do the minimum required to make the node state valid
 for ExplainForeignModify and EndForeignModify.

 If the BeginForeignModify pointer is set to
 NULL, no action is taken during executor startup.

TupleTableSlot *
ExecForeignInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

 Insert one tuple into the foreign table.
 estate is global execution state for the query.
 rinfo is the ResultRelInfo struct describing
 the target foreign table.
 slot contains the tuple to be inserted; it will match the
 row-type definition of the foreign table.
 planSlot contains the tuple that was generated by the
 ModifyTable plan node's subplan; it differs from
 slot in possibly containing additional “junk”
 columns. (The planSlot is typically of little interest
 for INSERT cases, but is provided for completeness.)

 The return value is either a slot containing the data that was actually
 inserted (this might differ from the data supplied, for example as a
 result of trigger actions), or NULL if no row was actually inserted
 (again, typically as a result of triggers). The passed-in
 slot can be re-used for this purpose.

 The data in the returned slot is used only if the INSERT
 statement has a RETURNING clause or involves a view
 WITH CHECK OPTION; or if the foreign table has
 an AFTER ROW trigger. Triggers require all columns,
 but the FDW could choose to optimize away returning some or all columns
 depending on the contents of the RETURNING clause or
 WITH CHECK OPTION constraints. Regardless, some slot
 must be returned to indicate success, or the query's reported row count
 will be wrong.

 If the ExecForeignInsert pointer is set to
 NULL, attempts to insert into the foreign table will fail
 with an error message.

 Note that this function is also called when inserting routed tuples into
 a foreign-table partition or executing COPY FROM on
 a foreign table, in which case it is called in a different way than it
 is in the INSERT case. See the callback functions
 described below that allow the FDW to support that.

TupleTableSlot **
ExecForeignBatchInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot **slots,
 TupleTableSlot **planSlots,
 int *numSlots);

 Insert multiple tuples in bulk into the foreign table.
 The parameters are the same for ExecForeignInsert
 except slots and planSlots contain
 multiple tuples and *numSlots specifies the number of
 tuples in those arrays.

 The return value is an array of slots containing the data that was
 actually inserted (this might differ from the data supplied, for
 example as a result of trigger actions.)
 The passed-in slots can be re-used for this purpose.
 The number of successfully inserted tuples is returned in
 *numSlots.

 The data in the returned slot is used only if the INSERT
 statement involves a view
 WITH CHECK OPTION; or if the foreign table has
 an AFTER ROW trigger. Triggers require all columns,
 but the FDW could choose to optimize away returning some or all columns
 depending on the contents of the
 WITH CHECK OPTION constraints.

 If the ExecForeignBatchInsert or
 GetForeignModifyBatchSize pointer is set to
 NULL, attempts to insert into the foreign table will
 use ExecForeignInsert.
 This function is not used if the INSERT has the
 RETURNING clause.

 Note that this function is also called when inserting routed tuples into
 a foreign-table partition or executing COPY FROM on
 a foreign table, in which case it is called in a different way than it
 is in the INSERT case. See the callback functions
 described below that allow the FDW to support that.

int
GetForeignModifyBatchSize(ResultRelInfo *rinfo);

 Report the maximum number of tuples that a single
 ExecForeignBatchInsert call can handle for
 the specified foreign table. The executor passes at most
 the given number of tuples to ExecForeignBatchInsert.
 rinfo is the ResultRelInfo struct describing
 the target foreign table.
 The FDW is expected to provide a foreign server and/or foreign
 table option for the user to set this value, or some hard-coded value.

 If the ExecForeignBatchInsert or
 GetForeignModifyBatchSize pointer is set to
 NULL, attempts to insert into the foreign table will
 use ExecForeignInsert.

TupleTableSlot *
ExecForeignUpdate(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

 Update one tuple in the foreign table.
 estate is global execution state for the query.
 rinfo is the ResultRelInfo struct describing
 the target foreign table.
 slot contains the new data for the tuple; it will match the
 row-type definition of the foreign table.
 planSlot contains the tuple that was generated by the
 ModifyTable plan node's subplan. Unlike
 slot, this tuple contains only the new values for
 columns changed by the query, so do not rely on attribute numbers of the
 foreign table to index into planSlot.
 Also, planSlot typically contains
 additional “junk” columns. In particular, any junk columns
 that were requested by AddForeignUpdateTargets will
 be available from this slot.

 The return value is either a slot containing the row as it was actually
 updated (this might differ from the data supplied, for example as a
 result of trigger actions), or NULL if no row was actually updated
 (again, typically as a result of triggers). The passed-in
 slot can be re-used for this purpose.

 The data in the returned slot is used only if the UPDATE
 statement has a RETURNING clause or involves a view
 WITH CHECK OPTION; or if the foreign table has
 an AFTER ROW trigger. Triggers require all columns,
 but the FDW could choose to optimize away returning some or all columns
 depending on the contents of the RETURNING clause or
 WITH CHECK OPTION constraints. Regardless, some slot
 must be returned to indicate success, or the query's reported row count
 will be wrong.

 If the ExecForeignUpdate pointer is set to
 NULL, attempts to update the foreign table will fail
 with an error message.

TupleTableSlot *
ExecForeignDelete(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

 Delete one tuple from the foreign table.
 estate is global execution state for the query.
 rinfo is the ResultRelInfo struct describing
 the target foreign table.
 slot contains nothing useful upon call, but can be used to
 hold the returned tuple.
 planSlot contains the tuple that was generated by the
 ModifyTable plan node's subplan; in particular, it will
 carry any junk columns that were requested by
 AddForeignUpdateTargets. The junk column(s) must be used
 to identify the tuple to be deleted.

 The return value is either a slot containing the row that was deleted,
 or NULL if no row was deleted (typically as a result of triggers). The
 passed-in slot can be used to hold the tuple to be returned.

 The data in the returned slot is used only if the DELETE
 query has a RETURNING clause or the foreign table has
 an AFTER ROW trigger. Triggers require all columns, but the
 FDW could choose to optimize away returning some or all columns depending
 on the contents of the RETURNING clause. Regardless, some
 slot must be returned to indicate success, or the query's reported row
 count will be wrong.

 If the ExecForeignDelete pointer is set to
 NULL, attempts to delete from the foreign table will fail
 with an error message.

void
EndForeignModify(EState *estate,
 ResultRelInfo *rinfo);

 End the table update and release resources. It is normally not important
 to release palloc'd memory, but for example open files and connections
 to remote servers should be cleaned up.

 If the EndForeignModify pointer is set to
 NULL, no action is taken during executor shutdown.

 Tuples inserted into a partitioned table by INSERT or
 COPY FROM are routed to partitions. If an FDW
 supports routable foreign-table partitions, it should also provide the
 following callback functions. These functions are also called when
 COPY FROM is executed on a foreign table.

void
BeginForeignInsert(ModifyTableState *mtstate,
 ResultRelInfo *rinfo);

 Begin executing an insert operation on a foreign table. This routine is
 called right before the first tuple is inserted into the foreign table
 in both cases when it is the partition chosen for tuple routing and the
 target specified in a COPY FROM command. It should
 perform any initialization needed prior to the actual insertion.
 Subsequently, ExecForeignInsert or
 ExecForeignBatchInsert will be called for
 tuple(s) to be inserted into the foreign table.

 mtstate is the overall state of the
 ModifyTable plan node being executed; global data about
 the plan and execution state is available via this structure.
 rinfo is the ResultRelInfo struct describing
 the target foreign table. (The ri_FdwState field of
 ResultRelInfo is available for the FDW to store any
 private state it needs for this operation.)

 When this is called by a COPY FROM command, the
 plan-related global data in mtstate is not provided
 and the planSlot parameter of
 ExecForeignInsert subsequently called for each
 inserted tuple is NULL, whether the foreign table is
 the partition chosen for tuple routing or the target specified in the
 command.

 If the BeginForeignInsert pointer is set to
 NULL, no action is taken for the initialization.

 Note that if the FDW does not support routable foreign-table partitions
 and/or executing COPY FROM on foreign tables, this
 function or ExecForeignInsert/ExecForeignBatchInsert
 subsequently called must throw error as needed.

void
EndForeignInsert(EState *estate,
 ResultRelInfo *rinfo);

 End the insert operation and release resources. It is normally not important
 to release palloc'd memory, but for example open files and connections
 to remote servers should be cleaned up.

 If the EndForeignInsert pointer is set to
 NULL, no action is taken for the termination.

int
IsForeignRelUpdatable(Relation rel);

 Report which update operations the specified foreign table supports.
 The return value should be a bit mask of rule event numbers indicating
 which operations are supported by the foreign table, using the
 CmdType enumeration; that is,
 (1 << CMD_UPDATE) = 4 for UPDATE,
 (1 << CMD_INSERT) = 8 for INSERT, and
 (1 << CMD_DELETE) = 16 for DELETE.

 If the IsForeignRelUpdatable pointer is set to
 NULL, foreign tables are assumed to be insertable, updatable,
 or deletable if the FDW provides ExecForeignInsert,
 ExecForeignUpdate, or ExecForeignDelete
 respectively. This function is only needed if the FDW supports some
 tables that are updatable and some that are not. (Even then, it's
 permissible to throw an error in the execution routine instead of
 checking in this function. However, this function is used to determine
 updatability for display in the information_schema views.)

 Some inserts, updates, and deletes to foreign tables can be optimized
 by implementing an alternative set of interfaces. The ordinary
 interfaces for inserts, updates, and deletes fetch rows from the remote
 server and then modify those rows one at a time. In some cases, this
 row-by-row approach is necessary, but it can be inefficient. If it is
 possible for the foreign server to determine which rows should be
 modified without actually retrieving them, and if there are no local
 structures which would affect the operation (row-level local triggers,
 stored generated columns, or WITH CHECK OPTION
 constraints from parent views), then it is possible to arrange things
 so that the entire operation is performed on the remote server. The
 interfaces described below make this possible.

bool
PlanDirectModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

 Decide whether it is safe to execute a direct modification
 on the remote server. If so, return true after performing
 planning actions needed for that. Otherwise, return false.
 This optional function is called during query planning.
 If this function succeeds, BeginDirectModify,
 IterateDirectModify and EndDirectModify will
 be called at the execution stage, instead. Otherwise, the table
 modification will be executed using the table-updating functions
 described above.
 The parameters are the same as for PlanForeignModify.

 To execute the direct modification on the remote server, this function
 must rewrite the target subplan with a ForeignScan plan
 node that executes the direct modification on the remote server. The
 operation and resultRelation fields
 of the ForeignScan must be set appropriately.
 operation must be set to the CmdType
 enumeration corresponding to the statement kind (that is,
 CMD_UPDATE for UPDATE,
 CMD_INSERT for INSERT, and
 CMD_DELETE for DELETE), and the
 resultRelation argument must be copied to the
 resultRelation field.

 See the section called “Foreign Data Wrapper Query Planning” for additional information.

 If the PlanDirectModify pointer is set to
 NULL, no attempts to execute a direct modification on the
 remote server are taken.

void
BeginDirectModify(ForeignScanState *node,
 int eflags);

 Prepare to execute a direct modification on the remote server.
 This is called during executor startup. It should perform any
 initialization needed prior to the direct modification (that should be
 done upon the first call to IterateDirectModify).
 The ForeignScanState node has already been created, but
 its fdw_state field is still NULL. Information about
 the table to modify is accessible through the
 ForeignScanState node (in particular, from the underlying
 ForeignScan plan node, which contains any FDW-private
 information provided by PlanDirectModify).
 eflags contains flag bits describing the executor's
 operating mode for this plan node.

 Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is
 true, this function should not perform any externally-visible actions;
 it should only do the minimum required to make the node state valid
 for ExplainDirectModify and EndDirectModify.

 If the BeginDirectModify pointer is set to
 NULL, no attempts to execute a direct modification on the
 remote server are taken.

TupleTableSlot *
IterateDirectModify(ForeignScanState *node);

 When the INSERT, UPDATE or DELETE
 query doesn't have a RETURNING clause, just return NULL
 after a direct modification on the remote server.
 When the query has the clause, fetch one result containing the data
 needed for the RETURNING calculation, returning it in a
 tuple table slot (the node's ScanTupleSlot should be
 used for this purpose). The data that was actually inserted, updated
 or deleted must be stored in
 node->resultRelInfo->ri_projectReturning->pi_exprContext->ecxt_scantuple.
 Return NULL if no more rows are available.
 Note that this is called in a short-lived memory context that will be
 reset between invocations. Create a memory context in
 BeginDirectModify if you need longer-lived storage, or use
 the es_query_cxt of the node's EState.

 The rows returned must match the fdw_scan_tlist target
 list if one was supplied, otherwise they must match the row type of the
 foreign table being updated. If you choose to optimize away fetching
 columns that are not needed for the RETURNING calculation,
 you should insert nulls in those column positions, or else generate a
 fdw_scan_tlist list with those columns omitted.

 Whether the query has the clause or not, the query's reported row count
 must be incremented by the FDW itself. When the query doesn't have the
 clause, the FDW must also increment the row count for the
 ForeignScanState node in the EXPLAIN ANALYZE
 case.

 If the IterateDirectModify pointer is set to
 NULL, no attempts to execute a direct modification on the
 remote server are taken.

void
EndDirectModify(ForeignScanState *node);

 Clean up following a direct modification on the remote server. It is
 normally not important to release palloc'd memory, but for example open
 files and connections to the remote server should be cleaned up.

 If the EndDirectModify pointer is set to
 NULL, no attempts to execute a direct modification on the
 remote server are taken.

FDW Routines for TRUNCATE

void
ExecForeignTruncate(List *rels,
 DropBehavior behavior,
 bool restart_seqs);

 Truncate foreign tables. This function is called when
 TRUNCATE(7) is executed on a foreign table.
 rels is a list of Relation
 data structures of foreign tables to truncate.

 behavior is either DROP_RESTRICT
 or DROP_CASCADE indicating that the
 RESTRICT or CASCADE option was
 requested in the original TRUNCATE command,
 respectively.

 If restart_seqs is true,
 the original TRUNCATE command requested the
 RESTART IDENTITY behavior, otherwise the
 CONTINUE IDENTITY behavior was requested.

 Note that the ONLY options specified
 in the original TRUNCATE command are not passed to
 ExecForeignTruncate. This behavior is similar to
 the callback functions of SELECT,
 UPDATE and DELETE on
 a foreign table.

 ExecForeignTruncate is invoked once per
 foreign server for which foreign tables are to be truncated.
 This means that all foreign tables included in rels
 must belong to the same server.

 If the ExecForeignTruncate pointer is set to
 NULL, attempts to truncate foreign tables will
 fail with an error message.

FDW Routines for Row Locking

 If an FDW wishes to support late row locking (as described
 in the section called “Row Locking in Foreign Data Wrappers”), it must provide the following
 callback functions:

RowMarkType
GetForeignRowMarkType(RangeTblEntry *rte,
 LockClauseStrength strength);

 Report which row-marking option to use for a foreign table.
 rte is the RangeTblEntry node for the table
 and strength describes the lock strength requested by the
 relevant FOR UPDATE/SHARE clause, if any. The result must be
 a member of the RowMarkType enum type.

 This function is called during query planning for each foreign table that
 appears in an UPDATE, DELETE, or SELECT
 FOR UPDATE/SHARE query and is not the target of UPDATE
 or DELETE.

 If the GetForeignRowMarkType pointer is set to
 NULL, the ROW_MARK_COPY option is always used.
 (This implies that RefetchForeignRow will never be called,
 so it need not be provided either.)

 See the section called “Row Locking in Foreign Data Wrappers” for more information.

void
RefetchForeignRow(EState *estate,
 ExecRowMark *erm,
 Datum rowid,
 TupleTableSlot *slot,
 bool *updated);

 Re-fetch one tuple slot from the foreign table, after locking it if required.
 estate is global execution state for the query.
 erm is the ExecRowMark struct describing
 the target foreign table and the row lock type (if any) to acquire.
 rowid identifies the tuple to be fetched.
 slot contains nothing useful upon call, but can be used to
 hold the returned tuple. updated is an output parameter.

 This function should store the tuple into the provided slot, or clear it if
 the row lock couldn't be obtained. The row lock type to acquire is
 defined by erm->markType, which is the value
 previously returned by GetForeignRowMarkType.
 (ROW_MARK_REFERENCE means to just re-fetch the tuple
 without acquiring any lock, and ROW_MARK_COPY will
 never be seen by this routine.)

 In addition, *updated should be set to true
 if what was fetched was an updated version of the tuple rather than
 the same version previously obtained. (If the FDW cannot be sure about
 this, always returning true is recommended.)

 Note that by default, failure to acquire a row lock should result in
 raising an error; returning with an empty slot is only appropriate if
 the SKIP LOCKED option is specified
 by erm->waitPolicy.

 The rowid is the ctid value previously read
 for the row to be re-fetched. Although the rowid value is
 passed as a Datum, it can currently only be a tid. The
 function API is chosen in hopes that it may be possible to allow other
 data types for row IDs in future.

 If the RefetchForeignRow pointer is set to
 NULL, attempts to re-fetch rows will fail
 with an error message.

 See the section called “Row Locking in Foreign Data Wrappers” for more information.

bool
RecheckForeignScan(ForeignScanState *node,
 TupleTableSlot *slot);

 Recheck that a previously-returned tuple still matches the relevant
 scan and join qualifiers, and possibly provide a modified version of
 the tuple. For foreign data wrappers which do not perform join pushdown,
 it will typically be more convenient to set this to NULL and
 instead set fdw_recheck_quals appropriately.
 When outer joins are pushed down, however, it isn't sufficient to
 reapply the checks relevant to all the base tables to the result tuple,
 even if all needed attributes are present, because failure to match some
 qualifier might result in some attributes going to NULL, rather than in
 no tuple being returned. RecheckForeignScan can recheck
 qualifiers and return true if they are still satisfied and false
 otherwise, but it can also store a replacement tuple into the supplied
 slot.

 To implement join pushdown, a foreign data wrapper will typically
 construct an alternative local join plan which is used only for
 rechecks; this will become the outer subplan of the
 ForeignScan. When a recheck is required, this subplan
 can be executed and the resulting tuple can be stored in the slot.
 This plan need not be efficient since no base table will return more
 than one row; for example, it may implement all joins as nested loops.
 The function GetExistingLocalJoinPath may be used to search
 existing paths for a suitable local join path, which can be used as the
 alternative local join plan. GetExistingLocalJoinPath
 searches for an unparameterized path in the path list of the specified
 join relation. (If it does not find such a path, it returns NULL, in
 which case a foreign data wrapper may build the local path by itself or
 may choose not to create access paths for that join.)

FDW Routines for EXPLAIN

void
ExplainForeignScan(ForeignScanState *node,
 ExplainState *es);

 Print additional EXPLAIN output for a foreign table scan.
 This function can call ExplainPropertyText and
 related functions to add fields to the EXPLAIN output.
 The flag fields in es can be used to determine what to
 print, and the state of the ForeignScanState node
 can be inspected to provide run-time statistics in the EXPLAIN
 ANALYZE case.

 If the ExplainForeignScan pointer is set to
 NULL, no additional information is printed during
 EXPLAIN.

void
ExplainForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 struct ExplainState *es);

 Print additional EXPLAIN output for a foreign table update.
 This function can call ExplainPropertyText and
 related functions to add fields to the EXPLAIN output.
 The flag fields in es can be used to determine what to
 print, and the state of the ModifyTableState node
 can be inspected to provide run-time statistics in the EXPLAIN
 ANALYZE case. The first four arguments are the same as for
 BeginForeignModify.

 If the ExplainForeignModify pointer is set to
 NULL, no additional information is printed during
 EXPLAIN.

void
ExplainDirectModify(ForeignScanState *node,
 ExplainState *es);

 Print additional EXPLAIN output for a direct modification
 on the remote server.
 This function can call ExplainPropertyText and
 related functions to add fields to the EXPLAIN output.
 The flag fields in es can be used to determine what to
 print, and the state of the ForeignScanState node
 can be inspected to provide run-time statistics in the EXPLAIN
 ANALYZE case.

 If the ExplainDirectModify pointer is set to
 NULL, no additional information is printed during
 EXPLAIN.

FDW Routines for ANALYZE

bool
AnalyzeForeignTable(Relation relation,
 AcquireSampleRowsFunc *func,
 BlockNumber *totalpages);

 This function is called when ANALYZE(7) is executed on
 a foreign table. If the FDW can collect statistics for this
 foreign table, it should return true, and provide a pointer
 to a function that will collect sample rows from the table in
 func, plus the estimated size of the table in pages in
 totalpages. Otherwise, return false.

 If the FDW does not support collecting statistics for any tables, the
 AnalyzeForeignTable pointer can be set to NULL.

 If provided, the sample collection function must have the signature

int
AcquireSampleRowsFunc(Relation relation,
 int elevel,
 HeapTuple *rows,
 int targrows,
 double *totalrows,
 double *totaldeadrows);

 A random sample of up to targrows rows should be collected
 from the table and stored into the caller-provided rows
 array. The actual number of rows collected must be returned. In
 addition, store estimates of the total numbers of live and dead rows in
 the table into the output parameters totalrows and
 totaldeadrows. (Set totaldeadrows to zero
 if the FDW does not have any concept of dead rows.)

FDW Routines for IMPORT FOREIGN SCHEMA

List *
ImportForeignSchema(ImportForeignSchemaStmt *stmt, Oid serverOid);

 Obtain a list of foreign table creation commands. This function is
 called when executing IMPORT FOREIGN SCHEMA(7), and is
 passed the parse tree for that statement, as well as the OID of the
 foreign server to use. It should return a list of C strings, each of
 which must contain a CREATE FOREIGN TABLE(7) command.
 These strings will be parsed and executed by the core server.

 Within the ImportForeignSchemaStmt struct,
 remote_schema is the name of the remote schema from
 which tables are to be imported.
 list_type identifies how to filter table names:
 FDW_IMPORT_SCHEMA_ALL means that all tables in the remote
 schema should be imported (in this case table_list is
 empty), FDW_IMPORT_SCHEMA_LIMIT_TO means to include only
 tables listed in table_list,
 and FDW_IMPORT_SCHEMA_EXCEPT means to exclude the tables
 listed in table_list.
 options is a list of options used for the import process.
 The meanings of the options are up to the FDW.
 For example, an FDW could use an option to define whether the
 NOT NULL attributes of columns should be imported.
 These options need not have anything to do with those supported by the
 FDW as database object options.

 The FDW may ignore the local_schema field of
 the ImportForeignSchemaStmt, because the core server
 will automatically insert that name into the parsed CREATE
 FOREIGN TABLE commands.

 The FDW does not have to concern itself with implementing the filtering
 specified by list_type and table_list,
 either, as the core server will automatically skip any returned commands
 for tables excluded according to those options. However, it's often
 useful to avoid the work of creating commands for excluded tables in the
 first place. The function IsImportableForeignTable() may be
 useful to test whether a given foreign-table name will pass the filter.

 If the FDW does not support importing table definitions, the
 ImportForeignSchema pointer can be set to NULL.

FDW Routines for Parallel Execution

 A ForeignScan node can, optionally, support parallel
 execution. A parallel ForeignScan will be executed
 in multiple processes and must return each row exactly once across
 all cooperating processes. To do this, processes can coordinate through
 fixed-size chunks of dynamic shared memory. This shared memory is not
 guaranteed to be mapped at the same address in every process, so it
 must not contain pointers. The following functions are all optional,
 but most are required if parallel execution is to be supported.

bool
IsForeignScanParallelSafe(PlannerInfo *root, RelOptInfo *rel,
 RangeTblEntry *rte);

 Test whether a scan can be performed within a parallel worker. This
 function will only be called when the planner believes that a parallel
 plan might be possible, and should return true if it is safe for that scan
 to run within a parallel worker. This will generally not be the case if
 the remote data source has transaction semantics, unless the worker's
 connection to the data can somehow be made to share the same transaction
 context as the leader.

 If this function is not defined, it is assumed that the scan must take
 place within the parallel leader. Note that returning true does not mean
 that the scan itself can be done in parallel, only that the scan can be
 performed within a parallel worker. Therefore, it can be useful to define
 this method even when parallel execution is not supported.

Size
EstimateDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt);

 Estimate the amount of dynamic shared memory that will be required
 for parallel operation. This may be higher than the amount that will
 actually be used, but it must not be lower. The return value is in bytes.
 This function is optional, and can be omitted if not needed; but if it
 is omitted, the next three functions must be omitted as well, because
 no shared memory will be allocated for the FDW's use.

void
InitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

 Initialize the dynamic shared memory that will be required for parallel
 operation. coordinate points to a shared memory area of
 size equal to the return value of EstimateDSMForeignScan.
 This function is optional, and can be omitted if not needed.

void
ReInitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

 Re-initialize the dynamic shared memory required for parallel operation
 when the foreign-scan plan node is about to be re-scanned.
 This function is optional, and can be omitted if not needed.
 Recommended practice is that this function reset only shared state,
 while the ReScanForeignScan function resets only local
 state. Currently, this function will be called
 before ReScanForeignScan, but it's best not to rely on
 that ordering.

void
InitializeWorkerForeignScan(ForeignScanState *node, shm_toc *toc,
 void *coordinate);

 Initialize a parallel worker's local state based on the shared state
 set up by the leader during InitializeDSMForeignScan.
 This function is optional, and can be omitted if not needed.

void
ShutdownForeignScan(ForeignScanState *node);

 Release resources when it is anticipated the node will not be executed
 to completion. This is not called in all cases; sometimes,
 EndForeignScan may be called without this function having
 been called first. Since the DSM segment used by parallel query is
 destroyed just after this callback is invoked, foreign data wrappers that
 wish to take some action before the DSM segment goes away should implement
 this method.

FDW Routines for Asynchronous Execution

 A ForeignScan node can, optionally, support
 asynchronous execution as described in
 src/backend/executor/README. The following
 functions are all optional, but are all required if asynchronous
 execution is to be supported.

bool
IsForeignPathAsyncCapable(ForeignPath *path);

 Test whether a given ForeignPath path can scan
 the underlying foreign relation asynchronously.
 This function will only be called at the end of query planning when the
 given path is a direct child of an AppendPath
 path and when the planner believes that asynchronous execution improves
 performance, and should return true if the given path is able to scan the
 foreign relation asynchronously.

 If this function is not defined, it is assumed that the given path scans
 the foreign relation using IterateForeignScan.
 (This implies that the callback functions described below will never be
 called, so they need not be provided either.)

void
ForeignAsyncRequest(AsyncRequest *areq);

 Produce one tuple asynchronously from the
 ForeignScan node. areq is
 the AsyncRequest struct describing the
 ForeignScan node and the parent
 Append node that requested the tuple from it.
 This function should store the tuple into the slot specified by
 areq->result, and set
 areq->request_complete to true;
 or if it needs to wait on an event external to the core server such as
 network I/O, and cannot produce any tuple immediately, set the flag to
 false, and set
 areq->callback_pending to true
 for the ForeignScan node to get a callback from
 the callback functions described below. If no more tuples are available,
 set the slot to NULL or an empty slot, and the
 areq->request_complete flag to
 true. It's recommended to use
 ExecAsyncRequestDone or
 ExecAsyncRequestPending to set the output parameters
 in the areq.

void
ForeignAsyncConfigureWait(AsyncRequest *areq);

 Configure a file descriptor event for which the
 ForeignScan node wishes to wait.
 This function will only be called when the
 ForeignScan node has the
 areq->callback_pending flag set, and should add
 the event to the as_eventset of the parent
 Append node described by the
 areq. See the comments for
 ExecAsyncConfigureWait in
 src/backend/executor/execAsync.c for additional
 information. When the file descriptor event occurs,
 ForeignAsyncNotify will be called.

void
ForeignAsyncNotify(AsyncRequest *areq);

 Process a relevant event that has occurred, then produce one tuple
 asynchronously from the ForeignScan node.
 This function should set the output parameters in the
 areq in the same way as
 ForeignAsyncRequest.

FDW Routines for Reparameterization of Paths

List *
ReparameterizeForeignPathByChild(PlannerInfo *root, List *fdw_private,
 RelOptInfo *child_rel);

 This function is called while converting a path parameterized by the
 top-most parent of the given child relation child_rel to be
 parameterized by the child relation. The function is used to reparameterize
 any paths or translate any expression nodes saved in the given
 fdw_private member of a ForeignPath. The
 callback may use reparameterize_path_by_child,
 adjust_appendrel_attrs or
 adjust_appendrel_attrs_multilevel as required.

Foreign Data Wrapper Helper Functions

 Several helper functions are exported from the core server so that
 authors of foreign data wrappers can get easy access to attributes of
 FDW-related objects, such as FDW options.
 To use any of these functions, you need to include the header file
 foreign/foreign.h in your source file.
 That header also defines the struct types that are returned by
 these functions.

ForeignDataWrapper *
GetForeignDataWrapperExtended(Oid fdwid, bits16 flags);

 This function returns a ForeignDataWrapper
 object for the foreign-data wrapper with the given OID. A
 ForeignDataWrapper object contains properties
 of the FDW (see foreign/foreign.h for details).
 flags is a bitwise-or'd bit mask indicating
 an extra set of options. It can take the value
 FDW_MISSING_OK, in which case a NULL
 result is returned to the caller instead of an error for an undefined
 object.

ForeignDataWrapper *
GetForeignDataWrapper(Oid fdwid);

 This function returns a ForeignDataWrapper
 object for the foreign-data wrapper with the given OID. A
 ForeignDataWrapper object contains properties
 of the FDW (see foreign/foreign.h for details).

ForeignServer *
GetForeignServerExtended(Oid serverid, bits16 flags);

 This function returns a ForeignServer object
 for the foreign server with the given OID. A
 ForeignServer object contains properties
 of the server (see foreign/foreign.h for details).
 flags is a bitwise-or'd bit mask indicating
 an extra set of options. It can take the value
 FSV_MISSING_OK, in which case a NULL
 result is returned to the caller instead of an error for an undefined
 object.

ForeignServer *
GetForeignServer(Oid serverid);

 This function returns a ForeignServer object
 for the foreign server with the given OID. A
 ForeignServer object contains properties
 of the server (see foreign/foreign.h for details).

UserMapping *
GetUserMapping(Oid userid, Oid serverid);

 This function returns a UserMapping object for
 the user mapping of the given role on the given server. (If there is no
 mapping for the specific user, it will return the mapping for
 PUBLIC, or throw error if there is none.) A
 UserMapping object contains properties of the
 user mapping (see foreign/foreign.h for details).

ForeignTable *
GetForeignTable(Oid relid);

 This function returns a ForeignTable object for
 the foreign table with the given OID. A
 ForeignTable object contains properties of the
 foreign table (see foreign/foreign.h for details).

List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);

 This function returns the per-column FDW options for the column with the
 given foreign table OID and attribute number, in the form of a list of
 DefElem. NIL is returned if the column has no
 options.

 Some object types have name-based lookup functions in addition to the
 OID-based ones:

ForeignDataWrapper *
GetForeignDataWrapperByName(const char *name, bool missing_ok);

 This function returns a ForeignDataWrapper
 object for the foreign-data wrapper with the given name. If the wrapper
 is not found, return NULL if missing_ok is true, otherwise raise an
 error.

ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);

 This function returns a ForeignServer object
 for the foreign server with the given name. If the server is not found,
 return NULL if missing_ok is true, otherwise raise an error.

Foreign Data Wrapper Query Planning

 The FDW callback functions GetForeignRelSize,
 GetForeignPaths, GetForeignPlan,
 PlanForeignModify, GetForeignJoinPaths,
 GetForeignUpperPaths, and PlanDirectModify
 must fit into the workings of the PostgreSQL™ planner.
 Here are some notes about what they must do.

 The information in root and baserel can be used
 to reduce the amount of information that has to be fetched from the
 foreign table (and therefore reduce the cost).
 baserel->baserestrictinfo is particularly interesting, as
 it contains restriction quals (WHERE clauses) that should be
 used to filter the rows to be fetched. (The FDW itself is not required
 to enforce these quals, as the core executor can check them instead.)
 baserel->reltarget->exprs can be used to determine which
 columns need to be fetched; but note that it only lists columns that
 have to be emitted by the ForeignScan plan node, not
 columns that are used in qual evaluation but not output by the query.

 Various private fields are available for the FDW planning functions to
 keep information in. Generally, whatever you store in FDW private fields
 should be palloc'd, so that it will be reclaimed at the end of planning.

 baserel->fdw_private is a void pointer that is
 available for FDW planning functions to store information relevant to
 the particular foreign table. The core planner does not touch it except
 to initialize it to NULL when the RelOptInfo node is created.
 It is useful for passing information forward from
 GetForeignRelSize to GetForeignPaths and/or
 GetForeignPaths to GetForeignPlan, thereby
 avoiding recalculation.

 GetForeignPaths can identify the meaning of different
 access paths by storing private information in the
 fdw_private field of ForeignPath nodes.
 fdw_private is declared as a List pointer, but
 could actually contain anything since the core planner does not touch
 it. However, best practice is to use a representation that's dumpable
 by nodeToString, for use with debugging support available
 in the backend.

 GetForeignPlan can examine the fdw_private
 field of the selected ForeignPath node, and can generate
 fdw_exprs and fdw_private lists to be
 placed in the ForeignScan plan node, where they will be
 available at execution time. Both of these lists must be
 represented in a form that copyObject knows how to copy.
 The fdw_private list has no other restrictions and is
 not interpreted by the core backend in any way. The
 fdw_exprs list, if not NIL, is expected to contain
 expression trees that are intended to be executed at run time. These
 trees will undergo post-processing by the planner to make them fully
 executable.

 In GetForeignPlan, generally the passed-in target list can
 be copied into the plan node as-is. The passed scan_clauses list
 contains the same clauses as baserel->baserestrictinfo,
 but may be re-ordered for better execution efficiency. In simple cases
 the FDW can just strip RestrictInfo nodes from the
 scan_clauses list (using extract_actual_clauses) and put
 all the clauses into the plan node's qual list, which means that all the
 clauses will be checked by the executor at run time. More complex FDWs
 may be able to check some of the clauses internally, in which case those
 clauses can be removed from the plan node's qual list so that the
 executor doesn't waste time rechecking them.

 As an example, the FDW might identify some restriction clauses of the
 form foreign_variable =
 sub_expression, which it determines can be executed on
 the remote server given the locally-evaluated value of the
 sub_expression. The actual identification of such a
 clause should happen during GetForeignPaths, since it would
 affect the cost estimate for the path. The path's
 fdw_private field would probably include a pointer to
 the identified clause's RestrictInfo node. Then
 GetForeignPlan would remove that clause from scan_clauses,
 but add the sub_expression to fdw_exprs
 to ensure that it gets massaged into executable form. It would probably
 also put control information into the plan node's
 fdw_private field to tell the execution functions what
 to do at run time. The query transmitted to the remote server would
 involve something like WHERE foreign_variable =
 $1, with the parameter value obtained at run time from
 evaluation of the fdw_exprs expression tree.

 Any clauses removed from the plan node's qual list must instead be added
 to fdw_recheck_quals or rechecked by
 RecheckForeignScan in order to ensure correct behavior
 at the READ COMMITTED isolation level. When a concurrent
 update occurs for some other table involved in the query, the executor
 may need to verify that all of the original quals are still satisfied for
 the tuple, possibly against a different set of parameter values. Using
 fdw_recheck_quals is typically easier than implementing checks
 inside RecheckForeignScan, but this method will be
 insufficient when outer joins have been pushed down, since the join tuples
 in that case might have some fields go to NULL without rejecting the
 tuple entirely.

 Another ForeignScan field that can be filled by FDWs
 is fdw_scan_tlist, which describes the tuples returned by
 the FDW for this plan node. For simple foreign table scans this can be
 set to NIL, implying that the returned tuples have the
 row type declared for the foreign table. A non-NIL value must be a
 target list (list of TargetEntrys) containing Vars and/or
 expressions representing the returned columns. This might be used, for
 example, to show that the FDW has omitted some columns that it noticed
 won't be needed for the query. Also, if the FDW can compute expressions
 used by the query more cheaply than can be done locally, it could add
 those expressions to fdw_scan_tlist. Note that join
 plans (created from paths made by GetForeignJoinPaths) must
 always supply fdw_scan_tlist to describe the set of
 columns they will return.

 The FDW should always construct at least one path that depends only on
 the table's restriction clauses. In join queries, it might also choose
 to construct path(s) that depend on join clauses, for example
 foreign_variable =
 local_variable. Such clauses will not be found in
 baserel->baserestrictinfo but must be sought in the
 relation's join lists. A path using such a clause is called a
 “parameterized path”. It must identify the other relations
 used in the selected join clause(s) with a suitable value of
 param_info; use get_baserel_parampathinfo
 to compute that value. In GetForeignPlan, the
 local_variable portion of the join clause would be added
 to fdw_exprs, and then at run time the case works the
 same as for an ordinary restriction clause.

 If an FDW supports remote joins, GetForeignJoinPaths should
 produce ForeignPaths for potential remote joins in much
 the same way as GetForeignPaths works for base tables.
 Information about the intended join can be passed forward
 to GetForeignPlan in the same ways described above.
 However, baserestrictinfo is not relevant for join
 relations; instead, the relevant join clauses for a particular join are
 passed to GetForeignJoinPaths as a separate parameter
 (extra->restrictlist).

 An FDW might additionally support direct execution of some plan actions
 that are above the level of scans and joins, such as grouping or
 aggregation. To offer such options, the FDW should generate paths and
 insert them into the appropriate upper relation. For
 example, a path representing remote aggregation should be inserted into
 the UPPERREL_GROUP_AGG relation, using add_path.
 This path will be compared on a cost basis with local aggregation
 performed by reading a simple scan path for the foreign relation (note
 that such a path must also be supplied, else there will be an error at
 plan time). If the remote-aggregation path wins, which it usually would,
 it will be converted into a plan in the usual way, by
 calling GetForeignPlan. The recommended place to generate
 such paths is in the GetForeignUpperPaths
 callback function, which is called for each upper relation (i.e., each
 post-scan/join processing step), if all the base relations of the query
 come from the same FDW.

 PlanForeignModify and the other callbacks described in
 the section called “FDW Routines for Updating Foreign Tables” are designed around the assumption
 that the foreign relation will be scanned in the usual way and then
 individual row updates will be driven by a local ModifyTable
 plan node. This approach is necessary for the general case where an
 update requires reading local tables as well as foreign tables.
 However, if the operation could be executed entirely by the foreign
 server, the FDW could generate a path representing that and insert it
 into the UPPERREL_FINAL upper relation, where it would
 compete against the ModifyTable approach. This approach
 could also be used to implement remote SELECT FOR UPDATE,
 rather than using the row locking callbacks described in
 the section called “FDW Routines for Row Locking”. Keep in mind that a path
 inserted into UPPERREL_FINAL is responsible for
 implementing all behavior of the query.

 When planning an UPDATE or DELETE,
 PlanForeignModify and PlanDirectModify
 can look up the RelOptInfo
 struct for the foreign table and make use of the
 baserel->fdw_private data previously created by the
 scan-planning functions. However, in INSERT the target
 table is not scanned so there is no RelOptInfo for it.
 The List returned by PlanForeignModify has
 the same restrictions as the fdw_private list of a
 ForeignScan plan node, that is it must contain only
 structures that copyObject knows how to copy.

 INSERT with an ON CONFLICT clause does not
 support specifying the conflict target, as unique constraints or
 exclusion constraints on remote tables are not locally known. This
 in turn implies that ON CONFLICT DO UPDATE is not supported,
 since the specification is mandatory there.

Row Locking in Foreign Data Wrappers

 If an FDW's underlying storage mechanism has a concept of locking
 individual rows to prevent concurrent updates of those rows, it is
 usually worthwhile for the FDW to perform row-level locking with as
 close an approximation as practical to the semantics used in
 ordinary PostgreSQL™ tables. There are multiple
 considerations involved in this.

 One key decision to be made is whether to perform early
 locking or late locking. In early locking, a row is
 locked when it is first retrieved from the underlying store, while in
 late locking, the row is locked only when it is known that it needs to
 be locked. (The difference arises because some rows may be discarded by
 locally-checked restriction or join conditions.) Early locking is much
 simpler and avoids extra round trips to a remote store, but it can cause
 locking of rows that need not have been locked, resulting in reduced
 concurrency or even unexpected deadlocks. Also, late locking is only
 possible if the row to be locked can be uniquely re-identified later.
 Preferably the row identifier should identify a specific version of the
 row, as PostgreSQL™ TIDs do.

 By default, PostgreSQL™ ignores locking considerations
 when interfacing to FDWs, but an FDW can perform early locking without
 any explicit support from the core code. The API functions described
 in the section called “FDW Routines for Row Locking”, which were added
 in PostgreSQL™ 9.5, allow an FDW to use late locking if
 it wishes.

 An additional consideration is that in READ COMMITTED
 isolation mode, PostgreSQL™ may need to re-check
 restriction and join conditions against an updated version of some
 target tuple. Rechecking join conditions requires re-obtaining copies
 of the non-target rows that were previously joined to the target tuple.
 When working with standard PostgreSQL™ tables, this is
 done by including the TIDs of the non-target tables in the column list
 projected through the join, and then re-fetching non-target rows when
 required. This approach keeps the join data set compact, but it
 requires inexpensive re-fetch capability, as well as a TID that can
 uniquely identify the row version to be re-fetched. By default,
 therefore, the approach used with foreign tables is to include a copy of
 the entire row fetched from a foreign table in the column list projected
 through the join. This puts no special demands on the FDW but can
 result in reduced performance of merge and hash joins. An FDW that is
 capable of meeting the re-fetch requirements can choose to do it the
 first way.

 For an UPDATE or DELETE on a foreign table, it
 is recommended that the ForeignScan operation on the target
 table perform early locking on the rows that it fetches, perhaps via the
 equivalent of SELECT FOR UPDATE. An FDW can detect whether
 a table is an UPDATE/DELETE target at plan time
 by comparing its relid to root->parse->resultRelation,
 or at execution time by using ExecRelationIsTargetRelation().
 An alternative possibility is to perform late locking within the
 ExecForeignUpdate or ExecForeignDelete
 callback, but no special support is provided for this.

 For foreign tables that are specified to be locked by a SELECT
 FOR UPDATE/SHARE command, the ForeignScan operation can
 again perform early locking by fetching tuples with the equivalent
 of SELECT FOR UPDATE/SHARE. To perform late locking
 instead, provide the callback functions defined
 in the section called “FDW Routines for Row Locking”.
 In GetForeignRowMarkType, select rowmark option
 ROW_MARK_EXCLUSIVE, ROW_MARK_NOKEYEXCLUSIVE,
 ROW_MARK_SHARE, or ROW_MARK_KEYSHARE depending
 on the requested lock strength. (The core code will act the same
 regardless of which of these four options you choose.)
 Elsewhere, you can detect whether a foreign table was specified to be
 locked by this type of command by using get_plan_rowmark at
 plan time, or ExecFindRowMark at execution time; you must
 check not only whether a non-null rowmark struct is returned, but that
 its strength field is not LCS_NONE.

 Lastly, for foreign tables that are used in an UPDATE,
 DELETE or SELECT FOR UPDATE/SHARE command but
 are not specified to be row-locked, you can override the default choice
 to copy entire rows by having GetForeignRowMarkType select
 option ROW_MARK_REFERENCE when it sees lock strength
 LCS_NONE. This will cause RefetchForeignRow to
 be called with that value for markType; it should then
 re-fetch the row without acquiring any new lock. (If you have
 a GetForeignRowMarkType function but don't wish to re-fetch
 unlocked rows, select option ROW_MARK_COPY
 for LCS_NONE.)

 See src/include/nodes/lockoptions.h, the comments
 for RowMarkType and PlanRowMark
 in src/include/nodes/plannodes.h, and the comments for
 ExecRowMark in src/include/nodes/execnodes.h for
 additional information.

Chapter 60. Writing a Table Sampling Method

 PostgreSQL™'s implementation of the TABLESAMPLE
 clause supports custom table sampling methods, in addition to
 the BERNOULLI and SYSTEM methods that are required
 by the SQL standard. The sampling method determines which rows of the
 table will be selected when the TABLESAMPLE clause is used.

 At the SQL level, a table sampling method is represented by a single SQL
 function, typically implemented in C, having the signature

method_name(internal) RETURNS tsm_handler

 The name of the function is the same method name appearing in the
 TABLESAMPLE clause. The internal argument is a dummy
 (always having value zero) that simply serves to prevent this function from
 being called directly from an SQL command.
 The result of the function must be a palloc'd struct of
 type TsmRoutine, which contains pointers to support functions for
 the sampling method. These support functions are plain C functions and
 are not visible or callable at the SQL level. The support functions are
 described in the section called “Sampling Method Support Functions”.

 In addition to function pointers, the TsmRoutine struct must
 provide these additional fields:

	List *parameterTypes
	
 This is an OID list containing the data type OIDs of the parameter(s)
 that will be accepted by the TABLESAMPLE clause when this
 sampling method is used. For example, for the built-in methods, this
 list contains a single item with value FLOAT4OID, which
 represents the sampling percentage. Custom sampling methods can have
 more or different parameters.

	bool repeatable_across_queries
	
 If true, the sampling method can deliver identical samples
 across successive queries, if the same parameters
 and REPEATABLE seed value are supplied each time and the
 table contents have not changed. When this is false,
 the REPEATABLE clause is not accepted for use with the
 sampling method.

	bool repeatable_across_scans
	
 If true, the sampling method can deliver identical samples
 across successive scans in the same query (assuming unchanging
 parameters, seed value, and snapshot).
 When this is false, the planner will not select plans that
 would require scanning the sampled table more than once, since that
 might result in inconsistent query output.

 The TsmRoutine struct type is declared
 in src/include/access/tsmapi.h, which see for additional
 details.

 The table sampling methods included in the standard distribution are good
 references when trying to write your own. Look into
 the src/backend/access/tablesample subdirectory of the source
 tree for the built-in sampling methods, and into the contrib
 subdirectory for add-on methods.

Sampling Method Support Functions

 The TSM handler function returns a palloc'd TsmRoutine struct
 containing pointers to the support functions described below. Most of
 the functions are required, but some are optional, and those pointers can
 be NULL.

void
SampleScanGetSampleSize (PlannerInfo *root,
 RelOptInfo *baserel,
 List *paramexprs,
 BlockNumber *pages,
 double *tuples);

 This function is called during planning. It must estimate the number of
 relation pages that will be read during a sample scan, and the number of
 tuples that will be selected by the scan. (For example, these might be
 determined by estimating the sampling fraction, and then multiplying
 the baserel->pages and baserel->tuples
 numbers by that, being sure to round the results to integral values.)
 The paramexprs list holds the expression(s) that are
 parameters to the TABLESAMPLE clause. It is recommended to
 use estimate_expression_value() to try to reduce these
 expressions to constants, if their values are needed for estimation
 purposes; but the function must provide size estimates even if they cannot
 be reduced, and it should not fail even if the values appear invalid
 (remember that they're only estimates of what the run-time values will be).
 The pages and tuples parameters are outputs.

void
InitSampleScan (SampleScanState *node,
 int eflags);

 Initialize for execution of a SampleScan plan node.
 This is called during executor startup.
 It should perform any initialization needed before processing can start.
 The SampleScanState node has already been created, but
 its tsm_state field is NULL.
 The InitSampleScan function can palloc whatever internal
 state data is needed by the sampling method, and store a pointer to
 it in node->tsm_state.
 Information about the table to scan is accessible through other fields
 of the SampleScanState node (but note that the
 node->ss.ss_currentScanDesc scan descriptor is not set
 up yet).
 eflags contains flag bits describing the executor's
 operating mode for this plan node.

 When (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true,
 the scan will not actually be performed, so this function should only do
 the minimum required to make the node state valid for EXPLAIN
 and EndSampleScan.

 This function can be omitted (set the pointer to NULL), in which case
 BeginSampleScan must perform all initialization needed
 by the sampling method.

void
BeginSampleScan (SampleScanState *node,
 Datum *params,
 int nparams,
 uint32 seed);

 Begin execution of a sampling scan.
 This is called just before the first attempt to fetch a tuple, and
 may be called again if the scan needs to be restarted.
 Information about the table to scan is accessible through fields
 of the SampleScanState node (but note that the
 node->ss.ss_currentScanDesc scan descriptor is not set
 up yet).
 The params array, of length nparams, contains the
 values of the parameters supplied in the TABLESAMPLE clause.
 These will have the number and types specified in the sampling
 method's parameterTypes list, and have been checked
 to not be null.
 seed contains a seed to use for any random numbers generated
 within the sampling method; it is either a hash derived from the
 REPEATABLE value if one was given, or the result
 of random() if not.

 This function may adjust the fields node->use_bulkread
 and node->use_pagemode.
 If node->use_bulkread is true, which it is by
 default, the scan will use a buffer access strategy that encourages
 recycling buffers after use. It might be reasonable to set this
 to false if the scan will visit only a small fraction of the
 table's pages.
 If node->use_pagemode is true, which it is by
 default, the scan will perform visibility checking in a single pass for
 all tuples on each visited page. It might be reasonable to set this
 to false if the scan will select only a small fraction of the
 tuples on each visited page. That will result in fewer tuple visibility
 checks being performed, though each one will be more expensive because it
 will require more locking.

 If the sampling method is
 marked repeatable_across_scans, it must be able to
 select the same set of tuples during a rescan as it did originally, that is
 a fresh call of BeginSampleScan must lead to selecting the
 same tuples as before (if the TABLESAMPLE parameters
 and seed don't change).

BlockNumber
NextSampleBlock (SampleScanState *node, BlockNumber nblocks);

 Returns the block number of the next page to be scanned, or
 InvalidBlockNumber if no pages remain to be scanned.

 This function can be omitted (set the pointer to NULL), in which case
 the core code will perform a sequential scan of the entire relation.
 Such a scan can use synchronized scanning, so that the sampling method
 cannot assume that the relation pages are visited in the same order on
 each scan.

OffsetNumber
NextSampleTuple (SampleScanState *node,
 BlockNumber blockno,
 OffsetNumber maxoffset);

 Returns the offset number of the next tuple to be sampled on the
 specified page, or InvalidOffsetNumber if no tuples remain to
 be sampled. maxoffset is the largest offset number in use
 on the page.

Note

 NextSampleTuple is not explicitly told which of the offset
 numbers in the range 1 .. maxoffset actually contain valid
 tuples. This is not normally a problem since the core code ignores
 requests to sample missing or invisible tuples; that should not result in
 any bias in the sample. However, if necessary, the function can use
 node->donetuples to examine how many of the tuples
 it returned were valid and visible.

Note

 NextSampleTuple must not assume
 that blockno is the same page number returned by the most
 recent NextSampleBlock call. It was returned by some
 previous NextSampleBlock call, but the core code is allowed
 to call NextSampleBlock in advance of actually scanning
 pages, so as to support prefetching. It is OK to assume that once
 sampling of a given page begins, successive NextSampleTuple
 calls all refer to the same page until InvalidOffsetNumber is
 returned.

void
EndSampleScan (SampleScanState *node);

 End the scan and release resources. It is normally not important
 to release palloc'd memory, but any externally-visible resources
 should be cleaned up.
 This function can be omitted (set the pointer to NULL) in the common
 case where no such resources exist.

Chapter 61. Writing a Custom Scan Provider

 PostgreSQL™ supports a set of experimental facilities which
 are intended to allow extension modules to add new scan types to the system.
 Unlike a foreign data wrapper, which is only
 responsible for knowing how to scan its own foreign tables, a custom scan
 provider can provide an alternative method of scanning any relation in the
 system. Typically, the motivation for writing a custom scan provider will
 be to allow the use of some optimization not supported by the core
 system, such as caching or some form of hardware acceleration. This chapter
 outlines how to write a new custom scan provider.

 Implementing a new type of custom scan is a three-step process. First,
 during planning, it is necessary to generate access paths representing a
 scan using the proposed strategy. Second, if one of those access paths
 is selected by the planner as the optimal strategy for scanning a
 particular relation, the access path must be converted to a plan.
 Finally, it must be possible to execute the plan and generate the same
 results that would have been generated for any other access path targeting
 the same relation.

Creating Custom Scan Paths

 A custom scan provider will typically add paths for a base relation by
 setting the following hook, which is called after the core code has
 generated all the access paths it can for the relation (except for
 Gather paths, which are made after this call so that they can use
 partial paths added by the hook):

typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *rel,
 Index rti,
 RangeTblEntry *rte);
extern PGDLLIMPORT set_rel_pathlist_hook_type set_rel_pathlist_hook;

 Although this hook function can be used to examine, modify, or remove
 paths generated by the core system, a custom scan provider will typically
 confine itself to generating CustomPath objects and adding
 them to rel using add_path. The custom scan
 provider is responsible for initializing the CustomPath
 object, which is declared like this:

typedef struct CustomPath
{
 Path path;
 uint32 flags;
 List *custom_paths;
 List *custom_private;
 const CustomPathMethods *methods;
} CustomPath;

 path must be initialized as for any other path, including
 the row-count estimate, start and total cost, and sort ordering provided
 by this path. flags is a bit mask, which
 specifies whether the scan provider can support certain optional
 capabilities. flags should include
 CUSTOMPATH_SUPPORT_BACKWARD_SCAN if the custom path can support
 a backward scan, CUSTOMPATH_SUPPORT_MARK_RESTORE if it
 can support mark and restore,
 and CUSTOMPATH_SUPPORT_PROJECTION if it can perform
 projections. (If CUSTOMPATH_SUPPORT_PROJECTION is not
 set, the scan node will only be asked to produce Vars of the scanned
 relation; while if that flag is set, the scan node must be able to
 evaluate scalar expressions over these Vars.)
 An optional custom_paths is a list of Path
 nodes used by this custom-path node; these will be transformed into
 Plan nodes by planner.
 custom_private can be used to store the custom path's
 private data. Private data should be stored in a form that can be handled
 by nodeToString, so that debugging routines that attempt to
 print the custom path will work as designed. methods must
 point to a (usually statically allocated) object implementing the required
 custom path methods, which are further detailed below.

 A custom scan provider can also provide join paths. Just as for base
 relations, such a path must produce the same output as would normally be
 produced by the join it replaces. To do this, the join provider should
 set the following hook, and then within the hook function,
 create CustomPath path(s) for the join relation.

typedef void (*set_join_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);
extern PGDLLIMPORT set_join_pathlist_hook_type set_join_pathlist_hook;

 This hook will be invoked repeatedly for the same join relation, with
 different combinations of inner and outer relations; it is the
 responsibility of the hook to minimize duplicated work.

Custom Scan Path Callbacks

Plan *(*PlanCustomPath) (PlannerInfo *root,
 RelOptInfo *rel,
 CustomPath *best_path,
 List *tlist,
 List *clauses,
 List *custom_plans);

 Convert a custom path to a finished plan. The return value will generally
 be a CustomScan object, which the callback must allocate and
 initialize. See the section called “Creating Custom Scan Plans” for more details.

List *(*ReparameterizeCustomPathByChild) (PlannerInfo *root,
 List *custom_private,
 RelOptInfo *child_rel);

 This callback is called while converting a path parameterized by the
 top-most parent of the given child relation child_rel
 to be parameterized by the child relation. The callback is used to
 reparameterize any paths or translate any expression nodes saved in the
 given custom_private member of a
 CustomPath. The callback may use
 reparameterize_path_by_child,
 adjust_appendrel_attrs or
 adjust_appendrel_attrs_multilevel as required.

Creating Custom Scan Plans

 A custom scan is represented in a finished plan tree using the following
 structure:

typedef struct CustomScan
{
 Scan scan;
 uint32 flags;
 List *custom_plans;
 List *custom_exprs;
 List *custom_private;
 List *custom_scan_tlist;
 Bitmapset *custom_relids;
 const CustomScanMethods *methods;
} CustomScan;

 scan must be initialized as for any other scan, including
 estimated costs, target lists, qualifications, and so on.
 flags is a bit mask with the same meaning as in
 CustomPath.
 custom_plans can be used to store child
 Plan nodes.
 custom_exprs should be used to
 store expression trees that will need to be fixed up by
 setrefs.c and subselect.c, while
 custom_private should be used to store other private data
 that is only used by the custom scan provider itself.
 custom_scan_tlist can be NIL when scanning a base
 relation, indicating that the custom scan returns scan tuples that match
 the base relation's row type. Otherwise it is a target list describing
 the actual scan tuples. custom_scan_tlist must be
 provided for joins, and could be provided for scans if the custom scan
 provider can compute some non-Var expressions.
 custom_relids is set by the core code to the set of
 relations (range table indexes) that this scan node handles; except when
 this scan is replacing a join, it will have only one member.
 methods must point to a (usually statically allocated)
 object implementing the required custom scan methods, which are further
 detailed below.

 When a CustomScan scans a single relation,
 scan.scanrelid must be the range table index of the table
 to be scanned. When it replaces a join, scan.scanrelid
 should be zero.

 Plan trees must be able to be duplicated using copyObject,
 so all the data stored within the “custom” fields must consist of
 nodes that that function can handle. Furthermore, custom scan providers
 cannot substitute a larger structure that embeds
 a CustomScan for the structure itself, as would be possible
 for a CustomPath or CustomScanState.

Custom Scan Plan Callbacks

Node *(*CreateCustomScanState) (CustomScan *cscan);

 Allocate a CustomScanState for this
 CustomScan. The actual allocation will often be larger than
 required for an ordinary CustomScanState, because many
 providers will wish to embed that as the first field of a larger structure.
 The value returned must have the node tag and methods
 set appropriately, but other fields should be left as zeroes at this
 stage; after ExecInitCustomScan performs basic initialization,
 the BeginCustomScan callback will be invoked to give the
 custom scan provider a chance to do whatever else is needed.

Executing Custom Scans

 When a CustomScan is executed, its execution state is
 represented by a CustomScanState, which is declared as
 follows:

typedef struct CustomScanState
{
 ScanState ss;
 uint32 flags;
 const CustomExecMethods *methods;
} CustomScanState;

 ss is initialized as for any other scan state,
 except that if the scan is for a join rather than a base relation,
 ss.ss_currentRelation is left NULL.
 flags is a bit mask with the same meaning as in
 CustomPath and CustomScan.
 methods must point to a (usually statically allocated)
 object implementing the required custom scan state methods, which are
 further detailed below. Typically, a CustomScanState, which
 need not support copyObject, will actually be a larger
 structure embedding the above as its first member.

Custom Scan Execution Callbacks

void (*BeginCustomScan) (CustomScanState *node,
 EState *estate,
 int eflags);

 Complete initialization of the supplied CustomScanState.
 Standard fields have been initialized by ExecInitCustomScan,
 but any private fields should be initialized here.

TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);

 Fetch the next scan tuple. If any tuples remain, it should fill
 ps_ResultTupleSlot with the next tuple in the current scan
 direction, and then return the tuple slot. If not,
 NULL or an empty slot should be returned.

void (*EndCustomScan) (CustomScanState *node);

 Clean up any private data associated with the CustomScanState.
 This method is required, but it does not need to do anything if there is
 no associated data or it will be cleaned up automatically.

void (*ReScanCustomScan) (CustomScanState *node);

 Rewind the current scan to the beginning and prepare to rescan the
 relation.

void (*MarkPosCustomScan) (CustomScanState *node);

 Save the current scan position so that it can subsequently be restored
 by the RestrPosCustomScan callback. This callback is
 optional, and need only be supplied if the
 CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

void (*RestrPosCustomScan) (CustomScanState *node);

 Restore the previous scan position as saved by the
 MarkPosCustomScan callback. This callback is optional,
 and need only be supplied if the
 CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

Size (*EstimateDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt);

 Estimate the amount of dynamic shared memory that will be required
 for parallel operation. This may be higher than the amount that will
 actually be used, but it must not be lower. The return value is in bytes.
 This callback is optional, and need only be supplied if this custom
 scan provider supports parallel execution.

void (*InitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

 Initialize the dynamic shared memory that will be required for parallel
 operation. coordinate points to a shared memory area of
 size equal to the return value of EstimateDSMCustomScan.
 This callback is optional, and need only be supplied if this custom
 scan provider supports parallel execution.

void (*ReInitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

 Re-initialize the dynamic shared memory required for parallel operation
 when the custom-scan plan node is about to be re-scanned.
 This callback is optional, and need only be supplied if this custom
 scan provider supports parallel execution.
 Recommended practice is that this callback reset only shared state,
 while the ReScanCustomScan callback resets only local
 state. Currently, this callback will be called
 before ReScanCustomScan, but it's best not to rely on
 that ordering.

void (*InitializeWorkerCustomScan) (CustomScanState *node,
 shm_toc *toc,
 void *coordinate);

 Initialize a parallel worker's local state based on the shared state
 set up by the leader during InitializeDSMCustomScan.
 This callback is optional, and need only be supplied if this custom
 scan provider supports parallel execution.

void (*ShutdownCustomScan) (CustomScanState *node);

 Release resources when it is anticipated the node will not be executed
 to completion. This is not called in all cases; sometimes,
 EndCustomScan may be called without this function having
 been called first. Since the DSM segment used by parallel query is
 destroyed just after this callback is invoked, custom scan providers that
 wish to take some action before the DSM segment goes away should implement
 this method.

void (*ExplainCustomScan) (CustomScanState *node,
 List *ancestors,
 ExplainState *es);

 Output additional information for EXPLAIN of a custom-scan
 plan node. This callback is optional. Common data stored in the
 ScanState, such as the target list and scan relation, will
 be shown even without this callback, but the callback allows the display
 of additional, private state.

Chapter 62. Genetic Query Optimizer

Author

 Written by Martin Utesch (<utesch@aut.tu-freiberg.de>)
 for the Institute of Automatic Control at the University of Mining and Technology in Freiberg, Germany.

Query Handling as a Complex Optimization Problem

 Among all relational operators the most difficult one to process
 and optimize is the join. The number of
 possible query plans grows exponentially with the
 number of joins in the query. Further optimization effort is
 caused by the support of a variety of join
 methods (e.g., nested loop, hash join, merge join in
 PostgreSQL™) to process individual joins
 and a diversity of indexes (e.g.,
 B-tree, hash, GiST and GIN in PostgreSQL™) as
 access paths for relations.

 The normal PostgreSQL™ query optimizer
 performs a near-exhaustive search over the
 space of alternative strategies. This algorithm, first introduced
 in IBM's System R database, produces a near-optimal join order,
 but can take an enormous amount of time and memory space when the
 number of joins in the query grows large. This makes the ordinary
 PostgreSQL™ query optimizer
 inappropriate for queries that join a large number of tables.

 The Institute of Automatic Control at the University of Mining and
 Technology, in Freiberg, Germany, encountered some problems when
 it wanted to use PostgreSQL™ as the
 backend for a decision support knowledge based system for the
 maintenance of an electrical power grid. The DBMS needed to handle
 large join queries for the inference machine of the knowledge
 based system. The number of joins in these queries made using the
 normal query optimizer infeasible.

 In the following we describe the implementation of a
 genetic algorithm to solve the join
 ordering problem in a manner that is efficient for queries
 involving large numbers of joins.

Genetic Algorithms

 The genetic algorithm (GA) is a heuristic optimization method which
 operates through randomized search. The set of possible solutions for the
 optimization problem is considered as a
 population of individuals.
 The degree of adaptation of an individual to its environment is specified
 by its fitness.

 The coordinates of an individual in the search space are represented
 by chromosomes, in essence a set of character
 strings. A gene is a
 subsection of a chromosome which encodes the value of a single parameter
 being optimized. Typical encodings for a gene could be binary or
 integer.

 Through simulation of the evolutionary operations recombination,
 mutation, and
 selection new generations of search points are found
 that show a higher average fitness than their ancestors. Figure 62.1, “Structure of a Genetic Algorithm”
 illustrates these steps.

Figure 62.1. Structure of a Genetic Algorithm

 According to the comp.ai.genetic FAQ it cannot be stressed too
 strongly that a GA is not a pure random search for a solution to a
 problem. A GA uses stochastic processes, but the result is distinctly
 non-random (better than random).

Genetic Query Optimization (GEQO) in PostgreSQL

 The GEQO module approaches the query
 optimization problem as though it were the well-known traveling salesman
 problem (TSP).
 Possible query plans are encoded as integer strings. Each string
 represents the join order from one relation of the query to the next.
 For example, the join tree

 /\
 /\ 2
 /\ 3
4 1

 is encoded by the integer string '4-1-3-2',
 which means, first join relation '4' and '1', then '3', and
 then '2', where 1, 2, 3, 4 are relation IDs within the
 PostgreSQL™ optimizer.

 Specific characteristics of the GEQO
 implementation in PostgreSQL™
 are:

	
 Usage of a steady state GA (replacement of the least fit
 individuals in a population, not whole-generational replacement)
 allows fast convergence towards improved query plans. This is
 essential for query handling with reasonable time;

	
 Usage of edge recombination crossover
 which is especially suited to keep edge losses low for the
 solution of the TSP by means of a
 GA;

	
 Mutation as genetic operator is deprecated so that no repair
 mechanisms are needed to generate legal TSP tours.

 Parts of the GEQO module are adapted from D. Whitley's
 Genitor algorithm.

 The GEQO module allows
 the PostgreSQL™ query optimizer to
 support large join queries effectively through
 non-exhaustive search.

Generating Possible Plans with GEQO

 The GEQO planning process uses the standard planner
 code to generate plans for scans of individual relations. Then join
 plans are developed using the genetic approach. As shown above, each
 candidate join plan is represented by a sequence in which to join
 the base relations. In the initial stage, the GEQO
 code simply generates some possible join sequences at random. For each
 join sequence considered, the standard planner code is invoked to
 estimate the cost of performing the query using that join sequence.
 (For each step of the join sequence, all three possible join strategies
 are considered; and all the initially-determined relation scan plans
 are available. The estimated cost is the cheapest of these
 possibilities.) Join sequences with lower estimated cost are considered
 “more fit” than those with higher cost. The genetic algorithm
 discards the least fit candidates. Then new candidates are generated
 by combining genes of more-fit candidates — that is, by using
 randomly-chosen portions of known low-cost join sequences to create
 new sequences for consideration. This process is repeated until a
 preset number of join sequences have been considered; then the best
 one found at any time during the search is used to generate the finished
 plan.

 This process is inherently nondeterministic, because of the randomized
 choices made during both the initial population selection and subsequent
 “mutation” of the best candidates. To avoid surprising changes
 of the selected plan, each run of the GEQO algorithm restarts its
 random number generator with the current geqo_seed
 parameter setting. As long as geqo_seed and the other
 GEQO parameters are kept fixed, the same plan will be generated for a
 given query (and other planner inputs such as statistics). To experiment
 with different search paths, try changing geqo_seed.

Future Implementation Tasks for
 PostgreSQL™ GEQO

 Work is still needed to improve the genetic algorithm parameter
 settings.
 In file src/backend/optimizer/geqo/geqo_main.c,
 routines
 gimme_pool_size and gimme_number_generations,
 we have to find a compromise for the parameter settings
 to satisfy two competing demands:

	
 Optimality of the query plan

	
 Computing time

 In the current implementation, the fitness of each candidate join
 sequence is estimated by running the standard planner's join selection
 and cost estimation code from scratch. To the extent that different
 candidates use similar sub-sequences of joins, a great deal of work
 will be repeated. This could be made significantly faster by retaining
 cost estimates for sub-joins. The problem is to avoid expending
 unreasonable amounts of memory on retaining that state.

 At a more basic level, it is not clear that solving query optimization
 with a GA algorithm designed for TSP is appropriate. In the TSP case,
 the cost associated with any substring (partial tour) is independent
 of the rest of the tour, but this is certainly not true for query
 optimization. Thus it is questionable whether edge recombination
 crossover is the most effective mutation procedure.

Further Reading

 The following resources contain additional information about
 genetic algorithms:

	

 The Hitch-Hiker's Guide to Evolutionary Computation, (FAQ for news://comp.ai.genetic)

	

 Evolutionary Computation and its application to art and design, by
 Craig Reynolds

	
 [elma04]

	
 [fong]

Chapter 63. Table Access Method Interface Definition

 This chapter explains the interface between the core
 PostgreSQL™ system and table access
 methods, which manage the storage for tables. The core system
 knows little about these access methods beyond what is specified here, so
 it is possible to develop entirely new access method types by writing
 add-on code.

 Each table access method is described by a row in the pg_am system
 catalog. The pg_am entry specifies a name and a
 handler function for the table access method. These
 entries can be created and deleted using the CREATE ACCESS METHOD(7) and DROP ACCESS METHOD(7) SQL commands.

 A table access method handler function must be declared to accept a single
 argument of type internal and to return the pseudo-type
 table_am_handler. The argument is a dummy value that simply
 serves to prevent handler functions from being called directly from SQL commands.

 The result of the function must be a pointer to a struct of type
 TableAmRoutine, which contains everything that the
 core code needs to know to make use of the table access method. The return
 value needs to be of server lifetime, which is typically achieved by
 defining it as a static const variable in global
 scope. The TableAmRoutine struct, also called the
 access method's API struct, defines the behavior of
 the access method using callbacks. These callbacks are pointers to plain C
 functions and are not visible or callable at the SQL level. All the
 callbacks and their behavior is defined in the
 TableAmRoutine structure (with comments inside the
 struct defining the requirements for callbacks). Most callbacks have
 wrapper functions, which are documented from the point of view of a user
 (rather than an implementor) of the table access method. For details,
 please refer to the
 src/include/access/tableam.h file.

 To implement an access method, an implementor will typically need to
 implement an AM-specific type of tuple table slot (see

 src/include/executor/tuptable.h), which allows
 code outside the access method to hold references to tuples of the AM, and
 to access the columns of the tuple.

 Currently, the way an AM actually stores data is fairly unconstrained. For
 example, it's possible, but not required, to use postgres' shared buffer
 cache. In case it is used, it likely makes sense to use
 PostgreSQL™'s standard page layout as described in
 the section called “Database Page Layout”.

 One fairly large constraint of the table access method API is that,
 currently, if the AM wants to support modifications and/or indexes, it is
 necessary for each tuple to have a tuple identifier (TID)
 consisting of a block number and an item number (see also the section called “Database Page Layout”). It is not strictly necessary that the
 sub-parts of TIDs have the same meaning they e.g., have
 for heap, but if bitmap scan support is desired (it is
 optional), the block number needs to provide locality.

 For crash safety, an AM can use postgres' WAL, or a custom implementation.
 If WAL is chosen, either Generic WAL Records can be used,
 or a Custom WAL Resource Manager can be
 implemented.

 To implement transactional support in a manner that allows different table
 access methods be accessed within a single transaction, it likely is
 necessary to closely integrate with the machinery in
 src/backend/access/transam/xlog.c.

 Any developer of a new table access method can refer to
 the existing heap implementation present in
 src/backend/access/heap/heapam_handler.c for details of
 its implementation.

Chapter 64. Index Access Method Interface Definition

 This chapter defines the interface between the core
 PostgreSQL™ system and index access
 methods, which manage individual index types. The core system
 knows nothing about indexes beyond what is specified here, so it is
 possible to develop entirely new index types by writing add-on code.

 All indexes in PostgreSQL™ are what are known
 technically as secondary indexes; that is, the index is
 physically separate from the table file that it describes. Each index
 is stored as its own physical relation and so is described
 by an entry in the pg_class catalog. The contents of an
 index are entirely under the control of its index access method. In
 practice, all index access methods divide indexes into standard-size
 pages so that they can use the regular storage manager and buffer manager
 to access the index contents. (All the existing index access methods
 furthermore use the standard page layout described in the section called “Database Page Layout”, and most use the same format for index
 tuple headers; but these decisions are not forced on an access method.)

 An index is effectively a mapping from some data key values to
 tuple identifiers, or TIDs, of row versions
 (tuples) in the index's parent table. A TID consists of a
 block number and an item number within that block (see the section called “Database Page Layout”). This is sufficient
 information to fetch a particular row version from the table.
 Indexes are not directly aware that under MVCC, there might be multiple
 extant versions of the same logical row; to an index, each tuple is
 an independent object that needs its own index entry. Thus, an
 update of a row always creates all-new index entries for the row, even if
 the key values did not change. (HOT
 tuples are an exception to this
 statement; but indexes do not deal with those, either.) Index entries for
 dead tuples are reclaimed (by vacuuming) when the dead tuples themselves
 are reclaimed.

Basic API Structure for Indexes

 Each index access method is described by a row in the
 pg_am
 system catalog. The pg_am entry
 specifies a name and a handler function for the index
 access method. These entries can be created and deleted using the
 CREATE ACCESS METHOD(7) and
 DROP ACCESS METHOD(7) SQL commands.

 An index access method handler function must be declared to accept a
 single argument of type internal and to return the
 pseudo-type index_am_handler. The argument is a dummy value that
 simply serves to prevent handler functions from being called directly from
 SQL commands. The result of the function must be a palloc'd struct of
 type IndexAmRoutine, which contains everything
 that the core code needs to know to make use of the index access method.
 The IndexAmRoutine struct, also called the access
 method's API struct, includes fields specifying assorted
 fixed properties of the access method, such as whether it can support
 multicolumn indexes. More importantly, it contains pointers to support
 functions for the access method, which do all of the real work to access
 indexes. These support functions are plain C functions and are not
 visible or callable at the SQL level. The support functions are described
 in the section called “Index Access Method Functions”.

 The structure IndexAmRoutine is defined thus:

typedef struct IndexAmRoutine
{
 NodeTag type;

 /*
 * Total number of strategies (operators) by which we can traverse/search
 * this AM. Zero if AM does not have a fixed set of strategy assignments.
 */
 uint16 amstrategies;
 /* total number of support functions that this AM uses */
 uint16 amsupport;
 /* opclass options support function number or 0 */
 uint16 amoptsprocnum;
 /* does AM support ORDER BY indexed column's value? */
 bool amcanorder;
 /* does AM support ORDER BY result of an operator on indexed column? */
 bool amcanorderbyop;
 /* does AM support backward scanning? */
 bool amcanbackward;
 /* does AM support UNIQUE indexes? */
 bool amcanunique;
 /* does AM support multi-column indexes? */
 bool amcanmulticol;
 /* does AM require scans to have a constraint on the first index column? */
 bool amoptionalkey;
 /* does AM handle ScalarArrayOpExpr quals? */
 bool amsearcharray;
 /* does AM handle IS NULL/IS NOT NULL quals? */
 bool amsearchnulls;
 /* can index storage data type differ from column data type? */
 bool amstorage;
 /* can an index of this type be clustered on? */
 bool amclusterable;
 /* does AM handle predicate locks? */
 bool ampredlocks;
 /* does AM support parallel scan? */
 bool amcanparallel;
 /* does AM support columns included with clause INCLUDE? */
 bool amcaninclude;
 /* does AM use maintenance_work_mem? */
 bool amusemaintenanceworkmem;
 /* does AM summarize tuples, with at least all tuples in the block
 * summarized in one summary */
 bool amsummarizing;
 /* OR of parallel vacuum flags */
 uint8 amparallelvacuumoptions;
 /* type of data stored in index, or InvalidOid if variable */
 Oid amkeytype;

 /* interface functions */
 ambuild_function ambuild;
 ambuildempty_function ambuildempty;
 aminsert_function aminsert;
 ambulkdelete_function ambulkdelete;
 amvacuumcleanup_function amvacuumcleanup;
 amcanreturn_function amcanreturn; /* can be NULL */
 amcostestimate_function amcostestimate;
 amoptions_function amoptions;
 amproperty_function amproperty; /* can be NULL */
 ambuildphasename_function ambuildphasename; /* can be NULL */
 amvalidate_function amvalidate;
 amadjustmembers_function amadjustmembers; /* can be NULL */
 ambeginscan_function ambeginscan;
 amrescan_function amrescan;
 amgettuple_function amgettuple; /* can be NULL */
 amgetbitmap_function amgetbitmap; /* can be NULL */
 amendscan_function amendscan;
 ammarkpos_function ammarkpos; /* can be NULL */
 amrestrpos_function amrestrpos; /* can be NULL */

 /* interface functions to support parallel index scans */
 amestimateparallelscan_function amestimateparallelscan; /* can be NULL */
 aminitparallelscan_function aminitparallelscan; /* can be NULL */
 amparallelrescan_function amparallelrescan; /* can be NULL */
} IndexAmRoutine;

 To be useful, an index access method must also have one or more
 operator families and
 operator classes defined in
 pg_opfamily,
 pg_opclass,
 pg_amop, and
 pg_amproc.
 These entries allow the planner
 to determine what kinds of query qualifications can be used with
 indexes of this access method. Operator families and classes are described
 in the section called “Interfacing Extensions to Indexes”, which is prerequisite material for reading
 this chapter.

 An individual index is defined by a
 pg_class
 entry that describes it as a physical relation, plus a
 pg_index
 entry that shows the logical content of the index — that is, the set
 of index columns it has and the semantics of those columns, as captured by
 the associated operator classes. The index columns (key values) can be
 either simple columns of the underlying table or expressions over the table
 rows. The index access method normally has no interest in where the index
 key values come from (it is always handed precomputed key values) but it
 will be very interested in the operator class information in
 pg_index. Both of these catalog entries can be
 accessed as part of the Relation data structure that is
 passed to all operations on the index.

 Some of the flag fields of IndexAmRoutine have nonobvious
 implications. The requirements of amcanunique
 are discussed in the section called “Index Uniqueness Checks”.
 The amcanmulticol flag asserts that the
 access method supports multi-key-column indexes, while
 amoptionalkey asserts that it allows scans
 where no indexable restriction clause is given for the first index column.
 When amcanmulticol is false,
 amoptionalkey essentially says whether the
 access method supports full-index scans without any restriction clause.
 Access methods that support multiple index columns must
 support scans that omit restrictions on any or all of the columns after
 the first; however they are permitted to require some restriction to
 appear for the first index column, and this is signaled by setting
 amoptionalkey false.
 One reason that an index AM might set
 amoptionalkey false is if it doesn't index
 null values. Since most indexable operators are
 strict and hence cannot return true for null inputs,
 it is at first sight attractive to not store index entries for null values:
 they could never be returned by an index scan anyway. However, this
 argument fails when an index scan has no restriction clause for a given
 index column. In practice this means that
 indexes that have amoptionalkey true must
 index nulls, since the planner might decide to use such an index
 with no scan keys at all. A related restriction is that an index
 access method that supports multiple index columns must
 support indexing null values in columns after the first, because the planner
 will assume the index can be used for queries that do not restrict
 these columns. For example, consider an index on (a,b) and a query with
 WHERE a = 4. The system will assume the index can be
 used to scan for rows with a = 4, which is wrong if the
 index omits rows where b is null.
 It is, however, OK to omit rows where the first indexed column is null.
 An index access method that does index nulls may also set
 amsearchnulls, indicating that it supports
 IS NULL and IS NOT NULL clauses as search
 conditions.

 The amcaninclude flag indicates whether the
 access method supports “included” columns, that is it can
 store (without processing) additional columns beyond the key column(s).
 The requirements of the preceding paragraph apply only to the key
 columns. In particular, the combination
 of amcanmulticol=false
 and amcaninclude=true is
 sensible: it means that there can only be one key column, but there can
 also be included column(s). Also, included columns must be allowed to be
 null, independently of amoptionalkey.

 The amsummarizing flag indicates whether the
 access method summarizes the indexed tuples, with summarizing granularity
 of at least per block.
 Access methods that do not point to individual tuples, but to block ranges
 (like BRIN), may allow the HOT optimization
 to continue. This does not apply to attributes referenced in index
 predicates, an update of such an attribute always disables HOT.

Index Access Method Functions

 The index construction and maintenance functions that an index access
 method must provide in IndexAmRoutine are:

IndexBuildResult *
ambuild (Relation heapRelation,
 Relation indexRelation,
 IndexInfo *indexInfo);

 Build a new index. The index relation has been physically created,
 but is empty. It must be filled in with whatever fixed data the
 access method requires, plus entries for all tuples already existing
 in the table. Ordinarily the ambuild function will call
 table_index_build_scan() to scan the table for existing tuples
 and compute the keys that need to be inserted into the index.
 The function must return a palloc'd struct containing statistics about
 the new index.

void
ambuildempty (Relation indexRelation);

 Build an empty index, and write it to the initialization fork (INIT_FORKNUM)
 of the given relation. This method is called only for unlogged indexes; the
 empty index written to the initialization fork will be copied over the main
 relation fork on each server restart.

bool
aminsert (Relation indexRelation,
 Datum *values,
 bool *isnull,
 ItemPointer heap_tid,
 Relation heapRelation,
 IndexUniqueCheck checkUnique,
 bool indexUnchanged,
 IndexInfo *indexInfo);

 Insert a new tuple into an existing index. The values and
 isnull arrays give the key values to be indexed, and
 heap_tid is the TID to be indexed.
 If the access method supports unique indexes (its
 amcanunique flag is true) then
 checkUnique indicates the type of uniqueness check to
 perform. This varies depending on whether the unique constraint is
 deferrable; see the section called “Index Uniqueness Checks” for details.
 Normally the access method only needs the heapRelation
 parameter when performing uniqueness checking (since then it will have to
 look into the heap to verify tuple liveness).

 The indexUnchanged Boolean value gives a hint
 about the nature of the tuple to be indexed. When it is true,
 the tuple is a duplicate of some existing tuple in the index. The
 new tuple is a logically unchanged successor MVCC tuple version. This
 happens when an UPDATE takes place that does not
 modify any columns covered by the index, but nevertheless requires a
 new version in the index. The index AM may use this hint to decide
 to apply bottom-up index deletion in parts of the index where many
 versions of the same logical row accumulate. Note that updating a non-key
 column or a column that only appears in a partial index predicate does not
 affect the value of indexUnchanged. The core code
 determines each tuple's indexUnchanged value using a low
 overhead approach that allows both false positives and false negatives.
 Index AMs must not treat indexUnchanged as an
 authoritative source of information about tuple visibility or versioning.

 The function's Boolean result value is significant only when
 checkUnique is UNIQUE_CHECK_PARTIAL.
 In this case a true result means the new entry is known unique, whereas
 false means it might be non-unique (and a deferred uniqueness check must
 be scheduled). For other cases a constant false result is recommended.

 Some indexes might not index all tuples. If the tuple is not to be
 indexed, aminsert should just return without doing anything.

 If the index AM wishes to cache data across successive index insertions
 within an SQL statement, it can allocate space
 in indexInfo->ii_Context and store a pointer to the
 data in indexInfo->ii_AmCache (which will be NULL
 initially).

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats,
 IndexBulkDeleteCallback callback,
 void *callback_state);

 Delete tuple(s) from the index. This is a “bulk delete” operation
 that is intended to be implemented by scanning the whole index and checking
 each entry to see if it should be deleted.
 The passed-in callback function must be called, in the style
 callback(TID, callback_state) returns bool,
 to determine whether any particular index entry, as identified by its
 referenced TID, is to be deleted. Must return either NULL or a palloc'd
 struct containing statistics about the effects of the deletion operation.
 It is OK to return NULL if no information needs to be passed on to
 amvacuumcleanup.

 Because of limited maintenance_work_mem,
 ambulkdelete might need to be called more than once when many
 tuples are to be deleted. The stats argument is the result
 of the previous call for this index (it is NULL for the first call within a
 VACUUM operation). This allows the AM to accumulate statistics
 across the whole operation. Typically, ambulkdelete will
 modify and return the same struct if the passed stats is not
 null.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats);

 Clean up after a VACUUM operation (zero or more
 ambulkdelete calls). This does not have to do anything
 beyond returning index statistics, but it might perform bulk cleanup
 such as reclaiming empty index pages. stats is whatever the
 last ambulkdelete call returned, or NULL if
 ambulkdelete was not called because no tuples needed to be
 deleted. If the result is not NULL it must be a palloc'd struct.
 The statistics it contains will be used to update pg_class,
 and will be reported by VACUUM if VERBOSE is given.
 It is OK to return NULL if the index was not changed at all during the
 VACUUM operation, but otherwise correct stats should
 be returned.

 amvacuumcleanup will also be called at completion of an
 ANALYZE operation. In this case stats is always
 NULL and any return value will be ignored. This case can be distinguished
 by checking info->analyze_only. It is recommended
 that the access method do nothing except post-insert cleanup in such a
 call, and that only in an autovacuum worker process.

bool
amcanreturn (Relation indexRelation, int attno);

 Check whether the index can support index-only scans on
 the given column, by returning the column's original indexed value.
 The attribute number is 1-based, i.e., the first column's attno is 1.
 Returns true if supported, else false.
 This function should always return true for included columns
 (if those are supported), since there's little point in an included
 column that can't be retrieved.
 If the access method does not support index-only scans at all,
 the amcanreturn field in its IndexAmRoutine
 struct can be set to NULL.

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

 Estimate the costs of an index scan. This function is described fully
 in the section called “Index Cost Estimation Functions”, below.

bytea *
amoptions (ArrayType *reloptions,
 bool validate);

 Parse and validate the reloptions array for an index. This is called only
 when a non-null reloptions array exists for the index.
 reloptions is a text array containing entries of the
 form name=value.
 The function should construct a bytea value, which will be copied
 into the rd_options field of the index's relcache entry.
 The data contents of the bytea value are open for the access
 method to define; most of the standard access methods use struct
 StdRdOptions.
 When validate is true, the function should report a suitable
 error message if any of the options are unrecognized or have invalid
 values; when validate is false, invalid entries should be
 silently ignored. (validate is false when loading options
 already stored in pg_catalog; an invalid entry could only
 be found if the access method has changed its rules for options, and in
 that case ignoring obsolete entries is appropriate.)
 It is OK to return NULL if default behavior is wanted.

bool
amproperty (Oid index_oid, int attno,
 IndexAMProperty prop, const char *propname,
 bool *res, bool *isnull);

 The amproperty method allows index access methods to override
 the default behavior of pg_index_column_has_property
 and related functions.
 If the access method does not have any special behavior for index property
 inquiries, the amproperty field in
 its IndexAmRoutine struct can be set to NULL.
 Otherwise, the amproperty method will be called with
 index_oid and attno both zero for
 pg_indexam_has_property calls,
 or with index_oid valid and attno zero for
 pg_index_has_property calls,
 or with index_oid valid and attno greater than
 zero for pg_index_column_has_property calls.
 prop is an enum value identifying the property being tested,
 while propname is the original property name string.
 If the core code does not recognize the property name
 then prop is AMPROP_UNKNOWN.
 Access methods can define custom property names by
 checking propname for a match (use pg_strcasecmp
 to match, for consistency with the core code); for names known to the core
 code, it's better to inspect prop.
 If the amproperty method returns true then
 it has determined the property test result: it must set *res
 to the Boolean value to return, or set *isnull
 to true to return a NULL. (Both of the referenced variables
 are initialized to false before the call.)
 If the amproperty method returns false then
 the core code will proceed with its normal logic for determining the
 property test result.

 Access methods that support ordering operators should
 implement AMPROP_DISTANCE_ORDERABLE property testing, as the
 core code does not know how to do that and will return NULL. It may
 also be advantageous to implement AMPROP_RETURNABLE testing,
 if that can be done more cheaply than by opening the index and calling
 amcanreturn, which is the core code's default behavior.
 The default behavior should be satisfactory for all other standard
 properties.

char *
ambuildphasename (int64 phasenum);

 Return the textual name of the given build phase number.
 The phase numbers are those reported during an index build via the
 pgstat_progress_update_param interface.
 The phase names are then exposed in the
 pg_stat_progress_create_index view.

bool
amvalidate (Oid opclassoid);

 Validate the catalog entries for the specified operator class, so far as
 the access method can reasonably do that. For example, this might include
 testing that all required support functions are provided.
 The amvalidate function must return false if the opclass is
 invalid. Problems should be reported with ereport
 messages, typically at INFO level.

void
amadjustmembers (Oid opfamilyoid,
 Oid opclassoid,
 List *operators,
 List *functions);

 Validate proposed new operator and function members of an operator family,
 so far as the access method can reasonably do that, and set their
 dependency types if the default is not satisfactory. This is called
 during CREATE OPERATOR CLASS and during
 ALTER OPERATOR FAMILY ADD; in the latter
 case opclassoid is InvalidOid.
 The List arguments are lists
 of OpFamilyMember structs, as defined
 in amapi.h.

 Tests done by this function will typically be a subset of those
 performed by amvalidate,
 since amadjustmembers cannot assume that it is
 seeing a complete set of members. For example, it would be reasonable
 to check the signature of a support function, but not to check whether
 all required support functions are provided. Any problems can be
 reported by throwing an error.

 The dependency-related fields of
 the OpFamilyMember structs are initialized by
 the core code to create hard dependencies on the opclass if this
 is CREATE OPERATOR CLASS, or soft dependencies on the
 opfamily if this is ALTER OPERATOR FAMILY ADD.
 amadjustmembers can adjust these fields if some other
 behavior is more appropriate. For example, GIN, GiST, and SP-GiST
 always set operator members to have soft dependencies on the opfamily,
 since the connection between an operator and an opclass is relatively
 weak in these index types; so it is reasonable to allow operator members
 to be added and removed freely. Optional support functions are typically
 also given soft dependencies, so that they can be removed if necessary.

 The purpose of an index, of course, is to support scans for tuples matching
 an indexable WHERE condition, often called a
 qualifier or scan key. The semantics of
 index scanning are described more fully in the section called “Index Scanning”,
 below. An index access method can support “plain” index scans,
 “bitmap” index scans, or both. The scan-related functions that an
 index access method must or may provide are:

IndexScanDesc
ambeginscan (Relation indexRelation,
 int nkeys,
 int norderbys);

 Prepare for an index scan. The nkeys and norderbys
 parameters indicate the number of quals and ordering operators that will be
 used in the scan; these may be useful for space allocation purposes.
 Note that the actual values of the scan keys aren't provided yet.
 The result must be a palloc'd struct.
 For implementation reasons the index access method
 must create this struct by calling
 RelationGetIndexScan(). In most cases
 ambeginscan does little beyond making that call and perhaps
 acquiring locks;
 the interesting parts of index-scan startup are in amrescan.

void
amrescan (IndexScanDesc scan,
 ScanKey keys,
 int nkeys,
 ScanKey orderbys,
 int norderbys);

 Start or restart an index scan, possibly with new scan keys. (To restart
 using previously-passed keys, NULL is passed for keys and/or
 orderbys.) Note that it is not allowed for
 the number of keys or order-by operators to be larger than
 what was passed to ambeginscan. In practice the restart
 feature is used when a new outer tuple is selected by a nested-loop join
 and so a new key comparison value is needed, but the scan key structure
 remains the same.

bool
amgettuple (IndexScanDesc scan,
 ScanDirection direction);

 Fetch the next tuple in the given scan, moving in the given
 direction (forward or backward in the index). Returns true if a tuple was
 obtained, false if no matching tuples remain. In the true case the tuple
 TID is stored into the scan structure. Note that
 “success” means only that the index contains an entry that matches
 the scan keys, not that the tuple necessarily still exists in the heap or
 will pass the caller's snapshot test. On success, amgettuple
 must also set scan->xs_recheck to true or false.
 False means it is certain that the index entry matches the scan keys.
 True means this is not certain, and the conditions represented by the
 scan keys must be rechecked against the heap tuple after fetching it.
 This provision supports “lossy” index operators.
 Note that rechecking will extend only to the scan conditions; a partial
 index predicate (if any) is never rechecked by amgettuple
 callers.

 If the index supports index-only
 scans (i.e., amcanreturn returns true for any
 of its columns),
 then on success the AM must also check scan->xs_want_itup,
 and if that is true it must return the originally indexed data for the
 index entry. Columns for which amcanreturn returns
 false can be returned as nulls.
 The data can be returned in the form of an
 IndexTuple pointer stored at scan->xs_itup,
 with tuple descriptor scan->xs_itupdesc; or in the form of
 a HeapTuple pointer stored at scan->xs_hitup,
 with tuple descriptor scan->xs_hitupdesc. (The latter
 format should be used when reconstructing data that might possibly not fit
 into an IndexTuple.) In either case,
 management of the data referenced by the pointer is the access method's
 responsibility. The data must remain good at least until the next
 amgettuple, amrescan, or amendscan
 call for the scan.

 The amgettuple function need only be provided if the access
 method supports “plain” index scans. If it doesn't, the
 amgettuple field in its IndexAmRoutine
 struct must be set to NULL.

int64
amgetbitmap (IndexScanDesc scan,
 TIDBitmap *tbm);

 Fetch all tuples in the given scan and add them to the caller-supplied
 TIDBitmap (that is, OR the set of tuple IDs into whatever set is already
 in the bitmap). The number of tuples fetched is returned (this might be
 just an approximate count, for instance some AMs do not detect duplicates).
 While inserting tuple IDs into the bitmap, amgetbitmap can
 indicate that rechecking of the scan conditions is required for specific
 tuple IDs. This is analogous to the xs_recheck output parameter
 of amgettuple. Note: in the current implementation, support
 for this feature is conflated with support for lossy storage of the bitmap
 itself, and therefore callers recheck both the scan conditions and the
 partial index predicate (if any) for recheckable tuples. That might not
 always be true, however.
 amgetbitmap and
 amgettuple cannot be used in the same index scan; there
 are other restrictions too when using amgetbitmap, as explained
 in the section called “Index Scanning”.

 The amgetbitmap function need only be provided if the access
 method supports “bitmap” index scans. If it doesn't, the
 amgetbitmap field in its IndexAmRoutine
 struct must be set to NULL.

void
amendscan (IndexScanDesc scan);

 End a scan and release resources. The scan struct itself
 should not be freed, but any locks or pins taken internally by the
 access method must be released, as well as any other memory allocated
 by ambeginscan and other scan-related functions.

void
ammarkpos (IndexScanDesc scan);

 Mark current scan position. The access method need only support one
 remembered scan position per scan.

 The ammarkpos function need only be provided if the access
 method supports ordered scans. If it doesn't,
 the ammarkpos field in its IndexAmRoutine
 struct may be set to NULL.

void
amrestrpos (IndexScanDesc scan);

 Restore the scan to the most recently marked position.

 The amrestrpos function need only be provided if the access
 method supports ordered scans. If it doesn't,
 the amrestrpos field in its IndexAmRoutine
 struct may be set to NULL.

 In addition to supporting ordinary index scans, some types of index
 may wish to support parallel index scans, which allow
 multiple backends to cooperate in performing an index scan. The
 index access method should arrange things so that each cooperating
 process returns a subset of the tuples that would be performed by
 an ordinary, non-parallel index scan, but in such a way that the
 union of those subsets is equal to the set of tuples that would be
 returned by an ordinary, non-parallel index scan. Furthermore, while
 there need not be any global ordering of tuples returned by a parallel
 scan, the ordering of that subset of tuples returned within each
 cooperating backend must match the requested ordering. The following
 functions may be implemented to support parallel index scans:

Size
amestimateparallelscan (void);

 Estimate and return the number of bytes of dynamic shared memory which
 the access method will be needed to perform a parallel scan. (This number
 is in addition to, not in lieu of, the amount of space needed for
 AM-independent data in ParallelIndexScanDescData.)

 It is not necessary to implement this function for access methods which
 do not support parallel scans or for which the number of additional bytes
 of storage required is zero.

void
aminitparallelscan (void *target);

 This function will be called to initialize dynamic shared memory at the
 beginning of a parallel scan. target will point to at least
 the number of bytes previously returned by
 amestimateparallelscan, and this function may use that
 amount of space to store whatever data it wishes.

 It is not necessary to implement this function for access methods which
 do not support parallel scans or in cases where the shared memory space
 required needs no initialization.

void
amparallelrescan (IndexScanDesc scan);

 This function, if implemented, will be called when a parallel index scan
 must be restarted. It should reset any shared state set up by
 aminitparallelscan such that the scan will be restarted from
 the beginning.

Index Scanning

 In an index scan, the index access method is responsible for regurgitating
 the TIDs of all the tuples it has been told about that match the
 scan keys. The access method is not involved in
 actually fetching those tuples from the index's parent table, nor in
 determining whether they pass the scan's visibility test or other
 conditions.

 A scan key is the internal representation of a WHERE clause of
 the form index_key operator
 constant, where the index key is one of the columns of the
 index and the operator is one of the members of the operator family
 associated with that index column. An index scan has zero or more scan
 keys, which are implicitly ANDed — the returned tuples are expected
 to satisfy all the indicated conditions.

 The access method can report that the index is lossy, or
 requires rechecks, for a particular query. This implies that the index
 scan will return all the entries that pass the scan key, plus possibly
 additional entries that do not. The core system's index-scan machinery
 will then apply the index conditions again to the heap tuple to verify
 whether or not it really should be selected. If the recheck option is not
 specified, the index scan must return exactly the set of matching entries.

 Note that it is entirely up to the access method to ensure that it
 correctly finds all and only the entries passing all the given scan keys.
 Also, the core system will simply hand off all the WHERE
 clauses that match the index keys and operator families, without any
 semantic analysis to determine whether they are redundant or
 contradictory. As an example, given
 WHERE x > 4 AND x > 14 where x is a b-tree
 indexed column, it is left to the b-tree amrescan function
 to realize that the first scan key is redundant and can be discarded.
 The extent of preprocessing needed during amrescan will
 depend on the extent to which the index access method needs to reduce
 the scan keys to a “normalized” form.

 Some access methods return index entries in a well-defined order, others
 do not. There are actually two different ways that an access method can
 support sorted output:

	
 Access methods that always return entries in the natural ordering
 of their data (such as btree) should set
 amcanorder to true.
 Currently, such access methods must use btree-compatible strategy
 numbers for their equality and ordering operators.

	
 Access methods that support ordering operators should set
 amcanorderbyop to true.
 This indicates that the index is capable of returning entries in
 an order satisfying ORDER BY index_key
 operator constant. Scan modifiers
 of that form can be passed to amrescan as described
 previously.

 The amgettuple function has a direction argument,
 which can be either ForwardScanDirection (the normal case)
 or BackwardScanDirection. If the first call after
 amrescan specifies BackwardScanDirection, then the
 set of matching index entries is to be scanned back-to-front rather than in
 the normal front-to-back direction, so amgettuple must return
 the last matching tuple in the index, rather than the first one as it
 normally would. (This will only occur for access
 methods that set amcanorder to true.) After the
 first call, amgettuple must be prepared to advance the scan in
 either direction from the most recently returned entry. (But if
 amcanbackward is false, all subsequent
 calls will have the same direction as the first one.)

 Access methods that support ordered scans must support “marking” a
 position in a scan and later returning to the marked position. The same
 position might be restored multiple times. However, only one position need
 be remembered per scan; a new ammarkpos call overrides the
 previously marked position. An access method that does not support ordered
 scans need not provide ammarkpos and amrestrpos
 functions in IndexAmRoutine; set those pointers to NULL
 instead.

 Both the scan position and the mark position (if any) must be maintained
 consistently in the face of concurrent insertions or deletions in the
 index. It is OK if a freshly-inserted entry is not returned by a scan that
 would have found the entry if it had existed when the scan started, or for
 the scan to return such an entry upon rescanning or backing
 up even though it had not been returned the first time through. Similarly,
 a concurrent delete might or might not be reflected in the results of a scan.
 What is important is that insertions or deletions not cause the scan to
 miss or multiply return entries that were not themselves being inserted or
 deleted.

 If the index stores the original indexed data values (and not some lossy
 representation of them), it is useful to
 support index-only scans, in
 which the index returns the actual data not just the TID of the heap tuple.
 This will only avoid I/O if the visibility map shows that the TID is on an
 all-visible page; else the heap tuple must be visited anyway to check
 MVCC visibility. But that is no concern of the access method's.

 Instead of using amgettuple, an index scan can be done with
 amgetbitmap to fetch all tuples in one call. This can be
 noticeably more efficient than amgettuple because it allows
 avoiding lock/unlock cycles within the access method. In principle
 amgetbitmap should have the same effects as repeated
 amgettuple calls, but we impose several restrictions to
 simplify matters. First of all, amgetbitmap returns all
 tuples at once and marking or restoring scan positions isn't
 supported. Secondly, the tuples are returned in a bitmap which doesn't
 have any specific ordering, which is why amgetbitmap doesn't
 take a direction argument. (Ordering operators will never be
 supplied for such a scan, either.)
 Also, there is no provision for index-only scans with
 amgetbitmap, since there is no way to return the contents of
 index tuples.
 Finally, amgetbitmap
 does not guarantee any locking of the returned tuples, with implications
 spelled out in the section called “Index Locking Considerations”.

 Note that it is permitted for an access method to implement only
 amgetbitmap and not amgettuple, or vice versa,
 if its internal implementation is unsuited to one API or the other.

Index Locking Considerations

 Index access methods must handle concurrent updates
 of the index by multiple processes.
 The core PostgreSQL™ system obtains
 AccessShareLock on the index during an index scan, and
 RowExclusiveLock when updating the index (including plain
 VACUUM). Since these lock types do not conflict, the access
 method is responsible for handling any fine-grained locking it might need.
 An ACCESS EXCLUSIVE lock on the index as a whole will be
 taken only during index creation, destruction, or REINDEX
 (SHARE UPDATE EXCLUSIVE is taken instead with
 CONCURRENTLY).

 Building an index type that supports concurrent updates usually requires
 extensive and subtle analysis of the required behavior. For the b-tree
 and hash index types, you can read about the design decisions involved in
 src/backend/access/nbtree/README and
 src/backend/access/hash/README.

 Aside from the index's own internal consistency requirements, concurrent
 updates create issues about consistency between the parent table (the
 heap) and the index. Because
 PostgreSQL™ separates accesses
 and updates of the heap from those of the index, there are windows in
 which the index might be inconsistent with the heap. We handle this problem
 with the following rules:

	
 A new heap entry is made before making its index entries. (Therefore
 a concurrent index scan is likely to fail to see the heap entry.
 This is okay because the index reader would be uninterested in an
 uncommitted row anyway. But see the section called “Index Uniqueness Checks”.)

	
 When a heap entry is to be deleted (by VACUUM), all its
 index entries must be removed first.

	
 An index scan must maintain a pin
 on the index page holding the item last returned by
 amgettuple, and ambulkdelete cannot delete
 entries from pages that are pinned by other backends. The need
 for this rule is explained below.

 Without the third rule, it is possible for an index reader to
 see an index entry just before it is removed by VACUUM, and
 then to arrive at the corresponding heap entry after that was removed by
 VACUUM.
 This creates no serious problems if that item
 number is still unused when the reader reaches it, since an empty
 item slot will be ignored by heap_fetch(). But what if a
 third backend has already re-used the item slot for something else?
 When using an MVCC-compliant snapshot, there is no problem because
 the new occupant of the slot is certain to be too new to pass the
 snapshot test. However, with a non-MVCC-compliant snapshot (such as
 SnapshotAny), it would be possible to accept and return
 a row that does not in fact match the scan keys. We could defend
 against this scenario by requiring the scan keys to be rechecked
 against the heap row in all cases, but that is too expensive. Instead,
 we use a pin on an index page as a proxy to indicate that the reader
 might still be “in flight” from the index entry to the matching
 heap entry. Making ambulkdelete block on such a pin ensures
 that VACUUM cannot delete the heap entry before the reader
 is done with it. This solution costs little in run time, and adds blocking
 overhead only in the rare cases where there actually is a conflict.

 This solution requires that index scans be “synchronous”: we have
 to fetch each heap tuple immediately after scanning the corresponding index
 entry. This is expensive for a number of reasons. An
 “asynchronous” scan in which we collect many TIDs from the index,
 and only visit the heap tuples sometime later, requires much less index
 locking overhead and can allow a more efficient heap access pattern.
 Per the above analysis, we must use the synchronous approach for
 non-MVCC-compliant snapshots, but an asynchronous scan is workable
 for a query using an MVCC snapshot.

 In an amgetbitmap index scan, the access method does not
 keep an index pin on any of the returned tuples. Therefore
 it is only safe to use such scans with MVCC-compliant snapshots.

 When the ampredlocks flag is not set, any scan using that
 index access method within a serializable transaction will acquire a
 nonblocking predicate lock on the full index. This will generate a
 read-write conflict with the insert of any tuple into that index by a
 concurrent serializable transaction. If certain patterns of read-write
 conflicts are detected among a set of concurrent serializable
 transactions, one of those transactions may be canceled to protect data
 integrity. When the flag is set, it indicates that the index access
 method implements finer-grained predicate locking, which will tend to
 reduce the frequency of such transaction cancellations.

Index Uniqueness Checks

 PostgreSQL™ enforces SQL uniqueness constraints
 using unique indexes, which are indexes that disallow
 multiple entries with identical keys. An access method that supports this
 feature sets amcanunique true.
 (At present, only b-tree supports it.) Columns listed in the
 INCLUDE clause are not considered when enforcing
 uniqueness.

 Because of MVCC, it is always necessary to allow duplicate entries to
 exist physically in an index: the entries might refer to successive
 versions of a single logical row. The behavior we actually want to
 enforce is that no MVCC snapshot could include two rows with equal
 index keys. This breaks down into the following cases that must be
 checked when inserting a new row into a unique index:

	
 If a conflicting valid row has been deleted by the current transaction,
 it's okay. (In particular, since an UPDATE always deletes the old row
 version before inserting the new version, this will allow an UPDATE on
 a row without changing the key.)

	
 If a conflicting row has been inserted by an as-yet-uncommitted
 transaction, the would-be inserter must wait to see if that transaction
 commits. If it rolls back then there is no conflict. If it commits
 without deleting the conflicting row again, there is a uniqueness
 violation. (In practice we just wait for the other transaction to
 end and then redo the visibility check in toto.)

	
 Similarly, if a conflicting valid row has been deleted by an
 as-yet-uncommitted transaction, the would-be inserter must wait
 for that transaction to commit or abort, and then repeat the test.

 Furthermore, immediately before reporting a uniqueness violation
 according to the above rules, the access method must recheck the
 liveness of the row being inserted. If it is committed dead then
 no violation should be reported. (This case cannot occur during the
 ordinary scenario of inserting a row that's just been created by
 the current transaction. It can happen during
 CREATE UNIQUE INDEX CONCURRENTLY, however.)

 We require the index access method to apply these tests itself, which
 means that it must reach into the heap to check the commit status of
 any row that is shown to have a duplicate key according to the index
 contents. This is without a doubt ugly and non-modular, but it saves
 redundant work: if we did a separate probe then the index lookup for
 a conflicting row would be essentially repeated while finding the place to
 insert the new row's index entry. What's more, there is no obvious way
 to avoid race conditions unless the conflict check is an integral part
 of insertion of the new index entry.

 If the unique constraint is deferrable, there is additional complexity:
 we need to be able to insert an index entry for a new row, but defer any
 uniqueness-violation error until end of statement or even later. To
 avoid unnecessary repeat searches of the index, the index access method
 should do a preliminary uniqueness check during the initial insertion.
 If this shows that there is definitely no conflicting live tuple, we
 are done. Otherwise, we schedule a recheck to occur when it is time to
 enforce the constraint. If, at the time of the recheck, both the inserted
 tuple and some other tuple with the same key are live, then the error
 must be reported. (Note that for this purpose, “live” actually
 means “any tuple in the index entry's HOT chain is live”.)
 To implement this, the aminsert function is passed a
 checkUnique parameter having one of the following values:

	
 UNIQUE_CHECK_NO indicates that no uniqueness checking
 should be done (this is not a unique index).

	
 UNIQUE_CHECK_YES indicates that this is a non-deferrable
 unique index, and the uniqueness check must be done immediately, as
 described above.

	
 UNIQUE_CHECK_PARTIAL indicates that the unique
 constraint is deferrable. PostgreSQL™
 will use this mode to insert each row's index entry. The access
 method must allow duplicate entries into the index, and report any
 potential duplicates by returning false from aminsert.
 For each row for which false is returned, a deferred recheck will
 be scheduled.

 The access method must identify any rows which might violate the
 unique constraint, but it is not an error for it to report false
 positives. This allows the check to be done without waiting for other
 transactions to finish; conflicts reported here are not treated as
 errors and will be rechecked later, by which time they may no longer
 be conflicts.

	
 UNIQUE_CHECK_EXISTING indicates that this is a deferred
 recheck of a row that was reported as a potential uniqueness violation.
 Although this is implemented by calling aminsert, the
 access method must not insert a new index entry in this
 case. The index entry is already present. Rather, the access method
 must check to see if there is another live index entry. If so, and
 if the target row is also still live, report error.

 It is recommended that in a UNIQUE_CHECK_EXISTING call,
 the access method further verify that the target row actually does
 have an existing entry in the index, and report error if not. This
 is a good idea because the index tuple values passed to
 aminsert will have been recomputed. If the index
 definition involves functions that are not really immutable, we
 might be checking the wrong area of the index. Checking that the
 target row is found in the recheck verifies that we are scanning
 for the same tuple values as were used in the original insertion.

Index Cost Estimation Functions

 The amcostestimate function is given information describing
 a possible index scan, including lists of WHERE and ORDER BY clauses that
 have been determined to be usable with the index. It must return estimates
 of the cost of accessing the index and the selectivity of the WHERE
 clauses (that is, the fraction of parent-table rows that will be
 retrieved during the index scan). For simple cases, nearly all the
 work of the cost estimator can be done by calling standard routines
 in the optimizer; the point of having an amcostestimate function is
 to allow index access methods to provide index-type-specific knowledge,
 in case it is possible to improve on the standard estimates.

 Each amcostestimate function must have the signature:

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

 The first three parameters are inputs:

	root
	
 The planner's information about the query being processed.

	path
	
 The index access path being considered. All fields except cost and
 selectivity values are valid.

	loop_count
	
 The number of repetitions of the index scan that should be factored
 into the cost estimates. This will typically be greater than one when
 considering a parameterized scan for use in the inside of a nestloop
 join. Note that the cost estimates should still be for just one scan;
 a larger loop_count means that it may be appropriate
 to allow for some caching effects across multiple scans.

 The last five parameters are pass-by-reference outputs:

	*indexStartupCost
	
 Set to cost of index start-up processing

	*indexTotalCost
	
 Set to total cost of index processing

	*indexSelectivity
	
 Set to index selectivity

	*indexCorrelation
	
 Set to correlation coefficient between index scan order and
 underlying table's order

	*indexPages
	
 Set to number of index leaf pages

 Note that cost estimate functions must be written in C, not in SQL or
 any available procedural language, because they must access internal
 data structures of the planner/optimizer.

 The index access costs should be computed using the parameters used by
 src/backend/optimizer/path/costsize.c: a sequential
 disk block fetch has cost seq_page_cost, a nonsequential fetch
 has cost random_page_cost, and the cost of processing one index
 row should usually be taken as cpu_index_tuple_cost. In
 addition, an appropriate multiple of cpu_operator_cost should
 be charged for any comparison operators invoked during index processing
 (especially evaluation of the indexquals themselves).

 The access costs should include all disk and CPU costs associated with
 scanning the index itself, but not the costs of retrieving or
 processing the parent-table rows that are identified by the index.

 The “start-up cost” is the part of the total scan cost that
 must be expended before we can begin to fetch the first row. For most
 indexes this can be taken as zero, but an index type with a high start-up
 cost might want to set it nonzero.

 The indexSelectivity should be set to the estimated fraction of the parent
 table rows that will be retrieved during the index scan. In the case
 of a lossy query, this will typically be higher than the fraction of
 rows that actually pass the given qual conditions.

 The indexCorrelation should be set to the correlation (ranging between
 -1.0 and 1.0) between the index order and the table order. This is used
 to adjust the estimate for the cost of fetching rows from the parent
 table.

 The indexPages should be set to the number of leaf pages.
 This is used to estimate the number of workers for parallel index scan.

 When loop_count is greater than one, the returned numbers
 should be averages expected for any one scan of the index.

Procedure 64.1. Cost Estimation

 A typical cost estimator will proceed as follows:

	
 Estimate and return the fraction of parent-table rows that will be visited
 based on the given qual conditions. In the absence of any index-type-specific
 knowledge, use the standard optimizer function clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, path->indexquals,
 path->indexinfo->rel->relid,
 JOIN_INNER, NULL);

	
 Estimate the number of index rows that will be visited during the
 scan. For many index types this is the same as indexSelectivity times
 the number of rows in the index, but it might be more. (Note that the
 index's size in pages and rows is available from the
 path->indexinfo struct.)

	
 Estimate the number of index pages that will be retrieved during the scan.
 This might be just indexSelectivity times the index's size in pages.

	
 Compute the index access cost. A generic estimator might do this:

/*
 * Our generic assumption is that the index pages will be read
 * sequentially, so they cost seq_page_cost each, not random_page_cost.
 * Also, we charge for evaluation of the indexquals at each index row.
 * All the costs are assumed to be paid incrementally during the scan.
 */
cost_qual_eval(&index_qual_cost, path->indexquals, root);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = seq_page_cost * numIndexPages +
 (cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;

 However, the above does not account for amortization of index reads
 across repeated index scans.

	
 Estimate the index correlation. For a simple ordered index on a single
 field, this can be retrieved from pg_statistic. If the correlation
 is not known, the conservative estimate is zero (no correlation).

 Examples of cost estimator functions can be found in
 src/backend/utils/adt/selfuncs.c.

Chapter 65. Generic WAL Records

 Although all built-in WAL-logged modules have their own types of WAL
 records, there is also a generic WAL record type, which describes changes
 to pages in a generic way. This is useful for extensions that provide
 custom access methods.

 In comparison with Custom WAL Resource
 Managers, Generic WAL is simpler for an extension to implement and
 does not require the extension library to be loaded in order to apply the
 records.

Note

 Generic WAL records are ignored during Logical Decoding. If logical decoding is
 required for your extension, consider a Custom WAL Resource Manager.

 The API for constructing generic WAL records is defined in
 access/generic_xlog.h and implemented
 in access/transam/generic_xlog.c.

 To perform a WAL-logged data update using the generic WAL record
 facility, follow these steps:

	
 state = GenericXLogStart(relation) — start
 construction of a generic WAL record for the given relation.

	
 page = GenericXLogRegisterBuffer(state, buffer, flags)
 — register a buffer to be modified within the current generic WAL
 record. This function returns a pointer to a temporary copy of the
 buffer's page, where modifications should be made. (Do not modify the
 buffer's contents directly.) The third argument is a bit mask of flags
 applicable to the operation. Currently the only such flag is
 GENERIC_XLOG_FULL_IMAGE, which indicates that a full-page
 image rather than a delta update should be included in the WAL record.
 Typically this flag would be set if the page is new or has been
 rewritten completely.
 GenericXLogRegisterBuffer can be repeated if the
 WAL-logged action needs to modify multiple pages.

	
 Apply modifications to the page images obtained in the previous step.

	
 GenericXLogFinish(state) — apply the changes to
 the buffers and emit the generic WAL record.

 WAL record construction can be canceled between any of the above steps by
 calling GenericXLogAbort(state). This will discard all
 changes to the page image copies.

 Please note the following points when using the generic WAL record
 facility:

	
 No direct modifications of buffers are allowed! All modifications must
 be done in copies acquired from GenericXLogRegisterBuffer().
 In other words, code that makes generic WAL records should never call
 BufferGetPage() for itself. However, it remains the
 caller's responsibility to pin/unpin and lock/unlock the buffers at
 appropriate times. Exclusive lock must be held on each target buffer
 from before GenericXLogRegisterBuffer() until after
 GenericXLogFinish().

	
 Registrations of buffers (step 2) and modifications of page images
 (step 3) can be mixed freely, i.e., both steps may be repeated in any
 sequence. Keep in mind that buffers should be registered in the same
 order in which locks are to be obtained on them during replay.

	
 The maximum number of buffers that can be registered for a generic WAL
 record is MAX_GENERIC_XLOG_PAGES. An error will be thrown
 if this limit is exceeded.

	
 Generic WAL assumes that the pages to be modified have standard
 layout, and in particular that there is no useful data between
 pd_lower and pd_upper.

	
 Since you are modifying copies of buffer
 pages, GenericXLogStart() does not start a critical
 section. Thus, you can safely do memory allocation, error throwing,
 etc. between GenericXLogStart() and
 GenericXLogFinish(). The only actual critical section is
 present inside GenericXLogFinish(). There is no need to
 worry about calling GenericXLogAbort() during an error
 exit, either.

	
 GenericXLogFinish() takes care of marking buffers dirty
 and setting their LSNs. You do not need to do this explicitly.

	
 For unlogged relations, everything works the same except that no
 actual WAL record is emitted. Thus, you typically do not need to do
 any explicit checks for unlogged relations.

	
 The generic WAL redo function will acquire exclusive locks to buffers
 in the same order as they were registered. After redoing all changes,
 the locks will be released in the same order.

	
 If GENERIC_XLOG_FULL_IMAGE is not specified for a
 registered buffer, the generic WAL record contains a delta between
 the old and the new page images. This delta is based on byte-by-byte
 comparison. This is not very compact for the case of moving data
 within a page, and might be improved in the future.

Chapter 66. Custom WAL Resource Managers

 This chapter explains the interface between the core
 PostgreSQL™ system and custom WAL resource
 managers, which enable extensions to integrate directly with the WAL.

 An extension, especially a Table Access
 Method or Index Access Method, may
 need to use WAL for recovery, replication, and/or Logical Decoding. Custom resource managers
 are a more flexible alternative to Generic
 WAL (which does not support logical decoding), but more complex for
 an extension to implement.

 To create a new custom WAL resource manager, first define an
 RmgrData structure with implementations for the
 resource manager methods. Refer to
 src/backend/access/transam/README and
 src/include/access/xlog_internal.h in the
 PostgreSQL™ source.

/*
 * Method table for resource managers.
 *
 * This struct must be kept in sync with the PG_RMGR definition in
 * rmgr.c.
 *
 * rm_identify must return a name for the record based on xl_info (without
 * reference to the rmid). For example, XLOG_BTREE_VACUUM would be named
 * "VACUUM". rm_desc can then be called to obtain additional detail for the
 * record, if available (e.g. the last block).
 *
 * rm_mask takes as input a page modified by the resource manager and masks
 * out bits that shouldn't be flagged by wal_consistency_checking.
 *
 * RmgrTable[] is indexed by RmgrId values (see rmgrlist.h). If rm_name is
 * NULL, the corresponding RmgrTable entry is considered invalid.
 */
typedef struct RmgrData
{
 const char *rm_name;
 void (*rm_redo) (XLogReaderState *record);
 void (*rm_desc) (StringInfo buf, XLogReaderState *record);
 const char *(*rm_identify) (uint8 info);
 void (*rm_startup) (void);
 void (*rm_cleanup) (void);
 void (*rm_mask) (char *pagedata, BlockNumber blkno);
 void (*rm_decode) (struct LogicalDecodingContext *ctx,
 struct XLogRecordBuffer *buf);
} RmgrData;

 The src/test/modules/test_custom_rmgrs module
 contains a working example, which demonstrates usage of custom WAL
 resource managers.

 Then, register your new resource
 manager.

/*
 * Register a new custom WAL resource manager.
 *
 * Resource manager IDs must be globally unique across all extensions. Refer
 * to https://wiki.postgresql.org/wiki/CustomWALResourceManagers to reserve a
 * unique RmgrId for your extension, to avoid conflicts with other extension
 * developers. During development, use RM_EXPERIMENTAL_ID to avoid needlessly
 * reserving a new ID.
 */
extern void RegisterCustomRmgr(RmgrId rmid, const RmgrData *rmgr);

 RegisterCustomRmgr must be called from the
 extension module's _PG_init function.
 While developing a new extension, use RM_EXPERIMENTAL_ID
 for rmid. When you are ready to release the extension
 to users, reserve a new resource manager ID at the Custom WAL
 Resource Manager page.

 Place the extension module implementing the custom resource manager in shared_preload_libraries so that it will be loaded early
 during PostgreSQL™ startup.

Note

 The extension must remain in shared_preload_libraries as long as any
 custom WAL records may exist in the system. Otherwise
 PostgreSQL™ will not be able to apply or decode
 the custom WAL records, which may prevent the server from starting.

Chapter 67. B-Tree Indexes

Introduction

 PostgreSQL™ includes an implementation of the
 standard btree (multi-way balanced tree) index data
 structure. Any data type that can be sorted into a well-defined linear
 order can be indexed by a btree index. The only limitation is that an
 index entry cannot exceed approximately one-third of a page (after TOAST
 compression, if applicable).

 Because each btree operator class imposes a sort order on its data type,
 btree operator classes (or, really, operator families) have come to be
 used as PostgreSQL™'s general representation
 and understanding of sorting semantics. Therefore, they've acquired
 some features that go beyond what would be needed just to support btree
 indexes, and parts of the system that are quite distant from the
 btree AM make use of them.

Behavior of B-Tree Operator Classes

 As shown in Table 38.3, “B-Tree Strategies”, a btree operator
 class must provide five comparison operators,
 <,
 <=,
 =,
 >= and
 >.
 One might expect that <> should also be part of
 the operator class, but it is not, because it would almost never be
 useful to use a <> WHERE clause in an index
 search. (For some purposes, the planner treats <>
 as associated with a btree operator class; but it finds that operator via
 the = operator's negator link, rather than
 from pg_amop.)

 When several data types share near-identical sorting semantics, their
 operator classes can be grouped into an operator family. Doing so is
 advantageous because it allows the planner to make deductions about
 cross-type comparisons. Each operator class within the family should
 contain the single-type operators (and associated support functions)
 for its input data type, while cross-type comparison operators and
 support functions are “loose” in the family. It is
 recommendable that a complete set of cross-type operators be included
 in the family, thus ensuring that the planner can represent any
 comparison conditions that it deduces from transitivity.

 There are some basic assumptions that a btree operator family must
 satisfy:

	
 An = operator must be an equivalence relation; that
 is, for all non-null values A,
 B, C of the
 data type:

	
 A =
 A is true
 (reflexive law)

	
 if A =
 B,
 then B =
 A
 (symmetric law)

	
 if A =
 B and B
 = C,
 then A =
 C
 (transitive law)

	
 A < operator must be a strong ordering relation;
 that is, for all non-null values A,
 B, C:

	
 A <
 A is false
 (irreflexive law)

	
 if A <
 B
 and B <
 C,
 then A <
 C
 (transitive law)

	
 Furthermore, the ordering is total; that is, for all non-null
 values A, B:

	
 exactly one of A <
 B, A
 = B, and
 B <
 A is true
 (trichotomy law)

 (The trichotomy law justifies the definition of the comparison support
 function, of course.)

 The other three operators are defined in terms of =
 and < in the obvious way, and must act consistently
 with them.

 For an operator family supporting multiple data types, the above laws must
 hold when A, B,
 C are taken from any data types in the family.
 The transitive laws are the trickiest to ensure, as in cross-type
 situations they represent statements that the behaviors of two or three
 different operators are consistent.
 As an example, it would not work to put float8
 and numeric into the same operator family, at least not with
 the current semantics that numeric values are converted
 to float8 for comparison to a float8. Because
 of the limited accuracy of float8, this means there are
 distinct numeric values that will compare equal to the
 same float8 value, and thus the transitive law would fail.

 Another requirement for a multiple-data-type family is that any implicit
 or binary-coercion casts that are defined between data types included in
 the operator family must not change the associated sort ordering.

 It should be fairly clear why a btree index requires these laws to hold
 within a single data type: without them there is no ordering to arrange
 the keys with. Also, index searches using a comparison key of a
 different data type require comparisons to behave sanely across two
 data types. The extensions to three or more data types within a family
 are not strictly required by the btree index mechanism itself, but the
 planner relies on them for optimization purposes.

B-Tree Support Functions

 As shown in Table 38.9, “B-Tree Support Functions”, btree defines
 one required and four optional support functions. The five
 user-defined methods are:

	order
	
 For each combination of data types that a btree operator family
 provides comparison operators for, it must provide a comparison
 support function, registered in
 pg_amproc with support function number 1
 and
 amproclefttype/amprocrighttype
 equal to the left and right data types for the comparison (i.e.,
 the same data types that the matching operators are registered
 with in pg_amop). The comparison
 function must take two non-null values
 A and B and
 return an int32 value that is
 < 0,
 0, or >
 0 when A
 < B,
 A =
 B, or A
 > B,
 respectively. A null result is disallowed: all values of the
 data type must be comparable. See
 src/backend/access/nbtree/nbtcompare.c for
 examples.

 If the compared values are of a collatable data type, the
 appropriate collation OID will be passed to the comparison
 support function, using the standard
 PG_GET_COLLATION() mechanism.

	sortsupport
	
 Optionally, a btree operator family may provide sort
 support function(s), registered under support
 function number 2. These functions allow implementing
 comparisons for sorting purposes in a more efficient way than
 naively calling the comparison support function. The APIs
 involved in this are defined in
 src/include/utils/sortsupport.h.

	in_range
	
 Optionally, a btree operator family may provide
 in_range support function(s), registered
 under support function number 3. These are not used during btree
 index operations; rather, they extend the semantics of the
 operator family so that it can support window clauses containing
 the RANGE offset
 PRECEDING and RANGE
 offset FOLLOWING
 frame bound types (see the section called “Window Function Calls”). Fundamentally, the extra
 information provided is how to add or subtract an
 offset value in a way that is
 compatible with the family's data ordering.

 An in_range function must have the signature

in_range(val type1, base type1, offset type2, sub bool, less bool)
returns bool

 val and
 base must be of the same type, which
 is one of the types supported by the operator family (i.e., a
 type for which it provides an ordering). However,
 offset could be of a different type,
 which might be one otherwise unsupported by the family. An
 example is that the built-in time_ops family
 provides an in_range function that has
 offset of type interval.
 A family can provide in_range functions for
 any of its supported types and one or more
 offset types. Each
 in_range function should be entered in
 pg_amproc with
 amproclefttype equal to
 type1 and amprocrighttype
 equal to type2.

 The essential semantics of an in_range
 function depend on the two Boolean flag parameters. It should
 add or subtract base and
 offset, then compare
 val to the result, as follows:

	
 if !sub and
 !less, return
 val >=
 (base +
 offset)

	
 if !sub and
 less, return
 val <=
 (base +
 offset)

	
 if sub and
 !less, return
 val >=
 (base -
 offset)

	
 if sub and
 less, return
 val <=
 (base -
 offset)

 Before doing so, the function should check the sign of
 offset: if it is less than zero, raise
 error
 ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE
 (22013) with error text like “invalid preceding or
 following size in window function”. (This is required by
 the SQL standard, although nonstandard operator families might
 perhaps choose to ignore this restriction, since there seems to
 be little semantic necessity for it.) This requirement is
 delegated to the in_range function so that
 the core code needn't understand what “less than
 zero” means for a particular data type.

 An additional expectation is that in_range
 functions should, if practical, avoid throwing an error if
 base +
 offset or
 base -
 offset would overflow. The correct
 comparison result can be determined even if that value would be
 out of the data type's range. Note that if the data type
 includes concepts such as “infinity” or
 “NaN”, extra care may be needed to ensure that
 in_range's results agree with the normal
 sort order of the operator family.

 The results of the in_range function must be
 consistent with the sort ordering imposed by the operator family.
 To be precise, given any fixed values of
 offset and
 sub, then:

	
 If in_range with
 less = true is true for some
 val1 and
 base, it must be true for every
 val2 <=
 val1 with the same
 base.

	
 If in_range with
 less = true is false for some
 val1 and
 base, it must be false for every
 val2 >=
 val1 with the same
 base.

	
 If in_range with
 less = true is true for some
 val and
 base1, it must be true for every
 base2 >=
 base1 with the same
 val.

	
 If in_range with
 less = true is false for some
 val and
 base1, it must be false for every
 base2 <=
 base1 with the same
 val.

 Analogous statements with inverted conditions hold when
 less = false.

 If the type being ordered (type1) is collatable, the
 appropriate collation OID will be passed to the
 in_range function, using the standard
 PG_GET_COLLATION() mechanism.

 in_range functions need not handle NULL
 inputs, and typically will be marked strict.

	equalimage
	
 Optionally, a btree operator family may provide
 equalimage (“equality implies image
 equality”) support functions, registered under support
 function number 4. These functions allow the core code to
 determine when it is safe to apply the btree deduplication
 optimization. Currently, equalimage
 functions are only called when building or rebuilding an index.

 An equalimage function must have the
 signature

equalimage(opcintype oid) returns bool

 The return value is static information about an operator class
 and collation. Returning true indicates that
 the order function for the operator class is
 guaranteed to only return 0 (“arguments
 are equal”) when its A and
 B arguments are also interchangeable
 without any loss of semantic information. Not registering an
 equalimage function or returning
 false indicates that this condition cannot be
 assumed to hold.

 The opcintype argument is the
 pg_type.oid of the
 data type that the operator class indexes. This is a convenience
 that allows reuse of the same underlying
 equalimage function across operator classes.
 If opcintype is a collatable data
 type, the appropriate collation OID will be passed to the
 equalimage function, using the standard
 PG_GET_COLLATION() mechanism.

 As far as the operator class is concerned, returning
 true indicates that deduplication is safe (or
 safe for the collation whose OID was passed to its
 equalimage function). However, the core
 code will only deem deduplication safe for an index when
 every indexed column uses an operator class
 that registers an equalimage function, and
 each function actually returns true when
 called.

 Image equality is almost the same condition
 as simple bitwise equality. There is one subtle difference: When
 indexing a varlena data type, the on-disk representation of two
 image equal datums may not be bitwise equal due to inconsistent
 application of TOAST compression on input.
 Formally, when an operator class's
 equalimage function returns
 true, it is safe to assume that the
 datum_image_eq() C function will always agree
 with the operator class's order function
 (provided that the same collation OID is passed to both the
 equalimage and order
 functions).

 The core code is fundamentally unable to deduce anything about
 the “equality implies image equality” status of an
 operator class within a multiple-data-type family based on
 details from other operator classes in the same family. Also, it
 is not sensible for an operator family to register a cross-type
 equalimage function, and attempting to do so
 will result in an error. This is because “equality implies
 image equality” status does not just depend on
 sorting/equality semantics, which are more or less defined at the
 operator family level. In general, the semantics that one
 particular data type implements must be considered separately.

 The convention followed by the operator classes included with the
 core PostgreSQL™ distribution is to
 register a stock, generic equalimage
 function. Most operator classes register
 btequalimage(), which indicates that
 deduplication is safe unconditionally. Operator classes for
 collatable data types such as text register
 btvarstrequalimage(), which indicates that
 deduplication is safe with deterministic collations. Best
 practice for third-party extensions is to register their own
 custom function to retain control.

	options
	
 Optionally, a B-tree operator family may provide
 options (“operator class specific
 options”) support functions, registered under support
 function number 5. These functions define a set of user-visible
 parameters that control operator class behavior.

 An options support function must have the
 signature

options(relopts local_relopts *) returns void

 The function is passed a pointer to a local_relopts
 struct, which needs to be filled with a set of operator class
 specific options. The options can be accessed from other support
 functions using the PG_HAS_OPCLASS_OPTIONS() and
 PG_GET_OPCLASS_OPTIONS() macros.

 Currently, no B-Tree operator class has an options
 support function. B-tree doesn't allow flexible representation of keys
 like GiST, SP-GiST, GIN and BRIN do. So, options
 probably doesn't have much application in the current B-tree index
 access method. Nevertheless, this support function was added to B-tree
 for uniformity, and will probably find uses during further
 evolution of B-tree in PostgreSQL™.

Implementation

 This section covers B-Tree index implementation details that may be
 of use to advanced users. See
 src/backend/access/nbtree/README in the source
 distribution for a much more detailed, internals-focused description
 of the B-Tree implementation.

B-Tree Structure

 PostgreSQL™ B-Tree indexes are
 multi-level tree structures, where each level of the tree can be
 used as a doubly-linked list of pages. A single metapage is stored
 in a fixed position at the start of the first segment file of the
 index. All other pages are either leaf pages or internal pages.
 Leaf pages are the pages on the lowest level of the tree. All
 other levels consist of internal pages. Each leaf page contains
 tuples that point to table rows. Each internal page contains
 tuples that point to the next level down in the tree. Typically,
 over 99% of all pages are leaf pages. Both internal pages and leaf
 pages use the standard page format described in the section called “Database Page Layout”.

 New leaf pages are added to a B-Tree index when an existing leaf
 page cannot fit an incoming tuple. A page
 split operation makes room for items that originally
 belonged on the overflowing page by moving a portion of the items
 to a new page. Page splits must also insert a new
 downlink to the new page in the parent page,
 which may cause the parent to split in turn. Page splits
 “cascade upwards” in a recursive fashion. When the
 root page finally cannot fit a new downlink, a root page
 split operation takes place. This adds a new level to
 the tree structure by creating a new root page that is one level
 above the original root page.

Bottom-up Index Deletion

 B-Tree indexes are not directly aware that under MVCC, there might
 be multiple extant versions of the same logical table row; to an
 index, each tuple is an independent object that needs its own index
 entry. “Version churn” tuples may sometimes
 accumulate and adversely affect query latency and throughput. This
 typically occurs with UPDATE-heavy workloads
 where most individual updates cannot apply the
 HOT optimization.
 Changing the value of only
 one column covered by one index during an UPDATE
 always necessitates a new set of index tuples
 — one for each and every index on the
 table. Note in particular that this includes indexes that were not
 “logically modified” by the UPDATE.
 All indexes will need a successor physical index tuple that points
 to the latest version in the table. Each new tuple within each
 index will generally need to coexist with the original
 “updated” tuple for a short period of time (typically
 until shortly after the UPDATE transaction
 commits).

 B-Tree indexes incrementally delete version churn index tuples by
 performing bottom-up index deletion passes.
 Each deletion pass is triggered in reaction to an anticipated
 “version churn page split”. This only happens with
 indexes that are not logically modified by
 UPDATE statements, where concentrated build up
 of obsolete versions in particular pages would occur otherwise. A
 page split will usually be avoided, though it's possible that
 certain implementation-level heuristics will fail to identify and
 delete even one garbage index tuple (in which case a page split or
 deduplication pass resolves the issue of an incoming new tuple not
 fitting on a leaf page). The worst-case number of versions that
 any index scan must traverse (for any single logical row) is an
 important contributor to overall system responsiveness and
 throughput. A bottom-up index deletion pass targets suspected
 garbage tuples in a single leaf page based on
 qualitative distinctions involving logical
 rows and versions. This contrasts with the “top-down”
 index cleanup performed by autovacuum workers, which is triggered
 when certain quantitative table-level
 thresholds are exceeded (see the section called “The Autovacuum Daemon”).

Note

 Not all deletion operations that are performed within B-Tree
 indexes are bottom-up deletion operations. There is a distinct
 category of index tuple deletion: simple index tuple
 deletion. This is a deferred maintenance operation
 that deletes index tuples that are known to be safe to delete
 (those whose item identifier's LP_DEAD bit is
 already set). Like bottom-up index deletion, simple index
 deletion takes place at the point that a page split is anticipated
 as a way of avoiding the split.

 Simple deletion is opportunistic in the sense that it can only
 take place when recent index scans set the
 LP_DEAD bits of affected items in passing.
 Prior to PostgreSQL™ 14, the only
 category of B-Tree deletion was simple deletion. The main
 differences between it and bottom-up deletion are that only the
 former is opportunistically driven by the activity of passing
 index scans, while only the latter specifically targets version
 churn from UPDATEs that do not logically modify
 indexed columns.

 Bottom-up index deletion performs the vast majority of all garbage
 index tuple cleanup for particular indexes with certain workloads.
 This is expected with any B-Tree index that is subject to
 significant version churn from UPDATEs that
 rarely or never logically modify the columns that the index covers.
 The average and worst-case number of versions per logical row can
 be kept low purely through targeted incremental deletion passes.
 It's quite possible that the on-disk size of certain indexes will
 never increase by even one single page/block despite
 constant version churn from
 UPDATEs. Even then, an exhaustive “clean
 sweep” by a VACUUM operation (typically
 run in an autovacuum worker process) will eventually be required as
 a part of collective cleanup of the table and
 each of its indexes.

 Unlike VACUUM, bottom-up index deletion does not
 provide any strong guarantees about how old the oldest garbage
 index tuple may be. No index can be permitted to retain
 “floating garbage” index tuples that became dead prior
 to a conservative cutoff point shared by the table and all of its
 indexes collectively. This fundamental table-level invariant makes
 it safe to recycle table TIDs. This is how it
 is possible for distinct logical rows to reuse the same table
 TID over time (though this can never happen with
 two logical rows whose lifetimes span the same
 VACUUM cycle).

Deduplication

 A duplicate is a leaf page tuple (a tuple that points to a table
 row) where all indexed key columns have values
 that match corresponding column values from at least one other leaf
 page tuple in the same index. Duplicate tuples are quite common in
 practice. B-Tree indexes can use a special, space-efficient
 representation for duplicates when an optional technique is
 enabled: deduplication.

 Deduplication works by periodically merging groups of duplicate
 tuples together, forming a single posting list tuple for each
 group. The column key value(s) only appear once in this
 representation. This is followed by a sorted array of
 TIDs that point to rows in the table. This
 significantly reduces the storage size of indexes where each value
 (or each distinct combination of column values) appears several
 times on average. The latency of queries can be reduced
 significantly. Overall query throughput may increase
 significantly. The overhead of routine index vacuuming may also be
 reduced significantly.

Note

 B-Tree deduplication is just as effective with
 “duplicates” that contain a NULL value, even though
 NULL values are never equal to each other according to the
 = member of any B-Tree operator class. As far
 as any part of the implementation that understands the on-disk
 B-Tree structure is concerned, NULL is just another value from the
 domain of indexed values.

 The deduplication process occurs lazily, when a new item is
 inserted that cannot fit on an existing leaf page, though only when
 index tuple deletion could not free sufficient space for the new
 item (typically deletion is briefly considered and then skipped
 over). Unlike GIN posting list tuples, B-Tree posting list tuples
 do not need to expand every time a new duplicate is inserted; they
 are merely an alternative physical representation of the original
 logical contents of the leaf page. This design prioritizes
 consistent performance with mixed read-write workloads. Most
 client applications will at least see a moderate performance
 benefit from using deduplication. Deduplication is enabled by
 default.

 CREATE INDEX and REINDEX
 apply deduplication to create posting list tuples, though the
 strategy they use is slightly different. Each group of duplicate
 ordinary tuples encountered in the sorted input taken from the
 table is merged into a posting list tuple
 before being added to the current pending leaf
 page. Individual posting list tuples are packed with as many
 TIDs as possible. Leaf pages are written out in
 the usual way, without any separate deduplication pass. This
 strategy is well-suited to CREATE INDEX and
 REINDEX because they are once-off batch
 operations.

 Write-heavy workloads that don't benefit from deduplication due to
 having few or no duplicate values in indexes will incur a small,
 fixed performance penalty (unless deduplication is explicitly
 disabled). The deduplicate_items storage
 parameter can be used to disable deduplication within individual
 indexes. There is never any performance penalty with read-only
 workloads, since reading posting list tuples is at least as
 efficient as reading the standard tuple representation. Disabling
 deduplication isn't usually helpful.

 It is sometimes possible for unique indexes (as well as unique
 constraints) to use deduplication. This allows leaf pages to
 temporarily “absorb” extra version churn duplicates.
 Deduplication in unique indexes augments bottom-up index deletion,
 especially in cases where a long-running transaction holds a
 snapshot that blocks garbage collection. The goal is to buy time
 for the bottom-up index deletion strategy to become effective
 again. Delaying page splits until a single long-running
 transaction naturally goes away can allow a bottom-up deletion pass
 to succeed where an earlier deletion pass failed.

Tip

 A special heuristic is applied to determine whether a
 deduplication pass in a unique index should take place. It can
 often skip straight to splitting a leaf page, avoiding a
 performance penalty from wasting cycles on unhelpful deduplication
 passes. If you're concerned about the overhead of deduplication,
 consider setting deduplicate_items = off
 selectively. Leaving deduplication enabled in unique indexes has
 little downside.

 Deduplication cannot be used in all cases due to
 implementation-level restrictions. Deduplication safety is
 determined when CREATE INDEX or
 REINDEX is run.

 Note that deduplication is deemed unsafe and cannot be used in the
 following cases involving semantically significant differences
 among equal datums:

	
 text, varchar, and char
 cannot use deduplication when a
 nondeterministic collation is used. Case
 and accent differences must be preserved among equal datums.

	
 numeric cannot use deduplication. Numeric display
 scale must be preserved among equal datums.

	
 jsonb cannot use deduplication, since the
 jsonb B-Tree operator class uses
 numeric internally.

	
 float4 and float8 cannot use
 deduplication. These types have distinct representations for
 -0 and 0, which are
 nevertheless considered equal. This difference must be
 preserved.

 There is one further implementation-level restriction that may be
 lifted in a future version of
 PostgreSQL™:

	
 Container types (such as composite types, arrays, or range
 types) cannot use deduplication.

 There is one further implementation-level restriction that applies
 regardless of the operator class or collation used:

	
 INCLUDE indexes can never use deduplication.

Chapter 68. GiST Indexes

Introduction

 GiST stands for Generalized Search Tree. It is a
 balanced, tree-structured access method, that acts as a base template in
 which to implement arbitrary indexing schemes. B-trees, R-trees and many
 other indexing schemes can be implemented in GiST.

 One advantage of GiST is that it allows the development
 of custom data types with the appropriate access methods, by
 an expert in the domain of the data type, rather than a database expert.

 Some of the information here is derived from the University of California
 at Berkeley's GiST Indexing Project
 web site and
 Marcel Kornacker's thesis,

 Access Methods for Next-Generation Database Systems.
 The GiST
 implementation in PostgreSQL™ is primarily
 maintained by Teodor Sigaev and Oleg Bartunov, and there is more
 information on their
 web site.

Built-in Operator Classes

 The core PostgreSQL™ distribution
 includes the GiST operator classes shown in
 Table 68.1, “Built-in GiST Operator Classes”.
 (Some of the optional modules described in Appendix F, Additional Supplied Modules and Extensions
 provide additional GiST operator classes.)

Table 68.1. Built-in GiST Operator Classes
	Name	Indexable Operators	Ordering Operators
	box_ops	<< (box, box)	<-> (box, point)
	&< (box, box)
	&& (box, box)
	&> (box, box)
	>> (box, box)
	~= (box, box)
	@> (box, box)
	<@ (box, box)
	&<| (box, box)
	<<| (box, box)
	|>> (box, box)
	|&> (box, box)
	circle_ops	<< (circle, circle)	<-> (circle, point)
	&< (circle, circle)
	&> (circle, circle)
	>> (circle, circle)
	<@ (circle, circle)
	@> (circle, circle)
	~= (circle, circle)
	&& (circle, circle)
	|>> (circle, circle)
	<<| (circle, circle)
	&<| (circle, circle)
	|&> (circle, circle)
	inet_ops	<< (inet, inet)	
	<<= (inet, inet)
	>> (inet, inet)
	>>= (inet, inet)
	= (inet, inet)
	<> (inet, inet)
	< (inet, inet)
	<= (inet, inet)
	> (inet, inet)
	>= (inet, inet)
	&& (inet, inet)
	multirange_ops	= (anymultirange, anymultirange)	
	&& (anymultirange, anymultirange)
	&& (anymultirange, anyrange)
	@> (anymultirange, anyelement)
	@> (anymultirange, anymultirange)
	@> (anymultirange, anyrange)
	<@ (anymultirange, anymultirange)
	<@ (anymultirange, anyrange)
	<< (anymultirange, anymultirange)
	<< (anymultirange, anyrange)
	>> (anymultirange, anymultirange)
	>> (anymultirange, anyrange)
	&< (anymultirange, anymultirange)
	&< (anymultirange, anyrange)
	&> (anymultirange, anymultirange)
	&> (anymultirange, anyrange)
	-|- (anymultirange, anymultirange)
	-|- (anymultirange, anyrange)
	point_ops	|>> (point, point)	<-> (point, point)
	<< (point, point)
	>> (point, point)
	<<| (point, point)
	~= (point, point)
	<@ (point, box)
	<@ (point, polygon)
	<@ (point, circle)
	poly_ops	<< (polygon, polygon)	<-> (polygon, point)
	&< (polygon, polygon)
	&> (polygon, polygon)
	>> (polygon, polygon)
	<@ (polygon, polygon)
	@> (polygon, polygon)
	~= (polygon, polygon)
	&& (polygon, polygon)
	<<| (polygon, polygon)
	&<| (polygon, polygon)
	|&> (polygon, polygon)
	|>> (polygon, polygon)
	range_ops	= (anyrange, anyrange)	
	&& (anyrange, anyrange)
	&& (anyrange, anymultirange)
	@> (anyrange, anyelement)
	@> (anyrange, anyrange)
	@> (anyrange, anymultirange)
	<@ (anyrange, anyrange)
	<@ (anyrange, anymultirange)
	<< (anyrange, anyrange)
	<< (anyrange, anymultirange)
	>> (anyrange, anyrange)
	>> (anyrange, anymultirange)
	&< (anyrange, anyrange)
	&< (anyrange, anymultirange)
	&> (anyrange, anyrange)
	&> (anyrange, anymultirange)
	-|- (anyrange, anyrange)
	-|- (anyrange, anymultirange)
	tsquery_ops	<@ (tsquery, tsquery)	
	@> (tsquery, tsquery)
	tsvector_ops	@@ (tsvector, tsquery)	

 For historical reasons, the inet_ops operator class is
 not the default class for types inet and cidr.
 To use it, mention the class name in CREATE INDEX,
 for example

CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);

Extensibility

 Traditionally, implementing a new index access method meant a lot of
 difficult work. It was necessary to understand the inner workings of the
 database, such as the lock manager and Write-Ahead Log. The
 GiST interface has a high level of abstraction,
 requiring the access method implementer only to implement the semantics of
 the data type being accessed. The GiST layer itself
 takes care of concurrency, logging and searching the tree structure.

 This extensibility should not be confused with the extensibility of the
 other standard search trees in terms of the data they can handle. For
 example, PostgreSQL™ supports extensible B-trees
 and hash indexes. That means that you can use
 PostgreSQL™ to build a B-tree or hash over any
 data type you want. But B-trees only support range predicates
 (<, =, >),
 and hash indexes only support equality queries.

 So if you index, say, an image collection with a
 PostgreSQL™ B-tree, you can only issue queries
 such as “is imagex equal to imagey”, “is imagex less
 than imagey” and “is imagex greater than imagey”.
 Depending on how you define “equals”, “less than”
 and “greater than” in this context, this could be useful.
 However, by using a GiST based index, you could create
 ways to ask domain-specific questions, perhaps “find all images of
 horses” or “find all over-exposed images”.

 All it takes to get a GiST access method up and running
 is to implement several user-defined methods, which define the behavior of
 keys in the tree. Of course these methods have to be pretty fancy to
 support fancy queries, but for all the standard queries (B-trees,
 R-trees, etc.) they're relatively straightforward. In short,
 GiST combines extensibility along with generality, code
 reuse, and a clean interface.

 There are five methods that an index operator class for
 GiST must provide, and six that are optional.
 Correctness of the index is ensured
 by proper implementation of the same, consistent
 and union methods, while efficiency (size and speed) of the
 index will depend on the penalty and picksplit
 methods.
 Two optional methods are compress and
 decompress, which allow an index to have internal tree data of
 a different type than the data it indexes. The leaves are to be of the
 indexed data type, while the other tree nodes can be of any C struct (but
 you still have to follow PostgreSQL™ data type rules here,
 see about varlena for variable sized data). If the tree's
 internal data type exists at the SQL level, the STORAGE option
 of the CREATE OPERATOR CLASS command can be used.
 The optional eighth method is distance, which is needed
 if the operator class wishes to support ordered scans (nearest-neighbor
 searches). The optional ninth method fetch is needed if the
 operator class wishes to support index-only scans, except when the
 compress method is omitted. The optional tenth method
 options is needed if the operator class has
 user-specified parameters.
 The optional eleventh method sortsupport is used to
 speed up building a GiST index.

	consistent
	
 Given an index entry p and a query value q,
 this function determines whether the index entry is
 “consistent” with the query; that is, could the predicate
 “indexed_column
 indexable_operator q” be true for
 any row represented by the index entry? For a leaf index entry this is
 equivalent to testing the indexable condition, while for an internal
 tree node this determines whether it is necessary to scan the subtree
 of the index represented by the tree node. When the result is
 true, a recheck flag must also be returned.
 This indicates whether the predicate is certainly true or only possibly
 true. If recheck = false then the index has
 tested the predicate condition exactly, whereas if recheck
 = true the row is only a candidate match. In that case the
 system will automatically evaluate the
 indexable_operator against the actual row value to see
 if it is really a match. This convention allows
 GiST to support both lossless and lossy index
 structures.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 bool *recheck = (bool *) PG_GETARG_POINTER(4);
 data_type *key = DatumGetDataType(entry->key);
 bool retval;

 /*
 * determine return value as a function of strategy, key and query.
 *
 * Use GIST_LEAF(entry) to know where you're called in the index tree,
 * which comes handy when supporting the = operator for example (you could
 * check for non empty union() in non-leaf nodes and equality in leaf
 * nodes).
 */

 recheck = true; / or false if check is exact */

 PG_RETURN_BOOL(retval);
}

 Here, key is an element in the index and query
 the value being looked up in the index. The StrategyNumber
 parameter indicates which operator of your operator class is being
 applied — it matches one of the operator numbers in the
 CREATE OPERATOR CLASS command.

 Depending on which operators you have included in the class, the data
 type of query could vary with the operator, since it will
 be whatever type is on the right-hand side of the operator, which might
 be different from the indexed data type appearing on the left-hand side.
 (The above code skeleton assumes that only one type is possible; if
 not, fetching the query argument value would have to depend
 on the operator.) It is recommended that the SQL declaration of
 the consistent function use the opclass's indexed data
 type for the query argument, even though the actual type
 might be something else depending on the operator.

	union
	
 This method consolidates information in the tree. Given a set of
 entries, this function generates a new index entry that represents
 all the given entries.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GISTENTRY *ent = entryvec->vector;
 data_type *out,
 *tmp,
 *old;
 int numranges,
 i = 0;

 numranges = entryvec->n;
 tmp = DatumGetDataType(ent[0].key);
 out = tmp;

 if (numranges == 1)
 {
 out = data_type_deep_copy(tmp);

 PG_RETURN_DATA_TYPE_P(out);
 }

 for (i = 1; i < numranges; i++)
 {
 old = out;
 tmp = DatumGetDataType(ent[i].key);
 out = my_union_implementation(out, tmp);
 }

 PG_RETURN_DATA_TYPE_P(out);
}

 As you can see, in this skeleton we're dealing with a data type
 where union(X, Y, Z) = union(union(X, Y), Z). It's easy
 enough to support data types where this is not the case, by
 implementing the proper union algorithm in this
 GiST support method.

 The result of the union function must be a value of the
 index's storage type, whatever that is (it might or might not be
 different from the indexed column's type). The union
 function should return a pointer to newly palloc()ed
 memory. You can't just return the input value as-is, even if there is
 no type change.

 As shown above, the union function's
 first internal argument is actually
 a GistEntryVector pointer. The second argument is a
 pointer to an integer variable, which can be ignored. (It used to be
 required that the union function store the size of its
 result value into that variable, but this is no longer necessary.)

	compress
	
 Converts a data item into a format suitable for physical storage in
 an index page.
 If the compress method is omitted, data items are stored
 in the index without modification.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *retval;

 if (entry->leafkey)
 {
 /* replace entry->key with a compressed version */
 compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));

 /* fill *compressed_data from entry->key ... */

 retval = palloc(sizeof(GISTENTRY));
 gistentryinit(*retval, PointerGetDatum(compressed_data),
 entry->rel, entry->page, entry->offset, FALSE);
 }
 else
 {
 /* typically we needn't do anything with non-leaf entries */
 retval = entry;
 }

 PG_RETURN_POINTER(retval);
}

 You have to adapt compressed_data_type to the specific
 type you're converting to in order to compress your leaf nodes, of
 course.

	decompress
	
 Converts the stored representation of a data item into a format that
 can be manipulated by the other GiST methods in the operator class.
 If the decompress method is omitted, it is assumed that
 the other GiST methods can work directly on the stored data format.
 (decompress is not necessarily the reverse of
 the compress method; in particular,
 if compress is lossy then it's impossible
 for decompress to exactly reconstruct the original
 data. decompress is not necessarily equivalent
 to fetch, either, since the other GiST methods might not
 require full reconstruction of the data.)

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
 PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

 The above skeleton is suitable for the case where no decompression
 is needed. (But, of course, omitting the method altogether is even
 easier, and is recommended in such cases.)

	penalty
	
 Returns a value indicating the “cost” of inserting the new
 entry into a particular branch of the tree. Items will be inserted
 down the path of least penalty in the tree.
 Values returned by penalty should be non-negative.
 If a negative value is returned, it will be treated as zero.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
 GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 float *penalty = (float *) PG_GETARG_POINTER(2);
 data_type *orig = DatumGetDataType(origentry->key);
 data_type *new = DatumGetDataType(newentry->key);

 *penalty = my_penalty_implementation(orig, new);
 PG_RETURN_POINTER(penalty);
}

 For historical reasons, the penalty function doesn't
 just return a float result; instead it has to store the value
 at the location indicated by the third argument. The return
 value per se is ignored, though it's conventional to pass back the
 address of that argument.

 The penalty function is crucial to good performance of
 the index. It'll get used at insertion time to determine which branch
 to follow when choosing where to add the new entry in the tree. At
 query time, the more balanced the index, the quicker the lookup.

	picksplit
	
 When an index page split is necessary, this function decides which
 entries on the page are to stay on the old page, and which are to move
 to the new page.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 OffsetNumber maxoff = entryvec->n - 1;
 GISTENTRY *ent = entryvec->vector;
 int i,
 nbytes;
 OffsetNumber *left,
 *right;
 data_type *tmp_union;
 data_type *unionL;
 data_type *unionR;
 GISTENTRY **raw_entryvec;

 maxoff = entryvec->n - 1;
 nbytes = (maxoff + 1) * sizeof(OffsetNumber);

 v->spl_left = (OffsetNumber *) palloc(nbytes);
 left = v->spl_left;
 v->spl_nleft = 0;

 v->spl_right = (OffsetNumber *) palloc(nbytes);
 right = v->spl_right;
 v->spl_nright = 0;

 unionL = NULL;
 unionR = NULL;

 /* Initialize the raw entry vector. */
 raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 raw_entryvec[i] = &(entryvec->vector[i]);

 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 {
 int real_index = raw_entryvec[i] - entryvec->vector;

 tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
 Assert(tmp_union != NULL);

 /*
 * Choose where to put the index entries and update unionL and unionR
 * accordingly. Append the entries to either v->spl_left or
 * v->spl_right, and care about the counters.
 */

 if (my_choice_is_left(unionL, curl, unionR, curr))
 {
 if (unionL == NULL)
 unionL = tmp_union;
 else
 unionL = my_union_implementation(unionL, tmp_union);

 *left = real_index;
 ++left;
 ++(v->spl_nleft);
 }
 else
 {
 /*
 * Same on the right
 */
 }
 }

 v->spl_ldatum = DataTypeGetDatum(unionL);
 v->spl_rdatum = DataTypeGetDatum(unionR);
 PG_RETURN_POINTER(v);
}

 Notice that the picksplit function's result is delivered
 by modifying the passed-in v structure. The return
 value per se is ignored, though it's conventional to pass back the
 address of v.

 Like penalty, the picksplit function
 is crucial to good performance of the index. Designing suitable
 penalty and picksplit implementations
 is where the challenge of implementing well-performing
 GiST indexes lies.

	same
	
 Returns true if two index entries are identical, false otherwise.
 (An “index entry” is a value of the index's storage type,
 not necessarily the original indexed column's type.)

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
 prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
 prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
 bool *result = (bool *) PG_GETARG_POINTER(2);

 *result = my_eq(v1, v2);
 PG_RETURN_POINTER(result);
}

 For historical reasons, the same function doesn't
 just return a Boolean result; instead it has to store the flag
 at the location indicated by the third argument. The return
 value per se is ignored, though it's conventional to pass back the
 address of that argument.

	distance
	
 Given an index entry p and a query value q,
 this function determines the index entry's
 “distance” from the query value. This function must be
 supplied if the operator class contains any ordering operators.
 A query using the ordering operator will be implemented by returning
 index entries with the smallest “distance” values first,
 so the results must be consistent with the operator's semantics.
 For a leaf index entry the result just represents the distance to
 the index entry; for an internal tree node, the result must be the
 smallest distance that any child entry could have.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
 data_type *key = DatumGetDataType(entry->key);
 double retval;

 /*
 * determine return value as a function of strategy, key and query.
 */

 PG_RETURN_FLOAT8(retval);
}

 The arguments to the distance function are identical to
 the arguments of the consistent function.

 Some approximation is allowed when determining the distance, so long
 as the result is never greater than the entry's actual distance. Thus,
 for example, distance to a bounding box is usually sufficient in
 geometric applications. For an internal tree node, the distance
 returned must not be greater than the distance to any of the child
 nodes. If the returned distance is not exact, the function must set
 *recheck to true. (This is not necessary for internal tree
 nodes; for them, the calculation is always assumed to be inexact.) In
 this case the executor will calculate the accurate distance after
 fetching the tuple from the heap, and reorder the tuples if necessary.

 If the distance function returns *recheck = true for any
 leaf node, the original ordering operator's return type must
 be float8 or float4, and the distance function's
 result values must be comparable to those of the original ordering
 operator, since the executor will sort using both distance function
 results and recalculated ordering-operator results. Otherwise, the
 distance function's result values can be any finite float8
 values, so long as the relative order of the result values matches the
 order returned by the ordering operator. (Infinity and minus infinity
 are used internally to handle cases such as nulls, so it is not
 recommended that distance functions return these values.)

	fetch
	
 Converts the compressed index representation of a data item into the
 original data type, for index-only scans. The returned data must be an
 exact, non-lossy copy of the originally indexed value.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 The argument is a pointer to a GISTENTRY struct. On
 entry, its key field contains a non-NULL leaf datum in
 compressed form. The return value is another GISTENTRY
 struct, whose key field contains the same datum in its
 original, uncompressed form. If the opclass's compress function does
 nothing for leaf entries, the fetch method can return the
 argument as-is. Or, if the opclass does not have a compress function,
 the fetch method can be omitted as well, since it would
 necessarily be a no-op.

 The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 input_data_type *in = DatumGetPointer(entry->key);
 fetched_data_type *fetched_data;
 GISTENTRY *retval;

 retval = palloc(sizeof(GISTENTRY));
 fetched_data = palloc(sizeof(fetched_data_type));

 /*
 * Convert 'fetched_data' into the a Datum of the original datatype.
 */

 /* fill *retval from fetched_data. */
 gistentryinit(*retval, PointerGetDatum(converted_datum),
 entry->rel, entry->page, entry->offset, FALSE);

 PG_RETURN_POINTER(retval);
}

 If the compress method is lossy for leaf entries, the operator class
 cannot support index-only scans, and must not define
 a fetch function.

	options
	
 Allows definition of user-visible parameters that control operator
 class behavior.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 The function is passed a pointer to a local_relopts
 struct, which needs to be filled with a set of operator class
 specific options. The options can be accessed from other support
 functions using the PG_HAS_OPCLASS_OPTIONS() and
 PG_GET_OPCLASS_OPTIONS() macros.

 An example implementation of my_options() and parameters use
 from other support functions are given below:

typedef enum MyEnumType
{
 MY_ENUM_ON,
 MY_ENUM_OFF,
 MY_ENUM_AUTO
} MyEnumType;

typedef struct
{
 int32 vl_len_; /* varlena header (do not touch directly!) */
 int int_param; /* integer parameter */
 double real_param; /* real parameter */
 MyEnumType enum_param; /* enum parameter */
 int str_param; /* string parameter */
} MyOptionsStruct;

/* String representation of enum values */
static relopt_enum_elt_def myEnumValues[] =
{
 {"on", MY_ENUM_ON},
 {"off", MY_ENUM_OFF},
 {"auto", MY_ENUM_AUTO},
 {(const char *) NULL} /* list terminator */
};

static char *str_param_default = "default";

/*
 * Sample validator: checks that string is not longer than 8 bytes.
 */
static void
validate_my_string_relopt(const char *value)
{
 if (strlen(value) > 8)
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 errmsg("str_param must be at most 8 bytes")));
}

/*
 * Sample filler: switches characters to lower case.
 */
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
 char *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
 int len = strlen(tmp);

 if (ptr)
 strcpy((char *) ptr, tmp);

 pfree(tmp);
 return len + 1;
}

PG_FUNCTION_INFO_V1(my_options);

Datum
my_options(PG_FUNCTION_ARGS)
{
 local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

 init_local_reloptions(relopts, sizeof(MyOptionsStruct));
 add_local_int_reloption(relopts, "int_param", "integer parameter",
 100, 0, 1000000,
 offsetof(MyOptionsStruct, int_param));
 add_local_real_reloption(relopts, "real_param", "real parameter",
 1.0, 0.0, 1000000.0,
 offsetof(MyOptionsStruct, real_param));
 add_local_enum_reloption(relopts, "enum_param", "enum parameter",
 myEnumValues, MY_ENUM_ON,
 "Valid values are: \"on\", \"off\" and \"auto\".",
 offsetof(MyOptionsStruct, enum_param));
 add_local_string_reloption(relopts, "str_param", "string parameter",
 str_param_default,
 &validate_my_string_relopt,
 &fill_my_string_relopt,
 offsetof(MyOptionsStruct, str_param));

 PG_RETURN_VOID();
}

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 int int_param = 100;
 double real_param = 1.0;
 MyEnumType enum_param = MY_ENUM_ON;
 char *str_param = str_param_default;

 /*
 * Normally, when opclass contains 'options' method, then options are always
 * passed to support functions. However, if you add 'options' method to
 * existing opclass, previously defined indexes have no options, so the
 * check is required.
 */
 if (PG_HAS_OPCLASS_OPTIONS())
 {
 MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();

 int_param = options->int_param;
 real_param = options->real_param;
 enum_param = options->enum_param;
 str_param = GET_STRING_RELOPTION(options, str_param);
 }

 /* the rest implementation of support function */
}

 Since the representation of the key in GiST is
 flexible, it may depend on user-specified parameters. For instance,
 the length of key signature may be specified. See
 gtsvector_options() for example.

	sortsupport
	
 Returns a comparator function to sort data in a way that preserves
 locality. It is used by CREATE INDEX and
 REINDEX commands. The quality of the created index
 depends on how well the sort order determined by the comparator function
 preserves locality of the inputs.

 The sortsupport method is optional. If it is not
 provided, CREATE INDEX builds the index by inserting
 each tuple to the tree using the penalty and
 picksplit functions, which is much slower.

 The SQL declaration of the function must look like
 this:

CREATE OR REPLACE FUNCTION my_sortsupport(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 The argument is a pointer to a SortSupport
 struct. At a minimum, the function must fill in its comparator field.
 The comparator takes three arguments: two Datums to compare, and
 a pointer to the SortSupport struct. The
 Datums are the two indexed values in the format that they are stored
 in the index; that is, in the format returned by the
 compress method. The full API is defined in
 src/include/utils/sortsupport.h.

 The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_sortsupport);

static int
my_fastcmp(Datum x, Datum y, SortSupport ssup)
{
 /* establish order between x and y by computing some sorting value z */

 int z1 = ComputeSpatialCode(x);
 int z2 = ComputeSpatialCode(y);

 return z1 == z2 ? 0 : z1 > z2 ? 1 : -1;
}

Datum
my_sortsupport(PG_FUNCTION_ARGS)
{
 SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

 ssup->comparator = my_fastcmp;
 PG_RETURN_VOID();
}

 All the GiST support methods are normally called in short-lived memory
 contexts; that is, CurrentMemoryContext will get reset after
 each tuple is processed. It is therefore not very important to worry about
 pfree'ing everything you palloc. However, in some cases it's useful for a
 support method to cache data across repeated calls. To do that, allocate
 the longer-lived data in fcinfo->flinfo->fn_mcxt, and
 keep a pointer to it in fcinfo->flinfo->fn_extra. Such
 data will survive for the life of the index operation (e.g., a single GiST
 index scan, index build, or index tuple insertion). Be careful to pfree
 the previous value when replacing a fn_extra value, or the leak
 will accumulate for the duration of the operation.

Implementation

GiST Index Build Methods

 The simplest way to build a GiST index is just to insert all the entries,
 one by one. This tends to be slow for large indexes, because if the
 index tuples are scattered across the index and the index is large enough
 to not fit in cache, a lot of random I/O will be
 needed. PostgreSQL™ supports two alternative
 methods for initial build of a GiST index: sorted
 and buffered modes.

 The sorted method is only available if each of the opclasses used by the
 index provides a sortsupport function, as described
 in the section called “Extensibility”. If they do, this method is
 usually the best, so it is used by default.

 The buffered method works by not inserting tuples directly into the index
 right away. It can dramatically reduce the amount of random I/O needed
 for non-ordered data sets. For well-ordered data sets the benefit is
 smaller or non-existent, because only a small number of pages receive new
 tuples at a time, and those pages fit in cache even if the index as a
 whole does not.

 The buffered method needs to call the penalty
 function more often than the simple method does, which consumes some
 extra CPU resources. Also, the buffers need temporary disk space, up to
 the size of the resulting index. Buffering can also influence the quality
 of the resulting index, in both positive and negative directions. That
 influence depends on various factors, like the distribution of the input
 data and the operator class implementation.

 If sorting is not possible, then by default a GiST index build switches
 to the buffering method when the index size reaches
 effective_cache_size. Buffering can be manually
 forced or prevented by the buffering parameter to the
 CREATE INDEX command. The default behavior is good for most cases, but
 turning buffering off might speed up the build somewhat if the input data
 is ordered.

Examples

 The PostgreSQL™ source distribution includes
 several examples of index methods implemented using
 GiST. The core system currently provides text search
 support (indexing for tsvector and tsquery) as well as
 R-Tree equivalent functionality for some of the built-in geometric data types
 (see src/backend/access/gist/gistproc.c). The following
 contrib modules also contain GiST
 operator classes:

	btree_gist
	B-tree equivalent functionality for several data types

	cube
	Indexing for multidimensional cubes

	hstore
	Module for storing (key, value) pairs

	intarray
	RD-Tree for one-dimensional array of int4 values

	ltree
	Indexing for tree-like structures

	pg_trgm
	Text similarity using trigram matching

	seg
	Indexing for “float ranges”

Chapter 69. SP-GiST Indexes

Introduction

 SP-GiST is an abbreviation for space-partitioned
 GiST. SP-GiST supports partitioned
 search trees, which facilitate development of a wide range of different
 non-balanced data structures, such as quad-trees, k-d trees, and radix
 trees (tries). The common feature of these structures is that they
 repeatedly divide the search space into partitions that need not be
 of equal size. Searches that are well matched to the partitioning rule
 can be very fast.

 These popular data structures were originally developed for in-memory
 usage. In main memory, they are usually designed as a set of dynamically
 allocated nodes linked by pointers. This is not suitable for direct
 storing on disk, since these chains of pointers can be rather long which
 would require too many disk accesses. In contrast, disk-based data
 structures should have a high fanout to minimize I/O. The challenge
 addressed by SP-GiST is to map search tree nodes to
 disk pages in such a way that a search need access only a few disk pages,
 even if it traverses many nodes.

 Like GiST, SP-GiST is meant to allow
 the development of custom data types with the appropriate access methods,
 by an expert in the domain of the data type, rather than a database expert.

 Some of the information here is derived from Purdue University's
 SP-GiST Indexing Project
 web site.
 The SP-GiST implementation in
 PostgreSQL™ is primarily maintained by Teodor
 Sigaev and Oleg Bartunov, and there is more information on their

 web site.

Built-in Operator Classes

 The core PostgreSQL™ distribution
 includes the SP-GiST operator classes shown in
 Table 69.1, “Built-in SP-GiST Operator Classes”.

Table 69.1. Built-in SP-GiST Operator Classes
	Name	Indexable Operators	Ordering Operators
	box_ops	<< (box,box)	<-> (box,point)
	&< (box,box)
	&> (box,box)
	>> (box,box)
	<@ (box,box)
	@> (box,box)
	~= (box,box)
	&& (box,box)
	<<| (box,box)
	&<| (box,box)
	|&> (box,box)
	|>> (box,box)
	inet_ops	<< (inet,inet)	
	<<= (inet,inet)
	>> (inet,inet)
	>>= (inet,inet)
	= (inet,inet)
	<> (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	&& (inet,inet)
	kd_point_ops	|>> (point,point)	<-> (point,point)
	<< (point,point)
	>> (point,point)
	<<| (point,point)
	~= (point,point)
	<@ (point,box)
	poly_ops	<< (polygon,polygon)	<-> (polygon,point)
	&< (polygon,polygon)
	&> (polygon,polygon)
	>> (polygon,polygon)
	<@ (polygon,polygon)
	@> (polygon,polygon)
	~= (polygon,polygon)
	&& (polygon,polygon)
	<<| (polygon,polygon)
	&<| (polygon,polygon)
	|>> (polygon,polygon)
	|&> (polygon,polygon)
	quad_point_ops	|>> (point,point)	<-> (point,point)
	<< (point,point)
	>> (point,point)
	<<| (point,point)
	~= (point,point)
	<@ (point,box)
	range_ops	= (anyrange,anyrange)	
	&& (anyrange,anyrange)
	@> (anyrange,anyelement)
	@> (anyrange,anyrange)
	<@ (anyrange,anyrange)
	<< (anyrange,anyrange)
	>> (anyrange,anyrange)
	&< (anyrange,anyrange)
	&> (anyrange,anyrange)
	-|- (anyrange,anyrange)
	text_ops	= (text,text)	
	< (text,text)
	<= (text,text)
	> (text,text)
	>= (text,text)
	~<~ (text,text)
	~<=~ (text,text)
	~>=~ (text,text)
	~>~ (text,text)
	^@ (text,text)

 Of the two operator classes for type point,
 quad_point_ops is the default. kd_point_ops
 supports the same operators but uses a different index data structure that
 may offer better performance in some applications.

 The quad_point_ops, kd_point_ops and
 poly_ops operator classes support the <->
 ordering operator, which enables the k-nearest neighbor (k-NN)
 search over indexed point or polygon data sets.

Extensibility

 SP-GiST offers an interface with a high level of
 abstraction, requiring the access method developer to implement only
 methods specific to a given data type. The SP-GiST core
 is responsible for efficient disk mapping and searching the tree structure.
 It also takes care of concurrency and logging considerations.

 Leaf tuples of an SP-GiST tree usually contain values
 of the same data type as the indexed column, although it is also possible
 for them to contain lossy representations of the indexed column.
 Leaf tuples stored at the root level will directly represent
 the original indexed data value, but leaf tuples at lower
 levels might contain only a partial value, such as a suffix.
 In that case the operator class support functions must be able to
 reconstruct the original value using information accumulated from the
 inner tuples that are passed through to reach the leaf level.

 When an SP-GiST index is created with
 INCLUDE columns, the values of those columns are also
 stored in leaf tuples. The INCLUDE columns are of no
 concern to the SP-GiST operator class, so they are
 not discussed further here.

 Inner tuples are more complex, since they are branching points in the
 search tree. Each inner tuple contains a set of one or more
 nodes, which represent groups of similar leaf values.
 A node contains a downlink that leads either to another, lower-level inner
 tuple, or to a short list of leaf tuples that all lie on the same index page.
 Each node normally has a label that describes it; for example,
 in a radix tree the node label could be the next character of the string
 value. (Alternatively, an operator class can omit the node labels, if it
 works with a fixed set of nodes for all inner tuples;
 see the section called “SP-GiST Without Node Labels”.)
 Optionally, an inner tuple can have a prefix value
 that describes all its members. In a radix tree this could be the common
 prefix of the represented strings. The prefix value is not necessarily
 really a prefix, but can be any data needed by the operator class;
 for example, in a quad-tree it can store the central point that the four
 quadrants are measured with respect to. A quad-tree inner tuple would
 then also contain four nodes corresponding to the quadrants around this
 central point.

 Some tree algorithms require knowledge of level (or depth) of the current
 tuple, so the SP-GiST core provides the possibility for
 operator classes to manage level counting while descending the tree.
 There is also support for incrementally reconstructing the represented
 value when that is needed, and for passing down additional data (called
 traverse values) during a tree descent.

Note

 The SP-GiST core code takes care of null entries.
 Although SP-GiST indexes do store entries for nulls
 in indexed columns, this is hidden from the index operator class code:
 no null index entries or search conditions will ever be passed to the
 operator class methods. (It is assumed that SP-GiST
 operators are strict and so cannot succeed for null values.) Null values
 are therefore not discussed further here.

 There are five user-defined methods that an index operator class for
 SP-GiST must provide, and two are optional. All five
 mandatory methods follow the convention of accepting two internal
 arguments, the first of which is a pointer to a C struct containing input
 values for the support method, while the second argument is a pointer to a
 C struct where output values must be placed. Four of the mandatory methods just
 return void, since all their results appear in the output struct; but
 leaf_consistent returns a boolean result.
 The methods must not modify any fields of their input structs. In all
 cases, the output struct is initialized to zeroes before calling the
 user-defined method. The optional sixth method compress
 accepts a datum to be indexed as the only argument and returns a value suitable
 for physical storage in a leaf tuple. The optional seventh method
 options accepts an internal pointer to a C struct, where
 opclass-specific parameters should be placed, and returns void.

 The five mandatory user-defined methods are:

	config
	
 Returns static information about the index implementation, including
 the data type OIDs of the prefix and node label data types.

 The SQL declaration of the function must look like this:

CREATE FUNCTION my_config(internal, internal) RETURNS void ...

 The first argument is a pointer to a spgConfigIn
 C struct, containing input data for the function.
 The second argument is a pointer to a spgConfigOut
 C struct, which the function must fill with result data.

typedef struct spgConfigIn
{
 Oid attType; /* Data type to be indexed */
} spgConfigIn;

typedef struct spgConfigOut
{
 Oid prefixType; /* Data type of inner-tuple prefixes */
 Oid labelType; /* Data type of inner-tuple node labels */
 Oid leafType; /* Data type of leaf-tuple values */
 bool canReturnData; /* Opclass can reconstruct original data */
 bool longValuesOK; /* Opclass can cope with values > 1 page */
} spgConfigOut;

 attType is passed in order to support polymorphic
 index operator classes; for ordinary fixed-data-type operator classes, it
 will always have the same value and so can be ignored.

 For operator classes that do not use prefixes,
 prefixType can be set to VOIDOID.
 Likewise, for operator classes that do not use node labels,
 labelType can be set to VOIDOID.
 canReturnData should be set true if the operator class
 is capable of reconstructing the originally-supplied index value.
 longValuesOK should be set true only when the
 attType is of variable length and the operator
 class is capable of segmenting long values by repeated suffixing
 (see the section called “SP-GiST Limits”).

 leafType should match the index storage type
 defined by the operator class's opckeytype
 catalog entry.
 (Note that opckeytype can be zero,
 implying the storage type is the same as the operator class's input
 type, which is the most common situation.)
 For reasons of backward compatibility, the config
 method can set leafType to some other value,
 and that value will be used; but this is deprecated since the index
 contents are then incorrectly identified in the catalogs.
 Also, it's permissible to
 leave leafType uninitialized (zero);
 that is interpreted as meaning the index storage type derived from
 opckeytype.

 When attType
 and leafType are different, the optional
 method compress must be provided.
 Method compress is responsible
 for transformation of datums to be indexed from attType
 to leafType.

	choose
	
 Chooses a method for inserting a new value into an inner tuple.

 The SQL declaration of the function must look like this:

CREATE FUNCTION my_choose(internal, internal) RETURNS void ...

 The first argument is a pointer to a spgChooseIn
 C struct, containing input data for the function.
 The second argument is a pointer to a spgChooseOut
 C struct, which the function must fill with result data.

typedef struct spgChooseIn
{
 Datum datum; /* original datum to be indexed */
 Datum leafDatum; /* current datum to be stored at leaf */
 int level; /* current level (counting from zero) */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */
} spgChooseIn;

typedef enum spgChooseResultType
{
 spgMatchNode = 1, /* descend into existing node */
 spgAddNode, /* add a node to the inner tuple */
 spgSplitTuple /* split inner tuple (change its prefix) */
} spgChooseResultType;

typedef struct spgChooseOut
{
 spgChooseResultType resultType; /* action code, see above */
 union
 {
 struct /* results for spgMatchNode */
 {
 int nodeN; /* descend to this node (index from 0) */
 int levelAdd; /* increment level by this much */
 Datum restDatum; /* new leaf datum */
 } matchNode;
 struct /* results for spgAddNode */
 {
 Datum nodeLabel; /* new node's label */
 int nodeN; /* where to insert it (index from 0) */
 } addNode;
 struct /* results for spgSplitTuple */
 {
 /* Info to form new upper-level inner tuple with one child tuple */
 bool prefixHasPrefix; /* tuple should have a prefix? */
 Datum prefixPrefixDatum; /* if so, its value */
 int prefixNNodes; /* number of nodes */
 Datum *prefixNodeLabels; /* their labels (or NULL for
 * no labels) */
 int childNodeN; /* which node gets child tuple */

 /* Info to form new lower-level inner tuple with all old nodes */
 bool postfixHasPrefix; /* tuple should have a prefix? */
 Datum postfixPrefixDatum; /* if so, its value */
 } splitTuple;
 } result;
} spgChooseOut;

 datum is the original datum of
 spgConfigIn.attType
 type that was to be inserted into the index.
 leafDatum is a value of
 spgConfigOut.leafType
 type, which is initially a result of method
 compress applied to datum
 when method compress is provided, or the same value as
 datum otherwise.
 leafDatum can change at lower levels of the tree
 if the choose or picksplit
 methods change it. When the insertion search reaches a leaf page,
 the current value of leafDatum is what will be stored
 in the newly created leaf tuple.
 level is the current inner tuple's level, starting at
 zero for the root level.
 allTheSame is true if the current inner tuple is
 marked as containing multiple equivalent nodes
 (see the section called ““All-the-Same” Inner Tuples”).
 hasPrefix is true if the current inner tuple contains
 a prefix; if so,
 prefixDatum is its value.
 nNodes is the number of child nodes contained in the
 inner tuple, and
 nodeLabels is an array of their label values, or
 NULL if there are no labels.

 The choose function can determine either that
 the new value matches one of the existing child nodes, or that a new
 child node must be added, or that the new value is inconsistent with
 the tuple prefix and so the inner tuple must be split to create a
 less restrictive prefix.

 If the new value matches one of the existing child nodes,
 set resultType to spgMatchNode.
 Set nodeN to the index (from zero) of that node in
 the node array.
 Set levelAdd to the increment in
 level caused by descending through that node,
 or leave it as zero if the operator class does not use levels.
 Set restDatum to equal leafDatum
 if the operator class does not modify datums from one level to the
 next, or otherwise set it to the modified value to be used as
 leafDatum at the next level.

 If a new child node must be added,
 set resultType to spgAddNode.
 Set nodeLabel to the label to be used for the new
 node, and set nodeN to the index (from zero) at which
 to insert the node in the node array.
 After the node has been added, the choose
 function will be called again with the modified inner tuple;
 that call should result in an spgMatchNode result.

 If the new value is inconsistent with the tuple prefix,
 set resultType to spgSplitTuple.
 This action moves all the existing nodes into a new lower-level
 inner tuple, and replaces the existing inner tuple with a tuple
 having a single downlink pointing to the new lower-level inner tuple.
 Set prefixHasPrefix to indicate whether the new
 upper tuple should have a prefix, and if so set
 prefixPrefixDatum to the prefix value. This new
 prefix value must be sufficiently less restrictive than the original
 to accept the new value to be indexed.
 Set prefixNNodes to the number of nodes needed in the
 new tuple, and set prefixNodeLabels to a palloc'd array
 holding their labels, or to NULL if node labels are not required.
 Note that the total size of the new upper tuple must be no more
 than the total size of the tuple it is replacing; this constrains
 the lengths of the new prefix and new labels.
 Set childNodeN to the index (from zero) of the node
 that will downlink to the new lower-level inner tuple.
 Set postfixHasPrefix to indicate whether the new
 lower-level inner tuple should have a prefix, and if so set
 postfixPrefixDatum to the prefix value. The
 combination of these two prefixes and the downlink node's label
 (if any) must have the same meaning as the original prefix, because
 there is no opportunity to alter the node labels that are moved to
 the new lower-level tuple, nor to change any child index entries.
 After the node has been split, the choose
 function will be called again with the replacement inner tuple.
 That call may return an spgAddNode result, if no suitable
 node was created by the spgSplitTuple action. Eventually
 choose must return spgMatchNode to
 allow the insertion to descend to the next level.

	picksplit
	
 Decides how to create a new inner tuple over a set of leaf tuples.

 The SQL declaration of the function must look like this:

CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...

 The first argument is a pointer to a spgPickSplitIn
 C struct, containing input data for the function.
 The second argument is a pointer to a spgPickSplitOut
 C struct, which the function must fill with result data.

typedef struct spgPickSplitIn
{
 int nTuples; /* number of leaf tuples */
 Datum *datums; /* their datums (array of length nTuples) */
 int level; /* current level (counting from zero) */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{
 bool hasPrefix; /* new inner tuple should have a prefix? */
 Datum prefixDatum; /* if so, its value */

 int nNodes; /* number of nodes for new inner tuple */
 Datum *nodeLabels; /* their labels (or NULL for no labels) */

 int *mapTuplesToNodes; /* node index for each leaf tuple */
 Datum *leafTupleDatums; /* datum to store in each new leaf tuple */
} spgPickSplitOut;

 nTuples is the number of leaf tuples provided.
 datums is an array of their datum values of
 spgConfigOut.leafType
 type.
 level is the current level that all the leaf tuples
 share, which will become the level of the new inner tuple.

 Set hasPrefix to indicate whether the new inner
 tuple should have a prefix, and if so set
 prefixDatum to the prefix value.
 Set nNodes to indicate the number of nodes that
 the new inner tuple will contain, and
 set nodeLabels to an array of their label values,
 or to NULL if node labels are not required.
 Set mapTuplesToNodes to an array that gives the index
 (from zero) of the node that each leaf tuple should be assigned to.
 Set leafTupleDatums to an array of the values to
 be stored in the new leaf tuples (these will be the same as the
 input datums if the operator class does not modify
 datums from one level to the next).
 Note that the picksplit function is
 responsible for palloc'ing the
 nodeLabels, mapTuplesToNodes and
 leafTupleDatums arrays.

 If more than one leaf tuple is supplied, it is expected that the
 picksplit function will classify them into more than
 one node; otherwise it is not possible to split the leaf tuples
 across multiple pages, which is the ultimate purpose of this
 operation. Therefore, if the picksplit function
 ends up placing all the leaf tuples in the same node, the core
 SP-GiST code will override that decision and generate an inner
 tuple in which the leaf tuples are assigned at random to several
 identically-labeled nodes. Such a tuple is marked
 allTheSame to signify that this has happened. The
 choose and inner_consistent functions
 must take suitable care with such inner tuples.
 See the section called ““All-the-Same” Inner Tuples” for more information.

 picksplit can be applied to a single leaf tuple only
 in the case that the config function set
 longValuesOK to true and a larger-than-a-page input
 value has been supplied. In this case the point of the operation is
 to strip off a prefix and produce a new, shorter leaf datum value.
 The call will be repeated until a leaf datum short enough to fit on
 a page has been produced. See the section called “SP-GiST Limits” for
 more information.

	inner_consistent
	
 Returns set of nodes (branches) to follow during tree search.

 The SQL declaration of the function must look like this:

CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...

 The first argument is a pointer to a spgInnerConsistentIn
 C struct, containing input data for the function.
 The second argument is a pointer to a spgInnerConsistentOut
 C struct, which the function must fill with result data.

typedef struct spgInnerConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison
 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 MemoryContext traversalMemoryContext; /* put new traverse values here */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{
 int nNodes; /* number of child nodes to be visited */
 int *nodeNumbers; /* their indexes in the node array */
 int *levelAdds; /* increment level by this much for each */
 Datum *reconstructedValues; /* associated reconstructed values */
 void **traversalValues; /* opclass-specific traverse values */
 double **distances; /* associated distances */
} spgInnerConsistentOut;

 The array scankeys, of length nkeys,
 describes the index search condition(s). These conditions are
 combined with AND — only index entries that satisfy all of
 them are interesting. (Note that nkeys = 0 implies
 that all index entries satisfy the query.) Usually the consistent
 function only cares about the sk_strategy and
 sk_argument fields of each array entry, which
 respectively give the indexable operator and comparison value.
 In particular it is not necessary to check sk_flags to
 see if the comparison value is NULL, because the SP-GiST core code
 will filter out such conditions.
 The array orderbys, of length norderbys,
 describes ordering operators (if any) in the same manner.
 reconstructedValue is the value reconstructed for the
 parent tuple; it is (Datum) 0 at the root level or if the
 inner_consistent function did not provide a value at the
 parent level.
 traversalValue is a pointer to any traverse data
 passed down from the previous call of inner_consistent
 on the parent index tuple, or NULL at the root level.
 traversalMemoryContext is the memory context in which
 to store output traverse values (see below).
 level is the current inner tuple's level, starting at
 zero for the root level.
 returnData is true if reconstructed data is
 required for this query; this will only be so if the
 config function asserted canReturnData.
 allTheSame is true if the current inner tuple is
 marked “all-the-same”; in this case all the nodes have the
 same label (if any) and so either all or none of them match the query
 (see the section called ““All-the-Same” Inner Tuples”).
 hasPrefix is true if the current inner tuple contains
 a prefix; if so,
 prefixDatum is its value.
 nNodes is the number of child nodes contained in the
 inner tuple, and
 nodeLabels is an array of their label values, or
 NULL if the nodes do not have labels.

 nNodes must be set to the number of child nodes that
 need to be visited by the search, and
 nodeNumbers must be set to an array of their indexes.
 If the operator class keeps track of levels, set
 levelAdds to an array of the level increments
 required when descending to each node to be visited. (Often these
 increments will be the same for all the nodes, but that's not
 necessarily so, so an array is used.)
 If value reconstruction is needed, set
 reconstructedValues to an array of the values
 reconstructed for each child node to be visited; otherwise, leave
 reconstructedValues as NULL.
 The reconstructed values are assumed to be of type
 spgConfigOut.leafType.
 (However, since the core system will do nothing with them except
 possibly copy them, it is sufficient for them to have the
 same typlen and typbyval
 properties as leafType.)
 If ordered search is performed, set distances
 to an array of distance values according to orderbys
 array (nodes with lowest distances will be processed first). Leave it
 NULL otherwise.
 If it is desired to pass down additional out-of-band information
 (“traverse values”) to lower levels of the tree search,
 set traversalValues to an array of the appropriate
 traverse values, one for each child node to be visited; otherwise,
 leave traversalValues as NULL.
 Note that the inner_consistent function is
 responsible for palloc'ing the
 nodeNumbers, levelAdds,
 distances,
 reconstructedValues, and
 traversalValues arrays in the current memory context.
 However, any output traverse values pointed to by
 the traversalValues array should be allocated
 in traversalMemoryContext.
 Each traverse value must be a single palloc'd chunk.

	leaf_consistent
	
 Returns true if a leaf tuple satisfies a query.

 The SQL declaration of the function must look like this:

CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...

 The first argument is a pointer to a spgLeafConsistentIn
 C struct, containing input data for the function.
 The second argument is a pointer to a spgLeafConsistentOut
 C struct, which the function must fill with result data.

typedef struct spgLeafConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison
 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{
 Datum leafValue; /* reconstructed original data, if any */
 bool recheck; /* set true if operator must be rechecked */
 bool recheckDistances; /* set true if distances must be rechecked */
 double *distances; /* associated distances */
} spgLeafConsistentOut;

 The array scankeys, of length nkeys,
 describes the index search condition(s). These conditions are
 combined with AND — only index entries that satisfy all of
 them satisfy the query. (Note that nkeys = 0 implies
 that all index entries satisfy the query.) Usually the consistent
 function only cares about the sk_strategy and
 sk_argument fields of each array entry, which
 respectively give the indexable operator and comparison value.
 In particular it is not necessary to check sk_flags to
 see if the comparison value is NULL, because the SP-GiST core code
 will filter out such conditions.
 The array orderbys, of length norderbys,
 describes the ordering operators in the same manner.
 reconstructedValue is the value reconstructed for the
 parent tuple; it is (Datum) 0 at the root level or if the
 inner_consistent function did not provide a value at the
 parent level.
 traversalValue is a pointer to any traverse data
 passed down from the previous call of inner_consistent
 on the parent index tuple, or NULL at the root level.
 level is the current leaf tuple's level, starting at
 zero for the root level.
 returnData is true if reconstructed data is
 required for this query; this will only be so if the
 config function asserted canReturnData.
 leafDatum is the key value of
 spgConfigOut.leafType
 stored in the current leaf tuple.

 The function must return true if the leaf tuple matches the
 query, or false if not. In the true case,
 if returnData is true then
 leafValue must be set to the value (of type
 spgConfigIn.attType)
 originally supplied to be indexed for this leaf tuple. Also,
 recheck may be set to true if the match
 is uncertain and so the operator(s) must be re-applied to the actual
 heap tuple to verify the match.
 If ordered search is performed, set distances
 to an array of distance values according to orderbys
 array. Leave it NULL otherwise. If at least one of returned distances
 is not exact, set recheckDistances to true.
 In this case, the executor will calculate the exact distances after
 fetching the tuple from the heap, and will reorder the tuples if needed.

 The optional user-defined methods are:

	Datum compress(Datum in)
	
 Converts a data item into a format suitable for physical storage in
 a leaf tuple of the index. It accepts a value of type
 spgConfigIn.attType
 and returns a value of type
 spgConfigOut.leafType.
 The output value must not contain an out-of-line TOAST pointer.

 Note: the compress method is only applied to
 values to be stored. The consistent methods receive query
 scankeys unchanged, without transformation
 using compress.

	options
	
 Defines a set of user-visible parameters that control operator class
 behavior.

 The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

 The function is passed a pointer to a local_relopts
 struct, which needs to be filled with a set of operator class
 specific options. The options can be accessed from other support
 functions using the PG_HAS_OPCLASS_OPTIONS() and
 PG_GET_OPCLASS_OPTIONS() macros.

 Since the representation of the key in SP-GiST is
 flexible, it may depend on user-specified parameters.

 All the SP-GiST support methods are normally called in a short-lived
 memory context; that is, CurrentMemoryContext will be reset
 after processing of each tuple. It is therefore not very important to
 worry about pfree'ing everything you palloc. (The config
 method is an exception: it should try to avoid leaking memory. But
 usually the config method need do nothing but assign
 constants into the passed parameter struct.)

 If the indexed column is of a collatable data type, the index collation
 will be passed to all the support methods, using the standard
 PG_GET_COLLATION() mechanism.

Implementation

 This section covers implementation details and other tricks that are
 useful for implementers of SP-GiST operator classes to
 know.

SP-GiST Limits

 Individual leaf tuples and inner tuples must fit on a single index page
 (8kB by default). Therefore, when indexing values of variable-length
 data types, long values can only be supported by methods such as radix
 trees, in which each level of the tree includes a prefix that is short
 enough to fit on a page, and the final leaf level includes a suffix also
 short enough to fit on a page. The operator class should set
 longValuesOK to true only if it is prepared to arrange for
 this to happen. Otherwise, the SP-GiST core will
 reject any request to index a value that is too large to fit
 on an index page.

 Likewise, it is the operator class's responsibility that inner tuples
 do not grow too large to fit on an index page; this limits the number
 of child nodes that can be used in one inner tuple, as well as the
 maximum size of a prefix value.

 Another limitation is that when an inner tuple's node points to a set
 of leaf tuples, those tuples must all be in the same index page.
 (This is a design decision to reduce seeking and save space in the
 links that chain such tuples together.) If the set of leaf tuples
 grows too large for a page, a split is performed and an intermediate
 inner tuple is inserted. For this to fix the problem, the new inner
 tuple must divide the set of leaf values into more than one
 node group. If the operator class's picksplit function
 fails to do that, the SP-GiST core resorts to
 extraordinary measures described in the section called ““All-the-Same” Inner Tuples”.

 When longValuesOK is true, it is expected
 that successive levels of the SP-GiST tree will
 absorb more and more information into the prefixes and node labels of
 the inner tuples, making the required leaf datum smaller and smaller,
 so that eventually it will fit on a page.
 To prevent bugs in operator classes from causing infinite insertion
 loops, the SP-GiST core will raise an error if the
 leaf datum does not become any smaller within ten cycles
 of choose method calls.

SP-GiST Without Node Labels

 Some tree algorithms use a fixed set of nodes for each inner tuple;
 for example, in a quad-tree there are always exactly four nodes
 corresponding to the four quadrants around the inner tuple's centroid
 point. In such a case the code typically works with the nodes by
 number, and there is no need for explicit node labels. To suppress
 node labels (and thereby save some space), the picksplit
 function can return NULL for the nodeLabels array,
 and likewise the choose function can return NULL for
 the prefixNodeLabels array during
 a spgSplitTuple action.
 This will in turn result in nodeLabels being NULL during
 subsequent calls to choose and inner_consistent.
 In principle, node labels could be used for some inner tuples and omitted
 for others in the same index.

 When working with an inner tuple having unlabeled nodes, it is an error
 for choose to return spgAddNode, since the set
 of nodes is supposed to be fixed in such cases.

“All-the-Same” Inner Tuples

 The SP-GiST core can override the results of the
 operator class's picksplit function when
 picksplit fails to divide the supplied leaf values into
 at least two node categories. When this happens, the new inner tuple
 is created with multiple nodes that each have the same label (if any)
 that picksplit gave to the one node it did use, and the
 leaf values are divided at random among these equivalent nodes.
 The allTheSame flag is set on the inner tuple to warn the
 choose and inner_consistent functions that the
 tuple does not have the node set that they might otherwise expect.

 When dealing with an allTheSame tuple, a choose
 result of spgMatchNode is interpreted to mean that the new
 value can be assigned to any of the equivalent nodes; the core code will
 ignore the supplied nodeN value and descend into one
 of the nodes at random (so as to keep the tree balanced). It is an
 error for choose to return spgAddNode, since
 that would make the nodes not all equivalent; the
 spgSplitTuple action must be used if the value to be inserted
 doesn't match the existing nodes.

 When dealing with an allTheSame tuple, the
 inner_consistent function should return either all or none
 of the nodes as targets for continuing the index search, since they are
 all equivalent. This may or may not require any special-case code,
 depending on how much the inner_consistent function normally
 assumes about the meaning of the nodes.

Examples

 The PostgreSQL™ source distribution includes
 several examples of index operator classes for SP-GiST,
 as described in Table 69.1, “Built-in SP-GiST Operator Classes”. Look
 into src/backend/access/spgist/
 and src/backend/utils/adt/ to see the code.

Chapter 70. GIN Indexes

Introduction

 GIN stands for Generalized Inverted Index.
 GIN is designed for handling cases where the items
 to be indexed are composite values, and the queries to be handled by
 the index need to search for element values that appear within
 the composite items. For example, the items could be documents,
 and the queries could be searches for documents containing specific words.

 We use the word item to refer to a composite value that
 is to be indexed, and the word key to refer to an element
 value. GIN always stores and searches for keys,
 not item values per se.

 A GIN index stores a set of (key, posting list) pairs,
 where a posting list is a set of row IDs in which the key
 occurs. The same row ID can appear in multiple posting lists, since
 an item can contain more than one key. Each key value is stored only
 once, so a GIN index is very compact for cases
 where the same key appears many times.

 GIN is generalized in the sense that the
 GIN access method code does not need to know the
 specific operations that it accelerates.
 Instead, it uses custom strategies defined for particular data types.
 The strategy defines how keys are extracted from indexed items and
 query conditions, and how to determine whether a row that contains
 some of the key values in a query actually satisfies the query.

 One advantage of GIN is that it allows the development
 of custom data types with the appropriate access methods, by
 an expert in the domain of the data type, rather than a database expert.
 This is much the same advantage as using GiST.

 The GIN
 implementation in PostgreSQL™ is primarily
 maintained by Teodor Sigaev and Oleg Bartunov. There is more
 information about GIN on their
 website.

Built-in Operator Classes

 The core PostgreSQL™ distribution
 includes the GIN operator classes shown in
 Table 70.1, “Built-in GIN Operator Classes”.
 (Some of the optional modules described in Appendix F, Additional Supplied Modules and Extensions
 provide additional GIN operator classes.)

Table 70.1. Built-in GIN Operator Classes
	Name	Indexable Operators
	array_ops	&& (anyarray,anyarray)
	@> (anyarray,anyarray)
	<@ (anyarray,anyarray)
	= (anyarray,anyarray)
	jsonb_ops	@> (jsonb,jsonb)
	@? (jsonb,jsonpath)
	@@ (jsonb,jsonpath)
	? (jsonb,text)
	?| (jsonb,text[])
	?& (jsonb,text[])
	jsonb_path_ops	@> (jsonb,jsonb)
	@? (jsonb,jsonpath)
	@@ (jsonb,jsonpath)
	tsvector_ops	@@ (tsvector,tsquery)
	@@@ (tsvector,tsquery)

 Of the two operator classes for type jsonb, jsonb_ops
 is the default. jsonb_path_ops supports fewer operators but
 offers better performance for those operators.
 See the section called “jsonb Indexing” for details.

Extensibility

 The GIN interface has a high level of abstraction,
 requiring the access method implementer only to implement the semantics of
 the data type being accessed. The GIN layer itself
 takes care of concurrency, logging and searching the tree structure.

 All it takes to get a GIN access method working is to
 implement a few user-defined methods, which define the behavior of
 keys in the tree and the relationships between keys, indexed items,
 and indexable queries. In short, GIN combines
 extensibility with generality, code reuse, and a clean interface.

 There are two methods that an operator class for
 GIN must provide:

	Datum *extractValue(Datum itemValue, int32 *nkeys,
 bool **nullFlags)
	
 Returns a palloc'd array of keys given an item to be indexed. The
 number of returned keys must be stored into *nkeys.
 If any of the keys can be null, also palloc an array of
 *nkeys bool fields, store its address at
 *nullFlags, and set these null flags as needed.
 *nullFlags can be left NULL (its initial value)
 if all keys are non-null.
 The return value can be NULL if the item contains no keys.

	Datum *extractQuery(Datum query, int32 *nkeys,
 StrategyNumber n, bool **pmatch, Pointer **extra_data,
 bool **nullFlags, int32 *searchMode)
	
 Returns a palloc'd array of keys given a value to be queried; that is,
 query is the value on the right-hand side of an
 indexable operator whose left-hand side is the indexed column.
 n is the strategy number of the operator within the
 operator class (see the section called “Index Method Strategies”).
 Often, extractQuery will need
 to consult n to determine the data type of
 query and the method it should use to extract key values.
 The number of returned keys must be stored into *nkeys.
 If any of the keys can be null, also palloc an array of
 *nkeys bool fields, store its address at
 *nullFlags, and set these null flags as needed.
 *nullFlags can be left NULL (its initial value)
 if all keys are non-null.
 The return value can be NULL if the query contains no keys.

 searchMode is an output argument that allows
 extractQuery to specify details about how the search
 will be done.
 If *searchMode is set to
 GIN_SEARCH_MODE_DEFAULT (which is the value it is
 initialized to before call), only items that match at least one of
 the returned keys are considered candidate matches.
 If *searchMode is set to
 GIN_SEARCH_MODE_INCLUDE_EMPTY, then in addition to items
 containing at least one matching key, items that contain no keys at
 all are considered candidate matches. (This mode is useful for
 implementing is-subset-of operators, for example.)
 If *searchMode is set to GIN_SEARCH_MODE_ALL,
 then all non-null items in the index are considered candidate
 matches, whether they match any of the returned keys or not. (This
 mode is much slower than the other two choices, since it requires
 scanning essentially the entire index, but it may be necessary to
 implement corner cases correctly. An operator that needs this mode
 in most cases is probably not a good candidate for a GIN operator
 class.)
 The symbols to use for setting this mode are defined in
 access/gin.h.

 pmatch is an output argument for use when partial match
 is supported. To use it, extractQuery must allocate
 an array of *nkeys bools and store its address at
 *pmatch. Each element of the array should be set to true
 if the corresponding key requires partial match, false if not.
 If *pmatch is set to NULL then GIN assumes partial match
 is not required. The variable is initialized to NULL before call,
 so this argument can simply be ignored by operator classes that do
 not support partial match.

 extra_data is an output argument that allows
 extractQuery to pass additional data to the
 consistent and comparePartial methods.
 To use it, extractQuery must allocate
 an array of *nkeys pointers and store its address at
 *extra_data, then store whatever it wants to into the
 individual pointers. The variable is initialized to NULL before
 call, so this argument can simply be ignored by operator classes that
 do not require extra data. If *extra_data is set, the
 whole array is passed to the consistent method, and
 the appropriate element to the comparePartial method.

 An operator class must also provide a function to check if an indexed item
 matches the query. It comes in two flavors, a Boolean consistent
 function, and a ternary triConsistent function.
 triConsistent covers the functionality of both, so providing
 triConsistent alone is sufficient. However, if the Boolean
 variant is significantly cheaper to calculate, it can be advantageous to
 provide both. If only the Boolean variant is provided, some optimizations
 that depend on refuting index items before fetching all the keys are
 disabled.

	bool consistent(bool check[], StrategyNumber n, Datum query,
 int32 nkeys, Pointer extra_data[], bool *recheck,
 Datum queryKeys[], bool nullFlags[])
	
 Returns true if an indexed item satisfies the query operator with
 strategy number n (or might satisfy it, if the recheck
 indication is returned). This function does not have direct access
 to the indexed item's value, since GIN does not
 store items explicitly. Rather, what is available is knowledge
 about which key values extracted from the query appear in a given
 indexed item. The check array has length
 nkeys, which is the same as the number of keys previously
 returned by extractQuery for this query datum.
 Each element of the
 check array is true if the indexed item contains the
 corresponding query key, i.e., if (check[i] == true) the i-th key of the
 extractQuery result array is present in the indexed item.
 The original query datum is
 passed in case the consistent method needs to consult it,
 and so are the queryKeys[] and nullFlags[]
 arrays previously returned by extractQuery.
 extra_data is the extra-data array returned by
 extractQuery, or NULL if none.

 When extractQuery returns a null key in
 queryKeys[], the corresponding check[] element
 is true if the indexed item contains a null key; that is, the
 semantics of check[] are like IS NOT DISTINCT
 FROM. The consistent function can examine the
 corresponding nullFlags[] element if it needs to tell
 the difference between a regular value match and a null match.

 On success, *recheck should be set to true if the heap
 tuple needs to be rechecked against the query operator, or false if
 the index test is exact. That is, a false return value guarantees
 that the heap tuple does not match the query; a true return value with
 *recheck set to false guarantees that the heap tuple does
 match the query; and a true return value with
 *recheck set to true means that the heap tuple might match
 the query, so it needs to be fetched and rechecked by evaluating the
 query operator directly against the originally indexed item.

	GinTernaryValue triConsistent(GinTernaryValue check[], StrategyNumber n, Datum query,
 int32 nkeys, Pointer extra_data[],
 Datum queryKeys[], bool nullFlags[])
	
 triConsistent is similar to consistent,
 but instead of Booleans in the check vector, there are
 three possible values for each
 key: GIN_TRUE, GIN_FALSE and
 GIN_MAYBE. GIN_FALSE and GIN_TRUE
 have the same meaning as regular Boolean values, while
 GIN_MAYBE means that the presence of that key is not known.
 When GIN_MAYBE values are present, the function should only
 return GIN_TRUE if the item certainly matches whether or
 not the index item contains the corresponding query keys. Likewise, the
 function must return GIN_FALSE only if the item certainly
 does not match, whether or not it contains the GIN_MAYBE
 keys. If the result depends on the GIN_MAYBE entries, i.e.,
 the match cannot be confirmed or refuted based on the known query keys,
 the function must return GIN_MAYBE.

 When there are no GIN_MAYBE values in the check
 vector, a GIN_MAYBE return value is the equivalent of
 setting the recheck flag in the
 Boolean consistent function.

 In addition, GIN must have a way to sort the key values stored in the index.
 The operator class can define the sort ordering by specifying a comparison
 method:

	int compare(Datum a, Datum b)
	
 Compares two keys (not indexed items!) and returns an integer less than
 zero, zero, or greater than zero, indicating whether the first key is
 less than, equal to, or greater than the second. Null keys are never
 passed to this function.

 Alternatively, if the operator class does not provide a compare
 method, GIN will look up the default btree operator class for the index
 key data type, and use its comparison function. It is recommended to
 specify the comparison function in a GIN operator class that is meant for
 just one data type, as looking up the btree operator class costs a few
 cycles. However, polymorphic GIN operator classes (such
 as array_ops) typically cannot specify a single comparison
 function.

 An operator class for GIN can optionally supply the
 following methods:

	int comparePartial(Datum partial_key, Datum key, StrategyNumber n,
 Pointer extra_data)
	
 Compare a partial-match query key to an index key. Returns an integer
 whose sign indicates the result: less than zero means the index key
 does not match the query, but the index scan should continue; zero
 means that the index key does match the query; greater than zero
 indicates that the index scan should stop because no more matches
 are possible. The strategy number n of the operator
 that generated the partial match query is provided, in case its
 semantics are needed to determine when to end the scan. Also,
 extra_data is the corresponding element of the extra-data
 array made by extractQuery, or NULL if none.
 Null keys are never passed to this function.

	void options(local_relopts *relopts)
	
 Defines a set of user-visible parameters that control operator class
 behavior.

 The options function is passed a pointer to a
 local_relopts struct, which needs to be
 filled with a set of operator class specific options. The options
 can be accessed from other support functions using the
 PG_HAS_OPCLASS_OPTIONS() and
 PG_GET_OPCLASS_OPTIONS() macros.

 Since both key extraction of indexed values and representation of the
 key in GIN are flexible, they may depend on
 user-specified parameters.

 To support “partial match” queries, an operator class must
 provide the comparePartial method, and its
 extractQuery method must set the pmatch
 parameter when a partial-match query is encountered. See
 the section called “Partial Match Algorithm” for details.

 The actual data types of the various Datum values mentioned
 above vary depending on the operator class. The item values passed to
 extractValue are always of the operator class's input type, and
 all key values must be of the class's STORAGE type. The type of
 the query argument passed to extractQuery,
 consistent and triConsistent is whatever is the
 right-hand input type of the class member operator identified by the
 strategy number. This need not be the same as the indexed type, so long as
 key values of the correct type can be extracted from it. However, it is
 recommended that the SQL declarations of these three support functions use
 the opclass's indexed data type for the query argument, even
 though the actual type might be something else depending on the operator.

Implementation

 Internally, a GIN index contains a B-tree index
 constructed over keys, where each key is an element of one or more indexed
 items (a member of an array, for example) and where each tuple in a leaf
 page contains either a pointer to a B-tree of heap pointers (a
 “posting tree”), or a simple list of heap pointers (a “posting
 list”) when the list is small enough to fit into a single index tuple along
 with the key value. Figure 70.1, “GIN Internals” illustrates
 these components of a GIN index.

 As of PostgreSQL™ 9.1, null key values can be
 included in the index. Also, placeholder nulls are included in the index
 for indexed items that are null or contain no keys according to
 extractValue. This allows searches that should find empty
 items to do so.

 Multicolumn GIN indexes are implemented by building
 a single B-tree over composite values (column number, key value). The
 key values for different columns can be of different types.

Figure 70.1. GIN Internals

GIN Fast Update Technique

 Updating a GIN index tends to be slow because of the
 intrinsic nature of inverted indexes: inserting or updating one heap row
 can cause many inserts into the index (one for each key extracted
 from the indexed item).
 GIN is capable of postponing much of this work by inserting
 new tuples into a temporary, unsorted list of pending entries.
 When the table is vacuumed or autoanalyzed, or when
 gin_clean_pending_list function is called, or if the
 pending list becomes larger than
 gin_pending_list_limit, the entries are moved to the
 main GIN data structure using the same bulk insert
 techniques used during initial index creation. This greatly improves
 GIN index update speed, even counting the additional
 vacuum overhead. Moreover the overhead work can be done by a background
 process instead of in foreground query processing.

 The main disadvantage of this approach is that searches must scan the list
 of pending entries in addition to searching the regular index, and so
 a large list of pending entries will slow searches significantly.
 Another disadvantage is that, while most updates are fast, an update
 that causes the pending list to become “too large” will incur an
 immediate cleanup cycle and thus be much slower than other updates.
 Proper use of autovacuum can minimize both of these problems.

 If consistent response time is more important than update speed,
 use of pending entries can be disabled by turning off the
 fastupdate storage parameter for a
 GIN index. See CREATE INDEX(7)
 for details.

Partial Match Algorithm

 GIN can support “partial match” queries, in which the query
 does not determine an exact match for one or more keys, but the possible
 matches fall within a reasonably narrow range of key values (within the
 key sorting order determined by the compare support method).
 The extractQuery method, instead of returning a key value
 to be matched exactly, returns a key value that is the lower bound of
 the range to be searched, and sets the pmatch flag true.
 The key range is then scanned using the comparePartial
 method. comparePartial must return zero for a matching
 index key, less than zero for a non-match that is still within the range
 to be searched, or greater than zero if the index key is past the range
 that could match.

GIN Tips and Tricks

	Create vs. insert
	
 Insertion into a GIN index can be slow
 due to the likelihood of many keys being inserted for each item.
 So, for bulk insertions into a table it is advisable to drop the GIN
 index and recreate it after finishing bulk insertion.

 When fastupdate is enabled for GIN
 (see the section called “GIN Fast Update Technique” for details), the penalty is
 less than when it is not. But for very large updates it may still be
 best to drop and recreate the index.

	maintenance_work_mem
	
 Build time for a GIN index is very sensitive to
 the maintenance_work_mem setting; it doesn't pay to
 skimp on work memory during index creation.

	gin_pending_list_limit
	
 During a series of insertions into an existing GIN
 index that has fastupdate enabled, the system will clean up
 the pending-entry list whenever the list grows larger than
 gin_pending_list_limit. To avoid fluctuations in observed
 response time, it's desirable to have pending-list cleanup occur in the
 background (i.e., via autovacuum). Foreground cleanup operations
 can be avoided by increasing gin_pending_list_limit
 or making autovacuum more aggressive.
 However, enlarging the threshold of the cleanup operation means that
 if a foreground cleanup does occur, it will take even longer.

 gin_pending_list_limit can be overridden for individual
 GIN indexes by changing storage parameters, which allows each
 GIN index to have its own cleanup threshold.
 For example, it's possible to increase the threshold only for the GIN
 index which can be updated heavily, and decrease it otherwise.

	gin_fuzzy_search_limit
	
 The primary goal of developing GIN indexes was
 to create support for highly scalable full-text search in
 PostgreSQL™, and there are often situations when
 a full-text search returns a very large set of results. Moreover, this
 often happens when the query contains very frequent words, so that the
 large result set is not even useful. Since reading many
 tuples from the disk and sorting them could take a lot of time, this is
 unacceptable for production. (Note that the index search itself is very
 fast.)

 To facilitate controlled execution of such queries,
 GIN has a configurable soft upper limit on the
 number of rows returned: the
 gin_fuzzy_search_limit configuration parameter.
 It is set to 0 (meaning no limit) by default.
 If a non-zero limit is set, then the returned set is a subset of
 the whole result set, chosen at random.

 “Soft” means that the actual number of returned results
 could differ somewhat from the specified limit, depending on the query
 and the quality of the system's random number generator.

 From experience, values in the thousands (e.g., 5000 — 20000)
 work well.

Limitations

 GIN assumes that indexable operators are strict. This
 means that extractValue will not be called at all on a null
 item value (instead, a placeholder index entry is created automatically),
 and extractQuery will not be called on a null query
 value either (instead, the query is presumed to be unsatisfiable). Note
 however that null key values contained within a non-null composite item
 or query value are supported.

Examples

 The core PostgreSQL™ distribution
 includes the GIN operator classes previously shown in
 Table 70.1, “Built-in GIN Operator Classes”.
 The following contrib modules also contain
 GIN operator classes:

	btree_gin
	B-tree equivalent functionality for several data types

	hstore
	Module for storing (key, value) pairs

	intarray
	Enhanced support for int[]

	pg_trgm
	Text similarity using trigram matching

Chapter 71. BRIN Indexes

Introduction

 BRIN stands for Block Range Index.
 BRIN is designed for handling very large tables
 in which certain columns have some natural correlation with their
 physical location within the table.

 BRIN works in terms of block ranges
 (or “page ranges”).
 A block range is a group of pages that are physically
 adjacent in the table; for each block range, some summary info is stored
 by the index.
 For example, a table storing a store's sale orders might have
 a date column on which each order was placed, and most of the time
 the entries for earlier orders will appear earlier in the table as well;
 a table storing a ZIP code column might have all codes for a city
 grouped together naturally.

 BRIN indexes can satisfy queries via regular bitmap
 index scans, and will return all tuples in all pages within each range if
 the summary info stored by the index is consistent with the
 query conditions.
 The query executor is in charge of rechecking these tuples and discarding
 those that do not match the query conditions — in other words, these
 indexes are lossy.
 Because a BRIN index is very small, scanning the index
 adds little overhead compared to a sequential scan, but may avoid scanning
 large parts of the table that are known not to contain matching tuples.

 The specific data that a BRIN index will store,
 as well as the specific queries that the index will be able to satisfy,
 depend on the operator class selected for each column of the index.
 Data types having a linear sort order can have operator classes that
 store the minimum and maximum value within each block range, for instance;
 geometrical types might store the bounding box for all the objects
 in the block range.

 The size of the block range is determined at index creation time by
 the pages_per_range storage parameter. The number of index
 entries will be equal to the size of the relation in pages divided by
 the selected value for pages_per_range. Therefore, the smaller
 the number, the larger the index becomes (because of the need to
 store more index entries), but at the same time the summary data stored can
 be more precise and more data blocks can be skipped during an index scan.

Index Maintenance

 At the time of creation, all existing heap pages are scanned and a
 summary index tuple is created for each range, including the
 possibly-incomplete range at the end.
 As new pages are filled with data, page ranges that are already
 summarized will cause the summary information to be updated with data
 from the new tuples.
 When a new page is created that does not fall within the last
 summarized range, the range that the new page belongs to
 does not automatically acquire a summary tuple;
 those tuples remain unsummarized until a summarization run is
 invoked later, creating the initial summary for that range.

 There are several ways to trigger the initial summarization of a page range.
 If the table is vacuumed, either manually or by
 autovacuum, all existing unsummarized
 page ranges are summarized.
 Also, if the index's
 autosummarize parameter is enabled,
 which it isn't by default,
 whenever autovacuum runs in that database, summarization will occur for all
 unsummarized page ranges that have been filled,
 regardless of whether the table itself is processed by autovacuum; see below.

 Lastly, the following functions can be used:

	
 brin_summarize_new_values(regclass)
 which summarizes all unsummarized ranges;

	
 brin_summarize_range(regclass, bigint)
 which summarizes only the range containing the given page,
 if it is unsummarized.

 When autosummarization is enabled, a request is sent to
 autovacuum to execute a targeted summarization
 for a block range when an insertion is detected for the first item
 of the first page of the next block range,
 to be fulfilled the next time an autovacuum
 worker finishes running in the
 same database. If the request queue is full, the request is not recorded
 and a message is sent to the server log:

LOG: request for BRIN range summarization for index "brin_wi_idx" page 128 was not recorded

 When this happens, the range will remain unsummarized until the next
 regular vacuum run on the table, or one of the functions mentioned above
 are invoked.

 Conversely, a range can be de-summarized using the
 brin_desummarize_range(regclass, bigint) function,
 which is useful when the index tuple is no longer a very good
 representation because the existing values have changed.
 See the section called “Index Maintenance Functions” for details.

Built-in Operator Classes

 The core PostgreSQL™ distribution
 includes the BRIN operator classes shown in
 Table 71.1, “Built-in BRIN Operator Classes”.

 The minmax
 operator classes store the minimum and the maximum values appearing
 in the indexed column within the range. The inclusion
 operator classes store a value which includes the values in the indexed
 column within the range. The bloom operator
 classes build a Bloom filter for all values in the range. The
 minmax-multi operator classes store multiple
 minimum and maximum values, representing values appearing in the indexed
 column within the range.

Table 71.1. Built-in BRIN Operator Classes
	Name	Indexable Operators
	bit_minmax_ops	= (bit,bit)
	< (bit,bit)
	> (bit,bit)
	<= (bit,bit)
	>= (bit,bit)
	box_inclusion_ops	@> (box,point)
	<< (box,box)
	&< (box,box)
	&> (box,box)
	>> (box,box)
	<@ (box,box)
	@> (box,box)
	~= (box,box)
	&& (box,box)
	<<| (box,box)
	&<| (box,box)
	|&> (box,box)
	|>> (box,box)
	bpchar_bloom_ops	= (character,character)
	bpchar_minmax_ops	= (character,character)
	< (character,character)
	<= (character,character)
	> (character,character)
	>= (character,character)
	bytea_bloom_ops	= (bytea,bytea)
	bytea_minmax_ops	= (bytea,bytea)
	< (bytea,bytea)
	<= (bytea,bytea)
	> (bytea,bytea)
	>= (bytea,bytea)
	char_bloom_ops	= ("char","char")
	char_minmax_ops	= ("char","char")
	< ("char","char")
	<= ("char","char")
	> ("char","char")
	>= ("char","char")
	date_bloom_ops	= (date,date)
	date_minmax_ops	= (date,date)
	< (date,date)
	<= (date,date)
	> (date,date)
	>= (date,date)
	date_minmax_multi_ops	= (date,date)
	< (date,date)
	<= (date,date)
	> (date,date)
	>= (date,date)
	float4_bloom_ops	= (float4,float4)
	float4_minmax_ops	= (float4,float4)
	< (float4,float4)
	> (float4,float4)
	<= (float4,float4)
	>= (float4,float4)
	float4_minmax_multi_ops	= (float4,float4)
	< (float4,float4)
	> (float4,float4)
	<= (float4,float4)
	>= (float4,float4)
	float8_bloom_ops	= (float8,float8)
	float8_minmax_ops	= (float8,float8)
	< (float8,float8)
	<= (float8,float8)
	> (float8,float8)
	>= (float8,float8)
	float8_minmax_multi_ops	= (float8,float8)
	< (float8,float8)
	<= (float8,float8)
	> (float8,float8)
	>= (float8,float8)
	inet_inclusion_ops	<< (inet,inet)
	<<= (inet,inet)
	>> (inet,inet)
	>>= (inet,inet)
	= (inet,inet)
	&& (inet,inet)
	inet_bloom_ops	= (inet,inet)
	inet_minmax_ops	= (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	inet_minmax_multi_ops	= (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	int2_bloom_ops	= (int2,int2)
	int2_minmax_ops	= (int2,int2)
	< (int2,int2)
	> (int2,int2)
	<= (int2,int2)
	>= (int2,int2)
	int2_minmax_multi_ops	= (int2,int2)
	< (int2,int2)
	> (int2,int2)
	<= (int2,int2)
	>= (int2,int2)
	int4_bloom_ops	= (int4,int4)
	int4_minmax_ops	= (int4,int4)
	< (int4,int4)
	> (int4,int4)
	<= (int4,int4)
	>= (int4,int4)
	int4_minmax_multi_ops	= (int4,int4)
	< (int4,int4)
	> (int4,int4)
	<= (int4,int4)
	>= (int4,int4)
	int8_bloom_ops	= (bigint,bigint)
	int8_minmax_ops	= (bigint,bigint)
	< (bigint,bigint)
	> (bigint,bigint)
	<= (bigint,bigint)
	>= (bigint,bigint)
	int8_minmax_multi_ops	= (bigint,bigint)
	< (bigint,bigint)
	> (bigint,bigint)
	<= (bigint,bigint)
	>= (bigint,bigint)
	interval_bloom_ops	= (interval,interval)
	interval_minmax_ops	= (interval,interval)
	< (interval,interval)
	<= (interval,interval)
	> (interval,interval)
	>= (interval,interval)
	interval_minmax_multi_ops	= (interval,interval)
	< (interval,interval)
	<= (interval,interval)
	> (interval,interval)
	>= (interval,interval)
	macaddr_bloom_ops	= (macaddr,macaddr)
	macaddr_minmax_ops	= (macaddr,macaddr)
	< (macaddr,macaddr)
	<= (macaddr,macaddr)
	> (macaddr,macaddr)
	>= (macaddr,macaddr)
	macaddr_minmax_multi_ops	= (macaddr,macaddr)
	< (macaddr,macaddr)
	<= (macaddr,macaddr)
	> (macaddr,macaddr)
	>= (macaddr,macaddr)
	macaddr8_bloom_ops	= (macaddr8,macaddr8)
	macaddr8_minmax_ops	= (macaddr8,macaddr8)
	< (macaddr8,macaddr8)
	<= (macaddr8,macaddr8)
	> (macaddr8,macaddr8)
	>= (macaddr8,macaddr8)
	macaddr8_minmax_multi_ops	= (macaddr8,macaddr8)
	< (macaddr8,macaddr8)
	<= (macaddr8,macaddr8)
	> (macaddr8,macaddr8)
	>= (macaddr8,macaddr8)
	name_bloom_ops	= (name,name)
	name_minmax_ops	= (name,name)
	< (name,name)
	<= (name,name)
	> (name,name)
	>= (name,name)
	numeric_bloom_ops	= (numeric,numeric)
	numeric_minmax_ops	= (numeric,numeric)
	< (numeric,numeric)
	<= (numeric,numeric)
	> (numeric,numeric)
	>= (numeric,numeric)
	numeric_minmax_multi_ops	= (numeric,numeric)
	< (numeric,numeric)
	<= (numeric,numeric)
	> (numeric,numeric)
	>= (numeric,numeric)
	oid_bloom_ops	= (oid,oid)
	oid_minmax_ops	= (oid,oid)
	< (oid,oid)
	> (oid,oid)
	<= (oid,oid)
	>= (oid,oid)
	oid_minmax_multi_ops	= (oid,oid)
	< (oid,oid)
	> (oid,oid)
	<= (oid,oid)
	>= (oid,oid)
	pg_lsn_bloom_ops	= (pg_lsn,pg_lsn)
	pg_lsn_minmax_ops	= (pg_lsn,pg_lsn)
	< (pg_lsn,pg_lsn)
	> (pg_lsn,pg_lsn)
	<= (pg_lsn,pg_lsn)
	>= (pg_lsn,pg_lsn)
	pg_lsn_minmax_multi_ops	= (pg_lsn,pg_lsn)
	< (pg_lsn,pg_lsn)
	> (pg_lsn,pg_lsn)
	<= (pg_lsn,pg_lsn)
	>= (pg_lsn,pg_lsn)
	range_inclusion_ops	= (anyrange,anyrange)
	< (anyrange,anyrange)
	<= (anyrange,anyrange)
	>= (anyrange,anyrange)
	> (anyrange,anyrange)
	&& (anyrange,anyrange)
	@> (anyrange,anyelement)
	@> (anyrange,anyrange)
	<@ (anyrange,anyrange)
	<< (anyrange,anyrange)
	>> (anyrange,anyrange)
	&< (anyrange,anyrange)
	&> (anyrange,anyrange)
	-|- (anyrange,anyrange)
	text_bloom_ops	= (text,text)
	text_minmax_ops	= (text,text)
	< (text,text)
	<= (text,text)
	> (text,text)
	>= (text,text)
	tid_bloom_ops	= (tid,tid)
	tid_minmax_ops	= (tid,tid)
	< (tid,tid)
	> (tid,tid)
	<= (tid,tid)
	>= (tid,tid)
	tid_minmax_multi_ops	= (tid,tid)
	< (tid,tid)
	> (tid,tid)
	<= (tid,tid)
	>= (tid,tid)
	timestamp_bloom_ops	= (timestamp,timestamp)
	timestamp_minmax_ops	= (timestamp,timestamp)
	< (timestamp,timestamp)
	<= (timestamp,timestamp)
	> (timestamp,timestamp)
	>= (timestamp,timestamp)
	timestamp_minmax_multi_ops	= (timestamp,timestamp)
	< (timestamp,timestamp)
	<= (timestamp,timestamp)
	> (timestamp,timestamp)
	>= (timestamp,timestamp)
	timestamptz_bloom_ops	= (timestamptz,timestamptz)
	timestamptz_minmax_ops	= (timestamptz,timestamptz)
	< (timestamptz,timestamptz)
	<= (timestamptz,timestamptz)
	> (timestamptz,timestamptz)
	>= (timestamptz,timestamptz)
	timestamptz_minmax_multi_ops	= (timestamptz,timestamptz)
	< (timestamptz,timestamptz)
	<= (timestamptz,timestamptz)
	> (timestamptz,timestamptz)
	>= (timestamptz,timestamptz)
	time_bloom_ops	= (time,time)
	time_minmax_ops	= (time,time)
	< (time,time)
	<= (time,time)
	> (time,time)
	>= (time,time)
	time_minmax_multi_ops	= (time,time)
	< (time,time)
	<= (time,time)
	> (time,time)
	>= (time,time)
	timetz_bloom_ops	= (timetz,timetz)
	timetz_minmax_ops	= (timetz,timetz)
	< (timetz,timetz)
	<= (timetz,timetz)
	> (timetz,timetz)
	>= (timetz,timetz)
	timetz_minmax_multi_ops	= (timetz,timetz)
	< (timetz,timetz)
	<= (timetz,timetz)
	> (timetz,timetz)
	>= (timetz,timetz)
	uuid_bloom_ops	= (uuid,uuid)
	uuid_minmax_ops	= (uuid,uuid)
	< (uuid,uuid)
	> (uuid,uuid)
	<= (uuid,uuid)
	>= (uuid,uuid)
	uuid_minmax_multi_ops	= (uuid,uuid)
	< (uuid,uuid)
	> (uuid,uuid)
	<= (uuid,uuid)
	>= (uuid,uuid)
	varbit_minmax_ops	= (varbit,varbit)
	< (varbit,varbit)
	> (varbit,varbit)
	<= (varbit,varbit)
	>= (varbit,varbit)

Operator Class Parameters

 Some of the built-in operator classes allow specifying parameters affecting
 behavior of the operator class. Each operator class has its own set of
 allowed parameters. Only the bloom and minmax-multi
 operator classes allow specifying parameters:

 bloom operator classes accept these parameters:

	n_distinct_per_range
	
 Defines the estimated number of distinct non-null values in the block
 range, used by BRIN bloom indexes for sizing of the
 Bloom filter. It behaves similarly to n_distinct option
 for ALTER TABLE(7). When set to a positive value,
 each block range is assumed to contain this number of distinct non-null
 values. When set to a negative value, which must be greater than or
 equal to -1, the number of distinct non-null values is assumed to grow linearly with
 the maximum possible number of tuples in the block range (about 290
 rows per block). The default value is -0.1, and
 the minimum number of distinct non-null values is 16.

	false_positive_rate
	
 Defines the desired false positive rate used by BRIN
 bloom indexes for sizing of the Bloom filter. The values must be
 between 0.0001 and 0.25. The default value is 0.01, which is 1% false
 positive rate.

 minmax-multi operator classes accept these parameters:

	values_per_range
	
 Defines the maximum number of values stored by BRIN
 minmax indexes to summarize a block range. Each value may represent
 either a point, or a boundary of an interval. Values must be between
 8 and 256, and the default value is 32.

Extensibility

 The BRIN interface has a high level of abstraction,
 requiring the access method implementer only to implement the semantics
 of the data type being accessed. The BRIN layer
 itself takes care of concurrency, logging and searching the index structure.

 All it takes to get a BRIN access method working is to
 implement a few user-defined methods, which define the behavior of
 summary values stored in the index and the way they interact with
 scan keys.
 In short, BRIN combines
 extensibility with generality, code reuse, and a clean interface.

 There are four methods that an operator class for BRIN
 must provide:

	BrinOpcInfo *opcInfo(Oid type_oid)
	
 Returns internal information about the indexed columns' summary data.
 The return value must point to a palloc'd BrinOpcInfo,
 which has this definition:

typedef struct BrinOpcInfo
{
 /* Number of columns stored in an index column of this opclass */
 uint16 oi_nstored;

 /* Opaque pointer for the opclass' private use */
 void *oi_opaque;

 /* Type cache entries of the stored columns */
 TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
} BrinOpcInfo;

 BrinOpcInfo.oi_opaque can be used by the
 operator class routines to pass information between support functions
 during an index scan.

	bool consistent(BrinDesc *bdesc, BrinValues *column,
 ScanKey *keys, int nkeys)
	
 Returns whether all the ScanKey entries are consistent with the given
 indexed values for a range.
 The attribute number to use is passed as part of the scan key.
 Multiple scan keys for the same attribute may be passed at once; the
 number of entries is determined by the nkeys parameter.

	bool consistent(BrinDesc *bdesc, BrinValues *column,
 ScanKey key)
	
 Returns whether the ScanKey is consistent with the given indexed
 values for a range.
 The attribute number to use is passed as part of the scan key.
 This is an older backward-compatible variant of the consistent function.

	bool addValue(BrinDesc *bdesc, BrinValues *column,
 Datum newval, bool isnull)
	
 Given an index tuple and an indexed value, modifies the indicated
 attribute of the tuple so that it additionally represents the new value.
 If any modification was done to the tuple, true is
 returned.

	bool unionTuples(BrinDesc *bdesc, BrinValues *a,
 BrinValues *b)
	
 Consolidates two index tuples. Given two index tuples, modifies the
 indicated attribute of the first of them so that it represents both tuples.
 The second tuple is not modified.

 An operator class for BRIN can optionally specify the
 following method:

	void options(local_relopts *relopts)
	
 Defines a set of user-visible parameters that control operator class
 behavior.

 The options function is passed a pointer to a
 local_relopts struct, which needs to be
 filled with a set of operator class specific options. The options
 can be accessed from other support functions using the
 PG_HAS_OPCLASS_OPTIONS() and
 PG_GET_OPCLASS_OPTIONS() macros.

 Since both key extraction of indexed values and representation of the
 key in BRIN are flexible, they may depend on
 user-specified parameters.

 The core distribution includes support for four types of operator classes:
 minmax, minmax-multi, inclusion and bloom. Operator class definitions
 using them are shipped for in-core data types as appropriate. Additional
 operator classes can be defined by the user for other data types using
 equivalent definitions, without having to write any source code;
 appropriate catalog entries being declared is enough. Note that
 assumptions about the semantics of operator strategies are embedded in the
 support functions' source code.

 Operator classes that implement completely different semantics are also
 possible, provided implementations of the four main support functions
 described above are written. Note that backwards compatibility across major
 releases is not guaranteed: for example, additional support functions might
 be required in later releases.

 To write an operator class for a data type that implements a totally
 ordered set, it is possible to use the minmax support functions
 alongside the corresponding operators, as shown in
 Table 71.2, “Function and Support Numbers for Minmax Operator Classes”.
 All operator class members (functions and operators) are mandatory.

Table 71.2. Function and Support Numbers for Minmax Operator Classes
	Operator class member	Object
	Support Function 1	internal function brin_minmax_opcinfo()
	Support Function 2	internal function brin_minmax_add_value()
	Support Function 3	internal function brin_minmax_consistent()
	Support Function 4	internal function brin_minmax_union()
	Operator Strategy 1	operator less-than
	Operator Strategy 2	operator less-than-or-equal-to
	Operator Strategy 3	operator equal-to
	Operator Strategy 4	operator greater-than-or-equal-to
	Operator Strategy 5	operator greater-than

 To write an operator class for a complex data type which has values
 included within another type, it's possible to use the inclusion support
 functions alongside the corresponding operators, as shown
 in Table 71.3, “Function and Support Numbers for Inclusion Operator Classes”. It requires
 only a single additional function, which can be written in any language.
 More functions can be defined for additional functionality. All operators
 are optional. Some operators require other operators, as shown as
 dependencies on the table.

Table 71.3. Function and Support Numbers for Inclusion Operator Classes
	Operator class member	Object	Dependency
	Support Function 1	internal function brin_inclusion_opcinfo()	
	Support Function 2	internal function brin_inclusion_add_value()	
	Support Function 3	internal function brin_inclusion_consistent()	
	Support Function 4	internal function brin_inclusion_union()	
	Support Function 11	function to merge two elements	
	Support Function 12	optional function to check whether two elements are mergeable	
	Support Function 13	optional function to check if an element is contained within another	
	Support Function 14	optional function to check whether an element is empty	
	Operator Strategy 1	operator left-of	Operator Strategy 4
	Operator Strategy 2	operator does-not-extend-to-the-right-of	Operator Strategy 5
	Operator Strategy 3	operator overlaps	
	Operator Strategy 4	operator does-not-extend-to-the-left-of	Operator Strategy 1
	Operator Strategy 5	operator right-of	Operator Strategy 2
	Operator Strategy 6, 18	operator same-as-or-equal-to	Operator Strategy 7
	Operator Strategy 7, 16, 24, 25	operator contains-or-equal-to	
	Operator Strategy 8, 26, 27	operator is-contained-by-or-equal-to	Operator Strategy 3
	Operator Strategy 9	operator does-not-extend-above	Operator Strategy 11
	Operator Strategy 10	operator is-below	Operator Strategy 12
	Operator Strategy 11	operator is-above	Operator Strategy 9
	Operator Strategy 12	operator does-not-extend-below	Operator Strategy 10
	Operator Strategy 20	operator less-than	Operator Strategy 5
	Operator Strategy 21	operator less-than-or-equal-to	Operator Strategy 5
	Operator Strategy 22	operator greater-than	Operator Strategy 1
	Operator Strategy 23	operator greater-than-or-equal-to	Operator Strategy 1

 Support function numbers 1 through 10 are reserved for the BRIN internal
 functions, so the SQL level functions start with number 11. Support
 function number 11 is the main function required to build the index.
 It should accept two arguments with the same data type as the operator class,
 and return the union of them. The inclusion operator class can store union
 values with different data types if it is defined with the
 STORAGE parameter. The return value of the union
 function should match the STORAGE data type.

 Support function numbers 12 and 14 are provided to support
 irregularities of built-in data types. Function number 12
 is used to support network addresses from different families which
 are not mergeable. Function number 14 is used to support
 empty ranges. Function number 13 is an optional but
 recommended one, which allows the new value to be checked before
 it is passed to the union function. As the BRIN framework can shortcut
 some operations when the union is not changed, using this
 function can improve index performance.

 To write an operator class for a data type that implements only an equality
 operator and supports hashing, it is possible to use the bloom support procedures
 alongside the corresponding operators, as shown in
 Table 71.4, “Procedure and Support Numbers for Bloom Operator Classes”.
 All operator class members (procedures and operators) are mandatory.

Table 71.4. Procedure and Support Numbers for Bloom Operator Classes
	Operator class member	Object
	Support Procedure 1	internal function brin_bloom_opcinfo()
	Support Procedure 2	internal function brin_bloom_add_value()
	Support Procedure 3	internal function brin_bloom_consistent()
	Support Procedure 4	internal function brin_bloom_union()
	Support Procedure 5	internal function brin_bloom_options()
	Support Procedure 11	function to compute hash of an element
	Operator Strategy 1	operator equal-to

 Support procedure numbers 1-10 are reserved for the BRIN internal
 functions, so the SQL level functions start with number 11. Support
 function number 11 is the main function required to build the index.
 It should accept one argument with the same data type as the operator class,
 and return a hash of the value.

 The minmax-multi operator class is also intended for data types implementing
 a totally ordered set, and may be seen as a simple extension of the minmax
 operator class. While minmax operator class summarizes values from each block
 range into a single contiguous interval, minmax-multi allows summarization
 into multiple smaller intervals to improve handling of outlier values.
 It is possible to use the minmax-multi support procedures alongside the
 corresponding operators, as shown in
 Table 71.5, “Procedure and Support Numbers for minmax-multi Operator Classes”.
 All operator class members (procedures and operators) are mandatory.

Table 71.5. Procedure and Support Numbers for minmax-multi Operator Classes
	Operator class member	Object
	Support Procedure 1	internal function brin_minmax_multi_opcinfo()
	Support Procedure 2	internal function brin_minmax_multi_add_value()
	Support Procedure 3	internal function brin_minmax_multi_consistent()
	Support Procedure 4	internal function brin_minmax_multi_union()
	Support Procedure 5	internal function brin_minmax_multi_options()
	Support Procedure 11	function to compute distance between two values (length of a range)
	Operator Strategy 1	operator less-than
	Operator Strategy 2	operator less-than-or-equal-to
	Operator Strategy 3	operator equal-to
	Operator Strategy 4	operator greater-than-or-equal-to
	Operator Strategy 5	operator greater-than

 Both minmax and inclusion operator classes support cross-data-type
 operators, though with these the dependencies become more complicated.
 The minmax operator class requires a full set of operators to be
 defined with both arguments having the same data type. It allows
 additional data types to be supported by defining extra sets
 of operators. Inclusion operator class operator strategies are dependent
 on another operator strategy as shown in
 Table 71.3, “Function and Support Numbers for Inclusion Operator Classes”, or the same
 operator strategy as themselves. They require the dependency
 operator to be defined with the STORAGE data type as the
 left-hand-side argument and the other supported data type to be the
 right-hand-side argument of the supported operator. See
 float4_minmax_ops as an example of minmax, and
 box_inclusion_ops as an example of inclusion.

Chapter 72. Hash Indexes

Overview

 PostgreSQL™
 includes an implementation of persistent on-disk hash indexes,
 which are fully crash recoverable. Any data type can be indexed by a
 hash index, including data types that do not have a well-defined linear
 ordering. Hash indexes store only the hash value of the data being
 indexed, thus there are no restrictions on the size of the data column
 being indexed.

 Hash indexes support only single-column indexes and do not allow
 uniqueness checking.

 Hash indexes support only the = operator,
 so WHERE clauses that specify range operations will not be able to take
 advantage of hash indexes.

 Each hash index tuple stores just the 4-byte hash value, not the actual
 column value. As a result, hash indexes may be much smaller than B-trees
 when indexing longer data items such as UUIDs, URLs, etc. The absence of
 the column value also makes all hash index scans lossy. Hash indexes may
 take part in bitmap index scans and backward scans.

 Hash indexes are best optimized for SELECT and UPDATE-heavy workloads
 that use equality scans on larger tables. In a B-tree index, searches must
 descend through the tree until the leaf page is found. In tables with
 millions of rows, this descent can increase access time to data. The
 equivalent of a leaf page in a hash index is referred to as a bucket page. In
 contrast, a hash index allows accessing the bucket pages directly,
 thereby potentially reducing index access time in larger tables. This
 reduction in "logical I/O" becomes even more pronounced on indexes/data
 larger than shared_buffers/RAM.

 Hash indexes have been designed to cope with uneven distributions of
 hash values. Direct access to the bucket pages works well if the hash
 values are evenly distributed. When inserts mean that the bucket page
 becomes full, additional overflow pages are chained to that specific
 bucket page, locally expanding the storage for index tuples that match
 that hash value. When scanning a hash bucket during queries, we need to
 scan through all of the overflow pages. Thus an unbalanced hash index
 might actually be worse than a B-tree in terms of number of block
 accesses required, for some data.

 As a result of the overflow cases, we can say that hash indexes are
 most suitable for unique, nearly unique data or data with a low number
 of rows per hash bucket.
 One possible way to avoid problems is to exclude highly non-unique
 values from the index using a partial index condition, but this may
 not be suitable in many cases.

 Like B-Trees, hash indexes perform simple index tuple deletion. This
 is a deferred maintenance operation that deletes index tuples that are
 known to be safe to delete (those whose item identifier's LP_DEAD bit
 is already set). If an insert finds no space is available on a page we
 try to avoid creating a new overflow page by attempting to remove dead
 index tuples. Removal cannot occur if the page is pinned at that time.
 Deletion of dead index pointers also occurs during VACUUM.

 If it can, VACUUM will also try to squeeze the index tuples onto as
 few overflow pages as possible, minimizing the overflow chain. If an
 overflow page becomes empty, overflow pages can be recycled for reuse
 in other buckets, though we never return them to the operating system.
 There is currently no provision to shrink a hash index, other than by
 rebuilding it with REINDEX.
 There is no provision for reducing the number of buckets, either.

 Hash indexes may expand the number of bucket pages as the number of
 rows indexed grows. The hash key-to-bucket-number mapping is chosen so that
 the index can be incrementally expanded. When a new bucket is to be added to
 the index, exactly one existing bucket will need to be "split", with some of
 its tuples being transferred to the new bucket according to the updated
 key-to-bucket-number mapping.

 The expansion occurs in the foreground, which could increase execution
 time for user inserts. Thus, hash indexes may not be suitable for tables
 with rapidly increasing number of rows.

Implementation

 There are four kinds of pages in a hash index: the meta page (page zero),
 which contains statically allocated control information; primary bucket
 pages; overflow pages; and bitmap pages, which keep track of overflow
 pages that have been freed and are available for re-use. For addressing
 purposes, bitmap pages are regarded as a subset of the overflow pages.

 Both scanning the index and inserting tuples require locating the bucket
 where a given tuple ought to be located. To do this, we need the bucket
 count, highmask, and lowmask from the metapage; however, it's undesirable
 for performance reasons to have to lock and pin the metapage for every such
 operation. Instead, we retain a cached copy of the metapage in each
 backend's relcache entry. This will produce the correct bucket mapping as
 long as the target bucket hasn't been split since the last cache refresh.

 Primary bucket pages and overflow pages are allocated independently since
 any given index might need more or fewer overflow pages relative to its
 number of buckets. The hash code uses an interesting set of addressing
 rules to support a variable number of overflow pages while not having to
 move primary bucket pages around after they are created.

 Each row in the table indexed is represented by a single index tuple in
 the hash index. Hash index tuples are stored in bucket pages, and if
 they exist, overflow pages. We speed up searches by keeping the index entries
 in any one index page sorted by hash code, thus allowing binary search to be
 used within an index page. Note however that there is *no* assumption about
 the relative ordering of hash codes across different index pages of a bucket.

 The bucket splitting algorithms to expand the hash index are too complex to
 be worthy of mention here, though are described in more detail in
 src/backend/access/hash/README.
 The split algorithm is crash safe and can be restarted if not completed
 successfully.

Chapter 73. Database Physical Storage

This chapter provides an overview of the physical storage format used by
PostgreSQL™ databases.

Database File Layout

This section describes the storage format at the level of files and
directories.

Traditionally, the configuration and data files used by a database
cluster are stored together within the cluster's data
directory, commonly referred to as PGDATA (after the name of the
environment variable that can be used to define it). A common location for
PGDATA is /var/lib/pgsql/data. Multiple clusters,
managed by different server instances, can exist on the same machine.

The PGDATA directory contains several subdirectories and control
files, as shown in Table 73.1, “Contents of PGDATA”. In addition to
these required items, the cluster configuration files
postgresql.conf, pg_hba.conf, and
pg_ident.conf are traditionally stored in
PGDATA, although it is possible to place them elsewhere.

Table 73.1. Contents of PGDATA
	
Item
	Description
	PG_VERSION	A file containing the major version number of PostgreSQL™
	base	Subdirectory containing per-database subdirectories
	current_logfiles	File recording the log file(s) currently written to by the logging
 collector
	global	Subdirectory containing cluster-wide tables, such as
 pg_database
	pg_commit_ts	Subdirectory containing transaction commit timestamp data
	pg_dynshmem	Subdirectory containing files used by the dynamic shared memory
 subsystem
	pg_logical	Subdirectory containing status data for logical decoding
	pg_multixact	Subdirectory containing multitransaction status data
 (used for shared row locks)
	pg_notify	Subdirectory containing LISTEN/NOTIFY status data
	pg_replslot	Subdirectory containing replication slot data
	pg_serial	Subdirectory containing information about committed serializable transactions
	pg_snapshots	Subdirectory containing exported snapshots
	pg_stat	Subdirectory containing permanent files for the statistics
 subsystem
	pg_stat_tmp	Subdirectory containing temporary files for the statistics
 subsystem
	pg_subtrans	Subdirectory containing subtransaction status data
	pg_tblspc	Subdirectory containing symbolic links to tablespaces
	pg_twophase	Subdirectory containing state files for prepared transactions
	pg_wal	Subdirectory containing WAL (Write Ahead Log) files
	pg_xact	Subdirectory containing transaction commit status data
	postgresql.auto.conf	A file used for storing configuration parameters that are set by
ALTER SYSTEM
	postmaster.opts	A file recording the command-line options the server was
last started with
	postmaster.pid	A lock file recording the current postmaster process ID (PID),
 cluster data directory path,
 postmaster start timestamp,
 port number,
 Unix-domain socket directory path (could be empty),
 first valid listen_address (IP address or *, or empty if
 not listening on TCP),
 and shared memory segment ID
 (this file is not present after server shutdown)

For each database in the cluster there is a subdirectory within
PGDATA/base, named after the database's OID in
pg_database. This subdirectory is the default location
for the database's files; in particular, its system catalogs are stored
there.

 Note that the following sections describe the behavior of the builtin
 heap table access method,
 and the builtin index access methods. Due
 to the extensible nature of PostgreSQL™, other
 access methods might work differently.

Each table and index is stored in a separate file. For ordinary relations,
these files are named after the table or index's filenode number,
which can be found in pg_class.relfilenode. But
for temporary relations, the file name is of the form
tBBB_FFF, where BBB
is the backend ID of the backend which created the file, and FFF
is the filenode number. In either case, in addition to the main file (a/k/a
main fork), each table and index has a free space map (see the section called “Free Space Map”), which stores information about free space available in
the relation. The free space map is stored in a file named with the filenode
number plus the suffix _fsm. Tables also have a
visibility map, stored in a fork with the suffix _vm,
to track which pages are known to have no dead tuples. The visibility map is
described further in the section called “Visibility Map”. Unlogged tables and indexes
have a third fork, known as the initialization fork, which is stored in a fork
with the suffix _init (see the section called “The Initialization Fork”).

Caution

Note that while a table's filenode often matches its OID, this is
not necessarily the case; some operations, like
TRUNCATE, REINDEX, CLUSTER and some forms
of ALTER TABLE, can change the filenode while preserving the OID.
Avoid assuming that filenode and table OID are the same.
Also, for certain system catalogs including pg_class itself,
pg_class.relfilenode contains zero. The
actual filenode number of these catalogs is stored in a lower-level data
structure, and can be obtained using the pg_relation_filenode()
function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized
segments. The first segment's file name is the same as the
filenode; subsequent segments are named filenode.1, filenode.2, etc.
This arrangement avoids problems on platforms that have file size limitations.
(Actually, 1 GB is just the default segment size. The segment size can be
adjusted using the configuration option --with-segsize
when building PostgreSQL™.)
In principle, free space map and visibility map forks could require multiple
segments as well, though this is unlikely to happen in practice.

A table that has columns with potentially large entries will have an
associated TOAST table, which is used for out-of-line storage of
field values that are too large to keep in the table rows proper.
pg_class.reltoastrelid links from a table to
its TOAST table, if any.
See the section called “TOAST” for more information.

The contents of tables and indexes are discussed further in
the section called “Database Page Layout”.

Tablespaces make the scenario more complicated. Each user-defined tablespace
has a symbolic link inside the PGDATA/pg_tblspc
directory, which points to the physical tablespace directory (i.e., the
location specified in the tablespace's CREATE TABLESPACE command).
This symbolic link is named after
the tablespace's OID. Inside the physical tablespace directory there is
a subdirectory with a name that depends on the PostgreSQL™
server version, such as PG_9.0_201008051. (The reason for using
this subdirectory is so that successive versions of the database can use
the same CREATE TABLESPACE location value without conflicts.)
Within the version-specific subdirectory, there is
a subdirectory for each database that has elements in the tablespace, named
after the database's OID. Tables and indexes are stored within that
directory, using the filenode naming scheme.
The pg_default tablespace is not accessed through
pg_tblspc, but corresponds to
PGDATA/base. Similarly, the pg_global
tablespace is not accessed through pg_tblspc, but corresponds to
PGDATA/global.

The pg_relation_filepath() function shows the entire path
(relative to PGDATA) of any relation. It is often useful
as a substitute for remembering many of the above rules. But keep in
mind that this function just gives the name of the first segment of the
main fork of the relation — you may need to append a segment number
and/or _fsm, _vm, or _init to find all
the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in
memory) are created within PGDATA/base/pgsql_tmp,
or within a pgsql_tmp subdirectory of a tablespace directory
if a tablespace other than pg_default is specified for them.
The name of a temporary file has the form
pgsql_tmpPPP.NNN,
where PPP is the PID of the owning backend and
NNN distinguishes different temporary files of that backend.

TOAST

This section provides an overview of TOAST (The
Oversized-Attribute Storage Technique).

PostgreSQL™ uses a fixed page size (commonly
8 kB), and does not allow tuples to span multiple pages. Therefore, it is
not possible to store very large field values directly. To overcome
this limitation, large field values are compressed and/or broken up into
multiple physical rows. This happens transparently to the user, with only
small impact on most of the backend code. The technique is affectionately
known as TOAST (or “the best thing since sliced bread”).
The TOAST infrastructure is also used to improve handling of
large data values in-memory.

Only certain data types support TOAST — there is no need to
impose the overhead on data types that cannot produce large field values.
To support TOAST, a data type must have a variable-length
(varlena) representation, in which, ordinarily, the first
four-byte word of any stored value contains the total length of the value in
bytes (including itself). TOAST does not constrain the rest
of the data type's representation. The special representations collectively
called TOASTed values work by modifying or
reinterpreting this initial length word. Therefore, the C-level functions
supporting a TOAST-able data type must be careful about how they
handle potentially TOASTed input values: an input might not
actually consist of a four-byte length word and contents until after it's
been detoasted. (This is normally done by invoking
PG_DETOAST_DATUM before doing anything with an input value,
but in some cases more efficient approaches are possible.
See the section called “TOAST Considerations” for more detail.)

TOAST usurps two bits of the varlena length word (the high-order
bits on big-endian machines, the low-order bits on little-endian machines),
thereby limiting the logical size of any value of a TOAST-able
data type to 1 GB (230 - 1 bytes). When both bits are zero,
the value is an ordinary un-TOASTed value of the data type, and
the remaining bits of the length word give the total datum size (including
length word) in bytes. When the highest-order or lowest-order bit is set,
the value has only a single-byte header instead of the normal four-byte
header, and the remaining bits of that byte give the total datum size
(including length byte) in bytes. This alternative supports space-efficient
storage of values shorter than 127 bytes, while still allowing the data type
to grow to 1 GB at need. Values with single-byte headers aren't aligned on
any particular boundary, whereas values with four-byte headers are aligned on
at least a four-byte boundary; this omission of alignment padding provides
additional space savings that is significant compared to short values.
As a special case, if the remaining bits of a single-byte header are all
zero (which would be impossible for a self-inclusive length), the value is
a pointer to out-of-line data, with several possible alternatives as
described below. The type and size of such a TOAST pointer
are determined by a code stored in the second byte of the datum.
Lastly, when the highest-order or lowest-order bit is clear but the adjacent
bit is set, the content of the datum has been compressed and must be
decompressed before use. In this case the remaining bits of the four-byte
length word give the total size of the compressed datum, not the
original data. Note that compression is also possible for out-of-line data
but the varlena header does not tell whether it has occurred —
the content of the TOAST pointer tells that, instead.

The compression technique used for either in-line or out-of-line compressed
data can be selected for each column by setting
the COMPRESSION column option in CREATE
TABLE or ALTER TABLE. The default for columns
with no explicit setting is to consult the
default_toast_compression parameter at the time data is
inserted.

As mentioned, there are multiple types of TOAST pointer datums.
The oldest and most common type is a pointer to out-of-line data stored in
a TOAST table that is separate from, but
associated with, the table containing the TOAST pointer datum
itself. These on-disk pointer datums are created by the
TOAST management code (in access/common/toast_internals.c)
when a tuple to be stored on disk is too large to be stored as-is.
Further details appear in the section called “Out-of-Line, On-Disk TOAST Storage”.
Alternatively, a TOAST pointer datum can contain a pointer to
out-of-line data that appears elsewhere in memory. Such datums are
necessarily short-lived, and will never appear on-disk, but they are very
useful for avoiding copying and redundant processing of large data values.
Further details appear in the section called “Out-of-Line, In-Memory TOAST Storage”.

Out-of-Line, On-Disk TOAST Storage

If any of the columns of a table are TOAST-able, the table will
have an associated TOAST table, whose OID is stored in the table's
pg_class.reltoastrelid entry. On-disk
TOASTed values are kept in the TOAST table, as
described in more detail below.

Out-of-line values are divided (after compression if used) into chunks of at
most TOAST_MAX_CHUNK_SIZE bytes (by default this value is chosen
so that four chunk rows will fit on a page, making it about 2000 bytes).
Each chunk is stored as a separate row in the TOAST table
belonging to the owning table. Every
TOAST table has the columns chunk_id (an OID
identifying the particular TOASTed value),
chunk_seq (a sequence number for the chunk within its value),
and chunk_data (the actual data of the chunk). A unique index
on chunk_id and chunk_seq provides fast
retrieval of the values. A pointer datum representing an out-of-line on-disk
TOASTed value therefore needs to store the OID of the
TOAST table in which to look and the OID of the specific value
(its chunk_id). For convenience, pointer datums also store the
logical datum size (original uncompressed data length), physical stored size
(different if compression was applied), and the compression method used, if
any. Allowing for the varlena header bytes,
the total size of an on-disk TOAST pointer datum is therefore 18
bytes regardless of the actual size of the represented value.

The TOAST management code is triggered only
when a row value to be stored in a table is wider than
TOAST_TUPLE_THRESHOLD bytes (normally 2 kB).
The TOAST code will compress and/or move
field values out-of-line until the row value is shorter than
TOAST_TUPLE_TARGET bytes (also normally 2 kB, adjustable)
or no more gains can be had. During an UPDATE
operation, values of unchanged fields are normally preserved as-is; so an
UPDATE of a row with out-of-line values incurs no TOAST costs if
none of the out-of-line values change.

The TOAST management code recognizes four different strategies
for storing TOAST-able columns on disk:

	
 PLAIN prevents either compression or
 out-of-line storage. This is the only possible strategy for
 columns of non-TOAST-able data types.

	
 EXTENDED allows both compression and out-of-line
 storage. This is the default for most TOAST-able data types.
 Compression will be attempted first, then out-of-line storage if
 the row is still too big.

	
 EXTERNAL allows out-of-line storage but not
 compression. Use of EXTERNAL will
 make substring operations on wide text and
 bytea columns faster (at the penalty of increased storage
 space) because these operations are optimized to fetch only the
 required parts of the out-of-line value when it is not compressed.

	
 MAIN allows compression but not out-of-line
 storage. (Actually, out-of-line storage will still be performed
 for such columns, but only as a last resort when there is no other
 way to make the row small enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns
of that data type, but the strategy for a given table column can be altered
with ALTER TABLE ... SET STORAGE.

TOAST_TUPLE_TARGET can be adjusted for each table using
ALTER TABLE ... SET (toast_tuple_target = N)

This scheme has a number of advantages compared to a more straightforward
approach such as allowing row values to span pages. Assuming that queries are
usually qualified by comparisons against relatively small key values, most of
the work of the executor will be done using the main row entry. The big values
of TOASTed attributes will only be pulled out (if selected at all)
at the time the result set is sent to the client. Thus, the main table is much
smaller and more of its rows fit in the shared buffer cache than would be the
case without any out-of-line storage. Sort sets shrink also, and sorts will
more often be done entirely in memory. A little test showed that a table
containing typical HTML pages and their URLs was stored in about half of the
raw data size including the TOAST table, and that the main table
contained only about 10% of the entire data (the URLs and some small HTML
pages). There was no run time difference compared to an un-TOASTed
comparison table, in which all the HTML pages were cut down to 7 kB to fit.

Out-of-Line, In-Memory TOAST Storage

TOAST pointers can point to data that is not on disk, but is
elsewhere in the memory of the current server process. Such pointers
obviously cannot be long-lived, but they are nonetheless useful. There
are currently two sub-cases:
pointers to indirect data and
pointers to expanded data.

Indirect TOAST pointers simply point at a non-indirect varlena
value stored somewhere in memory. This case was originally created merely
as a proof of concept, but it is currently used during logical decoding to
avoid possibly having to create physical tuples exceeding 1 GB (as pulling
all out-of-line field values into the tuple might do). The case is of
limited use since the creator of the pointer datum is entirely responsible
that the referenced data survives for as long as the pointer could exist,
and there is no infrastructure to help with this.

Expanded TOAST pointers are useful for complex data types
whose on-disk representation is not especially suited for computational
purposes. As an example, the standard varlena representation of a
PostgreSQL™ array includes dimensionality information, a
nulls bitmap if there are any null elements, then the values of all the
elements in order. When the element type itself is variable-length, the
only way to find the N'th element is to scan through all the
preceding elements. This representation is appropriate for on-disk storage
because of its compactness, but for computations with the array it's much
nicer to have an “expanded” or “deconstructed”
representation in which all the element starting locations have been
identified. The TOAST pointer mechanism supports this need by
allowing a pass-by-reference Datum to point to either a standard varlena
value (the on-disk representation) or a TOAST pointer that
points to an expanded representation somewhere in memory. The details of
this expanded representation are up to the data type, though it must have
a standard header and meet the other API requirements given
in src/include/utils/expandeddatum.h. C-level functions
working with the data type can choose to handle either representation.
Functions that do not know about the expanded representation, but simply
apply PG_DETOAST_DATUM to their inputs, will automatically
receive the traditional varlena representation; so support for an expanded
representation can be introduced incrementally, one function at a time.

TOAST pointers to expanded values are further broken down
into read-write and read-only pointers.
The pointed-to representation is the same either way, but a function that
receives a read-write pointer is allowed to modify the referenced value
in-place, whereas one that receives a read-only pointer must not; it must
first create a copy if it wants to make a modified version of the value.
This distinction and some associated conventions make it possible to avoid
unnecessary copying of expanded values during query execution.

For all types of in-memory TOAST pointer, the TOAST
management code ensures that no such pointer datum can accidentally get
stored on disk. In-memory TOAST pointers are automatically
expanded to normal in-line varlena values before storage — and then
possibly converted to on-disk TOAST pointers, if the containing
tuple would otherwise be too big.

Free Space Map

Each heap and index relation, except for hash indexes, has a Free Space Map
(FSM) to keep track of available space in the relation.
It's stored alongside the main relation data in a separate relation fork,
named after the filenode number of the relation, plus a _fsm
suffix. For example, if the filenode of a relation is 12345, the
FSM is stored in a file called
12345_fsm, in the same directory as the main relation file.

The Free Space Map is organized as a tree of FSM pages. The
bottom level FSM pages store the free space available on each
heap (or index) page, using one byte to represent each such page. The upper
levels aggregate information from the lower levels.

Within each FSM page is a binary tree, stored in an array with
one byte per node. Each leaf node represents a heap page, or a lower level
FSM page. In each non-leaf node, the higher of its children's
values is stored. The maximum value in the leaf nodes is therefore stored
at the root.

See src/backend/storage/freespace/README for more details on
how the FSM is structured, and how it's updated and searched.
The pg_freespacemap module
can be used to examine the information stored in free space maps.

Visibility Map

Each heap relation has a Visibility Map
(VM) to keep track of which pages contain only tuples that are known to be
visible to all active transactions; it also keeps track of which pages contain
only frozen tuples. It's stored
alongside the main relation data in a separate relation fork, named after the
filenode number of the relation, plus a _vm suffix. For example,
if the filenode of a relation is 12345, the VM is stored in a file called
12345_vm, in the same directory as the main relation file.
Note that indexes do not have VMs.

The visibility map stores two bits per heap page. The first bit, if set,
indicates that the page is all-visible, or in other words that the page does
not contain any tuples that need to be vacuumed.
This information can also be used
by index-only
scans to answer queries using only the index tuple.
The second bit, if set, means that all tuples on the page have been frozen.
That means that even an anti-wraparound vacuum need not revisit the page.

The map is conservative in the sense that we make sure that whenever a bit is
set, we know the condition is true, but if a bit is not set, it might or
might not be true. Visibility map bits are only set by vacuum, but are
cleared by any data-modifying operations on a page.

The pg_visibility module can be used to examine the
information stored in the visibility map.

The Initialization Fork

Each unlogged table, and each index on an unlogged table, has an initialization
fork. The initialization fork is an empty table or index of the appropriate
type. When an unlogged table must be reset to empty due to a crash, the
initialization fork is copied over the main fork, and any other forks are
erased (they will be recreated automatically as needed).

Database Page Layout

This section provides an overview of the page format used within
PostgreSQL™ tables and indexes.[17]
Sequences and TOAST tables are formatted just like a regular table.

In the following explanation, a
byte
is assumed to contain 8 bits. In addition, the term
item
refers to an individual data value that is stored on a page. In a table,
an item is a row; in an index, an item is an index entry.

Every table and index is stored as an array of pages of a
fixed size (usually 8 kB, although a different page size can be selected
when compiling the server). In a table, all the pages are logically
equivalent, so a particular item (row) can be stored in any page. In
indexes, the first page is generally reserved as a metapage
holding control information, and there can be different types of pages
within the index, depending on the index access method.

Table 73.2, “Page Layout” shows the overall layout of a page.
There are five parts to each page.

Table 73.2. Overall Page Layout
	
Item
	Description
	PageHeaderData	24 bytes long. Contains general information about the page, including
free space pointers.
	ItemIdData	Array of item identifiers pointing to the actual items. Each
entry is an (offset,length) pair. 4 bytes per item.
	Free space	The unallocated space. New item identifiers are allocated from
the start of this area, new items from the end.
	Items	The actual items themselves.
	Special space	Index access method specific data. Different methods store different
data. Empty in ordinary tables.

 The first 24 bytes of each page consists of a page header
 (PageHeaderData). Its format is detailed in Table 73.3, “PageHeaderData Layout”. The first field tracks the most
 recent WAL entry related to this page. The second field contains
 the page checksum if data checksums are
 enabled. Next is a 2-byte field containing flag bits. This is followed
 by three 2-byte integer fields (pd_lower,
 pd_upper, and
 pd_special). These contain byte offsets
 from the page start to the start of unallocated space, to the end of
 unallocated space, and to the start of the special space. The next 2
 bytes of the page header, pd_pagesize_version,
 store both the page size and a version indicator. Beginning with
 PostgreSQL™ 8.3 the version number is 4;
 PostgreSQL™ 8.1 and 8.2 used version number 3;
 PostgreSQL™ 8.0 used version number 2;
 PostgreSQL™ 7.3 and 7.4 used version number 1;
 prior releases used version number 0.
 (The basic page layout and header format has not changed in most of these
 versions, but the layout of heap row headers has.) The page size
 is basically only present as a cross-check; there is no support for having
 more than one page size in an installation.
 The last field is a hint that shows whether pruning the page is likely
 to be profitable: it tracks the oldest un-pruned XMAX on the page.

Table 73.3. PageHeaderData Layout
	Field	Type	Length	Description
	pd_lsn	PageXLogRecPtr	8 bytes	LSN: next byte after last byte of WAL record for last change
 to this page
	pd_checksum	uint16	2 bytes	Page checksum
	pd_flags	uint16	2 bytes	Flag bits
	pd_lower	LocationIndex	2 bytes	Offset to start of free space
	pd_upper	LocationIndex	2 bytes	Offset to end of free space
	pd_special	LocationIndex	2 bytes	Offset to start of special space
	pd_pagesize_version	uint16	2 bytes	Page size and layout version number information
	pd_prune_xid	TransactionId	4 bytes	Oldest unpruned XMAX on page, or zero if none

 All the details can be found in
 src/include/storage/bufpage.h.

 Following the page header are item identifiers
 (ItemIdData), each requiring four bytes.
 An item identifier contains a byte-offset to
 the start of an item, its length in bytes, and a few attribute bits
 which affect its interpretation.
 New item identifiers are allocated
 as needed from the beginning of the unallocated space.
 The number of item identifiers present can be determined by looking at
 pd_lower, which is increased to allocate a new identifier.
 Because an item
 identifier is never moved until it is freed, its index can be used on a
 long-term basis to reference an item, even when the item itself is moved
 around on the page to compact free space. In fact, every pointer to an
 item (ItemPointer, also known as
 CTID) created by
 PostgreSQL™ consists of a page number and the
 index of an item identifier.

 The items themselves are stored in space allocated backwards from the end
 of unallocated space. The exact structure varies depending on what the
 table is to contain. Tables and sequences both use a structure named
 HeapTupleHeaderData, described below.

 The final section is the “special section” which can
 contain anything the access method wishes to store. For example,
 b-tree indexes store links to the page's left and right siblings,
 as well as some other data relevant to the index structure.
 Ordinary tables do not use a special section at all (indicated by setting
 pd_special to equal the page size).

 Figure 73.1, “Page Layout” illustrates how these parts are
 laid out in a page.

Figure 73.1. Page Layout

Table Row Layout

 All table rows are structured in the same way. There is a fixed-size
 header (occupying 23 bytes on most machines), followed by an optional null
 bitmap, an optional object ID field, and the user data. The header is
 detailed
 in Table 73.4, “HeapTupleHeaderData Layout”. The actual user data
 (columns of the row) begins at the offset indicated by
 t_hoff, which must always be a multiple of the MAXALIGN
 distance for the platform.
 The null bitmap is
 only present if the HEAP_HASNULL bit is set in
 t_infomask. If it is present it begins just after
 the fixed header and occupies enough bytes to have one bit per data column
 (that is, the number of bits that equals the attribute count in
 t_infomask2). In this list of bits, a
 1 bit indicates not-null, a 0 bit is a null. When the bitmap is not
 present, all columns are assumed not-null.
 The object ID is only present if the HEAP_HASOID_OLD bit
 is set in t_infomask. If present, it appears just
 before the t_hoff boundary. Any padding needed to make
 t_hoff a MAXALIGN multiple will appear between the null
 bitmap and the object ID. (This in turn ensures that the object ID is
 suitably aligned.)

Table 73.4. HeapTupleHeaderData Layout
	Field	Type	Length	Description
	t_xmin	TransactionId	4 bytes	insert XID stamp
	t_xmax	TransactionId	4 bytes	delete XID stamp
	t_cid	CommandId	4 bytes	insert and/or delete CID stamp (overlays with t_xvac)
	t_xvac	TransactionId	4 bytes	XID for VACUUM operation moving a row version
	t_ctid	ItemPointerData	6 bytes	current TID of this or newer row version
	t_infomask2	uint16	2 bytes	number of attributes, plus various flag bits
	t_infomask	uint16	2 bytes	various flag bits
	t_hoff	uint8	1 byte	offset to user data

 All the details can be found in
 src/include/access/htup_details.h.

 Interpreting the actual data can only be done with information obtained
 from other tables, mostly pg_attribute. The
 key values needed to identify field locations are
 attlen and attalign.
 There is no way to directly get a
 particular attribute, except when there are only fixed width fields and no
 null values. All this trickery is wrapped up in the functions
 heap_getattr, fastgetattr
 and heap_getsysattr.

 To read the data you need to examine each attribute in turn. First check
 whether the field is NULL according to the null bitmap. If it is, go to
 the next. Then make sure you have the right alignment. If the field is a
 fixed width field, then all the bytes are simply placed. If it's a
 variable length field (attlen = -1) then it's a bit more complicated.
 All variable-length data types share the common header structure
 struct varlena, which includes the total length of the stored
 value and some flag bits. Depending on the flags, the data can be either
 inline or in a TOAST table;
 it might be compressed, too (see the section called “TOAST”).

[17]
 Actually, use of this page format is not required for either table or
 index access methods. The heap table access method
 always uses this format. All the existing index methods also use the
 basic format, but the data kept on index metapages usually doesn't follow
 the item layout rules.

Heap-Only Tuples (HOT)

 To allow for high concurrency, PostgreSQL™
 uses multiversion concurrency
 control (MVCC) to store rows. However,
 MVCC has some downsides for update queries.
 Specifically, updates require new versions of rows to be added to
 tables. This can also require new index entries for each updated row,
 and removal of old versions of rows and their index entries can be
 expensive.

 To help reduce the overhead of updates,
 PostgreSQL™ has an optimization called
 heap-only tuples (HOT). This optimization is
 possible when:

	
 The update does not modify any columns referenced by the table's indexes,
 not including summarizing indexes. The only summarizing index method in
 the core PostgreSQL™ distribution is BRIN.

	
 There is sufficient free space on the page containing the old row
 for the updated row.

 In such cases, heap-only tuples provide two optimizations:

	
 New index entries are not needed to represent updated rows, however,
 summary indexes may still need to be updated.

	
 Old versions of updated rows can be completely removed during normal
 operation, including SELECTs, instead of requiring
 periodic vacuum operations. (This is possible because indexes
 do not reference their page
 item identifiers.)

 You can increase the likelihood of sufficient page space for
 HOT updates by decreasing a table's fillfactor. If you
 don't, HOT updates will still happen because new rows
 will naturally migrate to new pages and existing pages with sufficient free
 space for new row versions. The system view pg_stat_all_tables
 allows monitoring of the occurrence of HOT and non-HOT updates.

Chapter 74. Transaction Processing

 This chapter provides an overview of the internals of
 PostgreSQL™'s transaction management system.
 The word transaction is often abbreviated as xact.

Transactions and Identifiers

 Transactions can be created explicitly using BEGIN
 or START TRANSACTION and ended using
 COMMIT or ROLLBACK. SQL
 statements outside of explicit transactions automatically use
 single-statement transactions.

 Every transaction is identified by a unique
 VirtualTransactionId (also called
 virtualXID or vxid), which
 is comprised of a backend ID (or backendID)
 and a sequentially-assigned number local to each backend, known as
 localXID. For example, the virtual transaction
 ID 4/12532 has a backendID
 of 4 and a localXID of
 12532.

 Non-virtual TransactionIds (or xid),
 e.g., 278394, are assigned sequentially to
 transactions from a global counter used by all databases within
 the PostgreSQL™ cluster. This assignment
 happens when a transaction first writes to the database. This means
 lower-numbered xids started writing before higher-numbered xids.
 Note that the order in which transactions perform their first database
 write might be different from the order in which the transactions
 started, particularly if the transaction started with statements that
 only performed database reads.

 The internal transaction ID type xid is 32 bits wide
 and wraps around every
 4 billion transactions. A 32-bit epoch is incremented during each
 wraparound. There is also a 64-bit type xid8 which
 includes this epoch and therefore does not wrap around during the
 life of an installation; it can be converted to xid by casting.
 The functions in Table 9.80, “Transaction ID and Snapshot Information Functions”
 return xid8 values. Xids are used as the
 basis for PostgreSQL™'s MVCC concurrency mechanism and streaming
 replication.

 When a top-level transaction with a (non-virtual) xid commits,
 it is marked as committed in the pg_xact
 directory. Additional information is recorded in the
 pg_commit_ts directory if track_commit_timestamp is enabled.

 In addition to vxid and xid,
 prepared transactions are also assigned Global Transaction
 Identifiers (GID). GIDs are string literals up
 to 200 bytes long, which must be unique amongst other currently
 prepared transactions. The mapping of GID to xid is shown in pg_prepared_xacts.

Transactions and Locking

 The transaction IDs of currently executing transactions are shown in
 pg_locks
 in columns virtualxid and
 transactionid. Read-only transactions
 will have virtualxids but NULL
 transactionids, while both columns will be
 set in read-write transactions.

 Some lock types wait on virtualxid,
 while other types wait on transactionid.
 Row-level read and write locks are recorded directly in the locked
 rows and can be inspected using the pgrowlocks
 extension. Row-level read locks might also require the assignment
 of multixact IDs (mxid; see the section called “Multixacts and Wraparound”).

Subtransactions

 Subtransactions are started inside transactions, allowing large
 transactions to be broken into smaller units. Subtransactions can
 commit or abort without affecting their parent transactions, allowing
 parent transactions to continue. This allows errors to be handled
 more easily, which is a common application development pattern.
 The word subtransaction is often abbreviated as
 subxact.

 Subtransactions can be started explicitly using the
 SAVEPOINT command, but can also be started in
 other ways, such as PL/pgSQL's EXCEPTION clause.
 PL/Python and PL/Tcl also support explicit subtransactions.
 Subtransactions can also be started from other subtransactions.
 The top-level transaction and its child subtransactions form a
 hierarchy or tree, which is why we refer to the main transaction as
 the top-level transaction.

 If a subtransaction is assigned a non-virtual transaction ID,
 its transaction ID is referred to as a “subxid”.
 Read-only subtransactions are not assigned subxids, but once they
 attempt to write, they will be assigned one. This also causes all of
 a subxid's parents, up to and including the top-level transaction,
 to be assigned non-virtual transaction ids. We ensure that a parent
 xid is always lower than any of its child subxids.

 The immediate parent xid of each subxid is recorded in the
 pg_subtrans directory. No entry is made for
 top-level xids since they do not have a parent, nor is an entry made
 for read-only subtransactions.

 When a subtransaction commits, all of its committed child
 subtransactions with subxids will also be considered subcommitted
 in that transaction. When a subtransaction aborts, all of its child
 subtransactions will also be considered aborted.

 When a top-level transaction with an xid commits, all of its
 subcommitted child subtransactions are also persistently recorded
 as committed in the pg_xact subdirectory. If the
 top-level transaction aborts, all its subtransactions are also aborted,
 even if they were subcommitted.

 The more subtransactions each transaction keeps open (not
 rolled back or released), the greater the transaction management
 overhead. Up to 64 open subxids are cached in shared memory for
 each backend; after that point, the storage I/O overhead increases
 significantly due to additional lookups of subxid entries in
 pg_subtrans.

Two-Phase Transactions

 PostgreSQL™ supports a two-phase commit (2PC)
 protocol that allows multiple distributed systems to work together
 in a transactional manner. The commands are PREPARE
 TRANSACTION, COMMIT PREPARED and
 ROLLBACK PREPARED. Two-phase transactions
 are intended for use by external transaction management systems.
 PostgreSQL™ follows the features and model
 proposed by the X/Open XA standard, but does not implement some less
 often used aspects.

 When the user executes PREPARE TRANSACTION, the
 only possible next commands are COMMIT PREPARED
 or ROLLBACK PREPARED. In general, this prepared
 state is intended to be of very short duration, but external
 availability issues might mean transactions stay in this state
 for an extended interval. Short-lived prepared
 transactions are stored only in shared memory and WAL.
 Transactions that span checkpoints are recorded in the
 pg_twophase directory. Transactions
 that are currently prepared can be inspected using pg_prepared_xacts.

Chapter 75. System Catalog Declarations and Initial Contents

 PostgreSQL™ uses many different system catalogs
 to keep track of the existence and properties of database objects, such as
 tables and functions. Physically there is no difference between a system
 catalog and a plain user table, but the backend C code knows the structure
 and properties of each catalog, and can manipulate it directly at a low
 level. Thus, for example, it is inadvisable to attempt to alter the
 structure of a catalog on-the-fly; that would break assumptions built into
 the C code about how rows of the catalog are laid out. But the structure
 of the catalogs can change between major versions.

 The structures of the catalogs are declared in specially formatted C
 header files in the src/include/catalog/ directory of
 the source tree. For each catalog there is a header file
 named after the catalog (e.g., pg_class.h
 for pg_class), which defines the set of columns
 the catalog has, as well as some other basic properties such as its OID.

 Many of the catalogs have initial data that must be loaded into them
 during the “bootstrap” phase
 of initdb, to bring the system up to a point
 where it is capable of executing SQL commands. (For
 example, pg_class.h must contain an entry for itself,
 as well as one for each other system catalog and index.) This
 initial data is kept in editable form in data files that are also stored
 in the src/include/catalog/ directory. For example,
 pg_proc.dat describes all the initial rows that must
 be inserted into the pg_proc catalog.

 To create the catalog files and load this initial data into them, a
 backend running in bootstrap mode reads a BKI
 (Backend Interface) file containing commands and initial data.
 The postgres.bki file used in this mode is prepared
 from the aforementioned header and data files, while building
 a PostgreSQL™ distribution, by a Perl script
 named genbki.pl.
 Although it's specific to a particular PostgreSQL™
 release, postgres.bki is platform-independent and is
 installed in the share subdirectory of the
 installation tree.

 genbki.pl also produces a derived header file for
 each catalog, for example pg_class_d.h for
 the pg_class catalog. This file contains
 automatically-generated macro definitions, and may contain other macros,
 enum declarations, and so on that can be useful for client C code that
 reads a particular catalog.

 Most PostgreSQL developers don't need to be directly concerned with
 the BKI file, but almost any nontrivial feature
 addition in the backend will require modifying the catalog header files
 and/or initial data files. The rest of this chapter gives some
 information about that, and for completeness describes
 the BKI file format.

System Catalog Declaration Rules

 The key part of a catalog header file is a C structure definition
 describing the layout of each row of the catalog. This begins with
 a CATALOG macro, which so far as the C compiler is
 concerned is just shorthand for typedef struct
 FormData_catalogname.
 Each field in the struct gives rise to a catalog column.
 Fields can be annotated using the BKI property macros described
 in genbki.h, for example to define a default value
 for a field or mark it as nullable or not nullable.
 The CATALOG line can also be annotated, with some
 other BKI property macros described in genbki.h, to
 define other properties of the catalog as a whole, such as whether
 it is a shared relation.

 The system catalog cache code (and most catalog-munging code in general)
 assumes that the fixed-length portions of all system catalog tuples are
 in fact present, because it maps this C struct declaration onto them.
 Thus, all variable-length fields and nullable fields must be placed at
 the end, and they cannot be accessed as struct fields.
 For example, if you tried to
 set pg_type.typrelid
 to be NULL, it would fail when some piece of code tried to reference
 typetup->typrelid (or worse,
 typetup->typelem, because that follows
 typrelid). This would result in
 random errors or even segmentation violations.

 As a partial guard against this type of error, variable-length or
 nullable fields should not be made directly visible to the C compiler.
 This is accomplished by wrapping them in #ifdef
 CATALOG_VARLEN ... #endif (where
 CATALOG_VARLEN is a symbol that is never defined).
 This prevents C code from carelessly trying to access fields that might
 not be there or might be at some other offset.
 As an independent guard against creating incorrect rows, we
 require all columns that should be non-nullable to be marked so
 in pg_attribute. The bootstrap code will
 automatically mark catalog columns as NOT NULL
 if they are fixed-width and are not preceded by any nullable or
 variable-width column.
 Where this rule is inadequate, you can force correct marking by using
 BKI_FORCE_NOT_NULL
 and BKI_FORCE_NULL annotations as needed.

 Frontend code should not include any pg_xxx.h
 catalog header file, as these files may contain C code that won't compile
 outside the backend. (Typically, that happens because these files also
 contain declarations for functions
 in src/backend/catalog/ files.)
 Instead, frontend code may include the corresponding
 generated pg_xxx_d.h header, which will contain
 OID #defines and any other data that might be of use
 on the client side. If you want macros or other code in a catalog header
 to be visible to frontend code, write #ifdef
 EXPOSE_TO_CLIENT_CODE ... #endif around that
 section to instruct genbki.pl to copy that section
 to the pg_xxx_d.h header.

 A few of the catalogs are so fundamental that they can't even be created
 by the BKI create command that's
 used for most catalogs, because that command needs to write information
 into these catalogs to describe the new catalog. These are
 called bootstrap catalogs, and defining one takes
 a lot of extra work: you have to manually prepare appropriate entries for
 them in the pre-loaded contents of pg_class
 and pg_type, and those entries will need to be
 updated for subsequent changes to the catalog's structure.
 (Bootstrap catalogs also need pre-loaded entries
 in pg_attribute, but
 fortunately genbki.pl handles that chore nowadays.)
 Avoid making new catalogs be bootstrap catalogs if at all possible.

System Catalog Initial Data

 Each catalog that has any manually-created initial data (some do not)
 has a corresponding .dat file that contains its
 initial data in an editable format.

Data File Format

 Each .dat file contains Perl data structure literals
 that are simply eval'd to produce an in-memory data structure consisting
 of an array of hash references, one per catalog row.
 A slightly modified excerpt from pg_database.dat
 will demonstrate the key features:

[

A comment could appear here.
{ oid => '1', oid_symbol => 'Template1DbOid',
 descr => 'database\'s default template',
 datname => 'template1', encoding => 'ENCODING',
 datlocprovider => 'LOCALE_PROVIDER', datistemplate => 't',
 datallowconn => 't', datconnlimit => '-1', datfrozenxid => '0',
 datminmxid => '1', dattablespace => 'pg_default', datcollate => 'LC_COLLATE',
 datctype => 'LC_CTYPE', daticulocale => 'ICU_LOCALE', datacl => '_null_' },

]

 Points to note:

	
 The overall file layout is: open square bracket, one or more sets of
 curly braces each of which represents a catalog row, close square
 bracket. Write a comma after each closing curly brace.

	
 Within each catalog row, write comma-separated
 key =>
 value pairs. The
 allowed keys are the names of the catalog's
 columns, plus the metadata keys oid,
 oid_symbol,
 array_type_oid, and descr.
 (The use of oid and oid_symbol
 is described in the section called “OID Assignment” below,
 while array_type_oid is described in
 the section called “Automatic Creation of Array Types”.
 descr supplies a description string for the object,
 which will be inserted into pg_description
 or pg_shdescription as appropriate.)
 While the metadata keys are optional, the catalog's defined columns
 must all be provided, except when the catalog's .h
 file specifies a default value for the column.
 (In the example above, the datdba field has
 been omitted because pg_database.h supplies a
 suitable default value for it.)

	
 All values must be single-quoted. Escape single quotes used within a
 value with a backslash. Backslashes meant as data can, but need not,
 be doubled; this follows Perl's rules for simple quoted literals.
 Note that backslashes appearing as data will be treated as escapes by
 the bootstrap scanner, according to the same rules as for escape string
 constants (see the section called “String Constants with C-Style Escapes”); for
 example \t converts to a tab character. If you
 actually want a backslash in the final value, you will need to write
 four of them: Perl strips two, leaving \\ for the
 bootstrap scanner to see.

	
 Null values are represented by _null_.
 (Note that there is no way to create a value that is just that
 string.)

	
 Comments are preceded by #, and must be on their
 own lines.

	
 Field values that are OIDs of other catalog entries should be
 represented by symbolic names rather than actual numeric OIDs.
 (In the example above, dattablespace
 contains such a reference.)
 This is described in the section called “OID Reference Lookup”
 below.

	
 Since hashes are unordered data structures, field order and line
 layout aren't semantically significant. However, to maintain a
 consistent appearance, we set a few rules that are applied by the
 formatting script reformat_dat_file.pl:

	
 Within each pair of curly braces, the metadata
 fields oid, oid_symbol,
 array_type_oid, and descr
 (if present) come first, in that order, then the catalog's own
 fields appear in their defined order.

	
 Newlines are inserted between fields as needed to limit line length
 to 80 characters, if possible. A newline is also inserted between
 the metadata fields and the regular fields.

	
 If the catalog's .h file specifies a default
 value for a column, and a data entry has that same
 value, reformat_dat_file.pl will omit it from
 the data file. This keeps the data representation compact.

	
 reformat_dat_file.pl preserves blank lines
 and comment lines as-is.

 It's recommended to run reformat_dat_file.pl
 before submitting catalog data patches. For convenience, you can
 simply change to src/include/catalog/ and
 run make reformat-dat-files.

	
 If you want to add a new method of making the data representation
 smaller, you must implement it
 in reformat_dat_file.pl and also
 teach Catalog::ParseData() how to expand the
 data back into the full representation.

OID Assignment

 A catalog row appearing in the initial data can be given a
 manually-assigned OID by writing an oid
 => nnnn metadata field.
 Furthermore, if an OID is assigned, a C macro for that OID can be
 created by writing an oid_symbol
 => name metadata field.

 Pre-loaded catalog rows must have preassigned OIDs if there are OID
 references to them in other pre-loaded rows. A preassigned OID is
 also needed if the row's OID must be referenced from C code.
 If neither case applies, the oid metadata field can
 be omitted, in which case the bootstrap code assigns an OID
 automatically.
 In practice we usually preassign OIDs for all or none of the pre-loaded
 rows in a given catalog, even if only some of them are actually
 cross-referenced.

 Writing the actual numeric value of any OID in C code is considered
 very bad form; always use a macro, instead. Direct references
 to pg_proc OIDs are common enough that there's
 a special mechanism to create the necessary macros automatically;
 see src/backend/utils/Gen_fmgrtab.pl. Similarly
 — but, for historical reasons, not done the same way —
 there's an automatic method for creating macros
 for pg_type
 OIDs. oid_symbol entries are therefore not
 necessary in those two catalogs. Likewise, macros for
 the pg_class OIDs of system catalogs and
 indexes are set up automatically. For all other system catalogs, you
 have to manually specify any macros you need
 via oid_symbol entries.

 To find an available OID for a new pre-loaded row, run the
 script src/include/catalog/unused_oids.
 It prints inclusive ranges of unused OIDs (e.g., the output
 line 45-900 means OIDs 45 through 900 have not been
 allocated yet). Currently, OIDs 1–9999 are reserved for manual
 assignment; the unused_oids script simply looks
 through the catalog headers and .dat files
 to see which ones do not appear. You can also use
 the duplicate_oids script to check for mistakes.
 (genbki.pl will assign OIDs for any rows that
 didn't get one hand-assigned to them, and it will also detect duplicate
 OIDs at compile time.)

 When choosing OIDs for a patch that is not expected to be committed
 immediately, best practice is to use a group of more-or-less
 consecutive OIDs starting with some random choice in the range
 8000—9999. This minimizes the risk of OID collisions with other
 patches being developed concurrently. To keep the 8000—9999
 range free for development purposes, after a patch has been committed
 to the master git repository its OIDs should be renumbered into
 available space below that range. Typically, this will be done
 near the end of each development cycle, moving all OIDs consumed by
 patches committed in that cycle at the same time. The script
 renumber_oids.pl can be used for this purpose.
 If an uncommitted patch is found to have OID conflicts with some
 recently-committed patch, renumber_oids.pl may
 also be useful for recovering from that situation.

 Because of this convention of possibly renumbering OIDs assigned by
 patches, the OIDs assigned by a patch should not be considered stable
 until the patch has been included in an official release. We do not
 change manually-assigned object OIDs once released, however, as that
 would create assorted compatibility problems.

 If genbki.pl needs to assign an OID to a catalog
 entry that does not have a manually-assigned OID, it will use a value in
 the range 10000—11999. The server's OID counter is set to 10000
 at the start of a bootstrap run, so that any objects created on-the-fly
 during bootstrap processing also receive OIDs in this range. (The
 usual OID assignment mechanism takes care of preventing any conflicts.)

 Objects with OIDs below FirstUnpinnedObjectId (12000)
 are considered “pinned”, preventing them from being
 deleted. (There are a small number of exceptions, which are
 hard-wired into IsPinnedObject().)
 initdb forces the OID counter up
 to FirstUnpinnedObjectId as soon as it's ready to
 create unpinned objects. Thus objects created during the later phases
 of initdb, such as objects created while
 running the information_schema.sql script, will
 not be pinned, while all objects known
 to genbki.pl will be.

 OIDs assigned during normal database operation are constrained to be
 16384 or higher. This ensures that the range 10000—16383 is free
 for OIDs assigned automatically by genbki.pl or
 during initdb. These
 automatically-assigned OIDs are not considered stable, and may change
 from one installation to another.

OID Reference Lookup

 In principle, cross-references from one initial catalog row to another
 could be written just by writing the preassigned OID of the referenced
 row in the referencing field. However, that is against project
 policy, because it is error-prone, hard to read, and subject to
 breakage if a newly-assigned OID is renumbered. Therefore
 genbki.pl provides mechanisms to write
 symbolic references instead.
 The rules are as follows:

	
 Use of symbolic references is enabled in a particular catalog column
 by attaching BKI_LOOKUP(lookuprule)
 to the column's definition, where lookuprule
 is the name of the referenced catalog, e.g., pg_proc.
 BKI_LOOKUP can be attached to columns of
 type Oid, regproc, oidvector,
 or Oid[]; in the latter two cases it implies performing a
 lookup on each element of the array.

	
 It's also permissible to attach BKI_LOOKUP(encoding)
 to integer columns to reference character set encodings, which are
 not currently represented as catalog OIDs, but have a set of values
 known to genbki.pl.

	
 In some catalog columns, it's allowed for entries to be zero instead
 of a valid reference. If this is allowed, write
 BKI_LOOKUP_OPT instead
 of BKI_LOOKUP. Then you can
 write 0 for an entry. (If the column is
 declared regproc, you can optionally
 write - instead of 0.)
 Except for this special case, all entries in
 a BKI_LOOKUP column must be symbolic references.
 genbki.pl will warn about unrecognized names.

	
 Most kinds of catalog objects are simply referenced by their names.
 Note that type names must exactly match the
 referenced pg_type
 entry's typname; you do not get to use
 any aliases such as integer
 for int4.

	
 A function can be represented by
 its proname, if that is unique among
 the pg_proc.dat entries (this works like regproc
 input). Otherwise, write it
 as proname(argtypename,argtypename,...),
 like regprocedure. The argument type names must be spelled exactly as
 they are in the pg_proc.dat entry's
 proargtypes field. Do not insert any
 spaces.

	
 Operators are represented
 by oprname(lefttype,righttype),
 writing the type names exactly as they appear in
 the pg_operator.dat
 entry's oprleft
 and oprright fields.
 (Write 0 for the omitted operand of a unary
 operator.)

	
 The names of opclasses and opfamilies are only unique within an
 access method, so they are represented
 by access_method_name/object_name.

	
 In none of these cases is there any provision for
 schema-qualification; all objects created during bootstrap are
 expected to be in the pg_catalog schema.

 genbki.pl resolves all symbolic references while it
 runs, and puts simple numeric OIDs into the emitted BKI file. There is
 therefore no need for the bootstrap backend to deal with symbolic
 references.

 It's desirable to mark OID reference columns
 with BKI_LOOKUP or BKI_LOOKUP_OPT
 even if the catalog has no initial data that requires lookup. This
 allows genbki.pl to record the foreign key
 relationships that exist in the system catalogs. That information is
 used in the regression tests to check for incorrect entries. See also
 the macros DECLARE_FOREIGN_KEY,
 DECLARE_FOREIGN_KEY_OPT,
 DECLARE_ARRAY_FOREIGN_KEY,
 and DECLARE_ARRAY_FOREIGN_KEY_OPT, which are
 used to declare foreign key relationships that are too complex
 for BKI_LOOKUP (typically, multi-column foreign
 keys).

Automatic Creation of Array Types

 Most scalar data types should have a corresponding array type (that is,
 a standard varlena array type whose element type is the scalar type, and
 which is referenced by the typarray field of
 the scalar type's pg_type
 entry). genbki.pl is able to generate
 the pg_type entry for the array type
 automatically in most cases.

 To use this facility, just write an array_type_oid
 => nnnn metadata field in the
 scalar type's pg_type entry, specifying the OID
 to use for the array type. You may then omit
 the typarray field, since it will be filled
 automatically with that OID.

 The generated array type's name is the scalar type's name with an
 underscore prepended. The array entry's other fields are filled from
 BKI_ARRAY_DEFAULT(value)
 annotations in pg_type.h, or if there isn't one,
 copied from the scalar type. (There's also a special case
 for typalign.) Then
 the typelem
 and typarray fields of the two entries are
 set to cross-reference each other.

Recipes for Editing Data Files

 Here are some suggestions about the easiest ways to perform common tasks
 when updating catalog data files.

Add a new column with a default to a catalog:
 Add the column to the header file with
 a BKI_DEFAULT(value)
 annotation. The data file need only be adjusted by adding the field
 in existing rows where a non-default value is needed.

Add a default value to an existing column that doesn't have
 one:
 Add a BKI_DEFAULT annotation to the header file,
 then run make reformat-dat-files to remove
 now-redundant field entries.

Remove a column, whether it has a default or not:
 Remove the column from the header, then run make
 reformat-dat-files to remove now-useless field entries.

Change or remove an existing default value:
 You cannot simply change the header file, since that will cause the
 current data to be interpreted incorrectly. First run make
 expand-dat-files to rewrite the data files with all
 default values inserted explicitly, then change or remove
 the BKI_DEFAULT annotation, then run make
 reformat-dat-files to remove superfluous fields again.

Ad-hoc bulk editing:
 reformat_dat_file.pl can be adapted to perform
 many kinds of bulk changes. Look for its block comments showing where
 one-off code can be inserted. In the following example, we are going
 to consolidate two Boolean fields in pg_proc
 into a char field:

	
 Add the new column, with a default,
 to pg_proc.h:

+ /* see PROKIND_ categories below */
+ char prokind BKI_DEFAULT(f);

	
 Create a new script based on reformat_dat_file.pl
 to insert appropriate values on-the-fly:

- # At this point we have the full row in memory as a hash
- # and can do any operations we want. As written, it only
- # removes default values, but this script can be adapted to
- # do one-off bulk-editing.
+ # One-off change to migrate to prokind
+ # Default has already been filled in by now, so change to other
+ # values as appropriate
+ if ($values{proisagg} eq 't')
+ {
+ $values{prokind} = 'a';
+ }
+ elsif ($values{proiswindow} eq 't')
+ {
+ $values{prokind} = 'w';
+ }

	
 Run the new script:

$ cd src/include/catalog
$ perl rewrite_dat_with_prokind.pl pg_proc.dat

 At this point pg_proc.dat has all three
 columns, prokind,
 proisagg,
 and proiswindow, though they will appear
 only in rows where they have non-default values.

	
 Remove the old columns from pg_proc.h:

- /* is it an aggregate? */
- bool proisagg BKI_DEFAULT(f);
-
- /* is it a window function? */
- bool proiswindow BKI_DEFAULT(f);

	
 Finally, run make reformat-dat-files to remove
 the useless old entries from pg_proc.dat.

 For further examples of scripts used for bulk editing, see
 convert_oid2name.pl
 and remove_pg_type_oid_symbols.pl attached to this
 message:
 https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com

BKI File Format

 This section describes how the PostgreSQL™
 backend interprets BKI files. This description
 will be easier to understand if the postgres.bki
 file is at hand as an example.

 BKI input consists of a sequence of commands. Commands are made up
 of a number of tokens, depending on the syntax of the command.
 Tokens are usually separated by whitespace, but need not be if
 there is no ambiguity. There is no special command separator; the
 next token that syntactically cannot belong to the preceding
 command starts a new one. (Usually you would put a new command on
 a new line, for clarity.) Tokens can be certain key words, special
 characters (parentheses, commas, etc.), identifiers, numbers, or
 single-quoted strings. Everything is case sensitive.

 Lines starting with # are ignored.

BKI Commands

	
 create
 tablename
 tableoid
 [bootstrap]
 [shared_relation]
 [rowtype_oid oid]
 (name1 =
 type1
 [FORCE NOT NULL | FORCE NULL] [,
 name2 =
 type2
 [FORCE NOT NULL | FORCE NULL],
 ...])

	
 Create a table named tablename, and having the OID
 tableoid,
 with the columns given in parentheses.

 The following column types are supported directly by
 bootstrap.c: bool,
 bytea, char (1 byte),
 name, int2,
 int4, regproc, regclass,
 regtype, text,
 oid, tid, xid,
 cid, int2vector, oidvector,
 _int4 (array), _text (array),
 _oid (array), _char (array),
 _aclitem (array). Although it is possible to create
 tables containing columns of other types, this cannot be done until
 after pg_type has been created and filled with
 appropriate entries. (That effectively means that only these
 column types can be used in bootstrap catalogs, but non-bootstrap
 catalogs can contain any built-in type.)

 When bootstrap is specified,
 the table will only be created on disk; nothing is entered into
 pg_class,
 pg_attribute, etc., for it. Thus the
 table will not be accessible by ordinary SQL operations until
 such entries are made the hard way (with insert
 commands). This option is used for creating
 pg_class etc. themselves.

 The table is created as shared if shared_relation is
 specified.
 The table's row type OID (pg_type OID) can optionally
 be specified via the rowtype_oid clause; if not specified,
 an OID is automatically generated for it. (The rowtype_oid
 clause is useless if bootstrap is specified, but it can be
 provided anyway for documentation.)

	
 open tablename

	
 Open the table named
 tablename
 for insertion of data. Any currently open table is closed.

	
 close tablename

	
 Close the open table. The name of the table must be given as a
 cross-check.

	
 insert ([oid_value] value1 value2 ...)

	
 Insert a new row into the open table using value1, value2, etc., for its column
 values.

 NULL values can be specified using the special key word
 null. Values that do not look like
 identifiers or digit strings must be single-quoted.
 (To include a single quote in a value, write it twice.
 Escape-string-style backslash escapes are allowed in the string, too.)

	
 declare [unique]
 index indexname
 indexoid
 on tablename
 using amname
 (opclass1
 name1
 [, ...])

	
 Create an index named indexname, having OID
 indexoid,
 on the table named
 tablename, using the
 amname access
 method. The fields to index are called name1, name2 etc., and the operator
 classes to use are opclass1, opclass2 etc., respectively.
 The index file is created and appropriate catalog entries are
 made for it, but the index contents are not initialized by this command.

	
 declare toast
 toasttableoid
 toastindexoid
 on tablename

	
 Create a TOAST table for the table named
 tablename.
 The TOAST table is assigned OID
 toasttableoid
 and its index is assigned OID
 toastindexoid.
 As with declare index, filling of the index
 is postponed.

	build indices
	
 Fill in the indices that have previously been declared.

Structure of the Bootstrap BKI File

 The open command cannot be used until the tables it uses
 exist and have entries for the table that is to be opened.
 (These minimum tables are pg_class,
 pg_attribute, pg_proc, and
 pg_type.) To allow those tables themselves to be filled,
 create with the bootstrap option implicitly opens
 the created table for data insertion.

 Also, the declare index and declare toast
 commands cannot be used until the system catalogs they need have been
 created and filled in.

 Thus, the structure of the postgres.bki file has to
 be:

	
 create bootstrap one of the critical tables

	
 insert data describing at least the critical tables

	
 close

	
 Repeat for the other critical tables.

	
 create (without bootstrap) a noncritical table

	
 open

	
 insert desired data

	
 close

	
 Repeat for the other noncritical tables.

	
 Define indexes and toast tables.

	
 build indices

 There are doubtless other, undocumented ordering dependencies.

BKI Example

 The following sequence of commands will create the table
 test_table with OID 420, having three columns
 oid, cola and colb
 of type oid, int4 and text,
 respectively, and insert two rows into the table:

create test_table 420 (oid = oid, cola = int4, colb = text)
open test_table
insert (421 1 'value 1')
insert (422 2 _null_)
close test_table

Chapter 76. How the Planner Uses Statistics

 This chapter builds on the material covered in the section called “Using EXPLAIN” and the section called “Statistics Used by the Planner” to show some
 additional details about how the planner uses the
 system statistics to estimate the number of rows each part of a query might
 return. This is a significant part of the planning process,
 providing much of the raw material for cost calculation.

 The intent of this chapter is not to document the code in detail,
 but to present an overview of how it works.
 This will perhaps ease the learning curve for someone who subsequently
 wishes to read the code.

Row Estimation Examples

 The examples shown below use tables in the PostgreSQL™
 regression test database.
 The outputs shown are taken from version 8.3.
 The behavior of earlier (or later) versions might vary.
 Note also that since ANALYZE uses random sampling
 while producing statistics, the results will change slightly after
 any new ANALYZE.

 Let's start with a very simple query:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

 How the planner determines the cardinality of tenk1
 is covered in the section called “Statistics Used by the Planner”, but is repeated here for
 completeness. The number of pages and rows is looked up in
 pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
 358 | 10000

 These numbers are current as of the last VACUUM or
 ANALYZE on the table. The planner then fetches the
 actual current number of pages in the table (this is a cheap operation,
 not requiring a table scan). If that is different from
 relpages then
 reltuples is scaled accordingly to
 arrive at a current number-of-rows estimate. In the example above, the value of
 relpages is up-to-date so the rows estimate is
 the same as reltuples.

 Let's move on to an example with a range condition in its
 WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

 QUERY PLAN
---​-------------
 Bitmap Heap Scan on tenk1 (cost=24.06..394.64 rows=1007 width=244)
 Recheck Cond: (unique1 < 1000)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

 The planner examines the WHERE clause condition
 and looks up the selectivity function for the operator
 < in pg_operator.
 This is held in the column oprrest,
 and the entry in this case is scalarltsel.
 The scalarltsel function retrieves the histogram for
 unique1 from
 pg_statistic. For manual queries it is more
 convenient to look in the simpler pg_stats
 view:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

 histogram_bounds
--
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}

 Next the fraction of the histogram occupied by “< 1000”
 is worked out. This is the selectivity. The histogram divides the range
 into equal frequency buckets, so all we have to do is locate the bucket
 that our value is in and count part of it and
 all of the ones before. The value 1000 is clearly in
 the second bucket (993–1997). Assuming a linear distribution of
 values inside each bucket, we can calculate the selectivity as:

selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
 = (1 + (1000 - 993)/(1997 - 993))/10
 = 0.100697

 that is, one whole bucket plus a linear fraction of the second, divided by
 the number of buckets. The estimated number of rows can now be calculated as
 the product of the selectivity and the cardinality of
 tenk1:

rows = rel_cardinality * selectivity
 = 10000 * 0.100697
 = 1007 (rounding off)

 Next let's consider an example with an equality condition in its
 WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=30 width=244)
 Filter: (stringu1 = 'CRAAAA'::name)

 Again the planner examines the WHERE clause condition
 and looks up the selectivity function for =, which is
 eqsel. For equality estimation the histogram is
 not useful; instead the list of most
 common values (MCVs) is used to determine the
 selectivity. Let's have a look at the MCVs, with some additional columns
 that will be useful later:

SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

null_frac | 0
n_distinct | 676
most_common_vals | {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,​JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,​0.003,0.003,0.003,0.003}

 Since CRAAAA appears in the list of MCVs, the selectivity is
 merely the corresponding entry in the list of most common frequencies
 (MCFs):

selectivity = mcf[3]
 = 0.003

 As before, the estimated number of rows is just the product of this with the
 cardinality of tenk1:

rows = 10000 * 0.003
 = 30

 Now consider the same query, but with a constant that is not in the
 MCV list:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=15 width=244)
 Filter: (stringu1 = 'xxx'::name)

 This is quite a different problem: how to estimate the selectivity when the
 value is not in the MCV list.
 The approach is to use the fact that the value is not in the list,
 combined with the knowledge of the frequencies for all of the
 MCVs:

selectivity = (1 - sum(mcv_freqs))/(num_distinct - num_mcv)
 = (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003 +
 0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
 = 0.0014559

 That is, add up all the frequencies for the MCVs and
 subtract them from one, then
 divide by the number of other distinct values.
 This amounts to assuming that the fraction of the column that is not any
 of the MCVs is evenly distributed among all the other distinct values.
 Notice that there are no null values so we don't have to worry about those
 (otherwise we'd subtract the null fraction from the numerator as well).
 The estimated number of rows is then calculated as usual:

rows = 10000 * 0.0014559
 = 15 (rounding off)

 The previous example with unique1 < 1000 was an
 oversimplification of what scalarltsel really does;
 now that we have seen an example of the use of MCVs, we can fill in some
 more detail. The example was correct as far as it went, because since
 unique1 is a unique column it has no MCVs (obviously, no
 value is any more common than any other value). For a non-unique
 column, there will normally be both a histogram and an MCV list, and
 the histogram does not include the portion of the column
 population represented by the MCVs. We do things this way because
 it allows more precise estimation. In this situation
 scalarltsel directly applies the condition (e.g.,
 “< 1000”) to each value of the MCV list, and adds up the
 frequencies of the MCVs for which the condition is true. This gives
 an exact estimate of the selectivity within the portion of the table
 that is MCVs. The histogram is then used in the same way as above
 to estimate the selectivity in the portion of the table that is not
 MCVs, and then the two numbers are combined to estimate the overall
 selectivity. For example, consider

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < 'IAAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=3077 width=244)
 Filter: (stringu1 < 'IAAAAA'::name)

 We already saw the MCV information for stringu1,
 and here is its histogram:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

 histogram_bounds
---​-------------
 {AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,​XLAAAA,ZZAAAA}

 Checking the MCV list, we find that the condition stringu1 <
 'IAAAAA' is satisfied by the first six entries and not the last four,
 so the selectivity within the MCV part of the population is

selectivity = sum(relevant mvfs)
 = 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
 = 0.01833333

 Summing all the MCFs also tells us that the total fraction of the
 population represented by MCVs is 0.03033333, and therefore the
 fraction represented by the histogram is 0.96966667 (again, there
 are no nulls, else we'd have to exclude them here). We can see
 that the value IAAAAA falls nearly at the end of the
 third histogram bucket. Using some rather cheesy assumptions
 about the frequency of different characters, the planner arrives
 at the estimate 0.298387 for the portion of the histogram population
 that is less than IAAAAA. We then combine the estimates
 for the MCV and non-MCV populations:

selectivity = mcv_selectivity + histogram_selectivity * histogram_fraction
 = 0.01833333 + 0.298387 * 0.96966667
 = 0.307669

rows = 10000 * 0.307669
 = 3077 (rounding off)

 In this particular example, the correction from the MCV list is fairly
 small, because the column distribution is actually quite flat (the
 statistics showing these particular values as being more common than
 others are mostly due to sampling error). In a more typical case where
 some values are significantly more common than others, this complicated
 process gives a useful improvement in accuracy because the selectivity
 for the most common values is found exactly.

 Now let's consider a case with more than one
 condition in the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = 'xxx';

 QUERY PLAN
---​-------------
 Bitmap Heap Scan on tenk1 (cost=23.80..396.91 rows=1 width=244)
 Recheck Cond: (unique1 < 1000)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

 The planner assumes that the two conditions are independent, so that
 the individual selectivities of the clauses can be multiplied together:

selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 = 'xxx')
 = 0.100697 * 0.0014559
 = 0.0001466

rows = 10000 * 0.0001466
 = 1 (rounding off)

 Notice that the number of rows estimated to be returned from the bitmap
 index scan reflects only the condition used with the index; this is
 important since it affects the cost estimate for the subsequent heap
 fetches.

 Finally we will examine a query that involves a join:

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

 QUERY PLAN
---​-------------------
 Nested Loop (cost=4.64..456.23 rows=50 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.64..142.17 rows=50 width=244)
 Recheck Cond: (unique1 < 50)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.63 rows=50 width=0)
 Index Cond: (unique1 < 50)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..6.27 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

 The restriction on tenk1,
 unique1 < 50,
 is evaluated before the nested-loop join.
 This is handled analogously to the previous range example. This time the
 value 50 falls into the first bucket of the
 unique1 histogram:

selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max - bucket[1].min))/num_buckets
 = (0 + (50 - 0)/(993 - 0))/10
 = 0.005035

rows = 10000 * 0.005035
 = 50 (rounding off)

 The restriction for the join is t2.unique2 = t1.unique2.
 The operator is just
 our familiar =, however the selectivity function is
 obtained from the oprjoin column of
 pg_operator, and is eqjoinsel.
 eqjoinsel looks up the statistical information for both
 tenk2 and tenk1:

SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats
WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';

tablename | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
 tenk1 | 0 | -1 |
 tenk2 | 0 | -1 |

 In this case there is no MCV information for
 unique2 because all the values appear to be
 unique, so we use an algorithm that relies only on the number of
 distinct values for both relations together with their null fractions:

selectivity = (1 - null_frac1) * (1 - null_frac2) * min(1/num_distinct1, 1/num_distinct2)
 = (1 - 0) * (1 - 0) / max(10000, 10000)
 = 0.0001

 This is, subtract the null fraction from one for each of the relations,
 and divide by the maximum of the numbers of distinct values.
 The number of rows
 that the join is likely to emit is calculated as the cardinality of the
 Cartesian product of the two inputs, multiplied by the
 selectivity:

rows = (outer_cardinality * inner_cardinality) * selectivity
 = (50 * 10000) * 0.0001
 = 50

 Had there been MCV lists for the two columns,
 eqjoinsel would have used direct comparison of the MCV
 lists to determine the join selectivity within the part of the column
 populations represented by the MCVs. The estimate for the remainder of the
 populations follows the same approach shown here.

 Notice that we showed inner_cardinality as 10000, that is,
 the unmodified size of tenk2. It might appear from
 inspection of the EXPLAIN output that the estimate of
 join rows comes from 50 * 1, that is, the number of outer rows times
 the estimated number of rows obtained by each inner index scan on
 tenk2. But this is not the case: the join relation size
 is estimated before any particular join plan has been considered. If
 everything is working well then the two ways of estimating the join
 size will produce about the same answer, but due to round-off error and
 other factors they sometimes diverge significantly.

 For those interested in further details, estimation of the size of
 a table (before any WHERE clauses) is done in
 src/backend/optimizer/util/plancat.c. The generic
 logic for clause selectivities is in
 src/backend/optimizer/path/clausesel.c. The
 operator-specific selectivity functions are mostly found
 in src/backend/utils/adt/selfuncs.c.

Multivariate Statistics Examples

Functional Dependencies

 Multivariate correlation can be demonstrated with a very simple data set
 — a table with two columns, both containing the same values:

CREATE TABLE t (a INT, b INT);
INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i);
ANALYZE t;

 As explained in the section called “Statistics Used by the Planner”, the planner can determine
 cardinality of t using the number of pages and
 rows obtained from pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 't';

 relpages | reltuples
----------+-----------
 45 | 10000

 The data distribution is very simple; there are only 100 distinct values
 in each column, uniformly distributed.

 The following example shows the result of estimating a WHERE
 condition on the a column:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1;
 QUERY PLAN
---​------------
 Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: (a = 1)
 Rows Removed by Filter: 9900

 The planner examines the condition and determines the selectivity
 of this clause to be 1%. By comparing this estimate and the actual
 number of rows, we see that the estimate is very accurate
 (in fact exact, as the table is very small). Changing the
 WHERE condition to use the b column, an
 identical plan is generated. But observe what happens if we apply the same
 condition on both columns, combining them with AND:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN
---​----------
 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

 The planner estimates the selectivity for each condition individually,
 arriving at the same 1% estimates as above. Then it assumes that the
 conditions are independent, and so it multiplies their selectivities,
 producing a final selectivity estimate of just 0.01%.
 This is a significant underestimate, as the actual number of rows
 matching the conditions (100) is two orders of magnitude higher.

 This problem can be fixed by creating a statistics object that
 directs ANALYZE to calculate functional-dependency
 multivariate statistics on the two columns:

CREATE STATISTICS stts (dependencies) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN
---​------------
 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

Multivariate N-Distinct Counts

 A similar problem occurs with estimation of the cardinality of sets of
 multiple columns, such as the number of groups that would be generated by
 a GROUP BY clause. When GROUP BY
 lists a single column, the n-distinct estimate (which is visible as the
 estimated number of rows returned by the HashAggregate node) is very
 accurate:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a;
 QUERY PLAN
---​----------------------
 HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual rows=100 loops=1)
 Group Key: a
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000 loops=1)

 But without multivariate statistics, the estimate for the number of
 groups in a query with two columns in GROUP BY, as
 in the following example, is off by an order of magnitude:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN
---​-------------------------
 HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1)

 By redefining the statistics object to include n-distinct counts for the
 two columns, the estimate is much improved:

DROP STATISTICS stts;
CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN
---​-------------------------
 HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1)

MCV Lists

 As explained in the section called “Functional Dependencies”, functional
 dependencies are very cheap and efficient type of statistics, but their
 main limitation is their global nature (only tracking dependencies at
 the column level, not between individual column values).

 This section introduces multivariate variant of MCV
 (most-common values) lists, a straightforward extension of the per-column
 statistics described in the section called “Row Estimation Examples”. These
 statistics address the limitation by storing individual values, but it is
 naturally more expensive, both in terms of building the statistics in
 ANALYZE, storage and planning time.

 Let's look at the query from the section called “Functional Dependencies”
 again, but this time with a MCV list created on the
 same set of columns (be sure to drop the functional dependencies, to
 make sure the planner uses the newly created statistics).

DROP STATISTICS stts;
CREATE STATISTICS stts2 (mcv) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN
---​------------
 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

 The estimate is as accurate as with the functional dependencies, mostly
 thanks to the table being fairly small and having a simple distribution
 with a low number of distinct values. Before looking at the second query,
 which was not handled by functional dependencies particularly well,
 let's inspect the MCV list a bit.

 Inspecting the MCV list is possible using
 pg_mcv_list_items set-returning function.

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2';
 index | values | nulls | frequency | base_frequency
-------+----------+-------+-----------+----------------
 0 | {0, 0} | {f,f} | 0.01 | 0.0001
 1 | {1, 1} | {f,f} | 0.01 | 0.0001
 ...
 49 | {49, 49} | {f,f} | 0.01 | 0.0001
 50 | {50, 50} | {f,f} | 0.01 | 0.0001
 ...
 97 | {97, 97} | {f,f} | 0.01 | 0.0001
 98 | {98, 98} | {f,f} | 0.01 | 0.0001
 99 | {99, 99} | {f,f} | 0.01 | 0.0001
(100 rows)

 This confirms there are 100 distinct combinations in the two columns, and
 all of them are about equally likely (1% frequency for each one). The
 base frequency is the frequency computed from per-column statistics, as if
 there were no multi-column statistics. Had there been any null values in
 either of the columns, this would be identified in the
 nulls column.

 When estimating the selectivity, the planner applies all the conditions
 on items in the MCV list, and then sums the frequencies
 of the matching ones. See mcv_clauselist_selectivity
 in src/backend/statistics/mcv.c for details.

 Compared to functional dependencies, MCV lists have two
 major advantages. Firstly, the list stores actual values, making it possible
 to decide which combinations are compatible.

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 10;
 QUERY PLAN
---​--------
 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
 Filter: ((a = 1) AND (b = 10))
 Rows Removed by Filter: 10000

 Secondly, MCV lists handle a wider range of clause types,
 not just equality clauses like functional dependencies. For example,
 consider the following range query for the same table:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a <= 49 AND b > 49;
 QUERY PLAN
---​--------
 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
 Filter: ((a <= 49) AND (b > 49))
 Rows Removed by Filter: 10000

Planner Statistics and Security

 Access to the table pg_statistic is restricted to
 superusers, so that ordinary users cannot learn about the contents of the
 tables of other users from it. Some selectivity estimation functions will
 use a user-provided operator (either the operator appearing in the query or
 a related operator) to analyze the stored statistics. For example, in order
 to determine whether a stored most common value is applicable, the
 selectivity estimator will have to run the appropriate =
 operator to compare the constant in the query to the stored value.
 Thus the data in pg_statistic is potentially
 passed to user-defined operators. An appropriately crafted operator can
 intentionally leak the passed operands (for example, by logging them
 or writing them to a different table), or accidentally leak them by showing
 their values in error messages, in either case possibly exposing data from
 pg_statistic to a user who should not be able to
 see it.

 In order to prevent this, the following applies to all built-in selectivity
 estimation functions. When planning a query, in order to be able to use
 stored statistics, the current user must either
 have SELECT privilege on the table or the involved
 columns, or the operator used must be LEAKPROOF (more
 accurately, the function that the operator is based on). If not, then the
 selectivity estimator will behave as if no statistics are available, and
 the planner will proceed with default or fall-back assumptions.

 If a user does not have the required privilege on the table or columns,
 then in many cases the query will ultimately receive a permission-denied
 error, in which case this mechanism is invisible in practice. But if the
 user is reading from a security-barrier view, then the planner might wish
 to check the statistics of an underlying table that is otherwise
 inaccessible to the user. In that case, the operator should be leak-proof
 or the statistics will not be used. There is no direct feedback about
 that, except that the plan might be suboptimal. If one suspects that this
 is the case, one could try running the query as a more privileged user,
 to see if a different plan results.

 This restriction applies only to cases where the planner would need to
 execute a user-defined operator on one or more values
 from pg_statistic. Thus the planner is permitted
 to use generic statistical information, such as the fraction of null values
 or the number of distinct values in a column, regardless of access
 privileges.

 Selectivity estimation functions contained in third-party extensions that
 potentially operate on statistics with user-defined operators should follow
 the same security rules. Consult the PostgreSQL source code for guidance.

Chapter 77. Backup Manifest Format

 The backup manifest generated by pg_basebackup(1) is
 primarily intended to permit the backup to be verified using
 pg_verifybackup(1). However, it is
 also possible for other tools to read the backup manifest file and use
 the information contained therein for their own purposes. To that end,
 this chapter describes the format of the backup manifest file.

 A backup manifest is a JSON document encoded as UTF-8. (Although in
 general JSON documents are required to be Unicode, PostgreSQL permits
 the json and jsonb data types to be used with any
 supported server encoding. There is no similar exception for backup
 manifests.) The JSON document is always an object; the keys that are present
 in this object are described in the next section.

Backup Manifest Top-level Object

 The backup manifest JSON document contains the following keys.

	PostgreSQL-Backup-Manifest-Version
	
 The associated value is always the integer 1.

	Files
	
 The associated value is always a list of objects, each describing one
 file that is present in the backup. No entries are present in this
 list for the WAL files that are needed in order to use the backup,
 or for the backup manifest itself. The structure of each object in the
 list is described in the section called “Backup Manifest File Object”.

	WAL-Ranges
	
 The associated value is always a list of objects, each describing a
 range of WAL records that must be readable from a particular timeline
 in order to make use of the backup. The structure of these objects is
 further described in the section called “Backup Manifest WAL Range Object”.

	Manifest-Checksum
	
 This key is always present on the last line of the backup manifest file.
 The associated value is a SHA256 checksum of all the preceding lines.
 We use a fixed checksum method here to make it possible for clients
 to do incremental parsing of the manifest. While a SHA256 checksum
 is significantly more expensive than a CRC32C checksum, the manifest
 should normally be small enough that the extra computation won't matter
 very much.

Backup Manifest File Object

 The object which describes a single file contains either a
 Path key or an Encoded-Path key.
 Normally, the Path key will be present. The
 associated string value is the path of the file relative to the root
 of the backup directory. Files located in a user-defined tablespace
 will have paths whose first two components are pg_tblspc and the OID
 of the tablespace. If the path is not a string that is legal in UTF-8,
 or if the user requests that encoded paths be used for all files, then
 the Encoded-Path key will be present instead. This
 stores the same data, but it is encoded as a string of hexadecimal
 digits. Each pair of hexadecimal digits in the string represents a
 single octet.

 The following two keys are always present:

	Size
	
 The expected size of this file, as an integer.

	Last-Modified
	
 The last modification time of the file as reported by the server at
 the time of the backup. Unlike the other fields stored in the backup,
 this field is not used by pg_verifybackup(1).
 It is included only for informational purposes.

 If the backup was taken with file checksums enabled, the following
 keys will be present:

	Checksum-Algorithm
	
 The checksum algorithm used to compute a checksum for this file.
 Currently, this will be the same for every file in the backup
 manifest, but this may change in future releases. At present, the
 supported checksum algorithms are CRC32C,
 SHA224,
 SHA256,
 SHA384, and
 SHA512.

	Checksum
	
 The checksum computed for this file, stored as a series of
 hexadecimal characters, two for each byte of the checksum.

Backup Manifest WAL Range Object

 The object which describes a WAL range always has three keys:

	Timeline
	
 The timeline for this range of WAL records, as an integer.

	Start-LSN
	
 The LSN at which replay must begin on the indicated timeline in order to
 make use of this backup. The LSN is stored in the format normally used
 by PostgreSQL™; that is, it is a string
 consisting of two strings of hexadecimal characters, each with a length
 of between 1 and 8, separated by a slash.

	End-LSN
	
 The earliest LSN at which replay on the indicated timeline may end when
 making use of this backup. This is stored in the same format as
 Start-LSN.

 Ordinarily, there will be only a single WAL range. However, if a backup is
 taken from a standby which switches timelines during the backup due to an
 upstream promotion, it is possible for multiple ranges to be present, each
 with a different timeline. There will never be multiple WAL ranges present
 for the same timeline.

Part VIII. Appendixes

Appendix A. PostgreSQL™ Error Codes

 All messages emitted by the PostgreSQL™
 server are assigned five-character error codes that follow the SQL
 standard's conventions for “SQLSTATE” codes. Applications
 that need to know which error condition has occurred should usually
 test the error code, rather than looking at the textual error
 message. The error codes are less likely to change across
 PostgreSQL™ releases, and also are not subject to
 change due to localization of error messages. Note that some, but
 not all, of the error codes produced by PostgreSQL™
 are defined by the SQL standard; some additional error codes for
 conditions not defined by the standard have been invented or
 borrowed from other databases.

 According to the standard, the first two characters of an error code
 denote a class of errors, while the last three characters indicate
 a specific condition within that class. Thus, an application that
 does not recognize the specific error code might still be able to infer
 what to do from the error class.

 Table A.1, “PostgreSQL™ Error Codes” lists all the error codes defined in
 PostgreSQL™ 16.12. (Some are not actually
 used at present, but are defined by the SQL standard.)
 The error classes are also shown. For each error class there is a
 “standard” error code having the last three characters
 000. This code is used only for error conditions that fall
 within the class but do not have any more-specific code assigned.

 The symbol shown in the column “Condition Name” is
 the condition name to use in PL/pgSQL. Condition
 names can be written in either upper or lower case. (Note that
 PL/pgSQL does not recognize warning, as opposed to error,
 condition names; those are classes 00, 01, and 02.)

 For some types of errors, the server reports the name of a database object
 (a table, table column, data type, or constraint) associated with the error;
 for example, the name of the unique constraint that caused a
 unique_violation error. Such names are supplied in separate
 fields of the error report message so that applications need not try to
 extract them from the possibly-localized human-readable text of the message.
 As of PostgreSQL™ 9.3, complete coverage for this feature
 exists only for errors in SQLSTATE class 23 (integrity constraint
 violation), but this is likely to be expanded in future.

Table A.1. PostgreSQL™ Error Codes
	Error Code	Condition Name
	Class 00 — Successful Completion
	00000	successful_completion
	Class 01 — Warning
	01000	warning
	0100C	dynamic_result_sets_returned
	01008	implicit_zero_bit_padding
	01003	null_value_eliminated_in_set_function
	01007	privilege_not_granted
	01006	privilege_not_revoked
	01004	string_data_right_truncation
	01P01	deprecated_feature
	Class 02 — No Data (this is also a warning class per the SQL standard)
	02000	no_data
	02001	no_additional_dynamic_result_sets_returned
	Class 03 — SQL Statement Not Yet Complete
	03000	sql_statement_not_yet_complete
	Class 08 — Connection Exception
	08000	connection_exception
	08003	connection_does_not_exist
	08006	connection_failure
	08001	sqlclient_unable_to_establish_sqlconnection
	08004	sqlserver_rejected_establishment_of_sqlconnection
	08007	transaction_resolution_unknown
	08P01	protocol_violation
	Class 09 — Triggered Action Exception
	09000	triggered_action_exception
	Class 0A — Feature Not Supported
	0A000	feature_not_supported
	Class 0B — Invalid Transaction Initiation
	0B000	invalid_transaction_initiation
	Class 0F — Locator Exception
	0F000	locator_exception
	0F001	invalid_locator_specification
	Class 0L — Invalid Grantor
	0L000	invalid_grantor
	0LP01	invalid_grant_operation
	Class 0P — Invalid Role Specification
	0P000	invalid_role_specification
	Class 0Z — Diagnostics Exception
	0Z000	diagnostics_exception
	0Z002	stacked_diagnostics_accessed_without_active_handler
	Class 20 — Case Not Found
	20000	case_not_found
	Class 21 — Cardinality Violation
	21000	cardinality_violation
	Class 22 — Data Exception
	22000	data_exception
	2202E	array_subscript_error
	22021	character_not_in_repertoire
	22008	datetime_field_overflow
	22012	division_by_zero
	22005	error_in_assignment
	2200B	escape_character_conflict
	22022	indicator_overflow
	22015	interval_field_overflow
	2201E	invalid_argument_for_logarithm
	22014	invalid_argument_for_ntile_function
	22016	invalid_argument_for_nth_value_function
	2201F	invalid_argument_for_power_function
	2201G	invalid_argument_for_width_bucket_function
	22018	invalid_character_value_for_cast
	22007	invalid_datetime_format
	22019	invalid_escape_character
	2200D	invalid_escape_octet
	22025	invalid_escape_sequence
	22P06	nonstandard_use_of_escape_character
	22010	invalid_indicator_parameter_value
	22023	invalid_parameter_value
	22013	invalid_preceding_or_following_size
	2201B	invalid_regular_expression
	2201W	invalid_row_count_in_limit_clause
	2201X	invalid_row_count_in_result_offset_clause
	2202H	invalid_tablesample_argument
	2202G	invalid_tablesample_repeat
	22009	invalid_time_zone_displacement_value
	2200C	invalid_use_of_escape_character
	2200G	most_specific_type_mismatch
	22004	null_value_not_allowed
	22002	null_value_no_indicator_parameter
	22003	numeric_value_out_of_range
	2200H	sequence_generator_limit_exceeded
	22026	string_data_length_mismatch
	22001	string_data_right_truncation
	22011	substring_error
	22027	trim_error
	22024	unterminated_c_string
	2200F	zero_length_character_string
	22P01	floating_point_exception
	22P02	invalid_text_representation
	22P03	invalid_binary_representation
	22P04	bad_copy_file_format
	22P05	untranslatable_character
	2200L	not_an_xml_document
	2200M	invalid_xml_document
	2200N	invalid_xml_content
	2200S	invalid_xml_comment
	2200T	invalid_xml_processing_instruction
	22030	duplicate_json_object_key_value
	22031	invalid_argument_for_sql_json_datetime_function
	22032	invalid_json_text
	22033	invalid_sql_json_subscript
	22034	more_than_one_sql_json_item
	22035	no_sql_json_item
	22036	non_numeric_sql_json_item
	22037	non_unique_keys_in_a_json_object
	22038	singleton_sql_json_item_required
	22039	sql_json_array_not_found
	2203A	sql_json_member_not_found
	2203B	sql_json_number_not_found
	2203C	sql_json_object_not_found
	2203D	too_many_json_array_elements
	2203E	too_many_json_object_members
	2203F	sql_json_scalar_required
	2203G	sql_json_item_cannot_be_cast_to_target_type
	Class 23 — Integrity Constraint Violation
	23000	integrity_constraint_violation
	23001	restrict_violation
	23502	not_null_violation
	23503	foreign_key_violation
	23505	unique_violation
	23514	check_violation
	23P01	exclusion_violation
	Class 24 — Invalid Cursor State
	24000	invalid_cursor_state
	Class 25 — Invalid Transaction State
	25000	invalid_transaction_state
	25001	active_sql_transaction
	25002	branch_transaction_already_active
	25008	held_cursor_requires_same_isolation_level
	25003	inappropriate_access_mode_for_branch_transaction
	25004	inappropriate_isolation_level_for_branch_transaction
	25005	no_active_sql_transaction_for_branch_transaction
	25006	read_only_sql_transaction
	25007	schema_and_data_statement_mixing_not_supported
	25P01	no_active_sql_transaction
	25P02	in_failed_sql_transaction
	25P03	idle_in_transaction_session_timeout
	Class 26 — Invalid SQL Statement Name
	26000	invalid_sql_statement_name
	Class 27 — Triggered Data Change Violation
	27000	triggered_data_change_violation
	Class 28 — Invalid Authorization Specification
	28000	invalid_authorization_specification
	28P01	invalid_password
	Class 2B — Dependent Privilege Descriptors Still Exist
	2B000	dependent_privilege_descriptors_still_exist
	2BP01	dependent_objects_still_exist
	Class 2D — Invalid Transaction Termination
	2D000	invalid_transaction_termination
	Class 2F — SQL Routine Exception
	2F000	sql_routine_exception
	2F005	function_executed_no_return_statement
	2F002	modifying_sql_data_not_permitted
	2F003	prohibited_sql_statement_attempted
	2F004	reading_sql_data_not_permitted
	Class 34 — Invalid Cursor Name
	34000	invalid_cursor_name
	Class 38 — External Routine Exception
	38000	external_routine_exception
	38001	containing_sql_not_permitted
	38002	modifying_sql_data_not_permitted
	38003	prohibited_sql_statement_attempted
	38004	reading_sql_data_not_permitted
	Class 39 — External Routine Invocation Exception
	39000	external_routine_invocation_exception
	39001	invalid_sqlstate_returned
	39004	null_value_not_allowed
	39P01	trigger_protocol_violated
	39P02	srf_protocol_violated
	39P03	event_trigger_protocol_violated
	Class 3B — Savepoint Exception
	3B000	savepoint_exception
	3B001	invalid_savepoint_specification
	Class 3D — Invalid Catalog Name
	3D000	invalid_catalog_name
	Class 3F — Invalid Schema Name
	3F000	invalid_schema_name
	Class 40 — Transaction Rollback
	40000	transaction_rollback
	40002	transaction_integrity_constraint_violation
	40001	serialization_failure
	40003	statement_completion_unknown
	40P01	deadlock_detected
	Class 42 — Syntax Error or Access Rule Violation
	42000	syntax_error_or_access_rule_violation
	42601	syntax_error
	42501	insufficient_privilege
	42846	cannot_coerce
	42803	grouping_error
	42P20	windowing_error
	42P19	invalid_recursion
	42830	invalid_foreign_key
	42602	invalid_name
	42622	name_too_long
	42939	reserved_name
	42804	datatype_mismatch
	42P18	indeterminate_datatype
	42P21	collation_mismatch
	42P22	indeterminate_collation
	42809	wrong_object_type
	428C9	generated_always
	42703	undefined_column
	42883	undefined_function
	42P01	undefined_table
	42P02	undefined_parameter
	42704	undefined_object
	42701	duplicate_column
	42P03	duplicate_cursor
	42P04	duplicate_database
	42723	duplicate_function
	42P05	duplicate_prepared_statement
	42P06	duplicate_schema
	42P07	duplicate_table
	42712	duplicate_alias
	42710	duplicate_object
	42702	ambiguous_column
	42725	ambiguous_function
	42P08	ambiguous_parameter
	42P09	ambiguous_alias
	42P10	invalid_column_reference
	42611	invalid_column_definition
	42P11	invalid_cursor_definition
	42P12	invalid_database_definition
	42P13	invalid_function_definition
	42P14	invalid_prepared_statement_definition
	42P15	invalid_schema_definition
	42P16	invalid_table_definition
	42P17	invalid_object_definition
	Class 44 — WITH CHECK OPTION Violation
	44000	with_check_option_violation
	Class 53 — Insufficient Resources
	53000	insufficient_resources
	53100	disk_full
	53200	out_of_memory
	53300	too_many_connections
	53400	configuration_limit_exceeded
	Class 54 — Program Limit Exceeded
	54000	program_limit_exceeded
	54001	statement_too_complex
	54011	too_many_columns
	54023	too_many_arguments
	Class 55 — Object Not In Prerequisite State
	55000	object_not_in_prerequisite_state
	55006	object_in_use
	55P02	cant_change_runtime_param
	55P03	lock_not_available
	55P04	unsafe_new_enum_value_usage
	Class 57 — Operator Intervention
	57000	operator_intervention
	57014	query_canceled
	57P01	admin_shutdown
	57P02	crash_shutdown
	57P03	cannot_connect_now
	57P04	database_dropped
	57P05	idle_session_timeout
	Class 58 — System Error (errors external to PostgreSQL™ itself)
	58000	system_error
	58030	io_error
	58P01	undefined_file
	58P02	duplicate_file
	Class 72 — Snapshot Failure
	72000	snapshot_too_old
	Class F0 — Configuration File Error
	F0000	config_file_error
	F0001	lock_file_exists
	Class HV — Foreign Data Wrapper Error (SQL/MED)
	HV000	fdw_error
	HV005	fdw_column_name_not_found
	HV002	fdw_dynamic_parameter_value_needed
	HV010	fdw_function_sequence_error
	HV021	fdw_inconsistent_descriptor_information
	HV024	fdw_invalid_attribute_value
	HV007	fdw_invalid_column_name
	HV008	fdw_invalid_column_number
	HV004	fdw_invalid_data_type
	HV006	fdw_invalid_data_type_descriptors
	HV091	fdw_invalid_descriptor_field_identifier
	HV00B	fdw_invalid_handle
	HV00C	fdw_invalid_option_index
	HV00D	fdw_invalid_option_name
	HV090	fdw_invalid_string_length_or_buffer_length
	HV00A	fdw_invalid_string_format
	HV009	fdw_invalid_use_of_null_pointer
	HV014	fdw_too_many_handles
	HV001	fdw_out_of_memory
	HV00P	fdw_no_schemas
	HV00J	fdw_option_name_not_found
	HV00K	fdw_reply_handle
	HV00Q	fdw_schema_not_found
	HV00R	fdw_table_not_found
	HV00L	fdw_unable_to_create_execution
	HV00M	fdw_unable_to_create_reply
	HV00N	fdw_unable_to_establish_connection
	Class P0 — PL/pgSQL Error
	P0000	plpgsql_error
	P0001	raise_exception
	P0002	no_data_found
	P0003	too_many_rows
	P0004	assert_failure
	Class XX — Internal Error
	XX000	internal_error
	XX001	data_corrupted
	XX002	index_corrupted

Appendix B. Date/Time Support

 PostgreSQL™ uses an internal heuristic
 parser for all date/time input support. Dates and times are input as
 strings, and are broken up into distinct fields with a preliminary
 determination of what kind of information can be in the
 field. Each field is interpreted and either assigned a numeric
 value, ignored, or rejected.
 The parser contains internal lookup tables for all textual fields,
 including months, days of the week, and time zones.

 This appendix includes information on the content of these
 lookup tables and describes the steps used by the parser to decode
 dates and times.

Date/Time Input Interpretation

 Date/time input strings are decoded using the following procedure.

	
 Break the input string into tokens and categorize each token as
 a string, time, time zone, or number.

	
 If the numeric token contains a colon (:), this is
 a time string. Include all subsequent digits and colons.

	
 If the numeric token contains a dash (-), slash
 (/), or two or more dots (.), this is
 a date string which might have a text month. If a date token has
 already been seen, it is instead interpreted as a time zone
 name (e.g., America/New_York).

	
 If the token is numeric only, then it is either a single field
 or an ISO 8601 concatenated date (e.g.,
 19990113 for January 13, 1999) or time
 (e.g., 141516 for 14:15:16).

	
 If the token starts with a plus (+) or minus
 (-), then it is either a numeric time zone or a special
 field.

	
 If the token is an alphabetic string, match up with possible strings:

	
 See if the token matches any known time zone abbreviation.
 These abbreviations are supplied by the configuration file
 described in the section called “Date/Time Configuration Files”.

	
 If not found, search an internal table to match
 the token as either a special string (e.g., today),
 day (e.g., Thursday),
 month (e.g., January),
 or noise word (e.g., at, on).

	
 If still not found, throw an error.

	
 When the token is a number or number field:

	
 If there are eight or six digits,
 and if no other date fields have been previously read, then interpret
 as a “concatenated date” (e.g.,
 19990118 or 990118).
 The interpretation is YYYYMMDD or YYMMDD.

	
 If the token is three digits
 and a year has already been read, then interpret as day of year.

	
 If four or six digits and a year has already been read, then
 interpret as a time (HHMM or HHMMSS).

	
 If three or more digits and no date fields have yet been found,
 interpret as a year (this forces yy-mm-dd ordering of the remaining
 date fields).

	
 Otherwise the date field ordering is assumed to follow the
 DateStyle setting: mm-dd-yy, dd-mm-yy, or yy-mm-dd.
 Throw an error if a month or day field is found to be out of range.

	
 If BC has been specified, negate the year and add one for
 internal storage. (There is no year zero in the Gregorian
 calendar, so numerically 1 BC becomes year zero.)

	
 If BC was not specified, and if the year field was two digits in length,
 then adjust the year to four digits. If the field is less than 70, then
 add 2000, otherwise add 1900.

Tip

 Gregorian years AD 1–99 can be entered by using 4 digits with leading
 zeros (e.g., 0099 is AD 99).

Handling of Invalid or Ambiguous Timestamps

 Ordinarily, if a date/time string is syntactically valid but contains
 out-of-range field values, an error will be thrown. For example, input
 specifying the 31st of February will be rejected.

 During a daylight-savings-time transition, it is possible for a
 seemingly valid timestamp string to represent a nonexistent or ambiguous
 timestamp. Such cases are not rejected; the ambiguity is resolved by
 determining which UTC offset to apply. For example, supposing that the
 TimeZone parameter is set
 to America/New_York, consider

=> SELECT '2018-03-11 02:30'::timestamptz;
 timestamptz

 2018-03-11 03:30:00-04
(1 row)

 Because that day was a spring-forward transition date in that time zone,
 there was no civil time instant 2:30AM; clocks jumped forward from 2AM
 EST to 3AM EDT. PostgreSQL™ interprets the
 given time as if it were standard time (UTC-5), which then renders as
 3:30AM EDT (UTC-4).

 Conversely, consider the behavior during a fall-back transition:

=> SELECT '2018-11-04 01:30'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-05
(1 row)

 On that date, there were two possible interpretations of 1:30AM; there
 was 1:30AM EDT, and then an hour later after clocks jumped back from
 2AM EDT to 1AM EST, there was 1:30AM EST.
 Again, PostgreSQL™ interprets the given time
 as if it were standard time (UTC-5). We can force the other
 interpretation by specifying daylight-savings time:

=> SELECT '2018-11-04 01:30 EDT'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-04
(1 row)

 The precise rule that is applied in such cases is that an invalid
 timestamp that appears to fall within a jump-forward daylight savings
 transition is assigned the UTC offset that prevailed in the time zone
 just before the transition, while an ambiguous timestamp that could fall
 on either side of a jump-back transition is assigned the UTC offset that
 prevailed just after the transition. In most time zones this is
 equivalent to saying that “the standard-time interpretation is
 preferred when in doubt”.

 In all cases, the UTC offset associated with a timestamp can be
 specified explicitly, using either a numeric UTC offset or a time zone
 abbreviation that corresponds to a fixed UTC offset. The rule just
 given applies only when it is necessary to infer a UTC offset for a time
 zone in which the offset varies.

Date/Time Key Words

 Table B.1, “Month Names” shows the tokens that are
 recognized as names of months.

Table B.1. Month Names
	Month	Abbreviations
	January	Jan
	February	Feb
	March	Mar
	April	Apr
	May	
	June	Jun
	July	Jul
	August	Aug
	September	Sep, Sept
	October	Oct
	November	Nov
	December	Dec

 Table B.2, “Day of the Week Names” shows the tokens that are
 recognized as names of days of the week.

Table B.2. Day of the Week Names
	Day	Abbreviations
	Sunday	Sun
	Monday	Mon
	Tuesday	Tue, Tues
	Wednesday	Wed, Weds
	Thursday	Thu, Thur, Thurs
	Friday	Fri
	Saturday	Sat

 Table B.3, “Date/Time Field Modifiers” shows the tokens that serve
 various modifier purposes.

Table B.3. Date/Time Field Modifiers
	Identifier	Description
	AM	Time is before 12:00
	AT	Ignored
	JULIAN, JD, J	Next field is Julian Date
	ON	Ignored
	PM	Time is on or after 12:00
	T	Next field is time

Date/Time Configuration Files

 Since timezone abbreviations are not well standardized,
 PostgreSQL™ provides a means to customize
 the set of abbreviations accepted by the server. The
 timezone_abbreviations run-time parameter
 determines the active set of abbreviations. While this parameter
 can be altered by any database user, the possible values for it
 are under the control of the database administrator — they
 are in fact names of configuration files stored in
 .../share/timezonesets/ of the installation directory.
 By adding or altering files in that directory, the administrator
 can set local policy for timezone abbreviations.

 timezone_abbreviations can be set to any file name
 found in .../share/timezonesets/, if the file's name
 is entirely alphabetic. (The prohibition against non-alphabetic
 characters in timezone_abbreviations prevents reading
 files outside the intended directory, as well as reading editor
 backup files and other extraneous files.)

 A timezone abbreviation file can contain blank lines and comments
 beginning with #. Non-comment lines must have one of
 these formats:

zone_abbreviation offset
zone_abbreviation offset D
zone_abbreviation time_zone_name
@INCLUDE file_name
@OVERRIDE

 A zone_abbreviation is just the abbreviation
 being defined. An offset is an integer giving
 the equivalent offset in seconds from UTC, positive being east from
 Greenwich and negative being west. For example, -18000 would be five
 hours west of Greenwich, or North American east coast standard time.
 D indicates that the zone name represents local
 daylight-savings time rather than standard time.

 Alternatively, a time_zone_name can be given, referencing
 a zone name defined in the IANA timezone database. The zone's definition
 is consulted to see whether the abbreviation is or has been in use in
 that zone, and if so, the appropriate meaning is used — that is,
 the meaning that was currently in use at the timestamp whose value is
 being determined, or the meaning in use immediately before that if it
 wasn't current at that time, or the oldest meaning if it was used only
 after that time. This behavior is essential for dealing with
 abbreviations whose meaning has historically varied. It is also allowed
 to define an abbreviation in terms of a zone name in which that
 abbreviation does not appear; then using the abbreviation is just
 equivalent to writing out the zone name.

Tip

 Using a simple integer offset is preferred
 when defining an abbreviation whose offset from UTC has never changed,
 as such abbreviations are much cheaper to process than those that
 require consulting a time zone definition.

 The @INCLUDE syntax allows inclusion of another file in the
 .../share/timezonesets/ directory. Inclusion can be nested,
 to a limited depth.

 The @OVERRIDE syntax indicates that subsequent entries in the
 file can override previous entries (typically, entries obtained from
 included files). Without this, conflicting definitions of the same
 timezone abbreviation are considered an error.

 In an unmodified installation, the file Default contains
 all the non-conflicting time zone abbreviations for most of the world.
 Additional files Australia and India are
 provided for those regions: these files first include the
 Default file and then add or modify abbreviations as needed.

 For reference purposes, a standard installation also contains files
 Africa.txt, America.txt, etc., containing
 information about every time zone abbreviation known to be in use
 according to the IANA timezone database. The zone name
 definitions found in these files can be copied and pasted into a custom
 configuration file as needed. Note that these files cannot be directly
 referenced as timezone_abbreviations settings, because of
 the dot embedded in their names.

Note

 If an error occurs while reading the time zone abbreviation set, no new
 value is applied and the old set is kept. If the error occurs while
 starting the database, startup fails.

Caution

 Time zone abbreviations defined in the configuration file override
 non-timezone meanings built into PostgreSQL™.
 For example, the Australia configuration file defines
 SAT (for South Australian Standard Time). When this
 file is active, SAT will not be recognized as an abbreviation
 for Saturday.

Caution

 If you modify files in .../share/timezonesets/,
 it is up to you to make backups — a normal database dump
 will not include this directory.

POSIX Time Zone Specifications

 PostgreSQL™ can accept time zone specifications
 that are written according to the POSIX standard's rules
 for the TZ environment
 variable. POSIX time zone specifications are
 inadequate to deal with the complexity of real-world time zone history,
 but there are sometimes reasons to use them.

 A POSIX time zone specification has the form

STD offset [DST [dstoffset] [, rule]]

 (For readability, we show spaces between the fields, but spaces should
 not be used in practice.) The fields are:

	
 STD is the zone abbreviation to be used
 for standard time.

	
 offset is the zone's standard-time offset
 from UTC.

	
 DST is the zone abbreviation to be used
 for daylight-savings time. If this field and the following ones are
 omitted, the zone uses a fixed UTC offset with no daylight-savings
 rule.

	
 dstoffset is the daylight-savings offset
 from UTC. This field is typically omitted, since it defaults to one
 hour less than the standard-time offset,
 which is usually the right thing.

	
 rule defines the rule for when daylight
 savings is in effect, as described below.

 In this syntax, a zone abbreviation can be a string of letters, such
 as EST, or an arbitrary string surrounded by angle
 brackets, such as <UTC-05>.
 Note that the zone abbreviations given here are only used for output,
 and even then only in some timestamp output formats. The zone
 abbreviations recognized in timestamp input are determined as explained
 in the section called “Date/Time Configuration Files”.

 The offset fields specify the hours, and optionally minutes and seconds,
 difference from UTC. They have the format
 hh[:mm[:ss]]
 optionally with a leading sign (+
 or -). The positive sign is used for
 zones west of Greenwich. (Note that this is the
 opposite of the ISO-8601 sign convention used elsewhere in
 PostgreSQL™.) hh
 can have one or two digits; mm
 and ss (if used) must have two.

 The daylight-savings transition rule has the
 format

dstdate [/ dsttime] , stddate [/ stdtime]

 (As before, spaces should not be included in practice.)
 The dstdate
 and dsttime fields define when daylight-savings
 time starts, while stddate
 and stdtime define when standard time
 starts. (In some cases, notably in zones south of the equator, the
 former might be later in the year than the latter.) The date fields
 have one of these formats:

	n
	
 A plain integer denotes a day of the year, counting from zero to
 364, or to 365 in leap years.

	Jn
	
 In this form, n counts from 1 to 365,
 and February 29 is not counted even if it is present. (Thus, a
 transition occurring on February 29 could not be specified this
 way. However, days after February have the same numbers whether
 it's a leap year or not, so that this form is usually more useful
 than the plain-integer form for transitions on fixed dates.)

	Mm.n.d
	
 This form specifies a transition that always happens during the same
 month and on the same day of the week. m
 identifies the month, from 1 to 12. n
 specifies the n'th occurrence of the
 weekday identified by d.
 n is a number between 1 and 4, or 5
 meaning the last occurrence of that weekday in the month (which
 could be the fourth or the fifth). d is
 a number between 0 and 6, with 0 indicating Sunday.
 For example, M3.2.0 means “the second
 Sunday in March”.

Note

 The M format is sufficient to describe many common
 daylight-savings transition laws. But note that none of these variants
 can deal with daylight-savings law changes, so in practice the
 historical data stored for named time zones (in the IANA time zone
 database) is necessary to interpret past time stamps correctly.

 The time fields in a transition rule have the same format as the offset
 fields described previously, except that they cannot contain signs.
 They define the current local time at which the change to the other
 time occurs. If omitted, they default to 02:00:00.

 If a daylight-savings abbreviation is given but the
 transition rule field is omitted,
 the fallback behavior is to use the
 rule M3.2.0,M11.1.0, which corresponds to USA
 practice as of 2020 (that is, spring forward on the second Sunday of
 March, fall back on the first Sunday of November, both transitions
 occurring at 2AM prevailing time). Note that this rule does not
 give correct USA transition dates for years before 2007.

 As an example, CET-1CEST,M3.5.0,M10.5.0/3 describes
 current (as of 2020) timekeeping practice in Paris. This specification
 says that standard time has the abbreviation CET and
 is one hour ahead (east) of UTC; daylight savings time has the
 abbreviation CEST and is implicitly two hours ahead
 of UTC; daylight savings time begins on the last Sunday in March at 2AM
 CET and ends on the last Sunday in October at 3AM CEST.

 The four timezone names EST5EDT,
 CST6CDT, MST7MDT,
 and PST8PDT look like they are POSIX zone
 specifications. However, they actually are treated as named time zones
 because (for historical reasons) there are files by those names in the
 IANA time zone database. The practical implication of this is that
 these zone names will produce valid historical USA daylight-savings
 transitions, even when a plain POSIX specification would not.

 One should be wary that it is easy to misspell a POSIX-style time zone
 specification, since there is no check on the reasonableness of the
 zone abbreviation(s). For example, SET TIMEZONE TO
 FOOBAR0 will work, leaving the system effectively using a
 rather peculiar abbreviation for UTC.

History of Units

 The SQL standard states that “Within the definition of a
 ‘datetime literal’, the ‘datetime
 values’ are constrained by the natural rules for dates and
 times according to the Gregorian calendar”.
 PostgreSQL™ follows the SQL
 standard's lead by counting dates exclusively in the Gregorian
 calendar, even for years before that calendar was in use.
 This rule is known as the proleptic Gregorian calendar.

 The Julian calendar was introduced by Julius Caesar in 45 BC.
 It was in common use in the Western world
 until the year 1582, when countries started changing to the Gregorian
 calendar. In the Julian calendar, the tropical year is
 approximated as 365 1/4 days = 365.25 days. This gives an error of
 about 1 day in 128 years.

 The accumulating calendar error prompted
 Pope Gregory XIII to reform the calendar in accordance with
 instructions from the Council of Trent.
 In the Gregorian calendar, the tropical year is approximated as
 365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300
 years for the tropical year to shift one day with respect to the
 Gregorian calendar.

 The approximation 365+97/400 is achieved by having 97 leap years
 every 400 years, using the following rules:

	
 Every year divisible by 4 is a leap year.

	
 However, every year divisible by 100 is not a leap year.

	
 However, every year divisible by 400 is a leap year after all.

 So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600,
 2000, and 2400 are leap years.

 By contrast, in the older Julian calendar all years divisible by 4 are leap
 years.

 The papal bull of February 1582 decreed that 10 days should be dropped
 from October 1582 so that 15 October should follow immediately after
 4 October.
 This was observed in Italy, Poland, Portugal, and Spain. Other Catholic
 countries followed shortly after, but Protestant countries were
 reluctant to change, and the Greek Orthodox countries didn't change
 until the start of the 20th century.

 The reform was observed by Great Britain and its dominions (including what
 is now the USA) in 1752.
 Thus 2 September 1752 was followed by 14 September 1752.

 This is why Unix systems that have the cal program
 produce the following:

$ cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

 But, of course, this calendar is only valid for Great Britain and
 dominions, not other places.
 Since it would be difficult and confusing to try to track the actual
 calendars that were in use in various places at various times,
 PostgreSQL™ does not try, but rather follows the Gregorian
 calendar rules for all dates, even though this method is not historically
 accurate.

 Different calendars have been developed in various parts of the
 world, many predating the Gregorian system.

 For example,
 the beginnings of the Chinese calendar can be traced back to the 14th
 century BC. Legend has it that the Emperor Huangdi invented that
 calendar in 2637 BC.

 The People's Republic of China uses the Gregorian calendar
 for civil purposes. The Chinese calendar is used for determining
 festivals.

Julian Dates

 The Julian Date system is a method for
 numbering days. It is
 unrelated to the Julian calendar, though it is confusingly
 named similarly to that calendar.
 The Julian Date system was invented by the French scholar
 Joseph Justus Scaliger (1540–1609)
 and probably takes its name from Scaliger's father,
 the Italian scholar Julius Caesar Scaliger (1484–1558).

 In the Julian Date system, each day has a sequential number, starting
 from JD 0 (which is sometimes called the Julian Date).
 JD 0 corresponds to 1 January 4713 BC in the Julian calendar, or
 24 November 4714 BC in the Gregorian calendar. Julian Date counting
 is most often used by astronomers for labeling their nightly observations,
 and therefore a date runs from noon UTC to the next noon UTC, rather than
 from midnight to midnight: JD 0 designates the 24 hours from noon UTC on
 24 November 4714 BC to noon UTC on 25 November 4714 BC.

 Although PostgreSQL™ supports Julian Date notation for
 input and output of dates (and also uses Julian dates for some internal
 datetime calculations), it does not observe the nicety of having dates
 run from noon to noon. PostgreSQL™ treats a Julian Date
 as running from local midnight to local midnight, the same as a normal
 date.

 This definition does, however, provide a way to obtain the astronomical
 definition when you need it: do the arithmetic in time
 zone UTC+12. For example,

=> SELECT extract(julian from '2021-06-23 7:00:00-04'::timestamptz at time zone 'UTC+12');
 extract

 2459388.95833333333333333333
(1 row)
=> SELECT extract(julian from '2021-06-23 8:00:00-04'::timestamptz at time zone 'UTC+12');
 extract

 2459389.0000000000000000000000000000
(1 row)
=> SELECT extract(julian from date '2021-06-23');
 extract

 2459389
(1 row)

Appendix C. SQL Key Words

 Table C.1, “SQL Key Words” lists all tokens that are key words
 in the SQL standard and in PostgreSQL™
 16.12. Background information can be found in the section called “Identifiers and Key Words”.
 (For space reasons, only the latest two versions of the SQL standard, and
 SQL-92 for historical comparison, are included. The differences between
 those and the other intermediate standard versions are small.)

 SQL distinguishes between reserved and
 non-reserved key words. According to the standard,
 reserved key words
 are the only real key words; they are never allowed as identifiers.
 Non-reserved key words only have a special meaning in particular
 contexts and can be used as identifiers in other contexts. Most
 non-reserved key words are actually the names of built-in tables
 and functions specified by SQL. The concept of non-reserved key
 words essentially only exists to declare that some predefined meaning
 is attached to a word in some contexts.

 In the PostgreSQL™ parser, life is a bit
 more complicated. There are several different classes of tokens
 ranging from those that can never be used as an identifier to those
 that have absolutely no special status in the parser, but are considered
 ordinary identifiers. (The latter is usually the case for
 functions specified by SQL.) Even reserved key words are not
 completely reserved in PostgreSQL™, but
 can be used as column labels (for example, SELECT 55 AS
 CHECK, even though CHECK is a reserved key
 word).

 In Table C.1, “SQL Key Words” in the column for
 PostgreSQL™ we classify as
 “non-reserved” those key words that are explicitly
 known to the parser but are allowed as column or table names.
 Some key words that are otherwise
 non-reserved cannot be used as function or data type names and are
 marked accordingly. (Most of these words represent built-in
 functions or data types with special syntax. The function or type
 is still available but it cannot be redefined by the user.) Labeled
 “reserved” are those tokens that are not allowed as
 column or table names. Some reserved key words are
 allowable as names for functions or data types; this is also shown in the
 table. If not so marked, a reserved key word is only allowed as a
 column label.
 A blank entry in this column means that the word is treated as an
 ordinary identifier by PostgreSQL™.

 Furthermore, while most key words can be used as “bare”
 column labels without writing AS before them (as
 described in the section called “Column Labels”), there are a few
 that require a leading AS to avoid ambiguity. These
 are marked in the table as “requires AS”.

 As a general rule, if you get spurious parser errors for commands
 that use any of the listed key words as an identifier, you should
 try quoting the identifier to see if the problem goes away.

 It is important to understand before studying Table C.1, “SQL Key Words” that the fact that a key word is not
 reserved in PostgreSQL™ does not mean that
 the feature related to the word is not implemented. Conversely, the
 presence of a key word does not indicate the existence of a feature.

Table C.1. SQL Key Words
	Key Word	PostgreSQL™	SQL:2023	SQL:2016	SQL-92
	A	 	non-reserved	non-reserved	
	ABORT	non-reserved	 	 	
	ABS	 	reserved	reserved	
	ABSENT	non-reserved	reserved	reserved	
	ABSOLUTE	non-reserved	non-reserved	non-reserved	reserved
	ACCESS	non-reserved	 	 	
	ACCORDING	 	non-reserved	non-reserved	
	ACOS	 	reserved	reserved	
	ACTION	non-reserved	non-reserved	non-reserved	reserved
	ADA	 	non-reserved	non-reserved	non-reserved
	ADD	non-reserved	non-reserved	non-reserved	reserved
	ADMIN	non-reserved	non-reserved	non-reserved	
	AFTER	non-reserved	non-reserved	non-reserved	
	AGGREGATE	non-reserved	 	 	
	ALL	reserved	reserved	reserved	reserved
	ALLOCATE	 	reserved	reserved	reserved
	ALSO	non-reserved	 	 	
	ALTER	non-reserved	reserved	reserved	reserved
	ALWAYS	non-reserved	non-reserved	non-reserved	
	ANALYSE	reserved	 	 	
	ANALYZE	reserved	 	 	
	AND	reserved	reserved	reserved	reserved
	ANY	reserved	reserved	reserved	reserved
	ANY_VALUE	 	reserved	 	
	ARE	 	reserved	reserved	reserved
	ARRAY	reserved, requires AS	reserved	reserved	
	ARRAY_AGG	 	reserved	reserved	
	ARRAY_​MAX_​CARDINALITY	 	reserved	reserved	
	AS	reserved, requires AS	reserved	reserved	reserved
	ASC	reserved	non-reserved	non-reserved	reserved
	ASENSITIVE	non-reserved	reserved	reserved	
	ASIN	 	reserved	reserved	
	ASSERTION	non-reserved	non-reserved	non-reserved	reserved
	ASSIGNMENT	non-reserved	non-reserved	non-reserved	
	ASYMMETRIC	reserved	reserved	reserved	
	AT	non-reserved	reserved	reserved	reserved
	ATAN	 	reserved	reserved	
	ATOMIC	non-reserved	reserved	reserved	
	ATTACH	non-reserved	 	 	
	ATTRIBUTE	non-reserved	non-reserved	non-reserved	
	ATTRIBUTES	 	non-reserved	non-reserved	
	AUTHORIZATION	reserved (can be function or type)	reserved	reserved	reserved
	AVG	 	reserved	reserved	reserved
	BACKWARD	non-reserved	 	 	
	BASE64	 	non-reserved	non-reserved	
	BEFORE	non-reserved	non-reserved	non-reserved	
	BEGIN	non-reserved	reserved	reserved	reserved
	BEGIN_FRAME	 	reserved	reserved	
	BEGIN_PARTITION	 	reserved	reserved	
	BERNOULLI	 	non-reserved	non-reserved	
	BETWEEN	non-reserved (cannot be function or type)	reserved	reserved	reserved
	BIGINT	non-reserved (cannot be function or type)	reserved	reserved	
	BINARY	reserved (can be function or type)	reserved	reserved	
	BIT	non-reserved (cannot be function or type)	 	 	reserved
	BIT_LENGTH	 	 	 	reserved
	BLOB	 	reserved	reserved	
	BLOCKED	 	non-reserved	non-reserved	
	BOM	 	non-reserved	non-reserved	
	BOOLEAN	non-reserved (cannot be function or type)	reserved	reserved	
	BOTH	reserved	reserved	reserved	reserved
	BREADTH	non-reserved	non-reserved	non-reserved	
	BTRIM	 	reserved	 	
	BY	non-reserved	reserved	reserved	reserved
	C	 	non-reserved	non-reserved	non-reserved
	CACHE	non-reserved	 	 	
	CALL	non-reserved	reserved	reserved	
	CALLED	non-reserved	reserved	reserved	
	CARDINALITY	 	reserved	reserved	
	CASCADE	non-reserved	non-reserved	non-reserved	reserved
	CASCADED	non-reserved	reserved	reserved	reserved
	CASE	reserved	reserved	reserved	reserved
	CAST	reserved	reserved	reserved	reserved
	CATALOG	non-reserved	non-reserved	non-reserved	reserved
	CATALOG_NAME	 	non-reserved	non-reserved	non-reserved
	CEIL	 	reserved	reserved	
	CEILING	 	reserved	reserved	
	CHAIN	non-reserved	non-reserved	non-reserved	
	CHAINING	 	non-reserved	non-reserved	
	CHAR	non-reserved (cannot be function or type), requires AS	reserved	reserved	reserved
	CHARACTER	non-reserved (cannot be function or type), requires AS	reserved	reserved	reserved
	CHARACTERISTICS	non-reserved	non-reserved	non-reserved	
	CHARACTERS	 	non-reserved	non-reserved	
	CHARACTER_LENGTH	 	reserved	reserved	reserved
	CHARACTER_​SET_​CATALOG	 	non-reserved	non-reserved	non-reserved
	CHARACTER_SET_NAME	 	non-reserved	non-reserved	non-reserved
	CHARACTER_SET_SCHEMA	 	non-reserved	non-reserved	non-reserved
	CHAR_LENGTH	 	reserved	reserved	reserved
	CHECK	reserved	reserved	reserved	reserved
	CHECKPOINT	non-reserved	 	 	
	CLASS	non-reserved	 	 	
	CLASSIFIER	 	reserved	reserved	
	CLASS_ORIGIN	 	non-reserved	non-reserved	non-reserved
	CLOB	 	reserved	reserved	
	CLOSE	non-reserved	reserved	reserved	reserved
	CLUSTER	non-reserved	 	 	
	COALESCE	non-reserved (cannot be function or type)	reserved	reserved	reserved
	COBOL	 	non-reserved	non-reserved	non-reserved
	COLLATE	reserved	reserved	reserved	reserved
	COLLATION	reserved (can be function or type)	non-reserved	non-reserved	reserved
	COLLATION_CATALOG	 	non-reserved	non-reserved	non-reserved
	COLLATION_NAME	 	non-reserved	non-reserved	non-reserved
	COLLATION_SCHEMA	 	non-reserved	non-reserved	non-reserved
	COLLECT	 	reserved	reserved	
	COLUMN	reserved	reserved	reserved	reserved
	COLUMNS	non-reserved	non-reserved	non-reserved	
	COLUMN_NAME	 	non-reserved	non-reserved	non-reserved
	COMMAND_FUNCTION	 	non-reserved	non-reserved	non-reserved
	COMMAND_​FUNCTION_​CODE	 	non-reserved	non-reserved	
	COMMENT	non-reserved	 	 	
	COMMENTS	non-reserved	 	 	
	COMMIT	non-reserved	reserved	reserved	reserved
	COMMITTED	non-reserved	non-reserved	non-reserved	non-reserved
	COMPRESSION	non-reserved	 	 	
	CONCURRENTLY	reserved (can be function or type)	 	 	
	CONDITION	 	reserved	reserved	
	CONDITIONAL	 	non-reserved	non-reserved	
	CONDITION_NUMBER	 	non-reserved	non-reserved	non-reserved
	CONFIGURATION	non-reserved	 	 	
	CONFLICT	non-reserved	 	 	
	CONNECT	 	reserved	reserved	reserved
	CONNECTION	non-reserved	non-reserved	non-reserved	reserved
	CONNECTION_NAME	 	non-reserved	non-reserved	non-reserved
	CONSTRAINT	reserved	reserved	reserved	reserved
	CONSTRAINTS	non-reserved	non-reserved	non-reserved	reserved
	CONSTRAINT_CATALOG	 	non-reserved	non-reserved	non-reserved
	CONSTRAINT_NAME	 	non-reserved	non-reserved	non-reserved
	CONSTRAINT_SCHEMA	 	non-reserved	non-reserved	non-reserved
	CONSTRUCTOR	 	non-reserved	non-reserved	
	CONTAINS	 	reserved	reserved	
	CONTENT	non-reserved	non-reserved	non-reserved	
	CONTINUE	non-reserved	non-reserved	non-reserved	reserved
	CONTROL	 	non-reserved	non-reserved	
	CONVERSION	non-reserved	 	 	
	CONVERT	 	reserved	reserved	reserved
	COPARTITION	 	non-reserved	 	
	COPY	non-reserved	reserved	reserved	
	CORR	 	reserved	reserved	
	CORRESPONDING	 	reserved	reserved	reserved
	COS	 	reserved	reserved	
	COSH	 	reserved	reserved	
	COST	non-reserved	 	 	
	COUNT	 	reserved	reserved	reserved
	COVAR_POP	 	reserved	reserved	
	COVAR_SAMP	 	reserved	reserved	
	CREATE	reserved, requires AS	reserved	reserved	reserved
	CROSS	reserved (can be function or type)	reserved	reserved	reserved
	CSV	non-reserved	 	 	
	CUBE	non-reserved	reserved	reserved	
	CUME_DIST	 	reserved	reserved	
	CURRENT	non-reserved	reserved	reserved	reserved
	CURRENT_CATALOG	reserved	reserved	reserved	
	CURRENT_DATE	reserved	reserved	reserved	reserved
	CURRENT_​DEFAULT_​TRANSFORM_​GROUP	 	reserved	reserved	
	CURRENT_PATH	 	reserved	reserved	
	CURRENT_ROLE	reserved	reserved	reserved	
	CURRENT_ROW	 	reserved	reserved	
	CURRENT_SCHEMA	reserved (can be function or type)	reserved	reserved	
	CURRENT_TIME	reserved	reserved	reserved	reserved
	CURRENT_TIMESTAMP	reserved	reserved	reserved	reserved
	CURRENT_​TRANSFORM_​GROUP_​FOR_​TYPE	 	reserved	reserved	
	CURRENT_USER	reserved	reserved	reserved	reserved
	CURSOR	non-reserved	reserved	reserved	reserved
	CURSOR_NAME	 	non-reserved	non-reserved	non-reserved
	CYCLE	non-reserved	reserved	reserved	
	DATA	non-reserved	non-reserved	non-reserved	non-reserved
	DATABASE	non-reserved	 	 	
	DATALINK	 	reserved	reserved	
	DATE	 	reserved	reserved	reserved
	DATETIME_​INTERVAL_​CODE	 	non-reserved	non-reserved	non-reserved
	DATETIME_​INTERVAL_​PRECISION	 	non-reserved	non-reserved	non-reserved
	DAY	non-reserved, requires AS	reserved	reserved	reserved
	DB	 	non-reserved	non-reserved	
	DEALLOCATE	non-reserved	reserved	reserved	reserved
	DEC	non-reserved (cannot be function or type)	reserved	reserved	reserved
	DECFLOAT	 	reserved	reserved	
	DECIMAL	non-reserved (cannot be function or type)	reserved	reserved	reserved
	DECLARE	non-reserved	reserved	reserved	reserved
	DEFAULT	reserved	reserved	reserved	reserved
	DEFAULTS	non-reserved	non-reserved	non-reserved	
	DEFERRABLE	reserved	non-reserved	non-reserved	reserved
	DEFERRED	non-reserved	non-reserved	non-reserved	reserved
	DEFINE	 	reserved	reserved	
	DEFINED	 	non-reserved	non-reserved	
	DEFINER	non-reserved	non-reserved	non-reserved	
	DEGREE	 	non-reserved	non-reserved	
	DELETE	non-reserved	reserved	reserved	reserved
	DELIMITER	non-reserved	 	 	
	DELIMITERS	non-reserved	 	 	
	DENSE_RANK	 	reserved	reserved	
	DEPENDS	non-reserved	 	 	
	DEPTH	non-reserved	non-reserved	non-reserved	
	DEREF	 	reserved	reserved	
	DERIVED	 	non-reserved	non-reserved	
	DESC	reserved	non-reserved	non-reserved	reserved
	DESCRIBE	 	reserved	reserved	reserved
	DESCRIPTOR	 	non-reserved	non-reserved	reserved
	DETACH	non-reserved	 	 	
	DETERMINISTIC	 	reserved	reserved	
	DIAGNOSTICS	 	non-reserved	non-reserved	reserved
	DICTIONARY	non-reserved	 	 	
	DISABLE	non-reserved	 	 	
	DISCARD	non-reserved	 	 	
	DISCONNECT	 	reserved	reserved	reserved
	DISPATCH	 	non-reserved	non-reserved	
	DISTINCT	reserved	reserved	reserved	reserved
	DLNEWCOPY	 	reserved	reserved	
	DLPREVIOUSCOPY	 	reserved	reserved	
	DLURLCOMPLETE	 	reserved	reserved	
	DLURLCOMPLETEONLY	 	reserved	reserved	
	DLURLCOMPLETEWRITE	 	reserved	reserved	
	DLURLPATH	 	reserved	reserved	
	DLURLPATHONLY	 	reserved	reserved	
	DLURLPATHWRITE	 	reserved	reserved	
	DLURLSCHEME	 	reserved	reserved	
	DLURLSERVER	 	reserved	reserved	
	DLVALUE	 	reserved	reserved	
	DO	reserved	 	 	
	DOCUMENT	non-reserved	non-reserved	non-reserved	
	DOMAIN	non-reserved	non-reserved	non-reserved	reserved
	DOUBLE	non-reserved	reserved	reserved	reserved
	DROP	non-reserved	reserved	reserved	reserved
	DYNAMIC	 	reserved	reserved	
	DYNAMIC_FUNCTION	 	non-reserved	non-reserved	non-reserved
	DYNAMIC_​FUNCTION_​CODE	 	non-reserved	non-reserved	
	EACH	non-reserved	reserved	reserved	
	ELEMENT	 	reserved	reserved	
	ELSE	reserved	reserved	reserved	reserved
	EMPTY	 	reserved	reserved	
	ENABLE	non-reserved	 	 	
	ENCODING	non-reserved	non-reserved	non-reserved	
	ENCRYPTED	non-reserved	 	 	
	END	reserved	reserved	reserved	reserved
	END-EXEC	 	reserved	reserved	reserved
	END_FRAME	 	reserved	reserved	
	END_PARTITION	 	reserved	reserved	
	ENFORCED	 	non-reserved	non-reserved	
	ENUM	non-reserved	 	 	
	EQUALS	 	reserved	reserved	
	ERROR	 	non-reserved	non-reserved	
	ESCAPE	non-reserved	reserved	reserved	reserved
	EVENT	non-reserved	 	 	
	EVERY	 	reserved	reserved	
	EXCEPT	reserved, requires AS	reserved	reserved	reserved
	EXCEPTION	 	 	 	reserved
	EXCLUDE	non-reserved	non-reserved	non-reserved	
	EXCLUDING	non-reserved	non-reserved	non-reserved	
	EXCLUSIVE	non-reserved	 	 	
	EXEC	 	reserved	reserved	reserved
	EXECUTE	non-reserved	reserved	reserved	reserved
	EXISTS	non-reserved (cannot be function or type)	reserved	reserved	reserved
	EXP	 	reserved	reserved	
	EXPLAIN	non-reserved	 	 	
	EXPRESSION	non-reserved	non-reserved	non-reserved	
	EXTENSION	non-reserved	 	 	
	EXTERNAL	non-reserved	reserved	reserved	reserved
	EXTRACT	non-reserved (cannot be function or type)	reserved	reserved	reserved
	FALSE	reserved	reserved	reserved	reserved
	FAMILY	non-reserved	 	 	
	FETCH	reserved, requires AS	reserved	reserved	reserved
	FILE	 	non-reserved	non-reserved	
	FILTER	non-reserved, requires AS	reserved	reserved	
	FINAL	 	non-reserved	non-reserved	
	FINALIZE	non-reserved	 	 	
	FINISH	 	non-reserved	non-reserved	
	FIRST	non-reserved	non-reserved	non-reserved	reserved
	FIRST_VALUE	 	reserved	reserved	
	FLAG	 	non-reserved	non-reserved	
	FLOAT	non-reserved (cannot be function or type)	reserved	reserved	reserved
	FLOOR	 	reserved	reserved	
	FOLLOWING	non-reserved	non-reserved	non-reserved	
	FOR	reserved, requires AS	reserved	reserved	reserved
	FORCE	non-reserved	 	 	
	FOREIGN	reserved	reserved	reserved	reserved
	FORMAT	non-reserved	non-reserved	non-reserved	
	FORTRAN	 	non-reserved	non-reserved	non-reserved
	FORWARD	non-reserved	 	 	
	FOUND	 	non-reserved	non-reserved	reserved
	FRAME_ROW	 	reserved	reserved	
	FREE	 	reserved	reserved	
	FREEZE	reserved (can be function or type)	 	 	
	FROM	reserved, requires AS	reserved	reserved	reserved
	FS	 	non-reserved	non-reserved	
	FULFILL	 	non-reserved	non-reserved	
	FULL	reserved (can be function or type)	reserved	reserved	reserved
	FUNCTION	non-reserved	reserved	reserved	
	FUNCTIONS	non-reserved	 	 	
	FUSION	 	reserved	reserved	
	G	 	non-reserved	non-reserved	
	GENERAL	 	non-reserved	non-reserved	
	GENERATED	non-reserved	non-reserved	non-reserved	
	GET	 	reserved	reserved	reserved
	GLOBAL	non-reserved	reserved	reserved	reserved
	GO	 	non-reserved	non-reserved	reserved
	GOTO	 	non-reserved	non-reserved	reserved
	GRANT	reserved, requires AS	reserved	reserved	reserved
	GRANTED	non-reserved	non-reserved	non-reserved	
	GREATEST	non-reserved (cannot be function or type)	reserved	 	
	GROUP	reserved, requires AS	reserved	reserved	reserved
	GROUPING	non-reserved (cannot be function or type)	reserved	reserved	
	GROUPS	non-reserved	reserved	reserved	
	HANDLER	non-reserved	 	 	
	HAVING	reserved, requires AS	reserved	reserved	reserved
	HEADER	non-reserved	 	 	
	HEX	 	non-reserved	non-reserved	
	HIERARCHY	 	non-reserved	non-reserved	
	HOLD	non-reserved	reserved	reserved	
	HOUR	non-reserved, requires AS	reserved	reserved	reserved
	ID	 	non-reserved	non-reserved	
	IDENTITY	non-reserved	reserved	reserved	reserved
	IF	non-reserved	 	 	
	IGNORE	 	non-reserved	non-reserved	
	ILIKE	reserved (can be function or type)	 	 	
	IMMEDIATE	non-reserved	non-reserved	non-reserved	reserved
	IMMEDIATELY	 	non-reserved	non-reserved	
	IMMUTABLE	non-reserved	 	 	
	IMPLEMENTATION	 	non-reserved	non-reserved	
	IMPLICIT	non-reserved	 	 	
	IMPORT	non-reserved	reserved	reserved	
	IN	reserved	reserved	reserved	reserved
	INCLUDE	non-reserved	 	 	
	INCLUDING	non-reserved	non-reserved	non-reserved	
	INCREMENT	non-reserved	non-reserved	non-reserved	
	INDENT	non-reserved	non-reserved	non-reserved	
	INDEX	non-reserved	 	 	
	INDEXES	non-reserved	 	 	
	INDICATOR	 	reserved	reserved	reserved
	INHERIT	non-reserved	 	 	
	INHERITS	non-reserved	 	 	
	INITIAL	 	reserved	reserved	
	INITIALLY	reserved	non-reserved	non-reserved	reserved
	INLINE	non-reserved	 	 	
	INNER	reserved (can be function or type)	reserved	reserved	reserved
	INOUT	non-reserved (cannot be function or type)	reserved	reserved	
	INPUT	non-reserved	non-reserved	non-reserved	reserved
	INSENSITIVE	non-reserved	reserved	reserved	reserved
	INSERT	non-reserved	reserved	reserved	reserved
	INSTANCE	 	non-reserved	non-reserved	
	INSTANTIABLE	 	non-reserved	non-reserved	
	INSTEAD	non-reserved	non-reserved	non-reserved	
	INT	non-reserved (cannot be function or type)	reserved	reserved	reserved
	INTEGER	non-reserved (cannot be function or type)	reserved	reserved	reserved
	INTEGRITY	 	non-reserved	non-reserved	
	INTERSECT	reserved, requires AS	reserved	reserved	reserved
	INTERSECTION	 	reserved	reserved	
	INTERVAL	non-reserved (cannot be function or type)	reserved	reserved	reserved
	INTO	reserved, requires AS	reserved	reserved	reserved
	INVOKER	non-reserved	non-reserved	non-reserved	
	IS	reserved (can be function or type)	reserved	reserved	reserved
	ISNULL	reserved (can be function or type), requires AS	 	 	
	ISOLATION	non-reserved	non-reserved	non-reserved	reserved
	JOIN	reserved (can be function or type)	reserved	reserved	reserved
	JSON	non-reserved	reserved	 	
	JSON_ARRAY	non-reserved (cannot be function or type)	reserved	reserved	
	JSON_ARRAYAGG	non-reserved (cannot be function or type)	reserved	reserved	
	JSON_EXISTS	 	reserved	reserved	
	JSON_OBJECT	non-reserved (cannot be function or type)	reserved	reserved	
	JSON_OBJECTAGG	non-reserved (cannot be function or type)	reserved	reserved	
	JSON_QUERY	 	reserved	reserved	
	JSON_SCALAR	 	reserved	 	
	JSON_SERIALIZE	 	reserved	 	
	JSON_TABLE	 	reserved	reserved	
	JSON_TABLE_PRIMITIVE	 	reserved	reserved	
	JSON_VALUE	 	reserved	reserved	
	K	 	non-reserved	non-reserved	
	KEEP	 	non-reserved	non-reserved	
	KEY	non-reserved	non-reserved	non-reserved	reserved
	KEYS	non-reserved	non-reserved	non-reserved	
	KEY_MEMBER	 	non-reserved	non-reserved	
	KEY_TYPE	 	non-reserved	non-reserved	
	LABEL	non-reserved	 	 	
	LAG	 	reserved	reserved	
	LANGUAGE	non-reserved	reserved	reserved	reserved
	LARGE	non-reserved	reserved	reserved	
	LAST	non-reserved	non-reserved	non-reserved	reserved
	LAST_VALUE	 	reserved	reserved	
	LATERAL	reserved	reserved	reserved	
	LEAD	 	reserved	reserved	
	LEADING	reserved	reserved	reserved	reserved
	LEAKPROOF	non-reserved	 	 	
	LEAST	non-reserved (cannot be function or type)	reserved	 	
	LEFT	reserved (can be function or type)	reserved	reserved	reserved
	LENGTH	 	non-reserved	non-reserved	non-reserved
	LEVEL	non-reserved	non-reserved	non-reserved	reserved
	LIBRARY	 	non-reserved	non-reserved	
	LIKE	reserved (can be function or type)	reserved	reserved	reserved
	LIKE_REGEX	 	reserved	reserved	
	LIMIT	reserved, requires AS	non-reserved	non-reserved	
	LINK	 	non-reserved	non-reserved	
	LISTAGG	 	reserved	reserved	
	LISTEN	non-reserved	 	 	
	LN	 	reserved	reserved	
	LOAD	non-reserved	 	 	
	LOCAL	non-reserved	reserved	reserved	reserved
	LOCALTIME	reserved	reserved	reserved	
	LOCALTIMESTAMP	reserved	reserved	reserved	
	LOCATION	non-reserved	non-reserved	non-reserved	
	LOCATOR	 	non-reserved	non-reserved	
	LOCK	non-reserved	 	 	
	LOCKED	non-reserved	 	 	
	LOG	 	reserved	reserved	
	LOG10	 	reserved	reserved	
	LOGGED	non-reserved	 	 	
	LOWER	 	reserved	reserved	reserved
	LPAD	 	reserved	 	
	LTRIM	 	reserved	 	
	M	 	non-reserved	non-reserved	
	MAP	 	non-reserved	non-reserved	
	MAPPING	non-reserved	non-reserved	non-reserved	
	MATCH	non-reserved	reserved	reserved	reserved
	MATCHED	non-reserved	non-reserved	non-reserved	
	MATCHES	 	reserved	reserved	
	MATCH_NUMBER	 	reserved	reserved	
	MATCH_RECOGNIZE	 	reserved	reserved	
	MATERIALIZED	non-reserved	 	 	
	MAX	 	reserved	reserved	reserved
	MAXVALUE	non-reserved	non-reserved	non-reserved	
	MEASURES	 	non-reserved	non-reserved	
	MEMBER	 	reserved	reserved	
	MERGE	non-reserved	reserved	reserved	
	MESSAGE_LENGTH	 	non-reserved	non-reserved	non-reserved
	MESSAGE_OCTET_LENGTH	 	non-reserved	non-reserved	non-reserved
	MESSAGE_TEXT	 	non-reserved	non-reserved	non-reserved
	METHOD	non-reserved	reserved	reserved	
	MIN	 	reserved	reserved	reserved
	MINUTE	non-reserved, requires AS	reserved	reserved	reserved
	MINVALUE	non-reserved	non-reserved	non-reserved	
	MOD	 	reserved	reserved	
	MODE	non-reserved	 	 	
	MODIFIES	 	reserved	reserved	
	MODULE	 	reserved	reserved	reserved
	MONTH	non-reserved, requires AS	reserved	reserved	reserved
	MORE	 	non-reserved	non-reserved	non-reserved
	MOVE	non-reserved	 	 	
	MULTISET	 	reserved	reserved	
	MUMPS	 	non-reserved	non-reserved	non-reserved
	NAME	non-reserved	non-reserved	non-reserved	non-reserved
	NAMES	non-reserved	non-reserved	non-reserved	reserved
	NAMESPACE	 	non-reserved	non-reserved	
	NATIONAL	non-reserved (cannot be function or type)	reserved	reserved	reserved
	NATURAL	reserved (can be function or type)	reserved	reserved	reserved
	NCHAR	non-reserved (cannot be function or type)	reserved	reserved	reserved
	NCLOB	 	reserved	reserved	
	NESTED	 	non-reserved	non-reserved	
	NESTING	 	non-reserved	non-reserved	
	NEW	non-reserved	reserved	reserved	
	NEXT	non-reserved	non-reserved	non-reserved	reserved
	NFC	non-reserved	non-reserved	non-reserved	
	NFD	non-reserved	non-reserved	non-reserved	
	NFKC	non-reserved	non-reserved	non-reserved	
	NFKD	non-reserved	non-reserved	non-reserved	
	NIL	 	non-reserved	non-reserved	
	NO	non-reserved	reserved	reserved	reserved
	NONE	non-reserved (cannot be function or type)	reserved	reserved	
	NORMALIZE	non-reserved (cannot be function or type)	reserved	reserved	
	NORMALIZED	non-reserved	non-reserved	non-reserved	
	NOT	reserved	reserved	reserved	reserved
	NOTHING	non-reserved	 	 	
	NOTIFY	non-reserved	 	 	
	NOTNULL	reserved (can be function or type), requires AS	 	 	
	NOWAIT	non-reserved	 	 	
	NTH_VALUE	 	reserved	reserved	
	NTILE	 	reserved	reserved	
	NULL	reserved	reserved	reserved	reserved
	NULLABLE	 	non-reserved	non-reserved	non-reserved
	NULLIF	non-reserved (cannot be function or type)	reserved	reserved	reserved
	NULLS	non-reserved	non-reserved	non-reserved	
	NULL_ORDERING	 	non-reserved	non-reserved	
	NUMBER	 	non-reserved	non-reserved	non-reserved
	NUMERIC	non-reserved (cannot be function or type)	reserved	reserved	reserved
	OBJECT	non-reserved	non-reserved	non-reserved	
	OCCURRENCE	 	non-reserved	non-reserved	
	OCCURRENCES_REGEX	 	reserved	reserved	
	OCTETS	 	non-reserved	non-reserved	
	OCTET_LENGTH	 	reserved	reserved	reserved
	OF	non-reserved	reserved	reserved	reserved
	OFF	non-reserved	non-reserved	non-reserved	
	OFFSET	reserved, requires AS	reserved	reserved	
	OIDS	non-reserved	 	 	
	OLD	non-reserved	reserved	reserved	
	OMIT	 	reserved	reserved	
	ON	reserved, requires AS	reserved	reserved	reserved
	ONE	 	reserved	reserved	
	ONLY	reserved	reserved	reserved	reserved
	OPEN	 	reserved	reserved	reserved
	OPERATOR	non-reserved	 	 	
	OPTION	non-reserved	non-reserved	non-reserved	reserved
	OPTIONS	non-reserved	non-reserved	non-reserved	
	OR	reserved	reserved	reserved	reserved
	ORDER	reserved, requires AS	reserved	reserved	reserved
	ORDERING	 	non-reserved	non-reserved	
	ORDINALITY	non-reserved	non-reserved	non-reserved	
	OTHERS	non-reserved	non-reserved	non-reserved	
	OUT	non-reserved (cannot be function or type)	reserved	reserved	
	OUTER	reserved (can be function or type)	reserved	reserved	reserved
	OUTPUT	 	non-reserved	non-reserved	reserved
	OVER	non-reserved, requires AS	reserved	reserved	
	OVERFLOW	 	non-reserved	non-reserved	
	OVERLAPS	reserved (can be function or type), requires AS	reserved	reserved	reserved
	OVERLAY	non-reserved (cannot be function or type)	reserved	reserved	
	OVERRIDING	non-reserved	non-reserved	non-reserved	
	OWNED	non-reserved	 	 	
	OWNER	non-reserved	 	 	
	P	 	non-reserved	non-reserved	
	PAD	 	non-reserved	non-reserved	reserved
	PARALLEL	non-reserved	 	 	
	PARAMETER	non-reserved	reserved	reserved	
	PARAMETER_MODE	 	non-reserved	non-reserved	
	PARAMETER_NAME	 	non-reserved	non-reserved	
	PARAMETER_​ORDINAL_​POSITION	 	non-reserved	non-reserved	
	PARAMETER_​SPECIFIC_​CATALOG	 	non-reserved	non-reserved	
	PARAMETER_​SPECIFIC_​NAME	 	non-reserved	non-reserved	
	PARAMETER_​SPECIFIC_​SCHEMA	 	non-reserved	non-reserved	
	PARSER	non-reserved	 	 	
	PARTIAL	non-reserved	non-reserved	non-reserved	reserved
	PARTITION	non-reserved	reserved	reserved	
	PASCAL	 	non-reserved	non-reserved	non-reserved
	PASS	 	non-reserved	non-reserved	
	PASSING	non-reserved	non-reserved	non-reserved	
	PASSTHROUGH	 	non-reserved	non-reserved	
	PASSWORD	non-reserved	 	 	
	PAST	 	non-reserved	non-reserved	
	PATH	 	non-reserved	non-reserved	
	PATTERN	 	reserved	reserved	
	PER	 	reserved	reserved	
	PERCENT	 	reserved	reserved	
	PERCENTILE_CONT	 	reserved	reserved	
	PERCENTILE_DISC	 	reserved	reserved	
	PERCENT_RANK	 	reserved	reserved	
	PERIOD	 	reserved	reserved	
	PERMISSION	 	non-reserved	non-reserved	
	PERMUTE	 	non-reserved	non-reserved	
	PIPE	 	non-reserved	non-reserved	
	PLACING	reserved	non-reserved	non-reserved	
	PLAN	 	non-reserved	non-reserved	
	PLANS	non-reserved	 	 	
	PLI	 	non-reserved	non-reserved	non-reserved
	POLICY	non-reserved	 	 	
	PORTION	 	reserved	reserved	
	POSITION	non-reserved (cannot be function or type)	reserved	reserved	reserved
	POSITION_REGEX	 	reserved	reserved	
	POWER	 	reserved	reserved	
	PRECEDES	 	reserved	reserved	
	PRECEDING	non-reserved	non-reserved	non-reserved	
	PRECISION	non-reserved (cannot be function or type), requires AS	reserved	reserved	reserved
	PREPARE	non-reserved	reserved	reserved	reserved
	PREPARED	non-reserved	 	 	
	PRESERVE	non-reserved	non-reserved	non-reserved	reserved
	PREV	 	non-reserved	non-reserved	
	PRIMARY	reserved	reserved	reserved	reserved
	PRIOR	non-reserved	non-reserved	non-reserved	reserved
	PRIVATE	 	non-reserved	non-reserved	
	PRIVILEGES	non-reserved	non-reserved	non-reserved	reserved
	PROCEDURAL	non-reserved	 	 	
	PROCEDURE	non-reserved	reserved	reserved	reserved
	PROCEDURES	non-reserved	 	 	
	PROGRAM	non-reserved	 	 	
	PRUNE	 	non-reserved	non-reserved	
	PTF	 	reserved	reserved	
	PUBLIC	 	non-reserved	non-reserved	reserved
	PUBLICATION	non-reserved	 	 	
	QUOTE	non-reserved	 	 	
	QUOTES	 	non-reserved	non-reserved	
	RANGE	non-reserved	reserved	reserved	
	RANK	 	reserved	reserved	
	READ	non-reserved	non-reserved	non-reserved	reserved
	READS	 	reserved	reserved	
	REAL	non-reserved (cannot be function or type)	reserved	reserved	reserved
	REASSIGN	non-reserved	 	 	
	RECHECK	non-reserved	 	 	
	RECOVERY	 	non-reserved	non-reserved	
	RECURSIVE	non-reserved	reserved	reserved	
	REF	non-reserved	reserved	reserved	
	REFERENCES	reserved	reserved	reserved	reserved
	REFERENCING	non-reserved	reserved	reserved	
	REFRESH	non-reserved	 	 	
	REGR_AVGX	 	reserved	reserved	
	REGR_AVGY	 	reserved	reserved	
	REGR_COUNT	 	reserved	reserved	
	REGR_INTERCEPT	 	reserved	reserved	
	REGR_R2	 	reserved	reserved	
	REGR_SLOPE	 	reserved	reserved	
	REGR_SXX	 	reserved	reserved	
	REGR_SXY	 	reserved	reserved	
	REGR_SYY	 	reserved	reserved	
	REINDEX	non-reserved	 	 	
	RELATIVE	non-reserved	non-reserved	non-reserved	reserved
	RELEASE	non-reserved	reserved	reserved	
	RENAME	non-reserved	 	 	
	REPEATABLE	non-reserved	non-reserved	non-reserved	non-reserved
	REPLACE	non-reserved	 	 	
	REPLICA	non-reserved	 	 	
	REQUIRING	 	non-reserved	non-reserved	
	RESET	non-reserved	 	 	
	RESPECT	 	non-reserved	non-reserved	
	RESTART	non-reserved	non-reserved	non-reserved	
	RESTORE	 	non-reserved	non-reserved	
	RESTRICT	non-reserved	non-reserved	non-reserved	reserved
	RESULT	 	reserved	reserved	
	RETURN	non-reserved	reserved	reserved	
	RETURNED_CARDINALITY	 	non-reserved	non-reserved	
	RETURNED_LENGTH	 	non-reserved	non-reserved	non-reserved
	RETURNED_​OCTET_​LENGTH	 	non-reserved	non-reserved	non-reserved
	RETURNED_SQLSTATE	 	non-reserved	non-reserved	non-reserved
	RETURNING	reserved, requires AS	non-reserved	non-reserved	
	RETURNS	non-reserved	reserved	reserved	
	REVOKE	non-reserved	reserved	reserved	reserved
	RIGHT	reserved (can be function or type)	reserved	reserved	reserved
	ROLE	non-reserved	non-reserved	non-reserved	
	ROLLBACK	non-reserved	reserved	reserved	reserved
	ROLLUP	non-reserved	reserved	reserved	
	ROUTINE	non-reserved	non-reserved	non-reserved	
	ROUTINES	non-reserved	 	 	
	ROUTINE_CATALOG	 	non-reserved	non-reserved	
	ROUTINE_NAME	 	non-reserved	non-reserved	
	ROUTINE_SCHEMA	 	non-reserved	non-reserved	
	ROW	non-reserved (cannot be function or type)	reserved	reserved	
	ROWS	non-reserved	reserved	reserved	reserved
	ROW_COUNT	 	non-reserved	non-reserved	non-reserved
	ROW_NUMBER	 	reserved	reserved	
	RPAD	 	reserved	 	
	RTRIM	 	reserved	 	
	RULE	non-reserved	 	 	
	RUNNING	 	reserved	reserved	
	SAVEPOINT	non-reserved	reserved	reserved	
	SCALAR	non-reserved	non-reserved	non-reserved	
	SCALE	 	non-reserved	non-reserved	non-reserved
	SCHEMA	non-reserved	non-reserved	non-reserved	reserved
	SCHEMAS	non-reserved	 	 	
	SCHEMA_NAME	 	non-reserved	non-reserved	non-reserved
	SCOPE	 	reserved	reserved	
	SCOPE_CATALOG	 	non-reserved	non-reserved	
	SCOPE_NAME	 	non-reserved	non-reserved	
	SCOPE_SCHEMA	 	non-reserved	non-reserved	
	SCROLL	non-reserved	reserved	reserved	reserved
	SEARCH	non-reserved	reserved	reserved	
	SECOND	non-reserved, requires AS	reserved	reserved	reserved
	SECTION	 	non-reserved	non-reserved	reserved
	SECURITY	non-reserved	non-reserved	non-reserved	
	SEEK	 	reserved	reserved	
	SELECT	reserved	reserved	reserved	reserved
	SELECTIVE	 	non-reserved	non-reserved	
	SELF	 	non-reserved	non-reserved	
	SEMANTICS	 	non-reserved	non-reserved	
	SENSITIVE	 	reserved	reserved	
	SEQUENCE	non-reserved	non-reserved	non-reserved	
	SEQUENCES	non-reserved	 	 	
	SERIALIZABLE	non-reserved	non-reserved	non-reserved	non-reserved
	SERVER	non-reserved	non-reserved	non-reserved	
	SERVER_NAME	 	non-reserved	non-reserved	non-reserved
	SESSION	non-reserved	non-reserved	non-reserved	reserved
	SESSION_USER	reserved	reserved	reserved	reserved
	SET	non-reserved	reserved	reserved	reserved
	SETOF	non-reserved (cannot be function or type)	 	 	
	SETS	non-reserved	non-reserved	non-reserved	
	SHARE	non-reserved	 	 	
	SHOW	non-reserved	reserved	reserved	
	SIMILAR	reserved (can be function or type)	reserved	reserved	
	SIMPLE	non-reserved	non-reserved	non-reserved	
	SIN	 	reserved	reserved	
	SINH	 	reserved	reserved	
	SIZE	 	non-reserved	non-reserved	reserved
	SKIP	non-reserved	reserved	reserved	
	SMALLINT	non-reserved (cannot be function or type)	reserved	reserved	reserved
	SNAPSHOT	non-reserved	 	 	
	SOME	reserved	reserved	reserved	reserved
	SORT_DIRECTION	 	non-reserved	non-reserved	
	SOURCE	 	non-reserved	non-reserved	
	SPACE	 	non-reserved	non-reserved	reserved
	SPECIFIC	 	reserved	reserved	
	SPECIFICTYPE	 	reserved	reserved	
	SPECIFIC_NAME	 	non-reserved	non-reserved	
	SQL	non-reserved	reserved	reserved	reserved
	SQLCODE	 	 	 	reserved
	SQLERROR	 	 	 	reserved
	SQLEXCEPTION	 	reserved	reserved	
	SQLSTATE	 	reserved	reserved	reserved
	SQLWARNING	 	reserved	reserved	
	SQRT	 	reserved	reserved	
	STABLE	non-reserved	 	 	
	STANDALONE	non-reserved	non-reserved	non-reserved	
	START	non-reserved	reserved	reserved	
	STATE	 	non-reserved	non-reserved	
	STATEMENT	non-reserved	non-reserved	non-reserved	
	STATIC	 	reserved	reserved	
	STATISTICS	non-reserved	 	 	
	STDDEV_POP	 	reserved	reserved	
	STDDEV_SAMP	 	reserved	reserved	
	STDIN	non-reserved	 	 	
	STDOUT	non-reserved	 	 	
	STORAGE	non-reserved	 	 	
	STORED	non-reserved	 	 	
	STRICT	non-reserved	 	 	
	STRING	 	non-reserved	non-reserved	
	STRIP	non-reserved	non-reserved	non-reserved	
	STRUCTURE	 	non-reserved	non-reserved	
	STYLE	 	non-reserved	non-reserved	
	SUBCLASS_ORIGIN	 	non-reserved	non-reserved	non-reserved
	SUBMULTISET	 	reserved	reserved	
	SUBSCRIPTION	non-reserved	 	 	
	SUBSET	 	reserved	reserved	
	SUBSTRING	non-reserved (cannot be function or type)	reserved	reserved	reserved
	SUBSTRING_REGEX	 	reserved	reserved	
	SUCCEEDS	 	reserved	reserved	
	SUM	 	reserved	reserved	reserved
	SUPPORT	non-reserved	 	 	
	SYMMETRIC	reserved	reserved	reserved	
	SYSID	non-reserved	 	 	
	SYSTEM	non-reserved	reserved	reserved	
	SYSTEM_TIME	 	reserved	reserved	
	SYSTEM_USER	reserved	reserved	reserved	reserved
	T	 	non-reserved	non-reserved	
	TABLE	reserved	reserved	reserved	reserved
	TABLES	non-reserved	 	 	
	TABLESAMPLE	reserved (can be function or type)	reserved	reserved	
	TABLESPACE	non-reserved	 	 	
	TABLE_NAME	 	non-reserved	non-reserved	non-reserved
	TAN	 	reserved	reserved	
	TANH	 	reserved	reserved	
	TEMP	non-reserved	 	 	
	TEMPLATE	non-reserved	 	 	
	TEMPORARY	non-reserved	non-reserved	non-reserved	reserved
	TEXT	non-reserved	 	 	
	THEN	reserved	reserved	reserved	reserved
	THROUGH	 	non-reserved	non-reserved	
	TIES	non-reserved	non-reserved	non-reserved	
	TIME	non-reserved (cannot be function or type)	reserved	reserved	reserved
	TIMESTAMP	non-reserved (cannot be function or type)	reserved	reserved	reserved
	TIMEZONE_HOUR	 	reserved	reserved	reserved
	TIMEZONE_MINUTE	 	reserved	reserved	reserved
	TO	reserved, requires AS	reserved	reserved	reserved
	TOKEN	 	non-reserved	non-reserved	
	TOP_LEVEL_COUNT	 	non-reserved	non-reserved	
	TRAILING	reserved	reserved	reserved	reserved
	TRANSACTION	non-reserved	non-reserved	non-reserved	reserved
	TRANSACTIONS_​COMMITTED	 	non-reserved	non-reserved	
	TRANSACTIONS_​ROLLED_​BACK	 	non-reserved	non-reserved	
	TRANSACTION_ACTIVE	 	non-reserved	non-reserved	
	TRANSFORM	non-reserved	non-reserved	non-reserved	
	TRANSFORMS	 	non-reserved	non-reserved	
	TRANSLATE	 	reserved	reserved	reserved
	TRANSLATE_REGEX	 	reserved	reserved	
	TRANSLATION	 	reserved	reserved	reserved
	TREAT	non-reserved (cannot be function or type)	reserved	reserved	
	TRIGGER	non-reserved	reserved	reserved	
	TRIGGER_CATALOG	 	non-reserved	non-reserved	
	TRIGGER_NAME	 	non-reserved	non-reserved	
	TRIGGER_SCHEMA	 	non-reserved	non-reserved	
	TRIM	non-reserved (cannot be function or type)	reserved	reserved	reserved
	TRIM_ARRAY	 	reserved	reserved	
	TRUE	reserved	reserved	reserved	reserved
	TRUNCATE	non-reserved	reserved	reserved	
	TRUSTED	non-reserved	 	 	
	TYPE	non-reserved	non-reserved	non-reserved	non-reserved
	TYPES	non-reserved	 	 	
	UESCAPE	non-reserved	reserved	reserved	
	UNBOUNDED	non-reserved	non-reserved	non-reserved	
	UNCOMMITTED	non-reserved	non-reserved	non-reserved	non-reserved
	UNCONDITIONAL	 	non-reserved	non-reserved	
	UNDER	 	non-reserved	non-reserved	
	UNENCRYPTED	non-reserved	 	 	
	UNION	reserved, requires AS	reserved	reserved	reserved
	UNIQUE	reserved	reserved	reserved	reserved
	UNKNOWN	non-reserved	reserved	reserved	reserved
	UNLINK	 	non-reserved	non-reserved	
	UNLISTEN	non-reserved	 	 	
	UNLOGGED	non-reserved	 	 	
	UNMATCHED	 	non-reserved	non-reserved	
	UNNAMED	 	non-reserved	non-reserved	non-reserved
	UNNEST	 	reserved	reserved	
	UNTIL	non-reserved	 	 	
	UNTYPED	 	non-reserved	non-reserved	
	UPDATE	non-reserved	reserved	reserved	reserved
	UPPER	 	reserved	reserved	reserved
	URI	 	non-reserved	non-reserved	
	USAGE	 	non-reserved	non-reserved	reserved
	USER	reserved	reserved	reserved	reserved
	USER_​DEFINED_​TYPE_​CATALOG	 	non-reserved	non-reserved	
	USER_​DEFINED_​TYPE_​CODE	 	non-reserved	non-reserved	
	USER_​DEFINED_​TYPE_​NAME	 	non-reserved	non-reserved	
	USER_​DEFINED_​TYPE_​SCHEMA	 	non-reserved	non-reserved	
	USING	reserved	reserved	reserved	reserved
	UTF16	 	non-reserved	non-reserved	
	UTF32	 	non-reserved	non-reserved	
	UTF8	 	non-reserved	non-reserved	
	VACUUM	non-reserved	 	 	
	VALID	non-reserved	non-reserved	non-reserved	
	VALIDATE	non-reserved	 	 	
	VALIDATOR	non-reserved	 	 	
	VALUE	non-reserved	reserved	reserved	reserved
	VALUES	non-reserved (cannot be function or type)	reserved	reserved	reserved
	VALUE_OF	 	reserved	reserved	
	VARBINARY	 	reserved	reserved	
	VARCHAR	non-reserved (cannot be function or type)	reserved	reserved	reserved
	VARIADIC	reserved	 	 	
	VARYING	non-reserved, requires AS	reserved	reserved	reserved
	VAR_POP	 	reserved	reserved	
	VAR_SAMP	 	reserved	reserved	
	VERBOSE	reserved (can be function or type)	 	 	
	VERSION	non-reserved	non-reserved	non-reserved	
	VERSIONING	 	reserved	reserved	
	VIEW	non-reserved	non-reserved	non-reserved	reserved
	VIEWS	non-reserved	 	 	
	VOLATILE	non-reserved	 	 	
	WHEN	reserved	reserved	reserved	reserved
	WHENEVER	 	reserved	reserved	reserved
	WHERE	reserved, requires AS	reserved	reserved	reserved
	WHITESPACE	non-reserved	non-reserved	non-reserved	
	WIDTH_BUCKET	 	reserved	reserved	
	WINDOW	reserved, requires AS	reserved	reserved	
	WITH	reserved, requires AS	reserved	reserved	reserved
	WITHIN	non-reserved, requires AS	reserved	reserved	
	WITHOUT	non-reserved, requires AS	reserved	reserved	
	WORK	non-reserved	non-reserved	non-reserved	reserved
	WRAPPER	non-reserved	non-reserved	non-reserved	
	WRITE	non-reserved	non-reserved	non-reserved	reserved
	XML	non-reserved	reserved	reserved	
	XMLAGG	 	reserved	reserved	
	XMLATTRIBUTES	non-reserved (cannot be function or type)	reserved	reserved	
	XMLBINARY	 	reserved	reserved	
	XMLCAST	 	reserved	reserved	
	XMLCOMMENT	 	reserved	reserved	
	XMLCONCAT	non-reserved (cannot be function or type)	reserved	reserved	
	XMLDECLARATION	 	non-reserved	non-reserved	
	XMLDOCUMENT	 	reserved	reserved	
	XMLELEMENT	non-reserved (cannot be function or type)	reserved	reserved	
	XMLEXISTS	non-reserved (cannot be function or type)	reserved	reserved	
	XMLFOREST	non-reserved (cannot be function or type)	reserved	reserved	
	XMLITERATE	 	reserved	reserved	
	XMLNAMESPACES	non-reserved (cannot be function or type)	reserved	reserved	
	XMLPARSE	non-reserved (cannot be function or type)	reserved	reserved	
	XMLPI	non-reserved (cannot be function or type)	reserved	reserved	
	XMLQUERY	 	reserved	reserved	
	XMLROOT	non-reserved (cannot be function or type)	 	 	
	XMLSCHEMA	 	non-reserved	non-reserved	
	XMLSERIALIZE	non-reserved (cannot be function or type)	reserved	reserved	
	XMLTABLE	non-reserved (cannot be function or type)	reserved	reserved	
	XMLTEXT	 	reserved	reserved	
	XMLVALIDATE	 	reserved	reserved	
	YEAR	non-reserved, requires AS	reserved	reserved	reserved
	YES	non-reserved	non-reserved	non-reserved	
	ZONE	non-reserved	non-reserved	non-reserved	reserved

Appendix D. SQL Conformance

 This section attempts to outline to what extent
 PostgreSQL™ conforms to the current SQL
 standard. The following information is not a full statement of
 conformance, but it presents the main topics in as much detail as is
 both reasonable and useful for users.

 The formal name of the SQL standard is ISO/IEC 9075 “Database
 Language SQL”. A revised version of the standard is released
 from time to time; the most recent update appearing in 2023.
 The 2023 version is referred to as ISO/IEC 9075:2023, or simply as SQL:2023.
 The versions prior to that were SQL:2016, SQL:2011, SQL:2008, SQL:2006, SQL:2003,
 SQL:1999, and SQL-92. Each version
 replaces the previous one, so claims of conformance to earlier
 versions have no official merit.
 PostgreSQL™ development aims for
 conformance with the latest official version of the standard where
 such conformance does not contradict traditional features or common
 sense. Many of the features required by the SQL
 standard are supported, though sometimes with slightly differing
 syntax or function. Further moves towards conformance can be
 expected over time.

 SQL-92 defined three feature sets for
 conformance: Entry, Intermediate, and Full. Most database
 management systems claiming SQL standard
 conformance were conforming at only the Entry level, since the
 entire set of features in the Intermediate and Full levels was
 either too voluminous or in conflict with legacy behaviors.

 Starting with SQL:1999, the SQL standard defines
 a large set of individual features rather than the ineffectively
 broad three levels found in SQL-92. A large
 subset of these features represents the “Core”
 features, which every conforming SQL implementation must supply.
 The rest of the features are purely optional.

 The standard is split into a number of parts, each also known by a shorthand
 name:

	ISO/IEC 9075-1 Framework (SQL/Framework)

	ISO/IEC 9075-2 Foundation (SQL/Foundation)

	ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

	ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

	ISO/IEC 9075-9 Management of External Data (SQL/MED)

	ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

	ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

	ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

	ISO/IEC 9075-14 XML-related specifications (SQL/XML)

	ISO/IEC 9075-15 Multi-dimensional arrays (SQL/MDA)

	ISO/IEC 9075-16 Property Graph Queries (SQL/PGQ)

 Note that some part numbers are not (or no longer) used.

 The PostgreSQL™ core covers parts 1, 2, 9,
 11, and 14. Part 3 is covered by the ODBC driver, and part 13 is
 covered by the PL/Java plug-in, but exact conformance is currently
 not being verified for these components. There are currently no
 implementations of parts 4, 10, 15, and 16
 for PostgreSQL™.

 PostgreSQL supports most of the major features of SQL:2023. Out of
 177 mandatory features required for full Core conformance,
 PostgreSQL conforms to at least 170. In addition, there is a long
 list of supported optional features. It might be worth noting that at
 the time of writing, no current version of any database management
 system claims full conformance to Core SQL:2023.

 In the following two sections, we provide a list of those features
 that PostgreSQL™ supports, followed by a
 list of the features defined in SQL:2023 which
 are not yet supported in PostgreSQL™.
 Both of these lists are approximate: There might be minor details that
 are nonconforming for a feature that is listed as supported, and
 large parts of an unsupported feature might in fact be implemented.
 The main body of the documentation always contains the most accurate
 information about what does and does not work.

Note

 Feature codes containing a hyphen are subfeatures. Therefore, if a
 particular subfeature is not supported, the main feature is listed
 as unsupported even if some other subfeatures are supported.

Supported Features

	Identifier	Core?	Description	Comment
	B012	 	Embedded C	
	B021	 	Direct SQL	
	B128	 	Routine language SQL	
	E011	Core	Numeric data types	
	E011-01	Core	INTEGER and SMALLINT data types	
	E011-02	Core	REAL, DOUBLE PRECISION, and FLOAT data types	
	E011-03	Core	DECIMAL and NUMERIC data types	
	E011-04	Core	Arithmetic operators	
	E011-05	Core	Numeric comparison	
	E011-06	Core	Implicit casting among the numeric data types	
	E021	Core	Character data types	
	E021-01	Core	CHARACTER data type	
	E021-02	Core	CHARACTER VARYING data type	
	E021-03	Core	Character literals	
	E021-04	Core	CHARACTER_LENGTH function	trims trailing spaces from CHARACTER values before counting
	E021-05	Core	OCTET_LENGTH function	
	E021-06	Core	SUBSTRING function	
	E021-07	Core	Character concatenation	
	E021-08	Core	UPPER and LOWER functions	
	E021-09	Core	TRIM function	
	E021-10	Core	Implicit casting among the character string types	
	E021-11	Core	POSITION function	
	E021-12	Core	Character comparison	
	E031	Core	Identifiers	
	E031-01	Core	Delimited identifiers	
	E031-02	Core	Lower case identifiers	
	E031-03	Core	Trailing underscore	
	E051	Core	Basic query specification	
	E051-01	Core	SELECT DISTINCT	
	E051-02	Core	GROUP BY clause	
	E051-04	Core	GROUP BY can contain columns not in <select list>	
	E051-05	Core	Select list items can be renamed	
	E051-06	Core	HAVING clause	
	E051-07	Core	Qualified * in select list	
	E051-08	Core	Correlation names in the FROM clause	
	E051-09	Core	Rename columns in the FROM clause	
	E061	Core	Basic predicates and search conditions	
	E061-01	Core	Comparison predicate	
	E061-02	Core	BETWEEN predicate	
	E061-03	Core	IN predicate with list of values	
	E061-04	Core	LIKE predicate	
	E061-05	Core	LIKE predicate ESCAPE clause	
	E061-06	Core	NULL predicate	
	E061-07	Core	Quantified comparison predicate	
	E061-08	Core	EXISTS predicate	
	E061-09	Core	Subqueries in comparison predicate	
	E061-11	Core	Subqueries in IN predicate	
	E061-12	Core	Subqueries in quantified comparison predicate	
	E061-13	Core	Correlated subqueries	
	E061-14	Core	Search condition	
	E071	Core	Basic query expressions	
	E071-01	Core	UNION DISTINCT table operator	
	E071-02	Core	UNION ALL table operator	
	E071-03	Core	EXCEPT DISTINCT table operator	
	E071-05	Core	Columns combined via table operators need not have exactly the same data type	
	E071-06	Core	Table operators in subqueries	
	E081	Core	Basic Privileges	
	E081-01	Core	SELECT privilege	
	E081-02	Core	DELETE privilege	
	E081-03	Core	INSERT privilege at the table level	
	E081-04	Core	UPDATE privilege at the table level	
	E081-05	Core	UPDATE privilege at the column level	
	E081-06	Core	REFERENCES privilege at the table level	
	E081-07	Core	REFERENCES privilege at the column level	
	E081-08	Core	WITH GRANT OPTION	
	E081-09	Core	USAGE privilege	
	E081-10	Core	EXECUTE privilege	
	E091	Core	Set functions	
	E091-01	Core	AVG	
	E091-02	Core	COUNT	
	E091-03	Core	MAX	
	E091-04	Core	MIN	
	E091-05	Core	SUM	
	E091-06	Core	ALL quantifier	
	E091-07	Core	DISTINCT quantifier	
	E101	Core	Basic data manipulation	
	E101-01	Core	INSERT statement	
	E101-03	Core	Searched UPDATE statement	
	E101-04	Core	Searched DELETE statement	
	E111	Core	Single row SELECT statement	
	E121	Core	Basic cursor support	
	E121-01	Core	DECLARE CURSOR	
	E121-02	Core	ORDER BY columns need not be in select list	
	E121-03	Core	Value expressions in ORDER BY clause	
	E121-04	Core	OPEN statement	
	E121-06	Core	Positioned UPDATE statement	
	E121-07	Core	Positioned DELETE statement	
	E121-08	Core	CLOSE statement	
	E121-10	Core	FETCH statement implicit NEXT	
	E121-17	Core	WITH HOLD cursors	
	E131	Core	Null value support (nulls in lieu of values)	
	E141	Core	Basic integrity constraints	
	E141-01	Core	NOT NULL constraints	
	E141-02	Core	UNIQUE constraints of NOT NULL columns	
	E141-03	Core	PRIMARY KEY constraints	
	E141-04	Core	Basic FOREIGN KEY constraint with the NO ACTION default for both referential delete action and referential update action	
	E141-06	Core	CHECK constraints	
	E141-07	Core	Column defaults	
	E141-08	Core	NOT NULL inferred on PRIMARY KEY	
	E141-10	Core	Names in a foreign key can be specified in any order	
	E151	Core	Transaction support	
	E151-01	Core	COMMIT statement	
	E151-02	Core	ROLLBACK statement	
	E152	Core	Basic SET TRANSACTION statement	
	E152-01	Core	SET TRANSACTION statement: ISOLATION LEVEL SERIALIZABLE clause	
	E152-02	Core	SET TRANSACTION statement: READ ONLY and READ WRITE clauses	
	E153	Core	Updatable queries with subqueries	
	E161	Core	SQL comments using leading double minus	
	E171	Core	SQLSTATE support	
	E182	Core	Host language binding	
	F021	Core	Basic information schema	
	F021-01	Core	COLUMNS view	
	F021-02	Core	TABLES view	
	F021-03	Core	VIEWS view	
	F021-04	Core	TABLE_CONSTRAINTS view	
	F021-05	Core	REFERENTIAL_CONSTRAINTS view	
	F021-06	Core	CHECK_CONSTRAINTS view	
	F031	Core	Basic schema manipulation	
	F031-01	Core	CREATE TABLE statement to create persistent base tables	
	F031-02	Core	CREATE VIEW statement	
	F031-03	Core	GRANT statement	
	F031-04	Core	ALTER TABLE statement: ADD COLUMN clause	
	F031-13	Core	DROP TABLE statement: RESTRICT clause	
	F031-16	Core	DROP VIEW statement: RESTRICT clause	
	F031-19	Core	REVOKE statement: RESTRICT clause	
	F032	 	CASCADE drop behavior	
	F033	 	ALTER TABLE statement: DROP COLUMN clause	
	F034	 	Extended REVOKE statement	
	F035	 	REVOKE with CASCADE	
	F036	 	REVOKE statement performed by non-owner	
	F037	 	REVOKE statement: GRANT OPTION FOR clause	
	F038	 	REVOKE of a WITH GRANT OPTION privilege	
	F041	Core	Basic joined table	
	F041-01	Core	Inner join (but not necessarily the INNER keyword)	
	F041-02	Core	INNER keyword	
	F041-03	Core	LEFT OUTER JOIN	
	F041-04	Core	RIGHT OUTER JOIN	
	F041-05	Core	Outer joins can be nested	
	F041-07	Core	The inner table in a left or right outer join can also be used in an inner join	
	F041-08	Core	All comparison operators are supported (rather than just =)	
	F051	Core	Basic date and time	
	F051-01	Core	DATE data type (including support of DATE literal)	
	F051-02	Core	TIME data type (including support of TIME literal) with fractional seconds precision of at least 0	
	F051-03	Core	TIMESTAMP data type (including support of TIMESTAMP literal) with fractional seconds precision of at least 0 and 6	
	F051-04	Core	Comparison predicate on DATE, TIME, and TIMESTAMP data types	
	F051-05	Core	Explicit CAST between datetime types and character string types	
	F051-06	Core	CURRENT_DATE	
	F051-07	Core	LOCALTIME	
	F051-08	Core	LOCALTIMESTAMP	
	F052	 	Intervals and datetime arithmetic	
	F053	 	OVERLAPS predicate	
	F081	Core	UNION and EXCEPT in views	
	F111	 	Isolation levels other than SERIALIZABLE	
	F112	 	Isolation level READ UNCOMMITTED	
	F113	 	Isolation level READ COMMITTED	
	F114	 	Isolation level REPEATABLE READ	
	F131	Core	Grouped operations	
	F131-01	Core	WHERE, GROUP BY, and HAVING clauses supported in queries with grouped views	
	F131-02	Core	Multiple tables supported in queries with grouped views	
	F131-03	Core	Set functions supported in queries with grouped views	
	F131-04	Core	Subqueries with GROUP BY and HAVING clauses and grouped views	
	F131-05	Core	Single row SELECT with GROUP BY and HAVING clauses and grouped views	
	F171	 	Multiple schemas per user	
	F181	Core	Multiple module support	
	F191	 	Referential delete actions	
	F200	 	TRUNCATE TABLE statement	
	F201	Core	CAST function	
	F202	 	TRUNCATE TABLE: identity column restart option	
	F221	Core	Explicit defaults	
	F222	 	INSERT statement: DEFAULT VALUES clause	
	F231	 	Privilege tables	
	F251	 	Domain support	
	F261	Core	CASE expression	
	F261-01	Core	Simple CASE	
	F261-02	Core	Searched CASE	
	F261-03	Core	NULLIF	
	F261-04	Core	COALESCE	
	F262	 	Extended CASE expression	
	F271	 	Compound character literals	
	F281	 	LIKE enhancements	
	F292	 	UNIQUE null treatment	
	F302	 	INTERSECT table operator	
	F303	 	INTERSECT DISTINCT table operator	
	F304	 	EXCEPT ALL table operator	
	F305	 	INTERSECT ALL table operator	
	F311	Core	Schema definition statement	
	F311-01	Core	CREATE SCHEMA	
	F311-02	Core	CREATE TABLE for persistent base tables	
	F311-03	Core	CREATE VIEW	
	F311-04	Core	CREATE VIEW: WITH CHECK OPTION	
	F311-05	Core	GRANT statement	
	F312	 	MERGE statement	
	F313	 	Enhanced MERGE statement	
	F314	 	MERGE statement with DELETE branch	
	F321	 	User authorization	
	F341	 	Usage tables	
	F361	 	Subprogram support	
	F381	 	Extended schema manipulation	
	F382	 	Alter column data type	
	F383	 	Set column not null clause	
	F384	 	Drop identity property clause	
	F385	 	Drop column generation expression clause	
	F386	 	Set identity column generation clause	
	F387	 	ALTER TABLE statement: ALTER COLUMN clause	
	F388	 	ALTER TABLE statement: ADD/DROP CONSTRAINT clause	
	F391	 	Long identifiers	
	F392	 	Unicode escapes in identifiers	
	F393	 	Unicode escapes in literals	
	F394	 	Optional normal form specification	
	F401	 	Extended joined table	
	F402	 	Named column joins for LOBs, arrays, and multisets	
	F404	 	Range variable for common column names	
	F405	 	NATURAL JOIN	
	F406	 	FULL OUTER JOIN	
	F407	 	CROSS JOIN	
	F411	 	Time zone specification	differences regarding literal interpretation
	F421	 	National character	
	F431	 	Read-only scrollable cursors	
	F432	 	FETCH with explicit NEXT	
	F433	 	FETCH FIRST	
	F434	 	FETCH LAST	
	F435	 	FETCH PRIOR	
	F436	 	FETCH ABSOLUTE	
	F437	 	FETCH RELATIVE	
	F438	 	Scrollable cursors	
	F441	 	Extended set function support	
	F442	 	Mixed column references in set functions	
	F471	Core	Scalar subquery values	
	F481	Core	Expanded NULL predicate	
	F491	 	Constraint management	
	F501	Core	Features and conformance views	
	F501-01	Core	SQL_FEATURES view	
	F501-02	Core	SQL_SIZING view	
	F502	 	Enhanced documentation tables	
	F531	 	Temporary tables	
	F555	 	Enhanced seconds precision	
	F561	 	Full value expressions	
	F571	 	Truth value tests	
	F591	 	Derived tables	
	F611	 	Indicator data types	
	F641	 	Row and table constructors	
	F651	 	Catalog name qualifiers	
	F661	 	Simple tables	
	F672	 	Retrospective CHECK constraints	
	F690	 	Collation support	
	F692	 	Extended collation support	
	F701	 	Referential update actions	
	F711	 	ALTER domain	
	F731	 	INSERT column privileges	
	F751	 	View CHECK enhancements	
	F761	 	Session management	
	F762	 	CURRENT_CATALOG	
	F763	 	CURRENT_SCHEMA	
	F771	 	Connection management	
	F781	 	Self-referencing operations	
	F791	 	Insensitive cursors	
	F801	 	Full set function	
	F850	 	Top-level ORDER BY in query expression	
	F851	 	ORDER BY in subqueries	
	F852	 	Top-level ORDER BY in views	
	F855	 	Nested ORDER BY in query expression	
	F856	 	Nested FETCH FIRST in query expression	
	F857	 	Top-level FETCH FIRST in query expression	
	F858	 	FETCH FIRST in subqueries	
	F859	 	Top-level FETCH FIRST in views	
	F860	 	Dynamic FETCH FIRST row count	
	F861	 	Top-level OFFSET in query expression	
	F862	 	OFFSET in subqueries	
	F863	 	Nested OFFSET in query expression	
	F864	 	Top-level OFFSET in views	
	F865	 	Dynamic offset row count in OFFSET	
	F867	 	FETCH FIRST clause: WITH TIES option	
	F868	 	ORDER BY in grouped table	
	F869	 	SQL implementation info population	
	S071	 	SQL paths in function and type name resolution	
	S090	 	Minimal array support	
	S092	 	Arrays of user-defined types	
	S095	 	Array constructors by query	
	S096	 	Optional array bounds	
	S098	 	ARRAY_AGG	
	S099	 	Array expressions	
	S111	 	ONLY in query expressions	
	S201	 	SQL-invoked routines on arrays	
	S203	 	Array parameters	
	S204	 	Array as result type of functions	
	S211	 	User-defined cast functions	
	S301	 	Enhanced UNNEST	
	S404	 	TRIM_ARRAY	
	T031	 	BOOLEAN data type	
	T054	 	GREATEST and LEAST	different null handling
	T055	 	String padding functions	
	T056	 	Multi-character TRIM functions	
	T061	 	UCS support	
	T071	 	BIGINT data type	
	T081	 	Optional string types maximum length	
	T121	 	WITH (excluding RECURSIVE) in query expression	
	T122	 	WITH (excluding RECURSIVE) in subquery	
	T131	 	Recursive query	
	T132	 	Recursive query in subquery	
	T133	 	Enhanced cycle mark values	
	T141	 	SIMILAR predicate	
	T151	 	DISTINCT predicate	
	T152	 	DISTINCT predicate with negation	
	T171	 	LIKE clause in table definition	
	T172	 	AS subquery clause in table definition	
	T173	 	Extended LIKE clause in table definition	
	T174	 	Identity columns	
	T177	 	Sequence generator support: simple restart option	
	T178	 	Identity columns: simple restart option	
	T191	 	Referential action RESTRICT	
	T201	 	Comparable data types for referential constraints	
	T212	 	Enhanced trigger capability	
	T213	 	INSTEAD OF triggers	
	T214	 	BEFORE triggers	
	T215	 	AFTER triggers	
	T216	 	Ability to require true search condition before trigger is invoked	
	T217	 	TRIGGER privilege	
	T241	 	START TRANSACTION statement	
	T261	 	Chained transactions	
	T271	 	Savepoints	
	T281	 	SELECT privilege with column granularity	
	T285	 	Enhanced derived column names	
	T312	 	OVERLAY function	
	T321-01	Core	User-defined functions with no overloading	
	T321-02	Core	User-defined stored procedures with no overloading	
	T321-03	Core	Function invocation	
	T321-04	Core	CALL statement	
	T321-05	Core	RETURN statement	
	T321-06	Core	ROUTINES view	
	T321-07	Core	PARAMETERS view	
	T323	 	Explicit security for external routines	
	T325	 	Qualified SQL parameter references	
	T331	 	Basic roles	
	T332	 	Extended roles	
	T341	 	Overloading of SQL-invoked functions and SQL-invoked procedures	
	T351	 	Bracketed comments	
	T431	 	Extended grouping capabilities	
	T432	 	Nested and concatenated GROUPING SETS	
	T433	 	Multi-argument GROUPING function	
	T434	 	GROUP BY DISTINCT	
	T441	 	ABS and MOD functions	
	T461	 	Symmetric BETWEEN predicate	
	T491	 	LATERAL derived table	
	T501	 	Enhanced EXISTS predicate	
	T521	 	Named arguments in CALL statement	
	T523	 	Default values for INOUT parameters of SQL-invoked procedures	
	T524	 	Named arguments in routine invocations other than a CALL statement	
	T525	 	Default values for parameters of SQL-invoked functions	
	T551	 	Optional key words for default syntax	
	T581	 	Regular expression substring function	
	T591	 	UNIQUE constraints of possibly null columns	
	T611	 	Elementary OLAP operations	
	T612	 	Advanced OLAP operations	
	T613	 	Sampling	
	T614	 	NTILE function	
	T615	 	LEAD and LAG functions	
	T617	 	FIRST_VALUE and LAST_VALUE functions	
	T620	 	WINDOW clause: GROUPS option	
	T621	 	Enhanced numeric functions	
	T622	 	Trigonometric functions	
	T623	 	General logarithm functions	
	T624	 	Common logarithm functions	
	T626	 	ANY_VALUE	
	T627	 	Window framed COUNT DISTINCT	
	T631	Core	IN predicate with one list element	
	T651	 	SQL-schema statements in SQL routines	
	T653	 	SQL-schema statements in external routines	
	T655	 	Cyclically dependent routines	
	T661	 	Non-decimal integer literals	
	T662	 	Underscores in numeric literals	
	T670	 	Schema and data statement mixing	
	T803	 	String-based JSON	
	T811	 	Basic SQL/JSON constructor functions	
	T812	 	SQL/JSON: JSON_OBJECTAGG	
	T813	 	SQL/JSON: JSON_ARRAYAGG with ORDER BY	
	T814	 	Colon in JSON_OBJECT or JSON_OBJECTAGG	
	T822	 	SQL/JSON: IS JSON WITH UNIQUE KEYS predicate	
	T830	 	Enforcing unique keys in SQL/JSON constructor functions	
	T831	 	SQL/JSON path language: strict mode	
	T832	 	SQL/JSON path language: item method	
	T833	 	SQL/JSON path language: multiple subscripts	
	T834	 	SQL/JSON path language: wildcard member accessor	
	T835	 	SQL/JSON path language: filter expressions	
	T836	 	SQL/JSON path language: starts with predicate	
	T837	 	SQL/JSON path language: regex_like predicate	
	T840	 	Hex integer literals in SQL/JSON path language	
	T851	 	SQL/JSON: optional keywords for default syntax	
	T879	 	JSON in equality operations	with jsonb
	T880	 	JSON in grouping operations	with jsonb
	X010	 	XML type	
	X011	 	Arrays of XML type	
	X014	 	Attributes of XML type	
	X016	 	Persistent XML values	
	X020	 	XMLConcat	
	X031	 	XMLElement	
	X032	 	XMLForest	
	X034	 	XMLAgg	
	X035	 	XMLAgg: ORDER BY option	
	X036	 	XMLComment	
	X037	 	XMLPI	
	X040	 	Basic table mapping	
	X041	 	Basic table mapping: null absent	
	X042	 	Basic table mapping: null as nil	
	X043	 	Basic table mapping: table as forest	
	X044	 	Basic table mapping: table as element	
	X045	 	Basic table mapping: with target namespace	
	X046	 	Basic table mapping: data mapping	
	X047	 	Basic table mapping: metadata mapping	
	X048	 	Basic table mapping: base64 encoding of binary strings	
	X049	 	Basic table mapping: hex encoding of binary strings	
	X050	 	Advanced table mapping	
	X051	 	Advanced table mapping: null absent	
	X052	 	Advanced table mapping: null as nil	
	X053	 	Advanced table mapping: table as forest	
	X054	 	Advanced table mapping: table as element	
	X055	 	Advanced table mapping: with target namespace	
	X056	 	Advanced table mapping: data mapping	
	X057	 	Advanced table mapping: metadata mapping	
	X058	 	Advanced table mapping: base64 encoding of binary strings	
	X059	 	Advanced table mapping: hex encoding of binary strings	
	X060	 	XMLParse: character string input and CONTENT option	
	X061	 	XMLParse: character string input and DOCUMENT option	
	X069	 	XMLSerialize: INDENT	
	X070	 	XMLSerialize: character string serialization and CONTENT option	
	X071	 	XMLSerialize: character string serialization and DOCUMENT option	
	X072	 	XMLSerialize: character string serialization	
	X090	 	XML document predicate	
	X120	 	XML parameters in SQL routines	
	X121	 	XML parameters in external routines	
	X221	 	XML passing mechanism BY VALUE	
	X301	 	XMLTable: derived column list option	
	X302	 	XMLTable: ordinality column option	
	X303	 	XMLTable: column default option	
	X304	 	XMLTable: passing a context item	must be XML DOCUMENT
	X400	 	Name and identifier mapping	
	X410	 	Alter column data type: XML type	

Unsupported Features

 The following features defined in SQL:2023 are not
 implemented in this release of
 PostgreSQL™. In a few cases, equivalent
 functionality is available.

	Identifier	Core?	Description	Comment
	B011	 	Embedded Ada	
	B013	 	Embedded COBOL	
	B014	 	Embedded Fortran	
	B015	 	Embedded MUMPS	
	B016	 	Embedded Pascal	
	B017	 	Embedded PL/I	
	B030	 	Enhanced dynamic SQL	
	B031	 	Basic dynamic SQL	
	B032	 	Extended dynamic SQL	
	B033	 	Untyped SQL-invoked function arguments	
	B034	 	Dynamic specification of cursor attributes	
	B035	 	Non-extended descriptor names	
	B036	 	Describe input statement	
	B041	 	Extensions to embedded SQL exception declarations	
	B051	 	Enhanced execution rights	
	B111	 	Module language Ada	
	B112	 	Module language C	
	B113	 	Module language COBOL	
	B114	 	Module language Fortran	
	B115	 	Module language MUMPS	
	B116	 	Module language Pascal	
	B117	 	Module language PL/I	
	B121	 	Routine language Ada	
	B122	 	Routine language C	
	B123	 	Routine language COBOL	
	B124	 	Routine language Fortran	
	B125	 	Routine language MUMPS	
	B126	 	Routine language Pascal	
	B127	 	Routine language PL/I	
	B200	 	Polymorphic table functions	
	B201	 	More than one PTF generic table parameter	
	B202	 	PTF copartitioning	
	B203	 	More than one copartition specification	
	B204	 	PRUNE WHEN EMPTY	
	B205	 	Pass-through columns	
	B206	 	PTF descriptor parameters	
	B207	 	Cross products of partitionings	
	B208	 	PTF component procedure interface	
	B209	 	PTF extended names	
	B211	 	Module language Ada: VARCHAR and NUMERIC support	
	B221	 	Routine language Ada: VARCHAR and NUMERIC support	
	F054	 	TIMESTAMP in DATE type precedence list	
	F120	 	Get diagnostics statement	
	F121	 	Basic diagnostics management	
	F122	 	Enhanced diagnostics management	
	F123	 	All diagnostics	
	F124	 	SET TRANSACTION statement: DIAGNOSTICS SIZE clause	
	F263	 	Comma-separated predicates in simple CASE expression	
	F291	 	UNIQUE predicate	
	F301	 	CORRESPONDING in query expressions	
	F403	 	Partitioned join tables	
	F451	 	Character set definition	
	F461	 	Named character sets	
	F492	 	Optional table constraint enforcement	
	F521	 	Assertions	
	F671	 	Subqueries in CHECK constraints	intentionally omitted
	F673	 	Reads SQL-data routine invocations in CHECK constraints	
	F693	 	SQL-session and client module collations	
	F695	 	Translation support	
	F696	 	Additional translation documentation	
	F721	 	Deferrable constraints	foreign and unique keys only
	F741	 	Referential MATCH types	no partial match yet
	F812	 	Basic flagging	
	F813	 	Extended flagging	
	F821	 	Local table references	
	F831	 	Full cursor update	
	F832	 	Updatable scrollable cursors	
	F833	 	Updatable ordered cursors	
	F841	 	LIKE_REGEX predicate	consider regexp_like()
	F842	 	OCCURRENCES_REGEX function	consider regexp_matches()
	F843	 	POSITION_REGEX function	consider regexp_instr()
	F844	 	SUBSTRING_REGEX function	consider regexp_substr()
	F845	 	TRANSLATE_REGEX function	consider regexp_replace()
	F846	 	Octet support in regular expression operators	
	F847	 	Non-constant regular expressions	
	F866	 	FETCH FIRST clause: PERCENT option	
	R010	 	Row pattern recognition: FROM clause	
	R020	 	Row pattern recognition: WINDOW clause	
	R030	 	Row pattern recognition: full aggregate support	
	S011	Core	Distinct data types	
	S011-01	Core	USER_DEFINED_TYPES view	
	S023	 	Basic structured types	
	S024	 	Enhanced structured types	
	S025	 	Final structured types	
	S026	 	Self-referencing structured types	
	S027	 	Create method by specific method name	
	S028	 	Permutable UDT options list	
	S041	 	Basic reference types	
	S043	 	Enhanced reference types	
	S051	 	Create table of type	partially supported
	S081	 	Subtables	
	S091	 	Basic array support	partially supported
	S093	 	Arrays of distinct types	
	S094	 	Arrays of reference types	
	S097	 	Array element assignment	
	S151	 	Type predicate	see pg_typeof()
	S161	 	Subtype treatment	
	S162	 	Subtype treatment for references	
	S202	 	SQL-invoked routines on multisets	
	S231	 	Structured type locators	
	S232	 	Array locators	
	S233	 	Multiset locators	
	S241	 	Transform functions	
	S242	 	Alter transform statement	
	S251	 	User-defined orderings	
	S261	 	Specific type method	
	S271	 	Basic multiset support	
	S272	 	Multisets of user-defined types	
	S274	 	Multisets of reference types	
	S275	 	Advanced multiset support	
	S281	 	Nested collection types	
	S291	 	Unique constraint on entire row	
	S401	 	Distinct types based on array types	
	S402	 	Distinct types based on multiset types	
	S403	 	ARRAY_MAX_CARDINALITY	
	T011	 	Timestamp in Information Schema	
	T021	 	BINARY and VARBINARY data types	
	T022	 	Advanced support for BINARY and VARBINARY data types	
	T023	 	Compound binary literals	
	T024	 	Spaces in binary literals	
	T039	 	CLOB locator: non-holdable	
	T040	 	Concatenation of CLOBs	
	T041	 	Basic LOB data type support	
	T042	 	Extended LOB data type support	
	T043	 	Multiplier T	
	T044	 	Multiplier P	
	T045	 	BLOB data type	
	T046	 	CLOB data type	
	T047	 	POSITION, OCTET_LENGTH, TRIM, and SUBSTRING for BLOBs	
	T048	 	Concatenation of BLOBs	
	T049	 	BLOB locator: non-holdable	
	T050	 	POSITION, CHAR_LENGTH, OCTET_LENGTH, LOWER, TRIM, UPPER, and SUBSTRING for CLOBs	
	T051	 	Row types	
	T053	 	Explicit aliases for all-fields reference	
	T062	 	Character length units	
	T076	 	DECFLOAT data type	
	T101	 	Enhanced nullability determination	
	T111	 	Updatable joins, unions, and columns	
	T175	 	Generated columns	mostly supported
	T176	 	Sequence generator support	supported except for NEXT VALUE FOR
	T180	 	System-versioned tables	
	T181	 	Application-time period tables	
	T200	 	Trigger DDL	similar but not fully compatible
	T211	 	Basic trigger capability	
	T218	 	Multiple triggers for the same event executed in the order created	intentionally omitted
	T231	 	Sensitive cursors	
	T251	 	SET TRANSACTION statement: LOCAL option	
	T262	 	Multiple server transactions	
	T272	 	Enhanced savepoint management	
	T301	 	Functional dependencies	partially supported
	T321	Core	Basic SQL-invoked routines	partially supported
	T322	 	Declared data type attributes	
	T324	 	Explicit security for SQL routines	
	T326	 	Table functions	
	T471	 	Result sets return value	
	T472	 	DESCRIBE CURSOR	
	T495	 	Combined data change and retrieval	different syntax
	T502	 	Period predicates	
	T511	 	Transaction counts	
	T522	 	Default values for IN parameters of SQL-invoked procedures	supported except DEFAULT key word in invocation
	T561	 	Holdable locators	
	T571	 	Array-returning external SQL-invoked functions	
	T572	 	Multiset-returning external SQL-invoked functions	
	T601	 	Local cursor references	
	T616	 	Null treatment option for LEAD and LAG functions	
	T618	 	NTH_VALUE function	function exists, but some options missing
	T619	 	Nested window functions	
	T625	 	LISTAGG	
	T641	 	Multiple column assignment	only some syntax variants supported
	T652	 	SQL-dynamic statements in SQL routines	
	T654	 	SQL-dynamic statements in external routines	
	T801	 	JSON data type	
	T802	 	Enhanced JSON data type	
	T821	 	Basic SQL/JSON query operators	
	T823	 	SQL/JSON: PASSING clause	
	T824	 	JSON_TABLE: specific PLAN clause	
	T825	 	SQL/JSON: ON EMPTY and ON ERROR clauses	
	T826	 	General value expression in ON ERROR or ON EMPTY clauses	
	T827	 	JSON_TABLE: sibling NESTED COLUMNS clauses	
	T828	 	JSON_QUERY	
	T829	 	JSON_QUERY: array wrapper options	
	T838	 	JSON_TABLE: PLAN DEFAULT clause	
	T839	 	Formatted cast of datetimes to/from character strings	
	T860	 	SQL/JSON simplified accessor: column reference only	
	T861	 	SQL/JSON simplified accessor: case-sensitive JSON member accessor	
	T862	 	SQL/JSON simplified accessor: wildcard member accessor	
	T863	 	SQL/JSON simplified accessor: single-quoted string literal as member accessor	
	T864	 	SQL/JSON simplified accessor	
	T865	 	SQL/JSON item method: bigint()	
	T866	 	SQL/JSON item method: boolean()	
	T867	 	SQL/JSON item method: date()	
	T868	 	SQL/JSON item method: decimal()	
	T869	 	SQL/JSON item method: decimal() with precision and scale	
	T870	 	SQL/JSON item method: integer()	
	T871	 	SQL/JSON item method: number()	
	T872	 	SQL/JSON item method: string()	
	T873	 	SQL/JSON item method: time()	
	T874	 	SQL/JSON item method: time_tz()	
	T875	 	SQL/JSON item method: time precision	
	T876	 	SQL/JSON item method: timestamp()	
	T877	 	SQL/JSON item method: timestamp_tz()	
	T878	 	SQL/JSON item method: timestamp precision	
	T881	 	JSON in ordering operations	with jsonb, partially supported
	T882	 	JSON in multiset element grouping operations	
	M001	 	Datalinks	
	M002	 	Datalinks via SQL/CLI	
	M003	 	Datalinks via Embedded SQL	
	M004	 	Foreign data support	partially supported
	M005	 	Foreign schema support	
	M006	 	GetSQLString routine	
	M007	 	TransmitRequest	
	M009	 	GetOpts and GetStatistics routines	
	M010	 	Foreign-data wrapper support	different API
	M011	 	Datalinks via Ada	
	M012	 	Datalinks via C	
	M013	 	Datalinks via COBOL	
	M014	 	Datalinks via Fortran	
	M015	 	Datalinks via M	
	M016	 	Datalinks via Pascal	
	M017	 	Datalinks via PL/I	
	M018	 	Foreign-data wrapper interface routines in Ada	
	M019	 	Foreign-data wrapper interface routines in C	different API
	M020	 	Foreign-data wrapper interface routines in COBOL	
	M021	 	Foreign-data wrapper interface routines in Fortran	
	M022	 	Foreign-data wrapper interface routines in MUMPS	
	M023	 	Foreign-data wrapper interface routines in Pascal	
	M024	 	Foreign-data wrapper interface routines in PL/I	
	M030	 	SQL-server foreign data support	
	M031	 	Foreign-data wrapper general routines	
	X012	 	Multisets of XML type	
	X013	 	Distinct types of XML type	
	X015	 	Fields of XML type	
	X025	 	XMLCast	
	X030	 	XMLDocument	
	X038	 	XMLText	
	X065	 	XMLParse: binary string input and CONTENT option	
	X066	 	XMLParse: binary string input and DOCUMENT option	
	X068	 	XMLSerialize: BOM	
	X073	 	XMLSerialize: binary string serialization and CONTENT option	
	X074	 	XMLSerialize: binary string serialization and DOCUMENT option	
	X075	 	XMLSerialize: binary string serialization	
	X076	 	XMLSerialize: VERSION	
	X077	 	XMLSerialize: explicit ENCODING option	
	X078	 	XMLSerialize: explicit XML declaration	
	X080	 	Namespaces in XML publishing	
	X081	 	Query-level XML namespace declarations	
	X082	 	XML namespace declarations in DML	
	X083	 	XML namespace declarations in DDL	
	X084	 	XML namespace declarations in compound statements	
	X085	 	Predefined namespace prefixes	
	X086	 	XML namespace declarations in XMLTable	
	X091	 	XML content predicate	
	X096	 	XMLExists	XPath 1.0 only
	X100	 	Host language support for XML: CONTENT option	
	X101	 	Host language support for XML: DOCUMENT option	
	X110	 	Host language support for XML: VARCHAR mapping	
	X111	 	Host language support for XML: CLOB mapping	
	X112	 	Host language support for XML: BLOB mapping	
	X113	 	Host language support for XML: STRIP WHITESPACE option	
	X114	 	Host language support for XML: PRESERVE WHITESPACE option	
	X131	 	Query-level XMLBINARY clause	
	X132	 	XMLBINARY clause in DML	
	X133	 	XMLBINARY clause in DDL	
	X134	 	XMLBINARY clause in compound statements	
	X135	 	XMLBINARY clause in subqueries	
	X141	 	IS VALID predicate: data-driven case	
	X142	 	IS VALID predicate: ACCORDING TO clause	
	X143	 	IS VALID predicate: ELEMENT clause	
	X144	 	IS VALID predicate: schema location	
	X145	 	IS VALID predicate outside check constraints	
	X151	 	IS VALID predicate: with DOCUMENT option	
	X152	 	IS VALID predicate: with CONTENT option	
	X153	 	IS VALID predicate: with SEQUENCE option	
	X155	 	IS VALID predicate: NAMESPACE without ELEMENT clause	
	X157	 	IS VALID predicate: NO NAMESPACE with ELEMENT clause	
	X160	 	Basic Information Schema for registered XML schemas	
	X161	 	Advanced Information Schema for registered XML schemas	
	X170	 	XML null handling options	
	X171	 	NIL ON NO CONTENT option	
	X181	 	XML(DOCUMENT(UNTYPED)) type	
	X182	 	XML(DOCUMENT(ANY)) type	
	X190	 	XML(SEQUENCE) type	
	X191	 	XML(DOCUMENT(XMLSCHEMA)) type	
	X192	 	XML(CONTENT(XMLSCHEMA)) type	
	X200	 	XMLQuery	
	X201	 	XMLQuery: RETURNING CONTENT	
	X202	 	XMLQuery: RETURNING SEQUENCE	
	X203	 	XMLQuery: passing a context item	
	X204	 	XMLQuery: initializing an XQuery variable	
	X205	 	XMLQuery: EMPTY ON EMPTY option	
	X206	 	XMLQuery: NULL ON EMPTY option	
	X211	 	XML 1.1 support	
	X222	 	XML passing mechanism BY REF	parser accepts BY REF but ignores it; passing is always BY VALUE
	X231	 	XML(CONTENT(UNTYPED)) type	
	X232	 	XML(CONTENT(ANY)) type	
	X241	 	RETURNING CONTENT in XML publishing	
	X242	 	RETURNING SEQUENCE in XML publishing	
	X251	 	Persistent XML values of XML(DOCUMENT(UNTYPED)) type	
	X252	 	Persistent XML values of XML(DOCUMENT(ANY)) type	
	X253	 	Persistent XML values of XML(CONTENT(UNTYPED)) type	
	X254	 	Persistent XML values of XML(CONTENT(ANY)) type	
	X255	 	Persistent XML values of XML(SEQUENCE) type	
	X256	 	Persistent XML values of XML(DOCUMENT(XMLSCHEMA)) type	
	X257	 	Persistent XML values of XML(CONTENT(XMLSCHEMA)) type	
	X260	 	XML type: ELEMENT clause	
	X261	 	XML type: NAMESPACE without ELEMENT clause	
	X263	 	XML type: NO NAMESPACE with ELEMENT clause	
	X264	 	XML type: schema location	
	X271	 	XMLValidate: data-driven case	
	X272	 	XMLValidate: ACCORDING TO clause	
	X273	 	XMLValidate: ELEMENT clause	
	X274	 	XMLValidate: schema location	
	X281	 	XMLValidate with DOCUMENT option	
	X282	 	XMLValidate with CONTENT option	
	X283	 	XMLValidate with SEQUENCE option	
	X284	 	XMLValidate: NAMESPACE without ELEMENT clause	
	X286	 	XMLValidate: NO NAMESPACE with ELEMENT clause	
	X300	 	XMLTable	XPath 1.0 only
	X305	 	XMLTable: initializing an XQuery variable	

XML Limits and Conformance to SQL/XML

 Significant revisions to the XML-related specifications in ISO/IEC 9075-14
 (SQL/XML) were introduced with SQL:2006.
 PostgreSQL™'s implementation of the XML data
 type and related functions largely follows the earlier 2003 edition,
 with some borrowing from later editions. In particular:

	
 Where the current standard provides a family of XML data types
 to hold “document” or “content” in
 untyped or XML Schema-typed variants, and a type
 XML(SEQUENCE) to hold arbitrary pieces of XML content,
 PostgreSQL™ provides the single
 xml type, which can hold “document” or
 “content”. There is no equivalent of the
 standard's “sequence” type.

	
 PostgreSQL™ provides two functions
 introduced in SQL:2006, but in variants that use the XPath 1.0
 language, rather than XML Query as specified for them in the
 standard.

 This section presents some of the resulting differences you may encounter.

Queries Are Restricted to XPath 1.0

 The PostgreSQL™-specific functions
 xpath() and xpath_exists()
 query XML documents using the XPath language.
 PostgreSQL™ also provides XPath-only variants
 of the standard functions XMLEXISTS and
 XMLTABLE, which officially use
 the XQuery language. For all of these functions,
 PostgreSQL™ relies on the
 libxml2 library, which provides only XPath 1.0.

 There is a strong connection between the XQuery language and XPath
 versions 2.0 and later: any expression that is syntactically valid and
 executes successfully in both produces the same result (with a minor
 exception for expressions containing numeric character references or
 predefined entity references, which XQuery replaces with the
 corresponding character while XPath leaves them alone). But there is
 no such connection between these languages and XPath 1.0; it was an
 earlier language and differs in many respects.

 There are two categories of limitation to keep in mind: the restriction
 from XQuery to XPath for the functions specified in the SQL standard, and
 the restriction of XPath to version 1.0 for both the standard and the
 PostgreSQL™-specific functions.

Restriction of XQuery to XPath

 Features of XQuery beyond those of XPath include:

	
 XQuery expressions can construct and return new XML nodes, in
 addition to all possible XPath values. XPath can create and return
 values of the atomic types (numbers, strings, and so on) but can
 only return XML nodes that were already present in documents
 supplied as input to the expression.

	
 XQuery has control constructs for iteration, sorting, and grouping.

	
 XQuery allows declaration and use of local functions.

 Recent XPath versions begin to offer capabilities overlapping with
 these (such as functional-style for-each and
 sort, anonymous functions, and
 parse-xml to create a node from a string),
 but such features were not available before XPath 3.0.

Restriction of XPath to 1.0

 For developers familiar with XQuery and XPath 2.0 or later, XPath 1.0
 presents a number of differences to contend with:

	
 The fundamental type of an XQuery/XPath expression, the
 sequence, which can contain XML nodes, atomic values,
 or both, does not exist in XPath 1.0. A 1.0 expression can only
 produce a node-set (containing zero or more XML nodes), or a single
 atomic value.

	
 Unlike an XQuery/XPath sequence, which can contain any desired
 items in any desired order, an XPath 1.0 node-set has no
 guaranteed order and, like any set, does not allow multiple
 appearances of the same item.

Note

 The libxml2 library does seem to
 always return node-sets to PostgreSQL™
 with their members in the same relative order they had in the
 input document. Its documentation does not commit to this
 behavior, and an XPath 1.0 expression cannot control it.

	
 While XQuery/XPath provides all of the types defined in XML Schema
 and many operators and functions over those types, XPath 1.0 has only
 node-sets and the three atomic types boolean,
 double, and string.

	
 XPath 1.0 has no conditional operator. An XQuery/XPath expression
 such as if (hat) then hat/@size else "no hat"
 has no XPath 1.0 equivalent.

	
 XPath 1.0 has no ordering comparison operator for strings. Both
 "cat" < "dog" and
 "cat" > "dog" are false, because each is a
 numeric comparison of two NaNs. In contrast,
 = and != do compare the strings
 as strings.

	
 XPath 1.0 blurs the distinction between
 value comparisons and
 general comparisons as XQuery/XPath define
 them. Both sale/@hatsize = 7 and
 sale/@customer = "alice" are existentially
 quantified comparisons, true if there is
 any sale with the given value for the
 attribute, but sale/@taxable = false() is a
 value comparison to the
 effective boolean value of a whole node-set.
 It is true only if no sale has
 a taxable attribute at all.

	
 In the XQuery/XPath data model, a document
 node can have either document form (i.e., exactly one
 top-level element, with only comments and processing instructions
 outside of it) or content form (with those constraints
 relaxed). Its equivalent in XPath 1.0, the
 root node, can only be in document form.
 This is part of the reason an xml value passed as the
 context item to any PostgreSQL™
 XPath-based function must be in document form.

 The differences highlighted here are not all of them. In XQuery and
 the 2.0 and later versions of XPath, there is an XPath 1.0 compatibility
 mode, and the W3C lists of
 function library changes
 and
 language changes
 applied in that mode offer a more complete (but still not exhaustive)
 account of the differences. The compatibility mode cannot make the
 later languages exactly equivalent to XPath 1.0.

Mappings between SQL and XML Data Types and Values

 In SQL:2006 and later, both directions of conversion between standard SQL
 data types and the XML Schema types are specified precisely. However, the
 rules are expressed using the types and semantics of XQuery/XPath, and
 have no direct application to the different data model of XPath 1.0.

 When PostgreSQL™ maps SQL data values to XML
 (as in xmlelement), or XML to SQL (as in the output
 columns of xmltable), except for a few cases
 treated specially, PostgreSQL™ simply assumes
 that the XML data type's XPath 1.0 string form will be valid as the
 text-input form of the SQL datatype, and conversely. This rule has the
 virtue of simplicity while producing, for many data types, results similar
 to the mappings specified in the standard.

 Where interoperability with other systems is a concern, for some data
 types, it may be necessary to use data type formatting functions (such
 as those in the section called “Data Type Formatting Functions”) explicitly to
 produce the standard mappings.

Incidental Limits of the Implementation

 This section concerns limits that are not inherent in the
 libxml2 library, but apply to the current
 implementation in PostgreSQL™.

Only BY VALUE Passing Mechanism Is Supported

 The SQL standard defines two passing mechanisms
 that apply when passing an XML argument from SQL to an XML function or
 receiving a result: BY REF, in which a particular XML
 value retains its node identity, and BY VALUE, in which
 the content of the XML is passed but node identity is not preserved. A
 mechanism can be specified before a list of parameters, as the default
 mechanism for all of them, or after any parameter, to override the
 default.

 To illustrate the difference, if
 x is an XML value, these two queries in
 an SQL:2006 environment would produce true and false, respectively:

SELECT XMLQUERY('$a is $b' PASSING BY REF x AS a, x AS b NULL ON EMPTY);
SELECT XMLQUERY('$a is $b' PASSING BY VALUE x AS a, x AS b NULL ON EMPTY);

 PostgreSQL™ will accept
 BY VALUE or BY REF in an
 XMLEXISTS or XMLTABLE
 construct, but it ignores them. The xml data type holds
 a character-string serialized representation, so there is no node
 identity to preserve, and passing is always effectively BY
 VALUE.

Cannot Pass Named Parameters to Queries

 The XPath-based functions support passing one parameter to serve as the
 XPath expression's context item, but do not support passing additional
 values to be available to the expression as named parameters.

No XML(SEQUENCE) Type

 The PostgreSQL™ xml data type
 can only hold a value in DOCUMENT
 or CONTENT form. An XQuery/XPath expression
 context item must be a single XML node or atomic value, but XPath 1.0
 further restricts it to be only an XML node, and has no node type
 allowing CONTENT. The upshot is that a
 well-formed DOCUMENT is the only form of XML value
 that PostgreSQL™ can supply as an XPath
 context item.

Appendix E. Release Notes

 The release notes contain the significant changes in each
 PostgreSQL™ release, with major features and migration
 issues listed at the top. The release notes do not contain changes
 that affect only a few users or changes that are internal and therefore not
 user-visible. For example, the optimizer is improved in almost every
 release, but the improvements are usually observed by users as simply
 faster queries.

 A complete list of changes for each release can be obtained by
 viewing the Git logs for each release.
 The pgsql-committers
 email list records all source code changes as well. There is also
 a web
 interface that shows changes to specific files.

 The name appearing next to each item represents the major developer for
 that item. Of course all changes involve community discussion and patch
 review, so each item is truly a community effort.

 Section markers (§) in the release notes link to gitweb
 pages which show the primary git commit
 messages and source tree changes responsible for the release note item.
 There might be additional git commits which
 are not shown.

Release 16.12

Release date: 2026-02-12

 This release contains a variety of fixes from 16.11.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.12

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.10,
 see the section called “Release 16.10”.

Changes

	
 Guard against unexpected dimensions
 of oidvector/int2vector (Tom Lane)
 §

 These data types are expected to be 1-dimensional arrays containing
 no nulls, but there are cast pathways that permit violating those
 expectations. Add checks to some functions that were depending on
 those expectations without verifying them, and could misbehave in
 consequence.

 The PostgreSQL™ Project thanks
 Altan Birler for reporting this problem.
 (CVE-2026-2003)

	
 Harden selectivity estimators against being attached to operators
 that accept unexpected data types (Tom Lane)
 §
 §
 §

 contrib/intarray contained a selectivity
 estimation function that could be abused for arbitrary code
 execution, because it did not check that its input was of the
 expected data type. Third-party extensions should check for similar
 hazards and add defenses using the technique intarray now uses.
 Since such extension fixes will take time, we now require superuser
 privilege to attach a non-built-in selectivity estimator to an
 operator.

 The PostgreSQL™ Project thanks
 Daniel Firer, as part of zeroday.cloud, for reporting this problem.
 (CVE-2026-2004)

	
 Fix buffer overrun in contrib/pgcrypto's
 PGP decryption functions (Michael Paquier)
 §

 Decrypting a crafted message with an overlength session key caused a
 buffer overrun, with consequences as bad as arbitrary code
 execution.

 The PostgreSQL™ Project thanks
 Team Xint Code, as part of zeroday.cloud, for reporting this problem.
 (CVE-2026-2005)

	
 Fix inadequate validation of multibyte character lengths
 (Thomas Munro, Noah Misch)
 §
 §
 §
 §
 §
 §

 Assorted bugs allowed an attacker able to issue crafted SQL to
 overrun string buffers, with consequences as bad as arbitrary code
 execution. After these fixes, applications may
 observe “invalid byte sequence for encoding” errors
 when string functions process invalid text that has been stored in
 the database.

 The PostgreSQL™ Project thanks Paul Gerste
 and Moritz Sanft, as part of zeroday.cloud, for reporting this
 problem.
 (CVE-2026-2006)

	
 Don't allow CTE references in sub-selects to determine semantic
 levels of aggregate functions (Tom Lane)
 §

 This change undoes a change made two minor releases ago, instead
 throwing an error if a sub-select references a CTE that's below the
 semantic level that standard SQL rules would assign to the aggregate
 based on contained column references and aggregates. The attempted
 fix turned out to cause problems of its own, and it's unclear what
 to do instead. Since sub-selects within aggregates are disallowed
 altogether by the SQL standard, treating such cases as errors seems
 sufficient.

	
 Fix trigger transition table capture for MERGE
 in CTE queries (Dean Rasheed)
 §

 When executing a data-modifying CTE query containing both
 a MERGE and another DML operation on a table with
 statement-level AFTER triggers, the transition
 tables passed to the triggers would not include the rows affected by
 the MERGE, only those affected by the other
 operation(s).

	
 Fix failure when all children of a partitioned target table
 of an update or delete have been pruned (Amit Langote)
 §

 In such cases, the executor could report “could not find junk
 ctid column” errors, even though nothing needs to be done.

	
 Avoid possible planner failure when a query contains duplicate
 window function calls (Meng Zhang, David Rowley)
 §

 Confusion over de-duplication of such calls could result in errors
 like “WindowFunc with winref 2 assigned to WindowAgg with
 winref 1”.

	
 Allow indexscans on partial hash indexes even when the index's
 predicate implies the truth of the WHERE clause (Tom Lane)
 §

 Normally we drop a WHERE clause that is implied by the predicate,
 since it's pointless to test it; it must hold for every index
 entry. However that can prevent creation of an indexscan plan if
 the index is one that requires a WHERE clause on the leading index
 key, as hash indexes do. Don't drop implied clauses when
 considering such an index.

	
 Do not emit WAL for unlogged BRIN indexes (Kirill Reshke)
 §

 One seldom-taken code path incorrectly emitted a WAL record
 relating to a BRIN index even if the index was marked unlogged.
 Crash recovery would then fail to replay that record, complaining
 that the file already exists.

	
 Prevent truncation of CLOG that is still needed by
 unread NOTIFY messages (Joel Jacobson, Heikki
 Linnakangas)
 §
 §
 §

 This fix prevents “could not access status of
 transaction” errors when a backend is slow to
 absorb NOTIFY messages.

	
 Escalate errors occurring during NOTIFY message
 processing to FATAL, i.e. close the connection (Heikki Linnakangas)
 §

 Formerly, if a backend got an error while absorbing
 a NOTIFY message, it would advance past that
 message, report the error to the client, and move on. That behavior
 was fraught with problems though. One big concern is that the
 client has no good way to know that a notification was lost, and
 certainly no way to know what was in it. Depending on the
 application logic, missing a notification could cause the
 application to get stuck waiting, for example. Also, any remaining
 messages would not get processed until someone sent a
 new NOTIFY.

 Also, if the connection is idle at the time of receiving
 a NOTIFY signal, any ERROR would be escalated to
 FATAL anyway, due to unrelated concerns. Therefore, we've chosen to
 make that happen in all cases, for consistency and to provide a
 clear signal to the application that it might have missed some
 notifications.

	
 Fix bug in following update chain when locking a tuple (Jasper
 Smit)
 §

 This code path neglected to check the xmin of the first new tuple in
 the update chain, making it possible to lock an unrelated tuple if
 the original updater aborted and the space was immediately reclaimed
 by VACUUM and then re-used.
 That could cause unexpected transaction delays or deadlocks.
 Errors associated with having identified the wrong tuple have also
 been observed.

	
 Fix issues around in-place catalog updates (Noah Misch)
 §
 §
 §

 Send a nontransactional invalidation message for an in-place update,
 since such an update will survive transaction rollback. Also ensure
 that the update is WAL-logged before other sessions can see it.
 These fixes primarily prevent scenarios in which relations'
 frozen-XID attributes become inconsistent, possibly allowing
 premature CLOG truncation and subsequent “could not access
 status of transaction” errors.

	
 Fix potential backend process crash at process exit due to trying to
 release a lock in an already-unmapped shared memory segment
 (Rahila Syed)
 §

	
 Guard against incorrect truncation of the multixact log after a
 crash (Heikki Linnakangas)
 §

	
 Fix possibly mis-encoded result
 of pg_stat_get_backend_activity() (Chao Li)
 §

 The shared-memory buffer holding a session's activity string can
 end with an incomplete multibyte character. Readers are supposed
 to truncate off any such incomplete character, but this function
 failed to do so.

	
 Guard against recursive memory context logging (Fujii Masao)
 §

 A constant flow of signals requesting memory context logging could
 cause recursive execution of the logging code, which in theory could
 lead to stack overflow.

	
 Fix memory context usage when reinitializing a parallel execution
 context (Jakub Wartak, Jeevan Chalke)
 §

 This error could result in a crash due to a subsidiary data
 structure having a shorter lifespan than the parallel context.
 The problem is not known to be reachable using only
 core PostgreSQL™, but we have reports of
 trouble in extensions.

	
 Set next multixid's offset when creating a new multixid, to remove
 the wait loop that was needed in corner cases (Andrey Borodin)
 §
 §

 The previous logic could get stuck waiting for an update that would
 never occur.

	
 Avoid rewriting data-modifying CTEs more than once (Bernice Southey,
 Dean Rasheed)
 §

 Formerly, when updating an auto-updatable view or a relation with
 rules, if the original query had any data-modifying CTEs, the rewriter
 would rewrite those CTEs multiple times due to recursion. This was
 inefficient and could produce false errors if a CTE included an
 update of an always-generated column.

	
 Fail recovery if WAL does not exist back to the redo point indicated
 by the checkpoint record (Nitin Jadhav)
 §

 Add an explicit check for this before starting recovery, so that no
 harm is done and a useful error message is provided. Previously,
 recovery might crash or corrupt the database in this situation.

	
 Avoid scribbling on the source query tree during ALTER
 PUBLICATION (Sunil S)
 §

 This error had the visible effect that an event trigger fired for
 the query would see only the first publish
 option, even if several had been specified. If such a query were
 set up as a prepared statement, re-executions would misbehave too.

	
 Pass connection options specified in CREATE SUBSCRIPTION
 ... CONNECTION to the publisher's walsender (Fujii Masao)
 §

 Before this fix, the options connection option
 (if any) was ignored, thus for example preventing setting custom
 server parameter values in the walsender session. It was intended
 for that to work, and it did work before refactoring
 in PostgreSQL™ version 15 broke it, so
 restore the previous behavior.

	
 Prevent invalidation of newly created or newly synced replication
 slots (Zhijie Hou)
 §

 A race condition with a concurrent checkpoint could allow WAL to be
 removed that is needed by the replication slot, causing the slot to
 immediately get marked invalid.

	
 Fix race condition in computing a replication slot's required xmin
 (Zhijie Hou)
 §

 This could lead to the error “cannot build an initial slot
 snapshot as oldest safe xid follows snapshot's xmin”.

	
 During initial synchronization of a logical replication
 subscription, commit the addition of
 a pg_replication_origin entry before
 starting to copy data (Zhijie Hou)
 §

 Previously, if the copy step failed, the
 new pg_replication_origin entry would be
 lost due to transaction rollback. This led to inconsistent state in
 shared memory.

	
 Don't advance logical replication progress after a parallel worker
 apply failure (Zhijie Hou)
 §

 The previous behavior allowed transactions to be lost by a
 subscriber.

	
 Fix possible failure with “unexpected data beyond EOF”
 during restart of a streaming replica server (Anthonin Bonnefoy)
 §

	
 Fix erroneous tracking of column position when parsing partition
 range bounds (myzhen)
 §

 This could, for example, lead to the wrong column name being cited
 in error messages about casting partition bound values to the
 column's data type.

	
 Fix assorted minor errors in error messages (Man Zeng, Tianchen Zhang)
 §
 §
 §

 For example, an error report about mismatched timeline number in a
 backup manifest showed the starting timeline number where it meant
 to show the ending timeline number.

	
 Fix failure to perform function inlining when doing JIT compilation
 with LLVM version 17 or later (Anthonin Bonnefoy)
 §

	
 Adjust our JIT code to work with LLVM 21 (Holger Hoffstätte)
 §

 The previous coding failed to compile on aarch64 machines.

	
 Add new server parameter file_extend_method to
 control use of posix_fallocate() (Thomas Munro)
 §

 PostgreSQL™ version 16 and later will
 use posix_fallocate(), if the platform provides
 it, to extend relation files. However, this has been reported to
 interact poorly with some file systems: BTRFS compression is
 disabled by the use of posix_fallocate(), and
 XFS could produce spurious ENOSPC errors in older
 Linux kernel versions. To provide a workaround, introduce this new
 server parameter. Setting file_extend_method
 to write_zeros will cause the server to return to
 the old method of extending files by writing blocks of zeroes.

	
 Honor open()'s O_CLOEXEC
 flag on Windows (Bryan Green, Thomas Munro)
 §
 §
 §

 Make this flag work like it does on POSIX platforms, so that we
 don't leak file handles into child processes such as COPY
 TO/FROM PROGRAM. While that leakage hasn't caused many
 problems, it seems undesirable.

	
 Fix failure to parse long options on the server command line in
 Solaris executables built with meson (Tom Lane)
 §

	
 Support process title changes on GNU/Hurd (Michael Banck)
 §

	
 Make pg_resetwal print the updated value
 when changing OldestXID (Heikki Linnakangas)
 §

 It already did that for every other variable it can change.

	
 Make pg_resetwal allow setting next
 multixact xid to 0 or next multixact offset to UINT32_MAX (Maxim
 Orlov)
 §

 These are valid values, so rejecting them was incorrect. In the
 worst case, if a pg_upgrade is attempted when exactly at the point
 of multixact wraparound, the upgrade would fail.

	
 In contrib/amcheck, use the correct snapshot
 for btree index parent checks (Mihail Nikalayeu)
 §

 The previous coding caused spurious errors when examining indexes
 created with CREATE INDEX CONCURRENTLY.

	
 Fix contrib/amcheck to
 handle “half-dead” btree index pages correctly
 (Heikki Linnakangas)
 §

 amcheck expected such a page to have a parent
 downlink, but it does not, leading to a false error report
 about “mismatch between parent key and child high key”.

	
 Fix contrib/amcheck to
 handle incomplete btree root page splits correctly
 (Heikki Linnakangas)
 §

 amcheck could report a false error
 about “block is not true root”.

	
 Fix edge-case integer overflow
 in contrib/intarray's selectivity estimator
 for @@ (Chao Li)
 §

 This could cause poor selectivity estimates to be produced for cases
 involving the maximum integer value.

	
 Fix multibyte-encoding issue in contrib/ltree
 (Jeff Davis)
 §

 The previous coding could pass an incomplete multibyte character
 to lower(), probably resulting in incorrect
 behavior.

	
 Update time zone data files to tzdata
 release 2025c (Tom Lane)
 §

 The only change is in historical data for pre-1976 timestamps in
 Baja California.

Release 16.11

Release date: 2025-11-13

 This release contains a variety of fixes from 16.10.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.11

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.10,
 see the section called “Release 16.10”.

Changes

	
 Check for CREATE privileges on the schema
 in CREATE STATISTICS (Jelte Fennema-Nio)
 §

 This omission allowed table owners to create statistics in any
 schema, potentially leading to unexpected naming conflicts.

 The PostgreSQL™ Project thanks
 Jelte Fennema-Nio for reporting this problem.
 (CVE-2025-12817)

	
 Avoid integer overflow in allocation-size calculations
 within libpq (Jacob Champion)
 §

 Several places in libpq were not
 sufficiently careful about computing the required size of a memory
 allocation. Sufficiently large inputs could cause integer overflow,
 resulting in an undersized buffer, which would then lead to writing
 past the end of the buffer.

 The PostgreSQL™ Project thanks Aleksey
 Solovev of Positive Technologies for reporting this problem.
 (CVE-2025-12818)

	
 Correctly treat JSON constructor expressions, such
 as JSON_OBJECT(), as non-strict (Tender Wang,
 Richard Guo)
 §

 In some cases these expressions can yield a non-null result despite
 having one or more null inputs, making them non-strict. The planner
 incorrectly classified them as strict and could perform incorrect
 query transformations as a result.

	
 Further fix processing of character classes within SIMILAR
 TO regular expressions (Laurenz Albe)
 §

 The previous fix for translating SIMILAR TO
 pattern matching expressions to POSIX-style regular expressions
 broke a corner case that formerly worked: if there is an escape
 character right after the opening bracket and then a closing bracket
 right after the escape sequence (for
 example [\w]), the closing bracket was no longer
 seen as terminating the character class.

	
 Fix parsing of aggregate functions whose arguments contain a
 sub-select with a FROM reference to a CTE outside
 the aggregate function (Tom Lane)
 §

 Such a CTE reference must act like a outer-level column reference
 when determining the aggregate's semantic level; but it was not
 being accounted for, leading to obscure planner or executor errors.

	
 Fix “no relation entry for relid” errors in corner
 cases while estimating SubPlan costs (Richard Guo)
 §

	
 Avoid unlikely use-after-free in planner's expansion of partitioned
 tables (Bernd Reiß)
 §

 There was a hazard only when the last live partition was
 concurrently dropped.

	
 Remove faulty assertion in btree index cleanup (Peter Geoghegan)
 §

	
 Fix possible infinite loop in GIN index scans with multiple scan
 conditions (Tom Lane)
 §

 GIN can handle scan conditions that can reject non-matching entries
 but are not useful for searching for relevant entries, for example
 a tsquery clause like !term. But
 such a condition must not be first in the array of scan conditions.
 The code failed to ensure that in all cases, with the result that a
 query having a mix of such conditions with normal conditions might
 work or not depending on the order in which the conditions were
 given in the query.

	
 Ensure that GIN index scans can be canceled (Tom Lane)
 §

 Some code paths were capable of running for a long time without
 checking for interrupts.

	
 Ensure that BRIN autosummarization provides a snapshot for index
 expressions that need one (Álvaro Herrera)
 §
 §

 Previously, autosummarization would fail for such indexes, and then
 leave placeholder index tuples behind, causing the index to bloat
 over time.

	
 Fix integer-overflow hazard in BRIN index scans when the table
 contains close to 232 pages (Sunil S)
 §

 This oversight could result in an infinite loop or scanning of
 unneeded table pages.

	
 Fix incorrect zero-extension of stored values in JIT-generated tuple
 deforming code (David Rowley)
 §

 When not using JIT, the equivalent code does sign-extension not
 zero-extension, leading to a different Datum representation of small
 integer data types. This inconsistency was masked in most cases,
 but it is known to lead to “could not find memoization table
 entry” errors when using Memoize plan nodes, and there might
 be other symptoms.

	
 Fix incorrect logic for caching result-relation information for
 triggers (David Rowley, Amit Langote)
 §

 In cases where partitions' column sets aren't physically identical
 to their parent partitioned tables' column sets, this oversight
 could lead to crashes.

	
 Add missing EvalPlanQual rechecks for TID Scan and TID Range Scan
 plan nodes (Sophie Alpert, David Rowley)
 §
 §

 This omission led to possibly not rechecking a condition
 on ctid during concurrent-update
 situations, causing the update's behavior to vary depending on which
 plan type had been selected.

	
 Fix EvalPlanQual handling of foreign or custom joins that do not
 have an alternative local-join plan prepared for EPQ (Masahiko
 Sawada, Etsuro Fujita)
 §

 In such cases the foreign or custom access method should be invoked
 normally, but that did not happen, typically leading to a crash.

	
 Avoid duplicating hash partition constraints during DETACH
 CONCURRENTLY (Haiyang Li)
 §

 ALTER TABLE DETACH PARTITION CONCURRENTLY was
 written to add a copy of the partitioning constraint to the
 now-detached partition. This was misguided, partially because
 non-concurrent DETACH doesn't do that, but mostly
 because in the case of hash partitioning the constraint expression
 contains references to the parent table's OID. That causes problems
 during dump/restore, or if the parent table is dropped
 after DETACH. In v19 and later, we'll no longer
 create any such copied constraints at all. In released branches, to
 minimize the risk of unforeseen consequences, only skip adding a
 copied constraint if it is for hash partitioning.

	
 Disallow generated columns in partition keys
 (Jian He, Ashutosh Bapat)
 §

 This was already not allowed, but the check missed some cases, such
 as where the column reference is implicit in a whole-row reference.

	
 Disallow generated columns in COPY ... FROM
 ... WHERE clauses (Peter Eisentraut, Jian He)
 §

 Previously, incorrect behavior or an obscure error message resulted
 from attempting to reference such a column, since generated columns
 have not yet been computed at the point
 where WHERE filtering is done.

	
 Fix visibility checking for statistics objects
 in pg_temp (Noah Misch)
 §

 A statistics object located in a temporary schema cannot be named
 without schema qualification,
 but pg_statistics_obj_is_visible() missed that
 memo and could return “true” regardless. In turn,
 functions such as pg_describe_object() could
 fail to schema-qualify the object's name as expected.

	
 Fix pg_event_trigger_dropped_objects()'s
 reporting of temporary status (Antoine Violin, Tom Lane)
 §
 §

 If a dropped column default, trigger, or RLS policy belongs to a
 temporary table, report it with is_temporary
 true.

	
 Fix memory leakage in hashed subplans (Haiyang Li)
 §

 Any memory consumed by the hash functions used for hashing tuples
 constituted a query-lifespan memory leak. One way that could happen
 is if the values being hashed require de-toasting.

	
 Fix minor memory leak during WAL replay of database creation
 (Nathan Bossart)
 §

	
 Fix corruption of the shared statistics table after out-of-memory
 failures (Mikhail Kot)
 §

 Previously, an out-of-memory failure partway through creating a new
 hash table entry left a broken entry behind, potentially causing
 errors in other sessions later.

	
 Fix concurrent update issue in MERGE
 (Yugo Nagata)
 §

 When executing a MERGE UPDATE action, if there is
 more than one concurrent update of the target row, the
 lock-and-retry code would sometimes incorrectly identify the latest
 version of the target tuple, leading to incorrect results.

	
 Add missing replica identity checks in MERGE and
 INSERT ... ON CONFLICT DO UPDATE
 (Zhijie Hou)
 §
 §
 §

 If MERGE may require update or delete actions,
 and the target table publishes updates or deletes, insist that it
 have a REPLICA IDENTITY defined. Failing to
 require this can silently break replication.
 Likewise, INSERT with
 an UPDATE option must require REPLICA
 IDENTITY if the target table publishes either inserts or
 updates.

	
 Avoid deadlock during DROP SUBSCRIPTION when
 publisher is on the same server as subscriber (Dilip Kumar)
 §

	
 Fix incorrect reporting of replication lag
 in pg_stat_replication view (Fujii Masao)
 §

 If any standby server's replay LSN stopped advancing,
 the write_lag
 and flush_lag columns would eventually
 stop updating.

	
 Avoid duplicative log messages about
 invalid primary_slot_name settings (Fujii Masao)
 §

	
 Remove the unfinished slot state file after failing to write a
 replication slot's state to disk (Michael Paquier)
 §

 Previously, a failure such as out-of-disk-space resulted in leaving
 a temporary state.tmp file behind. That's
 problematic because it would block all subsequent attempts to
 write the state, requiring manual intervention to clean up.

	
 Fix mishandling of lock timeout signals in parallel apply workers
 for logical replication (Hayato Kuroda)
 §

 The same signal number was being used for both worker shutdown and
 lock timeout, leading to confusion.

	
 Avoid unwanted WAL receiver shutdown when switching from streaming
 to archive WAL source (Xuneng Zhou)
 §

 During a timeline change, a standby server's WAL receiver should
 remain alive, waiting for a new WAL streaming start point. Instead
 it was repeatedly shutting down and immediately getting restarted,
 which could confuse status monitoring code.

	
 Avoid failures in logical replication due to chance collisions of
 file numbers between regular and temporary tables (Vignesh C)
 §

 This low-probability problem manifested as transient errors
 like “unexpected duplicate for
 tablespace X,
 relfilenode Y”.
 contrib/autoprewarm was also affected.
 A side-effect of the fix is that the SQL
 function pg_filenode_relation() will now ignore
 temporary tables.

	
 Fix use-after-free issue in the relation synchronization cache
 maintained by the pgoutput logical
 decoding plugin (Vignesh C, Masahiko Sawada)
 §

 An error during logical decoding could result in crashes in
 subsequent logical decoding attempts in the same session.
 The case is only reachable when pgoutput
 is invoked via SQL functions.

	
 Avoid unnecessary invalidation of logical replication slots
 (Bertrand Drouvot)
 §

	
 Avoid assertion failure when trying to release a replication slot in
 single-user mode (Hayato Kuroda)
 §

	
 Fix incorrect printing of messages about failures in checking
 whether the user has Windows administrator privilege (Bryan Green)
 §

 This code would have crashed or at least printed garbage.
 No such cases have been reported though, indicating that failure of
 these system calls is extremely rare.

	
 Avoid startup failure on macOS and BSD platforms when there is a
 collision with a pre-existing semaphore set (Tom Lane)
 §

 If the pre-existing set has fewer semaphores than we asked for,
 these platforms return EINVAL
 not EEXIST as our code expected, resulting
 in failure to start the database.

	
 Avoid crash when attempting to
 test PostgreSQL™ with certain libsanitizer
 options (Emmanuel Sibi, Jacob Champion)
 §

	
 Fix false memory-context-checking warnings in debug builds
 on 64-bit Windows (David Rowley)
 §

	
 Correctly handle GROUP BY DISTINCT in PL/pgSQL
 assignment statements (Tom Lane)
 §

 The parser failed to record the DISTINCT option
 in this context, so that the command would act as if it were
 plain GROUP BY.

	
 Avoid leaking memory when handling a SQL error within PL/Python
 (Tom Lane)
 §

 This fixes a session-lifespan memory leak introduced in our previous
 minor releases.

	
 Fix libpq's trace output of characters
 with the high bit set (Ran Benita)
 §

 On platforms where char is considered signed, the
 output included unsightly \xffffff decoration.

	
 Fix libpq's handling of socket-related
 errors on Windows within its GSSAPI logic (Ning Wu, Tom Lane)
 §

 The code for encrypting/decrypting transmitted data using GSSAPI did
 not correctly recognize error conditions on the connection socket,
 since Windows reports those differently than other platforms. This
 led to failure to make such connections on Windows.

	
 In pg_dump, dump security labels on
 subscriptions and event triggers (Jian He, Fujii Masao)
 §

 Labels on these types of objects were previously missed.

	
 Fix pg_dump's sorting of default ACLs and
 foreign key constraints (Kirill Reshke, Álvaro Herrera)
 §
 §
 §

 Ensure consistent ordering of these database object types, as was
 already done for other object types.

	
 In pg_dump, label comments for
 separately-dumped domain constraints with the proper dependency
 (Noah Misch)
 §

 This error could lead to
 parallel pg_restore attempting to create
 the comment before the constraint itself has been restored.

	
 In pg_restore, skip comments and security
 labels for publications and subscriptions that are not being
 restored (Jian He, Fujii Masao)
 §
 §

 Do not emit COMMENT or SECURITY
 LABEL commands for these objects
 when --no-publications
 or --no-subscriptions is specified.

	
 Fix assorted errors in the data compression logic
 in pg_dump
 and pg_restore
 (Daniel Gustafsson, Tom Lane)
 §
 §
 §

 Error checking was missing or incorrect in several places, and there
 were also portability issues that would manifest on big-endian
 hardware. These problems had been missed because this code is only
 used to read compressed TOC files within directory-format
 dumps. pg_dump never produces such a
 dump; the case can be reached only by manually compressing the TOC
 file after the fact, which is a supported thing to do but very
 uncommon.

	
 Fix pgbench to error out cleanly if
 a COPY operation is started (Anthonin Bonnefoy)
 §

 pgbench doesn't intend to support this
 case, but previously it went into an infinite loop.

	
 Fix pgbench's reporting of multiple
 errors (Yugo Nagata)
 §

 In cases where two successive PQgetResult calls
 both fail, pgbench might report the wrong
 error message.

	
 In pgbench, fix faulty assertion about
 errors in pipeline mode (Yugo Nagata)
 §

	
 Ensure that contrib/pg_buffercache functions
 can be canceled (Satyanarayana Narlapuram, Yuhang Qiu)
 §

 Some code paths were capable of running for a long time without
 checking for interrupts.

	
 Fix contrib/pg_prewarm's privilege checks for
 indexes (Ayush Vatsa, Nathan Bossart)
 §
 §

 pg_prewarm() requires SELECT
 privilege on relations to be prewarmed. However, since indexes have
 no SQL privileges of their own, this resulted in non-superusers
 being unable to prewarm indexes. Instead, check
 for SELECT privilege on the index's table.

	
 Make contrib/pgstattuple more robust about
 empty or invalid index pages (Nitin Motiani)
 §

 Count all-zero pages as free space, and ignore pages that are
 invalid according to a check of the page's special-space size.
 The code for btree indexes already counted all-zero pages as free,
 but the hash and gist code would error out, which has been found to
 be much less user-friendly. Similarly, make all three cases agree
 on ignoring corrupted pages rather than throwing errors.

	
 Harden our read and write barrier macros to satisfy Clang
 (Thomas Munro)
 §

 We supposed that __atomic_thread_fence() is a
 sufficient barrier to prevent the C compiler from re-ordering memory
 accesses around it, but it appears that that's not true for Clang,
 allowing it to generate incorrect code for at least RISC-V, MIPS,
 and LoongArch machines. Add explicit compiler barriers to fix that.

	
 Fix building with LLVM version 21 and later (Holger Hoffstätte)
 §

	
 When building with meson, apply the same special optimization flags
 for numeric.c
 and checksum.c as the makefile build does
 (Nathan Bossart, Jeff Davis)
 §
 §

 Use -ftree-vectorize for both files, as well
 as -funroll-loops
 for checksum.c, to match what the makefiles
 have long done.

	
 Fix PGXS build infrastructure to support building
 NLS po files for extensions (Ryo Matsumura)
 §

Release 16.10

Release date: 2025-08-14

 This release contains a variety of fixes from 16.9.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.10

 A dump/restore is not required for those running 16.X.

 However, if you have any
 BRIN numeric_minmax_multi_ops indexes, it is
 advisable to reindex them after updating. See the fourth changelog
 entry below.

 Also, if you are upgrading from a version earlier than 16.9,
 see the section called “Release 16.9”.

Changes

	
 Tighten security checks in planner estimation functions
 (Dean Rasheed)
 §

 The fix for CVE-2017-7484, plus followup fixes, intended to prevent
 leaky functions from being applied to statistics data for columns
 that the calling user does not have permission to read. Two gaps in
 that protection have been found. One gap applies to partitioning
 and inheritance hierarchies where RLS policies on the tables should
 restrict access to statistics data, but did not.

 The other gap applies to cases where the query accesses a table via
 a view, and the view owner has permissions to read the underlying
 table but the calling user does not have permissions on the view.
 The view owner's permissions satisfied the security checks, and the
 leaky function would get applied to the underlying table's
 statistics before we check the calling user's permissions on the
 view. This has been fixed by making security checks on views occur
 at the start of planning. That might cause permissions failures to
 occur earlier than before.

 The PostgreSQL™ Project thanks
 Dean Rasheed for reporting this problem.
 (CVE-2025-8713)

	
 Prevent pg_dump scripts from being used
 to attack the user running the restore (Nathan Bossart)
 §

 Since dump/restore operations typically involve running SQL commands
 as superuser, the target database installation must trust the source
 server. However, it does not follow that the operating system user
 who executes psql to perform the restore
 should have to trust the source server. The risk here is that an
 attacker who has gained superuser-level control over the source
 server might be able to cause it to emit text that would be
 interpreted as psql meta-commands.
 That would provide shell-level access to the restoring user's own
 account, independently of access to the target database.

 To provide a positive guarantee that this can't happen,
 extend psql with
 a \restrict command that prevents execution of
 further meta-commands, and teach pg_dump
 to issue that before any data coming from the source server.

 The PostgreSQL Project thanks Martin Rakhmanov, Matthieu Denais, and
 RyotaK for reporting this problem.
 (CVE-2025-8714)

	
 Convert newlines to spaces in names included in comments
 in pg_dump output
 (Noah Misch)
 §

 Object names containing newlines offered the ability to inject
 arbitrary SQL commands into the output script. (Without the
 preceding fix, injection of psql
 meta-commands would also be possible this way.)
 CVE-2012-0868 fixed this class of problem at the time, but later
 work reintroduced several cases.

 The PostgreSQL™ Project thanks
 Noah Misch for reporting this problem.
 (CVE-2025-8715)

	
 Fix incorrect distance calculation in
 BRIN numeric_minmax_multi_ops support function
 (Peter Eisentraut, Tom Lane)
 §

 The results were sometimes wrong on 64-bit platforms, and wildly
 wrong on 32-bit platforms. This did not produce obvious failures
 because the logic is only used to choose how to merge values into
 ranges; at worst the index would become inefficient and bloated.
 Nonetheless it's recommended to reindex any BRIN indexes that use
 the numeric_minmax_multi_ops operator class.

	
 Avoid regression in the size of XML input that we will accept
 (Michael Paquier, Erik Wienhold)
 §
 §

 Our workaround for a bug in early 2.13.x releases
 of libxml2 made use of a code path that
 rejects text chunks exceeding 10MB, whereas the previous coding did
 not. Those early releases are presumably extinct in the wild by
 now, so revert to the previous coding.

	
 Fix MERGE into a plain-inheritance parent table
 (Dean Rasheed)
 §

 Insertions into such a target table could crash or produce incorrect
 query results due to failing to handle WITH CHECK
 OPTION and RETURNING actions.

	
 Allow tables with statement-level triggers to become partitions or
 inheritance children (Etsuro Fujita)
 §

 We do not allow partitions or inheritance child tables to have
 row-level triggers with transition tables, because an operation on
 the whole inheritance tree would need to maintain a separate
 transition table for each such child table. But that problem does
 not apply for statement-level triggers, because only the parent's
 statement-level triggers will be fired. The code that checks
 whether an existing table can become a partition or inheritance
 child nonetheless rejected both kinds of trigger.

	
 Disallow collecting transition tuples from child foreign tables
 (Etsuro Fujita)
 §

 We do not support triggers with transition tables on foreign tables.
 However, the case of a partition or inheritance child that is a
 foreign table was overlooked. If the parent has such a trigger,
 incorrect transition tuples were collected from the foreign child.
 Instead throw an error, reporting that the case is not supported.

	
 Allow resetting unknown custom parameters with reserved prefixes
 (Nathan Bossart)
 §

 Previously, if a parameter setting had been stored
 using ALTER DATABASE/ROLE/SYSTEM, the stored
 setting could not be removed if the parameter was unknown but had a
 reserved prefix. This case could arise if an extension used to have
 a parameter, but that parameter had been removed in an upgrade.

	
 Fix a potential deadlock during ALTER SUBSCRIPTION ... DROP
 PUBLICATION (Ajin Cherian)
 §

 Ensure that server processes acquire catalog locks in a consistent
 order during replication origin drops.

	
 Shorten the race condition window for creating indexes with
 conflicting names (Tom Lane)
 §

 When choosing an auto-generated name for an index, avoid conflicting
 with not-yet-committed pg_class rows as
 well as fully-valid ones. This avoids possibly choosing the same
 name as some concurrent CREATE INDEX did,
 when that command is still in process of filling its index, or is
 done but is part of a not-yet-committed transaction. There's still
 a window for trouble, but it's only as long as the time needed to
 validate a new index's parameters and insert
 its pg_class row.

	
 Prevent usage of incorrect VACUUM options in some
 cases where multiple tables are vacuumed in a single command (Nathan
 Bossart, Michael Paquier)
 §

 The TRUNCATE and INDEX_CLEANUP
 options of one table could be applied to others.

	
 Fix processing of character classes within SIMILAR
 TO regular expressions (Laurenz Albe)
 §
 §

 The code that translates SIMILAR TO pattern
 matching expressions to POSIX-style regular expressions did not
 consider that square brackets can be nested. For example, in a
 pattern like [[:alpha:]%_], the code treated
 the % and _ characters as
 metacharacters when they should be literals.

	
 When deparsing queries, always add parentheses around the expression
 in FETCH FIRST expression ROWS
 WITH TIES clauses (Heikki Linnakangas)
 §
 §

 This avoids some cases where the deparsed result wasn't
 syntactically valid.

	
 Limit the checkpointer process's fsync request queue size (Alexander
 Korotkov, Xuneng Zhou)
 §
 §

 With very large shared_buffers settings, it was
 possible for the checkpointer to attempt to allocate more than 1GB
 for fsync requests, leading to failure and an infinite loop. Clamp
 the queue size to prevent this scenario.

	
 Avoid infinite wait in logical decoding when reading a
 partially-written WAL record (Vignesh C)
 §

 If the server crashes after writing the first part of a WAL record
 that would span multiple pages, subsequent logical decoding of the
 WAL stream would wait for data to arrive on the next WAL page.
 That might never happen if the server is now idle.

	
 Fix inconsistent quoting of role names in ACL strings (Tom Lane)
 §

 The previous quoting rule was locale-sensitive, which could lead to
 portability problems when transferring aclitem values
 across installations. (pg_dump does not
 do that, but other tools might.) To ensure consistency, always quote
 non-ASCII characters in aclitem output; but to preserve
 backward compatibility, never require that they be quoted
 during aclitem input.

	
 Reject equal signs (=) in the names of relation
 options and foreign-data options (Tom Lane)
 §

 There's no evident use-case for option names like this, and allowing
 them creates ambiguity in the stored representation.

	
 Fix potentially-incorrect decompression of LZ4-compressed archive
 data (Mikhail Gribkov)
 §

 This error seems to manifest only with not-very-compressible input
 data, which may explain why it escaped detection.

	
 Avoid a rare scenario where a btree index scan could mark the wrong
 index entries as dead (Peter Geoghegan)
 §

	
 Avoid re-distributing cache invalidation messages from other
 transactions during logical replication (vignesh C)
 §

 Our previous round of minor releases included a bug fix to ensure
 that replication receiver processes would respond to cross-process
 cache invalidation messages, preventing them from using stale
 catalog data while performing replication updates. However, the fix
 unintentionally made them also redistribute those messages again,
 leading to an exponential increase in the number of invalidation
 messages, which would often end in a memory allocation failure.
 Fix by not redistributing received messages.

	
 Avoid premature removal of old WAL during checkpoints (Vitaly Davydov)
 §

 If a replication slot's restart point is advanced while a checkpoint
 is in progress, no-longer-needed WAL segments could get removed too
 soon, leading to recovery failure if the database crashes
 immediately afterwards. Fix by keeping them for one additional
 checkpoint cycle.

	
 Never move a replication slot's confirmed-flush position backwards
 (Shveta Malik)
 §

 In some cases a replication client could acknowledge an LSN that's
 past what it has stored persistently, and then perhaps send an older
 LSN after a restart. We consider this not-a-bug so long as the
 client did not have anything it needed to do for the WAL between the
 two points. However, we should not re-send that WAL for fear of
 data duplication, so make sure we always believe the latest
 confirmed LSN for a given slot.

	
 Prevent excessive delays before launching new logical replication
 workers (Tom Lane)
 §

 In some cases the logical replication launcher could sleep
 considerably longer than the
 configured wal_retrieve_retry_interval before
 launching a new worker.

	
 Fix use-after-free during logical replication of INSERT
 ... ON CONFLICT (Ethan Mertz, Michael Paquier)
 §

 This could result in incorrect progress reporting, or with very bad
 luck it could result in a crash of the WAL sender process.

	
 Allow waiting for a transaction on a standby server to be
 interrupted (Kevin K Biju)
 §

 Creation of a replication slot on a standby server may require waiting
 for some active transaction(s) to finish on the primary and then be
 replayed on the standby. Since that could be an indefinite wait,
 it's desirable to allow the operation to be cancelled, but there was
 no check for query cancel in the loop.

	
 Do not let cascading logical WAL senders try to send data that's
 beyond what has been replayed on their standby server (Alexey
 Makhmutov)
 §

 This avoids a situation where such WAL senders could get stuck at
 standby server shutdown, waiting for replay work that will not
 happen because the server's startup process is already shut down.

	
 Fix per-relation memory leakage in autovacuum (Tom Lane)
 §

	
 Fix session-lifespan memory leaks
 in XMLSERIALIZE(... INDENT)
 (Dmitry Kovalenko, Tom Lane)
 §
 §

	
 Fix some places that might try to fetch toasted fields of system
 catalogs without any snapshot (Nathan Bossart)
 §

 This could result in an assertion failure or “cannot fetch
 toast data without an active snapshot” error.

	
 Avoid assertion failure during cross-table constraint updates
 (Tom Lane, Jian He)
 §
 §

	
 Remove faulty assertion that a command tag must have been determined
 by the end of PortalRunMulti() (Álvaro Herrera)
 §

 This failed in edge cases such as an empty prepared statement.

	
 Fix assertion failure in XMLTABLE parsing
 (Richard Guo)
 §

	
 Restore the ability to run PL/pgSQL expressions in parallel
 (Dipesh Dhameliya)
 §

 PL/pgSQL's notion of an “expression” is very broad,
 encompassing any SQL SELECT query that returns a
 single column and no more than one row. So there are cases, for
 example evaluation of an aggregate function, where the query
 involves significant work and it'd be useful to run it with parallel
 workers. This used to be possible, but a previous bug fix
 unintentionally disabled it.

	
 Fix edge-case resource leaks in PL/Python error reporting (Tom Lane)
 §
 §

 An out-of-memory failure while reporting an error from Python could
 result in failure to drop reference counts on Python objects,
 leading to session-lifespan memory leakage.

	
 Fix libpq's PQport()
 function to never return NULL unless the passed connection is NULL
 (Daniele Varrazzo)
 §

 This is the documented behavior, but
 recent libpq versions would return NULL
 in some cases where the user had not provided a port specification.
 Revert to our historical behavior of returning an empty string in
 such cases. (v18 and later will return the compiled-in default port
 number, typically "5432", instead.)

	
 Avoid failure when GSSAPI authentication requires packets larger
 than 16kB (Jacob Champion, Tom Lane)
 §

 Larger authentication packets are needed for Active Directory users
 who belong to many AD groups. This limitation manifested in
 connection failures with unintelligible error messages,
 typically “GSSAPI context establishment error: The routine
 must be called again to complete its function: Unknown
 error”.

	
 Fix timing-dependent failures in SSL and GSSAPI data transmission
 (Tom Lane)
 §

 When using SSL or GSSAPI encryption in non-blocking
 mode, libpq sometimes failed
 with “SSL error: bad length” or “GSSAPI caller
 failed to retransmit all data needing to be retried”.

	
 Avoid null-pointer dereference during connection lookup
 in ecpg applications (Aleksander
 Alekseev)
 §

 The case could occur only if the application has some connections
 that are named and some that are not.

	
 Improve psql's tab completion
 for COPY and \copy options
 (Atsushi Torikoshi)
 §

 The same completions were offered for both COPY
 FROM and COPY TO, although some options
 are only valid for one case or the other. Distinguish these cases
 to provide more accurate suggestions.

	
 Avoid assertion failure in pgbench when
 multiple pipeline sync messages are received (Fujii Masao)
 §

	
 Ensure that pg_dump dumps comments on
 domain constraints in a valid order (Jian He)
 §

 In some cases the comment command could appear before creation of
 the constraint.

	
 Ensure stable sort ordering in pg_dump
 for all types of database objects (Noah Misch, Andreas Karlsson)
 §
 §
 §

 pg_dump sorts objects by their logical
 names before performing dependency-driven reordering. This sort did
 not account for the full unique key identifying certain object types
 such as rules and constraints, and thus it could produce dissimilar
 sort orders for logically-identical databases. That made it
 difficult to compare databases by
 diff'ing pg_dump output, so improve the
 logic to ensure stable sort ordering in all cases.

	
 In pg_upgrade, check for inconsistent
 inherited not-null constraints (Ali Akbar)
 §
 §
 §
 §

 PostgreSQL™ versions before 18 allow an
 inherited column not-null constraint to be dropped. However, this
 results in a schema that cannot be restored, leading to failure
 in pg_upgrade. Detect such cases
 during pg_upgrade's preflight checks to
 allow users to fix them before initiating the upgrade.

	
 Avoid assertion failure if track_commit_timestamp
 is enabled during initdb (Hayato Kuroda,
 Andy Fan)
 §

	
 Fix pg_waldump to show information about
 dropped statistics in PREPARE TRANSACTION WAL
 records (Daniil Davydov)
 §

	
 Avoid possible leak of the open connection
 during contrib/dblink connection establishment
 (Tom Lane)
 §

 In the rare scenario where we hit out-of-memory while inserting the
 new connection object into dblink's hashtable, the open connection
 would be leaked until end of session, leaving an idle session
 sitting on the remote server.

	
 Make contrib/pg_prewarm cope with very
 large shared_buffers settings (Daria Shanina)
 §

 Autoprewarm failed with a memory allocation error
 if shared_buffers was larger than about 50
 million buffers (400GB).

	
 In contrib/pg_stat_statements, avoid leaving
 gaps in the set of parameter numbers used in a normalized query
 (Sami Imseih)
 §

	
 Fix memory leakage in contrib/postgres_fdw's
 DirectModify methods (Tom Lane)
 §

 The PGresult holding the results of the
 remote modify command would be leaked for the rest of the session if
 the query fails between invocations of the DirectModify methods,
 which could happen when there's RETURNING data to
 process.

	
 Ensure that directories listed
 in configure's
 --with-includes
 and --with-libraries options are searched before
 system-supplied directories (Tom Lane)
 §

 A common reason for using these options is to allow a user-built
 version of some library to override the system-supplied version.
 However, that failed to work in some environments because of
 careless ordering of switches in the commands issued by the makefiles.

	
 Fix configure's checks
 for __cpuid()
 and __cpuidex() (Lukas Fittl, Michael Paquier)
 §

 configure failed to detect these
 Windows-specific functions, so that they would not be used,
 leading to slower-than-necessary CRC computations since the
 availability of hardware instructions could not be verified.
 The practical impact of this error was limited, because production
 builds for Windows typically do not use the Autoconf toolchain.

	
 Fix build failure with --with-pam option on
 Solaris-based platforms (Tom Lane)
 §

 Solaris is inconsistent with other Unix platforms about the API for
 PAM authentication. This manifested as an “inconsistent
 pointer” compiler warning, which we never did anything about.
 But as of GCC 14 it's an error not warning by default, so fix it.

	
 Make our code portable to GNU Hurd (Michael Banck, Christoph Berg,
 Samuel Thibault)
 §
 §

 Fix assumptions about IOV_MAX
 and O_RDONLY that don't hold on Hurd.

	
 Make our usage of memset_s() conform strictly
 to the C11 standard (Tom Lane)
 §
 §

 This avoids compile failures on some platforms.

	
 Silence compatibility warning when using Meson to build with MSVC
 (Peter Eisentraut)
 §

	
 Prevent uninitialized-value compiler warnings in JSONB comparison
 code (Tom Lane)
 §

	
 Avoid deprecation warnings when building
 with libxml2 2.14 and later
 (Michael Paquier)
 §

	
 Avoid problems when compiling pg_locale.h under
 C++ (John Naylor)
 §

 PostgreSQL™ header files generally need to
 be wrapped in extern "C" { ... } in order to be
 included in extensions written in C++. This failed
 for pg_locale.h because of its use
 of libicu headers, but we can work around
 that by suppressing C++-only declarations in those headers. C++
 extensions that want to use libicu's C++
 APIs can do so by including the libicu
 headers ahead of pg_locale.h.

Release 16.9

Release date: 2025-05-08

 This release contains a variety of fixes from 16.8.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.9

 A dump/restore is not required for those running 16.X.

 However, if you have any self-referential foreign key constraints on
 partitioned tables, it may be necessary to recreate those constraints
 to ensure that they are being enforced correctly. See the second
 changelog entry below.

 Also, if you have any BRIN bloom indexes, it may be advisable to
 reindex them after updating. See the third changelog entry below.

 Also, if you are upgrading from a version earlier than 16.5,
 see the section called “Release 16.5”.

Changes

	
 Avoid one-byte buffer overread when examining invalidly-encoded
 strings that are claimed to be in GB18030 encoding
 (Noah Misch, Andres Freund)
 §
 §

 While unlikely, a SIGSEGV crash could occur if an incomplete
 multibyte character appeared at the end of memory. This was
 possible both in the server and
 in libpq-using applications.
 (CVE-2025-4207)

	
 Handle self-referential foreign keys on partitioned tables correctly
 (Álvaro Herrera)
 §

 Creating or attaching partitions failed to make the required catalog
 entries for a foreign-key constraint, if the table referenced by the
 constraint was the same partitioned table. This resulted in failure
 to enforce the constraint fully.

 To fix this, you should drop and recreate any self-referential
 foreign keys on partitioned tables, if partitions have been created
 or attached since the constraint was created. Bear in mind that
 violating rows might already be present, in which case recreating
 the constraint will fail, and you'll need to fix up those rows
 before trying again.

	
 Avoid data loss when merging compressed BRIN summaries
 in brin_bloom_union() (Tomas Vondra)
 §

 The code failed to account for decompression results not being
 identical to the input objects, which would result in failure to add
 some of the data to the merged summary, leading to missed rows in
 index searches.

 This mistake was present back to v14 where BRIN bloom indexes were
 introduced, but this code path was only rarely reached then. It's
 substantially more likely to be hit in v17 because parallel index
 builds now use the code.

	
 Fix unexpected “attribute has wrong type” errors
 in UPDATE, DELETE,
 and MERGE queries that use whole-row table
 references to views or functions in FROM
 (Tom Lane)
 §

	
 Fix MERGE into a partitioned table
 with DO NOTHING actions (Tender Wang)
 §

 Some cases failed with “unknown action in MERGE WHEN
 clause” errors.

	
 Prevent failure in INSERT commands when the table
 has a GENERATED column of a domain data type and
 the domain's constraints disallow null values (Jian He)
 §

 Constraint failure was reported even if the generation expression
 produced a perfectly okay result.

	
 Correctly process references to outer CTE names that appear within
 a WITH clause attached to
 an INSERT/UPDATE/DELETE/MERGE
 command that's inside WITH (Tom Lane)
 §

 The parser failed to detect disallowed recursion cases, nor did it
 account for such references when sorting CTEs into a usable order.

	
 Don't try to parallelize array_agg() when the
 argument is of an anonymous record type (Richard Guo, Tom Lane)
 §

 The protocol for communicating with parallel workers doesn't support
 identifying the concrete record type that a worker is returning.

	
 Fix ARRAY(subquery)
 and ARRAY[expression, ...]
 constructs to produce sane results when the input is of
 type int2vector or oidvector (Tom Lane)
 §

 This patch restores the behavior that existed
 before PostgreSQL™ 9.5: the result is of
 type int2vector[] or oidvector[].

	
 Fix possible erroneous reports of invalid affixes while parsing
 Ispell dictionaries (Jacob Brazeal)
 §

	
 Fix ALTER TABLE ADD COLUMN to correctly handle
 the case of a domain type that has a default
 (Jian He, Tom Lane, Tender Wang)
 §
 §

 If a domain type has a default, adding a column of that type (without
 any explicit DEFAULT
 clause) failed to install the domain's default
 value in existing rows, instead leaving the new column null.

	
 Repair misbehavior when there are duplicate column names in a
 foreign key constraint's ON DELETE SET DEFAULT
 or SET NULL action (Tom Lane)
 §

	
 Improve the error message for disallowed attempts to alter the
 properties of a foreign key constraint (Álvaro Herrera)
 §

	
 Avoid error when resetting
 the relhassubclass flag of a temporary
 table that's marked ON COMMIT DELETE ROWS
 (Noah Misch)
 §

	
 Add missing deparsing of the INDENT option
 of XMLSERIALIZE() (Jim Jones)
 §
 §

 Previously, views or rules
 using XMLSERIALIZE(... INDENT) were dumped
 without the INDENT clause, causing incorrect
 results after restore.

	
 Avoid premature evaluation of the arguments of an aggregate function
 that has both FILTER and ORDER
 BY (or DISTINCT) options (David Rowley)
 §

 If there is ORDER BY
 or DISTINCT, we consider pre-sorting the
 aggregate input values rather than doing the sort within the Agg
 plan node. But this is problematic if the aggregate inputs include
 expressions that could fail (for example, a division where some of
 the input divisors could be zero) and there is
 a FILTER clause that's meant to prevent such
 failures. Pre-sorting would push the expression evaluations to
 before the FILTER test, allowing the failures to
 happen anyway. Avoid this by not pre-sorting if there's
 a FILTER and the input expressions are anything
 more complex than a simple Var or Const.

	
 Fix planner's failure to identify more than one hashable
 ScalarArrayOpExpr subexpression within a top-level expression
 (David Geier)
 §

 This resulted in unnecessarily-inefficient execution of any
 additional subexpressions that could have been processed with a hash
 table (that is, IN, NOT IN,
 or = ANY clauses with all-constant right-hand
 sides).

	
 Disable “skip fetch” optimization in bitmap heap scan
 (Matthias van de Meent)
 §

 It turns out that this optimization can result in returning dead
 tuples when a concurrent vacuum marks a page all-visible.

	
 Fix performance issues in GIN index search startup when there are
 many search keys (Tom Lane, Vinod Sridharan)
 §
 §

 An indexable clause with many keys (for example, jsonbcol
 ?| array[...] with tens of thousands of array elements)
 took O(N2) time to start up, and was
 uncancelable for that interval too.

	
 Detect missing support procedures in a BRIN index operator class,
 and report an error instead of crashing (Álvaro Herrera)
 §

	
 Respond to interrupts (such as query cancel) while waiting for
 asynchronous subplans of an Append plan node (Heikki Linnakangas)
 §

 Previously, nothing would happen until one of the subplans becomes
 ready.

	
 Report the I/O statistics of active WAL senders more frequently
 (Bertrand Drouvot)
 §

 Previously, the pg_stat_io view failed to
 accumulate I/O performed by a WAL sender until that process exited.
 Now such I/O will be reported after at most one second's delay.

	
 Fix race condition in handling
 of synchronous_standby_names immediately after
 startup (Melnikov Maksim, Michael Paquier)
 §

 For a short period after system startup, backends might fail to wait
 for synchronous commit even
 though synchronous_standby_names is enabled.

	
 Avoid infinite loop if scram_iterations is set to
 INT_MAX (Kevin K Biju)
 §

	
 Avoid possible crashes due to double transformation
 of json_array()'s subquery (Tom Lane)
 §

	
 Fix pg_strtof() to not crash with null endptr
 (Alexander Lakhin, Tom Lane)
 §

	
 Fix crash after out-of-memory in certain GUC assignments (Daniel
 Gustafsson)
 §

	
 Avoid crash when a Snowball stemmer encounters an out-of-memory
 condition (Maksim Korotkov)
 §

	
 Disallow copying of invalidated replication slots (Shlok Kyal)
 §

 This prevents trouble when the invalid slot points to WAL that's
 already been removed.

	
 Disallow restoring logical replication slots on standby servers that
 are not in hot-standby mode (Masahiko Sawada)
 §

 This prevents a scenario where the slot could remain valid after
 promotion even if wal_level is too low.

	
 Prevent over-advancement of catalog xmin in “fast
 forward” mode of logical decoding (Zhijie Hou)
 §

 This mistake could allow deleted catalog entries to be vacuumed away
 even though they were still potentially needed by the WAL-reading
 process.

	
 Avoid data loss when DDL operations that don't take a strong lock
 affect tables that are being logically replicated (Shlok Kyal,
 Hayato Kuroda)
 §
 §

 The catalog changes caused by the DDL command were not reflected
 into WAL-decoding processes, allowing them to decode subsequent
 changes using stale catalog data, probably resulting in data
 corruption.

	
 Prevent incorrect reset of replication origin when an apply worker
 encounters an error but the error is caught and does not result in
 worker exit (Hayato Kuroda)
 §

 This mistake could allow duplicate data to be applied.

	
 Avoid duplicate snapshot creation in logical replication index
 lookups (Heikki Linnakangas)
 §
 §

	
 Improve detection of mixed-origin subscriptions
 (Hou Zhijie, Shlok Kyal)
 §

 Subscription creation gives a warning if a subscribed-to table is
 also being followed through other publications, since that could
 cause duplicate data to be received. This change improves that
 logic to also detect cases where a partition parent or child table
 is the one being followed through another publication.

	
 Fix wrong checkpoint details in error message about incorrect
 recovery timeline choice (David Steele)
 §

 If the requested recovery timeline is not reachable, the reported
 checkpoint and timeline should be the values read from the
 backup_label, if there is one. This message previously reported
 values from the control file, which is correct when recovering from
 the control file without a backup_label, but not when there is a
 backup_label.

	
 Remove incorrect assertion
 in pgstat_report_stat() (Michael Paquier)
 §

	
 Fix overly-strict assertion
 in gistFindCorrectParent() (Heikki Linnakangas)
 §

	
 Fix rare assertion failure in standby servers when the primary is
 restarted (Heikki Linnakangas)
 §

	
 In PL/pgSQL, avoid “unexpected plan node type” error
 when a scrollable cursor is defined on a
 simple SELECT expression
 query (Andrei Lepikhov)
 §

	
 Don't try to drop individual index partitions
 in pg_dump's --clean
 mode (Jian He)
 §

 The server rejects such DROP commands. That has
 no real consequences, since the partitions will go away anyway in
 the subsequent DROPs of either their parent
 tables or their partitioned index. However, the error reported for
 the attempted drop causes problems when restoring
 in --single-transaction mode.

	
 In pg_dumpall, avoid emitting invalid
 role GRANT commands
 if pg_auth_members contains invalid role
 OIDs (Tom Lane)
 §

 Instead, print a warning and skip the entry. This copes better with
 catalog corruption that has been seen to occur in back branches as a
 result of race conditions between GRANT
 and DROP ROLE.

	
 In pg_amcheck
 and pg_upgrade, use the correct function
 to free allocations made by libpq
 (Michael Paquier, Ranier Vilela)
 §
 §
 §

 These oversights could result in crashes in certain Windows build
 configurations, such as a debug build
 of libpq used by a non-debug build of the
 calling application.

	
 Allow contrib/dblink queries to be interrupted
 by query cancel (Noah Misch)
 §

 This change back-patches a v17-era fix. It prevents possible hangs
 in CREATE DATABASE and DROP
 DATABASE due to failure to detect deadlocks.

	
 Avoid crashing with corrupt input data
 in contrib/pageinspect's
 heap_page_items() (Dmitry Kovalenko)
 §

	
 Prevent assertion failure
 in contrib/pg_freespacemap's
 pg_freespacemap() (Tender Wang)
 §

 Applying pg_freespacemap() to a relation
 lacking storage (such as a view) caused an assertion failure,
 although there was no ill effect in non-assert builds.
 Add an error check to reject that case.

	
 Fix build failure on macOS 15.4 (Tom Lane, Peter Eisentraut)
 §

 This macOS update broke our configuration probe
 for strchrnul().

	
 Update time zone data files to tzdata
 release 2025b for DST law changes in Chile, plus historical
 corrections for Iran (Tom Lane)
 §

 There is a new time zone America/Coyhaique for Chile's Aysén Region,
 to account for it changing to UTC-03 year-round and thus diverging
 from America/Santiago.

Release 16.8

Release date: 2025-02-20

 This release contains a few fixes from 16.7.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.8

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.5,
 see the section called “Release 16.5”.

Changes

	
 Improve behavior of libpq's quoting
 functions (Andres Freund, Tom Lane)
 §
 §
 §

 The changes made for CVE-2025-1094 had one serious oversight:
 PQescapeLiteral()
 and PQescapeIdentifier() failed to honor their
 string length parameter, instead always reading to the input
 string's trailing null. This resulted in including unwanted text in
 the output, if the caller intended to truncate the string via the
 length parameter. With very bad luck it could cause a crash due to
 reading off the end of memory.

 In addition, modify all these quoting functions so that when invalid
 encoding is detected, an invalid sequence is substituted for just
 the first byte of the presumed character, not all of it. This
 reduces the risk of problems if a calling application performs
 additional processing on the quoted string.

	
 Fix meson build system to correctly detect availability of
 the bsd_auth.h system header
 (Nazir Bilal Yavuz)
 §

Release 16.7

Release date: 2025-02-13

 This release contains a variety of fixes from 16.6.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.7

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.5,
 see the section called “Release 16.5”.

Changes

	
 Harden PQescapeString and allied functions
 against invalidly-encoded input strings (Andres Freund, Noah Misch)
 §
 §
 §
 §
 §
 §

 Data-quoting functions supplied by libpq
 now fully check the encoding validity of their input. If invalid
 characters are detected, they report an error if possible. For the
 ones that lack an error return convention, the output string is
 adjusted to ensure that the server will report invalid encoding and
 no intervening processing will be fooled by bytes that might happen
 to match single quote, backslash, etc.

 The purpose of this change is to guard against SQL-injection attacks
 that are possible if one of these functions is used to quote crafted
 input. There is no hazard when the resulting string is sent
 directly to a PostgreSQL™ server (which
 would check its encoding anyway), but there is a risk when it is
 passed through psql or other client-side
 code. Historically such code has not carefully vetted encoding, and
 in many cases it's not clear what it should do if it did detect such
 a problem.

 This fix is effective only if the data-quoting function, the server,
 and any intermediate processing agree on the character encoding
 that's being used. Applications that insert untrusted input into
 SQL commands should take special care to ensure that that's true.

 Applications and drivers that quote untrusted input without using
 these libpq functions may be at risk of
 similar problems. They should first confirm the data is valid in
 the encoding expected by the server.

 The PostgreSQL™ Project thanks
 Stephen Fewer for reporting this problem.
 (CVE-2025-1094)

	
 Exclude parallel workers from connection privilege checks and limits
 (Tom Lane)
 §

 Do not
 check datallowconn, rolcanlogin,
 and ACL_CONNECT privileges when starting a
 parallel worker, instead assuming that it's enough for the leader
 process to have passed similar checks originally. This avoids, for
 example, unexpected failures of parallelized queries when the leader
 is running as a role that lacks login privilege. In the same vein,
 enforce ReservedConnections,
 datconnlimit, and rolconnlimit
 limits only against regular backends, and count only regular
 backends while checking if the limits were already reached. Those
 limits are meant to prevent excessive consumption of process slots
 for regular backends --- but parallel workers and other special
 processes have their own pools of process slots with their own limit
 checks.

	
 Fix possible re-use of stale results in window aggregates (David
 Rowley)
 §

 A window aggregate with a “run condition” optimization
 and a pass-by-reference result type might incorrectly return the
 result from the previous partition instead of performing a fresh
 calculation.

	
 Keep TransactionXmin in sync
 with MyProc->xmin (Heikki Linnakangas)
 §

 This oversight could permit a process to try to access data that had
 already been vacuumed away. One known consequence is
 transient “could not access status of transaction”
 errors.

	
 Fix race condition that could cause failure to add a newly-inserted
 catalog entry to a catalog cache list (Heikki Linnakangas)
 §

 This could result, for example, in failure to use a newly-created
 function within an existing session.

	
 Prevent possible catalog corruption when a system catalog is
 vacuumed concurrently with an update (Noah Misch)
 §

	
 Fix data corruption when relation truncation fails (Thomas Munro)
 §
 §
 §

 The filesystem calls needed to perform relation truncation could
 fail, leaving inconsistent state on disk (for example, effectively
 reviving deleted data). We can't really prevent that, but we can
 recover by dint of making such failures into PANICs, so that
 consistency is restored by replaying from WAL up to just before the
 attempted truncation. This isn't a hugely desirable behavior, but
 such failures are rare enough that it seems an acceptable solution.

	
 Prevent checkpoints from starting during relation truncation
 (Robert Haas)
 §

 This avoids a race condition wherein the modified file might not get
 fsync'd before completing the checkpoint, creating a risk of data
 corruption if the operating system crashes soon after.

	
 Avoid possibly losing an update of
 pg_database.datfrozenxid
 when VACUUM runs concurrently with
 a REASSIGN OWNED that changes that database's
 owner (Kirill Reshke)
 §

	
 Fix incorrect tg_updatedcols values
 passed to AFTER UPDATE triggers (Tom Lane)
 §

 In some cases the tg_updatedcols bitmap
 could describe the set of columns updated by an earlier command in
 the same transaction, fooling the trigger into doing the wrong
 thing.

 Also, prevent memory bloat caused by making too many copies of
 the tg_updatedcols bitmap.

	
 Fix detach of a partition that has its own foreign-key constraint
 referencing a partitioned table (Amul Sul)
 §

 In common cases, foreign keys are defined on a partitioned table's
 top level; but if instead one is defined on a partition and
 references a partitioned table, and the referencing partition is
 detached, the relevant pg_constraint
 entries were updated incorrectly. This led to errors
 like “could not find ON INSERT check triggers of foreign key
 constraint”.

	
 Fix mis-processing of to_timestamp's
 FFn format codes
 (Tom Lane)
 §

 An integer format code immediately
 preceding FFn would
 consume all available digits, leaving none
 for FFn.

	
 When deparsing an XMLTABLE() expression, ensure
 that XML namespace names are double-quoted when necessary (Dean
 Rasheed)
 §

	
 Include the ldapscheme option
 in pg_hba_file_rules() output (Laurenz Albe)
 §
 §

	
 Don't merge UNION operations if their column
 collations aren't consistent (Tom Lane)
 §

 Previously we ignored collations when deciding if it's safe to
 merge UNION steps into a single
 N-way UNION operation. This was arguably valid
 before the introduction of nondeterministic collations, but it's not
 anymore, since the collation in use can affect the definition of
 uniqueness.

	
 Prevent “wrong varnullingrels” planner errors after
 pulling up a subquery that's underneath an outer join (Tom Lane)
 §
 §

	
 Ignore nulling-relation marker bits when looking up statistics
 (Richard Guo)
 §

 This oversight could lead to failure to use relevant statistics
 about expressions, or to “corrupt MVNDistinct
 entry” errors.

	
 Fix missed expression processing for partition pruning steps
 (Tom Lane)
 §

 This oversight could lead to “unrecognized node type”
 errors, and perhaps other problems, in queries accessing partitioned
 tables.

	
 Allow dshash tables to grow past 1GB (Matthias van de Meent)
 §

 This avoids errors like “invalid DSA memory alloc request
 size”. The case can occur for example in transactions that
 process several million tables.

	
 Avoid possible integer overflow
 in bringetbitmap() (James Hunter, Evgeniy
 Gorbanyov)
 §

 Since the result is only used for statistical purposes, the effects
 of this error were mostly cosmetic.

	
 Ensure that an already-set process latch doesn't prevent the
 postmaster from noticing socket events (Thomas Munro)
 §

 An extremely heavy workload of backends launching workers and
 workers exiting could prevent the postmaster from responding to
 incoming client connections in a timely fashion.

	
 Prevent streaming standby servers from looping infinitely when
 reading a WAL record that crosses pages (Kyotaro Horiguchi,
 Alexander Kukushkin)
 §

 This would happen when the record's continuation is on a page that
 needs to be read from a different WAL source.

	
 Fix unintended promotion of FATAL errors to PANIC during early
 process startup (Noah Misch)
 §

 This fixes some unlikely cases that would result in “PANIC:
 proc_exit() called in child process”.

	
 Fix cases where an operator family member operator or support
 procedure could become a dangling reference (Tom Lane)
 §
 §

 In some cases a data type could be dropped while references to its
 OID still remain in pg_amop
 or pg_amproc. While that caused no
 immediate issues, an attempt to drop the owning operator family
 would fail, and pg_dump would produce
 bogus output when dumping the operator family. This fix causes
 creation and modification of operator families/classes to add
 needed dependency entries so that dropping a data type will also
 drop any dependent operator family elements. That does not help
 vulnerable pre-existing operator families, though, so a band-aid has
 also been added to DROP OPERATOR FAMILY to
 prevent failure when dropping a family that has dangling members.

	
 Fix multiple memory leaks in logical decoding output (Vignesh C,
 Masahiko Sawada, Boyu Yang)
 §
 §
 §

	
 Fix small memory leak when
 updating the application_name
 or cluster_name settings (Tofig Aliev)
 §

	
 Avoid integer overflow while
 testing wal_skip_threshold condition (Tom Lane)
 §

 A transaction that created a very large relation could mistakenly
 decide to ensure durability by copying the relation into WAL instead
 of fsync'ing it, thereby negating the point
 of wal_skip_threshold. (This only matters
 when wal_level is set
 to minimal, else a WAL copy is required anyway.)

	
 Fix unsafe order of operations during cache lookups (Noah Misch)
 §

 The only known consequence was a usually-harmless “you don't
 own a lock of type ExclusiveLock” warning
 during GRANT TABLESPACE.

	
 Fix possible “failed to resolve name” failures when
 using JIT on older ARM platforms (Thomas Munro)
 §

 This could occur as a consequence of inconsistency about the default
 setting of -moutline-atomics between gcc and clang.
 At least Debian and Ubuntu are known to ship gcc and clang compilers
 that target armv8-a but differ on the use of outline atomics by
 default.

	
 Fix assertion failure in WITH RECURSIVE ... UNION
 queries (David Rowley)
 §

	
 Avoid assertion failure in rule deparsing if a set operation leaf
 query contains set operations (Man Zeng, Tom Lane)
 §

	
 Avoid edge-case assertion failure in parallel query startup (Tom Lane)
 §

	
 Fix assertion failure at shutdown when writing out the statistics
 file (Michael Paquier)
 §

	
 In NULLIF(), avoid passing a read-write
 expanded object pointer to the data type's equality function
 (Tom Lane)
 §

 The equality function could modify or delete the object if it's
 given a read-write pointer, which would be bad if we decide to
 return it as the NULLIF() result. There is
 probably no problem with any built-in equality function, but it's
 easy to demonstrate a failure with one coded in PL/pgSQL.

	
 Ensure that expression preprocessing is applied to a default null
 value in INSERT (Tom Lane)
 §

 If the target column is of a domain type, the planner must insert a
 coerce-to-domain step not just a null constant, and this expression
 missed going through some required processing steps. There is no
 known consequence with domains based on core data types, but in
 theory an error could occur with domains based on extension types.

	
 Repair memory leaks in PL/Python (Mat Arye, Tom Lane)
 §

 Repeated use of PLyPlan.execute
 or plpy.cursor resulted in memory leakage for
 the duration of the calling PL/Python function.

	
 Fix PL/Tcl to compile with Tcl 9 (Peter Eisentraut)
 §

	
 In the ecpg preprocessor, fix possible
 misprocessing of cursors that reference out-of-scope variables
 (Tom Lane)
 §

	
 In ecpg, fix compile-time warnings about
 unsupported use of COPY ... FROM STDIN (Ryo
 Kanbayashi)
 §

 Previously, the intended warning was not issued due to a typo.

	
 Fix psql to safely handle file path names
 that are encoded in SJIS (Tom Lane)
 §

 Some two-byte characters in SJIS have a second byte that is equal to
 ASCII backslash (\). These characters were
 corrupted by path name normalization, preventing access to files
 whose names include such characters.

	
 Fix use of wrong version of pqsignal()
 in pgbench
 and psql (Fujii Masao, Tom Lane)
 §

 This error could lead to misbehavior when using
 the -T option in pgbench
 or the \watch command
 in psql, due to interrupted system calls
 not being resumed as expected.

	
 Fix misexecution of some nested \if constructs
 in pgbench (Michail Nikolaev)
 §

 An \if command appearing within a false
 (not-being-executed) \if branch was incorrectly
 treated the same as \elif.

	
 In pgbench, fix possible misdisplay of
 progress messages during table initialization (Yushi Ogiwara, Tatsuo
 Ishii, Fujii Masao)
 §
 §

	
 Make pg_controldata more robust against
 corrupted pg_control files (Ilyasov Ian, Anton
 Voloshin)
 §

 Since pg_controldata will attempt to
 print the contents of pg_control even if the
 CRC check fails, it must take care not to misbehave for invalid
 field values. This patch fixes some issues triggered by invalid
 timestamps and apparently-negative WAL segment sizes.

	
 Fix possible crash in pg_dump with
 identity sequences attached to tables that are extension members
 (Tom Lane)
 §

	
 Fix memory leak in pg_restore
 with zstd-compressed data (Tom Lane)
 §

 The leak was per-decompression-operation, so would be most
 noticeable with a dump containing many tables or large objects.

	
 Fix pg_basebackup to correctly
 handle pg_wal.tar files exceeding 2GB on
 Windows (Davinder Singh, Thomas Munro)
 §
 §

	
 Use SQL-standard function bodies in the declarations
 of contrib/earthdistance's SQL-language
 functions (Tom Lane, Ronan Dunklau)
 §

 This change allows their references
 to contrib/cube to be resolved during extension
 creation, reducing the risk of search-path-based failures and
 possible attacks.

 In particular, this restores their usability in contexts like
 generated columns, for which PostgreSQL™
 v17 restricts the search path on security grounds. We have received
 reports of databases failing to be upgraded to v17 because of that.
 This patch has been included in v16 to provide a workaround:
 updating the earthdistance extension to this
 version beforehand should allow an upgrade to succeed.

	
 Update configuration probes that determine the compiler switches
 needed to access ARM CRC instructions (Tom Lane)
 §

 On ARM platforms where the baseline CPU target lacks CRC
 instructions, we need to supply a -march switch to
 persuade the compiler to compile such instructions. Recent versions
 of gcc reject the value we were trying, leading to silently falling
 back to software CRC.

	
 Fix meson build system to support old OpenSSL libraries on Windows
 (Darek Slusarczyk)
 §

 Add support for the legacy library
 names ssleay32
 and libeay32.

	
 In Windows builds using meson, ensure all libcommon and libpgport
 functions are exported (Vladlen Popolitov, Heikki Linnakangas)
 §
 §

 This fixes “unresolved external symbol” build errors
 for extensions.

	
 Fix meson configuration process to correctly detect
 OSSP's uuid.h header file under MSVC
 (Andrew Dunstan)
 §

	
 When building with meson, install pgevent
 in pkglibdir
 not bindir (Peter Eisentraut)
 §

 This matches the behavior of the make-based build system and the old
 MSVC build system.

	
 When building with meson, install sepgsql.sql
 under share/contrib/
 not share/extension/ (Peter Eisentraut)
 §

 This matches what the make-based build system does.

	
 Update time zone data files to tzdata
 release 2025a for DST law changes in Paraguay, plus historical
 corrections for the Philippines (Tom Lane)
 §

Release 16.6

Release date: 2024-11-21

 This release contains a few fixes from 16.5.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.6

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.5,
 see the section called “Release 16.5”.

Changes

	
 Repair ABI break for extensions that work with
 struct ResultRelInfo (Tom Lane)
 §

 Last week's minor releases unintentionally broke binary
 compatibility with timescaledb and
 several other extensions. Restore the affected structure to its
 previous size, so that such extensions need not be rebuilt.

	
 Restore functionality of ALTER {ROLE|DATABASE} SET
 role (Tom Lane, Noah Misch)
 §

 The fix for CVE-2024-10978 accidentally caused settings
 for role to not be applied if they come from
 non-interactive sources, including previous ALTER
 {ROLE|DATABASE} commands and
 the PGOPTIONS environment variable.

	
 Fix cases where a logical replication
 slot's restart_lsn could go backwards
 (Masahiko Sawada)
 §

 Previously, restarting logical replication could sometimes cause the
 slot's restart point to be recomputed as an older value than had
 previously been advertised
 in pg_replication_slots. This is bad,
 since for example WAL files might have been removed on the basis of
 the later restart_lsn value, in which
 case replication would fail to restart.

	
 Avoid deleting still-needed WAL files
 during pg_rewind
 (Polina Bungina, Alexander Kukushkin)
 §

 Previously, in unlucky cases, it was possible
 for pg_rewind to remove important WAL
 files from the rewound demoted primary. In particular this happens
 if those files have been marked for archival (i.e.,
 their .ready files were created) but not yet
 archived. Then the newly promoted node no longer has such files
 because of them having been recycled, but likely they are needed
 for recovery in the demoted node.
 If pg_rewind removes them, recovery is
 not possible anymore.

	
 Fix race conditions associated with dropping shared statistics
 entries (Kyotaro Horiguchi, Michael Paquier)
 §

 These bugs could lead to loss of statistics data, assertion
 failures, or “can only drop stats once” errors.

	
 Count index scans in contrib/bloom indexes in
 the statistics views, such as the
 pg_stat_user_indexes.idx_scan
 counter (Masahiro Ikeda)
 §

	
 Fix crash when checking to see if an index's opclass options have
 changed (Alexander Korotkov)
 §

 Some forms of ALTER TABLE would fail if the
 table has an index with non-default operator class options.

	
 Avoid assertion failure caused by disconnected NFA sub-graphs in
 regular expression parsing (Tom Lane)
 §

 This bug does not appear to have any visible consequences in
 non-assert builds.

Release 16.5

Release date: 2024-11-14

 This release contains a variety of fixes from 16.4.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.5

 A dump/restore is not required for those running 16.X.

 However, if you have ever detached a partition from a partitioned
 table that has a foreign-key reference to another partitioned table,
 and not dropped the former partition, then you may have catalog and/or
 data corruption to repair, as detailed in the fifth changelog entry
 below.

 Also, if you are upgrading from a version earlier than 16.3,
 see the section called “Release 16.3”.

Changes

	
 Ensure cached plans are marked as dependent on the calling role when
 RLS applies to a non-top-level table reference (Nathan Bossart)
 §

 If a CTE, subquery, sublink, security invoker view, or coercion
 projection in a query references a table with row-level security
 policies, we neglected to mark the resulting plan as potentially
 dependent on which role is executing it. This could lead to later
 query executions in the same session using the wrong plan, and then
 returning or hiding rows that should have been hidden or returned
 instead.

 The PostgreSQL™ Project thanks
 Wolfgang Walther for reporting this problem.
 (CVE-2024-10976)

	
 Make libpq discard error messages
 received during SSL or GSS protocol negotiation (Jacob Champion)
 §

 An error message received before encryption negotiation is completed
 might have been injected by a man-in-the-middle, rather than being
 real server output. Reporting it opens the door to various security
 hazards; for example, the message might spoof a query result that a
 careless user could mistake for correct output. The best answer
 seems to be to discard such data and rely only
 on libpq's own report of the connection
 failure.

 The PostgreSQL™ Project thanks
 Jacob Champion for reporting this problem.
 (CVE-2024-10977)

	
 Fix unintended interactions between SET SESSION
 AUTHORIZATION and SET ROLE (Tom Lane)
 §
 §

 The SQL standard mandates that SET SESSION
 AUTHORIZATION have a side-effect of doing SET
 ROLE NONE. Our implementation of that was flawed,
 creating more interaction between the two settings than intended.
 Notably, rolling back a transaction that had done SET
 SESSION AUTHORIZATION would revert ROLE
 to NONE even if that had not been the previous
 state, so that the effective user ID might now be different from
 what it had been before the transaction. Transiently
 setting session_authorization in a
 function SET clause had a similar effect.
 A related bug was that if a parallel worker
 inspected current_setting('role'), it
 saw none even when it should see something else.

 The PostgreSQL™ Project thanks
 Tom Lane for reporting this problem.
 (CVE-2024-10978)

	
 Prevent trusted PL/Perl code from changing environment variables
 (Andrew Dunstan, Noah Misch)
 §
 §
 §
 §
 §

 The ability to manipulate process environment variables such
 as PATH gives an attacker opportunities to
 execute arbitrary code. Therefore, “trusted” PLs must
 not offer the ability to do that. To fix plperl,
 replace %ENV with a tied hash that rejects any
 modification attempt with a warning.
 Untrusted plperlu retains the ability to change
 the environment.

 The PostgreSQL™ Project thanks
 Coby Abrams for reporting this problem.
 (CVE-2024-10979)

	
 Fix updates of catalog state for foreign-key constraints when
 attaching or detaching table partitions (Jehan-Guillaume de
 Rorthais, Tender Wang, Álvaro Herrera)
 §
 §

 If the referenced table is partitioned, then different catalog
 entries are needed for a referencing table that is stand-alone
 versus one that is a partition. ATTACH/DETACH
 PARTITION commands failed to perform this conversion
 correctly. In particular, after DETACH the now
 stand-alone table would be missing foreign-key enforcement triggers,
 which could result in the table later containing rows that fail the
 foreign-key constraint. A subsequent re-ATTACH
 could fail with surprising errors, too.

 The way to fix this is to do ALTER TABLE DROP
 CONSTRAINT on the now stand-alone table for each faulty
 constraint, and then re-add the constraint. If re-adding the
 constraint fails, then some erroneous data has crept in. You will
 need to manually re-establish consistency between the referencing
 and referenced tables, then re-add the constraint.

 This query can be used to identify broken constraints and construct
 the commands needed to recreate them:

SELECT conrelid::pg_catalog.regclass AS "constrained table",
 conname AS constraint,
 confrelid::pg_catalog.regclass AS "references",
 pg_catalog.format('ALTER TABLE %s DROP CONSTRAINT %I;',
 conrelid::pg_catalog.regclass, conname) AS "drop",
 pg_catalog.format('ALTER TABLE %s ADD CONSTRAINT %I %s;',
 conrelid::pg_catalog.regclass, conname,
 pg_catalog.pg_get_constraintdef(oid)) AS "add"
FROM pg_catalog.pg_constraint c
WHERE contype = 'f' AND conparentid = 0 AND
 (SELECT count(*) FROM pg_catalog.pg_constraint c2
 WHERE c2.conparentid = c.oid) <>
 ((SELECT count(*) FROM pg_catalog.pg_inherits i
 WHERE (i.inhparent = c.conrelid OR i.inhparent = c.confrelid) AND
 EXISTS (SELECT 1 FROM pg_catalog.pg_partitioned_table
 WHERE partrelid = i.inhparent)) +
 CASE WHEN pg_catalog.pg_partition_root(conrelid) = confrelid THEN
 (SELECT count(*) FROM pg_catalog.pg_partition_tree(confrelid)
 WHERE level = 1)
 ELSE 0 END);

 Since it is possible that one or more of the ADD
 CONSTRAINT steps will fail, you should save the query's
 output in a file and then attempt to perform each step.

	
 Avoid possible crashes and “could not open relation”
 errors in queries on a partitioned table occurring concurrently with
 a DETACH CONCURRENTLY and immediate drop of a
 partition (Álvaro Herrera, Kuntal Gosh)
 §
 §

	
 Disallow ALTER TABLE ATTACH PARTITION if the
 table to be attached has a foreign key referencing the partitioned
 table (Álvaro Herrera)
 §
 §

 This arrangement is not supported, and other ways of creating it
 already fail.

	
 Don't use partitionwise joins or grouping if the query's collation
 for the key column doesn't match the partition key's collation (Jian
 He, Webbo Han)
 §
 §

 Such plans could produce incorrect results.

	
 Fix possible “could not find pathkey item to sort”
 error when the output of a UNION ALL member query
 needs to be sorted, and the sort column is an expression (Andrei
 Lepikhov, Tom Lane)
 §

	
 Fix performance regressions involving flattening of subqueries
 underneath outer joins that are later reduced to plain joins
 (Tom Lane)
 §

 v16 failed to optimize some queries as well as prior versions had,
 because of overoptimistic simplification of query-pullup logic.

	
 Allow cancellation of the second stage of index build for large hash
 indexes (Pavel Borisov)
 §

	
 Fix assertion failure or confusing error message for COPY
 (query) TO ..., when
 the query is rewritten by a DO
 INSTEAD NOTIFY rule (Tender Wang, Tom Lane)
 §

	
 Fix server crash when a json_objectagg() call
 contains a volatile function (Amit Langote)
 §

	
 Fix checking of key uniqueness in JSON object constructors
 (Junwang Zhao, Tomas Vondra)
 §

 When building an object larger than a kilobyte, it was possible to
 accept invalid input that includes duplicate object keys, or to
 falsely report that duplicate keys are present.

	
 Fix detection of skewed data during parallel hash join (Thomas
 Munro)
 §

 After repartitioning the inner side of a hash join because one
 partition has accumulated too many tuples, we check to see if all
 the partition's tuples went into the same child partition, which
 suggests that they all have the same hash value and further
 repartitioning cannot improve matters. This check malfunctioned in
 some cases, allowing repeated futile repartitioning which would
 eventually end in a resource-exhaustion error.

	
 Disallow locale names containing non-ASCII characters (Thomas Munro)
 §

 This is only an issue on Windows, as such locale names are not used
 elsewhere. They are problematic because it's quite unclear what
 encoding such names are represented in (since the locale itself
 defines the encoding to use). In
 recent PostgreSQL™ releases, an abort in
 the Windows runtime library could occur because of confusion about
 that.

 Anyone who encounters the new error message should either create a
 new duplicated locale with an ASCII-only name using Windows Locale
 Builder, or consider using BCP 47-compliant locale names
 like tr-TR.

	
 Fix race condition in committing a serializable transaction (Heikki
 Linnakangas)
 §

 Mis-processing of a recently committed transaction could lead to an
 assertion failure or a “could not access status of
 transaction” error.

	
 Fix race condition in COMMIT PREPARED
 that resulted in orphaned 2PC files (wuchengwen)
 §

 A concurrent PREPARE TRANSACTION could
 cause COMMIT PREPARED to not remove the on-disk
 two-phase state file for the completed transaction. There was no
 immediate ill effect, but a subsequent crash-and-recovery could fail
 with “could not access status of transaction”,
 requiring manual removal of the orphaned file to restore service.

	
 Avoid invalid memory accesses after skipping an invalid toast index
 during VACUUM FULL (Tender Wang)
 §

 A list tracking yet-to-be-rebuilt indexes was not properly updated
 in this code path, risking assertion failures or crashes later on.

	
 Fix ways in which an “in place” catalog update could be
 lost (Noah Misch)
 §
 §
 §
 §
 §
 §
 §

 Normal row updates write a new version of the row to preserve
 rollback-ability of the transaction. However, certain system
 catalog updates are intentionally non-transactional and are done
 with an in-place update of the row. These patches fix race
 conditions that could cause the effects of an in-place update to be
 lost. As an example, it was possible to forget having set
 pg_class.relhasindex
 to true, preventing updates of the new index and thus causing index
 corruption.

	
 Reset catalog caches at end of recovery (Noah Misch)
 §

 This prevents scenarios wherein an in-place catalog update could be
 lost due to using stale data from a catalog cache.

	
 Avoid using parallel query while holding off interrupts
 (Francesco Degrassi, Noah Misch, Tom Lane)
 §
 §

 This situation cannot arise normally, but it can be reached with
 test scenarios such as using a SQL-language function as B-tree
 support (which would be far too slow for production usage). If it
 did occur it would result in an indefinite wait.

	
 Report the active query ID for statistics purposes at the start of
 processing of Bind and Execute protocol messages (Sami Imseih)
 §

 This allows more of the work done in extended query protocol to be
 attributed to the correct query.

	
 Guard against stack overflow in libxml2
 with too-deeply-nested XML input (Tom Lane, with hat tip to Nick
 Wellnhofer)
 §

 Use xmlXPathCtxtCompile() rather
 than xmlXPathCompile(), because the latter
 fails to protect itself against recursion-to-stack-overflow
 in libxml2 releases before 2.13.4.

	
 Fix some whitespace issues in the result
 of XMLSERIALIZE(... INDENT) (Jim Jones)
 §

 Fix failure to indent nodes separated by whitespace, and ensure that
 a trailing newline is not added.

	
 Do not ignore a concurrent REINDEX CONCURRENTLY
 that is working on an index with predicates or expressions (Michail
 Nikolaev)
 §

 Normally, REINDEX CONCURRENTLY does not need to
 wait for other REINDEX CONCURRENTLY operations on
 other tables. However, this optimization is not applied if the
 other REINDEX CONCURRENTLY is processing an index
 with predicates or expressions, on the chance that such expressions
 contain user-defined code that accesses other tables. Careless
 coding created a race condition such that that rule was not applied
 uniformly, possibly allowing inconsistent behavior.

	
 Fix mis-deparsing of ORDER BY lists when there is
 a name conflict (Tom Lane)
 §

 If an ORDER BY item in SELECT
 is a bare identifier, the parser first seeks it as an output column
 name of the SELECT, for SQL92 compatibility.
 However, ruleutils.c expects the SQL99 interpretation where such a
 name is an input column name. So it was possible to produce an
 incorrect display of a view in the (rather ill-advised) case where
 some other column is renamed in the SELECT output
 list to match an input column used in ORDER BY.
 Fix by table-qualifying such names in the dumped view text.

	
 Fix “failed to find plan for subquery/CTE” errors
 in EXPLAIN (Richard Guo, Tom Lane)
 §
 §

 This case arose while trying to print references to fields of a
 RECORD-type output of a subquery when the subquery has been
 optimized out of the plan altogether (which is possible at least in
 the case that it has a constant-false WHERE
 condition). Nothing remains in the plan to identify the original
 field names, so fall back to
 printing fN for
 the N'th record column. (That's actually
 the right thing anyway, if the record output arose from
 a ROW() constructor.)

	
 Disallow a USING clause when altering the type of
 a generated column (Peter Eisentraut)
 §

 A generated column already has an expression specifying the column
 contents, so including USING doesn't make sense.

	
 Ignore not-yet-defined Portals in
 the pg_cursors view (Tom Lane)
 §

 It is possible for user-defined code that inspects this view to be
 called while a new cursor is being set up, and if that happens a
 null pointer dereference would ensue. Avoid the problem by defining
 the view to exclude incompletely-set-up cursors.

	
 Fix incorrect output of the pg_stat_io view
 on 32-bit machines (Bertrand Drouvot)
 §

 The stats_reset timestamp column
 contained garbage on such hardware.

	
 Prevent mis-encoding of “trailing junk after numeric
 literal” error messages (Karina Litskevich)
 §

 We do not allow identifiers to appear immediately following numeric
 literals (there must be some whitespace between). If a multibyte
 character immediately followed a numeric literal, the syntax error
 message about it included only the first byte of that character,
 causing bad-encoding problems both in the report to the client and
 in the postmaster log file.

	
 Avoid “unexpected table_index_fetch_tuple call during logical
 decoding” error while decoding a transaction involving
 insertion of a column default value (Takeshi Ideriha, Hou Zhijie)
 §
 §

	
 Reduce memory consumption of logical decoding (Masahiko Sawada)
 §

 Use a smaller default block size to store tuple data received during
 logical replication. This reduces memory wastage, which has been
 reported to be severe while processing long-running transactions,
 even leading to out-of-memory failures.

	
 In a logical replication apply worker, ensure that origin progress
 is not advanced during an error or apply worker shutdown (Hayato
 Kuroda, Shveta Malik)
 §

 This avoids possible loss of a transaction, since once the origin
 progress point is advanced the source server won't send that data
 again.

	
 Re-disable sending of stateless (TLSv1.2) session tickets
 (Daniel Gustafsson)
 §

 A previous change to prevent sending of stateful (TLSv1.3) session
 tickets accidentally re-enabled sending of stateless ones. Thus,
 while we intended to prevent clients from thinking that TLS session
 resumption is supported, some still did.

	
 Avoid “wrong tuple length” failure when dropping a
 database with many ACL (permission) entries (Ayush Tiwari)
 §
 §

	
 Allow adjusting the session_authorization
 and role settings in parallel workers (Tom Lane)
 §

 Our code intends to allow modifiable server settings to be set by
 function SET clauses, but not otherwise within a
 parallel worker. SET clauses failed for these
 two settings, though.

	
 Fix behavior of stable functions called from
 a CALL statement's argument list, when
 the CALL is within a
 PL/pgSQL EXCEPTION block (Tom Lane)
 §

 As with a similar fix in our previous quarterly releases, this case
 allowed such functions to be passed the wrong snapshot, causing them
 to see stale values of rows modified since the start of the outer
 transaction.

	
 Fix “cache lookup failed for function” errors in edge
 cases in PL/pgSQL's CALL (Tom Lane)
 §

	
 Fix thread safety of our fallback (non-OpenSSL) MD5 implementation
 on big-endian hardware (Heikki Linnakangas)
 §

 Thread safety is not currently a concern in the server, but it is
 for libpq.

	
 Parse libpq's keepalives
 connection option in the same way as other integer-valued options
 (Yuto Sasaki)
 §

 The coding used here rejected trailing whitespace in the option
 value, unlike other cases. This turns out to be problematic
 in ecpg's usage, for example.

	
 Avoid use of pnstrdup()
 in ecpglib (Jacob Champion)
 §

 That function will call exit() on
 out-of-memory, which is undesirable in a library. The calling code
 already handles allocation failures properly.

	
 In ecpglib, fix out-of-bounds read when
 parsing incorrect datetime input (Bruce Momjian, Pavel Nekrasov)
 §

 It was possible to try to read the location just before the start of
 a constant array. Real-world consequences seem minimal, though.

	
 Fix memory leak in psql during repeated
 use of \bind (Michael Paquier)
 §

	
 Avoid hanging if an interval less than 1ms is specified
 in psql's \watch
 command (Andrey Borodin, Michael Paquier)
 §

 Instead, treat this the same as an interval of zero (no wait between
 executions).

	
 Fix pg_dump's handling of identity
 sequences that have persistence different from their owning table's
 persistence (Tom Lane)
 §

 Since v15, it's been possible to set an identity sequence to be
 LOGGED when its owning table is UNLOGGED or vice versa.
 However, pg_dump's method for recreating
 that situation failed in binary-upgrade mode,
 causing pg_upgrade to fail when such
 sequences are present. Fix by introducing a new option
 for ADD/ALTER COLUMN GENERATED AS IDENTITY to
 allow the sequence's persistence to be set correctly at creation.
 Note that this means a dump from a database containing such a
 sequence will only load into a server of this minor version or
 newer.

	
 Include the source timeline history
 in pg_rewind's debug output
 (Heikki Linnakangas)
 §

 This was the intention to begin with, but a coding error caused the
 source history to always print as empty.

	
 Avoid trying to reindex temporary tables and indexes
 in vacuumdb and in
 parallel reindexdb (VaibhaveS, Michael
 Paquier, Fujii Masao, Nathan Bossart)
 §
 §
 §

 Reindexing other sessions' temporary tables cannot work, but the
 check to skip them was missing in some code paths, leading to
 unwanted failures.

	
 Allow inspection of sequence relations in relevant functions
 of contrib/pageinspect
 and contrib/pgstattuple (Nathan Bossart, Ayush
 Vatsa)
 §
 §

 This had been allowed in the past, but it got broken during the
 introduction of non-default access methods for tables.

	
 Fix incorrect LLVM-generated code on ARM64 platforms (Thomas
 Munro, Anthonin Bonnefoy)
 §

 When using JIT compilation on ARM platforms, the generated code
 could not support relocation distances exceeding 32 bits, allowing
 unlucky placement of generated code to cause server crashes on
 large-memory systems.

	
 Fix a few places that assumed that process start time (represented
 as a time_t) will fit into a long value
 (Max Johnson, Nathan Bossart)
 §

 On platforms where long is 32 bits (notably Windows),
 this coding would fail after Y2038. Most of the failures appear
 only cosmetic, but notably pg_ctl start would
 hang.

	
 Fix building with Strawberry Perl on Windows (Andrew Dunstan)
 §

	
 Update time zone data files to tzdata
 release 2024b (Tom Lane)
 §
 §

 This tzdata release changes the old
 System-V-compatibility zone names to duplicate the corresponding
 geographic zones; for example PST8PDT is now an
 alias for America/Los_Angeles. The main visible
 consequence is that for timestamps before the introduction of
 standardized time zones, the zone is considered to represent local
 mean solar time for the named location. For example,
 in PST8PDT, timestamptz input such
 as 1801-01-01 00:00 would previously have been
 rendered as 1801-01-01 00:00:00-08, but now it is
 rendered as 1801-01-01 00:00:00-07:52:58.

 Also, historical corrections for Mexico, Mongolia, and Portugal.
 Notably, Asia/Choibalsan is now an alias
 for Asia/Ulaanbaatar rather than being a separate
 zone, mainly because the differences between those zones were found to
 be based on untrustworthy data.

Release 16.4

Release date: 2024-08-08

 This release contains a variety of fixes from 16.3.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.4

 A dump/restore is not required for those running 16.X.

 However, if you are upgrading from a version earlier than 16.3,
 see the section called “Release 16.3”.

Changes

	
 Prevent unauthorized code execution
 during pg_dump (Masahiko Sawada)
 §

 An attacker able to create and drop non-temporary objects could
 inject SQL code that would be executed by a
 concurrent pg_dump session with the
 privileges of the role running pg_dump
 (which is often a superuser). The attack involves replacing a
 sequence or similar object with a view or foreign table that will
 execute malicious code. To prevent this, introduce a new server
 parameter restrict_nonsystem_relation_kind that
 can disable expansion of non-builtin views as well as access to
 foreign tables, and teach pg_dump to set
 it when available. Note that the attack is prevented only if
 both pg_dump and the server it is dumping
 from are new enough to have this fix.

 The PostgreSQL™ Project thanks
 Noah Misch for reporting this problem.
 (CVE-2024-7348)

	
 Avoid incorrect results from Merge Right Anti Join plans
 (Richard Guo)
 §

 If the inner relation is known to have unique join keys, the merge
 could misbehave when there are duplicated join keys in the outer
 relation.

	
 Prevent infinite loop in VACUUM
 (Melanie Plageman)
 §

 After a disconnected standby server with an old running transaction
 reconnected to the primary, it was possible
 for VACUUM on the primary to get confused about
 which tuples are removable, resulting in an infinite loop.

	
 Fix failure after attaching a table as a partition, if the
 table had previously had inheritance children
 (Álvaro Herrera)
 §

	
 Fix ALTER TABLE DETACH PARTITION for cases
 involving inconsistent index-based constraints
 (Álvaro Herrera, Tender Wang)
 §
 §

 When a partitioned table has an index that is not associated with a
 constraint, but a partition has an equivalent index that is, then
 detaching the partition would misbehave, leaving the ex-partition's
 constraint with an incorrect coninhcount
 value. This would cause trouble during any further manipulations of
 that constraint.

	
 Fix partition pruning setup during ALTER TABLE DETACH
 PARTITION CONCURRENTLY (Álvaro Herrera)
 §
 §

 The executor assumed that no partition could be detached between
 planning and execution of a query on a partitioned table. This is
 no longer true since the introduction of DETACH
 PARTITION's CONCURRENTLY option, making
 it possible for query execution to fail transiently when that is
 used.

	
 Correctly update a partitioned table's
 pg_class.reltuples
 field to zero after its last child partition is dropped (Noah Misch)
 §

 The first ANALYZE on such a partitioned table
 must update relhassubclass as well, and
 that caused the reltuples update to be
 lost.

	
 Fix handling of polymorphic output arguments for procedures
 (Tom Lane)
 §
 §

 The SQL CALL statement did not resolve the
 correct data types for such arguments, leading to errors such
 as “cannot display a value of type anyelement”, or even
 outright crashes. (But CALL
 in PL/pgSQL worked correctly.)

	
 Fix behavior of stable functions called from
 a CALL statement's argument list (Tom Lane)
 §

 If the CALL is within an atomic context
 (e.g. there's an outer transaction block), such functions were
 passed the wrong snapshot, causing them to see stale values of rows
 modified since the start of the outer transaction.

	
 Fix input of ISO-8601 “extended” time format for
 types time and timetz (Tom Lane)
 §

 Re-allow cases such as T12:34:56.

	
 Detect integer overflow in money calculations
 (Joseph Koshakow)
 §

 None of the arithmetic functions for the money type
 checked for overflow before, so they would silently give wrong
 answers for overflowing cases.

	
 Fix over-aggressive clamping of the scale argument
 in round(numeric)
 and trunc(numeric) (Dean Rasheed)
 §

 These functions clamped their scale argument to +/-2000, but there
 are valid use-cases for it to be larger; the functions returned
 incorrect results in such cases. Instead clamp to the actual
 allowed range of type numeric.

	
 Fix result for pg_size_pretty() when applied to
 the smallest possible bigint value (Joseph Koshakow)
 §

	
 Prevent pg_sequence_last_value() from failing
 on unlogged sequences on standby servers and on temporary sequences
 of other sessions (Nathan Bossart)
 §

 Make it return NULL in these cases instead of throwing an error.

	
 Fix parsing of ignored operators
 in websearch_to_tsquery() (Tom Lane)
 §

 Per the manual, punctuation in the input
 of websearch_to_tsquery() is ignored except for
 the special cases of dashes and quotes. However, parentheses and a
 few other characters appearing immediately before
 an or could cause or to be
 treated as a data word, rather than as an OR
 operator as expected.

	
 Detect another integer overflow case while computing new array
 dimensions (Joseph Koshakow)
 §

 Reject applying array
 dimensions [-2147483648:2147483647] to an empty
 array. This is closely related to CVE-2023-5869, but appears
 harmless since the array still ends up empty.

	
 Fix unportable usage of strnxfrm() (Jeff Davis)
 §

 Some code paths for non-deterministic collations could fail with
 errors like “pg_strnxfrm() returned unexpected result”.

	
 Detect another case of a new catalog cache entry becoming stale
 while detoasting its fields (Noah Misch)
 §

 An in-place update occurring while we expand out-of-line fields in a
 catalog tuple could be missed, leading to a catalog cache entry that
 lacks the in-place change but is not known to be stale. This is
 only possible in the pg_database catalog,
 so the effects are narrow, but misbehavior is possible.

	
 Correctly check updatability of view columns targeted
 by INSERT ... DEFAULT
 (Tom Lane)
 §

 If such a column is non-updatable, we should give an error reporting
 that. But the check was missed and then later code would report an
 unhelpful error such as “attribute
 number N not found in view
 targetlist”.

	
 Avoid reporting an unhelpful internal error for incorrect recursive
 queries (Tom Lane)
 §

 Rearrange the order of error checks so that we throw an on-point
 error when a WITH RECURSIVE query does not have a
 self-reference within the second arm of
 the UNION, but does have one self-reference in
 some other place such as ORDER BY.

	
 Lock owned sequences during ALTER TABLE SET
 LOGGED|UNLOGGED (Noah Misch)
 §

 These commands change the persistence of a table's owned sequences
 along with the table, but they failed to acquire lock on the
 sequences while doing so. This could result in losing the effects
 of concurrent nextval() calls.

	
 Don't throw an error if a queued AFTER trigger no
 longer exists (Tom Lane)
 §

 It's possible for a transaction to execute an operation that queues
 a deferred AFTER trigger for later execution, and
 then to drop the trigger before that happens. Formerly this led to
 weird errors such as “could not find
 trigger NNNN”. It seems better to
 silently do nothing if the trigger no longer exists at the time when
 it would have been executed.

	
 Fix failure to remove pg_init_privs entries
 for column-level privileges when their table is dropped (Tom Lane)
 §

 If an extension grants some column-level privileges on a table it
 creates, relevant catalog entries would remain behind after the
 extension is dropped. This was harmless until/unless the table's
 OID was re-used for another relation, when it could interfere with
 what pg_dump dumps for that relation.

	
 Fix selection of an arbiter index for ON CONFLICT
 when the desired index has expressions or predicates (Tom Lane)
 §

 If a query using ON CONFLICT accesses the target
 table through an updatable view, it could fail with “there is
 no unique or exclusion constraint matching the ON CONFLICT
 specification”, even though a matching index does exist.

	
 Refuse to modify a temporary table of another session
 with ALTER TABLE (Tom Lane)
 §

 Permissions checks normally would prevent this case from arising,
 but it is possible to reach it by altering a parent table whose
 child is another session's temporary table. Throw an error if we
 discover that such a child table belongs to another session.

	
 Fix handling of extended statistics on expressions
 in CREATE TABLE LIKE STATISTICS (Tom Lane)
 §

 The CREATE command failed to adjust column
 references in statistics expressions to the possibly-different
 column numbering of the new table. This resulted in invalid
 statistics objects that would cause problems later. A typical
 scenario where renumbering columns is needed is when the source
 table contains some dropped columns.

	
 Fix failure to recalculate sub-queries generated
 from MIN() or MAX()
 aggregates (Tom Lane)
 §

 In some cases the aggregate result computed at one row of the outer
 query could be re-used for later rows when it should not be. This
 has only been seen to happen when the outer query uses
 DISTINCT that is implemented with hash
 aggregation, but other cases may exist.

	
 Re-forbid underscore in positional parameters (Erik Wienhold)
 §

 As of v16 we allow integer literals to contain underscores.
 This change caused input such as $1_234
 to be taken as a single token, but it did not work correctly.
 It seems better to revert to the original definition in which a
 parameter symbol is only $ followed by digits.

	
 Avoid crashing when a JIT-inlined backend function throws an error
 (Tom Lane)
 §

 The error state can include pointers into the dynamically loaded
 module holding the JIT-compiled code (for error location strings).
 In some code paths the module could get unloaded before the error
 report is processed, leading to SIGSEGV when the location strings
 are accessed.

	
 Cope with behavioral changes in libxml2
 version 2.13.x (Erik Wienhold, Tom Lane)
 §

 Notably, we now suppress “chunk is not well balanced”
 errors from libxml2, unless that is the
 only reported error. This is to make error reports consistent
 between 2.13.x and earlier libxml2
 versions. In earlier versions, that message was almost always
 redundant or outright incorrect, so 2.13.x substantially reduced the
 number of cases in which it's reported.

	
 Fix handling of subtransactions of prepared transactions
 when starting a hot standby server (Heikki Linnakangas)
 §

 When starting a standby's replay at a shutdown checkpoint WAL
 record, transactions that had been prepared but not yet committed on
 the primary are correctly understood as being still in progress.
 But subtransactions of a prepared transaction (created by savepoints
 or PL/pgSQL exception blocks) were not
 accounted for and would be treated as aborted. That led to
 inconsistency if the prepared transaction was later committed.

	
 Prevent incorrect initialization of logical replication slots
 (Masahiko Sawada)
 §

 In some cases a replication slot's start point within the WAL stream
 could be set to a point within a transaction, leading to assertion
 failures or incorrect decoding results.

	
 Avoid “can only drop stats once” error during
 replication slot creation and drop (Floris Van Nee)
 §

	
 Fix resource leakage in logical replication WAL sender (Hou Zhijie)
 §

 The walsender process leaked memory when publishing changes to a
 partitioned table whose partitions have row types physically
 different from the partitioned table's.

	
 Avoid memory leakage after servicing a notify or sinval interrupt
 (Tom Lane)
 §

 The processing functions for these events could switch the current
 memory context to TopMemoryContext, resulting in session-lifespan
 leakage of any data allocated before the incorrect setting gets
 replaced. There were observable leaks associated with (at least)
 encoding conversion of incoming queries and parameters attached to
 Bind messages.

	
 Prevent leakage of reference counts for the shared memory block used
 for statistics (Anthonin Bonnefoy)
 §

 A new backend process attaching to the statistics shared memory
 incremented its reference count, but failed to decrement the count
 when exiting. After 232 sessions had
 been created, the reference count would overflow to zero, causing
 failures in all subsequent backend process starts.

	
 Prevent deadlocks and assertion failures during truncation of the
 multixact SLRU log (Heikki Linnakangas)
 §

 A process trying to delete SLRU segments could deadlock with the
 checkpointer process.

	
 Avoid possibly missing end-of-input events on Windows sockets
 (Thomas Munro)
 §

 Windows reports an FD_CLOSE event only once after the remote end of
 the connection disconnects. With unlucky timing, we could miss that
 report and wait indefinitely, or at least until a timeout elapsed,
 expecting more input.

	
 Fix buffer overread in JSON parse error reports for incomplete byte
 sequences (Jacob Champion)
 §

 It was possible to walk off the end of the input buffer by a few
 bytes when the last bytes comprise an incomplete multi-byte
 character. While usually harmless, in principle this could cause a
 crash.

	
 Disable creation of stateful TLS session tickets by OpenSSL
 (Daniel Gustafsson)
 §
 §
 §

 This avoids possible failures with clients that think receipt of
 a session ticket means that TLS session resumption is supported.

	
 When replanning a PL/pgSQL “simple
 expression”, check it's still simple (Tom Lane)
 §

 Certain fairly-artificial cases, such as dropping a referenced
 function and recreating it as an aggregate, could lead to surprising
 failures such as “unexpected plan node type”.

	
 Fix PL/pgSQL's handling of integer ranges
 containing underscores (Erik Wienhold)
 §

 As of v16 we allow integer literals to contain underscores,
 but PL/pgSQL failed to handle examples
 such as FOR i IN 1_001..1_003.

	
 Fix recursive RECORD-returning
 PL/Python functions (Tom Lane)
 §

 If we recurse to a new call of the same function that passes a
 different column definition list (AS clause), it
 would fail because the inner call would overwrite the outer call's
 idea of what rowtype to return.

	
 Don't corrupt PL/Python's
 TD dictionary during a recursive trigger call
 (Tom Lane)
 §

 If a PL/Python-language trigger caused
 another one to be invoked, the TD dictionary
 created for the inner one would overwrite the outer
 one's TD dictionary.

	
 Fix PL/Tcl's reporting of invalid list
 syntax in the result of a function returning tuple (Erik Wienhold,
 Tom Lane)
 §

 Such a case could result in a crash, or in emission of misleading
 context information that actually refers to the previous Tcl error.

	
 Avoid non-thread-safe usage of strerror()
 in libpq (Peter Eisentraut)
 §

 Certain error messages returned by OpenSSL could become garbled in
 multi-threaded applications.

	
 Avoid memory leak within pg_dump during a
 binary upgrade (Daniel Gustafsson)
 §

	
 Ensure that pg_restore -l
 reports dependent TOC entries correctly (Tom Lane)
 §

 If -l was specified together with selective-restore
 options such as -n or -N,
 dependent TOC entries such as comments would be omitted from the
 listing, even when an actual restore would have selected them.

	
 Allow contrib/pg_stat_statements to distinguish
 among utility statements appearing within SQL-language functions
 (Anthonin Bonnefoy)
 §

 The SQL-language function executor failed to pass along the query ID
 that is computed for a utility
 (non SELECT/INSERT/UPDATE/DELETE/MERGE)
 statement.

	
 Avoid “cursor can only scan forward” error
 in contrib/postgres_fdw (Etsuro Fujita)
 §

 This error could occur if the remote server is v15 or later
 and a foreign table is mapped to a non-trivial remote view.

	
 In contrib/postgres_fdw, do not
 send FETCH FIRST WITH TIES clauses to the remote
 server (Japin Li)
 §

 The remote server might not implement this clause, or might
 interpret it differently than we would locally, so don't risk
 attempting remote execution.

	
 Avoid clashing with
 system-provided <regex.h> headers
 (Thomas Munro)
 §

 This fixes a compilation failure on macOS version 15 and up.

	
 Fix otherwise-harmless assertion failure in Memoize cost estimation
 (David Rowley)
 §

	
 Fix otherwise-harmless assertion failures in REINDEX
 CONCURRENTLY applied to an SP-GiST index (Tom Lane)
 §

Release 16.3

Release date: 2024-05-09

 This release contains a variety of fixes from 16.2.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.3

 A dump/restore is not required for those running 16.X.

 However, a security vulnerability was found in the system
 views pg_stats_ext
 and pg_stats_ext_exprs, potentially allowing
 authenticated database users to see data they shouldn't. If this is
 of concern in your installation, follow the steps in the first
 changelog entry below to rectify it.

 Also, if you are upgrading from a version earlier than 16.2,
 see the section called “Release 16.2”.

Changes

	
 Restrict visibility of pg_stats_ext and
 pg_stats_ext_exprs entries to the table
 owner (Nathan Bossart)
 §

 These views failed to hide statistics for expressions that involve
 columns the accessing user does not have permission to read. View
 columns such as most_common_vals might
 expose security-relevant data. The potential interactions here are
 not fully clear, so in the interest of erring on the side of safety,
 make rows in these views visible only to the owner of the associated
 table.

 The PostgreSQL™ Project thanks
 Lukas Fittl for reporting this problem.
 (CVE-2024-4317)

 By itself, this fix will only fix the behavior in newly initdb'd
 database clusters. If you wish to apply this change in an existing
 cluster, you will need to do the following:

	
 Find the SQL script fix-CVE-2024-4317.sql in
 the share directory of
 the PostgreSQL™ installation (typically
 located someplace like /usr/share/postgresql/).
 Be sure to use the script appropriate to
 your PostgreSQL™ major version.
 If you do not see this file, either your version is not vulnerable
 (only v14–v16 are affected) or your minor version is too
 old to have the fix.

	
 In each database of the cluster, run
 the fix-CVE-2024-4317.sql script as superuser.
 In psql this would look like

\i /usr/share/postgresql/fix-CVE-2024-4317.sql

 (adjust the file path as appropriate). Any error probably indicates
 that you've used the wrong script version. It will not hurt to run
 the script more than once.

	
 Do not forget to include the template0
 and template1 databases, or the vulnerability
 will still exist in databases you create later. To
 fix template0, you'll need to temporarily make
 it accept connections. Do that with

ALTER DATABASE template0 WITH ALLOW_CONNECTIONS true;

 and then after fixing template0, undo it with

ALTER DATABASE template0 WITH ALLOW_CONNECTIONS false;

	
 Fix INSERT from
 multiple VALUES rows into a target column that is
 a domain over an array or composite type (Tom Lane)
 §

 Such cases would either fail with surprising complaints about
 mismatched datatypes, or insert unexpected coercions that could lead
 to odd results.

	
 Require SELECT privilege on the target table
 for MERGE with a DO NOTHING
 clause (Álvaro Herrera)
 §

 SELECT privilege would be required in all
 practical cases anyway, but require it even if the query reads no
 columns of the target table. This avoids an edge case in
 which MERGE would require no privileges whatever,
 which seems undesirable even when it's a do-nothing command.

	
 Fix handling of self-modified tuples in MERGE
 (Dean Rasheed)
 §

 Throw an error if a target row joins to more than one source row, as
 required by the SQL standard. (The previous coding could silently
 ignore this condition if a concurrent update was involved.) Also,
 throw a non-misleading error if a target row is already updated by a
 later command in the current transaction, thanks to
 a BEFORE trigger or a volatile function used in
 the query.

	
 Fix incorrect pruning of NULL partition when a table is partitioned
 on a boolean column and the query has a boolean IS
 NOT clause (David Rowley)
 §

 A NULL value satisfies a clause such
 as boolcol IS NOT
 FALSE, so pruning away a partition containing NULLs
 yielded incorrect answers.

	
 Make ALTER FOREIGN TABLE SET SCHEMA move any
 owned sequences into the new schema (Tom Lane)
 §

 Moving a regular table to a new schema causes any sequences owned by
 the table to be moved to that schema too (along with indexes and
 constraints). This was overlooked for foreign tables, however.

	
 Make ALTER TABLE ... ADD COLUMN create
 identity/serial sequences with the same persistence as their owning
 tables (Peter Eisentraut)
 §

 CREATE UNLOGGED TABLE will make any owned
 sequences be unlogged too. ALTER TABLE missed
 that consideration, so that an added identity column would have a
 logged sequence, which seems pointless.

	
 Improve ALTER TABLE ... ALTER COLUMN TYPE's error
 message when there is a dependent function or publication (Tom Lane)
 §
 §

	
 In CREATE DATABASE, recognize strategy keywords
 case-insensitively for consistency with other options (Tomas Vondra)
 §

	
 Fix EXPLAIN's counting of heap pages accessed by
 a bitmap heap scan (Melanie Plageman)
 §

 Previously, heap pages that contain no visible tuples were not
 counted; but it seems more consistent to count all pages returned by
 the bitmap index scan.

	
 Fix EXPLAIN's output for subplans
 in MERGE (Dean Rasheed)
 §

 EXPLAIN would sometimes fail to properly display
 subplan Params referencing variables in other parts of the plan tree.

	
 Avoid deadlock during removal of orphaned temporary tables
 (Mikhail Zhilin)
 §

 If the session that creates a temporary table crashes without
 removing the table, autovacuum will eventually try to remove the
 orphaned table. However, an incoming session that's been assigned
 the same temporary namespace will do that too. If a temporary table
 has a dependency (such as an owned sequence) then a deadlock could
 result between these two cleanup attempts.

	
 Fix updating of visibility map state in VACUUM
 with the DISABLE_PAGE_SKIPPING option (Heikki
 Linnakangas)
 §

 Due to an oversight, this mode caused all heap pages to be dirtied,
 resulting in excess I/O. Also, visibility map bits that were
 incorrectly set would not get cleared.

	
 Avoid race condition while examining per-relation frozen-XID values
 (Noah Misch)
 §

 VACUUM's computation of per-database frozen-XID
 values from per-relation values could get confused by a concurrent
 update of those values by another VACUUM.

	
 Fix buffer usage reporting for parallel vacuuming (Anthonin Bonnefoy)
 §

 Buffer accesses performed by parallel workers were not getting
 counted in the statistics reported in VERBOSE
 mode.

	
 Ensure that join conditions generated from equivalence classes are
 applied at the correct plan level (Tom Lane)
 §

 In versions before PostgreSQL™ 16, it was
 possible for generated conditions to be evaluated below outer joins
 when they should be evaluated above (after) the outer join, leading
 to incorrect query results. All versions have a similar hazard when
 considering joins to UNION ALL trees that have
 constant outputs for the join column in
 some SELECT arms.

	
 Fix “could not find pathkey item to sort” errors
 occurring while planning aggregate functions with ORDER
 BY or DISTINCT options (David Rowley)
 §

 This is similar to a fix applied in 16.1, but it solves the problem
 for parallel plans.

	
 Prevent potentially-incorrect optimization of some window functions
 (David Rowley)
 §

 Disable “run condition” optimization
 of ntile() and count()
 with non-constant arguments. This avoids possible misbehavior with
 sub-selects, typically leading to errors like “WindowFunc not
 found in subplan target lists”.

	
 Avoid unnecessary use of moving-aggregate mode with a non-moving
 window frame (Vallimaharajan G)
 §

 When a plain aggregate is used as a window function, and the window
 frame start is specified as UNBOUNDED PRECEDING,
 the frame's head cannot move so we do not need to use the special
 (and more expensive) moving-aggregate mode. This optimization was
 intended all along, but due to a coding error it never triggered.

	
 Avoid use of already-freed data while planning partition-wise joins
 under GEQO (Tom Lane)
 §

 This would typically end in a crash or unexpected error message.

	
 Avoid freeing still-in-use data in Memoize (Tender Wang, Andrei
 Lepikhov)
 §

 In production builds this error frequently didn't cause any
 problems, as the freed data would most likely not get overwritten
 before it was used.

	
 Fix incorrectly-reported statistics kind codes in “requested
 statistics kind X is not yet
 built” error messages (David Rowley)
 §

	
 Use a hash table instead of linear search for “catcache
 list” objects (Tom Lane)
 §

 This change solves performance problems that were reported for
 certain operations in installations with many thousands of roles.

	
 Be more careful with RECORD-returning functions
 in FROM (Tom Lane)
 §
 §

 The output columns of such a function call must be defined by
 an AS clause that specifies the column names and
 data types. If the actual function output value doesn't match that,
 an error is supposed to be thrown at runtime. However, some code
 paths would examine the actual value prematurely, and potentially
 issue strange errors or suffer assertion failures if it doesn't
 match expectations.

	
 Fix confusion about the return rowtype of SQL-language procedures
 (Tom Lane)
 §

 A procedure implemented in SQL language that returns a single
 composite-type column would cause an assertion failure or core dump.

	
 Add protective stack depth checks to some recursive functions
 (Egor Chindyaskin)
 §

	
 Fix mis-rounding and overflow hazards
 in date_bin() (Moaaz Assali)
 §

 In the case where the source timestamp is before the origin
 timestamp and their difference is already an exact multiple of the
 stride, the code incorrectly subtracted the stride anyway. Also,
 detect some integer-overflow cases that would have produced
 incorrect results.

	
 Detect integer overflow when adding or subtracting
 an interval to/from a timestamp
 (Joseph Koshakow)
 §

 Some cases that should cause an out-of-range error produced an
 incorrect result instead.

	
 Avoid race condition in pg_get_expr()
 (Tom Lane)
 §

 If the relation referenced by the argument is dropped concurrently,
 the function's intention is to return NULL, but sometimes it failed
 instead.

	
 Fix detection of old transaction IDs in XID status functions
 (Karina Litskevich)
 §

 Transaction IDs more than 231
 transactions in the past could be misidentified as recent,
 leading to misbehavior of pg_xact_status()
 or txid_status().

	
 Ensure that a table's freespace map won't return a page that's past
 the end of the table (Ronan Dunklau)
 §

 Because the freespace map isn't WAL-logged, this was possible in
 edge cases involving an OS crash, a replica promote, or a PITR
 restore. The result would be a “could not read block”
 error.

	
 Fix file descriptor leakage when an error is thrown while waiting
 in WaitEventSetWait (Etsuro Fujita)
 §

	
 Avoid corrupting exception stack if an FDW implements async append
 but doesn't configure any wait conditions for the Append plan node
 to wait for (Alexander Pyhalov)
 §

	
 Throw an error if an index is accessed while it is being reindexed
 (Tom Lane)
 §

 Previously this was just an assertion check, but promote it into a
 regular runtime error. This will provide a more on-point error
 message when reindexing a user-defined index expression that
 attempts to access its own table.

	
 Ensure that index-only scans on name columns return a
 fully-padded value (David Rowley)
 §

 The value physically stored in the index is truncated, and
 previously a pointer to that value was returned to callers. This
 provoked complaints when testing under valgrind. In theory it could
 result in crashes, though none have been reported.

	
 Fix race condition that could lead to reporting an incorrect
 conflict cause when invalidating a replication slot (Bertrand
 Drouvot)
 §

	
 Fix race condition in deciding whether a table sync operation is
 needed in logical replication (Vignesh C)
 §

 An invalidation event arriving while a subscriber identifies which
 tables need to be synced would be forgotten about, so that any
 tables newly in need of syncing might not get processed in a timely
 fashion.

	
 Fix crash with DSM allocations larger than 4GB (Heikki Linnakangas)
 §

	
 Disconnect if a new server session's client socket cannot be put
 into non-blocking mode (Heikki Linnakangas)
 §

 It was once theoretically possible for us to operate with a socket
 that's in blocking mode; but that hasn't worked fully in a long
 time, so fail at connection start rather than misbehave later.

	
 Fix inadequate error reporting
 with OpenSSL 3.0.0 and later (Heikki
 Linnakangas, Tom Lane)
 §

 System-reported errors passed through by OpenSSL were reported with
 a numeric error code rather than anything readable.

	
 Fix thread-safety of error reporting
 for getaddrinfo() on Windows (Thomas Munro)
 §

 A multi-threaded libpq client program
 could get an incorrect or corrupted error message after a network
 lookup failure.

	
 Avoid concurrent calls to bindtextdomain()
 in libpq
 and ecpglib (Tom Lane)
 §
 §

 Although GNU gettext's implementation
 seems to be fine with concurrent calls, the version available on
 Windows is not.

	
 Fix crash in ecpg's preprocessor if
 the program tries to redefine a macro that was defined on the
 preprocessor command line (Tom Lane)
 §
 §
 §

	
 In ecpg, avoid issuing
 false “unsupported feature will be passed to server”
 warnings (Tom Lane)
 §

	
 Ensure that the string result
 of ecpg's intoasc()
 function is correctly zero-terminated (Oleg Tselebrovskiy)
 §

	
 In initdb's -c option,
 match parameter names case-insensitively (Tom Lane)
 §

 The server treats parameter names case-insensitively, so this code
 should too. This avoids putting redundant entries into the
 generated postgresql.conf file.

	
 In psql, avoid leaking a query result
 after the query is cancelled (Tom Lane)
 §

 This happened only when cancelling a non-last query in a query
 string made with \; separators.

	
 Fix pg_dumpall so that role comments, if
 present, will be dumped regardless of the setting
 of --no-role-passwords (Daniel Gustafsson,
 Álvaro Herrera)
 §

	
 Skip files named .DS_Store
 in pg_basebackup,
 pg_checksums,
 and pg_rewind (Daniel Gustafsson)
 §

 This avoids problems on macOS, where the Finder may create such
 files.

	
 Fix PL/pgSQL's parsing of single-line
 comments (---style comments) following
 expressions (Erik Wienhold, Tom Lane)
 §

 This mistake caused parse errors if such a comment followed
 a WHEN expression in
 a PL/pgSQL CASE
 statement.

	
 In contrib/amcheck, don't report false match
 failures due to short- versus long-header values (Andrey Borodin,
 Michael Zhilin)
 §
 §

 A variable-length datum in a heap tuple or index tuple could have
 either a short or a long header, depending on compression parameters
 that applied when it was made. Treat these cases as equivalent
 rather than complaining if there's a difference.

	
 Fix bugs in BRIN output functions (Tomas Vondra)
 §
 §

 These output functions are only used for displaying index entries
 in contrib/pageinspect, so the errors are of
 limited practical concern.

	
 In contrib/postgres_fdw, avoid emitting
 requests to sort by a constant (David Rowley)
 §

 This could occur in cases involving UNION ALL
 with constant-emitting subqueries. Sorting by a constant is useless
 of course, but it also risks being misinterpreted by the remote
 server, leading to “ORDER BY
 position N is not in select list”
 errors.

	
 Make contrib/postgres_fdw set the remote
 session's time zone to GMT
 not UTC (Tom Lane)
 §

 This should have the same results for practical purposes.
 However, GMT is recognized by hard-wired code in
 the server, while UTC is looked up in the
 timezone database. So the old code could fail in the unlikely event
 that the remote server's timezone database is missing entries.

	
 In contrib/xml2, avoid use of library functions
 that have been deprecated in recent versions
 of libxml2 (Dmitry Koval)
 §

	
 Fix incompatibility with LLVM 18 (Thomas Munro, Dmitry Dolgov)
 §

	
 Allow make check to work with
 the musl C library (Thomas Munro, Bruce
 Momjian, Tom Lane)
 §

Release 16.2

Release date: 2024-02-08

 This release contains a variety of fixes from 16.1.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.2

 A dump/restore is not required for those running 16.X.

 However, one bug was fixed that could have resulted in corruption of
 GIN indexes during concurrent updates. If you suspect such
 corruption, reindex affected indexes after installing this update.

 Also, if you are upgrading from a version earlier than 16.1,
 see the section called “Release 16.1”.

Changes

	
 Tighten security restrictions within REFRESH MATERIALIZED
 VIEW CONCURRENTLY (Heikki Linnakangas)
 §
 §

 One step of a concurrent refresh command was run under weak security
 restrictions. If a materialized view's owner could persuade a
 superuser or other high-privileged user to perform a concurrent
 refresh on that view, the view's owner could control code executed
 with the privileges of the user running REFRESH.
 Fix things so that all user-determined code is run as the view's
 owner, as expected.

 The only known exploit for this error does not work
 in PostgreSQL™ 16.0 and later, so it may
 be that v16 is not vulnerable in practice.

 The PostgreSQL™ Project thanks Pedro
 Gallegos for reporting this problem.
 (CVE-2024-0985)

	
 Fix memory leak when performing JIT inlining (Andres Freund,
 Daniel Gustafsson)
 §

 There have been multiple reports of backend processes suffering
 out-of-memory conditions after sufficiently many JIT compilations.
 This fix should resolve that.

	
 Avoid generating incorrect partitioned-join plans (Richard Guo)
 §

 Some uncommon situations involving lateral references could create
 incorrect plans. Affected queries could produce wrong answers, or
 odd failures such as “variable not found in subplan target
 list”, or executor crashes.

	
 Fix incorrect wrapping of subquery output expressions in
 PlaceHolderVars (Tom Lane)
 §

 This fixes incorrect results when a subquery is underneath an outer
 join and has an output column that laterally references something
 outside the outer join's scope. The output column might not appear
 as NULL when it should do so due to the action of the outer join.

	
 Fix misprocessing of window function run conditions (Richard Guo)
 §

 This oversight could lead to “WindowFunc not found in subplan
 target lists” errors.

	
 Fix detection of inner-side uniqueness for Memoize plans
 (Richard Guo)
 §

 This mistake could lead to “cache entry already
 complete” errors.

	
 Fix computation of nullingrels when constant-folding field selection
 (Richard Guo)
 §

 Failure to do this led to errors like “wrong varnullingrels
 (b) (expected (b 3)) for Var 2/2”.

	
 Skip inappropriate actions when MERGE causes a
 cross-partition update (Dean Rasheed)
 §

 When executing a MERGE UPDATE action on a
 partitioned table, if the UPDATE is turned into
 a DELETE and INSERT due to
 changing a partition key column, skip firing AFTER
 UPDATE ROW triggers, as well as other post-update actions
 such as RLS checks. These actions would typically fail, which is
 why a regular UPDATE doesn't do them in such
 cases; MERGE shouldn't either.

	
 Cope with BEFORE ROW DELETE triggers in
 cross-partition MERGE updates (Dean Rasheed)
 §

 If such a trigger attempted to prevent the update by returning
 NULL, MERGE would suffer an error or assertion
 failure.

	
 Prevent access to a no-longer-pinned buffer in BEFORE ROW
 UPDATE triggers (Alexander Lakhin, Tom Lane)
 §

 If the tuple being updated had just been updated and moved to
 another page by another session, there was a narrow window where
 we would attempt to fetch data from the new tuple version without
 any pin on its buffer. In principle this could result in garbage
 data appearing in non-updated columns of the proposed new tuple.
 The odds of problems in practice seem rather low, however.

	
 Avoid requesting an oversize shared-memory area in parallel hash
 join (Thomas Munro, Andrei Lepikhov, Alexander Korotkov)
 §
 §

 The limiting value was too large, allowing “invalid DSA memory
 alloc request size” errors to occur with sufficiently large
 expected hash table sizes.

	
 Fix corruption of local buffer state when an error occurs while
 trying to extend a temporary table (Tender Wang)
 §

	
 Fix use of wrong tuple slot while
 evaluating DISTINCT aggregates that have multiple
 arguments (David Rowley)
 §

 This mistake could lead to errors such as “attribute 1 of type
 record has wrong type”.

	
 Avoid assertion failures in heap_update()
 and heap_delete() when a tuple to be updated by
 a foreign-key enforcement trigger fails the extra visibility
 crosscheck (Alexander Lakhin)
 §

 This error had no impact in non-assert builds.

	
 Fix overly tight assertion
 about false_positive_rate parameter of
 BRIN bloom operator classes (Alexander Lakhin)
 §

 This error had no impact in non-assert builds, either.

	
 Fix possible failure during ALTER TABLE ADD
 COLUMN on a complex inheritance tree (Tender Wang)
 §

 If a grandchild table would inherit the new column via multiple
 intermediate parents, the command failed with “tuple already
 updated by self”.

	
 Fix problems with duplicate token names in ALTER TEXT
 SEARCH CONFIGURATION ... MAPPING commands (Tender Wang,
 Michael Paquier)
 §

	
 Fix DROP ROLE with duplicate role names
 (Michael Paquier)
 §

 Previously this led to a “tuple already updated by
 self” failure. Instead, ignore the duplicate.

	
 Properly lock the associated table during DROP
 STATISTICS (Tomas Vondra)
 §

 Failure to acquire the lock could result in “tuple
 concurrently deleted” errors if the DROP
 executes concurrently with ANALYZE.

	
 Fix function volatility checking for GENERATED
 and DEFAULT expressions (Tom Lane)
 §

 These places could fail to detect insertion of a volatile function
 default-argument expression, or decide that a polymorphic function
 is volatile although it is actually immutable on the datatype of
 interest. This could lead to improperly rejecting or accepting
 a GENERATED clause, or to mistakenly applying the
 constant-default-value optimization in ALTER TABLE ADD
 COLUMN.

	
 Detect that a new catalog cache entry became stale while detoasting
 its fields (Tom Lane)
 §
 §

 We expand any out-of-line fields in a catalog tuple before inserting
 it into the catalog caches. That involves database access which
 might cause invalidation of catalog cache entries — but the
 new entry isn't in the cache yet, so we would miss noticing that it
 should get invalidated. The result is a race condition in which an
 already-stale cache entry could get made, and then persist
 indefinitely. This would lead to hard-to-predict misbehavior.
 Fix by rechecking the tuple's visibility after detoasting.

	
 Fix edge-case integer overflow detection bug on some platforms (Dean
 Rasheed)
 §

 Computing 0 - INT64_MIN should result in an
 overflow error, and did on most platforms. However, platforms with
 neither integer overflow builtins nor 128-bit integers would fail to
 spot the overflow, instead returning INT64_MIN.

	
 Detect Julian-date overflow when adding or subtracting
 an interval to/from a timestamp (Tom Lane)
 §

 Some cases that should cause an out-of-range error produced an
 incorrect result instead.

	
 Add more checks for overflow in interval_mul()
 and interval_div() (Dean Rasheed)
 §

 Some cases that should cause an out-of-range error produced an
 incorrect result instead.

	
 Allow scram_SaltedPassword() to be interrupted
 (Bowen Shi)
 §

 With large scram_iterations values, this function
 could take a long time to run. Allow it to be interrupted by query
 cancel requests.

	
 Ensure cached statistics are discarded after a change
 to stats_fetch_consistency (Shinya Kato)
 §

 In some code paths, it was possible for stale statistics to be
 returned.

	
 Make the pg_file_settings view check
 validity of unapplied values for settings
 with backend
 or superuser-backend context (Tom Lane)
 §

 Invalid values were not noted in the view as intended. This escaped
 detection because there are very few settings in these groups.

	
 Match collation too when matching an existing index to a new
 partitioned index (Peter Eisentraut)
 §

 Previously we could accept an index that has a different collation
 from the corresponding element of the partition key, possibly
 leading to misbehavior.

	
 Avoid failure if a child index is dropped concurrently
 with REINDEX INDEX on a partitioned index
 (Fei Changhong)
 §
 §

	
 Fix insufficient locking when cleaning up an incomplete split of
 a GIN index's internal page (Fei Changhong, Heikki Linnakangas)
 §

 The code tried to do this with shared rather than exclusive lock on
 the buffer. This could lead to index corruption if two processes
 attempted the cleanup concurrently.

	
 Avoid premature release of buffer pin in GIN index insertion
 (Tom Lane)
 §

 If an index root page split occurs concurrently with our own
 insertion, the code could fail with “buffer NNNN is not owned
 by resource owner”.

	
 Avoid failure with partitioned SP-GiST indexes (Tom Lane)
 §

 Trying to use an index of this kind could lead to “No such
 file or directory” errors.

	
 Fix ownership tests for large objects (Tom Lane)
 §

 Operations on large objects that require ownership privilege failed
 with “unrecognized class ID: 2613”, unless run by a
 superuser.

	
 Fix ownership change reporting for large objects (Tom Lane)
 §

 A no-op ALTER LARGE OBJECT OWNER command (that
 is, one selecting the existing owner) passed the wrong class ID to
 the PostAlterHook, probably confusing any
 extension using that hook.

	
 Fix reporting of I/O timing data in EXPLAIN
 (BUFFERS) (Michael Paquier)
 §

 The numbers labeled as “shared/local” actually refer
 only to shared buffers, so change that label
 to “shared”.

	
 Ensure durability of CREATE DATABASE (Noah Misch)
 §
 §

 If an operating system crash occurred during or shortly
 after CREATE DATABASE, recovery could fail, or
 subsequent connections to the new database could fail. If a base
 backup was taken in that window, similar problems could be observed
 when trying to use the backup. The symptom would be that the
 database directory, PG_VERSION file, or
 pg_filenode.map file was missing or empty.

	
 Add more LOG messages when starting and ending
 recovery from a backup (Andres Freund)
 §

 This change provides additional information in the postmaster log
 that may be useful for diagnosing recovery problems.

	
 Prevent standby servers from incorrectly processing dead index
 tuples during subtransactions (Fei Changhong)
 §

 The startedInRecovery flag was not
 correctly set for a subtransaction. This affects only processing of
 dead index tuples. It could allow a query in a subtransaction to
 ignore index entries that it should return (if they are already dead
 on the primary server, but not dead to the standby transaction), or
 to prematurely mark index entries as dead that are not yet dead on
 the primary. It is not clear that the latter case has any serious
 consequences, but it's not the intended behavior.

	
 Fix signal handling in walreceiver processes (Heikki Linnakangas)
 §

 Revert a change that made walreceivers non-responsive
 to SIGTERM while waiting for the
 replication connection to be established.

	
 Fix integer overflow hazard in checking whether a record will fit
 into the WAL decoding buffer (Thomas Munro)
 §

 This bug appears to be only latent except when running a
 32-bit PostgreSQL™ build on a 64-bit
 platform.

	
 Fix deadlock between a logical replication apply worker, its
 tablesync worker, and a session process trying to alter the
 subscription (Shlok Kyal)
 §

 One edge of the deadlock loop did not involve a lock wait, so the
 deadlock went undetected and would persist until manual
 intervention.

	
 Ensure that column default values are correctly transmitted by
 the pgoutput logical replication plugin
 (Nikhil Benesch)
 §

 ALTER TABLE ADD COLUMN with a constant default
 value for the new column avoids rewriting existing tuples, instead
 expecting that reading code will insert the correct default into a
 tuple that lacks that column. If replication was subsequently
 initiated on the table, pgoutput would
 transmit NULL instead of the correct default for such a column,
 causing incorrect replication on the subscriber.

	
 Fix failure of logical replication's initial sync for a table with
 no columns (Vignesh C)
 §

 This case generated an improperly-formatted COPY
 command.

	
 Re-validate a subscription's connection string before use (Vignesh C)
 §
 §

 This is meant to detect cases where a subscription was created
 without a password (which is allowed to superusers) but then the
 subscription owner is changed to a non-superuser.

	
 Return the correct status code when a new client disconnects without
 responding to the server's password challenge (Liu Lang, Tom Lane)
 §

 In some cases we'd treat this as a loggable error, which was not the
 intention and tends to create log spam, since common clients
 like psql frequently do this. It may
 also confuse extensions that
 use ClientAuthentication_hook.

	
 Fix incompatibility with OpenSSL 3.2
 (Tristan Partin, Bo Andreson)
 §

 Use the BIO “app_data” field for our private storage,
 instead of assuming it's okay to use the “data” field.
 This mistake didn't cause problems before, but with 3.2 it leads
 to crashes and complaints about double frees.

	
 Be more wary about OpenSSL not
 setting errno on error (Tom Lane)
 §

 If errno isn't set, assume the cause of the
 reported failure is read EOF. This fixes rare cases of strange
 error reports like “could not accept SSL connection:
 Success”.

	
 Fix file descriptor leakage when a foreign data
 wrapper's ForeignAsyncRequest function fails
 (Heikki Linnakangas)
 §

	
 Fix minor memory leak in connection string validation
 for CREATE SUBSCRIPTION (Jeff Davis)
 §

	
 Report ENOMEM errors from file-related system
 calls as ERRCODE_OUT_OF_MEMORY,
 not ERRCODE_INTERNAL_ERROR (Alexander Kuzmenkov)
 §

	
 In PL/pgSQL, support SQL commands that
 are CREATE FUNCTION/CREATE
 PROCEDURE with SQL-standard bodies (Tom Lane)
 §

 Previously, such cases failed with parsing errors due to the
 semicolon(s) appearing in the function body.

	
 Fix libpq's
 handling of errors in pipelines (Álvaro Herrera)
 §
 §

 The pipeline state could get out of sync if an error is returned
 for reasons other than a query problem (for example, if the
 connection is lost). Potentially this would lead to a busy-loop in
 the calling application.

	
 Make libpq's
 PQsendFlushRequest() function flush the client
 output buffer under the same rules as
 other PQsend functions (Jelte Fennema-Nio)
 §

 In pipeline mode, it may still be necessary to
 call PQflush() as well; but this change removes
 some inconsistency.

	
 Avoid race condition when libpq
 initializes OpenSSL support concurrently in two different threads
 (Willi Mann, Michael Paquier)
 §

	
 Fix timing-dependent failure in GSSAPI data transmission (Tom Lane)
 §

 When using GSSAPI encryption in non-blocking
 mode, libpq sometimes failed
 with “GSSAPI caller failed to retransmit all data needing to
 be retried”.

	
 Change initdb to always un-comment
 the postgresql.conf entries for
 the lc_xxx parameters
 (Kyotaro Horiguchi)
 §

 initdb used to work this way before v16,
 and now it does again. The change
 caused initdb's --no-locale
 option to not have the intended effect
 on lc_messages.

	
 In pg_dump, don't dump RLS policies or
 security labels for extension member objects (Tom Lane, Jacob
 Champion)
 §
 §

 Previously, commands would be included in the dump to set these
 properties, which is really incorrect since they should be
 considered as internal affairs of the extension. Moreover, the
 restoring user might not have adequate privilege to set them, and
 indeed the dumping user might not have enough privilege to dump them
 (since dumping RLS policies requires acquiring lock on their table).

	
 In pg_dump, don't dump an extended
 statistics object if its underlying table isn't being dumped
 (Rian McGuire, Tom Lane)
 §

 This conforms to the behavior for other dependent objects such as
 indexes.

	
 Properly detect out-of-memory in one code path
 in pg_dump (Daniel Gustafsson)
 §

	
 Make it an error for a pgbench script to
 end with an open pipeline (Anthonin Bonnefoy)
 §

 Previously, pgbench would behave oddly if
 a \startpipeline command lacked a
 matching \endpipeline. This seems like a
 scripting mistake rather than a case
 that pgbench needs to handle nicely, so
 throw an error.

	
 Fix crash in contrib/intarray if an array with
 an element equal to INT_MAX is inserted into
 a gist__int_ops index
 (Alexander Lakhin, Tom Lane)
 §

	
 Report a better error
 when contrib/pageinspect's
 hash_bitmap_info() function is applied to a
 partitioned hash index (Alexander Lakhin, Michael Paquier)
 §

	
 Report a better error
 when contrib/pgstattuple's
 pgstathashindex() function is applied to a
 partitioned hash index (Alexander Lakhin)
 §

	
 On Windows, suppress autorun options when launching subprocesses
 in pg_ctl
 and pg_regress (Kyotaro Horiguchi)
 §
 §

 When launching a child process via cmd.exe,
 pass the /D flag to prevent executing any autorun
 commands specified in the registry. This avoids possibly-surprising
 side effects.

	
 Move is_valid_ascii()
 from mb/pg_wchar.h
 to utils/ascii.h (Jubilee Young)
 §

 This change avoids the need to
 include <simd.h>
 in pg_wchar.h, which was causing problems for
 some third-party code.

	
 Fix compilation failures with libxml2
 version 2.12.0 and later (Tom Lane)
 §

	
 Fix compilation failure of WAL_DEBUG code on
 Windows (Bharath Rupireddy)
 §

	
 Suppress compiler warnings from Python's header files
 (Peter Eisentraut, Tom Lane)
 §
 §

 Our preferred compiler options provoke warnings about constructs
 appearing in recent versions of Python's header files. When using
 gcc, we can suppress these warnings with
 a pragma.

	
 Avoid deprecation warning when compiling with LLVM 18 (Thomas Munro)
 §

	
 Update time zone data files to tzdata
 release 2024a for DST law changes in Greenland, Kazakhstan, and
 Palestine, plus corrections for the Antarctic stations Casey and
 Vostok. Also historical corrections for Vietnam, Toronto, and
 Miquelon. (Tom Lane)
 §

Release 16.1

Release date: 2023-11-09

 This release contains a variety of fixes from 16.0.
 For information about new features in major release 16, see
 the section called “Release 16”.

Migration to Version 16.1

 A dump/restore is not required for those running 16.X.

 However, several mistakes have been discovered that could lead to
 certain types of indexes yielding wrong search results or being
 unnecessarily inefficient. It is advisable
 to REINDEX potentially-affected indexes after
 installing this update. See the fourth through seventh changelog
 entries below.

Changes

	
 Fix handling of unknown-type arguments
 in DISTINCT "any" aggregate
 functions (Tom Lane)
 §

 This error led to a text-type value being interpreted
 as an unknown-type value (that is, a zero-terminated
 string) at runtime. This could result in disclosure of server
 memory following the text value.

 The PostgreSQL™ Project thanks Jingzhou Fu
 for reporting this problem.
 (CVE-2023-5868)

	
 Detect integer overflow while computing new array dimensions
 (Tom Lane)
 §

 When assigning new elements to array subscripts that are outside the
 current array bounds, an undetected integer overflow could occur in
 edge cases. Memory stomps that are potentially exploitable for
 arbitrary code execution are possible, and so is disclosure of
 server memory.

 The PostgreSQL™ Project thanks Pedro
 Gallegos for reporting this problem.
 (CVE-2023-5869)

	
 Prevent the pg_signal_backend role from
 signalling background workers and autovacuum processes
 (Noah Misch, Jelte Fennema-Nio)
 §
 §

 The documentation says that pg_signal_backend
 cannot issue signals to superuser-owned processes. It was able to
 signal these background processes, though, because they advertise a
 role OID of zero. Treat that as indicating superuser ownership.
 The security implications of cancelling one of these process types
 are fairly small so far as the core code goes (we'll just start
 another one), but extensions might add background workers that are
 more vulnerable.

 Also ensure that the is_superuser parameter is
 set correctly in such processes. No specific security consequences
 are known for that oversight, but it might be significant for some
 extensions.

 The PostgreSQL™ Project thanks
 Hemanth Sandrana and Mahendrakar Srinivasarao
 for reporting this problem.
 (CVE-2023-5870)

	
 Fix misbehavior during recursive page split in GiST index build
 (Heikki Linnakangas)
 §

 Fix a case where the location of a page downlink was incorrectly
 tracked, and introduce some logic to allow recovering from such
 situations rather than silently doing the wrong thing. This error
 could result in incorrect answers from subsequent index searches.
 It may be advisable to reindex all GiST indexes after installing
 this update.

	
 Prevent de-duplication of btree index entries
 for interval columns (Noah Misch)
 §

 There are interval values that are distinguishable but
 compare equal, for example 24:00:00
 and 1 day. This breaks assumptions made by btree
 de-duplication, so interval columns need to be excluded
 from de-duplication. This oversight can cause incorrect results
 from index-only scans. Moreover, after
 updating amcheck will report an error for
 almost all such indexes. Users should reindex any btree indexes
 on interval columns.

	
 Process date values more sanely in
 BRIN datetime_minmax_multi_ops indexes
 (Tomas Vondra)
 §

 The distance calculation for dates was backward, causing poor
 decisions about which entries to merge. The index still produces
 correct results, but is much less efficient than it should be.
 Reindexing BRIN minmax_multi indexes
 on date columns is advisable.

	
 Process large timestamp and timestamptz
 values more sanely in
 BRIN datetime_minmax_multi_ops indexes
 (Tomas Vondra)
 §
 §

 Infinities were mistakenly treated as having distance zero rather
 than a large distance from other values, causing poor decisions
 about which entries to merge. Also, finite-but-very-large values
 (near the endpoints of the representable timestamp range) could
 result in internal overflows, again causing poor decisions. The
 index still produces correct results, but is much less efficient
 than it should be. Reindexing BRIN minmax_multi
 indexes on timestamp and timestamptz
 columns is advisable if the column contains, or has contained,
 infinities or large finite values.

	
 Avoid calculation overflows in
 BRIN interval_minmax_multi_ops indexes with
 extreme interval values (Tomas Vondra)
 §

 This bug might have caused unexpected failures while trying to
 insert large interval values into such an index.

	
 Fix partition step generation and runtime partition pruning for
 hash-partitioned tables with multiple partition keys (David Rowley)
 §
 §

 Some cases involving an IS NULL condition on one
 of the partition keys could result in a crash.

	
 Fix inconsistent rechecking of concurrently-updated rows
 during MERGE (Dean Rasheed)
 §

 In READ COMMITTED mode, an update that finds that
 its target row was just updated by a concurrent transaction will
 recheck the query's WHERE conditions on the
 updated row. MERGE failed to ensure that the
 proper rows of other joined tables were used during this recheck,
 possibly resulting in incorrect decisions about whether the
 newly-updated row should be updated again
 by MERGE.

	
 Correctly identify the target table in an
 inherited UPDATE/DELETE/MERGE
 even when the parent table is excluded by constraints (Amit Langote,
 Tom Lane)
 §
 §
 §

 If the initially-named table is excluded by constraints, but not all
 its inheritance descendants are, the first non-excluded descendant
 was identified as the primary target table. This would lead to
 firing statement-level triggers associated with that table, rather
 than the initially-named table as should happen. In v16, the same
 oversight could also lead to “invalid perminfoindex 0 in RTE
 with relid NNNN” errors.

	
 Fix edge case in btree mark/restore processing of ScalarArrayOpExpr
 clauses (Peter Geoghegan)
 §

 When restoring an indexscan to a previously marked position, the
 code could miss required setup steps if the scan had advanced
 exactly to the end of the matches for a ScalarArrayOpExpr (that is,
 an indexcol = ANY(ARRAY[])) clause. This could
 result in missing some rows that should have been fetched.

	
 Fix intra-query memory leak in Memoize execution
 (Orlov Aleksej, David Rowley)
 §

	
 Fix intra-query memory leak when a set-returning function repeatedly
 returns zero rows (Tom Lane)
 §

	
 Don't crash if cursor_to_xmlschema() is applied
 to a non-data-returning Portal (Boyu Yang)
 §

	
 Fix improper sharing of origin filter condition across
 successive pg_logical_slot_get_changes() calls
 (Hou Zhijie)
 §

 The origin condition set by one call of this function would be
 re-used by later calls that did not specify the origin argument.
 This was not intended.

	
 Throw the intended error if pgrowlocks() is
 applied to a partitioned table (David Rowley)
 §

 Previously, a not-on-point complaint “only heap AM is
 supported” would be raised.

	
 Handle invalid indexes more cleanly in assorted SQL functions
 (Noah Misch)
 §

 Report an error if pgstatindex(),
 pgstatginindex(),
 pgstathashindex(),
 or pgstattuple() is applied to an invalid
 index. If brin_desummarize_range(),
 brin_summarize_new_values(),
 brin_summarize_range(),
 or gin_clean_pending_list() is applied to an
 invalid index, do nothing except to report a debug-level message.
 Formerly these functions attempted to process the index, and might
 fail in strange ways depending on what the failed CREATE
 INDEX had left behind.

	
 Avoid premature memory allocation failure with long inputs
 to to_tsvector() (Tom Lane)
 §

	
 Fix over-allocation of the constructed tsvector
 in tsvectorrecv() (Denis Erokhin)
 §

 If the incoming vector includes position data, the binary receive
 function left wasted space (roughly equal to the size of the
 position data) in the finished tsvector. In extreme
 cases this could lead to “maximum total lexeme length
 exceeded” failures for vectors that were under the length
 limit when emitted. In any case it could lead to wasted space
 on-disk.

	
 Improve checks for corrupt PGLZ compressed data (Flavien Guedez)
 §

	
 Fix ALTER SUBSCRIPTION so that a commanded change
 in the run_as_owner option is actually applied
 (Hou Zhijie)
 §

	
 Fix bulk table insertion into partitioned tables (Andres Freund)
 §

 Improper sharing of insertion state across partitions could result
 in failures during COPY FROM, typically
 manifesting as “could not read block NNNN in file XXXX: read
 only 0 of 8192 bytes” errors.

	
 In COPY FROM, avoid evaluating column default
 values that will not be needed by the command (Laurenz Albe)
 §

 This avoids a possible error if the default value isn't actually
 valid for the column, or if the default's expression would fail in
 the current execution context. Such edge cases sometimes arise
 while restoring dumps, for example. Previous releases did not fail
 in this situation, so prevent v16 from doing so.

	
 In COPY FROM, fail cleanly when an unsupported
 encoding conversion is needed (Tom Lane)
 §

 Recent refactoring accidentally removed the intended error check for
 this, such that it ended in “cache lookup failed for function
 0” instead of a useful error message.

	
 Avoid crash in EXPLAIN if a parameter marked to
 be displayed by EXPLAIN has a NULL boot-time
 value (Xing Guo, Aleksander Alekseev, Tom Lane)
 §

 No built-in parameter fits this description, but an extension could
 define such a parameter.

	
 Ensure we have a snapshot while dropping ON COMMIT
 DROP temp tables (Tom Lane)
 §

 This prevents possible misbehavior if any catalog entries for the
 temp tables have fields wide enough to require toasting (such as a
 very complex CHECK condition).

	
 Avoid improper response to shutdown signals in child processes
 just forked by system() (Nathan Bossart)
 §

 This fix avoids a race condition in which a child process that has
 been forked off by system(), but hasn't yet
 exec'd the intended child program, might receive and act on a signal
 intended for the parent server process. That would lead to
 duplicate cleanup actions being performed, which will not end well.

	
 Cope with torn reads of pg_control in frontend
 programs (Thomas Munro)
 §

 On some file systems, reading pg_control may
 not be an atomic action when the server concurrently writes that
 file. This is detectable via a bad CRC. Retry a few times to see
 if the file becomes valid before we report error.

	
 Avoid torn reads of pg_control in relevant SQL
 functions (Thomas Munro)
 §

 Acquire the appropriate lock before
 reading pg_control, to ensure we get a
 consistent view of that file.

	
 Fix “could not find pathkey item to sort” errors
 occurring while planning aggregate functions with ORDER
 BY or DISTINCT options (David Rowley)
 §

	
 Avoid integer overflow when computing size of backend activity
 string array (Jakub Wartak)
 §

 On 64-bit machines we will allow values
 of track_activity_query_size large enough to
 cause 32-bit overflow when multiplied by the allowed number of
 connections. The code actually allocating the per-backend local
 array was careless about this though, and allocated the array
 incorrectly.

	
 Fix briefly showing inconsistent progress statistics
 for ANALYZE on inherited tables
 (Heikki Linnakangas)
 §

 The block-level counters should be reset to zero at the same time we
 update the current-relation field.

	
 Fix the background writer to report any WAL writes it makes to the
 statistics counters (Nazir Bilal Yavuz)
 §

	
 Fix confusion about forced-flush behavior
 in pgstat_report_wal()
 (Ryoga Yoshida, Michael Paquier)
 §

 This could result in some statistics about WAL I/O being forgotten
 in a shutdown.

	
 Fix statistics tracking of temporary-table extensions (Karina
 Litskevich, Andres Freund)
 §

 These were counted as normal-table writes when they should be
 counted as temp-table writes.

	
 When track_io_timing is enabled, include the
 time taken by relation extension operations as write time
 (Nazir Bilal Yavuz)
 §

	
 Track the dependencies of cached CALL statements,
 and re-plan them when needed (Tom Lane)
 §

 DDL commands, such as replacement of a function that has been
 inlined into a CALL argument, can create the need
 to re-plan a CALL that has been cached by
 PL/pgSQL. That was not happening, leading to misbehavior or strange
 errors such as “cache lookup failed”.

	
 Avoid a possible pfree-a-NULL-pointer crash after an error in
 OpenSSL connection setup (Sergey Shinderuk)
 §

	
 Track nesting depth correctly when
 inspecting RECORD-type Vars from outer query levels
 (Richard Guo)
 §

 This oversight could lead to assertion failures, core dumps,
 or “bogus varno” errors.

	
 Track hash function and negator function dependencies of
 ScalarArrayOpExpr plan nodes (David Rowley)
 §

 In most cases this oversight was harmless, since these functions
 would be unlikely to disappear while the node's original operator
 remains present.

	
 Fix error-handling bug in RECORD type cache management
 (Thomas Munro)
 §

 An out-of-memory error occurring at just the wrong point could leave
 behind inconsistent state that would lead to an infinite loop.

	
 Treat out-of-memory failures as fatal while reading WAL
 (Michael Paquier)
 §

 Previously this would be treated as a bogus-data condition, leading
 to the conclusion that we'd reached the end of WAL, which is
 incorrect and could lead to inconsistent WAL replay.

	
 Fix possible recovery failure due to trying to allocate memory based
 on a bogus WAL record length field (Thomas Munro, Michael Paquier)
 §
 §

	
 Fix “could not duplicate handle” error occurring on
 Windows when min_dynamic_shared_memory is set
 above zero (Thomas Munro)
 §

	
 Fix order of operations in GenericXLogFinish
 (Jeff Davis)
 §

 This code violated the conditions required for crash safety by
 writing WAL before marking changed buffers dirty. No core code uses
 this function, but extensions do (contrib/bloom
 does, for example).

	
 Remove incorrect assertion in PL/Python exception handling
 (Alexander Lakhin)
 §

	
 Fix pg_dump to dump the
 new run_as_owner option of subscriptions
 (Philip Warner)
 §

 Due to this oversight, subscriptions would always be restored
 with run_as_owner set
 to false, which is not equivalent to their
 behavior in pre-v16 releases.

	
 Fix pg_restore so that selective restores
 will include both table-level and column-level ACLs for selected
 tables (Euler Taveira, Tom Lane)
 §

 Formerly, only the table-level ACL would get restored if both types
 were present.

	
 Add logic to pg_upgrade to check for use
 of abstime, reltime,
 and tinterval data types (Álvaro Herrera)
 §

 These obsolete data types were removed
 in PostgreSQL™ version 12, so check to
 make sure they aren't present in an older database before claiming
 it can be upgraded.

	
 Avoid false “too many client connections” errors
 in pgbench on Windows (Noah Misch)
 §

	
 Fix vacuumdb's handling of
 multiple -N switches (Nathan Bossart, Kuwamura
 Masaki)
 §

 Multiple -N switches should exclude tables
 in multiple schemas, but in fact excluded nothing due to faulty
 construction of a generated query.

	
 Fix vacuumdb to honor
 its --buffer-usage-limit option in analyze-only
 mode (Ryoga Yoshida, David Rowley)
 §

	
 In contrib/amcheck, do not report interrupted
 page deletion as corruption (Noah Misch)
 §

 This fix prevents false-positive reports of “the first child
 of leftmost target page is not leftmost of its
 level”, “block NNNN is not leftmost”
 or “left link/right link pair in index XXXX not in
 agreement”. They appeared
 if amcheck ran after an unfinished btree
 index page deletion and before VACUUM had cleaned
 things up.

	
 Fix failure of contrib/btree_gin indexes
 on interval columns,
 when an indexscan using the <
 or <= operator is performed (Dean Rasheed)
 §

 Such an indexscan failed to return all the entries it should.

	
 Add support for LLVM 16 and 17 (Thomas Munro, Dmitry Dolgov)
 §
 §
 §

	
 Suppress assorted build-time warnings on
 recent macOS™ (Tom Lane)
 §
 §

 Xcode 15™ (released
 with macOS Sonoma™) changed the linker's
 behavior in a way that causes many duplicate-library warnings while
 building PostgreSQL™. These were
 harmless, but they're annoying so avoid citing the same libraries
 twice. Also remove use of the -multiply_defined
 suppress linker switch, which apparently has been a no-op
 for a long time, and is now actively complained of.

	
 When building contrib/unaccent's rules file,
 fall back to using python
 if --with-python was not given and make
 variable PYTHON was not set (Japin Li)
 §

	
 Remove PHOT (Phoenix Islands Time) from the
 default timezone abbreviations list (Tom Lane)
 §

 Presence of this abbreviation in the default list can cause failures
 on recent Debian and Ubuntu releases, as they no longer install the
 underlying tzdb entry by default. Since this is a made-up
 abbreviation for a zone with a total human population of about two
 dozen, it seems unlikely that anyone will miss it. If someone does,
 they can put it back via a custom abbreviations file.

Release 16

Release date: 2023-09-14
Overview

 PostgreSQL™ 16 contains many new features
 and enhancements, including:

	
 Allow parallelization of FULL and internal right OUTER hash joins

	
 Allow logical replication from standby servers

	
 Allow logical replication subscribers to apply large transactions in parallel

	
 Allow monitoring of I/O statistics using the new pg_stat_io view

	
 Add SQL/JSON constructors and identity functions

	
 Improve performance of vacuum freezing

	
 Add support for regular expression matching of user and database names in pg_hba.conf, and user names in pg_ident.conf

 The above items and other new features of
 PostgreSQL™ 16 are explained in more detail
 in the sections below.

Migration to Version 16

 A dump/restore using pg_dumpall(1) or use of
 pg_upgrade(1) or logical replication is required for
 those wishing to migrate data from any previous release. See the section called “Upgrading a PostgreSQL™ Cluster” for general information on migrating to new
 major releases.

 Version 16 contains a number of changes that may affect compatibility
 with previous releases. Observe the following incompatibilities:

	
 Change assignment rules for PL/pgSQL
 bound cursor variables (Tom Lane)
 §

 Previously, the string value of such variables
 was set to match the variable name during cursor
 assignment; now it will be assigned during OPEN,
 and will not match the variable name. To restore the previous
 behavior, assign the desired portal name to the cursor variable
 before OPEN.

	
 Disallow NULLS NOT
 DISTINCT indexes for primary keys (Daniel
 Gustafsson)
 §

	
 Change REINDEX
 DATABASE and reindexdb
 to not process indexes on system catalogs (Simon Riggs)
 §
 §

 Processing such indexes is still possible using REINDEX
 SYSTEM and reindexdb
 --system.

	
 Tighten GENERATED
 expression restrictions on inherited and partitioned tables (Amit
 Langote, Tom Lane)
 §

 Columns of parent/partitioned and child/partition tables must all
 have the same generation status, though now the actual generation
 expressions can be different.

	
 Remove pg_walinspect
 functions
 pg_get_wal_records_info_till_end_of_wal()
 and pg_get_wal_stats_till_end_of_wal()
 (Bharath Rupireddy)
 §

	
 Rename server variable
 force_parallel_mode to debug_parallel_query
 (David Rowley)
 §
 §

	
 Remove the ability to create
 views manually with ON SELECT rules
 (Tom Lane)
 §

	
 Remove the server variable
 vacuum_defer_cleanup_age (Andres Freund)
 §

 This has been unnecessary since hot_standby_feedback
 and replication
 slots were added.

	
 Remove server variable promote_trigger_file
 (Simon Riggs)
 §

 This was used to promote a standby to primary, but is now more easily
 accomplished with pg_ctl
 promote or pg_promote().

	
 Remove read-only server variables lc_collate
 and lc_ctype (Peter Eisentraut)
 §

 Collations and locales can vary between databases so having them
 as read-only server variables was unhelpful.

	
 Role inheritance now controls the default
 inheritance status of member roles added during GRANT (Robert Haas)
 §

 The role's default inheritance behavior can be overridden with the
 new GRANT ... WITH INHERIT clause. This allows
 inheritance of some roles and not others because the members'
 inheritance status is set at GRANT time.
 Previously the inheritance status of member roles was controlled
 only by the role's inheritance status, and changes to a role's
 inheritance status affected all previous and future member roles.

	
 Restrict the privileges of CREATEROLE
 and its ability to modify other roles (Robert Haas)
 §
 §

 Previously roles with CREATEROLE privileges could
 change many aspects of any non-superuser role. Such changes,
 including adding members, now require the role requesting
 the change to have ADMIN OPTION permission.
 For example, they can now change the CREATEDB,
 REPLICATION, and BYPASSRLS
 properties only if they also have those permissions.

	
 Remove symbolic links for the postmaster
 binary (Peter Eisentraut)
 §

Changes

 Below you will find a detailed account of the changes between
 PostgreSQL™ 16 and the previous major
 release.

Server

Optimizer

	
 Allow incremental sorts in more cases, including
 DISTINCT (David Rowley)
 §
 §

	
 Add the ability for aggregates having ORDER BY
 or DISTINCT to use pre-sorted data (David
 Rowley)
 §
 §
 §

 The new server variable enable_presorted_aggregate
 can be used to disable this.

	
 Allow memoize atop a UNION ALL (Richard Guo)
 §

	
 Allow anti-joins to be performed with the non-nullable input as
 the inner relation (Richard Guo)
 §

	
 Allow parallelization of FULL and internal
 right OUTER hash joins (Melanie Plageman,
 Thomas Munro)
 §

	
 Improve the accuracy of GIN index access optimizer
 costs (Ronan Dunklau)
 §

General Performance

	
 Allow more efficient addition of heap and index pages (Andres
 Freund)
 §
 §

	
 During non-freeze operations, perform page freezing where appropriate
 (Peter Geoghegan)
 §
 §
 §

 This makes full-table freeze vacuums less necessary.

	
 Allow window functions to use the faster ROWS
 mode internally when RANGE mode is active but
 unnecessary (David Rowley)
 §

	
 Allow optimization of always-increasing window functions ntile(),
 cume_dist() and
 percent_rank() (David Rowley)
 §

	
 Allow aggregate functions string_agg()
 and array_agg() to be parallelized (David
 Rowley)
 §

	
 Improve performance by caching RANGE
 and LIST partition lookups (Amit Langote,
 Hou Zhijie, David Rowley)
 §

	
 Allow control of the shared buffer usage by vacuum and analyze
 (Melanie Plageman)
 §
 §
 §

 The VACUUM/ANALYZE
 option is BUFFER_USAGE_LIMIT, and the vacuumdb
 option is --buffer-usage-limit.
 The default value is set by server variable vacuum_buffer_usage_limit,
 which also controls autovacuum.

	
 Support wal_sync_method=fdatasync
 on Windows (Thomas Munro)
 §

	
 Allow HOT
 updates if only BRIN-indexed columns are updated
 (Matthias van de Meent, Josef Simanek, Tomas Vondra)
 §

	
 Improve the speed of updating the process title (David
 Rowley)
 §

	
 Allow xid/subxid searches and
 ASCII string detection to use vector operations
 (Nathan Bossart, John Naylor)
 §
 §
 §
 §

 ASCII detection is particularly useful for
 COPY FROM.
 Vector operations are also used for some C array searches.

	
 Reduce overhead of memory allocations (Andres Freund, David Rowley)
 §

Monitoring

	
 Add system view pg_stat_io
 view to track I/O statistics (Melanie Plageman)
 §
 §
 §
 §
 §

	
 Record statistics on the last sequential and index scans on tables
 (Dave Page)
 §

 This information appears in pg_stat_*_tables
 and pg_stat_*_indexes.

	
 Record statistics on the occurrence of updated rows moving to
 new pages (Corey Huinker)
 §

 The pg_stat_*_tables column is n_tup_newpage_upd.

	
 Add speculative lock information to the pg_locks
 system view (Masahiko Sawada, Noriyoshi Shinoda)
 §

 The transaction id is displayed in the
 transactionid column and
 the speculative insertion token is displayed in the
 objid column.

	
 Add the display of prepared statement result types to the pg_prepared_statements
 view (Dagfinn Ilmari Mannsåker)
 §
 §

	
 Create subscription statistics
 entries at subscription creation time so stats_reset
 is accurate (Andres Freund)
 §

 Previously entries were created only when the first statistics
 were reported.

	
 Correct the I/O
 accounting for temp relation writes shown in pg_stat_database
 (Melanie Plageman)
 §

	
 Add function pg_stat_get_backend_subxact()
 to report on a session's subtransaction cache (Dilip Kumar)
 §

	
 Have pg_stat_get_backend_idset(),
 pg_stat_get_backend_activity(), and related
 functions use the unchanging backend id (Nathan Bossart)
 §

 Previously the index values might change during the lifetime of
 the session.

	
 Report stand-alone backends with a special backend type (Melanie
 Plageman)
 §

	
 Add wait event SpinDelay
 to report spinlock sleep delays (Andres Freund)
 §

	
 Create new wait event DSMAllocate
 to indicate waiting for dynamic shared memory allocation (Thomas
 Munro)
 §

 Previously this type of wait was reported as
 DSMFillZeroWrite, which was also used by
 mmap() allocations.

	
 Add the database name to the process title of logical
 WAL senders (Tatsuhiro Nakamori)
 §

 Physical WAL senders do not display a database
 name.

	
 Add checkpoint and REDO LSN information to log_checkpoints
 messages (Bharath Rupireddy, Kyotaro Horiguchi)
 §

	
 Provide additional details during client certificate failures
 (Jacob Champion)
 §

Privileges

	
 Add predefined role pg_create_subscription
 with permission to create subscriptions (Robert Haas)
 §

	
 Allow subscriptions to not require passwords (Robert Haas)
 §
 §
 §

 This is accomplished with the option password_required=false.

	
 Simplify permissions for LOCK
 TABLE (Jeff Davis)
 §

 Previously a user's ability to perform LOCK
 TABLE at various lock levels was limited to the
 lock levels required by the commands they had permission
 to execute on the table. For example, someone with UPDATE
 permission could perform all lock levels except ACCESS
 SHARE, even though it was a lesser lock level. Now users
 can issue lesser lock levels if they already have permission for
 greater lock levels.

	
 Allow ALTER GROUP group_name
 ADD USER user_name to be performed with ADMIN
 OPTION (Robert Haas)
 §

 Previously CREATEROLE permission was required.

	
 Allow GRANT
 to use WITH ADMIN TRUE/FALSE
 syntax (Robert Haas)
 §

 Previously only the WITH ADMIN OPTION syntax
 was supported.

	
 Allow roles that create other roles to automatically
 inherit the new role's rights or the ability to SET ROLE to the
 new role (Robert Haas, Shi Yu)
 §
 §

 This is controlled by server variable createrole_self_grant.

	
 Prevent users from changing the default privileges of non-inherited
 roles (Robert Haas)
 §

 This is now only allowed for inherited roles.

	
 When granting role membership, require the granted-by role to be
 a role that has appropriate permissions (Robert Haas)
 §

 This is a requirement even when a non-bootstrap superuser is
 granting role membership.

	
 Allow non-superusers to grant permissions using a granted-by user
 that is not the current user (Robert Haas)
 §

 The current user still must have sufficient permissions given by
 the specified granted-by user.

	
 Add GRANT to
 control permission to use SET
 ROLE (Robert Haas)
 §

 This is controlled by a new GRANT ... SET
 option.

	
 Add dependency tracking to roles which have granted privileges
 (Robert Haas)
 §

 For example, removing ADMIN OPTION will fail if
 there are privileges using that option; CASCADE
 must be used to revoke dependent permissions.

	
 Add dependency tracking of grantors for GRANT records
 (Robert Haas)
 §

 This guarantees that pg_auth_members.grantor
 values are always valid.

	
 Allow multiple role membership records (Robert Haas)
 §
 §

 Previously a new membership grant would remove a previous matching
 membership grant, even if other aspects of the grant did not match.

	
 Prevent removal of superuser privileges for the bootstrap user
 (Robert Haas)
 §

 Restoring such users could lead to errors.

	
 Allow makeaclitem()
 to accept multiple privilege names (Robins Tharakan)
 §

 Previously only a single privilege name, like SELECT, was
 accepted.

Server Configuration

	
 Add support for Kerberos™ credential
 delegation (Stephen Frost)
 §
 §
 §
 §

 This is enabled with server variable gss_accept_delegation
 and libpq connection parameter gssdelegation.

	
 Allow the SCRAM iteration
 count to be set with server variable scram_iterations
 (Daniel Gustafsson)
 §

	
 Improve performance of server variable management (Tom Lane)
 §
 §

	
 Tighten restrictions on which server variables can be reset
 (Masahiko Sawada)
 §

 Previously, while certain variables, like transaction_isolation,
 were not affected by RESET
 ALL, they could be individually reset in
 inappropriate situations.

	
 Move various postgresql.conf
 items into new categories (Shinya Kato)
 §

 This also affects the categories displayed in the pg_settings
 view.

	
 Prevent configuration file recursion beyond 10 levels (Julien
 Rouhaud)
 §

	
 Allow autovacuum to more
 frequently honor changes to delay settings (Melanie Plageman)
 §
 §

 Rather than honor changes only at the start of each relation,
 honor them at the start of each block.

	
 Remove restrictions that archive files be durably renamed
 (Nathan Bossart)
 §
 §

 The archive_command
 command is now more likely to be called with already-archived
 files after a crash.

	
 Prevent archive_library
 and archive_command
 from being set at the same time (Nathan Bossart)
 §

 Previously archive_library would override
 archive_command.

	
 Allow the postmaster to terminate children with an abort signal
 (Tom Lane)
 §

 This allows collection of a core dump for a
 stuck child process. This is controlled by send_abort_for_crash
 and send_abort_for_kill.
 The postmaster's -T switch is now the same as
 setting send_abort_for_crash.

	
 Remove the non-functional postmaster -n option
 (Tom Lane)
 §

	
 Allow the server to reserve backend slots for roles with pg_use_reserved_connections
 membership (Nathan Bossart)
 §

 The number of reserved slots is set by server variable reserved_connections.

	
 Allow huge pages to
 work on newer versions of Windows
 10 (Thomas Munro)
 §

 This adds the special handling required to enable huge pages
 on newer versions of Windows
 10.

	
 Add debug_io_direct
 setting for developer usage (Thomas Munro, Andres Freund,
 Bharath Rupireddy)
 §
 §

 While primarily for developers, wal_sync_method=open_sync/open_datasync
 has been modified to not use direct I/O with
 wal_level=minimal; this is now enabled with
 debug_io_direct=wal.

	
 Add function pg_split_walfile_name()
 to report the segment and timeline values of WAL
 file names (Bharath Rupireddy)
 §
 §

pg_hba.conf

	
 Add support for regular expression matching on database and role
 entries in pg_hba.conf (Bertrand Drouvot)
 §

 Regular expression patterns are prefixed with a slash. Database
 and role names that begin with slashes need to be double-quoted
 if referenced in pg_hba.conf.

	
 Improve user-column handling of pg_ident.conf
 to match pg_hba.conf (Jelte Fennema)
 §

 Specifically, add support for all, role
 membership with +, and regular expressions
 with a leading slash. Any user name that matches these patterns
 must be double-quoted.

	
 Allow include files in pg_hba.conf and
 pg_ident.conf (Julien Rouhaud)
 §

 These are controlled by include,
 include_if_exists, and
 include_dir. System views pg_hba_file_rules
 and pg_ident_file_mappings
 now display the file name.

	
 Allow pg_hba.conf tokens to be of unlimited
 length (Tom Lane)
 §

	
 Add rule and map numbers to the system view pg_hba_file_rules
 (Julien Rouhaud)
 §

Localization

	
 Determine the default encoding from the locale when using
 ICU (Jeff Davis)
 §

 Previously the default was always UTF-8.

	
 Have CREATE
 DATABASE and CREATE
 COLLATION's LOCALE options, and
 initdb
 and createdb
 --locale options, control
 non-libc collation providers (Jeff
 Davis)

 Previously they only controlled libc
 providers.

	
 Add predefined collations unicode and
 ucs_basic (Peter Eisentraut)
 §

 This only works if ICU support is enabled.

	
 Allow custom ICU collation rules to be created
 (Peter Eisentraut)
 §

 This is done using CREATE
 COLLATION's new RULES
 clause, as well as new options for CREATE
 DATABASE, createdb,
 and initdb.

	
 Allow Windows to import
 system locales automatically (Juan José Santamaría Flecha)
 §

 Previously, only ICU locales could be imported
 on Windows.

Logical Replication

	
 Allow logical decoding
 on standbys (Bertrand Drouvot, Andres Freund, Amit Khandekar)
 §
 §
 §

 Snapshot WAL records are
 required for logical slot creation but cannot be
 created on standbys. To avoid delays, the new function pg_log_standby_snapshot()
 allows creation of such records.

	
 Add server variable to control how logical decoding publishers
 transfer changes and how subscribers apply them (Shi Yu)
 §
 §
 §

 The variable is debug_logical_replication_streaming.

	
 Allow logical replication initial table synchronization to copy
 rows in binary format (Melih Mutlu)
 §

 This is only possible for subscriptions marked as binary.

	
 Allow parallel application of logical replication (Hou Zhijie,
 Wang Wei, Amit Kapila)
 §
 §
 §

 The CREATE
 SUBSCRIPTION STREAMING
 option now supports parallel to enable
 application of large transactions by parallel workers. The number
 of parallel workers is controlled by the new server variable max_parallel_apply_workers_per_subscription.
 Wait events LogicalParallelApplyMain,
 LogicalParallelApplyStateChange, and
 LogicalApplySendData were also added. Column
 leader_pid was added to system view pg_stat_subscription
 to track parallel activity.

	
 Improve performance for logical replication
 apply without a primary key (Onder Kalaci, Amit Kapila)
 §

 Specifically, REPLICA IDENTITY FULL can now
 use btree indexes rather than sequentially scanning the table to
 find matches.

	
 Allow logical replication subscribers to process only changes that
 have no origin (Vignesh C, Amit Kapila)
 §
 §

 This can be used to avoid replication loops. This is controlled
 by the new CREATE SUBSCRIPTION ... ORIGIN option.

	
 Perform logical replication SELECT and
 DML actions as the table owner (Robert Haas)
 §
 §

 This improves security and now requires subscription
 owners to be either superusers or to have SET ROLE
 permission on all roles owning tables in the replication set.
 The previous behavior of performing all operations as the
 subscription owner can be enabled with the subscription run_as_owner
 option.

	
 Have wal_retrieve_retry_interval
 operate on a per-subscription basis (Nathan Bossart)
 §

 Previously the retry time was applied
 globally. This also adds wait events >LogicalRepLauncherDSA
 and LogicalRepLauncherHash.

Utility Commands

	
 Add EXPLAIN
 option GENERIC_PLAN to display the generic plan
 for a parameterized query (Laurenz Albe)
 §

	
 Allow a COPY FROM
 value to map to a column's DEFAULT (Israel
 Barth Rubio)
 §

	
 Allow COPY
 into foreign tables to add rows in batches (Andrey Lepikhov,
 Etsuro Fujita)
 §

 This is controlled by the postgres_fdw
 option batch_size.

	
 Allow the STORAGE type to be specified by CREATE TABLE
 (Teodor Sigaev, Aleksander Alekseev)
 §
 §

 Previously only ALTER
 TABLE could control this.

	
 Allow truncate triggers
 on foreign tables (Yugo Nagata)
 §

	
 Allow VACUUM and vacuumdb
 to only process TOAST tables
 (Nathan Bossart)
 §

 This is accomplished by having VACUUM
 turn off PROCESS_MAIN or by vacuumdb
 using the --no-process-main option.

	
 Add VACUUM
 options to skip or update all frozen statistics (Tom Lane,
 Nathan Bossart)
 §

 The options are SKIP_DATABASE_STATS and
 ONLY_DATABASE_STATS.

	
 Change REINDEX
 DATABASE and REINDEX SYSTEM
 to no longer require an argument (Simon Riggs)
 §
 §

 Previously the database name had to be specified.

	
 Allow CREATE
 STATISTICS to generate a statistics name if none
 is specified (Simon Riggs)
 §

Data Types

	
 Allow non-decimal integer
 literals (Peter Eisentraut)
 §

 For example, 0x42F, 0o273,
 and 0b100101.

	
 Allow NUMERIC
 to process hexadecimal, octal, and binary integers of any size
 (Dean Rasheed)
 §

 Previously only unquoted eight-byte integers were supported with
 these non-decimal bases.

	
 Allow underscores in integer and numeric constants (Peter Eisentraut,
 Dean Rasheed)
 §

 This can improve readability for long strings of digits.

	
 Accept the spelling +infinity in datetime input
 (Vik Fearing)
 §

	
 Prevent the specification of epoch and
 infinity together with other fields in datetime
 strings (Joseph Koshakow)
 §

	
 Remove undocumented support for date input in the form
 YyearMmonthDday
 (Joseph Koshakow)
 §

	
 Add functions pg_input_is_valid()
 and pg_input_error_info() to check for type
 conversion errors (Tom Lane)
 §
 §

General Queries

	
 Allow subqueries in the FROM clause to omit
 aliases (Dean Rasheed)
 §

	
 Add support for enhanced numeric literals in
 SQL/JSON paths (Peter Eisentraut)
 §

 For example, allow hexadecimal, octal, and binary integers and
 underscores between digits.

Functions

	
 Add SQL/JSON constructors (Nikita Glukhov,
 Teodor Sigaev, Oleg Bartunov, Alexander Korotkov, Amit Langote)
 §

 The new functions JSON_ARRAY(),
 JSON_ARRAYAGG(),
 JSON_OBJECT(), and
 JSON_OBJECTAGG() are part of the
 SQL standard.

	
 Add SQL/JSON object checks (Nikita Glukhov,
 Teodor Sigaev, Oleg Bartunov, Alexander Korotkov, Amit Langote,
 Andrew Dunstan)
 §

 The IS
 JSON checks include checks for values, arrays,
 objects, scalars, and unique keys.

	
 Allow JSON string parsing to use vector
 operations (John Naylor)
 §

	
 Improve the handling of full text highlighting function ts_headline()
 for OR and NOT expressions
 (Tom Lane)
 §

	
 Add functions to add, subtract, and generate
 timestamptz values in a specified time zone (Przemyslaw
 Sztoch, Gurjeet Singh)
 §

 The functions are date_add(),
 date_subtract(), and generate_series().

	
 Change date_trunc(unit,
 timestamptz, time_zone) to be an immutable
 function (Przemyslaw Sztoch)
 §

 This allows the creation of expression indexes using this function.

	
 Add server variable SYSTEM_USER
 (Bertrand Drouvot)
 §

 This reports the authentication method and its authenticated user.

	
 Add functions array_sample()
 and array_shuffle() (Martin Kalcher)
 §

	
 Add aggregate function ANY_VALUE()
 which returns any value from a set (Vik Fearing)
 §

	
 Add function random_normal()
 to supply normally-distributed random numbers (Paul Ramsey)
 §

	
 Add error function erf()
 and its complement erfc() (Dean Rasheed)
 §

	
 Improve the accuracy of numeric power()
 for integer exponents (Dean Rasheed)
 §

	
 Add XMLSERIALIZE()
 option INDENT to pretty-print its output
 (Jim Jones)
 §

	
 Change pg_collation_actual_version()
 to return a reasonable value for the default collation (Jeff Davis)
 §

 Previously it returned NULL.

	
 Allow pg_read_file()
 and pg_read_binary_file() to ignore missing
 files (Kyotaro Horiguchi)
 §

	
 Add byte specification (B) to pg_size_bytes()
 (Peter Eisentraut)
 §

	
 Allow to_reg*
 functions to accept numeric OIDs as input
 (Tom Lane)
 §

PL/pgSQL

	
 Add the ability to get the current function's OID
 in PL/pgSQL (Pavel Stehule)
 §

 This is accomplished with GET DIAGNOSTICS
 variable = PG_ROUTINE_OID.

libpq

	
 Add libpq connection option require_auth
 to specify a list of acceptable authentication methods (Jacob
 Champion)
 §

 This can also be used to disallow certain authentication methods.

	
 Allow multiple libpq-specified hosts
 to be randomly selected (Jelte Fennema)
 §
 §

 This is enabled with load_balance_hosts=random
 and can be used for load balancing.

	
 Add libpq option sslcertmode
 to control transmission of the client certificate (Jacob Champion)
 §

 The option values are disable,
 allow, and require.

	
 Allow libpq to use the system certificate
 pool for certificate verification (Jacob Champion, Thomas Habets)
 §

 This is enabled with sslrootcert=system,
 which also enables sslmode=verify-full.

Client Applications

	
 Allow ECPG
 variable declarations to use typedef names that match unreserved
 SQL keywords (Tom Lane)
 §

 This change does prevent keywords which match C typedef names from
 being processed as keywords in later EXEC SQL
 blocks.

psql(1)

	
 Allow psql to control the maximum
 width of header lines in expanded format (Platon Pronko)
 §

 This is controlled by xheader_width.

	
 Add psql command \drg
 to show role membership details (Pavel Luzanov)
 §
 §

 The Member of output column has been removed
 from \du and \dg because
 this new command displays this information in more detail.

	
 Allow psql's access privilege commands
 to show system objects (Nathan Bossart)
 §
 §

 The options are \dpS
 and \zS.

	
 Add FOREIGN designation
 to psql \d+
 for foreign table children and partitions (Ian Lawrence Barwick)
 §

	
 Prevent \df+
 from showing function source code (Isaac Morland)
 §

 Function bodies are more easily viewed with \sf.

	
 Allow psql to submit queries using
 the extended query protocol (Peter Eisentraut)
 §

 Passing arguments to such queries is done
 using the new psql \bind
 command.

	
 Allow psql \watch
 to limit the number of executions (Andrey Borodin)
 §

 The \watch options can now be named when
 specified.

	
 Detect invalid values for psql \watch,
 and allow zero to specify no delay (Andrey Borodin)
 §

	
 Allow psql scripts to obtain the exit
 status of shell commands and queries
 (Corey Huinker, Tom Lane)
 §
 §

 The new psql control variables are SHELL_ERROR
 and SHELL_EXIT_CODE.

	
 Various psql tab completion improvements
 (Vignesh C, Aleksander Alekseev, Dagfinn Ilmari Mannsåker,
 Shi Yu, Michael Paquier, Ken Kato, Peter Smith)
 §
 §
 §
 §
 §
 §
 §
 §
 §
 §
 §
 §

pg_dump

	
 Add pg_dump control of dumping child
 tables and partitions (Gilles Darold)
 §

 The new options are --table-and-children,
 --exclude-table-and-children, and
 --exclude-table-data-and-children.

	
 Add LZ4 and
 Zstandard compression to
 pg_dump (Georgios Kokolatos, Justin
 Pryzby)

	
 Allow pg_dump and pg_basebackup
 to use long mode for compression (Justin Pryzby)
 §
 §
 §
 §

	
 Improve pg_dump to accept a more
 consistent compression syntax (Georgios Kokolatos)
 §

 Options like --compress=gzip:5.

Server Applications

	
 Add initdb
 option to set server variables for the duration of
 initdb and all future server starts
 (Tom Lane)
 §

 The option is -c name=value.

	
 Add options to createuser
 to control more user options (Shinya Kato)
 §
 §

 Specifically, the new options control the valid-until date,
 bypassing of row-level security, and role membership.

	
 Deprecate createuser
 option --role (Nathan Bossart)
 §
 §

 This option could be easily confused with new
 createuser role membership options,
 so option --member-of has been added with the
 same functionality. The --role option can still
 be used.

	
 Allow control of vacuumdb
 schema processing (Gilles Darold)
 §

 These are controlled by options --schema and
 --exclude-schema.

	
 Use new VACUUM
 options to improve the performance of vacuumdb
 (Tom Lane, Nathan Bossart)
 §

	
 Have pg_upgrade
 set the new cluster's locale and encoding (Jeff Davis)
 §

 This removes the requirement that the new cluster be created with
 the same locale and encoding settings.

	
 Add pg_upgrade
 option to specify the default transfer mode (Peter Eisentraut)
 §

 The option is --copy.

	
 Improve pg_basebackup
 to accept numeric compression options (Georgios Kokolatos,
 Michael Paquier)
 §

 Options like --compress=server-5 are now supported.

	
 Fix pg_basebackup
 to handle tablespaces stored in the PGDATA directory
 (Robert Haas)
 §

	
 Add pg_waldump
 option --save-fullpage to dump full page images
 (David Christensen)
 §

	
 Allow pg_waldump
 options -t/--timeline to accept
 hexadecimal values (Peter Eisentraut)
 §

	
 Add support for progress reporting to pg_verifybackup
 (Masahiko Sawada)
 §

	
 Allow pg_rewind
 to properly track timeline changes (Heikki Linnakangas)
 §
 §

 Previously if pg_rewind was run after
 a timeline switch but before a checkpoint was issued, it might
 incorrectly determine that a rewind was unnecessary.

	
 Have pg_receivewal
 and pg_recvlogical
 cleanly exit on SIGTERM (Christoph Berg)
 §

 This signal is often used by systemd.

Source Code

	
 Build ICU support by default (Jeff Davis)
 §

 This removes build
 flag --with-icu and adds flag
 --without-icu.

	
 Add support for SSE2 (Streaming SIMD Extensions
 2) vector operations on x86-64 architectures (John Naylor)
 §

	
 Add support for Advanced SIMD (Single
 Instruction Multiple Data) (NEON) instructions
 on ARM architectures (Nathan Bossart)
 §

	
 Have Windows
 binaries built with MSVC™ use
 RandomizedBaseAddress (ASLR)
 (Michael Paquier)
 §

 This was already enabled on MinGW™ builds.

	
 Prevent extension libraries from exporting their symbols by default
 (Andres Freund, Tom Lane)
 §
 §

 Functions that need to be called from the core backend
 or other extensions must now be explicitly marked
 PGDLLEXPORT.

	
 Require Windows 10 or
 newer versions (Michael Paquier, Juan José Santamaría Flecha)
 §

 Previously Windows Vista and
 Windows XP were supported.

	
 Require Perl™ version 5.14 or later
 (John Naylor)
 §

	
 Require Bison™ version 2.3 or later
 (John Naylor)
 §

	
 Require Flex™ version 2.5.35 or later
 (John Naylor)
 §

	
 Require MIT Kerberos for
 GSSAPI support (Stephen Frost)
 §

	
 Remove support for Visual Studio 2013™
 (Michael Paquier)
 §

	
 Remove support for HP-UX
 (Thomas Munro)
 §

	
 Remove support for HP/Intel Itanium™
 (Thomas Munro)
 §

	
 Remove support for M68K™,
 M88K™, M32R™,
 and SuperH™ CPU
 architectures (Thomas Munro)
 §
 §

	
 Remove libpq
 support for SCM credential authentication
 (Michael Paquier)
 §

 Backend support for this authentication method was removed in
 PostgresSQL™ 9.1.

	
 Add meson
 build system (Andres Freund, Nazir Bilal Yavuz, Peter Eisentraut)
 §

 This eventually will replace the Autoconf™
 and Windows-based
 MSVC™ build systems.

	
 Allow control of the location of the
 openssl binary used by the build system
 (Peter Eisentraut)
 §

 Make finding openssl
 program a configure or
 meson option

	
 Add build option to allow testing of small table segment sizes
 (Andres Freund)
 §

 The build options are --with-segsize-blocks
 and -Dsegsize_blocks.

	
 Add pgindent options
 (Andrew Dunstan)
 §
 §
 §
 §
 §
 §
 §

 The new options are --show-diff,
 --silent-diff, --commit,
 and --help, and allow multiple
 --exclude options. Also require the typedef file
 to be explicitly specified. Options --code-base
 and --build were also removed.

	
 Add pg_bsd_indent
 source code to the main tree (Tom Lane)
 §

	
 Improve make_ctags and
 make_etags (Yugo Nagata)
 §

	
 Adjust pg_attribute
 columns for efficiency (Peter Eisentraut)
 §

Additional Modules

	
 Improve use of extension-based indexes on boolean columns (Zongliang
 Quan, Tom Lane)
 §

	
 Add support for Daitch-Mokotoff Soundex to fuzzystrmatch
 (Dag Lem)
 §

	
 Allow auto_explain
 to log values passed to parameterized statements (Dagfinn Ilmari
 Mannsåker)
 §

 This affects queries using server-side PREPARE/EXECUTE
 and client-side parse/bind. Logging is controlled by auto_explain.log_parameter_max_length;
 by default query parameters will be logged with no length
 restriction.

	
 Have auto_explain's
 log_verbose mode honor the value of compute_query_id
 (Atsushi Torikoshi)
 §

 Previously even if
 compute_query_id was enabled, log_verbose
 was not showing the query identifier.

	
 Change the maximum length of ltree labels
 from 256 to 1000 and allow hyphens (Garen Torikian)
 §

	
 Have pg_stat_statements
 normalize constants used in utility commands (Michael Paquier)
 §

 Previously constants appeared instead of placeholders, e.g.,
 $1.

	
 Add pg_walinspect
 function pg_get_wal_block_info()
 to report WAL block information (Michael Paquier,
 Melanie Plageman, Bharath Rupireddy)
 §
 §
 §
 §

	
 Change how pg_walinspect
 functions pg_get_wal_records_info()
 and pg_get_wal_stats()
 interpret ending LSNs (Bharath Rupireddy)
 §

 Previously ending LSNs which represent
 nonexistent WAL locations would generate
 an error, while they will now be interpreted as the end of the
 WAL.

	
 Add detailed descriptions of WAL records in pg_walinspect
 and pg_waldump
 (Melanie Plageman, Peter Geoghegan)
 §
 §
 §
 §

	
 Add pageinspect
 function bt_multi_page_stats()
 to report statistics on multiple pages (Hamid Akhtar)
 §

 This is similar to bt_page_stats() except it
 can report on a range of pages.

	
 Add empty range output column to pageinspect
 function brin_page_items()
 (Tomas Vondra)
 §

	
 Redesign archive modules to be more flexible (Nathan Bossart)
 §

 Initialization changes will require modules written for older
 versions of Postgres to be updated.

	
 Correct inaccurate pg_stat_statements
 row tracking extended query protocol statements (Sami Imseih)
 §

	
 Add pg_buffercache
 function pg_buffercache_usage_counts() to
 report usage totals (Nathan Bossart)
 §

	
 Add pg_buffercache
 function pg_buffercache_summary() to report
 summarized buffer statistics (Melih Mutlu)
 §

	
 Allow the schemas of required extensions to be
 referenced in extension scripts using the new syntax
 @extschema:referenced_extension_name@
 (Regina Obe)
 §

	
 Allow required extensions to
 be marked as non-relocatable using no_relocate
 (Regina Obe)
 §

 This allows @extschema:referenced_extension_name@
 to be treated as a constant for the lifetime of the extension.

postgres_fdw

	
 Allow postgres_fdw to do aborts in
 parallel (Etsuro Fujita)
 §

 This is enabled with
 postgres_fdw option parallel_abort.

	
 Make ANALYZE
 on foreign postgres_fdw tables more
 efficient (Tomas Vondra)
 §

 The postgres_fdw option analyze_sampling
 controls the sampling method.

	
 Restrict shipment of reg* type constants
 in postgres_fdw to those referencing
 built-in objects or extensions marked as shippable (Tom Lane)
 §

	
 Have postgres_fdw and dblink handle
 interrupts during connection establishment (Andres Freund)
 §

Acknowledgments

 The following individuals (in alphabetical order) have contributed
 to this release as patch authors, committers, reviewers, testers,
 or reporters of issues.

	Abhijit Menon-Sen
	Adam Mackler
	Adrian Klaver
	Ahsan Hadi
	Ajin Cherian
	Ajit Awekar
	Alan Hodgson
	Aleksander Alekseev
	Alex Denman
	Alex Kozhemyakin
	Alexander Korolev
	Alexander Korotkov
	Alexander Lakhin
	Alexander Pyhalov
	Alexey Borzov
	Alexey Ermakov
	Alexey Makhmutov
	Álvaro Herrera
	Amit Kapila
	Amit Khandekar
	Amit Langote
	Amul Sul
	Anastasia Lubennikova
	Anban Company
	Andreas Dijkman
	Andreas Karlsson
	Andreas Scherbaum
	Andrei Zubkov
	Andres Freund
	Andrew Alsup
	Andrew Bille
	Andrew Dunstan
	Andrew Gierth
	Andrew Kesper
	Andrey Borodin
	Andrey Lepikhov
	Andrey Sokolov
	Ankit Kumar Pandey
	Ante Kresic
	Anton Melnikov
	Anton Sidyakin
	Anton Voloshin
	Antonin Houska
	Arne Roland
	Artem Anisimov
	Arthur Zakirov
	Ashutosh Bapat
	Ashutosh Sharma
	Asim Praveen
	Atsushi Torikoshi
	Ayaki Tachikake
	Balazs Szilfai
	Benoit Lobréau
	Bernd Helmle
	Bertrand Drouvot
	Bharath Rupireddy
	Bilva Sanaba
	Bob Krier
	Boris Zentner
	Brad Nicholson
	Brar Piening
	Bruce Momjian
	Bruno da Silva
	Carl Sopchak
	Cary Huang
	Changhong Fei
	Chris Travers
	Christoph Berg
	Christophe Pettus
	Corey Huinker
	Craig Ringer
	Curt Kolovson
	Dag Lem
	Dagfinn Ilmari Mannsåker
	Daniel Gustafsson
	Daniel Vérité
	Daniel Watzinger
	Daniel Westermann
	Daniele Varrazzo
	Daniil Anisimov
	Danny Shemesh
	Dave Page
	David Christensen
	David G. Johnston
	David Geier
	David Gilman
	David Kimura
	David Rowley
	David Steele
	David Turon
	David Zhang
	Davinder Singh
	Dean Rasheed
	Denis Laxalde
	Dilip Kumar
	Dimos Stamatakis
	Dmitriy Kuzmin
	Dmitry Astapov
	Dmitry Dolgov
	Dmitry Koval
	Dong Wook Lee
	Dongming Liu
	Drew DeVault
	Duncan Sands
	Ed Maste
	Egor Chindyaskin
	Ekaterina Kiryanova
	Elena Indrupskaya
	Emmanuel Quincerot
	Eric Mutta
	Erik Rijkers
	Erki Eessaar
	Erwin Brandstetter
	Etsuro Fujita
	Eugeny Zhuzhnev
	Euler Taveira
	Evan Jones
	Evgeny Morozov
	Fabrízio de Royes Mello
	Farias de Oliveira
	Florin Irion
	Franz-Josef Färber
	Garen Torikian
	Georgios Kokolatos
	Gilles Darold
	Greg Stark
	Guillaume Lelarge
	Gunnar Bluth
	Gunnar Morling
	Gurjeet Singh
	Haiyang Wang
	Haiying Tang
	Hamid Akhtar
	Hans Buschmann
	Hao Wu
	Hayato Kuroda
	Heath Lord
	Heikki Linnakangas
	Himanshu Upadhyaya
	Hisahiro Kauchi
	Hongyu Song
	Hubert Lubaczewski
	Hung Nguyen
	Ian Barwick
	Ibrar Ahmed
	Ilya Gladyshev
	Ilya Nenashev
	Isaac Morland
	Israel Barth Rubio
	Jacob Champion
	Jacob Speidel
	Jaime Casanova
	Jakub Wartak
	James Coleman
	James Inform
	James Vanns
	Jan Wieck
	Japin Li
	Jeevan Ladhe
	Jeff Davis
	Jeff Janes
	Jehan-Guillaume de Rorthais
	Jelte Fennema
	Jian He
	Jim Jones
	Jinbao Chen
	Joe Conway
	Joel Jacobson
	John Naylor
	Jonathan Katz
	Josef Simanek
	Joseph Koshakow
	Juan José Santamaría Flecha
	Julien Rouhaud
	Julien Roze
	Junwang Zhao
	Justin Pryzby
	Justin Zhang
	Karina Litskevich
	Karl O. Pinc
	Keisuke Kuroda
	Ken Kato
	Kevin McKibbin
	Kieran McCusker
	Kirk Wolak
	Konstantin Knizhnik
	Koshi Shibagaki
	Kotaro Kawamoto
	Kui Liu
	Kyotaro Horiguchi
	Lakshmi Narayanan Sreethar
	Laurence Parry
	Laurenz Albe
	Luca Ferrari
	Lukas Fittl
	Maciek Sakrejda
	Magnus Hagander
	Maja Zaloznik
	Marcel Hofstetter
	Marina Polyakova
	Mark Dilger
	Marko Tiikkaja
	Markus Winand
	Martijn van Oosterhout
	Martin Jurca
	Martin Kalcher
	Mary Xu
	Masahiko Sawada
	Masahiro Ikeda
	Masao Fujii
	Mason Sharp
	Matheus Alcantara
	Mats Kindahl
	Matthias van de Meent
	Matthijs van der Vleuten
	Maxim Orlov
	Maxim Yablokov
	Mehmet Emin Karakas
	Melanie Plageman
	Melih Mutlu
	Micah Gates
	Michael Banck
	Michael Paquier
	Michail Nikolaev
	Michel Pelletier
	Mike Oh
	Mikhail Gribkov
	Mingli Zhang
	Miroslav Bendik
	Mitsuru Hinata
	Myo Wai Thant
	Naeem Akhter
	Naoki Okano
	Nathan Bossart
	Nazir Bilal Yavuz
	Neha Sharma
	Nick Babadzhanian
	Nicola Contu
	Nikhil Shetty
	Nikita Glukhov
	Nikolay Samokhvalov
	Nikolay Shaplov
	Nishant Sharma
	Nitin Jadhav
	Noah Misch
	Noboru Saito
	Noriyoshi Shinoda
	Nuko Yokohama
	Oleg Bartunov
	Oleg Tselebrovskiy
	Olly Betts
	Onder Kalaci
	Onur Tirtir
	Pablo Federico
	Palle Girgensohn
	Paul Guo
	Paul Jungwirth
	Paul Ramsey
	Pavel Borisov
	Pavel Kulakov
	Pavel Luzanov
	Pavel Stehule
	Peifeng Qiu
	Peter Eisentraut
	Peter Geoghegan
	Peter Smith
	Phil Florent
	Philippe Godfrin
	Platon Pronko
	Przemyslaw Sztoch
	Rachel Heaton
	Ranier Vilela
	Regina Obe
	Reid Thompson
	Reiner Peterke
	Richard Guo
	Riivo Kolka
	Rishu Bagga
	Robert Haas
	Robert Sjöblom
	Robert Treat
	Roberto Mello
	Robins Tharakan
	Roman Zharkov
	Ronan Dunklau
	Rushabh Lathia
	Ryo Matsumura
	Samay Sharma
	Sami Imseih
	Sandeep Thakkar
	Sandro Santilli
	Sebastien Flaesch
	Sébastien Lardière
	Sehrope Sarkuni
	Sergey Belyashov
	Sergey Pankov
	Sergey Shinderuk
	Shi Yu
	Shinya Kato
	Sho Kato
	Shruthi Gowda
	Shveta Mallik
	Simon Riggs
	Sindy Senorita
	Sirisha Chamarthi
	Sravan Kumar
	Stéphane Tachoires
	Stephen Frost
	Steve Chavez
	Stone Tickle
	Sven Klemm
	Takamichi Osumi
	Takeshi Ideriha
	Tatsuhiro Nakamori
	Tatsuo Ishii
	Teja Mupparti
	Tender Wang
	Teodor Sigaev
	Thiago Nunes
	Thom Brown
	Thomas Habets
	Thomas Mc Kay
	Thomas Munro
	Tim Carey-Smith
	Tim Field
	Timo Stolz
	Tom Lane
	Tomas Vondra
	Tor Erik Linnerud
	Torsten Förtsch
	Tristan Partin
	Troy Frericks
	Tushar Ahuja
	Valerie Woolard
	Vibhor Kumar
	Victor Spirin
	Victoria Shepard
	Vignesh C
	Vik Fearing
	Vitaly Burovoy
	Vitaly Davydov
	Wang Wei
	Wenjing Zeng
	Whale Song
	Will Mortensen
	Wolfgang Walther
	Xin Wen
	Xing Guo
	Xingwang Xu
	XueJing Zhao
	Yanliang Lei
	Youmiu Mo
	Yugo Nagata
	Yura Sokolov
	Yuta Katsuragi
	Zhen Mingyang
	Zheng Li
	Zhihong Yu
	Zhijie Hou
	Zongliang Quan
	Zuming Jiang

Prior Releases

 Release notes for prior release branches can be found at
 https://www.postgresql.org/docs/release/

Appendix F. Additional Supplied Modules and Extensions

 This appendix and the next one contain information on the
 optional components
 found in the contrib directory of the
 PostgreSQL™ distribution.
 These include porting tools, analysis utilities,
 and plug-in features that are not part of the core PostgreSQL system.
 They are separate mainly
 because they address a limited audience or are too experimental
 to be part of the main source tree. This does not preclude their
 usefulness.

 This appendix covers extensions and other server plug-in module
 libraries found in
 contrib. Appendix G, Additional Supplied Programs covers utility
 programs.

 When building from the source distribution, these optional
 components are not built
 automatically, unless you build the "world" target
 (see Step 2).
 You can build and install all of them by running:

make
make install

 in the contrib directory of a configured source tree;
 or to build and install
 just one selected module, do the same in that module's subdirectory.
 Many of the modules have regression tests, which can be executed by
 running:

make check

 before installation or

make installcheck

 once you have a PostgreSQL™ server running.

 If you are using a pre-packaged version of PostgreSQL™,
 these components are typically made available as a separate subpackage,
 such as postgresql-contrib.

 Many components supply new user-defined functions, operators, or types,
 packaged as extensions.
 To make use of one of these extensions, after you have installed the code
 you need to register the new SQL objects in the database system.
 This is done by executing
 a CREATE EXTENSION(7) command. In a fresh database,
 you can simply do

CREATE EXTENSION extension_name;

 This command registers the new SQL objects in the current database only,
 so you need to run it in every database in which you want
 the extension's facilities to be available. Alternatively, run it in
 database template1 so that the extension will be copied into
 subsequently-created databases by default.

 For all extensions, the CREATE EXTENSION command must be
 run by a database superuser, unless the extension is
 considered “trusted”. Trusted extensions can be run by any
 user who has CREATE privilege on the current
 database. Extensions that are trusted are identified as such in the
 sections that follow. Generally, trusted extensions are ones that cannot
 provide access to outside-the-database functionality.

 The following extensions are trusted in a default installation:

	btree_gin	fuzzystrmatch	ltree	tcn
	btree_gist	hstore	pgcrypto	tsm_system_rows
	citext	intarray	pg_trgm	tsm_system_time
	cube	isn	seg	unaccent
	dict_int	lo	tablefunc	uuid-ossp

 Many extensions allow you to install their objects in a schema of your
 choice. To do that, add SCHEMA
 schema_name to the CREATE EXTENSION
 command. By default, the objects will be placed in your current creation
 target schema, which in turn defaults to public.

 Note, however, that some of these components are not “extensions”
 in this sense, but are loaded into the server in some other way, for instance
 by way of
 shared_preload_libraries. See the documentation of each
 component for details.

adminpack — pgAdmin support toolpack

 adminpack provides a number of support functions which
 pgAdmin and other administration and management tools can
 use to provide additional functionality, such as remote management
 of server log files.
 Use of all these functions is only allowed to database superusers by default, but may be
 allowed to other users by using the GRANT command.

 The functions shown in Table F.1, “adminpack Functions” provide
 write access to files on the machine hosting the server. (See also the
 functions in Table 9.101, “Generic File Access Functions”, which
 provide read-only access.)
 Only files within the database cluster directory can be accessed, unless the
 user is a superuser or given privileges of one of the
 pg_read_server_files or
 pg_write_server_files roles, as appropriate for the
 function, but either a relative or absolute path is allowable.

Table F.1. adminpack Functions
	
 Function

 Description

	
 pg_catalog.pg_file_write (filename text, data text, append boolean)
 bigint

 Writes, or appends to, a text file.

	
 pg_catalog.pg_file_sync (filename text)
 void

 Flushes a file or directory to disk.

	
 pg_catalog.pg_file_rename (oldname text, newname text [, archivename text])
 boolean

 Renames a file.

	
 pg_catalog.pg_file_unlink (filename text)
 boolean

 Removes a file.

	
 pg_catalog.pg_logdir_ls ()
 setof record

 Lists the log files in the log_directory directory.

 pg_file_write writes the specified data into
 the file named by filename. If append is
 false, the file must not already exist. If append is true,
 the file can already exist, and will be appended to if so.
 Returns the number of bytes written.

 pg_file_sync fsyncs the specified file or directory
 named by filename. An error is thrown
 on failure (e.g., the specified file is not present). Note that
 data_sync_retry has no effect on this function,
 and therefore a PANIC-level error will not be raised even on failure to
 flush database files.

 pg_file_rename renames a file. If archivename
 is omitted or NULL, it simply renames oldname
 to newname (which must not already exist).
 If archivename is provided, it first
 renames newname to archivename (which must
 not already exist), and then renames oldname
 to newname. In event of failure of the second rename step,
 it will try to rename archivename back
 to newname before reporting the error.
 Returns true on success, false if the source file(s) are not present or
 not writable; other cases throw errors.

 pg_file_unlink removes the specified file.
 Returns true on success, false if the specified file is not present
 or the unlink() call fails; other cases throw errors.

 pg_logdir_ls returns the start timestamps and path
 names of all the log files in the log_directory
 directory. The log_filename parameter must have its
 default setting (postgresql-%Y-%m-%d_%H%M%S.log) to use this
 function.

amcheck — tools to verify table and index consistency

 The amcheck module provides functions that allow you to
 verify the logical consistency of the structure of relations.

 The B-Tree checking functions verify various invariants in the
 structure of the representation of particular relations. The
 correctness of the access method functions behind index scans and
 other important operations relies on these invariants always
 holding. For example, certain functions verify, among other things,
 that all B-Tree pages have items in “logical” order (e.g.,
 for B-Tree indexes on text, index tuples should be in
 collated lexical order). If that particular invariant somehow fails
 to hold, we can expect binary searches on the affected page to
 incorrectly guide index scans, resulting in wrong answers to SQL
 queries. If the structure appears to be valid, no error is raised.

 Verification is performed using the same procedures as those used by
 index scans themselves, which may be user-defined operator class
 code. For example, B-Tree index verification relies on comparisons
 made with one or more B-Tree support function 1 routines. See the section called “Index Method Support Routines” for details of operator class support
 functions.

 Unlike the B-Tree checking functions which report corruption by raising
 errors, the heap checking function verify_heapam checks
 a table and attempts to return a set of rows, one row per corruption
 detected. Despite this, if facilities that
 verify_heapam relies upon are themselves corrupted, the
 function may be unable to continue and may instead raise an error.

 Permission to execute amcheck functions may be granted
 to non-superusers, but before granting such permissions careful consideration
 should be given to data security and privacy concerns. Although the
 corruption reports generated by these functions do not focus on the contents
 of the corrupted data so much as on the structure of that data and the nature
 of the corruptions found, an attacker who gains permission to execute these
 functions, particularly if the attacker can also induce corruption, might be
 able to infer something of the data itself from such messages.

Functions

	
 bt_index_check(index regclass, heapallindexed boolean) returns void

	
 bt_index_check tests that its target, a
 B-Tree index, respects a variety of invariants. Example usage:

test=# SELECT bt_index_check(index => c.oid, heapallindexed => i.indisunique),
 c.relname,
 c.relpages
FROM pg_index i
JOIN pg_opclass op ON i.indclass[0] = op.oid
JOIN pg_am am ON op.opcmethod = am.oid
JOIN pg_class c ON i.indexrelid = c.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE am.amname = 'btree' AND n.nspname = 'pg_catalog'
-- Don't check temp tables, which may be from another session:
AND c.relpersistence != 't'
-- Function may throw an error when this is omitted:
AND c.relkind = 'i' AND i.indisready AND i.indisvalid
ORDER BY c.relpages DESC LIMIT 10;
 bt_index_check | relname | relpages
----------------+---------------------------------+----------
 | pg_depend_reference_index | 43
 | pg_depend_depender_index | 40
 | pg_proc_proname_args_nsp_index | 31
 | pg_description_o_c_o_index | 21
 | pg_attribute_relid_attnam_index | 14
 | pg_proc_oid_index | 10
 | pg_attribute_relid_attnum_index | 9
 | pg_amproc_fam_proc_index | 5
 | pg_amop_opr_fam_index | 5
 | pg_amop_fam_strat_index | 5
(10 rows)

 This example shows a session that performs verification of the
 10 largest catalog indexes in the database “test”.
 Verification of the presence of heap tuples as index tuples is
 requested for the subset that are unique indexes. Since no
 error is raised, all indexes tested appear to be logically
 consistent. Naturally, this query could easily be changed to
 call bt_index_check for every index in the
 database where verification is supported.

 bt_index_check acquires an AccessShareLock
 on the target index and the heap relation it belongs to. This lock mode
 is the same lock mode acquired on relations by simple
 SELECT statements.
 bt_index_check does not verify invariants
 that span child/parent relationships, but will verify the
 presence of all heap tuples as index tuples within the index
 when heapallindexed is
 true. When a routine, lightweight test for
 corruption is required in a live production environment, using
 bt_index_check often provides the best
 trade-off between thoroughness of verification and limiting the
 impact on application performance and availability.

	
 bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean) returns void

	
 bt_index_parent_check tests that its
 target, a B-Tree index, respects a variety of invariants.
 Optionally, when the heapallindexed
 argument is true, the function verifies the
 presence of all heap tuples that should be found within the
 index. When the optional rootdescend
 argument is true, verification re-finds
 tuples on the leaf level by performing a new search from the
 root page for each tuple. The checks that can be performed by
 bt_index_parent_check are a superset of the
 checks that can be performed by bt_index_check.
 bt_index_parent_check can be thought of as
 a more thorough variant of bt_index_check:
 unlike bt_index_check,
 bt_index_parent_check also checks
 invariants that span parent/child relationships, including checking
 that there are no missing downlinks in the index structure.
 bt_index_parent_check follows the general
 convention of raising an error if it finds a logical
 inconsistency or other problem.

 A ShareLock is required on the target index by
 bt_index_parent_check (a
 ShareLock is also acquired on the heap relation).
 These locks prevent concurrent data modification from
 INSERT, UPDATE, and DELETE
 commands. The locks also prevent the underlying relation from
 being concurrently processed by VACUUM, as well as
 all other utility commands. Note that the function holds locks
 only while running, not for the entire transaction.

 bt_index_parent_check's additional
 verification is more likely to detect various pathological
 cases. These cases may involve an incorrectly implemented
 B-Tree operator class used by the index that is checked, or,
 hypothetically, undiscovered bugs in the underlying B-Tree index
 access method code. Note that
 bt_index_parent_check cannot be used when
 hot standby mode is enabled (i.e., on read-only physical
 replicas), unlike bt_index_check.

Tip

 bt_index_check and
 bt_index_parent_check both output log
 messages about the verification process at
 DEBUG1 and DEBUG2 severity
 levels. These messages provide detailed information about the
 verification process that may be of interest to
 PostgreSQL™ developers. Advanced users
 may also find this information helpful, since it provides
 additional context should verification actually detect an
 inconsistency. Running:

SET client_min_messages = DEBUG1;

 in an interactive psql session before
 running a verification query will display messages about the
 progress of verification with a manageable level of detail.

	

 verify_heapam(relation regclass,
 on_error_stop boolean,
 check_toast boolean,
 skip text,
 startblock bigint,
 endblock bigint,
 blkno OUT bigint,
 offnum OUT integer,
 attnum OUT integer,
 msg OUT text)
 returns setof record

	
 Checks a table, sequence, or materialized view for structural corruption,
 where pages in the relation contain data that is invalidly formatted, and
 for logical corruption, where pages are structurally valid but
 inconsistent with the rest of the database cluster.

 The following optional arguments are recognized:

	on_error_stop
	
 If true, corruption checking stops at the end of the first block in
 which any corruptions are found.

 Defaults to false.

	check_toast
	
 If true, toasted values are checked against the target relation's
 TOAST table.

 This option is known to be slow. Also, if the toast table or its
 index is corrupt, checking it against toast values could conceivably
 crash the server, although in many cases this would just produce an
 error.

 Defaults to false.

	skip
	
 If not none, corruption checking skips blocks that
 are marked as all-visible or all-frozen, as specified.
 Valid options are all-visible,
 all-frozen and none.

 Defaults to none.

	startblock
	
 If specified, corruption checking begins at the specified block,
 skipping all previous blocks. It is an error to specify a
 startblock outside the range of blocks in the
 target table.

 By default, checking begins at the first block.

	endblock
	
 If specified, corruption checking ends at the specified block,
 skipping all remaining blocks. It is an error to specify an
 endblock outside the range of blocks in the target
 table.

 By default, all blocks are checked.

 For each corruption detected, verify_heapam returns
 a row with the following columns:

	blkno
	
 The number of the block containing the corrupt page.

	offnum
	
 The OffsetNumber of the corrupt tuple.

	attnum
	
 The attribute number of the corrupt column in the tuple, if the
 corruption is specific to a column and not the tuple as a whole.

	msg
	
 A message describing the problem detected.

Optional heapallindexed Verification

 When the heapallindexed argument to B-Tree
 verification functions is true, an additional
 phase of verification is performed against the table associated with
 the target index relation. This consists of a “dummy”
 CREATE INDEX CONCURRENTLY operation, which checks for the
 presence of all hypothetical new index tuples against a temporary,
 in-memory summarizing structure (this is built when needed during
 the basic first phase of verification). The summarizing structure
 “fingerprints” every tuple found within the target
 index. The high level principle behind
 heapallindexed verification is that a new
 index that is equivalent to the existing, target index must only
 have entries that can be found in the existing structure.

 The additional heapallindexed phase adds
 significant overhead: verification will typically take several times
 longer. However, there is no change to the relation-level locks
 acquired when heapallindexed verification is
 performed.

 The summarizing structure is bound in size by
 maintenance_work_mem. In order to ensure that
 there is no more than a 2% probability of failure to detect an
 inconsistency for each heap tuple that should be represented in the
 index, approximately 2 bytes of memory are needed per tuple. As
 less memory is made available per tuple, the probability of missing
 an inconsistency slowly increases. This approach limits the
 overhead of verification significantly, while only slightly reducing
 the probability of detecting a problem, especially for installations
 where verification is treated as a routine maintenance task. Any
 single absent or malformed tuple has a new opportunity to be
 detected with each new verification attempt.

Using amcheck Effectively

 amcheck can be effective at detecting various types of
 failure modes that data
 checksums will fail to catch. These include:

	
 Structural inconsistencies caused by incorrect operator class
 implementations.

 This includes issues caused by the comparison rules of operating
 system collations changing. Comparisons of datums of a collatable
 type like text must be immutable (just as all
 comparisons used for B-Tree index scans must be immutable), which
 implies that operating system collation rules must never change.
 Though rare, updates to operating system collation rules can
 cause these issues. More commonly, an inconsistency in the
 collation order between a primary server and a standby server is
 implicated, possibly because the major operating
 system version in use is inconsistent. Such inconsistencies will
 generally only arise on standby servers, and so can generally
 only be detected on standby servers.

 If a problem like this arises, it may not affect each individual
 index that is ordered using an affected collation, simply because
 indexed values might happen to have the same
 absolute ordering regardless of the behavioral inconsistency. See
 the section called “Locale Support” and the section called “Collation Support” for
 further details about how PostgreSQL™ uses
 operating system locales and collations.

	
 Structural inconsistencies between indexes and the heap relations
 that are indexed (when heapallindexed
 verification is performed).

 There is no cross-checking of indexes against their heap relation
 during normal operation. Symptoms of heap corruption can be subtle.

	
 Corruption caused by hypothetical undiscovered bugs in the
 underlying PostgreSQL™ access method
 code, sort code, or transaction management code.

 Automatic verification of the structural integrity of indexes
 plays a role in the general testing of new or proposed
 PostgreSQL™ features that could plausibly allow a
 logical inconsistency to be introduced. Verification of table
 structure and associated visibility and transaction status
 information plays a similar role. One obvious testing strategy
 is to call amcheck functions continuously
 when running the standard regression tests. See the section called “Running the Tests” for details on running the tests.

	
 File system or storage subsystem faults where checksums happen to
 simply not be enabled.

 Note that amcheck examines a page as represented in some
 shared memory buffer at the time of verification if there is only a
 shared buffer hit when accessing the block. Consequently,
 amcheck does not necessarily examine data read from the
 file system at the time of verification. Note that when checksums are
 enabled, amcheck may raise an error due to a checksum
 failure when a corrupt block is read into a buffer.

	
 Corruption caused by faulty RAM, or the broader memory subsystem.

 PostgreSQL™ does not protect against correctable
 memory errors and it is assumed you will operate using RAM that
 uses industry standard Error Correcting Codes (ECC) or better
 protection. However, ECC memory is typically only immune to
 single-bit errors, and should not be assumed to provide
 absolute protection against failures that
 result in memory corruption.

 When heapallindexed verification is
 performed, there is generally a greatly increased chance of
 detecting single-bit errors, since strict binary equality is
 tested, and the indexed attributes within the heap are tested.

 Structural corruption can happen due to faulty storage hardware, or
 relation files being overwritten or modified by unrelated software.
 This kind of corruption can also be detected with
 data page
 checksums.

 Relation pages which are correctly formatted, internally consistent, and
 correct relative to their own internal checksums may still contain
 logical corruption. As such, this kind of corruption cannot be detected
 with checksums. Examples include toasted
 values in the main table which lack a corresponding entry in the toast
 table, and tuples in the main table with a Transaction ID that is older
 than the oldest valid Transaction ID in the database or cluster.

 Multiple causes of logical corruption have been observed in production
 systems, including bugs in the PostgreSQL™
 server software, faulty and ill-conceived backup and restore tools, and
 user error.

 Corrupt relations are most concerning in live production environments,
 precisely the same environments where high risk activities are least
 welcome. For this reason, verify_heapam has been
 designed to diagnose corruption without undue risk. It cannot guard
 against all causes of backend crashes, as even executing the calling
 query could be unsafe on a badly corrupted system. Access to catalog tables is performed and could
 be problematic if the catalogs themselves are corrupted.

 In general, amcheck can only prove the presence of
 corruption; it cannot prove its absence.

Repairing Corruption

 No error concerning corruption raised by amcheck should
 ever be a false positive. amcheck raises
 errors in the event of conditions that, by definition, should never
 happen, and so careful analysis of amcheck
 errors is often required.

 There is no general method of repairing problems that
 amcheck detects. An explanation for the root cause of
 an invariant violation should be sought. pageinspect may play a useful role in diagnosing
 corruption that amcheck detects. A REINDEX
 may not be effective in repairing corruption.

auth_delay — pause on authentication failure

 auth_delay causes the server to pause briefly before
 reporting authentication failure, to make brute-force attacks on database
 passwords more difficult. Note that it does nothing to prevent
 denial-of-service attacks, and may even exacerbate them, since processes
 that are waiting before reporting authentication failure will still consume
 connection slots.

 In order to function, this module must be loaded via
 shared_preload_libraries in postgresql.conf.

Configuration Parameters

	
 auth_delay.milliseconds (integer)

	
 The number of milliseconds to wait before reporting an authentication
 failure. The default is 0.

 These parameters must be set in postgresql.conf.
 Typical usage might be:

postgresql.conf
shared_preload_libraries = 'auth_delay'

auth_delay.milliseconds = '500'

Author

 KaiGai Kohei <kaigai@ak.jp.nec.com>

auto_explain — log execution plans of slow queries

 The auto_explain module provides a means for
 logging execution plans of slow statements automatically, without
 having to run EXPLAIN(7)
 by hand. This is especially helpful for tracking down un-optimized queries
 in large applications.

 The module provides no SQL-accessible functions. To use it, simply
 load it into the server. You can load it into an individual session:

LOAD 'auto_explain';

 (You must be superuser to do that.) More typical usage is to preload
 it into some or all sessions by including auto_explain in
 session_preload_libraries or
 shared_preload_libraries in
 postgresql.conf. Then you can track unexpectedly slow queries
 no matter when they happen. Of course there is a price in overhead for
 that.

Configuration Parameters

 There are several configuration parameters that control the behavior of
 auto_explain. Note that the default behavior is
 to do nothing, so you must set at least
 auto_explain.log_min_duration if you want any results.

	
 auto_explain.log_min_duration (integer)

	
 auto_explain.log_min_duration is the minimum statement
 execution time, in milliseconds, that will cause the statement's plan to
 be logged. Setting this to 0 logs all plans.
 -1 (the default) disables logging of plans. For
 example, if you set it to 250ms then all statements
 that run 250ms or longer will be logged. Only superusers can change this
 setting.

	
 auto_explain.log_parameter_max_length (integer)

	
 auto_explain.log_parameter_max_length controls the
 logging of query parameter values. A value of -1 (the
 default) logs the parameter values in full. 0 disables
 logging of parameter values. A value greater than zero truncates each
 parameter value to that many bytes. Only superusers can change this
 setting.

	
 auto_explain.log_analyze (boolean)

	
 auto_explain.log_analyze causes EXPLAIN ANALYZE
 output, rather than just EXPLAIN output, to be printed
 when an execution plan is logged. This parameter is off by default.
 Only superusers can change this setting.

Note

 When this parameter is on, per-plan-node timing occurs for all
 statements executed, whether or not they run long enough to actually
 get logged. This can have an extremely negative impact on performance.
 Turning off auto_explain.log_timing ameliorates the
 performance cost, at the price of obtaining less information.

	
 auto_explain.log_buffers (boolean)

	
 auto_explain.log_buffers controls whether buffer
 usage statistics are printed when an execution plan is logged; it's
 equivalent to the BUFFERS option of EXPLAIN.
 This parameter has no effect
 unless auto_explain.log_analyze is enabled.
 This parameter is off by default.
 Only superusers can change this setting.

	
 auto_explain.log_wal (boolean)

	
 auto_explain.log_wal controls whether WAL
 usage statistics are printed when an execution plan is logged; it's
 equivalent to the WAL option of EXPLAIN.
 This parameter has no effect
 unless auto_explain.log_analyze is enabled.
 This parameter is off by default.
 Only superusers can change this setting.

	
 auto_explain.log_timing (boolean)

	
 auto_explain.log_timing controls whether per-node
 timing information is printed when an execution plan is logged; it's
 equivalent to the TIMING option of EXPLAIN.
 The overhead of repeatedly reading the system clock can slow down
 queries significantly on some systems, so it may be useful to set this
 parameter to off when only actual row counts, and not exact times, are
 needed.
 This parameter has no effect
 unless auto_explain.log_analyze is enabled.
 This parameter is on by default.
 Only superusers can change this setting.

	
 auto_explain.log_triggers (boolean)

	
 auto_explain.log_triggers causes trigger
 execution statistics to be included when an execution plan is logged.
 This parameter has no effect
 unless auto_explain.log_analyze is enabled.
 This parameter is off by default.
 Only superusers can change this setting.

	
 auto_explain.log_verbose (boolean)

	
 auto_explain.log_verbose controls whether verbose
 details are printed when an execution plan is logged; it's
 equivalent to the VERBOSE option of EXPLAIN.
 This parameter is off by default.
 Only superusers can change this setting.

	
 auto_explain.log_settings (boolean)

	
 auto_explain.log_settings controls whether information
 about modified configuration options is printed when an execution plan is logged.
 Only options affecting query planning with value different from the built-in
 default value are included in the output. This parameter is off by default.
 Only superusers can change this setting.

	
 auto_explain.log_format (enum)

	
 auto_explain.log_format selects the
 EXPLAIN output format to be used.
 The allowed values are text, xml,
 json, and yaml. The default is text.
 Only superusers can change this setting.

	
 auto_explain.log_level (enum)

	
 auto_explain.log_level selects the log level at which
 auto_explain will log the query plan.
 Valid values are DEBUG5, DEBUG4,
 DEBUG3, DEBUG2,
 DEBUG1, INFO,
 NOTICE, WARNING,
 and LOG. The default is LOG.
 Only superusers can change this setting.

	
 auto_explain.log_nested_statements (boolean)

	
 auto_explain.log_nested_statements causes nested
 statements (statements executed inside a function) to be considered
 for logging. When it is off, only top-level query plans are logged. This
 parameter is off by default. Only superusers can change this setting.

	
 auto_explain.sample_rate (real)

	
 auto_explain.sample_rate causes auto_explain to only
 explain a fraction of the statements in each session. The default is 1,
 meaning explain all the queries. In case of nested statements, either all
 will be explained or none. Only superusers can change this setting.

 In ordinary usage, these parameters are set
 in postgresql.conf, although superusers can alter them
 on-the-fly within their own sessions.
 Typical usage might be:

postgresql.conf
session_preload_libraries = 'auto_explain'

auto_explain.log_min_duration = '3s'

Example

postgres=# LOAD 'auto_explain';
postgres=# SET auto_explain.log_min_duration = 0;
postgres=# SET auto_explain.log_analyze = true;
postgres=# SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;

 This might produce log output such as:

LOG: duration: 3.651 ms plan:
 Query Text: SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;
 Aggregate (cost=16.79..16.80 rows=1 width=0) (actual time=3.626..3.627 rows=1 loops=1)
 -> Hash Join (cost=4.17..16.55 rows=92 width=0) (actual time=3.349..3.594 rows=92 loops=1)
 Hash Cond: (pg_class.oid = pg_index.indrelid)
 -> Seq Scan on pg_class (cost=0.00..9.55 rows=255 width=4) (actual time=0.016..0.140 rows=255 loops=1)
 -> Hash (cost=3.02..3.02 rows=92 width=4) (actual time=3.238..3.238 rows=92 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 4kB
 -> Seq Scan on pg_index (cost=0.00..3.02 rows=92 width=4) (actual time=0.008..3.187 rows=92 loops=1)
 Filter: indisunique

Author

 Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>

basebackup_to_shell — example "shell" pg_basebackup module

 basebackup_to_shell adds a custom basebackup target
 called shell. This makes it possible to run
 pg_basebackup --target=shell or, depending on how this
 module is configured,
 pg_basebackup --target=shell:DETAIL_STRING,
 and cause a server command chosen by the server administrator to be executed
 for each tar archive generated by the backup process. The command will receive
 the contents of the archive via standard input.

 This module is primarily intended as an example of how to create a new
 backup targets via an extension module, but in some scenarios it may be
 useful for its own sake.
 In order to function, this module must be loaded via
 shared_preload_libraries or
 local_preload_libraries.

Configuration Parameters

	
 basebackup_to_shell.command (string)

	
 The command which the server should execute for each archive generated
 by the backup process. If %f occurs in the command
 string, it will be replaced by the name of the archive (e.g.
 base.tar). If %d occurs in the
 command string, it will be replaced by the target detail provided by
 the user. A target detail is required if %d is
 used in the command string, and prohibited otherwise. For security
 reasons, it may contain only alphanumeric characters. If
 %% occurs in the command string, it will be replaced
 by a single %. If % occurs in
 the command string followed by any other character or at the end of the
 string, an error occurs.

	
 basebackup_to_shell.required_role (string)

	
 The role required in order to make use of the shell
 backup target. If this is not set, any replication user may make use of
 the shell backup target.

Author

 Robert Haas <rhaas@postgresql.org>

basic_archive — an example WAL archive module

 basic_archive is an example of an archive module. This
 module copies completed WAL segment files to the specified directory. This
 may not be especially useful, but it can serve as a starting point for
 developing your own archive module. For more information about archive
 modules, see Chapter 51, Archive Modules.

 In order to function, this module must be loaded via
 archive_library, and archive_mode
 must be enabled.

Configuration Parameters

	
 basic_archive.archive_directory (string)

	
 The directory where the server should copy WAL segment files. This
 directory must already exist. The default is an empty string, which
 effectively halts WAL archiving, but if archive_mode
 is enabled, the server will accumulate WAL segment files in the
 expectation that a value will soon be provided.

 These parameters must be set in postgresql.conf.
 Typical usage might be:

postgresql.conf
archive_mode = 'on'
archive_library = 'basic_archive'
basic_archive.archive_directory = '/path/to/archive/directory'

Notes

 Server crashes may leave temporary files with the prefix
 archtemp in the archive directory. It is recommended to
 delete such files before restarting the server after a crash. It is safe to
 remove such files while the server is running as long as they are unrelated
 to any archiving still in progress, but users should use extra caution when
 doing so.

Author

 Nathan Bossart

bloom — bloom filter index access method

 bloom provides an index access method based on
 Bloom filters.

 A Bloom filter is a space-efficient data structure that is used to test
 whether an element is a member of a set. In the case of an index access
 method, it allows fast exclusion of non-matching tuples via signatures
 whose size is determined at index creation.

 A signature is a lossy representation of the indexed attribute(s), and as
 such is prone to reporting false positives; that is, it may be reported
 that an element is in the set, when it is not. So index search results
 must always be rechecked using the actual attribute values from the heap
 entry. Larger signatures reduce the odds of a false positive and thus
 reduce the number of useless heap visits, but of course also make the index
 larger and hence slower to scan.

 This type of index is most useful when a table has many attributes and
 queries test arbitrary combinations of them. A traditional btree index is
 faster than a bloom index, but it can require many btree indexes to support
 all possible queries where one needs only a single bloom index. Note
 however that bloom indexes only support equality queries, whereas btree
 indexes can also perform inequality and range searches.

Parameters

 A bloom index accepts the following parameters in its
 WITH clause:

	length
	
 Length of each signature (index entry) in bits. It is rounded up to the
 nearest multiple of 16. The default is
 80 bits and the maximum is 4096.

	col1 — col32
	
 Number of bits generated for each index column. Each parameter's name
 refers to the number of the index column that it controls. The default
 is 2 bits and the maximum is 4095.
 Parameters for index columns not actually used are ignored.

Examples

 This is an example of creating a bloom index:

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
 WITH (length=80, col1=2, col2=2, col3=4);

 The index is created with a signature length of 80 bits, with attributes
 i1 and i2 mapped to 2 bits, and attribute i3 mapped to 4 bits. We could
 have omitted the length, col1,
 and col2 specifications since those have the default values.

 Here is a more complete example of bloom index definition and usage, as
 well as a comparison with equivalent btree indexes. The bloom index is
 considerably smaller than the btree index, and can perform better.

=# CREATE TABLE tbloom AS
 SELECT
 (random() * 1000000)::int as i1,
 (random() * 1000000)::int as i2,
 (random() * 1000000)::int as i3,
 (random() * 1000000)::int as i4,
 (random() * 1000000)::int as i5,
 (random() * 1000000)::int as i6
 FROM
 generate_series(1,10000000);
SELECT 10000000

 A sequential scan over this large table takes a long time:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN
---​-----------------------------------
 Seq Scan on tbloom (cost=0.00..213744.00 rows=250 width=24) (actual time=357.059..357.059 rows=0 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 10000000
 Planning Time: 0.346 ms
 Execution Time: 357.076 ms
(5 rows)

 Even with the btree index defined the result will still be a
 sequential scan:

=# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty

 386 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN
---​-----------------------------------
 Seq Scan on tbloom (cost=0.00..213744.00 rows=2 width=24) (actual time=351.016..351.017 rows=0 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 10000000
 Planning Time: 0.138 ms
 Execution Time: 351.035 ms
(5 rows)

 Having the bloom index defined on the table is better than btree in
 handling this type of search:

=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty

 153 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN
---​--
 Bitmap Heap Scan on tbloom (cost=1792.00..1799.69 rows=2 width=24) (actual time=22.605..22.606 rows=0 loops=1)
 Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Index Recheck: 2300
 Heap Blocks: exact=2256
 -> Bitmap Index Scan on bloomidx (cost=0.00..178436.00 rows=1 width=0) (actual time=20.005..20.005 rows=2300 loops=1)
 Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Planning Time: 0.099 ms
 Execution Time: 22.632 ms
(8 rows)

 Now, the main problem with the btree search is that btree is inefficient
 when the search conditions do not constrain the leading index column(s).
 A better strategy for btree is to create a separate index on each column.
 Then the planner will choose something like this:

=# CREATE INDEX btreeidx1 ON tbloom (i1);
CREATE INDEX
=# CREATE INDEX btreeidx2 ON tbloom (i2);
CREATE INDEX
=# CREATE INDEX btreeidx3 ON tbloom (i3);
CREATE INDEX
=# CREATE INDEX btreeidx4 ON tbloom (i4);
CREATE INDEX
=# CREATE INDEX btreeidx5 ON tbloom (i5);
CREATE INDEX
=# CREATE INDEX btreeidx6 ON tbloom (i6);
CREATE INDEX
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN
---​--
 Bitmap Heap Scan on tbloom (cost=9.29..13.30 rows=1 width=24) (actual time=0.032..0.033 rows=0 loops=1)
 Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
 -> BitmapAnd (cost=9.29..9.29 rows=1 width=0) (actual time=0.047..0.047 rows=0 loops=1)
 -> Bitmap Index Scan on btreeidx5 (cost=0.00..4.52 rows=11 width=0) (actual time=0.026..0.026 rows=7 loops=1)
 Index Cond: (i5 = 123451)
 -> Bitmap Index Scan on btreeidx2 (cost=0.00..4.52 rows=11 width=0) (actual time=0.007..0.007 rows=8 loops=1)
 Index Cond: (i2 = 898732)
 Planning Time: 0.264 ms
 Execution Time: 0.047 ms
(9 rows)

 Although this query runs much faster than with either of the single
 indexes, we pay a penalty in index size. Each of the single-column
 btree indexes occupies 88.5 MB, so the total space needed is 531 MB,
 over three times the space used by the bloom index.

Operator Class Interface

 An operator class for bloom indexes requires only a hash function for the
 indexed data type and an equality operator for searching. This example
 shows the operator class definition for the text data type:

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
 OPERATOR 1 =(text, text),
 FUNCTION 1 hashtext(text);

Limitations

	
 Only operator classes for int4 and text are
 included with the module.

	
 Only the = operator is supported for search. But
 it is possible to add support for arrays with union and intersection
 operations in the future.

	
 bloom access method doesn't support
 UNIQUE indexes.

	
 bloom access method doesn't support searching for
 NULL values.

Authors

 Teodor Sigaev <teodor@postgrespro.ru>,
 Postgres Professional, Moscow, Russia

 Alexander Korotkov <a.korotkov@postgrespro.ru>,
 Postgres Professional, Moscow, Russia

 Oleg Bartunov <obartunov@postgrespro.ru>,
 Postgres Professional, Moscow, Russia

btree_gin — GIN operator classes with B-tree behavior

 btree_gin provides GIN operator classes that
 implement B-tree equivalent behavior for the data types
 int2, int4, int8, float4,
 float8, timestamp with time zone,
 timestamp without time zone, time with time zone,
 time without time zone, date, interval,
 oid, money, "char",
 varchar, text, bytea, bit,
 varbit, macaddr, macaddr8, inet,
 cidr, uuid, name, bool,
 bpchar, and all enum types.

 In general, these operator classes will not outperform the equivalent
 standard B-tree index methods, and they lack one major feature of the
 standard B-tree code: the ability to enforce uniqueness. However,
 they are useful for GIN testing and as a base for developing other
 GIN operator classes. Also, for queries that test both a GIN-indexable
 column and a B-tree-indexable column, it might be more efficient to create
 a multicolumn GIN index that uses one of these operator classes than to create
 two separate indexes that would have to be combined via bitmap ANDing.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Example Usage

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIN (a);
-- query
SELECT * FROM test WHERE a < 10;

Authors

 Teodor Sigaev (<teodor@stack.net>) and
 Oleg Bartunov (<oleg@sai.msu.su>). See
 http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin
 for additional information.

btree_gist — GiST operator classes with B-tree behavior

 btree_gist provides GiST index operator classes that
 implement B-tree equivalent behavior for the data types
 int2, int4, int8, float4,
 float8, numeric, timestamp with time zone,
 timestamp without time zone, time with time zone,
 time without time zone, date, interval,
 oid, money, char,
 varchar, text, bytea, bit,
 varbit, macaddr, macaddr8, inet,
 cidr, uuid, bool and all enum types.

 In general, these operator classes will not outperform the equivalent
 standard B-tree index methods, and they lack one major feature of the
 standard B-tree code: the ability to enforce uniqueness. However,
 they provide some other features that are not available with a B-tree
 index, as described below. Also, these operator classes are useful
 when a multicolumn GiST index is needed, wherein some of the columns
 are of data types that are only indexable with GiST but other columns
 are just simple data types. Lastly, these operator classes are useful for
 GiST testing and as a base for developing other GiST operator classes.

 In addition to the typical B-tree search operators, btree_gist
 also provides index support for <> (“not
 equals”). This may be useful in combination with an
 exclusion constraint,
 as described below.

 Also, for data types for which there is a natural distance metric,
 btree_gist defines a distance operator <->,
 and provides GiST index support for nearest-neighbor searches using
 this operator. Distance operators are provided for
 int2, int4, int8, float4,
 float8, timestamp with time zone,
 timestamp without time zone,
 time without time zone, date, interval,
 oid, and money.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Example Usage

 Simple example using btree_gist instead of btree:

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIST (a);
-- query
SELECT * FROM test WHERE a < 10;
-- nearest-neighbor search: find the ten entries closest to "42"
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

 Use an exclusion
 constraint to enforce the rule that a cage at a zoo
 can contain only one kind of animal:

=> CREATE TABLE zoo (
 cage INTEGER,
 animal TEXT,
 EXCLUDE USING GIST (cage WITH =, animal WITH <>)
);

=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'lion');
ERROR: conflicting key value violates exclusion constraint "zoo_cage_animal_excl"
DETAIL: Key (cage, animal)=(123, lion) conflicts with existing key (cage, animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, 'lion');
INSERT 0 1

Authors

 Teodor Sigaev (<teodor@stack.net>),
 Oleg Bartunov (<oleg@sai.msu.su>),
 Janko Richter (<jankorichter@yahoo.de>), and
 Paul Jungwirth (<pj@illuminatedcomputing.com>). See
 http://www.sai.msu.su/~megera/postgres/gist/
 for additional information.

citext — a case-insensitive character string type

 The citext module provides a case-insensitive
 character string type, citext. Essentially, it internally calls
 lower when comparing values. Otherwise, it behaves almost
 exactly like text.

Tip

 Consider using nondeterministic collations (see
 the section called “Nondeterministic Collations”) instead of this module. They
 can be used for case-insensitive comparisons, accent-insensitive
 comparisons, and other combinations, and they handle more Unicode special
 cases correctly.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Rationale

 The standard approach to doing case-insensitive matches
 in PostgreSQL™ has been to use the lower
 function when comparing values, for example

SELECT * FROM tab WHERE lower(col) = LOWER(?);

 This works reasonably well, but has a number of drawbacks:

	
 It makes your SQL statements verbose, and you always have to remember to
 use lower on both the column and the query value.

	
 It won't use an index, unless you create a functional index using
 lower.

	
 If you declare a column as UNIQUE or PRIMARY
 KEY, the implicitly generated index is case-sensitive. So it's
 useless for case-insensitive searches, and it won't enforce
 uniqueness case-insensitively.

 The citext data type allows you to eliminate calls
 to lower in SQL queries, and allows a primary key to
 be case-insensitive. citext is locale-aware, just
 like text, which means that the matching of upper case and
 lower case characters is dependent on the rules of
 the database's LC_CTYPE setting. Again, this behavior is
 identical to the use of lower in queries. But because it's
 done transparently by the data type, you don't have to remember to do
 anything special in your queries.

How to Use It

 Here's a simple example of usage:

CREATE TABLE users (
 nick CITEXT PRIMARY KEY,
 pass TEXT NOT NULL
);

INSERT INTO users VALUES ('larry', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Tom', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Damian', sha256(random()::text::bytea));
INSERT INTO users VALUES ('NEAL', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Bjørn', sha256(random()::text::bytea));

SELECT * FROM users WHERE nick = 'Larry';

 The SELECT statement will return one tuple, even though
 the nick column was set to larry and the query
 was for Larry.

String Comparison Behavior

 citext performs comparisons by converting each string to lower
 case (as though lower were called) and then comparing the
 results normally. Thus, for example, two strings are considered equal
 if lower would produce identical results for them.

 In order to emulate a case-insensitive collation as closely as possible,
 there are citext-specific versions of a number of string-processing
 operators and functions. So, for example, the regular expression
 operators ~ and ~* exhibit the same behavior when
 applied to citext: they both match case-insensitively.
 The same is true
 for !~ and !~*, as well as for the
 LIKE operators ~~ and ~~*, and
 !~~ and !~~*. If you'd like to match
 case-sensitively, you can cast the operator's arguments to text.

 Similarly, all of the following functions perform matching
 case-insensitively if their arguments are citext:

	
 regexp_match()

	
 regexp_matches()

	
 regexp_replace()

	
 regexp_split_to_array()

	
 regexp_split_to_table()

	
 replace()

	
 split_part()

	
 strpos()

	
 translate()

 For the regexp functions, if you want to match case-sensitively, you can
 specify the “c” flag to force a case-sensitive match. Otherwise,
 you must cast to text before using one of these functions if
 you want case-sensitive behavior.

Limitations

	
 citext's case-folding behavior depends on
 the LC_CTYPE setting of your database. How it compares
 values is therefore determined when the database is created.
 It is not truly
 case-insensitive in the terms defined by the Unicode standard.
 Effectively, what this means is that, as long as you're happy with your
 collation, you should be happy with citext's comparisons. But
 if you have data in different languages stored in your database, users
 of one language may find their query results are not as expected if the
 collation is for another language.

	
 As of PostgreSQL™ 9.1, you can attach a
 COLLATE specification to citext columns or data
 values. Currently, citext operators will honor a non-default
 COLLATE specification while comparing case-folded strings,
 but the initial folding to lower case is always done according to the
 database's LC_CTYPE setting (that is, as though
 COLLATE "default" were given). This may be changed in a
 future release so that both steps follow the input COLLATE
 specification.

	
 citext is not as efficient as text because the
 operator functions and the B-tree comparison functions must make copies
 of the data and convert it to lower case for comparisons. Also, only
 text can support B-Tree deduplication. However,
 citext is slightly more efficient than using
 lower to get case-insensitive matching.

	
 citext doesn't help much if you need data to compare
 case-sensitively in some contexts and case-insensitively in other
 contexts. The standard answer is to use the text type and
 manually use the lower function when you need to compare
 case-insensitively; this works all right if case-insensitive comparison
 is needed only infrequently. If you need case-insensitive behavior most
 of the time and case-sensitive infrequently, consider storing the data
 as citext and explicitly casting the column to text
 when you want case-sensitive comparison. In either situation, you will
 need two indexes if you want both types of searches to be fast.

	
 The schema containing the citext operators must be
 in the current search_path (typically public);
 if it is not, the normal case-sensitive text operators
 will be invoked instead.

	
 The approach of lower-casing strings for comparison does not handle some
 Unicode special cases correctly, for example when one upper-case letter
 has two lower-case letter equivalents. Unicode distinguishes between
 case mapping and case
 folding for this reason. Use nondeterministic collations
 instead of citext to handle that correctly.

Author

 David E. Wheeler <david@kineticode.com>

 Inspired by the original citext module by Donald Fraser.

cube — a multi-dimensional cube data type

 This module implements a data type cube for
 representing multidimensional cubes.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Syntax

 Table F.2, “Cube External Representations” shows the valid external
 representations for the cube
 type. x, y, etc. denote
 floating-point numbers.

Table F.2. Cube External Representations
	External Syntax	Meaning
	x	A one-dimensional point
 (or, zero-length one-dimensional interval)

	(x)	Same as above
	x1,x2,...,xn	A point in n-dimensional space, represented internally as a
 zero-volume cube

	(x1,x2,...,xn)	Same as above
	(x),(y)	A one-dimensional interval starting at x and ending at y or vice versa; the
 order does not matter

	[(x),(y)]	Same as above
	(x1,...,xn),(y1,...,yn)	An n-dimensional cube represented by a pair of its diagonally
 opposite corners

	[(x1,...,xn),(y1,...,yn)]	Same as above

 It does not matter which order the opposite corners of a cube are
 entered in. The cube functions
 automatically swap values if needed to create a uniform
 “lower left — upper right” internal representation.
 When the corners coincide, cube stores only one corner
 along with an “is point” flag to avoid wasting space.

 White space is ignored on input, so
 [(x),(y)] is the same as
 [(x), (y)].

Precision

 Values are stored internally as 64-bit floating point numbers. This means
 that numbers with more than about 16 significant digits will be truncated.

Usage

 Table F.3, “Cube Operators” shows the specialized operators
 provided for type cube.

Table F.3. Cube Operators
	
 Operator

 Description

	
 cube && cube
 boolean

 Do the cubes overlap?

	
 cube @> cube
 boolean

 Does the first cube contain the second?

	
 cube <@ cube
 boolean

 Is the first cube contained in the second?

	
 cube -> integer
 float8

 Extracts the n-th coordinate of the cube
 (counting from 1).

	
 cube ~> integer
 float8

 Extracts the n-th coordinate of the cube,
 counting in the following way: n = 2
 * k - 1 means lower bound
 of k-th dimension, n = 2
 * k means upper bound of
 k-th dimension. Negative
 n denotes the inverse value of the corresponding
 positive coordinate. This operator is designed for KNN-GiST support.

	
 cube <-> cube
 float8

 Computes the Euclidean distance between the two cubes.

	
 cube <#> cube
 float8

 Computes the taxicab (L-1 metric) distance between the two cubes.

	
 cube <=> cube
 float8

 Computes the Chebyshev (L-inf metric) distance between the two cubes.

 In addition to the above operators, the usual comparison
 operators shown in Table 9.1, “Comparison Operators” are
 available for type cube. These
 operators first compare the first coordinates, and if those are equal,
 compare the second coordinates, etc. They exist mainly to support the
 b-tree index operator class for cube, which can be useful for
 example if you would like a UNIQUE constraint on a cube column.
 Otherwise, this ordering is not of much practical use.

 The cube module also provides a GiST index operator class for
 cube values.
 A cube GiST index can be used to search for values using the
 =, &&, @>, and
 <@ operators in WHERE clauses.

 In addition, a cube GiST index can be used to find nearest
 neighbors using the metric operators
 <->, <#>, and
 <=> in ORDER BY clauses.
 For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
 could be found efficiently with:

SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;

 The ~> operator can also be used in this way to
 efficiently retrieve the first few values sorted by a selected coordinate.
 For example, to get the first few cubes ordered by the first coordinate
 (lower left corner) ascending one could use the following query:

SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;

 And to get 2-D cubes ordered by the first coordinate of the upper right
 corner descending:

SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;

 Table F.4, “Cube Functions” shows the available functions.

Table F.4. Cube Functions
	
 Function

 Description

 Example(s)

	
 cube (float8)
 cube

 Makes a one dimensional cube with both coordinates the same.

 cube(1)
 (1)

	
 cube (float8, float8)
 cube

 Makes a one dimensional cube.

 cube(1, 2)
 (1),(2)

	
 cube (float8[])
 cube

 Makes a zero-volume cube using the coordinates defined by the array.

 cube(ARRAY[1,2,3])
 (1, 2, 3)

	
 cube (float8[], float8[])
 cube

 Makes a cube with upper right and lower left coordinates as defined by
 the two arrays, which must be of the same length.

 cube(ARRAY[1,2], ARRAY[3,4])
 (1, 2),(3, 4)

	
 cube (cube, float8)
 cube

 Makes a new cube by adding a dimension on to an existing cube,
 with the same values for both endpoints of the new coordinate. This
 is useful for building cubes piece by piece from calculated values.

 cube('(1,2),(3,4)'::cube, 5)
 (1, 2, 5),(3, 4, 5)

	
 cube (cube, float8, float8)
 cube

 Makes a new cube by adding a dimension on to an existing cube. This is
 useful for building cubes piece by piece from calculated values.

 cube('(1,2),(3,4)'::cube, 5, 6)
 (1, 2, 5),(3, 4, 6)

	
 cube_dim (cube)
 integer

 Returns the number of dimensions of the cube.

 cube_dim('(1,2),(3,4)')
 2

	
 cube_ll_coord (cube, integer)
 float8

 Returns the n-th coordinate value for the lower
 left corner of the cube.

 cube_ll_coord('(1,2),(3,4)', 2)
 2

	
 cube_ur_coord (cube, integer)
 float8

 Returns the n-th coordinate value for the
 upper right corner of the cube.

 cube_ur_coord('(1,2),(3,4)', 2)
 4

	
 cube_is_point (cube)
 boolean

 Returns true if the cube is a point, that is,
 the two defining corners are the same.

 cube_is_point(cube(1,1))
 t

	
 cube_distance (cube, cube)
 float8

 Returns the distance between two cubes. If both
 cubes are points, this is the normal distance function.

 cube_distance('(1,2)', '(3,4)')
 2.8284271247461903

	
 cube_subset (cube, integer[])
 cube

 Makes a new cube from an existing cube, using a list of
 dimension indexes from an array. Can be used to extract the endpoints
 of a single dimension, or to drop dimensions, or to reorder them as
 desired.

 cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2])
 (3),(7)

 cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1])
 (5, 3, 1, 1),(8, 7, 6, 6)

	
 cube_union (cube, cube)
 cube

 Produces the union of two cubes.

 cube_union('(1,2)', '(3,4)')
 (1, 2),(3, 4)

	
 cube_inter (cube, cube)
 cube

 Produces the intersection of two cubes.

 cube_inter('(1,2)', '(3,4)')
 (3, 4),(1, 2)

	
 cube_enlarge (c cube, r double, n integer)
 cube

 Increases the size of the cube by the specified
 radius r in at least n
 dimensions. If the radius is negative the cube is shrunk instead.
 All defined dimensions are changed by the
 radius r. Lower-left coordinates are decreased
 by r and upper-right coordinates are increased
 by r. If a lower-left coordinate is increased
 to more than the corresponding upper-right coordinate (this can only
 happen when r < 0) than both coordinates are
 set to their average. If n is greater than the
 number of defined dimensions and the cube is being enlarged
 (r > 0), then extra dimensions are added to
 make n altogether; 0 is used as the initial
 value for the extra coordinates. This function is useful for creating
 bounding boxes around a point for searching for nearby points.

 cube_enlarge('(1,2),(3,4)', 0.5, 3)
 (0.5, 1.5, -0.5),(3.5, 4.5, 0.5)

Defaults

 This union:

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union

(0, 0, 0),(2, 5, 2)
(1 row)

 does not contradict common sense, neither does the intersection:

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter

(0, 0),(1, 0)
(1 row)

 In all binary operations on differently-dimensioned cubes,
 the lower-dimensional one is assumed to be a Cartesian projection, i. e., having zeroes
 in place of coordinates omitted in the string representation. The above
 examples are equivalent to:

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');

 The following containment predicate uses the point syntax,
 while in fact the second argument is internally represented by a box.
 This syntax makes it unnecessary to define a separate point type
 and functions for (box,point) predicates.

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains

t
(1 row)

Notes

 For examples of usage, see the regression test sql/cube.sql.

 To make it harder for people to break things, there
 is a limit of 100 on the number of dimensions of cubes. This is set
 in cubedata.h if you need something bigger.

Credits

 Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>,
 Mathematics and Computer Science Division, Argonne National Laboratory.

 My thanks are primarily to Prof. Joe Hellerstein
 (https://dsf.berkeley.edu/jmh/) for elucidating the
 gist of the GiST (http://gist.cs.berkeley.edu/), and
 to his former student Andy Dong for his example written for Illustra.
 I am also grateful to all Postgres developers, present and past, for
 enabling myself to create my own world and live undisturbed in it. And I
 would like to acknowledge my gratitude to Argonne Lab and to the
 U.S. Department of Energy for the years of faithful support of my database
 research.

 Minor updates to this package were made by Bruno Wolff III
 <bruno@wolff.to> in August/September of 2002. These include
 changing the precision from single precision to double precision and adding
 some new functions.

 Additional updates were made by Joshua Reich <josh@root.net> in
 July 2006. These include cube(float8[], float8[]) and
 cleaning up the code to use the V1 call protocol instead of the deprecated
 V0 protocol.

dblink — connect to other PostgreSQL databases

 dblink is a module that supports connections to
 other PostgreSQL™ databases from within a database
 session.

 See also postgres_fdw, which provides roughly the same
 functionality using a more modern and standards-compliant infrastructure.

Name
dblink_connect — opens a persistent connection to a remote database

Synopsis

dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text

Description

 dblink_connect() establishes a connection to a remote
 PostgreSQL™ database. The server and database to
 be contacted are identified through a standard libpq
 connection string. Optionally, a name can be assigned to the
 connection. Multiple named connections can be open at once, but
 only one unnamed connection is permitted at a time. The connection
 will persist until closed or until the database session is ended.

 The connection string may also be the name of an existing foreign
 server. It is recommended to use the foreign-data wrapper
 dblink_fdw when defining the foreign
 server. See the example below, as well as
 CREATE SERVER(7) and
 CREATE USER MAPPING(7).

Arguments
	connname
	
 The name to use for this connection; if omitted, an unnamed
 connection is opened, replacing any existing unnamed connection.

	connstr
	libpq-style connection info string, for example
 hostaddr=127.0.0.1 port=5432 dbname=mydb user=postgres
 password=mypasswd options=-csearch_path=.
 For details see the section called “Connection Strings”.
 Alternatively, the name of a foreign server.

Return Value

 Returns status, which is always OK (since any error
 causes the function to throw an error instead of returning).

Notes

 If untrusted users have access to a database that has not adopted a
 secure schema usage pattern,
 begin each session by removing publicly-writable schemas from
 search_path. One could, for example,
 add options=-csearch_path= to
 connstr. This consideration is not specific
 to dblink; it applies to every interface for
 executing arbitrary SQL commands.

 Only superusers may use dblink_connect to create
 non-password-authenticated and non-GSSAPI-authenticated connections.
 If non-superusers need this capability, use
 dblink_connect_u instead.

 It is unwise to choose connection names that contain equal signs,
 as this opens a risk of confusion with connection info strings
 in other dblink functions.

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_connect('myconn', 'dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

-- FOREIGN DATA WRAPPER functionality
-- Note: local connection must require password authentication for this to work properly
-- Otherwise, you will receive the following error from dblink_connect():
-- ERROR: password is required
-- DETAIL: Non-superuser cannot connect if the server does not request a password.
-- HINT: Target server's authentication method must be changed.

CREATE SERVER fdtest FOREIGN DATA WRAPPER dblink_fdw OPTIONS (hostaddr '127.0.0.1', dbname 'contrib_regression');

CREATE USER regress_dblink_user WITH PASSWORD 'secret';
CREATE USER MAPPING FOR regress_dblink_user SERVER fdtest OPTIONS (user 'regress_dblink_user', password 'secret');
GRANT USAGE ON FOREIGN SERVER fdtest TO regress_dblink_user;
GRANT SELECT ON TABLE foo TO regress_dblink_user;

\set ORIGINAL_USER :USER
\c - regress_dblink_user
SELECT dblink_connect('myconn', 'fdtest');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'SELECT * FROM foo') AS t(a int, b text, c text[]);
 a | b | c
----+---+---------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
 3 | d | {a3,b3,c3}
 4 | e | {a4,b4,c4}
 5 | f | {a5,b5,c5}
 6 | g | {a6,b6,c6}
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM regress_dblink_user;
REVOKE SELECT ON TABLE foo FROM regress_dblink_user;
DROP USER MAPPING FOR regress_dblink_user SERVER fdtest;
DROP USER regress_dblink_user;
DROP SERVER fdtest;

Name
dblink_connect_u — opens a persistent connection to a remote database, insecurely

Synopsis

dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text

Description

 dblink_connect_u() is identical to
 dblink_connect(), except that it will allow non-superusers
 to connect using any authentication method.

 If the remote server selects an authentication method that does not
 involve a password, then impersonation and subsequent escalation of
 privileges can occur, because the session will appear to have
 originated from the user as which the local PostgreSQL™
 server runs. Also, even if the remote server does demand a password,
 it is possible for the password to be supplied from the server
 environment, such as a ~/.pgpass file belonging to the
 server's user. This opens not only a risk of impersonation, but the
 possibility of exposing a password to an untrustworthy remote server.
 Therefore, dblink_connect_u() is initially
 installed with all privileges revoked from PUBLIC,
 making it un-callable except by superusers. In some situations
 it may be appropriate to grant EXECUTE permission for
 dblink_connect_u() to specific users who are considered
 trustworthy, but this should be done with care. It is also recommended
 that any ~/.pgpass file belonging to the server's user
 not contain any records specifying a wildcard host name.

 For further details see dblink_connect().

Name
dblink_disconnect — closes a persistent connection to a remote database

Synopsis

dblink_disconnect() returns text
dblink_disconnect(text connname) returns text

Description

 dblink_disconnect() closes a connection previously opened
 by dblink_connect(). The form with no arguments closes
 an unnamed connection.

Arguments
	connname
	
 The name of a named connection to be closed.

Return Value

 Returns status, which is always OK (since any error
 causes the function to throw an error instead of returning).

Examples

SELECT dblink_disconnect();
 dblink_disconnect

 OK
(1 row)

SELECT dblink_disconnect('myconn');
 dblink_disconnect

 OK
(1 row)

Name
dblink — executes a query in a remote database

Synopsis

dblink(text connname, text sql [, bool fail_on_error]) returns setof record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof record
dblink(text sql [, bool fail_on_error]) returns setof record

Description

 dblink executes a query (usually a SELECT,
 but it can be any SQL statement that returns rows) in a remote database.

 When two text arguments are given, the first one is first
 looked up as a persistent connection's name; if found, the command
 is executed on that connection. If not found, the first argument
 is treated as a connection info string as for dblink_connect,
 and the indicated connection is made just for the duration of this command.

Arguments
	connname
	
 Name of the connection to use; omit this parameter to use the
 unnamed connection.

	connstr
	
 A connection info string, as previously described for
 dblink_connect.

	sql
	
 The SQL query that you wish to execute in the remote database,
 for example select * from foo.

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function returns no rows.

Return Value

 The function returns the row(s) produced by the query. Since
 dblink can be used with any query, it is declared
 to return record, rather than specifying any particular
 set of columns. This means that you must specify the expected
 set of columns in the calling query — otherwise
 PostgreSQL™ would not know what to expect.
 Here is an example:

SELECT *
 FROM dblink('dbname=mydb options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

 The “alias” part of the FROM clause must
 specify the column names and types that the function will return.
 (Specifying column names in an alias is actually standard SQL
 syntax, but specifying column types is a PostgreSQL™
 extension.) This allows the system to understand what
 * should expand to, and what proname
 in the WHERE clause refers to, in advance of trying
 to execute the function. At run time, an error will be thrown
 if the actual query result from the remote database does not
 have the same number of columns shown in the FROM clause.
 The column names need not match, however, and dblink
 does not insist on exact type matches either. It will succeed
 so long as the returned data strings are valid input for the
 column type declared in the FROM clause.

Notes

 A convenient way to use dblink with predetermined
 queries is to create a view.
 This allows the column type information to be buried in the view,
 instead of having to spell it out in every query. For example,

CREATE VIEW myremote_pg_proc AS
 SELECT *
 FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE 'bytea%';

Examples

SELECT * FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('myconn', 'dbname=regression options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 bytearecv | bytearecv
 byteasend | byteasend
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteain | byteain
 byteaout | byteaout
(14 rows)

Name
dblink_exec — executes a command in a remote database

Synopsis

dblink_exec(text connname, text sql [, bool fail_on_error]) returns text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns text
dblink_exec(text sql [, bool fail_on_error]) returns text

Description

 dblink_exec executes a command (that is, any SQL statement
 that doesn't return rows) in a remote database.

 When two text arguments are given, the first one is first
 looked up as a persistent connection's name; if found, the command
 is executed on that connection. If not found, the first argument
 is treated as a connection info string as for dblink_connect,
 and the indicated connection is made just for the duration of this command.

Arguments
	connname
	
 Name of the connection to use; omit this parameter to use the
 unnamed connection.

	connstr
	
 A connection info string, as previously described for
 dblink_connect.

	sql
	
 The SQL command that you wish to execute in the remote database,
 for example
 insert into foo values(0, 'a', '{"a0","b0","c0"}').

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function's return value is set to ERROR.

Return Value

 Returns status, either the command's status string or ERROR.

Examples

SELECT dblink_connect('dbname=dblink_test_standby');
 dblink_connect

 OK
(1 row)

SELECT dblink_exec('insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 943366 1
(1 row)

SELECT dblink_connect('myconn', 'dbname=regression');
 dblink_connect

 OK
(1 row)

SELECT dblink_exec('myconn', 'insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 6432584 1
(1 row)

SELECT dblink_exec('myconn', 'insert into pg_class values (''foo'')',false);
NOTICE: sql error
DETAIL: ERROR: null value in column "relnamespace" violates not-null constraint

 dblink_exec

 ERROR
(1 row)

Name
dblink_open — opens a cursor in a remote database

Synopsis

dblink_open(text cursorname, text sql [, bool fail_on_error]) returns text
dblink_open(text connname, text cursorname, text sql [, bool fail_on_error]) returns text

Description

 dblink_open() opens a cursor in a remote database.
 The cursor can subsequently be manipulated with
 dblink_fetch() and dblink_close().

Arguments
	connname
	
 Name of the connection to use; omit this parameter to use the
 unnamed connection.

	cursorname
	
 The name to assign to this cursor.

	sql
	
 The SELECT statement that you wish to execute in the remote
 database, for example select * from pg_class.

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function's return value is set to ERROR.

Return Value

 Returns status, either OK or ERROR.

Notes

 Since a cursor can only persist within a transaction,
 dblink_open starts an explicit transaction block
 (BEGIN) on the remote side, if the remote side was
 not already within a transaction. This transaction will be
 closed again when the matching dblink_close is
 executed. Note that if
 you use dblink_exec to change data between
 dblink_open and dblink_close,
 and then an error occurs or you use dblink_disconnect before
 dblink_close, your change will be
 lost because the transaction will be aborted.

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

Name
dblink_fetch — returns rows from an open cursor in a remote database

Synopsis

dblink_fetch(text cursorname, int howmany [, bool fail_on_error]) returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool fail_on_error]) returns setof record

Description

 dblink_fetch fetches rows from a cursor previously
 established by dblink_open.

Arguments
	connname
	
 Name of the connection to use; omit this parameter to use the
 unnamed connection.

	cursorname
	
 The name of the cursor to fetch from.

	howmany
	
 The maximum number of rows to retrieve. The next howmany
 rows are fetched, starting at the current cursor position, moving
 forward. Once the cursor has reached its end, no more rows are produced.

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function returns no rows.

Return Value

 The function returns the row(s) fetched from the cursor. To use this
 function, you will need to specify the expected set of columns,
 as previously discussed for dblink.

Notes

 On a mismatch between the number of return columns specified in the
 FROM clause, and the actual number of columns returned by the
 remote cursor, an error will be thrown. In this event, the remote cursor
 is still advanced by as many rows as it would have been if the error had
 not occurred. The same is true for any other error occurring in the local
 query after the remote FETCH has been done.

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc where proname like ''bytea%''');
 dblink_open

 OK
(1 row)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+----------
 byteacat | byteacat
 byteacmp | byteacmp
 byteaeq | byteaeq
 byteage | byteage
 byteagt | byteagt
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
-----------+-----------
 byteain | byteain
 byteale | byteale
 bytealike | bytealike
 bytealt | bytealt
 byteane | byteane
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
------------+------------
 byteanlike | byteanlike
 byteaout | byteaout
(2 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+--------
(0 rows)

Name
dblink_close — closes a cursor in a remote database

Synopsis

dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error]) returns text

Description

 dblink_close closes a cursor previously opened with
 dblink_open.

Arguments
	connname
	
 Name of the connection to use; omit this parameter to use the
 unnamed connection.

	cursorname
	
 The name of the cursor to close.

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function's return value is set to ERROR.

Return Value

 Returns status, either OK or ERROR.

Notes

 If dblink_open started an explicit transaction block,
 and this is the last remaining open cursor in this connection,
 dblink_close will issue the matching COMMIT.

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

SELECT dblink_close('foo');
 dblink_close

 OK
(1 row)

Name
dblink_get_connections — returns the names of all open named dblink connections

Synopsis

dblink_get_connections() returns text[]

Description

 dblink_get_connections returns an array of the names
 of all open named dblink connections.

Return Value
Returns a text array of connection names, or NULL if none.

Examples

SELECT dblink_get_connections();

Name
dblink_error_message — gets last error message on the named connection

Synopsis

dblink_error_message(text connname) returns text

Description

 dblink_error_message fetches the most recent remote
 error message for a given connection.

Arguments
	connname
	
 Name of the connection to use.

Return Value

 Returns last error message, or OK if there has been
 no error in this connection.

Notes

 When asynchronous queries are initiated by
 dblink_send_query, the error message associated with
 the connection might not get updated until the server's response message
 is consumed. This typically means that dblink_is_busy
 or dblink_get_result should be called prior to
 dblink_error_message, so that any error generated by
 the asynchronous query will be visible.

Examples

SELECT dblink_error_message('dtest1');

Name
dblink_send_query — sends an async query to a remote database

Synopsis

dblink_send_query(text connname, text sql) returns int

Description

 dblink_send_query sends a query to be executed
 asynchronously, that is, without immediately waiting for the result.
 There must not be an async query already in progress on the
 connection.

 After successfully dispatching an async query, completion status
 can be checked with dblink_is_busy, and the results
 are ultimately collected with dblink_get_result.
 It is also possible to attempt to cancel an active async query
 using dblink_cancel_query.

Arguments
	connname
	
 Name of the connection to use.

	sql
	
 The SQL statement that you wish to execute in the remote database,
 for example select * from pg_class.

Return Value

 Returns 1 if the query was successfully dispatched, 0 otherwise.

Examples

SELECT dblink_send_query('dtest1', 'SELECT * FROM foo WHERE f1 < 3');

Name
dblink_is_busy — checks if connection is busy with an async query

Synopsis

dblink_is_busy(text connname) returns int

Description

 dblink_is_busy tests whether an async query is in progress.

Arguments
	connname
	
 Name of the connection to check.

Return Value

 Returns 1 if connection is busy, 0 if it is not busy.
 If this function returns 0, it is guaranteed that
 dblink_get_result will not block.

Examples

SELECT dblink_is_busy('dtest1');

Name
dblink_get_notify — retrieve async notifications on a connection

Synopsis

dblink_get_notify() returns setof (notify_name text, be_pid int, extra text)
dblink_get_notify(text connname) returns setof (notify_name text, be_pid int, extra text)

Description

 dblink_get_notify retrieves notifications on either
 the unnamed connection, or on a named connection if specified.
 To receive notifications via dblink, LISTEN must
 first be issued, using dblink_exec.
 For details see LISTEN(7) and NOTIFY(7).

Arguments
	connname
	
 The name of a named connection to get notifications on.

Return Value
Returns setof (notify_name text, be_pid int, extra text), or an empty set if none.

Examples

SELECT dblink_exec('LISTEN virtual');
 dblink_exec

 LISTEN
(1 row)

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
 virtual | 1229 |
(1 row)

Name
dblink_get_result — gets an async query result

Synopsis

dblink_get_result(text connname [, bool fail_on_error]) returns setof record

Description

 dblink_get_result collects the results of an
 asynchronous query previously sent with dblink_send_query.
 If the query is not already completed, dblink_get_result
 will wait until it is.

Arguments
	connname
	
 Name of the connection to use.

	fail_on_error
	
 If true (the default when omitted) then an error thrown on the
 remote side of the connection causes an error to also be thrown
 locally. If false, the remote error is locally reported as a NOTICE,
 and the function returns no rows.

Return Value

 For an async query (that is, an SQL statement returning rows),
 the function returns the row(s) produced by the query. To use this
 function, you will need to specify the expected set of columns,
 as previously discussed for dblink.

 For an async command (that is, an SQL statement not returning rows),
 the function returns a single row with a single text column containing
 the command's status string. It is still necessary to specify that
 the result will have a single text column in the calling FROM
 clause.

Notes

 This function must be called if
 dblink_send_query returned 1.
 It must be called once for each query
 sent, and one additional time to obtain an empty set result,
 before the connection can be used again.

 When using dblink_send_query and
 dblink_get_result, dblink fetches the entire
 remote query result before returning any of it to the local query
 processor. If the query returns a large number of rows, this can result
 in transient memory bloat in the local session. It may be better to open
 such a query as a cursor with dblink_open and then fetch a
 manageable number of rows at a time. Alternatively, use plain
 dblink(), which avoids memory bloat by spooling large result
 sets to disk.

Examples

contrib_regression=# SELECT dblink_connect('dtest1', 'dbname=contrib_regression');
 dblink_connect

 OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3; select * from foo where f1 > 6') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+---------------
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

Name
dblink_cancel_query — cancels any active query on the named connection

Synopsis

dblink_cancel_query(text connname) returns text

Description

 dblink_cancel_query attempts to cancel any query that
 is in progress on the named connection. Note that this is not
 certain to succeed (since, for example, the remote query might
 already have finished). A cancel request simply improves the
 odds that the query will fail soon. You must still complete the
 normal query protocol, for example by calling
 dblink_get_result.

Arguments
	connname
	
 Name of the connection to use.

Return Value

 Returns OK if the cancel request has been sent, or
 the text of an error message on failure.

Examples

SELECT dblink_cancel_query('dtest1');

Name
dblink_get_pkey — returns the positions and field names of a relation's
 primary key fields

Synopsis

dblink_get_pkey(text relname) returns setof dblink_pkey_results

Description

 dblink_get_pkey provides information about the primary
 key of a relation in the local database. This is sometimes useful
 in generating queries to be sent to remote databases.

Arguments
	relname
	
 Name of a local relation, for example foo or
 myschema.mytab. Include double quotes if the
 name is mixed-case or contains special characters, for
 example "FooBar"; without quotes, the string
 will be folded to lower case.

Return Value

 Returns one row for each primary key field, or no rows if the relation
 has no primary key. The result row type is defined as

CREATE TYPE dblink_pkey_results AS (position int, colname text);

 The position column simply runs from 1 to N;
 it is the number of the field within the primary key, not the number
 within the table's columns.

Examples

CREATE TABLE foobar (
 f1 int,
 f2 int,
 f3 int,
 PRIMARY KEY (f1, f2, f3)
);
CREATE TABLE

SELECT * FROM dblink_get_pkey('foobar');
 position | colname
----------+---------
 1 | f1
 2 | f2
 3 | f3
(3 rows)

Name
dblink_build_sql_insert —
 builds an INSERT statement using a local tuple, replacing the
 primary key field values with alternative supplied values

Synopsis

dblink_build_sql_insert(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description

 dblink_build_sql_insert can be useful in doing selective
 replication of a local table to a remote database. It selects a row
 from the local table based on primary key, and then builds an SQL
 INSERT command that will duplicate that row, but with
 the primary key values replaced by the values in the last argument.
 (To make an exact copy of the row, just specify the same values for
 the last two arguments.)

Arguments
	relname
	
 Name of a local relation, for example foo or
 myschema.mytab. Include double quotes if the
 name is mixed-case or contains special characters, for
 example "FooBar"; without quotes, the string
 will be folded to lower case.

	primary_key_attnums
	
 Attribute numbers (1-based) of the primary key fields,
 for example 1 2.

	num_primary_key_atts
	
 The number of primary key fields.

	src_pk_att_vals_array
	
 Values of the primary key fields to be used to look up the
 local tuple. Each field is represented in text form.
 An error is thrown if there is no local row with these
 primary key values.

	tgt_pk_att_vals_array
	
 Values of the primary key fields to be placed in the resulting
 INSERT command. Each field is represented in text form.

Return Value
Returns the requested SQL statement as text.

Notes

 As of PostgreSQL™ 9.0, the attribute numbers in
 primary_key_attnums are interpreted as logical
 column numbers, corresponding to the column's position in
 SELECT * FROM relname. Previous versions interpreted the
 numbers as physical column positions. There is a difference if any
 column(s) to the left of the indicated column have been dropped during
 the lifetime of the table.

Examples

SELECT dblink_build_sql_insert('foo', '1 2', 2, '{"1", "a"}', '{"1", "b''a"}');
 dblink_build_sql_insert
--
 INSERT INTO foo(f1,f2,f3) VALUES('1','b''a','1')
(1 row)

Name
dblink_build_sql_delete — builds a DELETE statement using supplied values for primary
 key field values

Synopsis

dblink_build_sql_delete(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] tgt_pk_att_vals_array) returns text

Description

 dblink_build_sql_delete can be useful in doing selective
 replication of a local table to a remote database. It builds an SQL
 DELETE command that will delete the row with the given
 primary key values.

Arguments
	relname
	
 Name of a local relation, for example foo or
 myschema.mytab. Include double quotes if the
 name is mixed-case or contains special characters, for
 example "FooBar"; without quotes, the string
 will be folded to lower case.

	primary_key_attnums
	
 Attribute numbers (1-based) of the primary key fields,
 for example 1 2.

	num_primary_key_atts
	
 The number of primary key fields.

	tgt_pk_att_vals_array
	
 Values of the primary key fields to be used in the resulting
 DELETE command. Each field is represented in text form.

Return Value
Returns the requested SQL statement as text.

Notes

 As of PostgreSQL™ 9.0, the attribute numbers in
 primary_key_attnums are interpreted as logical
 column numbers, corresponding to the column's position in
 SELECT * FROM relname. Previous versions interpreted the
 numbers as physical column positions. There is a difference if any
 column(s) to the left of the indicated column have been dropped during
 the lifetime of the table.

Examples

SELECT dblink_build_sql_delete('"MyFoo"', '1 2', 2, '{"1", "b"}');
 dblink_build_sql_delete

 DELETE FROM "MyFoo" WHERE f1='1' AND f2='b'
(1 row)

Name
dblink_build_sql_update — builds an UPDATE statement using a local tuple, replacing
 the primary key field values with alternative supplied values

Synopsis

dblink_build_sql_update(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description

 dblink_build_sql_update can be useful in doing selective
 replication of a local table to a remote database. It selects a row
 from the local table based on primary key, and then builds an SQL
 UPDATE command that will duplicate that row, but with
 the primary key values replaced by the values in the last argument.
 (To make an exact copy of the row, just specify the same values for
 the last two arguments.) The UPDATE command always assigns
 all fields of the row — the main difference between this and
 dblink_build_sql_insert is that it's assumed that
 the target row already exists in the remote table.

Arguments
	relname
	
 Name of a local relation, for example foo or
 myschema.mytab. Include double quotes if the
 name is mixed-case or contains special characters, for
 example "FooBar"; without quotes, the string
 will be folded to lower case.

	primary_key_attnums
	
 Attribute numbers (1-based) of the primary key fields,
 for example 1 2.

	num_primary_key_atts
	
 The number of primary key fields.

	src_pk_att_vals_array
	
 Values of the primary key fields to be used to look up the
 local tuple. Each field is represented in text form.
 An error is thrown if there is no local row with these
 primary key values.

	tgt_pk_att_vals_array
	
 Values of the primary key fields to be placed in the resulting
 UPDATE command. Each field is represented in text form.

Return Value
Returns the requested SQL statement as text.

Notes

 As of PostgreSQL™ 9.0, the attribute numbers in
 primary_key_attnums are interpreted as logical
 column numbers, corresponding to the column's position in
 SELECT * FROM relname. Previous versions interpreted the
 numbers as physical column positions. There is a difference if any
 column(s) to the left of the indicated column have been dropped during
 the lifetime of the table.

Examples

SELECT dblink_build_sql_update('foo', '1 2', 2, '{"1", "a"}', '{"1", "b"}');
 dblink_build_sql_update

 UPDATE foo SET f1='1',f2='b',f3='1' WHERE f1='1' AND f2='b'
(1 row)

dict_int —
 example full-text search dictionary for integers

 dict_int is an example of an add-on dictionary template
 for full-text search. The motivation for this example dictionary is to
 control the indexing of integers (signed and unsigned), allowing such
 numbers to be indexed while preventing excessive growth in the number of
 unique words, which greatly affects the performance of searching.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Configuration

 The dictionary accepts three options:

	
 The maxlen parameter specifies the maximum number of
 digits allowed in an integer word. The default value is 6.

	
 The rejectlong parameter specifies whether an overlength
 integer should be truncated or ignored. If rejectlong is
 false (the default), the dictionary returns the first
 maxlen digits of the integer. If rejectlong is
 true, the dictionary treats an overlength integer as a stop
 word, so that it will not be indexed. Note that this also means that
 such an integer cannot be searched for.

	
 The absval parameter specifies whether leading
 “+” or “-”
 signs should be removed from integer words. The default
 is false. When true, the sign is
 removed before maxlen is applied.

Usage

 Installing the dict_int extension creates a text search
 template intdict_template and a dictionary intdict
 based on it, with the default parameters. You can alter the
 parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG = true);
ALTER TEXT SEARCH DICTIONARY

 or create new dictionaries based on the template.

 To test the dictionary, you can try

mydb# select ts_lexize('intdict', '12345678');
 ts_lexize

 {123456}

 but real-world usage will involve including it in a text search
 configuration as described in Chapter 12, Full Text Search.
 That might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR int, uint WITH intdict;

dict_xsyn — example synonym full-text search dictionary

 dict_xsyn (Extended Synonym Dictionary) is an example of an
 add-on dictionary template for full-text search. This dictionary type
 replaces words with groups of their synonyms, and so makes it possible to
 search for a word using any of its synonyms.

Configuration

 A dict_xsyn dictionary accepts the following options:

	
 matchorig controls whether the original word is accepted by
 the dictionary. Default is true.

	
 matchsynonyms controls whether the synonyms are
 accepted by the dictionary. Default is false.

	
 keeporig controls whether the original word is included in
 the dictionary's output. Default is true.

	
 keepsynonyms controls whether the synonyms are included in
 the dictionary's output. Default is true.

	
 rules is the base name of the file containing the list of
 synonyms. This file must be stored in
 $SHAREDIR/tsearch_data/ (where $SHAREDIR means
 the PostgreSQL™ installation's shared-data directory).
 Its name must end in .rules (which is not to be included in
 the rules parameter).

 The rules file has the following format:

	
 Each line represents a group of synonyms for a single word, which is
 given first on the line. Synonyms are separated by whitespace, thus:

word syn1 syn2 syn3

	
 The sharp (#) sign is a comment delimiter. It may appear at
 any position in a line. The rest of the line will be skipped.

 Look at xsyn_sample.rules, which is installed in
 $SHAREDIR/tsearch_data/, for an example.

Usage

 Installing the dict_xsyn extension creates a text search
 template xsyn_template and a dictionary xsyn
 based on it, with default parameters. You can alter the
 parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY

 or create new dictionaries based on the template.

 To test the dictionary, you can try

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false, MATCHSYNONYMS=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true, MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {word}

 Real-world usage will involve including it in a text search
 configuration as described in Chapter 12, Full Text Search.
 That might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;

earthdistance — calculate great-circle distances

 The earthdistance module provides two different approaches to
 calculating great circle distances on the surface of the Earth. The one
 described first depends on the cube module.
 The second one is based on the built-in point data type,
 using longitude and latitude for the coordinates.

 In this module, the Earth is assumed to be perfectly spherical.
 (If that's too inaccurate for you, you might want to look at the
 PostGIS
 project.)

 The cube module must be installed
 before earthdistance can be installed
 (although you can use the CASCADE option
 of CREATE EXTENSION to install both in one command).

Caution

 It is strongly recommended that earthdistance
 and cube be installed in the same schema, and that
 that schema be one for which CREATE privilege has not been and will not
 be granted to any untrusted users.
 Otherwise there are installation-time security hazards
 if earthdistance's schema contains objects defined
 by a hostile user.
 Furthermore, when using earthdistance's functions
 after installation, the entire search path should contain only trusted
 schemas.

Cube-Based Earth Distances

 Data is stored in cubes that are points (both corners are the same) using 3
 coordinates representing the x, y, and z distance from the center of the
 Earth. A domain
 earth over type cube is provided, which
 includes constraint checks that the value meets these restrictions and
 is reasonably close to the actual surface of the Earth.

 The radius of the Earth is obtained from the earth()
 function. It is given in meters. But by changing this one function you can
 change the module to use some other units, or to use a different value of
 the radius that you feel is more appropriate.

 This package has applications to astronomical databases as well.
 Astronomers will probably want to change earth() to return a
 radius of 180/pi() so that distances are in degrees.

 Functions are provided to support input in latitude and longitude (in
 degrees), to support output of latitude and longitude, to calculate
 the great circle distance between two points and to easily specify a
 bounding box usable for index searches.

 The provided functions are shown
 in Table F.5, “Cube-Based Earthdistance Functions”.

Table F.5. Cube-Based Earthdistance Functions
	
 Function

 Description

	

 earth ()
 float8

 Returns the assumed radius of the Earth.

	

 sec_to_gc (float8)
 float8

 Converts the normal straight line
 (secant) distance between two points on the surface of the Earth
 to the great circle distance between them.

	

 gc_to_sec (float8)
 float8

 Converts the great circle distance between two points on the
 surface of the Earth to the normal straight line (secant) distance
 between them.

	

 ll_to_earth (float8, float8)
 earth

 Returns the location of a point on the surface of the Earth given
 its latitude (argument 1) and longitude (argument 2) in degrees.

	

 latitude (earth)
 float8

 Returns the latitude in degrees of a point on the surface of the
 Earth.

	

 longitude (earth)
 float8

 Returns the longitude in degrees of a point on the surface of the
 Earth.

	

 earth_distance (earth, earth)
 float8

 Returns the great circle distance between two points on the
 surface of the Earth.

	

 earth_box (earth, float8)
 cube

 Returns a box suitable for an indexed search using the cube
 @>
 operator for points within a given great circle distance of a location.
 Some points in this box are further than the specified great circle
 distance from the location, so a second check using
 earth_distance should be included in the query.

Point-Based Earth Distances

 The second part of the module relies on representing Earth locations as
 values of type point, in which the first component is taken to
 represent longitude in degrees, and the second component is taken to
 represent latitude in degrees. Points are taken as (longitude, latitude)
 and not vice versa because longitude is closer to the intuitive idea of
 x-axis and latitude to y-axis.

 A single operator is provided, shown
 in Table F.6, “Point-Based Earthdistance Operators”.

Table F.6. Point-Based Earthdistance Operators
	
 Operator

 Description

	
 point <@> point
 float8

 Computes the distance in statute miles between
 two points on the Earth's surface.

 Note that unlike the cube-based part of the module, units
 are hardwired here: changing the earth() function will
 not affect the results of this operator.

 One disadvantage of the longitude/latitude representation is that
 you need to be careful about the edge conditions near the poles
 and near +/- 180 degrees of longitude. The cube-based
 representation avoids these discontinuities.

file_fdw — access data files in the server's file system

 The file_fdw module provides the foreign-data wrapper
 file_fdw, which can be used to access data
 files in the server's file system, or to execute programs on the server
 and read their output. The data file or program output must be in a format
 that can be read by COPY FROM;
 see COPY(7) for details.
 Access to data files is currently read-only.

 A foreign table created using this wrapper can have the following options:

	filename
	
 Specifies the file to be read. Relative paths are relative to the
 data directory.
 Either filename or program must be
 specified, but not both.

	program
	
 Specifies the command to be executed. The standard output of this
 command will be read as though COPY FROM PROGRAM were used.
 Either program or filename must be
 specified, but not both.

	format
	
 Specifies the data format,
 the same as COPY's FORMAT option.

	header
	
 Specifies whether the data has a header line,
 the same as COPY's HEADER option.

	delimiter
	
 Specifies the data delimiter character,
 the same as COPY's DELIMITER option.

	quote
	
 Specifies the data quote character,
 the same as COPY's QUOTE option.

	escape
	
 Specifies the data escape character,
 the same as COPY's ESCAPE option.

	null
	
 Specifies the data null string,
 the same as COPY's NULL option.

	default
	
 Specifies the string that represents a default value,
 the same as COPY's DEFAULT option.

	encoding
	
 Specifies the data encoding,
 the same as COPY's ENCODING option.

 Note that while COPY allows options such as HEADER
 to be specified without a corresponding value, the foreign table option
 syntax requires a value to be present in all cases. To activate
 COPY options typically written without a value, you can pass
 the value TRUE, since all such options are Booleans.

 A column of a foreign table created using this wrapper can have the
 following options:

	force_not_null
	
 This is a Boolean option. If true, it specifies that values of the
 column should not be matched against the null string (that is, the
 table-level null option). This has the same effect
 as listing the column in COPY's
 FORCE_NOT_NULL option.

	force_null
	
 This is a Boolean option. If true, it specifies that values of the
 column which match the null string are returned as NULL
 even if the value is quoted. Without this option, only unquoted
 values matching the null string are returned as NULL.
 This has the same effect as listing the column in
 COPY's FORCE_NULL option.

 COPY's FORCE_QUOTE option is
 currently not supported by file_fdw.

 These options can only be specified for a foreign table or its columns, not
 in the options of the file_fdw foreign-data wrapper, nor in the
 options of a server or user mapping using the wrapper.

 Changing table-level options requires being a superuser or having the privileges
 of the role pg_read_server_files (to use a filename) or
 the role pg_execute_server_program (to use a program),
 for security reasons: only certain users should be able to control which file is
 read or which program is run. In principle regular users could be allowed to
 change the other options, but that's not supported at present.

 When specifying the program option, keep in mind that the option
 string is executed by the shell. If you need to pass any arguments to the
 command that come from an untrusted source, you must be careful to strip or
 escape any characters that might have special meaning to the shell.
 For security reasons, it is best to use a fixed command string, or at least
 avoid passing any user input in it.

 For a foreign table using file_fdw, EXPLAIN shows
 the name of the file to be read or program to be run.
 For a file, unless COSTS OFF is
 specified, the file size (in bytes) is shown as well.

Example F.1. Create a Foreign Table for PostgreSQL CSV Logs

 One of the obvious uses for file_fdw is to make
 the PostgreSQL activity log available as a table for querying. To
 do this, first you must be logging to a CSV file,
 which here we
 will call pglog.csv. First, install file_fdw
 as an extension:

CREATE EXTENSION file_fdw;

 Then create a foreign server:

CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;

 Now you are ready to create the foreign data table. Using the
 CREATE FOREIGN TABLE command, you will need to define
 the columns for the table, the CSV file name, and its format:

CREATE FOREIGN TABLE pglog (
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text,
 leader_pid integer,
 query_id bigint
) SERVER pglog
OPTIONS (filename 'log/pglog.csv', format 'csv');

 That's it — now you can query your log directly. In production, of
 course, you would need to define some way to deal with log rotation.

fuzzystrmatch — determine string similarities and distance

 The fuzzystrmatch module provides several
 functions to determine similarities and distance between strings.

Caution

 At present, the soundex, metaphone,
 dmetaphone, and dmetaphone_alt functions do
 not work well with multibyte encodings (such as UTF-8).
 Use daitch_mokotoff
 or levenshtein with such data.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Soundex

 The Soundex system is a method of matching similar-sounding names
 by converting them to the same code. It was initially used by the
 United States Census in 1880, 1900, and 1910. Note that Soundex
 is not very useful for non-English names.

 The fuzzystrmatch module provides two functions
 for working with Soundex codes:

soundex(text) returns text
difference(text, text) returns int

 The soundex function converts a string to its Soundex code.
 The difference function converts two strings to their Soundex
 codes and then reports the number of matching code positions. Since
 Soundex codes have four characters, the result ranges from zero to four,
 with zero being no match and four being an exact match. (Thus, the
 function is misnamed — similarity would have been
 a better name.)

 Here are some usage examples:

SELECT soundex('hello world!');

SELECT soundex('Anne'), soundex('Ann'), difference('Anne', 'Ann');
SELECT soundex('Anne'), soundex('Andrew'), difference('Anne', 'Andrew');
SELECT soundex('Anne'), soundex('Margaret'), difference('Anne', 'Margaret');

CREATE TABLE s (nm text);

INSERT INTO s VALUES ('john');
INSERT INTO s VALUES ('joan');
INSERT INTO s VALUES ('wobbly');
INSERT INTO s VALUES ('jack');

SELECT * FROM s WHERE soundex(nm) = soundex('john');

SELECT * FROM s WHERE difference(s.nm, 'john') > 2;

Daitch-Mokotoff Soundex

 Like the original Soundex system, Daitch-Mokotoff Soundex matches
 similar-sounding names by converting them to the same code.
 However, Daitch-Mokotoff Soundex is significantly more useful for
 non-English names than the original system.
 Major improvements over the original system include:

	
 The code is based on the first six meaningful letters rather than four.

	
 A letter or combination of letters maps into ten possible codes rather
 than seven.

	
 Where two consecutive letters have a single sound, they are coded as a
 single number.

	
 When a letter or combination of letters may have different sounds,
 multiple codes are emitted to cover all possibilities.

 This function generates the Daitch-Mokotoff soundex codes for its input:

daitch_mokotoff(source text) returns text[]

 The result may contain one or more codes depending on how many plausible
 pronunciations there are, so it is represented as an array.

 Since a Daitch-Mokotoff soundex code consists of only 6 digits,
 source should be preferably a single word or name.

 Here are some examples:

SELECT daitch_mokotoff('George');
 daitch_mokotoff

 {595000}

SELECT daitch_mokotoff('John');
 daitch_mokotoff

 {160000,460000}

SELECT daitch_mokotoff('Bierschbach');
 daitch_mokotoff

 {794575,794574,794750,794740,745750,745740,747500,747400}

SELECT daitch_mokotoff('Schwartzenegger');
 daitch_mokotoff

 {479465}

 For matching of single names, returned text arrays can be matched
 directly using the && operator: any overlap
 can be considered a match. A GIN index may
 be used for efficiency, see Chapter 70, GIN Indexes and this example:

CREATE TABLE s (nm text);
CREATE INDEX ix_s_dm ON s USING gin (daitch_mokotoff(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
 ('Schwartzenegger'),
 ('John'),
 ('James'),
 ('Steinman'),
 ('Steinmetz');

SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Swartzenegger');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jane');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jens');

 For indexing and matching of any number of names in any order, Full Text
 Search features can be used. See Chapter 12, Full Text Search and this
 example:

CREATE FUNCTION soundex_tsvector(v_name text) RETURNS tsvector
BEGIN ATOMIC
 SELECT to_tsvector('simple',
 string_agg(array_to_string(daitch_mokotoff(n), ' '), ' '))
 FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE FUNCTION soundex_tsquery(v_name text) RETURNS tsquery
BEGIN ATOMIC
 SELECT string_agg('(' || array_to_string(daitch_mokotoff(n), '|') || ')', '&')::tsquery
 FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE TABLE s (nm text);
CREATE INDEX ix_s_txt ON s USING gin (soundex_tsvector(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
 ('John Doe'),
 ('Jane Roe'),
 ('Public John Q.'),
 ('George Best'),
 ('John Yamson');

SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('jane doe');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john public');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('besst, giorgio');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('Jameson John');

 If it is desired to avoid recalculation of soundex codes during index
 rechecks, an index on a separate column can be used instead of an index on
 an expression. A stored generated column can be used for this; see
 the section called “Generated Columns”.

Levenshtein

 This function calculates the Levenshtein distance between two strings:

levenshtein(source text, target text, ins_cost int, del_cost int, sub_cost int) returns int
levenshtein(source text, target text) returns int
levenshtein_less_equal(source text, target text, ins_cost int, del_cost int, sub_cost int, max_d int) returns int
levenshtein_less_equal(source text, target text, max_d int) returns int

 Both source and target can be any
 non-null string, with a maximum of 255 characters. The cost parameters
 specify how much to charge for a character insertion, deletion, or
 substitution, respectively. You can omit the cost parameters, as in
 the second version of the function; in that case they all default to 1.

 levenshtein_less_equal is an accelerated version of the
 Levenshtein function for use when only small distances are of interest.
 If the actual distance is less than or equal to max_d,
 then levenshtein_less_equal returns the correct
 distance; otherwise it returns some value greater than max_d.
 If max_d is negative then the behavior is the same as
 levenshtein.

 Examples:

test=# SELECT levenshtein('GUMBO', 'GAMBOL');
 levenshtein

 2
(1 row)

test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2, 1, 1);
 levenshtein

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 2);
 levenshtein_less_equal

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 4);
 levenshtein_less_equal

 4
(1 row)

Metaphone

 Metaphone, like Soundex, is based on the idea of constructing a
 representative code for an input string. Two strings are then
 deemed similar if they have the same codes.

 This function calculates the metaphone code of an input string:

metaphone(source text, max_output_length int) returns text

 source has to be a non-null string with a maximum of
 255 characters. max_output_length sets the maximum
 length of the output metaphone code; if longer, the output is truncated
 to this length.

 Example:

test=# SELECT metaphone('GUMBO', 4);
 metaphone

 KM
(1 row)

Double Metaphone

 The Double Metaphone system computes two “sounds like” strings
 for a given input string — a “primary” and an
 “alternate”. In most cases they are the same, but for non-English
 names especially they can be a bit different, depending on pronunciation.
 These functions compute the primary and alternate codes:

dmetaphone(source text) returns text
dmetaphone_alt(source text) returns text

 There is no length limit on the input strings.

 Example:

test=# SELECT dmetaphone('gumbo');
 dmetaphone

 KMP
(1 row)

hstore — hstore key/value datatype

 This module implements the hstore data type for storing sets of
 key/value pairs within a single PostgreSQL™ value.
 This can be useful in various scenarios, such as rows with many attributes
 that are rarely examined, or semi-structured data. Keys and values are
 simply text strings.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

hstore External Representation

 The text representation of an hstore, used for input and output,
 includes zero or more key =>
 value pairs separated by commas. Some examples:

k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

 The order of the pairs is not significant (and may not be reproduced on
 output). Whitespace between pairs or around the => sign is
 ignored. Double-quote keys and values that include whitespace, commas,
 =s or >s. To include a double quote or a
 backslash in a key or value, escape it with a backslash.

 Each key in an hstore is unique. If you declare an hstore
 with duplicate keys, only one will be stored in the hstore and
 there is no guarantee as to which will be kept:

SELECT 'a=>1,a=>2'::hstore;
 hstore

 "a"=>"1"

 A value (but not a key) can be an SQL NULL. For example:

key => NULL

 The NULL keyword is case-insensitive. Double-quote the
 NULL to treat it as the ordinary string “NULL”.

Note

 Keep in mind that the hstore text format, when used for input,
 applies before any required quoting or escaping. If you are
 passing an hstore literal via a parameter, then no additional
 processing is needed. But if you're passing it as a quoted literal
 constant, then any single-quote characters and (depending on the setting of
 the standard_conforming_strings configuration parameter)
 backslash characters need to be escaped correctly. See
 the section called “String Constants” for more on the handling of string
 constants.

 On output, double quotes always surround keys and values, even when it's
 not strictly necessary.

hstore Operators and Functions

 The operators provided by the hstore module are
 shown in Table F.7, “hstore Operators”, the functions
 in Table F.8, “hstore Functions”.

Table F.7. hstore Operators
	
 Operator

 Description

 Example(s)

	
 hstore -> text
 text

 Returns value associated with given key, or NULL if
 not present.

 'a=>x, b=>y'::hstore -> 'a'
 x

	
 hstore -> text[]
 text[]

 Returns values associated with given keys, or NULL
 if not present.

 'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a']
 {"z","x"}

	
 hstore || hstore
 hstore

 Concatenates two hstores.

 'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore
 "a"=>"b", "c"=>"x", "d"=>"q"

	
 hstore ? text
 boolean

 Does hstore contain key?

 'a=>1'::hstore ? 'a'
 t

	
 hstore ?& text[]
 boolean

 Does hstore contain all the specified keys?

 'a=>1,b=>2'::hstore ?& ARRAY['a','b']
 t

	
 hstore ?| text[]
 boolean

 Does hstore contain any of the specified keys?

 'a=>1,b=>2'::hstore ?| ARRAY['b','c']
 t

	
 hstore @> hstore
 boolean

 Does left operand contain right?

 'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1'
 t

	
 hstore <@ hstore
 boolean

 Is left operand contained in right?

 'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL'
 f

	
 hstore - text
 hstore

 Deletes key from left operand.

 'a=>1, b=>2, c=>3'::hstore - 'b'::text
 "a"=>"1", "c"=>"3"

	
 hstore - text[]
 hstore

 Deletes keys from left operand.

 'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b']
 "c"=>"3"

	
 hstore - hstore
 hstore

 Deletes pairs from left operand that match pairs in the right operand.

 'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore
 "a"=>"1", "c"=>"3"

	
 anyelement #= hstore
 anyelement

 Replaces fields in the left operand (which must be a composite type)
 with matching values from hstore.

 ROW(1,3) #= 'f1=>11'::hstore
 (11,3)

	
 %% hstore
 text[]

 Converts hstore to an array of alternating keys and
 values.

 %% 'a=>foo, b=>bar'::hstore
 {a,foo,b,bar}

	
 %# hstore
 text[]

 Converts hstore to a two-dimensional key/value array.

 %# 'a=>foo, b=>bar'::hstore
 {{a,foo},{b,bar}}

Table F.8. hstore Functions
	
 Function

 Description

 Example(s)

	

 hstore (record)
 hstore

 Constructs an hstore from a record or row.

 hstore(ROW(1,2))
 "f1"=>"1", "f2"=>"2"

	
 hstore (text[])
 hstore

 Constructs an hstore from an array, which may be either
 a key/value array, or a two-dimensional array.

 hstore(ARRAY['a','1','b','2'])
 "a"=>"1", "b"=>"2"

 hstore(ARRAY[['c','3'],['d','4']])
 "c"=>"3", "d"=>"4"

	
 hstore (text[], text[])
 hstore

 Constructs an hstore from separate key and value arrays.

 hstore(ARRAY['a','b'], ARRAY['1','2'])
 "a"=>"1", "b"=>"2"

	
 hstore (text, text)
 hstore

 Makes a single-item hstore.

 hstore('a', 'b')
 "a"=>"b"

	

 akeys (hstore)
 text[]

 Extracts an hstore's keys as an array.

 akeys('a=>1,b=>2')
 {a,b}

	

 skeys (hstore)
 setof text

 Extracts an hstore's keys as a set.

 skeys('a=>1,b=>2')

a
b

	

 avals (hstore)
 text[]

 Extracts an hstore's values as an array.

 avals('a=>1,b=>2')
 {1,2}

	

 svals (hstore)
 setof text

 Extracts an hstore's values as a set.

 svals('a=>1,b=>2')

1
2

	

 hstore_to_array (hstore)
 text[]

 Extracts an hstore's keys and values as an array of
 alternating keys and values.

 hstore_to_array('a=>1,b=>2')
 {a,1,b,2}

	

 hstore_to_matrix (hstore)
 text[]

 Extracts an hstore's keys and values as a two-dimensional
 array.

 hstore_to_matrix('a=>1,b=>2')
 {{a,1},{b,2}}

	

 hstore_to_json (hstore)
 json

 Converts an hstore to a json value,
 converting all non-null values to JSON strings.

 This function is used implicitly when an hstore value is
 cast to json.

 hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
 {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

	

 hstore_to_jsonb (hstore)
 jsonb

 Converts an hstore to a jsonb value,
 converting all non-null values to JSON strings.

 This function is used implicitly when an hstore value is
 cast to jsonb.

 hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
 {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

	

 hstore_to_json_loose (hstore)
 json

 Converts an hstore to a json value, but
 attempts to distinguish numerical and Boolean values so they are
 unquoted in the JSON.

 hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
 {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

	

 hstore_to_jsonb_loose (hstore)
 jsonb

 Converts an hstore to a jsonb value, but
 attempts to distinguish numerical and Boolean values so they are
 unquoted in the JSON.

 hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
 {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

	

 slice (hstore, text[])
 hstore

 Extracts a subset of an hstore containing only the
 specified keys.

 slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x'])
 "b"=>"2", "c"=>"3"

	

 each (hstore)
 setof record
 (key text,
 value text)

 Extracts an hstore's keys and values as a set of records.

 select * from each('a=>1,b=>2')

 key | value
-----+-------
 a | 1
 b | 2

	

 exist (hstore, text)
 boolean

 Does hstore contain key?

 exist('a=>1', 'a')
 t

	

 defined (hstore, text)
 boolean

 Does hstore contain a non-NULL value
 for key?

 defined('a=>NULL', 'a')
 f

	

 delete (hstore, text)
 hstore

 Deletes pair with matching key.

 delete('a=>1,b=>2', 'b')
 "a"=>"1"

	
 delete (hstore, text[])
 hstore

 Deletes pairs with matching keys.

 delete('a=>1,b=>2,c=>3', ARRAY['a','b'])
 "c"=>"3"

	
 delete (hstore, hstore)
 hstore

 Deletes pairs matching those in the second argument.

 delete('a=>1,b=>2', 'a=>4,b=>2'::hstore)
 "a"=>"1"

	

 populate_record (anyelement, hstore)
 anyelement

 Replaces fields in the left operand (which must be a composite type)
 with matching values from hstore.

 populate_record(ROW(1,2), 'f1=>42'::hstore)
 (42,2)

 In addition to these operators and functions, values of
 the hstore type can be subscripted, allowing them to act
 like associative arrays. Only a single subscript of type text
 can be specified; it is interpreted as a key and the corresponding
 value is fetched or stored. For example,

CREATE TABLE mytable (h hstore);
INSERT INTO mytable VALUES ('a=>b, c=>d');
SELECT h['a'] FROM mytable;
 h

 b
(1 row)

UPDATE mytable SET h['c'] = 'new';
SELECT h FROM mytable;
 h

 "a"=>"b", "c"=>"new"
(1 row)

 A subscripted fetch returns NULL if the subscript
 is NULL or that key does not exist in
 the hstore. (Thus, a subscripted fetch is not greatly
 different from the -> operator.)
 A subscripted update fails if the subscript is NULL;
 otherwise, it replaces the value for that key, adding an entry to
 the hstore if the key does not already exist.

Indexes

 hstore has GiST and GIN index support for the @>,
 ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

 gist_hstore_ops GiST opclass approximates a set of
 key/value pairs as a bitmap signature. Its optional integer parameter
 siglen determines the
 signature length in bytes. The default length is 16 bytes.
 Valid values of signature length are between 1 and 2024 bytes. Longer
 signatures lead to a more precise search (scanning a smaller fraction of the index and
 fewer heap pages), at the cost of a larger index.

 Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));

 hstore also supports btree or hash indexes for
 the = operator. This allows hstore columns to be
 declared UNIQUE, or to be used in GROUP BY,
 ORDER BY or DISTINCT expressions. The sort ordering
 for hstore values is not particularly useful, but these indexes
 may be useful for equivalence lookups. Create indexes for =
 comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);

Examples

 Add a key, or update an existing key with a new value:

UPDATE tab SET h['c'] = '3';

 Another way to do the same thing is:

UPDATE tab SET h = h || hstore('c', '3');

 If multiple keys are to be added or changed in one operation,
 the concatenation approach is more efficient than subscripting:

UPDATE tab SET h = h || hstore(array['q', 'w'], array['11', '12']);

 Delete a key:

UPDATE tab SET h = delete(h, 'k1');

 Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
 hstore

 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)

 Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
 '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3
------+------+------
 456 | zzz |
(1 row)

 Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3
------+------+------
 123 | foo | baz
(1 row)

Statistics

 The hstore type, because of its intrinsic liberality, could
 contain a lot of different keys. Checking for valid keys is the task of the
 application. The following examples demonstrate several techniques for
 checking keys and obtaining statistics.

 Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

 Using a table:

CREATE TABLE stat AS SELECT (each(h)).key, (each(h)).value FROM testhstore;

 Online statistics:

SELECT key, count(*) FROM
 (SELECT (each(h)).key FROM testhstore) AS stat
 GROUP BY key
 ORDER BY count DESC, key;
 key | count
-----------+-------
 line | 883
 query | 207
 pos | 203
 node | 202
 space | 197
 status | 195
 public | 194
 title | 190
 org | 189
...................

Compatibility

 As of PostgreSQL 9.0, hstore uses a different internal
 representation than previous versions. This presents no obstacle for
 dump/restore upgrades since the text representation (used in the dump) is
 unchanged.

 In the event of a binary upgrade, upward compatibility is maintained by
 having the new code recognize old-format data. This will entail a slight
 performance penalty when processing data that has not yet been modified by
 the new code. It is possible to force an upgrade of all values in a table
 column by doing an UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

 Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';

 The ALTER TABLE method requires an
 ACCESS EXCLUSIVE lock on the table,
 but does not result in bloating the table with old row versions.

Transforms

 Additional extensions are available that implement transforms for
 the hstore type for the languages PL/Perl and PL/Python. The
 extensions for PL/Perl are called hstore_plperl
 and hstore_plperlu, for trusted and untrusted PL/Perl.
 If you install these transforms and specify them when creating a
 function, hstore values are mapped to Perl hashes. The
 extension for PL/Python is called hstore_plpython3u.
 If you use it, hstore values are mapped to Python dictionaries.

Caution

 It is strongly recommended that the transform extensions be installed in
 the same schema as hstore. Otherwise there are
 installation-time security hazards if a transform extension's schema
 contains objects defined by a hostile user.

Authors

 Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

 Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

 Additional enhancements by Andrew Gierth <andrew@tao11.riddles.org.uk>,
 United Kingdom

intagg — integer aggregator and enumerator

 The intagg module provides an integer aggregator and an
 enumerator. intagg is now obsolete, because there
 are built-in functions that provide a superset of its capabilities.
 However, the module is still provided as a compatibility wrapper around
 the built-in functions.

Functions

 The aggregator is an aggregate function
 int_array_aggregate(integer)
 that produces an integer array
 containing exactly the integers it is fed.
 This is a wrapper around array_agg,
 which does the same thing for any array type.

 The enumerator is a function
 int_array_enum(integer[])
 that returns setof integer. It is essentially the reverse
 operation of the aggregator: given an array of integers, expand it
 into a set of rows. This is a wrapper around unnest,
 which does the same thing for any array type.

Sample Uses

 Many database systems have the notion of a one to many table. Such a table
 usually sits between two indexed tables, for example:

CREATE TABLE left (id INT PRIMARY KEY, ...);
CREATE TABLE right (id INT PRIMARY KEY, ...);
CREATE TABLE one_to_many(left INT REFERENCES left, right INT REFERENCES right);

 It is typically used like this:

SELECT right.* from right JOIN one_to_many ON (right.id = one_to_many.right)
 WHERE one_to_many.left = item;

 This will return all the items in the right hand table for an entry
 in the left hand table. This is a very common construct in SQL.

 Now, this methodology can be cumbersome with a very large number of
 entries in the one_to_many table. Often,
 a join like this would result in an index scan
 and a fetch for each right hand entry in the table for a particular
 left hand entry. If you have a very dynamic system, there is not much you
 can do. However, if you have some data which is fairly static, you can
 create a summary table with the aggregator.

CREATE TABLE summary AS
 SELECT left, int_array_aggregate(right) AS right
 FROM one_to_many
 GROUP BY left;

 This will create a table with one row per left item, and an array
 of right items. Now this is pretty useless without some way of using
 the array; that's why there is an array enumerator. You can do

SELECT left, int_array_enum(right) FROM summary WHERE left = item;

 The above query using int_array_enum produces the same results
 as

SELECT left, right FROM one_to_many WHERE left = item;

 The difference is that the query against the summary table has to get
 only one row from the table, whereas the direct query against
 one_to_many must index scan and fetch a row for each entry.

 On one system, an EXPLAIN showed a query with a cost of 8488 was
 reduced to a cost of 329. The original query was a join involving the
 one_to_many table, which was replaced by:

SELECT right, count(right) FROM
 (SELECT left, int_array_enum(right) AS right
 FROM summary JOIN (SELECT left FROM left_table WHERE left = item) AS lefts
 ON (summary.left = lefts.left)
) AS list
 GROUP BY right
 ORDER BY count DESC;

intarray — manipulate arrays of integers

 The intarray module provides a number of useful functions
 and operators for manipulating null-free arrays of integers.
 There is also support for indexed searches using some of the operators.

 All of these operations will throw an error if a supplied array contains any
 NULL elements.

 Many of these operations are only sensible for one-dimensional arrays.
 Although they will accept input arrays of more dimensions, the data is
 treated as though it were a linear array in storage order.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

intarray Functions and Operators

 The functions provided by the intarray module
 are shown in Table F.9, “intarray Functions”, the operators
 in Table F.10, “intarray Operators”.

Table F.9. intarray Functions
	
 Function

 Description

 Example(s)

	

 icount (integer[])
 integer

 Returns the number of elements in the array.

 icount('{1,2,3}'::integer[])
 3

	

 sort (integer[], dir text)
 integer[]

 Sorts the array in either ascending or descending order.
 dir must be asc
 or desc.

 sort('{1,3,2}'::integer[], 'desc')
 {3,2,1}

	
 sort (integer[])
 integer[]

 sort_asc (integer[])
 integer[]

 Sorts in ascending order.

 sort(array[11,77,44])
 {11,44,77}

	

 sort_desc (integer[])
 integer[]

 Sorts in descending order.

 sort_desc(array[11,77,44])
 {77,44,11}

	

 uniq (integer[])
 integer[]

 Removes adjacent duplicates.
 Often used with sort to remove all duplicates.

 uniq('{1,2,2,3,1,1}'::integer[])
 {1,2,3,1}

 uniq(sort('{1,2,3,2,1}'::integer[]))
 {1,2,3}

	

 idx (integer[], item integer)
 integer

 Returns index of the first array element
 matching item, or 0 if no match.

 idx(array[11,22,33,22,11], 22)
 2

	

 subarray (integer[], start integer, len integer)
 integer[]

 Extracts the portion of the array starting at
 position start, with len
 elements.

 subarray('{1,2,3,2,1}'::integer[], 2, 3)
 {2,3,2}

	
 subarray (integer[], start integer)
 integer[]

 Extracts the portion of the array starting at
 position start.

 subarray('{1,2,3,2,1}'::integer[], 2)
 {2,3,2,1}

	

 intset (integer)
 integer[]

 Makes a single-element array.

 intset(42)
 {42}

Table F.10. intarray Operators
	
 Operator

 Description

	
 integer[] && integer[]
 boolean

 Do arrays overlap (have at least one element in common)?

	
 integer[] @> integer[]
 boolean

 Does left array contain right array?

	
 integer[] <@ integer[]
 boolean

 Is left array contained in right array?

	
 # integer[]
 integer

 Returns the number of elements in the array.

	
 integer[] # integer
 integer

 Returns index of the first array element
 matching the right argument, or 0 if no match.
 (Same as idx function.)

	
 integer[] + integer
 integer[]

 Adds element to end of array.

	
 integer[] + integer[]
 integer[]

 Concatenates the arrays.

	
 integer[] - integer
 integer[]

 Removes entries matching the right argument from the array.

	
 integer[] - integer[]
 integer[]

 Removes elements of the right array from the left array.

	
 integer[] | integer
 integer[]

 Computes the union of the arguments.

	
 integer[] | integer[]
 integer[]

 Computes the union of the arguments.

	
 integer[] & integer[]
 integer[]

 Computes the intersection of the arguments.

	
 integer[] @@ query_int
 boolean

 Does array satisfy query? (see below)

	
 query_int ~~ integer[]
 boolean

 Does array satisfy query? (commutator of @@)

 The operators &&, @> and
 <@ are equivalent to PostgreSQL™'s built-in
 operators of the same names, except that they work only on integer arrays
 that do not contain nulls, while the built-in operators work for any array
 type. This restriction makes them faster than the built-in operators
 in many cases.

 The @@ and ~~ operators test whether an array
 satisfies a query, which is expressed as a value of a
 specialized data type query_int. A query
 consists of integer values that are checked against the elements of
 the array, possibly combined using the operators &
 (AND), | (OR), and ! (NOT). Parentheses
 can be used as needed. For example,
 the query 1&(2|3) matches arrays that contain 1
 and also contain either 2 or 3.

Index Support

 intarray provides index support for the
 &&, @>,
 and @@ operators, as well as regular array equality.

 Two parameterized GiST index operator classes are provided:
 gist__int_ops (used by default) is suitable for
 small- to medium-size data sets, while
 gist__intbig_ops uses a larger signature and is more
 suitable for indexing large data sets (i.e., columns containing
 a large number of distinct array values).
 The implementation uses an RD-tree data structure with
 built-in lossy compression.

 gist__int_ops approximates an integer set as an array of
 integer ranges. Its optional integer parameter numranges
 determines the maximum number of ranges in
 one index key. The default value of numranges is 100.
 Valid values are between 1 and 253. Using larger arrays as GiST index
 keys leads to a more precise search (scanning a smaller fraction of the index and
 fewer heap pages), at the cost of a larger index.

 gist__intbig_ops approximates an integer set as a bitmap
 signature. Its optional integer parameter siglen
 determines the signature length in bytes.
 The default signature length is 16 bytes. Valid values of signature length
 are between 1 and 2024 bytes. Longer signatures lead to a more precise
 search (scanning a smaller fraction of the index and fewer heap pages), at
 the cost of a larger index.

 There is also a non-default GIN operator class
 gin__int_ops, which supports these operators as well
 as <@.

 The choice between GiST and GIN indexing depends on the relative
 performance characteristics of GiST and GIN, which are discussed elsewhere.

Example

-- a message can be in one or more “sections”
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);

-- create specialized index with signature length of 32 bytes
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__intbig_ops (siglen = 32));

-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && '{1,2}';

-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';

-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ '1&2'::query_int;

Benchmark

 The source directory contrib/intarray/bench contains a
 benchmark test suite, which can be run against an installed
 PostgreSQL™ server. (It also requires DBD::Pg
 to be installed.) To run:

cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl

 The bench.pl script has numerous options, which
 are displayed when it is run without any arguments.

Authors

 All work was done by Teodor Sigaev (<teodor@sigaev.ru>) and
 Oleg Bartunov (<oleg@sai.msu.su>). See
 http://www.sai.msu.su/~megera/postgres/gist/ for
 additional information. Andrey Oktyabrski did a great work on adding new
 functions and operations.

isn — data types for international standard numbers (ISBN, EAN, UPC, etc.)

 The isn module provides data types for the following
 international product numbering standards: EAN13, UPC, ISBN (books), ISMN
 (music), and ISSN (serials). Numbers are validated on input according to a
 hard-coded list of prefixes; this list of prefixes is also used to hyphenate
 numbers on output. Since new prefixes are assigned from time to time, the
 list of prefixes may be out of date. It is hoped that a future version of
 this module will obtain the prefix list from one or more tables that
 can be easily updated by users as needed; however, at present, the
 list can only be updated by modifying the source code and recompiling.
 Alternatively, prefix validation and hyphenation support may be
 dropped from a future version of this module.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Data Types

 Table F.11, “isn Data Types” shows the data types provided by
 the isn module.

Table F.11. isn Data Types
	Data Type	Description
	EAN13	
 European Article Numbers, always displayed in the EAN13 display format

	ISBN13	
 International Standard Book Numbers to be displayed in
 the new EAN13 display format

	ISMN13	
 International Standard Music Numbers to be displayed in
 the new EAN13 display format

	ISSN13	
 International Standard Serial Numbers to be displayed in the new
 EAN13 display format

	ISBN	
 International Standard Book Numbers to be displayed in the old
 short display format

	ISMN	
 International Standard Music Numbers to be displayed in the
 old short display format

	ISSN	
 International Standard Serial Numbers to be displayed in the
 old short display format

	UPC	
 Universal Product Codes

 Some notes:

	ISBN13, ISMN13, ISSN13 numbers are all EAN13 numbers.

	EAN13 numbers aren't always ISBN13, ISMN13 or ISSN13 (some
 are).

	Some ISBN13 numbers can be displayed as ISBN.

	Some ISMN13 numbers can be displayed as ISMN.

	Some ISSN13 numbers can be displayed as ISSN.

	UPC numbers are a subset of the EAN13 numbers (they are basically
 EAN13 without the first 0 digit).

	All UPC, ISBN, ISMN and ISSN numbers can be represented as EAN13
 numbers.

 Internally, all these types use the same representation (a 64-bit
 integer), and all are interchangeable. Multiple types are provided
 to control display formatting and to permit tighter validity checking
 of input that is supposed to denote one particular type of number.

 The ISBN, ISMN, and ISSN types will display the
 short version of the number (ISxN 10) whenever it's possible, and will show
 ISxN 13 format for numbers that do not fit in the short version.
 The EAN13, ISBN13, ISMN13 and
 ISSN13 types will always display the long version of the ISxN
 (EAN13).

Casts

 The isn module provides the following pairs of type casts:

	
 ISBN13 <=> EAN13

	
 ISMN13 <=> EAN13

	
 ISSN13 <=> EAN13

	
 ISBN <=> EAN13

	
 ISMN <=> EAN13

	
 ISSN <=> EAN13

	
 UPC <=> EAN13

	
 ISBN <=> ISBN13

	
 ISMN <=> ISMN13

	
 ISSN <=> ISSN13

 When casting from EAN13 to another type, there is a run-time
 check that the value is within the domain of the other type, and an error
 is thrown if not. The other casts are simply relabelings that will
 always succeed.

Functions and Operators

 The isn module provides the standard comparison operators,
 plus B-tree and hash indexing support for all these data types. In
 addition there are several specialized functions; shown in Table F.12, “isn Functions”.
 In this table,
 isn means any one of the module's data types.

Table F.12. isn Functions
	
 Function

 Description

	

 isn_weak (boolean)
 boolean

 Sets the weak input mode, and returns new setting.

	
 isn_weak ()
 boolean

 Returns the current status of the weak mode.

	

 make_valid (isn)
 isn

 Validates an invalid number (clears the invalid flag).

	

 is_valid (isn)
 boolean

 Checks for the presence of the invalid flag.

 Weak mode is used to be able to insert invalid data
 into a table. Invalid means the check digit is wrong, not that there are
 missing numbers.

 Why would you want to use the weak mode? Well, it could be that
 you have a huge collection of ISBN numbers, and that there are so many of
 them that for weird reasons some have the wrong check digit (perhaps the
 numbers were scanned from a printed list and the OCR got the numbers wrong,
 perhaps the numbers were manually captured... who knows). Anyway, the point
 is you might want to clean the mess up, but you still want to be able to
 have all the numbers in your database and maybe use an external tool to
 locate the invalid numbers in the database so you can verify the
 information and validate it more easily; so for example you'd want to
 select all the invalid numbers in the table.

 When you insert invalid numbers in a table using the weak mode, the number
 will be inserted with the corrected check digit, but it will be displayed
 with an exclamation mark (!) at the end, for example
 0-11-000322-5!. This invalid marker can be checked with
 the is_valid function and cleared with the
 make_valid function.

 You can also force the insertion of invalid numbers even when not in the
 weak mode, by appending the ! character at the end of the
 number.

 Another special feature is that during input, you can write
 ? in place of the check digit, and the correct check digit
 will be inserted automatically.

Examples

--Using the types directly:
SELECT isbn('978-0-393-04002-9');
SELECT isbn13('0901690546');
SELECT issn('1436-4522');

--Casting types:
-- note that you can only cast from ean13 to another type when the
-- number would be valid in the realm of the target type;
-- thus, the following will NOT work: select isbn(ean13('0220356483481'));
-- but these will:
SELECT upc(ean13('0220356483481'));
SELECT ean13(upc('220356483481'));

--Create a table with a single column to hold ISBN numbers:
CREATE TABLE test (id isbn);
INSERT INTO test VALUES('9780393040029');

--Automatically calculate check digits (observe the '?'):
INSERT INTO test VALUES('220500896?');
INSERT INTO test VALUES('978055215372?');

SELECT issn('3251231?');
SELECT ismn('979047213542?');

--Using the weak mode:
SELECT isn_weak(true);
INSERT INTO test VALUES('978-0-11-000533-4');
INSERT INTO test VALUES('9780141219307');
INSERT INTO test VALUES('2-205-00876-X');
SELECT isn_weak(false);

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = '2-205-00876-X!';

SELECT * FROM test;

SELECT isbn13(id) FROM test;

Bibliography

 The information to implement this module was collected from
 several sites, including:

	https://www.isbn-international.org/

	https://www.issn.org/

	https://www.ismn-international.org/

	https://www.wikipedia.org/

 The prefixes used for hyphenation were also compiled from:

	https://www.gs1.org/standards/id-keys

	https://en.wikipedia.org/wiki/List_of_ISBN_identifier_groups

	https://www.isbn-international.org/content/isbn-users-manual/29

	https://en.wikipedia.org/wiki/International_Standard_Music_Number

	https://www.ismn-international.org/ranges/tools

 Care was taken during the creation of the algorithms and they
 were meticulously verified against the suggested algorithms
 in the official ISBN, ISMN, ISSN User Manuals.

Author

 Germán Méndez Bravo (Kronuz), 2004–2006

 This module was inspired by Garrett A. Wollman's
 isbn_issn code.

lo — manage large objects

 The lo module provides support for managing Large Objects
 (also called LOs or BLOBs). This includes a data type lo
 and a trigger lo_manage.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Rationale

 One of the problems with the JDBC driver (and this affects the ODBC driver
 also), is that the specification assumes that references to BLOBs (Binary
 Large OBjects) are stored within a table, and if that entry is changed, the
 associated BLOB is deleted from the database.

 As PostgreSQL™ stands, this doesn't occur. Large objects
 are treated as objects in their own right; a table entry can reference a
 large object by OID, but there can be multiple table entries referencing
 the same large object OID, so the system doesn't delete the large object
 just because you change or remove one such entry.

 Now this is fine for PostgreSQL™-specific applications, but
 standard code using JDBC or ODBC won't delete the objects, resulting in
 orphan objects — objects that are not referenced by anything, and
 simply occupy disk space.

 The lo module allows fixing this by attaching a trigger
 to tables that contain LO reference columns. The trigger essentially just
 does a lo_unlink whenever you delete or modify a value
 referencing a large object. When you use this trigger, you are assuming
 that there is only one database reference to any large object that is
 referenced in a trigger-controlled column!

 The module also provides a data type lo, which is really just
 a domain over
 the oid type. This is useful for differentiating
 database columns that hold large object references from those that are
 OIDs of other things. You don't have to use the lo type to
 use the trigger, but it may be convenient to use it to keep track of which
 columns in your database represent large objects that you are managing with
 the trigger. It is also rumored that the ODBC driver gets confused if you
 don't use lo for BLOB columns.

How to Use It

 Here's a simple example of usage:

CREATE TABLE image (title text, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

 For each column that will contain unique references to large objects,
 create a BEFORE UPDATE OR DELETE trigger, and give the column
 name as the sole trigger argument. You can also restrict the trigger
 to only execute on updates to the column by using BEFORE UPDATE
 OF column_name.
 If you need multiple lo
 columns in the same table, create a separate trigger for each one,
 remembering to give a different name to each trigger on the same table.

Limitations

	
 Dropping a table will still orphan any objects it contains, as the trigger
 is not executed. You can avoid this by preceding the DROP
 TABLE with DELETE FROM table.

 TRUNCATE has the same hazard.

 If you already have, or suspect you have, orphaned large objects, see the
 vacuumlo(1) module to help
 you clean them up. It's a good idea to run vacuumlo
 occasionally as a back-stop to the lo_manage trigger.

	
 Some frontends may create their own tables, and will not create the
 associated trigger(s). Also, users may not remember (or know) to create
 the triggers.

Author

 Peter Mount <peter@retep.org.uk>

ltree — hierarchical tree-like data type

 This module implements a data type ltree for representing
 labels of data stored in a hierarchical tree-like structure.
 Extensive facilities for searching through label trees are provided.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Definitions

 A label is a sequence of alphanumeric characters,
 underscores, and hyphens. Valid alphanumeric character ranges are
 dependent on the database locale. For example, in C locale, the characters
 A-Za-z0-9_- are allowed.
 Labels must be no more than 1000 characters long.

 Examples: 42, Personal_Services

 A label path is a sequence of zero or more
 labels separated by dots, for example L1.L2.L3, representing
 a path from the root of a hierarchical tree to a particular node. The
 length of a label path cannot exceed 65535 labels.

 Example: Top.Countries.Europe.Russia

 The ltree module provides several data types:

	
 ltree stores a label path.

	
 lquery represents a regular-expression-like pattern
 for matching ltree values. A simple word matches that
 label within a path. A star symbol (*) matches zero
 or more labels. These can be joined with dots to form a pattern that
 must match the whole label path. For example:

foo Match the exact label path foo
.foo. Match any label path containing the label foo
*.foo Match any label path whose last label is foo

 Both star symbols and simple words can be quantified to restrict how many
 labels they can match:

*{n} Match exactly n labels
*{n,} Match at least n labels
*{n,m} Match at least n but not more than m labels
*{,m} Match at most m labels — same as *{0,m}
foo{n,m} Match at least n but not more than m occurrences of foo
foo{,} Match any number of occurrences of foo, including zero

 In the absence of any explicit quantifier, the default for a star symbol
 is to match any number of labels (that is, {,}) while
 the default for a non-star item is to match exactly once (that
 is, {1}).

 There are several modifiers that can be put at the end of a non-star
 lquery item to make it match more than just the exact match:

@ Match case-insensitively, for example a@ matches A
* Match any label with this prefix, for example foo* matches foobar
% Match initial underscore-separated words

 The behavior of % is a bit complicated. It tries to match
 words rather than the entire label. For example
 foo_bar% matches foo_bar_baz but not
 foo_barbaz. If combined with *, prefix
 matching applies to each word separately, for example
 foo_bar%* matches foo1_bar2_baz but
 not foo1_br2_baz.

 Also, you can write several possibly-modified non-star items separated with
 | (OR) to match any of those items, and you can put
 ! (NOT) at the start of a non-star group to match any
 label that doesn't match any of the alternatives. A quantifier, if any,
 goes at the end of the group; it means some number of matches for the
 group as a whole (that is, some number of labels matching or not matching
 any of the alternatives).

 Here's an annotated example of lquery:

Top.*{0,2}.sport*@.!football|tennis{1,}.Russ*|Spain
a. b. c. d. e.

 This query will match any label path that:

	
 begins with the label Top

	
 and next has zero to two labels before

	
 a label beginning with the case-insensitive prefix sport

	
 then has one or more labels, none of which
 match football nor tennis

	
 and then ends with a label beginning with Russ or
 exactly matching Spain.

	ltxtquery represents a full-text-search-like
 pattern for matching ltree values. An
 ltxtquery value contains words, possibly with the
 modifiers @, *, % at the end;
 the modifiers have the same meanings as in lquery.
 Words can be combined with & (AND),
 | (OR), ! (NOT), and parentheses.
 The key difference from
 lquery is that ltxtquery matches words without
 regard to their position in the label path.

 Here's an example ltxtquery:

Europe & Russia*@ & !Transportation

 This will match paths that contain the label Europe and
 any label beginning with Russia (case-insensitive),
 but not paths containing the label Transportation.
 The location of these words within the path is not important.
 Also, when % is used, the word can be matched to any
 underscore-separated word within a label, regardless of position.

 Note: ltxtquery allows whitespace between symbols, but
 ltree and lquery do not.

Operators and Functions

 Type ltree has the usual comparison operators
 =, <>,
 <, >, <=, >=.
 Comparison sorts in the order of a tree traversal, with the children
 of a node sorted by label text. In addition, the specialized
 operators shown in Table F.13, “ltree Operators” are available.

Table F.13. ltree Operators
	
 Operator

 Description

	
 ltree @> ltree
 boolean

 Is left argument an ancestor of right (or equal)?

	
 ltree <@ ltree
 boolean

 Is left argument a descendant of right (or equal)?

	
 ltree ~ lquery
 boolean

 lquery ~ ltree
 boolean

 Does ltree match lquery?

	
 ltree ? lquery[]
 boolean

 lquery[] ? ltree
 boolean

 Does ltree match any lquery in array?

	
 ltree @ ltxtquery
 boolean

 ltxtquery @ ltree
 boolean

 Does ltree match ltxtquery?

	
 ltree || ltree
 ltree

 Concatenates ltree paths.

	
 ltree || text
 ltree

 text || ltree
 ltree

 Converts text to ltree and concatenates.

	
 ltree[] @> ltree
 boolean

 ltree <@ ltree[]
 boolean

 Does array contain an ancestor of ltree?

	
 ltree[] <@ ltree
 boolean

 ltree @> ltree[]
 boolean

 Does array contain a descendant of ltree?

	
 ltree[] ~ lquery
 boolean

 lquery ~ ltree[]
 boolean

 Does array contain any path matching lquery?

	
 ltree[] ? lquery[]
 boolean

 lquery[] ? ltree[]
 boolean

 Does ltree array contain any path matching
 any lquery?

	
 ltree[] @ ltxtquery
 boolean

 ltxtquery @ ltree[]
 boolean

 Does array contain any path matching ltxtquery?

	
 ltree[] ?@> ltree
 ltree

 Returns first array entry that is an ancestor of ltree,
 or NULL if none.

	
 ltree[] ?<@ ltree
 ltree

 Returns first array entry that is a descendant of ltree,
 or NULL if none.

	
 ltree[] ?~ lquery
 ltree

 Returns first array entry that matches lquery,
 or NULL if none.

	
 ltree[] ?@ ltxtquery
 ltree

 Returns first array entry that matches ltxtquery,
 or NULL if none.

 The operators <@, @>,
 @ and ~ have analogues
 ^<@, ^@>, ^@,
 ^~, which are the same except they do not use
 indexes. These are useful only for testing purposes.

 The available functions are shown in Table F.14, “ltree Functions”.

Table F.14. ltree Functions
	
 Function

 Description

 Example(s)

	

 subltree (ltree, start integer, end integer)
 ltree

 Returns subpath of ltree from
 position start to
 position end-1 (counting from 0).

 subltree('Top.Child1.Child2', 1, 2)
 Child1

	

 subpath (ltree, offset integer, len integer)
 ltree

 Returns subpath of ltree starting at
 position offset, with
 length len. If offset
 is negative, subpath starts that far from the end of the path.
 If len is negative, leaves that many labels off
 the end of the path.

 subpath('Top.Child1.Child2', 0, 2)
 Top.Child1

	
 subpath (ltree, offset integer)
 ltree

 Returns subpath of ltree starting at
 position offset, extending to end of path.
 If offset is negative, subpath starts that far
 from the end of the path.

 subpath('Top.Child1.Child2', 1)
 Child1.Child2

	

 nlevel (ltree)
 integer

 Returns number of labels in path.

 nlevel('Top.Child1.Child2')
 3

	

 index (a ltree, b ltree)
 integer

 Returns position of first occurrence of b in
 a, or -1 if not found.

 index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6')
 6

	
 index (a ltree, b ltree, offset integer)
 integer

 Returns position of first occurrence of b
 in a, or -1 if not found. The search starts at
 position offset;
 negative offset means
 start -offset labels from the end of the path.

 index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6', -4)
 9

	

 text2ltree (text)
 ltree

 Casts text to ltree.

	

 ltree2text (ltree)
 text

 Casts ltree to text.

	

 lca (ltree [, ltree [, ...]])
 ltree

 Computes longest common ancestor of paths
 (up to 8 arguments are supported).

 lca('1.2.3', '1.2.3.4.5.6')
 1.2

	
 lca (ltree[])
 ltree

 Computes longest common ancestor of paths in array.

 lca(array['1.2.3'::ltree,'1.2.3.4'])
 1.2

Indexes

 ltree supports several types of indexes that can speed
 up the indicated operators:

	
 B-tree index over ltree:
 <, <=, =,
 >=, >

	
 GiST index over ltree (gist_ltree_ops
 opclass):
 <, <=, =,
 >=, >,
 @>, <@,
 @, ~, ?

 gist_ltree_ops GiST opclass approximates a set of
 path labels as a bitmap signature. Its optional integer parameter
 siglen determines the
 signature length in bytes. The default signature length is 8 bytes.
 The length must be a positive multiple of int alignment
 (4 bytes on most machines)) up to 2024. Longer
 signatures lead to a more precise search (scanning a smaller fraction of the index and
 fewer heap pages), at the cost of a larger index.

 Example of creating such an index with the default signature length of 8 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (path);

 Example of creating such an index with a signature length of 100 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (path gist_ltree_ops(siglen=100));

	
 GiST index over ltree[] (gist__ltree_ops
 opclass):
 ltree[] <@ ltree, ltree @> ltree[],
 @, ~, ?

 gist__ltree_ops GiST opclass works similarly to
 gist_ltree_ops and also takes signature length as
 a parameter. The default value of siglen in
 gist__ltree_ops is 28 bytes.

 Example of creating such an index with the default signature length of 28 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path);

 Example of creating such an index with a signature length of 100 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path gist__ltree_ops(siglen=100));

 Note: This index type is lossy.

Example

 This example uses the following data (also available in file
 contrib/ltree/ltreetest.sql in the source distribution):

CREATE TABLE test (path ltree);
INSERT INTO test VALUES ('Top');
INSERT INTO test VALUES ('Top.Science');
INSERT INTO test VALUES ('Top.Science.Astronomy');
INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics');
INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology');
INSERT INTO test VALUES ('Top.Hobbies');
INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy');
INSERT INTO test VALUES ('Top.Collections');
INSERT INTO test VALUES ('Top.Collections.Pictures');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Galaxies');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Astronauts');
CREATE INDEX path_gist_idx ON test USING GIST (path);
CREATE INDEX path_idx ON test USING BTREE (path);

 Now, we have a table test populated with data describing
 the hierarchy shown below:

 Top
 / | \
 Science Hobbies Collections
 / | \
 Astronomy Amateurs_Astronomy Pictures
 / \ |
Astrophysics Cosmology Astronomy
 / | \
 Galaxies Stars Astronauts

 We can do inheritance:

ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science';
 path

 Top.Science
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(4 rows)

 Here are some examples of path matching:

ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Collections.Pictures.Astronomy
 Top.Collections.Pictures.Astronomy.Stars
 Top.Collections.Pictures.Astronomy.Galaxies
 Top.Collections.Pictures.Astronomy.Astronauts
(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ '*.!pictures@.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

 Here are some examples of full text search:

ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Hobbies.Amateurs_Astronomy
(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

 Path construction using functions:

ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM test WHERE path <@ 'Top.Science.Astronomy';
 ?column?
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

 We could simplify this by creating an SQL function that inserts a label
 at a specified position in a path:

CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
 AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);'
 LANGUAGE SQL IMMUTABLE;

ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@ 'Top.Science.Astronomy';
 ins_label
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

Transforms

 The ltree_plpython3u extension implements transforms for
 the ltree type for PL/Python. If installed and specified when
 creating a function, ltree values are mapped to Python lists.
 (The reverse is currently not supported, however.)

Caution

 It is strongly recommended that the transform extension be installed in
 the same schema as ltree. Otherwise there are
 installation-time security hazards if a transform extension's schema
 contains objects defined by a hostile user.

Authors

 All work was done by Teodor Sigaev (<teodor@stack.net>) and
 Oleg Bartunov (<oleg@sai.msu.su>). See
 http://www.sai.msu.su/~megera/postgres/gist/ for
 additional information. Authors would like to thank Eugeny Rodichev for
 helpful discussions. Comments and bug reports are welcome.

old_snapshot — inspect old_snapshot_threshold state

 The old_snapshot module allows inspection
 of the server state that is used to implement
 old_snapshot_threshold.

Functions

	pg_old_snapshot_time_mapping(array_offset OUT int4, end_timestamp OUT timestamptz, newest_xmin OUT xid) returns setof record
	
 Returns all of the entries in the server's timestamp to XID mapping.
 Each entry represents the newest xmin of any snapshot taken in the
 corresponding minute.

pageinspect — low-level inspection of database pages

 The pageinspect module provides functions that allow you to
 inspect the contents of database pages at a low level, which is useful for
 debugging purposes. All of these functions may be used only by superusers.

General Functions

	
 get_raw_page(relname text, fork text, blkno bigint) returns bytea

	
 get_raw_page reads the specified block of the named
 relation and returns a copy as a bytea value. This allows a
 single time-consistent copy of the block to be obtained.
 fork should be 'main' for
 the main data fork, 'fsm' for the
 free space map,
 'vm' for the
 visibility map, or
 'init' for the initialization fork.

	
 get_raw_page(relname text, blkno bigint) returns bytea

	
 A shorthand version of get_raw_page, for reading
 from the main fork. Equivalent to
 get_raw_page(relname, 'main', blkno)

	
 page_header(page bytea) returns record

	
 page_header shows fields that are common to all
 PostgreSQL™ heap and index pages.

 A page image obtained with get_raw_page should be
 passed as argument. For example:

test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
 lsn | checksum | flags | lower | upper | special | pagesize | version | prune_xid
-----------+----------+--------+-------+-------+---------+----------+---------+-----------
 0/24A1B50 | 0 | 1 | 232 | 368 | 8192 | 8192 | 4 | 0

 The returned columns correspond to the fields in the
 PageHeaderData struct.
 See src/include/storage/bufpage.h for details.

 The checksum field is the checksum stored in
 the page, which might be incorrect if the page is somehow corrupted. If
 data checksums are not enabled for this instance, then the value stored
 is meaningless.

	
 page_checksum(page bytea, blkno bigint) returns smallint

	
 page_checksum computes the checksum for the page, as if
 it was located at the given block.

 A page image obtained with get_raw_page should be
 passed as argument. For example:

test=# SELECT page_checksum(get_raw_page('pg_class', 0), 0);
 page_checksum

 13443

 Note that the checksum depends on the block number, so matching block
 numbers should be passed (except when doing esoteric debugging).

 The checksum computed with this function can be compared with
 the checksum result field of the
 function page_header. If data checksums are
 enabled for this instance, then the two values should be equal.

	
 fsm_page_contents(page bytea) returns text

	
 fsm_page_contents shows the internal node structure
 of an FSM page. For example:

test=# SELECT fsm_page_contents(get_raw_page('pg_class', 'fsm', 0));

 The output is a multiline string, with one line per node in the binary
 tree within the page. Only those nodes that are not zero are printed.
 The so-called "next" pointer, which points to the next slot to be
 returned from the page, is also printed.

 See src/backend/storage/freespace/README for more
 information on the structure of an FSM page.

Heap Functions

	
 heap_page_items(page bytea) returns setof record

	
 heap_page_items shows all line pointers on a heap
 page. For those line pointers that are in use, tuple headers as well
 as tuple raw data are also shown. All tuples are shown, whether or not
 the tuples were visible to an MVCC snapshot at the time the raw page
 was copied.

 A heap page image obtained with get_raw_page should
 be passed as argument. For example:

test=# SELECT * FROM heap_page_items(get_raw_page('pg_class', 0));

 See src/include/storage/itemid.h and
 src/include/access/htup_details.h for explanations of the fields
 returned.

 The heap_tuple_infomask_flags function can be
 used to unpack the flag bits of t_infomask
 and t_infomask2 for heap tuples.

	
 tuple_data_split(rel_oid oid, t_data bytea, t_infomask integer, t_infomask2 integer, t_bits text [, do_detoast bool]) returns bytea[]

	
 tuple_data_split splits tuple data into attributes
 in the same way as backend internals.

test=# SELECT tuple_data_split('pg_class'::regclass, t_data, t_infomask, t_infomask2, t_bits) FROM heap_page_items(get_raw_page('pg_class', 0));

 This function should be called with the same arguments as the return
 attributes of heap_page_items.

 If do_detoast is true,
 attributes will be detoasted as needed. Default value is
 false.

	
 heap_page_item_attrs(page bytea, rel_oid regclass [, do_detoast bool]) returns setof record

	
 heap_page_item_attrs is equivalent to
 heap_page_items except that it returns
 tuple raw data as an array of attributes that can optionally
 be detoasted by do_detoast which is
 false by default.

 A heap page image obtained with get_raw_page should
 be passed as argument. For example:

test=# SELECT * FROM heap_page_item_attrs(get_raw_page('pg_class', 0), 'pg_class'::regclass);

	
 heap_tuple_infomask_flags(t_infomask integer, t_infomask2 integer) returns record

	
 heap_tuple_infomask_flags decodes the
 t_infomask and
 t_infomask2 returned by
 heap_page_items into a human-readable
 set of arrays made of flag names, with one column for all
 the flags and one column for combined flags. For example:

test=# SELECT t_ctid, raw_flags, combined_flags
 FROM heap_page_items(get_raw_page('pg_class', 0)),
 LATERAL heap_tuple_infomask_flags(t_infomask, t_infomask2)
 WHERE t_infomask IS NOT NULL OR t_infomask2 IS NOT NULL;

 This function should be called with the same arguments as the return
 attributes of heap_page_items.

 Combined flags are displayed for source-level macros that take into
 account the value of more than one raw bit, such as
 HEAP_XMIN_FROZEN.

 See src/include/access/htup_details.h for
 explanations of the flag names returned.

B-Tree Functions

	
 bt_metap(relname text) returns record

	
 bt_metap returns information about a B-tree
 index's metapage. For example:

test=# SELECT * FROM bt_metap('pg_cast_oid_index');
-[RECORD 1]-------------+-------
magic | 340322
version | 4
root | 1
level | 0
fastroot | 1
fastlevel | 0
last_cleanup_num_delpages | 0
last_cleanup_num_tuples | 230
allequalimage | f

	
 bt_page_stats(relname text, blkno bigint) returns record

	
 bt_page_stats returns summary information about
 a data page of a B-tree index. For example:

test=# SELECT * FROM bt_page_stats('pg_cast_oid_index', 1);
-[RECORD 1]-+-----
blkno | 1
type | l
live_items | 224
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 3668
btpo_prev | 0
btpo_next | 0
btpo_level | 0
btpo_flags | 3

	
 bt_multi_page_stats(relname text, blkno bigint, blk_count bigint) returns setof record

	
 bt_multi_page_stats returns the same information
 as bt_page_stats, but does so for each page of the
 range of pages beginning at blkno and extending
 for blk_count pages.
 If blk_count is negative, all pages
 from blkno to the end of the index are reported
 on. For example:

test=# SELECT * FROM bt_multi_page_stats('pg_proc_oid_index', 5, 2);
-[RECORD 1]-+-----
blkno | 5
type | l
live_items | 367
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 808
btpo_prev | 4
btpo_next | 6
btpo_level | 0
btpo_flags | 1
-[RECORD 2]-+-----
blkno | 6
type | l
live_items | 367
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 808
btpo_prev | 5
btpo_next | 7
btpo_level | 0
btpo_flags | 1

	
 bt_page_items(relname text, blkno bigint) returns setof record

	
 bt_page_items returns detailed information about
 all of the items on a B-tree index page. For example:

test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS some_tids
 FROM bt_page_items('tenk2_hundred', 5);
 itemoffset | ctid | itemlen | nulls | vars | data | dead | htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | | |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f | (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f | (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f | (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f | (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f | (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f | (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f | (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f | (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f | (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f | (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f | (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f | (4,17) | {"(4,17)","(4,21)"}
(13 rows)

 This is a B-tree leaf page. All tuples that point to the table
 happen to be posting list tuples (all of which store a total of
 100 6 byte TIDs). There is also a “high key” tuple
 at itemoffset number 1.
 ctid is used to store encoded
 information about each tuple in this example, though leaf page
 tuples often store a heap TID directly in the
 ctid field instead.
 tids is the list of TIDs stored as a
 posting list.

 In an internal page (not shown), the block number part of
 ctid is a “downlink”,
 which is a block number of another page in the index itself.
 The offset part (the second number) of
 ctid stores encoded information about
 the tuple, such as the number of columns present (suffix
 truncation may have removed unneeded suffix columns). Truncated
 columns are treated as having the value “minus
 infinity”.

 htid shows a heap TID for the tuple,
 regardless of the underlying tuple representation. This value
 may match ctid, or may be decoded
 from the alternative representations used by posting list tuples
 and tuples from internal pages. Tuples in internal pages
 usually have the implementation level heap TID column truncated
 away, which is represented as a NULL
 htid value.

 Note that the first item on any non-rightmost page (any page with
 a non-zero value in the btpo_next field) is the
 page's “high key”, meaning its data
 serves as an upper bound on all items appearing on the page, while
 its ctid field does not point to
 another block. Also, on internal pages, the first real data
 item (the first item that is not a high key) reliably has every
 column truncated away, leaving no actual value in its
 data field. Such an item does have a
 valid downlink in its ctid field,
 however.

 For more details about the structure of B-tree indexes, see
 the section called “B-Tree Structure”. For more details about
 deduplication and posting lists, see the section called “Deduplication”.

	
 bt_page_items(page bytea) returns setof record

	
 It is also possible to pass a page to bt_page_items
 as a bytea value. A page image obtained
 with get_raw_page should be passed as argument. So
 the last example could also be rewritten like this:

test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS some_tids
 FROM bt_page_items(get_raw_page('tenk2_hundred', 5));
 itemoffset | ctid | itemlen | nulls | vars | data | dead | htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | | |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f | (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f | (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f | (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f | (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f | (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f | (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f | (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f | (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f | (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f | (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f | (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f | (4,17) | {"(4,17)","(4,21)"}
(13 rows)

 All the other details are the same as explained in the previous item.

BRIN Functions

	
 brin_page_type(page bytea) returns text

	
 brin_page_type returns the page type of the given
 BRIN index page, or throws an error if the page is
 not a valid BRIN page. For example:

test=# SELECT brin_page_type(get_raw_page('brinidx', 0));
 brin_page_type

 meta

	
 brin_metapage_info(page bytea) returns record

	
 brin_metapage_info returns assorted information
 about a BRIN index metapage. For example:

test=# SELECT * FROM brin_metapage_info(get_raw_page('brinidx', 0));
 magic | version | pagesperrange | lastrevmappage
------------+---------+---------------+----------------
 0xA8109CFA | 1 | 4 | 2

	
 brin_revmap_data(page bytea) returns setof tid

	
 brin_revmap_data returns the list of tuple
 identifiers in a BRIN index range map page.
 For example:

test=# SELECT * FROM brin_revmap_data(get_raw_page('brinidx', 2)) LIMIT 5;
 pages

 (6,137)
 (6,138)
 (6,139)
 (6,140)
 (6,141)

	
 brin_page_items(page bytea, index oid) returns setof record

	
 brin_page_items returns the data stored in the
 BRIN data page. For example:

test=# SELECT * FROM brin_page_items(get_raw_page('brinidx', 5),
 'brinidx')
 ORDER BY blknum, attnum LIMIT 6;
 itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | empty | value
------------+--------+--------+----------+----------+-------------+-------+--------------
 137 | 0 | 1 | t | f | f | f |
 137 | 0 | 2 | f | f | f | f | {1 .. 88}
 138 | 4 | 1 | t | f | f | f |
 138 | 4 | 2 | f | f | f | f | {89 .. 176}
 139 | 8 | 1 | t | f | f | f |
 139 | 8 | 2 | f | f | f | f | {177 .. 264}

 The returned columns correspond to the fields in the
 BrinMemTuple and BrinValues structs.
 See src/include/access/brin_tuple.h for details.

GIN Functions

	
 gin_metapage_info(page bytea) returns record

	
 gin_metapage_info returns information about
 a GIN index metapage. For example:

test=# SELECT * FROM gin_metapage_info(get_raw_page('gin_index', 0));
-[RECORD 1]----+-----------
pending_head | 4294967295
pending_tail | 4294967295
tail_free_size | 0
n_pending_pages | 0
n_pending_tuples | 0
n_total_pages | 7
n_entry_pages | 6
n_data_pages | 0
n_entries | 693
version | 2

	
 gin_page_opaque_info(page bytea) returns record

	
 gin_page_opaque_info returns information about
 a GIN index opaque area, like the page type.
 For example:

test=# SELECT * FROM gin_page_opaque_info(get_raw_page('gin_index', 2));
 rightlink | maxoff | flags
-----------+--------+------------------------
 5 | 0 | {data,leaf,compressed}
(1 row)

	
 gin_leafpage_items(page bytea) returns setof record

	
 gin_leafpage_items returns information about
 the data stored in a GIN leaf page. For example:

test=# SELECT first_tid, nbytes, tids[0:5] AS some_tids
 FROM gin_leafpage_items(get_raw_page('gin_test_idx', 2));
 first_tid | nbytes | some_tids
-----------+--------+--
 (8,41) | 244 | {"(8,41)","(8,43)","(8,44)","(8,45)","(8,46)"}
 (10,45) | 248 | {"(10,45)","(10,46)","(10,47)","(10,48)","(10,49)"}
 (12,52) | 248 | {"(12,52)","(12,53)","(12,54)","(12,55)","(12,56)"}
 (14,59) | 320 | {"(14,59)","(14,60)","(14,61)","(14,62)","(14,63)"}
 (167,16) | 376 | {"(167,16)","(167,17)","(167,18)","(167,19)","(167,20)"}
 (170,30) | 376 | {"(170,30)","(170,31)","(170,32)","(170,33)","(170,34)"}
 (173,44) | 197 | {"(173,44)","(173,45)","(173,46)","(173,47)","(173,48)"}
(7 rows)

GiST Functions

	
 gist_page_opaque_info(page bytea) returns record

	
 gist_page_opaque_info returns information from
 a GiST index page's opaque area, such as the NSN,
 rightlink and page type.
 For example:

test=# SELECT * FROM gist_page_opaque_info(get_raw_page('test_gist_idx', 2));
 lsn | nsn | rightlink | flags
-----+-----+-----------+--------
 0/1 | 0/0 | 1 | {leaf}
(1 row)

	
 gist_page_items(page bytea, index_oid regclass) returns setof record

	
 gist_page_items returns information about
 the data stored in a page of a GiST index. For example:

test=# SELECT * FROM gist_page_items(get_raw_page('test_gist_idx', 0), 'test_gist_idx');
 itemoffset | ctid | itemlen | dead | keys
------------+-----------+---------+------+-------------------------------
 1 | (1,65535) | 40 | f | (p)=("(185,185),(1,1)")
 2 | (2,65535) | 40 | f | (p)=("(370,370),(186,186)")
 3 | (3,65535) | 40 | f | (p)=("(555,555),(371,371)")
 4 | (4,65535) | 40 | f | (p)=("(740,740),(556,556)")
 5 | (5,65535) | 40 | f | (p)=("(870,870),(741,741)")
 6 | (6,65535) | 40 | f | (p)=("(1000,1000),(871,871)")
(6 rows)

	
 gist_page_items_bytea(page bytea) returns setof record

	
 Same as gist_page_items, but returns the key data
 as a raw bytea blob. Since it does not attempt to decode
 the key, it does not need to know which index is involved. For
 example:

test=# SELECT * FROM gist_page_items_bytea(get_raw_page('test_gist_idx', 0));
 itemoffset | ctid | itemlen | dead | key_data
------------+-----------+---------+------+---​---
 1 | (1,65535) | 40 | f | \x00000100ffff28000000000000c0644000000000​00c06440000000000000f03f000000000000f03f
 2 | (2,65535) | 40 | f | \x00000200ffff28000000000000c0744000000000​00c074400000000000e064400000000000e06440
 3 | (3,65535) | 40 | f | \x00000300ffff28000000000000207f4000000000​00207f400000000000d074400000000000d07440
 4 | (4,65535) | 40 | f | \x00000400ffff28000000000000c0844000000000​00c084400000000000307f400000000000307f40
 5 | (5,65535) | 40 | f | \x00000500ffff28000000000000f0894000000000​00f089400000000000c884400000000000c88440
 6 | (6,65535) | 40 | f | \x00000600ffff28000000000000208f4000000000​00208f400000000000f889400000000000f88940
 7 | (7,65535) | 40 | f | \x00000700ffff28000000000000408f4000000000​00408f400000000000288f400000000000288f40
(7 rows)

Hash Functions

	
 hash_page_type(page bytea) returns text

	
 hash_page_type returns page type of
 the given HASH index page. For example:

test=# SELECT hash_page_type(get_raw_page('con_hash_index', 0));
 hash_page_type

 metapage

	
 hash_page_stats(page bytea) returns setof record

	
 hash_page_stats returns information about
 a bucket or overflow page of a HASH index.
 For example:

test=# SELECT * FROM hash_page_stats(get_raw_page('con_hash_index', 1));
-[RECORD 1]---+-----------
live_items | 407
dead_items | 0
page_size | 8192
free_size | 8
hasho_prevblkno | 4096
hasho_nextblkno | 8474
hasho_bucket | 0
hasho_flag | 66
hasho_page_id | 65408

	
 hash_page_items(page bytea) returns setof record

	
 hash_page_items returns information about
 the data stored in a bucket or overflow page of a HASH
 index page. For example:

test=# SELECT * FROM hash_page_items(get_raw_page('con_hash_index', 1)) LIMIT 5;
 itemoffset | ctid | data
------------+-----------+------------
 1 | (899,77) | 1053474816
 2 | (897,29) | 1053474816
 3 | (894,207) | 1053474816
 4 | (892,159) | 1053474816
 5 | (890,111) | 1053474816

	
 hash_bitmap_info(index oid, blkno bigint) returns record

	
 hash_bitmap_info shows the status of a bit
 in the bitmap page for a particular overflow page of HASH
 index. For example:

test=# SELECT * FROM hash_bitmap_info('con_hash_index', 2052);
 bitmapblkno | bitmapbit | bitstatus
-------------+-----------+-----------
 65 | 3 | t

	
 hash_metapage_info(page bytea) returns record

	
 hash_metapage_info returns information stored
 in the meta page of a HASH index. For example:

test=# SELECT magic, version, ntuples, ffactor, bsize, bmsize, bmshift,
test-# maxbucket, highmask, lowmask, ovflpoint, firstfree, nmaps, procid,
test-# regexp_replace(spares::text, '(,0)*}', '}') as spares,
test-# regexp_replace(mapp::text, '(,0)*}', '}') as mapp
test-# FROM hash_metapage_info(get_raw_page('con_hash_index', 0));
-[RECORD 1]---​------------------------------
magic | 105121344
version | 4
ntuples | 500500
ffactor | 40
bsize | 8152
bmsize | 4096
bmshift | 15
maxbucket | 12512
highmask | 16383
lowmask | 8191
ovflpoint | 28
firstfree | 1204
nmaps | 1
procid | 450
spares | {0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,4,4,4,45,55,58,59,​508,567,628,704,1193,1202,1204}
mapp | {65}

passwordcheck — verify password strength

 The passwordcheck module checks users' passwords
 whenever they are set with
 CREATE ROLE(7) or
 ALTER ROLE(7).
 If a password is considered too weak, it will be rejected and
 the command will terminate with an error.

 To enable this module, add '$libdir/passwordcheck'
 to shared_preload_libraries in
 postgresql.conf, then restart the server.

 You can adapt this module to your needs by changing the source code.
 For example, you can use
 CrackLib
 to check passwords — this only requires uncommenting
 two lines in the Makefile and rebuilding the
 module. (We cannot include CrackLib™
 by default for license reasons.)
 Without CrackLib™, the module enforces a few
 simple rules for password strength, which you can modify or extend
 as you see fit.

Caution

 To prevent unencrypted passwords from being sent across the network,
 written to the server log or otherwise stolen by a database administrator,
 PostgreSQL™ allows the user to supply
 pre-encrypted passwords. Many client programs make use of this
 functionality and encrypt the password before sending it to the server.

 This limits the usefulness of the passwordcheck
 module, because in that case it can only try to guess the password.
 For this reason, passwordcheck is not
 recommended if your security requirements are high.
 It is more secure to use an external authentication method such as GSSAPI
 (see Chapter 21, Client Authentication) than to rely on
 passwords within the database.

 Alternatively, you could modify passwordcheck
 to reject pre-encrypted passwords, but forcing users to set their
 passwords in clear text carries its own security risks.

pg_buffercache — inspect PostgreSQL™
 buffer cache state

 The pg_buffercache module provides a means for
 examining what's happening in the shared buffer cache in real time.

 This module provides the pg_buffercache_pages()
 function (wrapped in the pg_buffercache view),
 the pg_buffercache_summary() function, and the
 pg_buffercache_usage_counts() function.

 The pg_buffercache_pages() function returns a set of
 records, each row describing the state of one shared buffer entry. The
 pg_buffercache view wraps the function for
 convenient use.

 The pg_buffercache_summary() function returns a single
 row summarizing the state of the shared buffer cache.

 The pg_buffercache_usage_counts() function returns a set
 of records, each row describing the number of buffers with a given usage
 count.

 By default, use is restricted to superusers and roles with privileges of the
 pg_monitor role. Access may be granted to others
 using GRANT.

The pg_buffercache View

 The definitions of the columns exposed by the view are shown in Table F.15, “pg_buffercache Columns”.

Table F.15. pg_buffercache Columns
	
 Column Type

 Description

	
 bufferid integer

 ID, in the range 1..shared_buffers

	
 relfilenode oid
 (references pg_class.relfilenode)

 Filenode number of the relation

	
 reltablespace oid
 (references pg_tablespace.oid)

 Tablespace OID of the relation

	
 reldatabase oid
 (references pg_database.oid)

 Database OID of the relation

	
 relforknumber smallint

 Fork number within the relation; see
 common/relpath.h

	
 relblocknumber bigint

 Page number within the relation

	
 isdirty boolean

 Is the page dirty?

	
 usagecount smallint

 Clock-sweep access count

	
 pinning_backends integer

 Number of backends pinning this buffer

 There is one row for each buffer in the shared cache. Unused buffers are
 shown with all fields null except bufferid. Shared system
 catalogs are shown as belonging to database zero.

 Because the cache is shared by all the databases, there will normally be
 pages from relations not belonging to the current database. This means
 that there may not be matching join rows in pg_class for
 some rows, or that there could even be incorrect joins. If you are
 trying to join against pg_class, it's a good idea to
 restrict the join to rows having reldatabase equal to
 the current database's OID or zero.

 Since buffer manager locks are not taken to copy the buffer state data that
 the view will display, accessing pg_buffercache view
 has less impact on normal buffer activity but it doesn't provide a consistent
 set of results across all buffers. However, we ensure that the information of
 each buffer is self-consistent.

The pg_buffercache_summary() Function

 The definitions of the columns exposed by the function are shown in Table F.16, “pg_buffercache_summary() Output Columns”.

Table F.16. pg_buffercache_summary() Output Columns
	
 Column Type

 Description

	
 buffers_used int4

 Number of used shared buffers

	
 buffers_unused int4

 Number of unused shared buffers

	
 buffers_dirty int4

 Number of dirty shared buffers

	
 buffers_pinned int4

 Number of pinned shared buffers

	
 usagecount_avg float8

 Average usage count of used shared buffers

 The pg_buffercache_summary() function returns a
 single row summarizing the state of all shared buffers. Similar and more
 detailed information is provided by the
 pg_buffercache view, but
 pg_buffercache_summary() is significantly cheaper.

 Like the pg_buffercache view,
 pg_buffercache_summary() does not acquire buffer
 manager locks. Therefore concurrent activity can lead to minor inaccuracies
 in the result.

The pg_buffercache_usage_counts() Function

 The definitions of the columns exposed by the function are shown in
 Table F.17, “pg_buffercache_usage_counts() Output Columns”.

Table F.17. pg_buffercache_usage_counts() Output Columns
	
 Column Type

 Description

	
 usage_count int4

 A possible buffer usage count

	
 buffers int4

 Number of buffers with the usage count

	
 dirty int4

 Number of dirty buffers with the usage count

	
 pinned int4

 Number of pinned buffers with the usage count

 The pg_buffercache_usage_counts() function returns a
 set of rows summarizing the states of all shared buffers, aggregated over
 the possible usage count values. Similar and more detailed information is
 provided by the pg_buffercache view, but
 pg_buffercache_usage_counts() is significantly cheaper.

 Like the pg_buffercache view,
 pg_buffercache_usage_counts() does not acquire buffer
 manager locks. Therefore concurrent activity can lead to minor inaccuracies
 in the result.

Sample Output

regression=# SELECT n.nspname, c.relname, count(*) AS buffers
 FROM pg_buffercache b JOIN pg_class c
 ON b.relfilenode = pg_relation_filenode(c.oid) AND
 b.reldatabase IN (0, (SELECT oid FROM pg_database
 WHERE datname = current_database()))
 JOIN pg_namespace n ON n.oid = c.relnamespace
 GROUP BY n.nspname, c.relname
 ORDER BY 3 DESC
 LIMIT 10;

 nspname | relname | buffers
------------+------------------------+---------
 public | delete_test_table | 593
 public | delete_test_table_pkey | 494
 pg_catalog | pg_attribute | 472
 public | quad_poly_tbl | 353
 public | tenk2 | 349
 public | tenk1 | 349
 public | gin_test_idx | 306
 pg_catalog | pg_largeobject | 206
 public | gin_test_tbl | 188
 public | spgist_text_tbl | 182
(10 rows)

regression=# SELECT * FROM pg_buffercache_summary();
 buffers_used | buffers_unused | buffers_dirty | buffers_pinned | usagecount_avg
--------------+----------------+---------------+----------------+----------------
 248 | 2096904 | 39 | 0 | 3.141129
(1 row)

regression=# SELECT * FROM pg_buffercache_usage_counts();
 usage_count | buffers | dirty | pinned
-------------+---------+-------+--------
 0 | 14650 | 0 | 0
 1 | 1436 | 671 | 0
 2 | 102 | 88 | 0
 3 | 23 | 21 | 0
 4 | 9 | 7 | 0
 5 | 164 | 106 | 0
(6 rows)

Authors

 Mark Kirkwood <markir@paradise.net.nz>

 Design suggestions: Neil Conway <neilc@samurai.com>

 Debugging advice: Tom Lane <tgl@sss.pgh.pa.us>

pgcrypto — cryptographic functions

 The pgcrypto module provides cryptographic functions for
 PostgreSQL™.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

 pgcrypto requires OpenSSL and won't be installed if
 OpenSSL support was not selected when PostgreSQL was built.

General Hashing Functions

digest()

digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

 Computes a binary hash of the given data.
 type is the algorithm to use.
 Standard algorithms are md5, sha1,
 sha224, sha256,
 sha384 and sha512.
 Moreover, any digest algorithm OpenSSL™ supports
 is automatically picked up.

 If you want the digest as a hexadecimal string, use
 encode() on the result. For example:

CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
 SELECT encode(digest($1, 'sha1'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;

hmac()

hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

 Calculates hashed MAC for data with key key.
 type is the same as in digest().

 This is similar to digest() but the hash can only be
 recalculated knowing the key. This prevents the scenario of someone
 altering data and also changing the hash to match.

 If the key is larger than the hash block size it will first be hashed and
 the result will be used as key.

Password Hashing Functions

 The functions crypt() and gen_salt()
 are specifically designed for hashing passwords.
 crypt() does the hashing and gen_salt()
 prepares algorithm parameters for it.

 The algorithms in crypt() differ from the usual
 MD5 or SHA1 hashing algorithms in the following respects:

	
 They are slow. As the amount of data is so small, this is the only
 way to make brute-forcing passwords hard.

	
 They use a random value, called the salt, so that users
 having the same password will have different encrypted passwords.
 This is also an additional defense against reversing the algorithm.

	
 They include the algorithm type in the result, so passwords hashed with
 different algorithms can co-exist.

	
 Some of them are adaptive — that means when computers get
 faster, you can tune the algorithm to be slower, without
 introducing incompatibility with existing passwords.

 Table F.18, “Supported Algorithms for crypt()” lists the algorithms
 supported by the crypt() function.

Table F.18. Supported Algorithms for crypt()
	Algorithm	Max Password Length	Adaptive?	Salt Bits	Output Length	Description
	bf	72	yes	128	60	Blowfish-based, variant 2a
	md5	unlimited	no	48	34	MD5-based crypt
	xdes	8	yes	24	20	Extended DES
	des	8	no	12	13	Original UNIX crypt

crypt()

crypt(password text, salt text) returns text

 Calculates a crypt(3)-style hash of password.
 When storing a new password, you need to use
 gen_salt() to generate a new salt value.
 To check a password, pass the stored hash value as salt,
 and test whether the result matches the stored value.

 Example of setting a new password:

UPDATE ... SET pswhash = crypt('new password', gen_salt('md5'));

 Example of authentication:

SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch FROM ... ;

 This returns true if the entered password is correct.

gen_salt()

gen_salt(type text [, iter_count integer]) returns text

 Generates a new random salt string for use in crypt().
 The salt string also tells crypt() which algorithm to use.

 The type parameter specifies the hashing algorithm.
 The accepted types are: des, xdes,
 md5 and bf.

 The iter_count parameter lets the user specify the iteration
 count, for algorithms that have one.
 The higher the count, the more time it takes to hash
 the password and therefore the more time to break it. Although with
 too high a count the time to calculate a hash may be several years
 — which is somewhat impractical. If the iter_count
 parameter is omitted, the default iteration count is used.
 Allowed values for iter_count depend on the algorithm and
 are shown in Table F.19, “Iteration Counts for crypt()”.

Table F.19. Iteration Counts for crypt()
	Algorithm	Default	Min	Max
	xdes	725	1	16777215
	bf	6	4	31

 For xdes there is an additional limitation that the
 iteration count must be an odd number.

 To pick an appropriate iteration count, consider that
 the original DES crypt was designed to have the speed of 4 hashes per
 second on the hardware of that time.
 Slower than 4 hashes per second would probably dampen usability.
 Faster than 100 hashes per second is probably too fast.

 Table F.20, “Hash Algorithm Speeds” gives an overview of the relative slowness
 of different hashing algorithms.
 The table shows how much time it would take to try all
 combinations of characters in an 8-character password, assuming
 that the password contains either only lower case letters, or
 upper- and lower-case letters and numbers.
 In the crypt-bf entries, the number after a slash is
 the iter_count parameter of
 gen_salt.

Table F.20. Hash Algorithm Speeds
	Algorithm	Hashes/sec	For [a-z]	For [A-Za-z0-9]	Duration relative to md5 hash
	crypt-bf/8	1792	4 years	3927 years	100k
	crypt-bf/7	3648	2 years	1929 years	50k
	crypt-bf/6	7168	1 year	982 years	25k
	crypt-bf/5	13504	188 days	521 years	12.5k
	crypt-md5	171584	15 days	41 years	1k
	crypt-des	23221568	157.5 minutes	108 days	7
	sha1	37774272	90 minutes	68 days	4
	md5 (hash)	150085504	22.5 minutes	17 days	1

 Notes:

	
 The machine used is an Intel Mobile Core i3.

	
 crypt-des and crypt-md5 algorithm numbers are
 taken from John the Ripper v1.6.38 -test output.

	
 md5 hash numbers are from mdcrack 1.2.

	
 sha1 numbers are from lcrack-20031130-beta.

	
 crypt-bf numbers are taken using a simple program that
 loops over 1000 8-character passwords. That way the speed
 with different numbers of iterations can be shown. For reference: john
 -test shows 13506 loops/sec for crypt-bf/5.
 (The very small
 difference in results is in accordance with the fact that the
 crypt-bf implementation in pgcrypto
 is the same one used in John the Ripper.)

 Note that “try all combinations” is not a realistic exercise.
 Usually password cracking is done with the help of dictionaries, which
 contain both regular words and various mutations of them. So, even
 somewhat word-like passwords could be cracked much faster than the above
 numbers suggest, while a 6-character non-word-like password may escape
 cracking. Or not.

PGP Encryption Functions

 The functions here implement the encryption part of the OpenPGP
 (RFC 4880)
 standard. Supported are both symmetric-key and public-key encryption.

 An encrypted PGP message consists of 2 parts, or packets:

	
 Packet containing a session key — either symmetric-key or public-key
 encrypted.

	
 Packet containing data encrypted with the session key.

 When encrypting with a symmetric key (i.e., a password):

	
 The given password is hashed using a String2Key (S2K) algorithm. This is
 rather similar to crypt() algorithms — purposefully
 slow and with random salt — but it produces a full-length binary
 key.

	
 If a separate session key is requested, a new random key will be
 generated. Otherwise the S2K key will be used directly as the session
 key.

	
 If the S2K key is to be used directly, then only S2K settings will be put
 into the session key packet. Otherwise the session key will be encrypted
 with the S2K key and put into the session key packet.

 When encrypting with a public key:

	
 A new random session key is generated.

	
 It is encrypted using the public key and put into the session key packet.

 In either case the data to be encrypted is processed as follows:

	
 Optional data-manipulation: compression, conversion to UTF-8,
 and/or conversion of line-endings.

	
 The data is prefixed with a block of random bytes. This is equivalent
 to using a random IV.

	
 A SHA1 hash of the random prefix and data is appended.

	
 All this is encrypted with the session key and placed in the data packet.

pgp_sym_encrypt()

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

 Encrypt data with a symmetric PGP key psw.
 The options parameter can contain option settings,
 as described below.

pgp_sym_decrypt()

pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

 Decrypt a symmetric-key-encrypted PGP message.

 Decrypting bytea data with pgp_sym_decrypt is disallowed.
 This is to avoid outputting invalid character data. Decrypting
 originally textual data with pgp_sym_decrypt_bytea is fine.

 The options parameter can contain option settings,
 as described below.

pgp_pub_encrypt()

pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

 Encrypt data with a public PGP key key.
 Giving this function a secret key will produce an error.

 The options parameter can contain option settings,
 as described below.

pgp_pub_decrypt()

pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns bytea

 Decrypt a public-key-encrypted message. key must be the
 secret key corresponding to the public key that was used to encrypt.
 If the secret key is password-protected, you must give the password in
 psw. If there is no password, but you want to specify
 options, you need to give an empty password.

 Decrypting bytea data with pgp_pub_decrypt is disallowed.
 This is to avoid outputting invalid character data. Decrypting
 originally textual data with pgp_pub_decrypt_bytea is fine.

 The options parameter can contain option settings,
 as described below.

pgp_key_id()

pgp_key_id(bytea) returns text

 pgp_key_id extracts the key ID of a PGP public or secret key.
 Or it gives the key ID that was used for encrypting the data, if given
 an encrypted message.

 It can return 2 special key IDs:

	
 SYMKEY

 The message is encrypted with a symmetric key.

	
 ANYKEY

 The message is public-key encrypted, but the key ID has been removed.
 That means you will need to try all your secret keys on it to see
 which one decrypts it. pgcrypto itself does not produce
 such messages.

 Note that different keys may have the same ID. This is rare but a normal
 event. The client application should then try to decrypt with each one,
 to see which fits — like handling ANYKEY.

armor(), dearmor()

armor(data bytea [, keys text[], values text[]]) returns text
dearmor(data text) returns bytea

 These functions wrap/unwrap binary data into PGP ASCII-armor format,
 which is basically Base64 with CRC and additional formatting.

 If the keys and values arrays are specified,
 an armor header is added to the armored format for each
 key/value pair. Both arrays must be single-dimensional, and they must
 be of the same length. The keys and values cannot contain any non-ASCII
 characters.

pgp_armor_headers

pgp_armor_headers(data text, key out text, value out text) returns setof record

 pgp_armor_headers() extracts the armor headers from
 data. The return value is a set of rows with two columns,
 key and value. If the keys or values contain any non-ASCII characters,
 they are treated as UTF-8.

Options for PGP Functions

 Options are named to be similar to GnuPG. An option's value should be
 given after an equal sign; separate options from each other with commas.
 For example:

pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

 All of the options except convert-crlf apply only to
 encrypt functions. Decrypt functions get the parameters from the PGP
 data.

 The most interesting options are probably
 compress-algo and unicode-mode.
 The rest should have reasonable defaults.

cipher-algo

 Which cipher algorithm to use.

Values: bf, aes128, aes192, aes256, 3des, cast5

Default: aes128

Applies to: pgp_sym_encrypt, pgp_pub_encrypt

compress-algo

 Which compression algorithm to use. Only available if
 PostgreSQL™ was built with zlib.

Values:

 0 - no compression

 1 - ZIP compression

 2 - ZLIB compression (= ZIP plus meta-data and block CRCs)

Default: 0

Applies to: pgp_sym_encrypt, pgp_pub_encrypt

compress-level

 How much to compress. Higher levels compress smaller but are slower.
 0 disables compression.

Values: 0, 1-9

Default: 6

Applies to: pgp_sym_encrypt, pgp_pub_encrypt

convert-crlf

 Whether to convert \n into \r\n when
 encrypting and \r\n to \n when
 decrypting. RFC 4880 specifies that text data should be stored using
 \r\n line-feeds. Use this to get fully RFC-compliant
 behavior.

Values: 0, 1

Default: 0

Applies to: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt

disable-mdc

 Do not protect data with SHA-1. The only good reason to use this
 option is to achieve compatibility with ancient PGP products, predating
 the addition of SHA-1 protected packets to RFC 4880.
 Recent gnupg.org and pgp.com software supports it fine.

Values: 0, 1

Default: 0

Applies to: pgp_sym_encrypt, pgp_pub_encrypt

sess-key

 Use separate session key. Public-key encryption always uses a separate
 session key; this option is for symmetric-key encryption, which by default
 uses the S2K key directly.

Values: 0, 1

Default: 0

Applies to: pgp_sym_encrypt

s2k-mode

 Which S2K algorithm to use.

Values:

 0 - Without salt. Dangerous!

 1 - With salt but with fixed iteration count.

 3 - Variable iteration count.

Default: 3

Applies to: pgp_sym_encrypt

s2k-count

 The number of iterations of the S2K algorithm to use. It must
 be a value between 1024 and 65011712, inclusive.

Default: A random value between 65536 and 253952

Applies to: pgp_sym_encrypt, only with s2k-mode=3

s2k-digest-algo

 Which digest algorithm to use in S2K calculation.

Values: md5, sha1

Default: sha1

Applies to: pgp_sym_encrypt

s2k-cipher-algo

 Which cipher to use for encrypting separate session key.

Values: bf, aes, aes128, aes192, aes256

Default: use cipher-algo

Applies to: pgp_sym_encrypt

unicode-mode

 Whether to convert textual data from database internal encoding to
 UTF-8 and back. If your database already is UTF-8, no conversion will
 be done, but the message will be tagged as UTF-8. Without this option
 it will not be.

Values: 0, 1

Default: 0

Applies to: pgp_sym_encrypt, pgp_pub_encrypt

Generating PGP Keys with GnuPG

 To generate a new key:

gpg --gen-key

 The preferred key type is “DSA and Elgamal”.

 For RSA encryption you must create either DSA or RSA sign-only key
 as master and then add an RSA encryption subkey with
 gpg --edit-key.

 To list keys:

gpg --list-secret-keys

 To export a public key in ASCII-armor format:

gpg -a --export KEYID > public.key

 To export a secret key in ASCII-armor format:

gpg -a --export-secret-keys KEYID > secret.key

 You need to use dearmor() on these keys before giving them to
 the PGP functions. Or if you can handle binary data, you can drop
 -a from the command.

 For more details see man gpg,
 The GNU
 Privacy Handbook and other documentation on
 https://www.gnupg.org/.

Limitations of PGP Code

	
 No support for signing. That also means that it is not checked
 whether the encryption subkey belongs to the master key.

	
 No support for encryption key as master key. As such practice
 is generally discouraged, this should not be a problem.

	
 No support for several subkeys. This may seem like a problem, as this
 is common practice. On the other hand, you should not use your regular
 GPG/PGP keys with pgcrypto, but create new ones,
 as the usage scenario is rather different.

Raw Encryption Functions

 These functions only run a cipher over data; they don't have any advanced
 features of PGP encryption. Therefore they have some major problems:

	
 They use user key directly as cipher key.

	
 They don't provide any integrity checking, to see
 if the encrypted data was modified.

	
 They expect that users manage all encryption parameters
 themselves, even IV.

	
 They don't handle text.

 So, with the introduction of PGP encryption, usage of raw
 encryption functions is discouraged.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

 Encrypt/decrypt data using the cipher method specified by
 type. The syntax of the
 type string is:

algorithm [- mode] [/pad: padding]

 where algorithm is one of:

	bf — Blowfish

	aes — AES (Rijndael-128, -192 or -256)

 and mode is one of:

	
 cbc — next block depends on previous (default)

	
 ecb — each block is encrypted separately (for
 testing only)

 and padding is one of:

	
 pkcs — data may be any length (default)

	
 none — data must be multiple of cipher block size

 So, for example, these are equivalent:

encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

 In encrypt_iv and decrypt_iv, the
 iv parameter is the initial value for the CBC mode;
 it is ignored for ECB.
 It is clipped or padded with zeroes if not exactly block size.
 It defaults to all zeroes in the functions without this parameter.

Random-Data Functions

gen_random_bytes(count integer) returns bytea

 Returns count cryptographically strong random bytes.
 At most 1024 bytes can be extracted at a time. This is to avoid
 draining the randomness generator pool.

gen_random_uuid() returns uuid

 Returns a version 4 (random) UUID. (Obsolete, this function
 internally calls the core
 function of the same name.)

Notes

Configuration

 pgcrypto configures itself according to the findings of the
 main PostgreSQL configure script. The options that
 affect it are --with-zlib and
 --with-ssl=openssl.

 When compiled with zlib, PGP encryption functions are able to
 compress data before encrypting.

 pgcrypto requires OpenSSL™.
 Otherwise, it will not be built or installed.

 When compiled against OpenSSL™ 3.0.0 and later
 versions, the legacy provider must be activated in the
 openssl.cnf configuration file in order to use older
 ciphers like DES or Blowfish.

NULL Handling

 As is standard in SQL, all functions return NULL, if any of the arguments
 are NULL. This may create security risks on careless usage.

Security Limitations

 All pgcrypto functions run inside the database server.
 That means that all
 the data and passwords move between pgcrypto and client
 applications in clear text. Thus you must:

	Connect locally or use SSL connections.

	Trust both system and database administrator.

 If you cannot, then better do crypto inside client application.

 The implementation does not resist
 side-channel
 attacks. For example, the time required for
 a pgcrypto decryption function to complete varies among
 ciphertexts of a given size.

Author

 Marko Kreen <markokr@gmail.com>

 pgcrypto uses code from the following sources:

	Algorithm	Author	Source origin
	DES crypt	David Burren and others	FreeBSD libcrypt
	MD5 crypt	Poul-Henning Kamp	FreeBSD libcrypt
	Blowfish crypt	Solar Designer	www.openwall.com

pg_freespacemap — examine the free space map

 The pg_freespacemap module provides a means for examining the
 free space map (FSM).
 It provides a function called pg_freespace, or two
 overloaded functions, to be precise. The functions show the value recorded in
 the free space map for a given page, or for all pages in the relation.

 By default use is restricted to superusers and roles with privileges of the
 pg_stat_scan_tables role. Access may be granted to others
 using GRANT.

Functions

	
 pg_freespace(rel regclass IN, blkno bigint IN) returns int2

	
 Returns the amount of free space on the page of the relation, specified
 by blkno, according to the FSM.

	
 pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)

	
 Displays the amount of free space on each page of the relation,
 according to the FSM. A set of
 (blkno bigint, avail int2)
 tuples is returned, one tuple for each page in the relation.

 The values stored in the free space map are not exact. They're rounded
 to precision of 1/256th of BLCKSZ (32 bytes with default BLCKSZ), and
 they're not kept fully up-to-date as tuples are inserted and updated.

 For indexes, what is tracked is entirely-unused pages, rather than free
 space within pages. Therefore, the values are not meaningful, just
 whether a page is in-use or empty.

Sample Output

postgres=# SELECT * FROM pg_freespace('foo');
 blkno | avail
-------+-------
 0 | 0
 1 | 0
 2 | 0
 3 | 32
 4 | 704
 5 | 704
 6 | 704
 7 | 1216
 8 | 704
 9 | 704
 10 | 704
 11 | 704
 12 | 704
 13 | 704
 14 | 704
 15 | 704
 16 | 704
 17 | 704
 18 | 704
 19 | 3648
(20 rows)

postgres=# SELECT * FROM pg_freespace('foo', 7);
 pg_freespace

 1216
(1 row)

Author

 Original version by Mark Kirkwood <markir@paradise.net.nz>.
 Rewritten in version 8.4 to suit new FSM implementation
 by Heikki Linnakangas <heikki@enterprisedb.com>

pg_prewarm — preload relation data into buffer caches

 The pg_prewarm module provides a convenient way
 to load relation data into either the operating system buffer cache
 or the PostgreSQL™ buffer cache. Prewarming
 can be performed manually using the pg_prewarm function,
 or can be performed automatically by including pg_prewarm in
 shared_preload_libraries. In the latter case, the
 system will run a background worker which periodically records the contents
 of shared buffers in a file called autoprewarm.blocks and
 will, using 2 background workers, reload those same blocks after a restart.

Functions

pg_prewarm(regclass, mode text default 'buffer', fork text default 'main',
 first_block int8 default null,
 last_block int8 default null) RETURNS int8

 The first argument is the relation to be prewarmed. The second argument
 is the prewarming method to be used, as further discussed below; the third
 is the relation fork to be prewarmed, usually main.
 The fourth argument is the first block number to prewarm
 (NULL is accepted as a synonym for zero). The fifth
 argument is the last block number to prewarm (NULL
 means prewarm through the last block in the relation). The return value
 is the number of blocks prewarmed.

 There are three available prewarming methods. prefetch
 issues asynchronous prefetch requests to the operating system, if this is
 supported, or throws an error otherwise. read reads
 the requested range of blocks; unlike prefetch, this is
 synchronous and supported on all platforms and builds, but may be slower.
 buffer reads the requested range of blocks into the
 database buffer cache.

 Note that with any of these methods, attempting to prewarm more blocks than
 can be cached — by the OS when using prefetch or
 read, or by PostgreSQL™ when
 using buffer — will likely result in lower-numbered
 blocks being evicted as higher numbered blocks are read in. Prewarmed data
 also enjoys no special protection from cache evictions, so it is possible
 that other system activity may evict the newly prewarmed blocks shortly
 after they are read; conversely, prewarming may also evict other data from
 cache. For these reasons, prewarming is typically most useful at startup,
 when caches are largely empty.

autoprewarm_start_worker() RETURNS void

 Launch the main autoprewarm worker. This will normally happen
 automatically, but is useful if automatic prewarm was not configured at
 server startup time and you wish to start up the worker at a later time.

autoprewarm_dump_now() RETURNS int8

 Update autoprewarm.blocks immediately. This may be useful
 if the autoprewarm worker is not running but you anticipate running it
 after the next restart. The return value is the number of records written
 to autoprewarm.blocks.

Configuration Parameters

	
 pg_prewarm.autoprewarm (boolean)

	
 Controls whether the server should run the autoprewarm worker. This is
 on by default. This parameter can only be set at server start.

	
 pg_prewarm.autoprewarm_interval (integer)

	
 This is the interval between updates to autoprewarm.blocks.
 The default is 300 seconds. If set to 0, the file will not be
 dumped at regular intervals, but only when the server is shut down.

 These parameters must be set in postgresql.conf.
 Typical usage might be:

postgresql.conf
shared_preload_libraries = 'pg_prewarm'

pg_prewarm.autoprewarm = true
pg_prewarm.autoprewarm_interval = 300s

Author

 Robert Haas <rhaas@postgresql.org>

pgrowlocks — show a table's row locking information

 The pgrowlocks module provides a function to show row
 locking information for a specified table.

 By default use is restricted to superusers, roles with privileges of the
 pg_stat_scan_tables role, and users with
 SELECT permissions on the table.

Overview

pgrowlocks(text) returns setof record

 The parameter is the name of a table. The result is a set of records,
 with one row for each locked row within the table. The output columns
 are shown in Table F.21, “pgrowlocks Output Columns”.

Table F.21. pgrowlocks Output Columns
	Name	Type	Description
	locked_row	tid	Tuple ID (TID) of locked row
	locker	xid	Transaction ID of locker, or multixact ID if
 multitransaction; see the section called “Transactions and Identifiers”
	multi	boolean	True if locker is a multitransaction
	xids	xid[]	Transaction IDs of lockers (more than one if multitransaction)
	modes	text[]	Lock mode of lockers (more than one if multitransaction),
 an array of Key Share, Share,
 For No Key Update, No Key Update,
 For Update, Update.
	pids	integer[]	Process IDs of locking backends (more than one if multitransaction)

 pgrowlocks takes AccessShareLock for the
 target table and reads each row one by one to collect the row locking
 information. This is not very speedy for a large table. Note that:

	
 If an ACCESS EXCLUSIVE lock is taken on the table,
 pgrowlocks will be blocked.

	
 pgrowlocks is not guaranteed to produce a
 self-consistent snapshot. It is possible that a new row lock is taken,
 or an old lock is freed, during its execution.

 pgrowlocks does not show the contents of locked
 rows. If you want to take a look at the row contents at the same time, you
 could do something like this:

SELECT * FROM accounts AS a, pgrowlocks('accounts') AS p
 WHERE p.locked_row = a.ctid;

 Be aware however that such a query will be very inefficient.

Sample Output

=# SELECT * FROM pgrowlocks('t1');
 locked_row | locker | multi | xids | modes | pids
------------+--------+-------+-------+----------------+--------
 (0,1) | 609 | f | {609} | {"For Share"} | {3161}
 (0,2) | 609 | f | {609} | {"For Share"} | {3161}
 (0,3) | 607 | f | {607} | {"For Update"} | {3107}
 (0,4) | 607 | f | {607} | {"For Update"} | {3107}
(4 rows)

Author

 Tatsuo Ishii

pg_stat_statements — track statistics of SQL planning and execution

 The pg_stat_statements module provides a means for
 tracking planning and execution statistics of all SQL statements executed by
 a server.

 The module must be loaded by adding pg_stat_statements to
 shared_preload_libraries in
 postgresql.conf, because it requires additional shared memory.
 This means that a server restart is needed to add or remove the module.
 In addition, query identifier calculation must be enabled in order for the
 module to be active, which is done automatically if compute_query_id
 is set to auto or on, or any third-party
 module that calculates query identifiers is loaded.

 When pg_stat_statements is active, it tracks
 statistics across all databases of the server. To access and manipulate
 these statistics, the module provides views
 pg_stat_statements and
 pg_stat_statements_info,
 and the utility functions pg_stat_statements_reset and
 pg_stat_statements. These are not available globally but
 can be enabled for a specific database with
 CREATE EXTENSION pg_stat_statements.

The pg_stat_statements View

 The statistics gathered by the module are made available via a
 view named pg_stat_statements. This view
 contains one row for each distinct combination of database ID, user
 ID, query ID and whether it's a top-level statement or not (up to
 the maximum number of distinct statements that the module can track).
 The columns of the view are shown in
 Table F.22, “pg_stat_statements Columns”.

Table F.22. pg_stat_statements Columns
	
 Column Type

 Description

	
 userid oid
 (references pg_authid.oid)

 OID of user who executed the statement

	
 dbid oid
 (references pg_database.oid)

 OID of database in which the statement was executed

	
 toplevel bool

 True if the query was executed as a top-level statement
 (always true if pg_stat_statements.track is set to
 top)

	
 queryid bigint

 Hash code to identify identical normalized queries.

	
 query text

 Text of a representative statement

	
 plans bigint

 Number of times the statement was planned
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 total_plan_time double precision

 Total time spent planning the statement, in milliseconds
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 min_plan_time double precision

 Minimum time spent planning the statement, in milliseconds
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 max_plan_time double precision

 Maximum time spent planning the statement, in milliseconds
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 mean_plan_time double precision

 Mean time spent planning the statement, in milliseconds
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 stddev_plan_time double precision

 Population standard deviation of time spent planning the statement,
 in milliseconds
 (if pg_stat_statements.track_planning is enabled,
 otherwise zero)

	
 calls bigint

 Number of times the statement was executed

	
 total_exec_time double precision

 Total time spent executing the statement, in milliseconds

	
 min_exec_time double precision

 Minimum time spent executing the statement, in milliseconds

	
 max_exec_time double precision

 Maximum time spent executing the statement, in milliseconds

	
 mean_exec_time double precision

 Mean time spent executing the statement, in milliseconds

	
 stddev_exec_time double precision

 Population standard deviation of time spent executing the statement, in milliseconds

	
 rows bigint

 Total number of rows retrieved or affected by the statement

	
 shared_blks_hit bigint

 Total number of shared block cache hits by the statement

	
 shared_blks_read bigint

 Total number of shared blocks read by the statement

	
 shared_blks_dirtied bigint

 Total number of shared blocks dirtied by the statement

	
 shared_blks_written bigint

 Total number of shared blocks written by the statement

	
 local_blks_hit bigint

 Total number of local block cache hits by the statement

	
 local_blks_read bigint

 Total number of local blocks read by the statement

	
 local_blks_dirtied bigint

 Total number of local blocks dirtied by the statement

	
 local_blks_written bigint

 Total number of local blocks written by the statement

	
 temp_blks_read bigint

 Total number of temp blocks read by the statement

	
 temp_blks_written bigint

 Total number of temp blocks written by the statement

	
 blk_read_time double precision

 Total time the statement spent reading data file blocks, in milliseconds
 (if track_io_timing is enabled, otherwise zero)

	
 blk_write_time double precision

 Total time the statement spent writing data file blocks, in milliseconds
 (if track_io_timing is enabled, otherwise zero)

	
 temp_blk_read_time double precision

 Total time the statement spent reading temporary file blocks, in
 milliseconds (if track_io_timing is enabled,
 otherwise zero)

	
 temp_blk_write_time double precision

 Total time the statement spent writing temporary file blocks, in
 milliseconds (if track_io_timing is enabled,
 otherwise zero)

	
 wal_records bigint

 Total number of WAL records generated by the statement

	
 wal_fpi bigint

 Total number of WAL full page images generated by the statement

	
 wal_bytes numeric

 Total amount of WAL generated by the statement in bytes

	
 jit_functions bigint

 Total number of functions JIT-compiled by the statement

	
 jit_generation_time double precision

 Total time spent by the statement on generating JIT code, in milliseconds

	
 jit_inlining_count bigint

 Number of times functions have been inlined

	
 jit_inlining_time double precision

 Total time spent by the statement on inlining functions, in milliseconds

	
 jit_optimization_count bigint

 Number of times the statement has been optimized

	
 jit_optimization_time double precision

 Total time spent by the statement on optimizing, in milliseconds

	
 jit_emission_count bigint

 Number of times code has been emitted

	
 jit_emission_time double precision

 Total time spent by the statement on emitting code, in milliseconds

 For security reasons, only superusers and roles with privileges of the
 pg_read_all_stats role are allowed to see the SQL text and
 queryid of queries executed by other users.
 Other users can see the statistics, however, if the view has been installed
 in their database.

 Plannable queries (that is, SELECT, INSERT,
 UPDATE, DELETE, and MERGE)
 and utility commands are combined into a single
 pg_stat_statements entry whenever they have identical query
 structures according to an internal hash calculation. Typically, two
 queries will be considered the same for this purpose if they are
 semantically equivalent except for the values of literal constants
 appearing in the query.

Note

 The following details about constant replacement and
 queryid only apply when compute_query_id is enabled. If you use an external
 module instead to compute queryid, you
 should refer to its documentation for details.

 When a constant's value has been ignored for purposes of matching the query
 to other queries, the constant is replaced by a parameter symbol, such
 as $1, in the pg_stat_statements
 display.
 The rest of the query text is that of the first query that had the
 particular queryid hash value associated with the
 pg_stat_statements entry.

 Queries on which normalization can be applied may be observed with constant
 values in pg_stat_statements, especially when there
 is a high rate of entry deallocations. To reduce the likelihood of this
 happening, consider increasing pg_stat_statements.max.
 The pg_stat_statements_info view, discussed below
 in the section called “The pg_stat_statements_info View”,
 provides statistics about entry deallocations.

 In some cases, queries with visibly different texts might get merged into a
 single pg_stat_statements entry. Normally this will happen
 only for semantically equivalent queries, but there is a small chance of
 hash collisions causing unrelated queries to be merged into one entry.
 (This cannot happen for queries belonging to different users or databases,
 however.)

 Since the queryid hash value is computed on the
 post-parse-analysis representation of the queries, the opposite is
 also possible: queries with identical texts might appear as
 separate entries, if they have different meanings as a result of
 factors such as different search_path settings.

 Consumers of pg_stat_statements may wish to use
 queryid (perhaps in combination with
 dbid and userid) as a more stable
 and reliable identifier for each entry than its query text.
 However, it is important to understand that there are only limited
 guarantees around the stability of the queryid hash
 value. Since the identifier is derived from the
 post-parse-analysis tree, its value is a function of, among other
 things, the internal object identifiers appearing in this representation.
 This has some counterintuitive implications. For example,
 pg_stat_statements will consider two apparently-identical
 queries to be distinct, if they reference a table that was dropped
 and recreated between the executions of the two queries.
 The hashing process is also sensitive to differences in
 machine architecture and other facets of the platform.
 Furthermore, it is not safe to assume that queryid
 will be stable across major versions of PostgreSQL™.

 Two servers participating in replication based on physical WAL replay can
 be expected to have identical queryid values for
 the same query. However, logical replication schemes do not promise to
 keep replicas identical in all relevant details, so
 queryid will not be a useful identifier for
 accumulating costs across a set of logical replicas.
 If in doubt, direct testing is recommended.

 Generally, it can be assumed that queryid values
 are stable between minor version releases of PostgreSQL™,
 providing that instances are running on the same machine architecture and
 the catalog metadata details match. Compatibility will only be broken
 between minor versions as a last resort.

 The parameter symbols used to replace constants in
 representative query texts start from the next number after the
 highest $n parameter in the original query
 text, or $1 if there was none. It's worth noting that in
 some cases there may be hidden parameter symbols that affect this
 numbering. For example, PL/pgSQL uses hidden parameter
 symbols to insert values of function local variables into queries, so that
 a PL/pgSQL statement like SELECT i + 1 INTO j
 would have representative text like SELECT i + $2.

 The representative query texts are kept in an external disk file, and do
 not consume shared memory. Therefore, even very lengthy query texts can
 be stored successfully. However, if many long query texts are
 accumulated, the external file might grow unmanageably large. As a
 recovery method if that happens, pg_stat_statements may
 choose to discard the query texts, whereupon all existing entries in
 the pg_stat_statements view will show
 null query fields, though the statistics associated with
 each queryid are preserved. If this happens, consider
 reducing pg_stat_statements.max to prevent
 recurrences.

 plans and calls aren't
 always expected to match because planning and execution statistics are
 updated at their respective end phase, and only for successful operations.
 For example, if a statement is successfully planned but fails during
 the execution phase, only its planning statistics will be updated.
 If planning is skipped because a cached plan is used, only its execution
 statistics will be updated.

The pg_stat_statements_info View

 The statistics of the pg_stat_statements module
 itself are tracked and made available via a view named
 pg_stat_statements_info. This view contains
 only a single row. The columns of the view are shown in
 Table F.23, “pg_stat_statements_info Columns”.

Table F.23. pg_stat_statements_info Columns
	
 Column Type

 Description

	
 dealloc bigint

 Total number of times pg_stat_statements
 entries about the least-executed statements were deallocated
 because more distinct statements than
 pg_stat_statements.max were observed

	
 stats_reset timestamp with time zone

 Time at which all statistics in the
 pg_stat_statements view were last reset.

Functions

	
 pg_stat_statements_reset(userid Oid, dbid Oid, queryid bigint) returns void

	
 pg_stat_statements_reset discards statistics
 gathered so far by pg_stat_statements corresponding
 to the specified userid, dbid
 and queryid. If any of the parameters are not
 specified, the default value 0(invalid) is used for
 each of them and the statistics that match with other parameters will be
 reset. If no parameter is specified or all the specified parameters are
 0(invalid), it will discard all statistics.
 If all statistics in the pg_stat_statements
 view are discarded, it will also reset the statistics in the
 pg_stat_statements_info view.
 By default, this function can only be executed by superusers.
 Access may be granted to others using GRANT.

	
 pg_stat_statements(showtext boolean) returns setof record

	
 The pg_stat_statements view is defined in
 terms of a function also named pg_stat_statements.
 It is possible for clients to call
 the pg_stat_statements function directly, and by
 specifying showtext := false have query text be
 omitted (that is, the OUT argument that corresponds
 to the view's query column will return nulls). This
 feature is intended to support external tools that might wish to avoid
 the overhead of repeatedly retrieving query texts of indeterminate
 length. Such tools can instead cache the first query text observed
 for each entry themselves, since that is
 all pg_stat_statements itself does, and then retrieve
 query texts only as needed. Since the server stores query texts in a
 file, this approach may reduce physical I/O for repeated examination
 of the pg_stat_statements data.

Configuration Parameters

	
 pg_stat_statements.max (integer)

	
 pg_stat_statements.max is the maximum number of
 statements tracked by the module (i.e., the maximum number of rows
 in the pg_stat_statements view). If more distinct
 statements than that are observed, information about the least-executed
 statements is discarded. The number of times such information was
 discarded can be seen in the
 pg_stat_statements_info view.
 The default value is 5000.
 This parameter can only be set at server start.

	
 pg_stat_statements.track (enum)

	
 pg_stat_statements.track controls which statements
 are counted by the module.
 Specify top to track top-level statements (those issued
 directly by clients), all to also track nested statements
 (such as statements invoked within functions), or none to
 disable statement statistics collection.
 The default value is top.
 Only superusers can change this setting.

	
 pg_stat_statements.track_utility (boolean)

	
 pg_stat_statements.track_utility controls whether
 utility commands are tracked by the module. Utility commands are
 all those other than SELECT, INSERT,
 UPDATE, DELETE, and MERGE.
 The default value is on.
 Only superusers can change this setting.

	
 pg_stat_statements.track_planning (boolean)

	
 pg_stat_statements.track_planning controls whether
 planning operations and duration are tracked by the module.
 Enabling this parameter may incur a noticeable performance penalty,
 especially when statements with identical query structure are executed
 by many concurrent connections which compete to update a small number of
 pg_stat_statements entries.
 The default value is off.
 Only superusers can change this setting.

	
 pg_stat_statements.save (boolean)

	
 pg_stat_statements.save specifies whether to
 save statement statistics across server shutdowns.
 If it is off then statistics are not saved at
 shutdown nor reloaded at server start.
 The default value is on.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 The module requires additional shared memory proportional to
 pg_stat_statements.max. Note that this
 memory is consumed whenever the module is loaded, even if
 pg_stat_statements.track is set to none.

 These parameters must be set in postgresql.conf.
 Typical usage might be:

postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

compute_query_id = on
pg_stat_statements.max = 10000
pg_stat_statements.track = all

Sample Output

bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--​------------------
query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls | 3000
total_exec_time | 25565.855387
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--​------------------
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--​------------------
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 4]---+--​------------------
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 5]---+--​------------------
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000

bench=# SELECT pg_stat_statements_reset(0,0,s.queryid) FROM pg_stat_statements AS s
 WHERE s.query = 'UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2';

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--​------------------
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--​------------------
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--​------------------
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 4]---+--​------------------
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000
-[RECORD 5]---+--​------------------
query | vacuum analyze pgbench_accounts
calls | 1
total_exec_time | 136.448116
rows | 0
hit_percent | 99.9201915403032721

bench=# SELECT pg_stat_statements_reset(0,0,0);

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--​---------------------------
query | SELECT pg_stat_statements_reset(0,0,0)
calls | 1
total_exec_time | 0.189497
rows | 1
hit_percent |
-[RECORD 2]---+--​---------------------------
query | SELECT query, calls, total_exec_time, rows, $1 * shared_blks_hit / +
 | nullif(shared_blks_hit + shared_blks_read, $2) AS hit_percent+
 | FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT $3
calls | 0
total_exec_time | 0
rows | 0
hit_percent |

Authors

 Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>.
 Query normalization added by Peter Geoghegan <peter@2ndquadrant.com>.

pgstattuple — obtain tuple-level statistics

 The pgstattuple module provides various functions to
 obtain tuple-level statistics.

 Because these functions return detailed page-level information, access is
 restricted by default. By default, only the
 role pg_stat_scan_tables has EXECUTE
 privilege. Superusers of course bypass this restriction. After the
 extension has been installed, users may issue GRANT
 commands to change the privileges on the functions to allow others to
 execute them. However, it might be preferable to add those users to
 the pg_stat_scan_tables role instead.

Functions

	

 pgstattuple(regclass) returns record

	
 pgstattuple returns a relation's physical length,
 percentage of “dead” tuples, and other info. This may help users
 to determine whether vacuum is necessary or not. The argument is the
 target relation's name (optionally schema-qualified) or OID.
 For example:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');
-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

 The output columns are described in Table F.24, “pgstattuple Output Columns”.

Table F.24. pgstattuple Output Columns
	Column	Type	Description
	table_len	bigint	Physical relation length in bytes
	tuple_count	bigint	Number of live tuples
	tuple_len	bigint	Total length of live tuples in bytes
	tuple_percent	float8	Percentage of live tuples
	dead_tuple_count	bigint	Number of dead tuples
	dead_tuple_len	bigint	Total length of dead tuples in bytes
	dead_tuple_percent	float8	Percentage of dead tuples
	free_space	bigint	Total free space in bytes
	free_percent	float8	Percentage of free space

Note

 The table_len will always be greater than the sum
 of the tuple_len, dead_tuple_len
 and free_space. The difference is accounted for by
 fixed page overhead, the per-page table of pointers to tuples, and
 padding to ensure that tuples are correctly aligned.

 pgstattuple acquires only a read lock on the
 relation. So the results do not reflect an instantaneous snapshot;
 concurrent updates will affect them.

 pgstattuple judges a tuple is “dead” if
 HeapTupleSatisfiesDirty returns false.

	
 pgstattuple(text) returns record

	
 This is the same as pgstattuple(regclass), except
 that the target relation is specified as TEXT. This function is kept
 because of backward-compatibility so far, and will be deprecated in
 some future release.

	

 pgstatindex(regclass) returns record

	
 pgstatindex returns a record showing information
 about a B-tree index. For example:

test=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 16384
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 54.27
leaf_fragmentation | 0

 The output columns are:

	Column	Type	Description
	version	integer	B-tree version number
	tree_level	integer	Tree level of the root page
	index_size	bigint	Total index size in bytes
	root_block_no	bigint	Location of root page (zero if none)
	internal_pages	bigint	Number of “internal” (upper-level) pages
	leaf_pages	bigint	Number of leaf pages
	empty_pages	bigint	Number of empty pages
	deleted_pages	bigint	Number of deleted pages
	avg_leaf_density	float8	Average density of leaf pages
	leaf_fragmentation	float8	Leaf page fragmentation

 The reported index_size will normally correspond to one more
 page than is accounted for by internal_pages + leaf_pages +
 empty_pages + deleted_pages, because it also includes the
 index's metapage.

 As with pgstattuple, the results are accumulated
 page-by-page, and should not be expected to represent an
 instantaneous snapshot of the whole index.

	
 pgstatindex(text) returns record

	
 This is the same as pgstatindex(regclass), except
 that the target index is specified as TEXT. This function is kept
 because of backward-compatibility so far, and will be deprecated in
 some future release.

	

 pgstatginindex(regclass) returns record

	
 pgstatginindex returns a record showing information
 about a GIN index. For example:

test=> SELECT * FROM pgstatginindex('test_gin_index');
-[RECORD 1]--+--
version | 1
pending_pages | 0
pending_tuples | 0

 The output columns are:

	Column	Type	Description
	version	integer	GIN version number
	pending_pages	integer	Number of pages in the pending list
	pending_tuples	bigint	Number of tuples in the pending list

	

 pgstathashindex(regclass) returns record

	
 pgstathashindex returns a record showing information
 about a HASH index. For example:

test=> select * from pgstathashindex('con_hash_index');
-[RECORD 1]--+-----------------
version | 4
bucket_pages | 33081
overflow_pages | 0
bitmap_pages | 1
unused_pages | 32455
live_items | 10204006
dead_items | 0
free_percent | 61.8005949100872

 The output columns are:

	Column	Type	Description
	version	integer	HASH version number
	bucket_pages	bigint	Number of bucket pages
	overflow_pages	bigint	Number of overflow pages
	bitmap_pages	bigint	Number of bitmap pages
	unused_pages	bigint	Number of unused pages
	live_items	bigint	Number of live tuples
	dead_tuples	bigint	Number of dead tuples
	free_percent	float	Percentage of free space

	

 pg_relpages(regclass) returns bigint

	
 pg_relpages returns the number of pages in the
 relation.

	
 pg_relpages(text) returns bigint

	
 This is the same as pg_relpages(regclass), except
 that the target relation is specified as TEXT. This function is kept
 because of backward-compatibility so far, and will be deprecated in
 some future release.

	

 pgstattuple_approx(regclass) returns record

	
 pgstattuple_approx is a faster alternative to
 pgstattuple that returns approximate results.
 The argument is the target relation's name or OID.
 For example:

test=> SELECT * FROM pgstattuple_approx('pg_catalog.pg_proc'::regclass);
-[RECORD 1]--------+-------
table_len | 573440
scanned_percent | 2
approx_tuple_count | 2740
approx_tuple_len | 561210
approx_tuple_percent | 97.87
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 11996
approx_free_percent | 2.09

 The output columns are described in Table F.25, “pgstattuple_approx Output Columns”.

 Whereas pgstattuple always performs a
 full-table scan and returns an exact count of live and dead tuples
 (and their sizes) and free space, pgstattuple_approx
 tries to avoid the full-table scan and returns exact dead tuple
 statistics along with an approximation of the number and
 size of live tuples and free space.

 It does this by skipping pages that have only visible tuples
 according to the visibility map (if a page has the corresponding VM
 bit set, then it is assumed to contain no dead tuples). For such
 pages, it derives the free space value from the free space map, and
 assumes that the rest of the space on the page is taken up by live
 tuples.

 For pages that cannot be skipped, it scans each tuple, recording its
 presence and size in the appropriate counters, and adding up the
 free space on the page. At the end, it estimates the total number of
 live tuples based on the number of pages and tuples scanned (in the
 same way that VACUUM estimates pg_class.reltuples).

Table F.25. pgstattuple_approx Output Columns
	Column	Type	Description
	table_len	bigint	Physical relation length in bytes (exact)
	scanned_percent	float8	Percentage of table scanned
	approx_tuple_count	bigint	Number of live tuples (estimated)
	approx_tuple_len	bigint	Total length of live tuples in bytes (estimated)
	approx_tuple_percent	float8	Percentage of live tuples
	dead_tuple_count	bigint	Number of dead tuples (exact)
	dead_tuple_len	bigint	Total length of dead tuples in bytes (exact)
	dead_tuple_percent	float8	Percentage of dead tuples
	approx_free_space	bigint	Total free space in bytes (estimated)
	approx_free_percent	float8	Percentage of free space

 In the above output, the free space figures may not match the
 pgstattuple output exactly, because the free
 space map gives us an exact figure, but is not guaranteed to be
 accurate to the byte.

Authors

 Tatsuo Ishii, Satoshi Nagayasu and Abhijit Menon-Sen

pg_surgery — perform low-level surgery on relation data

 The pg_surgery module provides various functions to
 perform surgery on a damaged relation. These functions are unsafe by design
 and using them may corrupt (or further corrupt) your database. For example,
 these functions can easily be used to make a table inconsistent with its
 own indexes, to cause UNIQUE or
 FOREIGN KEY constraint violations, or even to make
 tuples visible which, when read, will cause a database server crash.
 They should be used with great caution and only as a last resort.

Functions

	
 heap_force_kill(regclass, tid[]) returns void

	
 heap_force_kill marks “used” line
 pointers as “dead” without examining the tuples. The
 intended use of this function is to forcibly remove tuples that are not
 otherwise accessible. For example:

test=> select * from t1 where ctid = '(0, 1)';
ERROR: could not access status of transaction 4007513275
DETAIL: Could not open file "pg_xact/0EED": No such file or directory.

test=# select heap_force_kill('t1'::regclass, ARRAY['(0, 1)']::tid[]);
 heap_force_kill

(1 row)

test=# select * from t1 where ctid = '(0, 1)';
(0 rows)

	
 heap_force_freeze(regclass, tid[]) returns void

	
 heap_force_freeze marks tuples as frozen without
 examining the tuple data. The intended use of this function is to
 make accessible tuples which are inaccessible due to corrupted
 visibility information, or which prevent the table from being
 successfully vacuumed due to corrupted visibility information.
 For example:

test=> vacuum t1;
ERROR: found xmin 507 from before relfrozenxid 515
CONTEXT: while scanning block 0 of relation "public.t1"

test=# select ctid from t1 where xmin = 507;
 ctid

 (0,3)
(1 row)

test=# select heap_force_freeze('t1'::regclass, ARRAY['(0, 3)']::tid[]);
 heap_force_freeze

(1 row)

test=# select ctid from t1 where xmin = 2;
 ctid

 (0,3)
(1 row)

Authors

 Ashutosh Sharma <ashu.coek88@gmail.com>

pg_trgm —
 support for similarity of text using trigram matching

 The pg_trgm module provides functions and operators
 for determining the similarity of
 alphanumeric text based on trigram matching, as
 well as index operator classes that support fast searching for similar
 strings.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Trigram (or Trigraph) Concepts

 A trigram is a group of three consecutive characters taken
 from a string. We can measure the similarity of two strings by
 counting the number of trigrams they share. This simple idea
 turns out to be very effective for measuring the similarity of
 words in many natural languages.

Note

 pg_trgm ignores non-word characters
 (non-alphanumerics) when extracting trigrams from a string.
 Each word is considered to have two spaces
 prefixed and one space suffixed when determining the set
 of trigrams contained in the string.
 For example, the set of trigrams in the string
 “cat” is
 “ c”,
 “ ca”,
 “cat”, and
 “at ”.
 The set of trigrams in the string
 “foo|bar” is
 “ f”,
 “ fo”,
 “foo”,
 “oo ”,
 “ b”,
 “ ba”,
 “bar”, and
 “ar ”.

Functions and Operators

 The functions provided by the pg_trgm module
 are shown in Table F.26, “pg_trgm Functions”, the operators
 in Table F.27, “pg_trgm Operators”.

Table F.26. pg_trgm Functions
	
 Function

 Description

	

 similarity (text, text)
 real

 Returns a number that indicates how similar the two arguments are.
 The range of the result is zero (indicating that the two strings are
 completely dissimilar) to one (indicating that the two strings are
 identical).

	

 show_trgm (text)
 text[]

 Returns an array of all the trigrams in the given string.
 (In practice this is seldom useful except for debugging.)

	

 word_similarity (text, text)
 real

 Returns a number that indicates the greatest similarity between
 the set of trigrams in the first string and any continuous extent
 of an ordered set of trigrams in the second string. For details, see
 the explanation below.

	

 strict_word_similarity (text, text)
 real

 Same as word_similarity, but forces
 extent boundaries to match word boundaries. Since we don't have
 cross-word trigrams, this function actually returns greatest similarity
 between first string and any continuous extent of words of the second
 string.

	

 show_limit ()
 real

 Returns the current similarity threshold used by the %
 operator. This sets the minimum similarity between
 two words for them to be considered similar enough to
 be misspellings of each other, for example.
 (Deprecated; instead use SHOW
 pg_trgm.similarity_threshold.)

	

 set_limit (real)
 real

 Sets the current similarity threshold that is used by the %
 operator. The threshold must be between 0 and 1 (default is 0.3).
 Returns the same value passed in.
 (Deprecated; instead use SET
 pg_trgm.similarity_threshold.)

 Consider the following example:

SELECT word_similarity('word', 'two words');
 word_similarity

 0.8
(1 row)

 In the first string, the set of trigrams is
 {" w"," wo","wor","ord","rd "}.
 In the second string, the ordered set of trigrams is
 {" t"," tw","two","wo "," w"," wo","wor","ord","rds","ds "}.
 The most similar extent of an ordered set of trigrams in the second string
 is {" w"," wo","wor","ord"}, and the similarity is
 0.8.

 This function returns a value that can be approximately understood as the
 greatest similarity between the first string and any substring of the second
 string. However, this function does not add padding to the boundaries of
 the extent. Thus, the number of additional characters present in the
 second string is not considered, except for the mismatched word boundaries.

 At the same time, strict_word_similarity
 selects an extent of words in the second string. In the example above,
 strict_word_similarity would select the
 extent of a single word 'words', whose set of trigrams is
 {" w"," wo","wor","ord","rds","ds "}.

SELECT strict_word_similarity('word', 'two words'), similarity('word', 'words');
 strict_word_similarity | similarity
------------------------+------------
 0.571429 | 0.571429
(1 row)

 Thus, the strict_word_similarity function
 is useful for finding the similarity to whole words, while
 word_similarity is more suitable for
 finding the similarity for parts of words.

Table F.27. pg_trgm Operators
	
 Operator

 Description

	
 text % text
 boolean

 Returns true if its arguments have a similarity
 that is greater than the current similarity threshold set by
 pg_trgm.similarity_threshold.

	
 text <% text
 boolean

 Returns true if the similarity between the trigram
 set in the first argument and a continuous extent of an ordered trigram
 set in the second argument is greater than the current word similarity
 threshold set by pg_trgm.word_similarity_threshold
 parameter.

	
 text %> text
 boolean

 Commutator of the <% operator.

	
 text <<% text
 boolean

 Returns true if its second argument has a continuous
 extent of an ordered trigram set that matches word boundaries,
 and its similarity to the trigram set of the first argument is greater
 than the current strict word similarity threshold set by the
 pg_trgm.strict_word_similarity_threshold parameter.

	
 text %>> text
 boolean

 Commutator of the <<% operator.

	
 text <-> text
 real

 Returns the “distance” between the arguments, that is
 one minus the similarity() value.

	
 text <<-> text
 real

 Returns the “distance” between the arguments, that is
 one minus the word_similarity() value.

	
 text <->> text
 real

 Commutator of the <<-> operator.

	
 text <<<-> text
 real

 Returns the “distance” between the arguments, that is
 one minus the strict_word_similarity() value.

	
 text <->>> text
 real

 Commutator of the <<<-> operator.

GUC Parameters

	
 pg_trgm.similarity_threshold (real)

	
 Sets the current similarity threshold that is used by the %
 operator. The threshold must be between 0 and 1 (default is 0.3).

	
 pg_trgm.word_similarity_threshold (real)

	
 Sets the current word similarity threshold that is used by the
 <% and %> operators. The threshold
 must be between 0 and 1 (default is 0.6).

	
 pg_trgm.strict_word_similarity_threshold (real)

	
 Sets the current strict word similarity threshold that is used by the
 <<% and %>> operators. The threshold
 must be between 0 and 1 (default is 0.5).

Index Support

 The pg_trgm module provides GiST and GIN index
 operator classes that allow you to create an index over a text column for
 the purpose of very fast similarity searches. These index types support
 the above-described similarity operators, and additionally support
 trigram-based index searches for LIKE, ILIKE,
 ~, ~* and = queries.
 The similarity comparisons are case-insensitive in a default build of
 pg_trgm.
 Inequality operators are not supported.
 Note that those indexes may not be as efficient as regular B-tree indexes
 for equality operator.

 Example:

CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);

or

CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);

 gist_trgm_ops GiST opclass approximates a set of
 trigrams as a bitmap signature. Its optional integer parameter
 siglen determines the
 signature length in bytes. The default length is 12 bytes.
 Valid values of signature length are between 1 and 2024 bytes. Longer
 signatures lead to a more precise search (scanning a smaller fraction of the index and
 fewer heap pages), at the cost of a larger index.

 Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops(siglen=32));

 At this point, you will have an index on the t column that
 you can use for similarity searching. A typical query is

SELECT t, similarity(t, 'word') AS sml
 FROM test_trgm
 WHERE t % 'word'
 ORDER BY sml DESC, t;

 This will return all values in the text column that are sufficiently
 similar to word, sorted from best match to worst. The
 index will be used to make this a fast operation even over very large data
 sets.

 A variant of the above query is

SELECT t, t <-> 'word' AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

 This can be implemented quite efficiently by GiST indexes, but not
 by GIN indexes. It will usually beat the first formulation when only
 a small number of the closest matches is wanted.

 Also you can use an index on the t column for word
 similarity or strict word similarity. Typical queries are:

SELECT t, word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <% t
 ORDER BY sml DESC, t;

 and

SELECT t, strict_word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <<% t
 ORDER BY sml DESC, t;

 This will return all values in the text column for which there is a
 continuous extent in the corresponding ordered trigram set that is
 sufficiently similar to the trigram set of word,
 sorted from best match to worst. The index will be used to make this
 a fast operation even over very large data sets.

 Possible variants of the above queries are:

SELECT t, 'word' <<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

 and

SELECT t, 'word' <<<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

 This can be implemented quite efficiently by GiST indexes, but not
 by GIN indexes.

 Beginning in PostgreSQL™ 9.1, these index types also support
 index searches for LIKE and ILIKE, for example

SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';

 The index search works by extracting trigrams from the search string
 and then looking these up in the index. The more trigrams in the search
 string, the more effective the index search is. Unlike B-tree based
 searches, the search string need not be left-anchored.

 Beginning in PostgreSQL™ 9.3, these index types also support
 index searches for regular-expression matches
 (~ and ~* operators), for example

SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';

 The index search works by extracting trigrams from the regular expression
 and then looking these up in the index. The more trigrams that can be
 extracted from the regular expression, the more effective the index search
 is. Unlike B-tree based searches, the search string need not be
 left-anchored.

 For both LIKE and regular-expression searches, keep in mind
 that a pattern with no extractable trigrams will degenerate to a full-index
 scan.

 The choice between GiST and GIN indexing depends on the relative
 performance characteristics of GiST and GIN, which are discussed elsewhere.

Text Search Integration

 Trigram matching is a very useful tool when used in conjunction
 with a full text index. In particular it can help to recognize
 misspelled input words that will not be matched directly by the
 full text search mechanism.

 The first step is to generate an auxiliary table containing all
 the unique words in the documents:

CREATE TABLE words AS SELECT word FROM
 ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');

 where documents is a table that has a text field
 bodytext that we wish to search. The reason for using
 the simple configuration with the to_tsvector
 function, instead of using a language-specific configuration,
 is that we want a list of the original (unstemmed) words.

 Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);

 Now, a SELECT query similar to the previous example can
 be used to suggest spellings for misspelled words in user search terms.
 A useful extra test is to require that the selected words are also of
 similar length to the misspelled word.

Note

 Since the words table has been generated as a separate,
 static table, it will need to be periodically regenerated so that
 it remains reasonably up-to-date with the document collection.
 Keeping it exactly current is usually unnecessary.

References

 GiST Development Site
 http://www.sai.msu.su/~megera/postgres/gist/

 Tsearch2 Development Site
 http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

Authors

 Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

 Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

 Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia

 Documentation: Christopher Kings-Lynne

 This module is sponsored by Delta-Soft Ltd., Moscow, Russia.

pg_visibility — visibility map information and utilities

 The pg_visibility module provides a means for examining the
 visibility map (VM) and page-level visibility information of a table.
 It also provides functions to check the integrity of a visibility map and to
 force it to be rebuilt.

 Three different bits are used to store information about page-level
 visibility. The all-visible bit in the visibility map indicates that every
 tuple in the corresponding page of the relation is visible to every current
 and future transaction. The all-frozen bit in the visibility map indicates
 that every tuple in the page is frozen; that is, no future vacuum will need
 to modify the page until such time as a tuple is inserted, updated, deleted,
 or locked on that page.
 The page header's PD_ALL_VISIBLE bit has the
 same meaning as the all-visible bit in the visibility map, but is stored
 within the data page itself rather than in a separate data structure.
 These two bits will normally agree, but the page's all-visible bit can
 sometimes be set while the visibility map bit is clear after a crash
 recovery. The reported values can also disagree because of a change that
 occurs after pg_visibility examines the visibility map and
 before it examines the data page. Any event that causes data corruption
 can also cause these bits to disagree.

 Functions that display information about PD_ALL_VISIBLE bits
 are much more costly than those that only consult the visibility map,
 because they must read the relation's data blocks rather than only the
 (much smaller) visibility map. Functions that check the relation's
 data blocks are similarly expensive.

Functions

	pg_visibility_map(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT boolean) returns record
	
 Returns the all-visible and all-frozen bits in the visibility map for
 the given block of the given relation.

	pg_visibility(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT boolean, pd_all_visible OUT boolean) returns record
	
 Returns the all-visible and all-frozen bits in the visibility map for
 the given block of the given relation, plus the
 PD_ALL_VISIBLE bit of that block.

	pg_visibility_map(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen OUT boolean) returns setof record
	
 Returns the all-visible and all-frozen bits in the visibility map for
 each block of the given relation.

	pg_visibility(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen OUT boolean, pd_all_visible OUT boolean) returns setof record
	
 Returns the all-visible and all-frozen bits in the visibility map for
 each block of the given relation, plus the PD_ALL_VISIBLE
 bit of each block.

	pg_visibility_map_summary(relation regclass, all_visible OUT bigint, all_frozen OUT bigint) returns record
	
 Returns the number of all-visible pages and the number of all-frozen
 pages in the relation according to the visibility map.

	pg_check_frozen(relation regclass, t_ctid OUT tid) returns setof tid
	
 Returns the TIDs of non-frozen tuples stored in pages marked all-frozen
 in the visibility map. If this function returns a non-empty set of
 TIDs, the visibility map is corrupt.

	pg_check_visible(relation regclass, t_ctid OUT tid) returns setof tid
	
 Returns the TIDs of non-all-visible tuples stored in pages marked
 all-visible in the visibility map. If this function returns a non-empty
 set of TIDs, the visibility map is corrupt.

	pg_truncate_visibility_map(relation regclass) returns void
	
 Truncates the visibility map for the given relation. This function is
 useful if you believe that the visibility map for the relation is
 corrupt and wish to force rebuilding it. The first VACUUM
 executed on the given relation after this function is executed will scan
 every page in the relation and rebuild the visibility map. (Until that
 is done, queries will treat the visibility map as containing all zeroes.)

 By default, these functions are executable only by superusers and roles with privileges
 of the pg_stat_scan_tables role, with the exception of
 pg_truncate_visibility_map(relation regclass) which can only
 be executed by superusers.

Author

 Robert Haas <rhaas@postgresql.org>

pg_walinspect — low-level WAL inspection

 The pg_walinspect module provides SQL functions that
 allow you to inspect the contents of write-ahead log of
 a running PostgreSQL™ database cluster at a low
 level, which is useful for debugging, analytical, reporting or
 educational purposes. It is similar to pg_waldump(1), but
 accessible through SQL rather than a separate utility.

 All the functions of this module will provide the WAL information using the
 server's current timeline ID.

Note

 The pg_walinspect functions are often called
 using an LSN argument that specifies the location at which a known
 WAL record of interest begins. However, some
 functions, such as
 pg_logical_emit_message,
 return the LSN after the record that was just
 inserted.

Tip

 All of the pg_walinspect functions that show
 information about records that fall within a certain LSN range are
 permissive about accepting end_lsn
 arguments that are after the server's current LSN. Using an
 end_lsn “from the future”
 will not raise an error.

 It may be convenient to provide the value
 FFFFFFFF/FFFFFFFF (the maximum valid
 pg_lsn value) as an end_lsn
 argument. This is equivalent to providing an
 end_lsn argument matching the server's
 current LSN.

 By default, use of these functions is restricted to superusers and members of
 the pg_read_server_files role. Access may be granted by
 superusers to others using GRANT.

General Functions

	
 pg_get_wal_record_info(in_lsn pg_lsn) returns record

	
 Gets WAL record information about a record that is located at or
 after the in_lsn argument. For
 example:

postgres=# SELECT * FROM pg_get_wal_record_info('0/E419E28');
-[RECORD 1]----+---
start_lsn | 0/E419E28
end_lsn | 0/E419E68
prev_lsn | 0/E419D78
xid | 0
resource_manager | Heap2
record_type | VACUUM
record_length | 58
main_data_length | 2
fpi_length | 0
description | nunused: 5, unused: [1, 2, 3, 4, 5]
block_ref | blkref #0: rel 1663/16385/1249 fork main blk 364

 If in_lsn isn't at the start of a WAL
 record, information about the next valid WAL record is shown
 instead. If there is no next valid WAL record, the function
 raises an error.

	

 pg_get_wal_records_info(start_lsn pg_lsn, end_lsn pg_lsn)
 returns setof record

	
 Gets information of all the valid WAL records between
 start_lsn and end_lsn.
 Returns one row per WAL record. For example:

postgres=# SELECT * FROM pg_get_wal_records_info('0/1E913618', '0/1E913740') LIMIT 1;
-[RECORD 1]----+--
start_lsn | 0/1E913618
end_lsn | 0/1E913650
prev_lsn | 0/1E9135A0
xid | 0
resource_manager | Standby
record_type | RUNNING_XACTS
record_length | 50
main_data_length | 24
fpi_length | 0
description | nextXid 33775 latestCompletedXid 33774 oldestRunningXid 33775
block_ref |

 The function raises an error if
 start_lsn is not available.

	
 pg_get_wal_block_info(start_lsn pg_lsn, end_lsn pg_lsn, show_data boolean DEFAULT true) returns setof record

	
 Gets information about each block reference from all the valid
 WAL records between start_lsn and
 end_lsn with one or more block
 references. Returns one row per block reference per WAL record.
 For example:

postgres=# SELECT * FROM pg_get_wal_block_info('0/1230278', '0/12302B8');
-[RECORD 1]-----+-----------------------------------
start_lsn | 0/1230278
end_lsn | 0/12302B8
prev_lsn | 0/122FD40
block_id | 0
reltablespace | 1663
reldatabase | 1
relfilenode | 2658
relforknumber | 0
relblocknumber | 11
xid | 341
resource_manager | Btree
record_type | INSERT_LEAF
record_length | 64
main_data_length | 2
block_data_length | 16
block_fpi_length | 0
block_fpi_info |
description | off: 46
block_data | \x00002a00070010402630000070696400
block_fpi_data |

 This example involves a WAL record that only contains one block
 reference, but many WAL records contain several block
 references. Rows output by
 pg_get_wal_block_info are guaranteed to
 have a unique combination of
 start_lsn and
 block_id values.

 Much of the information shown here matches the output that
 pg_get_wal_records_info would show, given
 the same arguments. However,
 pg_get_wal_block_info unnests the
 information from each WAL record into an expanded form by
 outputting one row per block reference, so certain details are
 tracked at the block reference level rather than at the
 whole-record level. This structure is useful with queries that
 track how individual blocks changed over time. Note that
 records with no block references (e.g.,
 COMMIT WAL records) will have no rows
 returned, so pg_get_wal_block_info may
 actually return fewer rows than
 pg_get_wal_records_info.

 The reltablespace,
 reldatabase, and
 relfilenode parameters reference
 pg_tablespace.oid,
 pg_database.oid, and
 pg_class.relfilenode
 respectively. The relforknumber
 field is the fork number within the relation for the block
 reference; see common/relpath.h for
 details.

Tip

 The pg_filenode_relation function (see
 Table 9.97, “Database Object Location Functions”) can help you to
 determine which relation was modified during original execution.

 It is possible for clients to avoid the overhead of
 materializing block data. This may make function execution
 significantly faster. When show_data
 is set to false, block_data
 and block_fpi_data values are omitted
 (that is, the block_data and
 block_fpi_data OUT
 arguments are NULL for all rows returned).
 Obviously, this optimization is only feasible with queries where
 block data isn't truly required.

 The function raises an error if
 start_lsn is not available.

	

 pg_get_wal_stats(start_lsn pg_lsn, end_lsn pg_lsn, per_record boolean DEFAULT false)
 returns setof record

	
 Gets statistics of all the valid WAL records between
 start_lsn and
 end_lsn. By default, it returns one row per
 resource_manager type. When
 per_record is set to true,
 it returns one row per record_type.
 For example:

postgres=# SELECT * FROM pg_get_wal_stats('0/1E847D00', '0/1E84F500')
 WHERE count > 0 AND
 "resource_manager/record_type" = 'Transaction'
 LIMIT 1;
-[RECORD 1]----------------+-------------------
resource_manager/record_type | Transaction
count | 2
count_percentage | 8
record_size | 875
record_size_percentage | 41.23468426013195
fpi_size | 0
fpi_size_percentage | 0
combined_size | 875
combined_size_percentage | 2.8634072910530795

 The function raises an error if
 start_lsn is not available.

Author

 Bharath Rupireddy <bharath.rupireddyforpostgres@gmail.com>

postgres_fdw —
 access data stored in external PostgreSQL™
 servers

 The postgres_fdw module provides the foreign-data wrapper
 postgres_fdw, which can be used to access data
 stored in external PostgreSQL™ servers.

 The functionality provided by this module overlaps substantially
 with the functionality of the older dblink module.
 But postgres_fdw provides more transparent and
 standards-compliant syntax for accessing remote tables, and can give
 better performance in many cases.

 To prepare for remote access using postgres_fdw:

	
 Install the postgres_fdw extension using CREATE EXTENSION(7).

	
 Create a foreign server object, using CREATE SERVER(7),
 to represent each remote database you want to connect to.
 Specify connection information, except user and
 password, as options of the server object.

	
 Create a user mapping, using CREATE USER MAPPING(7), for
 each database user you want to allow to access each foreign server.
 Specify the remote user name and password to use as
 user and password options of the
 user mapping.

	
 Create a foreign table, using CREATE FOREIGN TABLE(7)
 or IMPORT FOREIGN SCHEMA(7),
 for each remote table you want to access. The columns of the foreign
 table must match the referenced remote table. You can, however, use
 table and/or column names different from the remote table's, if you
 specify the correct remote names as options of the foreign table object.

 Now you need only SELECT from a foreign table to access
 the data stored in its underlying remote table. You can also modify
 the remote table using INSERT, UPDATE,
 DELETE, COPY, or
 TRUNCATE.
 (Of course, the remote user you have specified in your user mapping must
 have privileges to do these things.)

 Note that the ONLY option specified in
 SELECT, UPDATE,
 DELETE or TRUNCATE
 has no effect when accessing or modifying the remote table.

 Note that postgres_fdw currently lacks support for
 INSERT statements with an ON CONFLICT DO
 UPDATE clause. However, the ON CONFLICT DO NOTHING
 clause is supported, provided a unique index inference specification
 is omitted.
 Note also that postgres_fdw supports row movement
 invoked by UPDATE statements executed on partitioned
 tables, but it currently does not handle the case where a remote partition
 chosen to insert a moved row into is also an UPDATE
 target partition that will be updated elsewhere in the same command.

 It is generally recommended that the columns of a foreign table be declared
 with exactly the same data types, and collations if applicable, as the
 referenced columns of the remote table. Although postgres_fdw
 is currently rather forgiving about performing data type conversions at
 need, surprising semantic anomalies may arise when types or collations do
 not match, due to the remote server interpreting query conditions
 differently from the local server.

 Note that a foreign table can be declared with fewer columns, or with a
 different column order, than its underlying remote table has. Matching
 of columns to the remote table is by name, not position.

FDW Options of postgres_fdw

Connection Options

 A foreign server using the postgres_fdw foreign data wrapper
 can have the same options that libpq accepts in
 connection strings, as described in the section called “Parameter Key Words”,
 except that these options are not allowed or have special handling:

	
 user, password and sslpassword (specify these
 in a user mapping, instead, or use a service file)

	
 client_encoding (this is automatically set from the local
 server encoding)

	
 application_name - this may appear in
 either or both a connection and
 postgres_fdw.application_name.
 If both are present, postgres_fdw.application_name
 overrides the connection setting.
 Unlike libpq,
 postgres_fdw allows
 application_name to include
 “escape sequences”.
 See postgres_fdw.application_name for details.

	
 fallback_application_name (always set to
 postgres_fdw)

	
 sslkey and sslcert - these may
 appear in either or both a connection and a user
 mapping. If both are present, the user mapping setting overrides the
 connection setting.

 Only superusers may create or modify user mappings with the
 sslcert or sslkey settings.

 Non-superusers may connect to foreign servers using password
 authentication or with GSSAPI delegated credentials, so specify the
 password option for user mappings belonging to
 non-superusers where password authentication is required.

 A superuser may override this check on a per-user-mapping basis by setting
 the user mapping option password_required 'false', e.g.,

ALTER USER MAPPING FOR some_non_superuser SERVER loopback_nopw
OPTIONS (ADD password_required 'false');

 To prevent unprivileged users from exploiting the authentication rights
 of the unix user the postgres server is running as to escalate to superuser
 rights, only the superuser may set this option on a user mapping.

 Care is required to ensure that this does not allow the mapped
 user the ability to connect as superuser to the mapped database per
 CVE-2007-3278 and CVE-2007-6601. Don't set
 password_required=false
 on the public role. Keep in mind that the mapped
 user can potentially use any client certificates,
 .pgpass,
 .pg_service.conf etc. in the unix home directory of the
 system user the postgres server runs as. They can also use any trust
 relationship granted by authentication modes like peer
 or ident authentication.

Object Name Options

 These options can be used to control the names used in SQL statements
 sent to the remote PostgreSQL™ server. These
 options are needed when a foreign table is created with names different
 from the underlying remote table's names.

	schema_name (string)
	
 This option, which can be specified for a foreign table, gives the
 schema name to use for the foreign table on the remote server. If this
 option is omitted, the name of the foreign table's schema is used.

	table_name (string)
	
 This option, which can be specified for a foreign table, gives the
 table name to use for the foreign table on the remote server. If this
 option is omitted, the foreign table's name is used.

	column_name (string)
	
 This option, which can be specified for a column of a foreign table,
 gives the column name to use for the column on the remote server.
 If this option is omitted, the column's name is used.

Cost Estimation Options

 postgres_fdw retrieves remote data by executing queries
 against remote servers, so ideally the estimated cost of scanning a
 foreign table should be whatever it costs to be done on the remote
 server, plus some overhead for communication. The most reliable way to
 get such an estimate is to ask the remote server and then add something
 for overhead — but for simple queries, it may not be worth the cost
 of an additional remote query to get a cost estimate.
 So postgres_fdw provides the following options to control
 how cost estimation is done:

	use_remote_estimate (boolean)
	
 This option, which can be specified for a foreign table or a foreign
 server, controls whether postgres_fdw issues remote
 EXPLAIN commands to obtain cost estimates.
 A setting for a foreign table overrides any setting for its server,
 but only for that table.
 The default is false.

	fdw_startup_cost (floating point)
	
 This option, which can be specified for a foreign server, is a floating
 point value that is added to the estimated startup cost of any
 foreign-table scan on that server. This represents the additional
 overhead of establishing a connection, parsing and planning the query on
 the remote side, etc.
 The default value is 100.

	fdw_tuple_cost (floating point)
	
 This option, which can be specified for a foreign server, is a floating
 point value that is used as extra cost per-tuple for foreign-table
 scans on that server. This represents the additional overhead of
 data transfer between servers. You might increase or decrease this
 number to reflect higher or lower network delay to the remote server.
 The default value is 0.01.

 When use_remote_estimate is true,
 postgres_fdw obtains row count and cost estimates from the
 remote server and then adds fdw_startup_cost and
 fdw_tuple_cost to the cost estimates. When
 use_remote_estimate is false,
 postgres_fdw performs local row count and cost estimation
 and then adds fdw_startup_cost and
 fdw_tuple_cost to the cost estimates. This local
 estimation is unlikely to be very accurate unless local copies of the
 remote table's statistics are available. Running
 ANALYZE(7) on the foreign table is the way to update
 the local statistics; this will perform a scan of the remote table and
 then calculate and store statistics just as though the table were local.
 Keeping local statistics can be a useful way to reduce per-query planning
 overhead for a remote table — but if the remote table is
 frequently updated, the local statistics will soon be obsolete.

 The following option controls how such an ANALYZE
 operation behaves:

	analyze_sampling (string)
	
 This option, which can be specified for a foreign table or a foreign
 server, determines if ANALYZE on a foreign table
 samples the data on the remote side, or reads and transfers all data
 and performs the sampling locally. The supported values
 are off, random,
 system, bernoulli
 and auto. off disables remote
 sampling, so all data are transferred and sampled locally.
 random performs remote sampling using the
 random() function to choose returned rows,
 while system and bernoulli rely
 on the built-in TABLESAMPLE methods of those
 names. random works on all remote server versions,
 while TABLESAMPLE is supported only since 9.5.
 auto (the default) picks the recommended sampling
 method automatically; currently it means
 either bernoulli or random
 depending on the remote server version.

Remote Execution Options

 By default, only WHERE clauses using built-in operators and
 functions will be considered for execution on the remote server. Clauses
 involving non-built-in functions are checked locally after rows are
 fetched. If such functions are available on the remote server and can be
 relied on to produce the same results as they do locally, performance can
 be improved by sending such WHERE clauses for remote
 execution. This behavior can be controlled using the following option:

	extensions (string)
	
 This option is a comma-separated list of names
 of PostgreSQL™ extensions that are installed, in
 compatible versions, on both the local and remote servers. Functions
 and operators that are immutable and belong to a listed extension will
 be considered shippable to the remote server.
 This option can only be specified for foreign servers, not per-table.

 When using the extensions option, it is the
 user's responsibility that the listed extensions exist and behave
 identically on both the local and remote servers. Otherwise, remote
 queries may fail or behave unexpectedly.

	fetch_size (integer)
	
 This option specifies the number of rows postgres_fdw
 should get in each fetch operation. It can be specified for a foreign
 table or a foreign server. The option specified on a table overrides
 an option specified for the server.
 The default is 100.

	batch_size (integer)
	
 This option specifies the number of rows postgres_fdw
 should insert in each insert operation. It can be specified for a
 foreign table or a foreign server. The option specified on a table
 overrides an option specified for the server.
 The default is 1.

 Note the actual number of rows postgres_fdw inserts at
 once depends on the number of columns and the provided
 batch_size value. The batch is executed as a single
 query, and the libpq protocol (which postgres_fdw
 uses to connect to a remote server) limits the number of parameters in a
 single query to 65535. When the number of columns * batch_size
 exceeds the limit, the batch_size will be adjusted to
 avoid an error.

 This option also applies when copying into foreign tables. In that case
 the actual number of rows postgres_fdw copies at
 once is determined in a similar way to the insert case, but it is
 limited to at most 1000 due to implementation restrictions of the
 COPY command.

Asynchronous Execution Options

 postgres_fdw supports asynchronous execution, which
 runs multiple parts of an Append node
 concurrently rather than serially to improve performance.
 This execution can be controlled using the following option:

	async_capable (boolean)
	
 This option controls whether postgres_fdw allows
 foreign tables to be scanned concurrently for asynchronous execution.
 It can be specified for a foreign table or a foreign server.
 A table-level option overrides a server-level option.
 The default is false.

 In order to ensure that the data being returned from a foreign server
 is consistent, postgres_fdw will only open one
 connection for a given foreign server and will run all queries against
 that server sequentially even if there are multiple foreign tables
 involved, unless those tables are subject to different user mappings.
 In such a case, it may be more performant to disable this option to
 eliminate the overhead associated with running queries asynchronously.

 Asynchronous execution is applied even when an
 Append node contains subplan(s) executed
 synchronously as well as subplan(s) executed asynchronously.
 In such a case, if the asynchronous subplans are ones processed using
 postgres_fdw, tuples from the asynchronous
 subplans are not returned until after at least one synchronous subplan
 returns all tuples, as that subplan is executed while the asynchronous
 subplans are waiting for the results of asynchronous queries sent to
 foreign servers.
 This behavior might change in a future release.

Transaction Management Options

 As described in the Transaction Management section, in
 postgres_fdw transactions are managed by creating
 corresponding remote transactions, and subtransactions are managed by
 creating corresponding remote subtransactions. When multiple remote
 transactions are involved in the current local transaction, by default
 postgres_fdw commits or aborts those remote
 transactions serially when the local transaction is committed or aborted.
 When multiple remote subtransactions are involved in the current local
 subtransaction, by default postgres_fdw commits or
 aborts those remote subtransactions serially when the local subtransaction
 is committed or aborted.
 Performance can be improved with the following options:

	parallel_commit (boolean)
	
 This option controls whether postgres_fdw commits,
 in parallel, remote transactions opened on a foreign server in a local
 transaction when the local transaction is committed. This setting also
 applies to remote and local subtransactions. This option can only be
 specified for foreign servers, not per-table. The default is
 false.

	parallel_abort (boolean)
	
 This option controls whether postgres_fdw aborts,
 in parallel, remote transactions opened on a foreign server in a local
 transaction when the local transaction is aborted. This setting also
 applies to remote and local subtransactions. This option can only be
 specified for foreign servers, not per-table. The default is
 false.

 If multiple foreign servers with these options enabled are involved in a
 local transaction, multiple remote transactions on those foreign servers
 are committed or aborted in parallel across those foreign servers when
 the local transaction is committed or aborted.

 When these options are enabled, a foreign server with many remote
 transactions may see a negative performance impact when the local
 transaction is committed or aborted.

Updatability Options

 By default all foreign tables using postgres_fdw are assumed
 to be updatable. This may be overridden using the following option:

	updatable (boolean)
	
 This option controls whether postgres_fdw allows foreign
 tables to be modified using INSERT, UPDATE and
 DELETE commands. It can be specified for a foreign table
 or a foreign server. A table-level option overrides a server-level
 option.
 The default is true.

 Of course, if the remote table is not in fact updatable, an error
 would occur anyway. Use of this option primarily allows the error to
 be thrown locally without querying the remote server. Note however
 that the information_schema views will report a
 postgres_fdw foreign table to be updatable (or not)
 according to the setting of this option, without any check of the
 remote server.

Truncatability Options

 By default all foreign tables using postgres_fdw are assumed
 to be truncatable. This may be overridden using the following option:

	truncatable (boolean)
	
 This option controls whether postgres_fdw allows
 foreign tables to be truncated using the TRUNCATE
 command. It can be specified for a foreign table or a foreign server.
 A table-level option overrides a server-level option.
 The default is true.

 Of course, if the remote table is not in fact truncatable, an error
 would occur anyway. Use of this option primarily allows the error to
 be thrown locally without querying the remote server.

Importing Options

 postgres_fdw is able to import foreign table definitions
 using IMPORT FOREIGN SCHEMA(7). This command creates
 foreign table definitions on the local server that match tables or
 views present on the remote server. If the remote tables to be imported
 have columns of user-defined data types, the local server must have
 compatible types of the same names.

 Importing behavior can be customized with the following options
 (given in the IMPORT FOREIGN SCHEMA command):

	import_collate (boolean)
	
 This option controls whether column COLLATE options
 are included in the definitions of foreign tables imported
 from a foreign server. The default is true. You might
 need to turn this off if the remote server has a different set of
 collation names than the local server does, which is likely to be the
 case if it's running on a different operating system.
 If you do so, however, there is a very severe risk that the imported
 table columns' collations will not match the underlying data, resulting
 in anomalous query behavior.

 Even when this parameter is set to true, importing
 columns whose collation is the remote server's default can be risky.
 They will be imported with COLLATE "default", which
 will select the local server's default collation, which could be
 different.

	import_default (boolean)
	
 This option controls whether column DEFAULT expressions
 are included in the definitions of foreign tables imported
 from a foreign server. The default is false. If you
 enable this option, be wary of defaults that might get computed
 differently on the local server than they would be on the remote
 server; nextval() is a common source of problems.
 The IMPORT will fail altogether if an imported default
 expression uses a function or operator that does not exist locally.

	import_generated (boolean)
	
 This option controls whether column GENERATED expressions
 are included in the definitions of foreign tables imported
 from a foreign server. The default is true.
 The IMPORT will fail altogether if an imported generated
 expression uses a function or operator that does not exist locally.

	import_not_null (boolean)
	
 This option controls whether column NOT NULL
 constraints are included in the definitions of foreign tables imported
 from a foreign server. The default is true.

 Note that constraints other than NOT NULL will never be
 imported from the remote tables. Although PostgreSQL™
 does support check constraints on foreign tables, there is no
 provision for importing them automatically, because of the risk that a
 constraint expression could evaluate differently on the local and remote
 servers. Any such inconsistency in the behavior of a check
 constraint could lead to hard-to-detect errors in query optimization.
 So if you wish to import check constraints, you must do so
 manually, and you should verify the semantics of each one carefully.
 For more detail about the treatment of check constraints on
 foreign tables, see CREATE FOREIGN TABLE(7).

 Tables or foreign tables which are partitions of some other table are
 imported only when they are explicitly specified in
 LIMIT TO clause. Otherwise they are automatically
 excluded from IMPORT FOREIGN SCHEMA(7).
 Since all data can be accessed through the partitioned table
 which is the root of the partitioning hierarchy, importing only
 partitioned tables should allow access to all the data without
 creating extra objects.

Connection Management Options

 By default, all connections that postgres_fdw
 establishes to foreign servers are kept open in the local session
 for re-use.

	keep_connections (boolean)
	
 This option controls whether postgres_fdw keeps
 the connections to the foreign server open so that subsequent
 queries can re-use them. It can only be specified for a foreign server.
 The default is on. If set to off,
 all connections to this foreign server will be discarded at the end of
 each transaction.

Functions

	postgres_fdw_get_connections(OUT server_name text, OUT valid boolean) returns setof record
	
 This function returns the foreign server names of all the open
 connections that postgres_fdw established from
 the local session to the foreign servers. It also returns whether
 each connection is valid or not. false is returned
 if the foreign server connection is used in the current local
 transaction but its foreign server or user mapping is changed or
 dropped (Note that server name of an invalid connection will be
 NULL if the server is dropped),
 and then such invalid connection will be closed at
 the end of that transaction. true is returned
 otherwise. If there are no open connections, no record is returned.
 Example usage of the function:

postgres=# SELECT * FROM postgres_fdw_get_connections() ORDER BY 1;
 server_name | valid
-------------+-------
 loopback1 | t
 loopback2 | f

	postgres_fdw_disconnect(server_name text) returns boolean
	
 This function discards the open connections that are established by
 postgres_fdw from the local session to
 the foreign server with the given name. Note that there can be
 multiple connections to the given server using different user mappings.
 If the connections are used in the current local transaction,
 they are not disconnected and warning messages are reported.
 This function returns true if it disconnects
 at least one connection, otherwise false.
 If no foreign server with the given name is found, an error is reported.
 Example usage of the function:

postgres=# SELECT postgres_fdw_disconnect('loopback1');
 postgres_fdw_disconnect

 t

	postgres_fdw_disconnect_all() returns boolean
	
 This function discards all the open connections that are established by
 postgres_fdw from the local session to
 foreign servers. If the connections are used in the current local
 transaction, they are not disconnected and warning messages are reported.
 This function returns true if it disconnects
 at least one connection, otherwise false.
 Example usage of the function:

postgres=# SELECT postgres_fdw_disconnect_all();
 postgres_fdw_disconnect_all

 t

Connection Management

 postgres_fdw establishes a connection to a
 foreign server during the first query that uses a foreign table
 associated with the foreign server. By default this connection
 is kept and re-used for subsequent queries in the same session.
 This behavior can be controlled using
 keep_connections option for a foreign server. If
 multiple user identities (user mappings) are used to access the foreign
 server, a connection is established for each user mapping.

 When changing the definition of or removing a foreign server or
 a user mapping, the associated connections are closed.
 But note that if any connections are in use in the current local transaction,
 they are kept until the end of the transaction.
 Closed connections will be re-established when they are necessary
 by future queries using a foreign table.

 Once a connection to a foreign server has been established,
 it's by default kept until the local or corresponding remote
 session exits. To disconnect a connection explicitly,
 keep_connections option for a foreign server
 may be disabled, or
 postgres_fdw_disconnect and
 postgres_fdw_disconnect_all functions
 may be used. For example, these are useful to close
 connections that are no longer necessary, thereby releasing
 connections on the foreign server.

Transaction Management

 During a query that references any remote tables on a foreign server,
 postgres_fdw opens a transaction on the
 remote server if one is not already open corresponding to the current
 local transaction. The remote transaction is committed or aborted when
 the local transaction commits or aborts. Savepoints are similarly
 managed by creating corresponding remote savepoints.

 The remote transaction uses SERIALIZABLE
 isolation level when the local transaction has SERIALIZABLE
 isolation level; otherwise it uses REPEATABLE READ
 isolation level. This choice ensures that if a query performs multiple
 table scans on the remote server, it will get snapshot-consistent results
 for all the scans. A consequence is that successive queries within a
 single transaction will see the same data from the remote server, even if
 concurrent updates are occurring on the remote server due to other
 activities. That behavior would be expected anyway if the local
 transaction uses SERIALIZABLE or REPEATABLE READ
 isolation level, but it might be surprising for a READ
 COMMITTED local transaction. A future
 PostgreSQL™ release might modify these rules.

 Note that it is currently not supported by
 postgres_fdw to prepare the remote transaction for
 two-phase commit.

Remote Query Optimization

 postgres_fdw attempts to optimize remote queries to reduce
 the amount of data transferred from foreign servers. This is done by
 sending query WHERE clauses to the remote server for
 execution, and by not retrieving table columns that are not needed for
 the current query. To reduce the risk of misexecution of queries,
 WHERE clauses are not sent to the remote server unless they use
 only data types, operators, and functions that are built-in or belong to an
 extension that's listed in the foreign server's extensions
 option. Operators and functions in such clauses must
 be IMMUTABLE as well.
 For an UPDATE or DELETE query,
 postgres_fdw attempts to optimize the query execution by
 sending the whole query to the remote server if there are no query
 WHERE clauses that cannot be sent to the remote server,
 no local joins for the query, no row-level local BEFORE or
 AFTER triggers or stored generated columns on the target
 table, and no CHECK OPTION constraints from parent
 views. In UPDATE,
 expressions to assign to target columns must use only built-in data types,
 IMMUTABLE operators, or IMMUTABLE functions,
 to reduce the risk of misexecution of the query.

 When postgres_fdw encounters a join between foreign tables on
 the same foreign server, it sends the entire join to the foreign server,
 unless for some reason it believes that it will be more efficient to fetch
 rows from each table individually, or unless the table references involved
 are subject to different user mappings. While sending the JOIN
 clauses, it takes the same precautions as mentioned above for the
 WHERE clauses.

 The query that is actually sent to the remote server for execution can
 be examined using EXPLAIN VERBOSE.

Remote Query Execution Environment

 In the remote sessions opened by postgres_fdw,
 the search_path parameter is set to
 just pg_catalog, so that only built-in objects are visible
 without schema qualification. This is not an issue for queries
 generated by postgres_fdw itself, because it always
 supplies such qualification. However, this can pose a hazard for
 functions that are executed on the remote server via triggers or rules
 on remote tables. For example, if a remote table is actually a view,
 any functions used in that view will be executed with the restricted
 search path. It is recommended to schema-qualify all names in such
 functions, or else attach SET search_path options
 (see CREATE FUNCTION(7)) to such functions
 to establish their expected search path environment.

 postgres_fdw likewise establishes remote session settings
 for various parameters:

	
 TimeZone is set to UTC

	
 DateStyle is set to ISO

	
 IntervalStyle is set to postgres

	
 extra_float_digits is set to 3 for remote
 servers 9.0 and newer and is set to 2 for older versions

 These are less likely to be problematic than search_path, but
 can be handled with function SET options if the need arises.

 It is not recommended that you override this behavior by
 changing the session-level settings of these parameters; that is likely
 to cause postgres_fdw to malfunction.

Cross-Version Compatibility

 postgres_fdw can be used with remote servers dating back
 to PostgreSQL™ 8.3. Read-only capability is available
 back to 8.1. A limitation however is that postgres_fdw
 generally assumes that immutable built-in functions and operators are
 safe to send to the remote server for execution, if they appear in a
 WHERE clause for a foreign table. Thus, a built-in
 function that was added since the remote server's release might be sent
 to it for execution, resulting in “function does not exist” or
 a similar error. This type of failure can be worked around by
 rewriting the query, for example by embedding the foreign table
 reference in a sub-SELECT with OFFSET 0 as an
 optimization fence, and placing the problematic function or operator
 outside the sub-SELECT.

Configuration Parameters

	
 postgres_fdw.application_name (string)

	
 Specifies a value for application_name
 configuration parameter used when postgres_fdw
 establishes a connection to a foreign server. This overrides
 application_name option of the server object.
 Note that change of this parameter doesn't affect any existing
 connections until they are re-established.

 postgres_fdw.application_name can be any string
 of any length and contain even non-ASCII characters. However when
 it's passed to and used as application_name
 in a foreign server, note that it will be truncated to less than
 NAMEDATALEN characters.
 Anything other than printable ASCII characters are replaced with C-style hexadecimal escapes.
 See application_name for details.

 % characters begin “escape sequences”
 that are replaced with status information as outlined below.
 Unrecognized escapes are ignored. Other characters are copied straight
 to the application name. Note that it's not allowed to specify a
 plus/minus sign or a numeric literal after the %
 and before the option, for alignment and padding.

	Escape	Effect
	%a	Application name on local server
	%c	
 Session ID on local server
 (see log_line_prefix for details)

	%C	
 Cluster name on local server
 (see cluster_name for details)

	%u	User name on local server
	%d	Database name on local server
	%p	Process ID of backend on local server
	%%	Literal %

 For example, suppose user local_user establishes
 a connection from database local_db to
 foreign_db as user foreign_user,
 the setting 'db=%d, user=%u' is replaced with
 'db=local_db, user=local_user'.

Examples

 Here is an example of creating a foreign table with
 postgres_fdw. First install the extension:

CREATE EXTENSION postgres_fdw;

 Then create a foreign server using CREATE SERVER(7).
 In this example we wish to connect to a PostgreSQL™ server
 on host 192.83.123.89 listening on
 port 5432. The database to which the connection is made
 is named foreign_db on the remote server:

CREATE SERVER foreign_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host '192.83.123.89', port '5432', dbname 'foreign_db');

 A user mapping, defined with CREATE USER MAPPING(7), is
 needed as well to identify the role that will be used on the remote
 server:

CREATE USER MAPPING FOR local_user
 SERVER foreign_server
 OPTIONS (user 'foreign_user', password 'password');

 Now it is possible to create a foreign table with
 CREATE FOREIGN TABLE(7). In this example we
 wish to access the table named some_schema.some_table
 on the remote server. The local name for it will
 be foreign_table:

CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text
)
 SERVER foreign_server
 OPTIONS (schema_name 'some_schema', table_name 'some_table');

 It's essential that the data types and other properties of the columns
 declared in CREATE FOREIGN TABLE match the actual remote table.
 Column names must match as well, unless you attach column_name
 options to the individual columns to show how they are named in the remote
 table.
 In many cases, use of IMPORT FOREIGN SCHEMA is
 preferable to constructing foreign table definitions manually.

Author

 Shigeru Hanada <shigeru.hanada@gmail.com>

seg — a datatype for line segments or floating point intervals

 This module implements a data type seg for
 representing line segments, or floating point intervals.
 seg can represent uncertainty in the interval endpoints,
 making it especially useful for representing laboratory measurements.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Rationale

 The geometry of measurements is usually more complex than that of a
 point in a numeric continuum. A measurement is usually a segment of
 that continuum with somewhat fuzzy limits. The measurements come out
 as intervals because of uncertainty and randomness, as well as because
 the value being measured may naturally be an interval indicating some
 condition, such as the temperature range of stability of a protein.

 Using just common sense, it appears more convenient to store such data
 as intervals, rather than pairs of numbers. In practice, it even turns
 out more efficient in most applications.

 Further along the line of common sense, the fuzziness of the limits
 suggests that the use of traditional numeric data types leads to a
 certain loss of information. Consider this: your instrument reads
 6.50, and you input this reading into the database. What do you get
 when you fetch it? Watch:

test=> select 6.50 :: float8 as "pH";
 pH

6.5
(1 row)

 In the world of measurements, 6.50 is not the same as 6.5. It may
 sometimes be critically different. The experimenters usually write
 down (and publish) the digits they trust. 6.50 is actually a fuzzy
 interval contained within a bigger and even fuzzier interval, 6.5,
 with their center points being (probably) the only common feature they
 share. We definitely do not want such different data items to appear the
 same.

 Conclusion? It is nice to have a special data type that can record the
 limits of an interval with arbitrarily variable precision. Variable in
 the sense that each data element records its own precision.

 Check this out:

test=> select '6.25 .. 6.50'::seg as "pH";
 pH

6.25 .. 6.50
(1 row)

Syntax

 The external representation of an interval is formed using one or two
 floating-point numbers joined by the range operator (..
 or ...). Alternatively, it can be specified as a
 center point plus or minus a deviation.
 Optional certainty indicators (<,
 > or ~) can be stored as well.
 (Certainty indicators are ignored by all the built-in operators, however.)
 Table F.28, “seg External Representations” gives an overview of allowed
 representations; Table F.29, “Examples of Valid seg Input” shows some
 examples.

 In Table F.28, “seg External Representations”, x, y, and
 delta denote
 floating-point numbers. x and y, but
 not delta, can be preceded by a certainty indicator.

Table F.28. seg External Representations
	x	Single value (zero-length interval)

	x .. y	Interval from x to y

	x (+-) delta	Interval from x - delta to
 x + delta

	x ..	Open interval with lower bound x

	.. x	Open interval with upper bound x

Table F.29. Examples of Valid seg Input
	5.0	
 Creates a zero-length segment (a point, if you will)

	~5.0	
 Creates a zero-length segment and records
 ~ in the data. ~ is ignored
 by seg operations, but
 is preserved as a comment.

	<5.0	
 Creates a point at 5.0. < is ignored but
 is preserved as a comment.

	>5.0	
 Creates a point at 5.0. > is ignored but
 is preserved as a comment.

	5(+-)0.3	
 Creates an interval 4.7 .. 5.3.
 Note that the (+-) notation isn't preserved.

	50 .. 	Everything that is greater than or equal to 50
	.. 0	Everything that is less than or equal to 0
	1.5e-2 .. 2E-2 	Creates an interval 0.015 .. 0.02
	1 ... 2	
 The same as 1...2, or 1 .. 2,
 or 1..2
 (spaces around the range operator are ignored)

 Because the ... operator is widely used in data sources, it is allowed
 as an alternative spelling of the .. operator. Unfortunately, this
 creates a parsing ambiguity: it is not clear whether the upper bound
 in 0...23 is meant to be 23 or 0.23.
 This is resolved by requiring at least one digit before the decimal
 point in all numbers in seg input.

 As a sanity check, seg rejects intervals with the lower bound
 greater than the upper, for example 5 .. 2.

Precision

 seg values are stored internally as pairs of 32-bit floating point
 numbers. This means that numbers with more than 7 significant digits
 will be truncated.

 Numbers with 7 or fewer significant digits retain their
 original precision. That is, if your query returns 0.00, you will be
 sure that the trailing zeroes are not the artifacts of formatting: they
 reflect the precision of the original data. The number of leading
 zeroes does not affect precision: the value 0.0067 is considered to
 have just 2 significant digits.

Usage

 The seg module includes a GiST index operator class for
 seg values.
 The operators supported by the GiST operator class are shown in Table F.30, “Seg GiST Operators”.

Table F.30. Seg GiST Operators
	
 Operator

 Description

	
 seg << seg
 boolean

 Is the first seg entirely to the left of the second?
 [a, b] << [c, d] is true if b < c.

	
 seg >> seg
 boolean

 Is the first seg entirely to the right of the second?
 [a, b] >> [c, d] is true if a > d.

	
 seg &< seg
 boolean

 Does the first seg not extend to the right of the
 second?
 [a, b] &< [c, d] is true if b <= d.

	
 seg &> seg
 boolean

 Does the first seg not extend to the left of the
 second?
 [a, b] &> [c, d] is true if a >= c.

	
 seg = seg
 boolean

 Are the two segs equal?

	
 seg && seg
 boolean

 Do the two segs overlap?

	
 seg @> seg
 boolean

 Does the first seg contain the second?

	
 seg <@ seg
 boolean

 Is the first seg contained in the second?

 In addition to the above operators, the usual comparison
 operators shown in Table 9.1, “Comparison Operators” are
 available for type seg. These operators
 first compare (a) to (c),
 and if these are equal, compare (b) to (d). That results in
 reasonably good sorting in most cases, which is useful if
 you want to use ORDER BY with this type.

Notes

 For examples of usage, see the regression test sql/seg.sql.

 The mechanism that converts (+-) to regular ranges
 isn't completely accurate in determining the number of significant digits
 for the boundaries. For example, it adds an extra digit to the lower
 boundary if the resulting interval includes a power of ten:

postgres=> select '10(+-)1'::seg as seg;
 seg

9.0 .. 11 -- should be: 9 .. 11

 The performance of an R-tree index can largely depend on the initial
 order of input values. It may be very helpful to sort the input table
 on the seg column; see the script sort-segments.pl
 for an example.

Credits

 Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>,
 Mathematics and Computer Science Division, Argonne National Laboratory.

 My thanks are primarily to Prof. Joe Hellerstein
 (https://dsf.berkeley.edu/jmh/) for elucidating the
 gist of the GiST (http://gist.cs.berkeley.edu/). I am
 also grateful to all Postgres developers, present and past, for enabling
 myself to create my own world and live undisturbed in it. And I would like
 to acknowledge my gratitude to Argonne Lab and to the U.S. Department of
 Energy for the years of faithful support of my database research.

sepgsql —
 SELinux-, label-based mandatory access control (MAC) security module

 sepgsql is a loadable module that supports label-based
 mandatory access control (MAC) based on SELinux™ security
 policy.

Warning

 The current implementation has significant limitations, and does not
 enforce mandatory access control for all actions. See
 the section called “Limitations”.

Overview

 This module integrates with SELinux™ to provide an
 additional layer of security checking above and beyond what is normally
 provided by PostgreSQL™. From the perspective of
 SELinux™, this module allows
 PostgreSQL™ to function as a user-space object
 manager. Each table or function access initiated by a DML query will be
 checked against the system security policy. This check is in addition to
 the usual SQL permissions checking performed by
 PostgreSQL™.

 SELinux™ access control decisions are made using
 security labels, which are represented by strings such as
 system_u:object_r:sepgsql_table_t:s0. Each access control
 decision involves two labels: the label of the subject attempting to
 perform the action, and the label of the object on which the operation is
 to be performed. Since these labels can be applied to any sort of object,
 access control decisions for objects stored within the database can be
 (and, with this module, are) subjected to the same general criteria used
 for objects of any other type, such as files. This design is intended to
 allow a centralized security policy to protect information assets
 independent of the particulars of how those assets are stored.

 The SECURITY LABEL statement allows assignment of
 a security label to a database object.

Installation

 sepgsql can only be used on Linux™
 2.6.28 or higher with SELinux™ enabled.
 It is not available on any other platform. You will also need
 libselinux™ 2.1.10 or higher and
 selinux-policy™ 3.9.13 or higher (although some
 distributions may backport the necessary rules into older policy
 versions).

 The sestatus command allows you to check the status of
 SELinux™. A typical display is:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

 If SELinux™ is disabled or not installed, you must set
 that product up first before installing this module.

 To build this module, include the option --with-selinux in
 your PostgreSQL configure command. Be sure that the
 libselinux-devel RPM is installed at build time.

 To use this module, you must include sepgsql
 in the shared_preload_libraries parameter in
 postgresql.conf. The module will not function correctly
 if loaded in any other manner. Once the module is loaded, you
 should execute sepgsql.sql in each database.
 This will install functions needed for security label management, and
 assign initial security labels.

 Here is an example showing how to initialize a fresh database cluster
 with sepgsql functions and security labels installed.
 Adjust the paths shown as appropriate for your installation:

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf
 change
 #shared_preload_libraries = '' # (change requires restart)
 to
 shared_preload_libraries = 'sepgsql' # (change requires restart)
$ for DBNAME in template0 template1 postgres; do
 postgres --single -F -c exit_on_error=true $DBNAME \
 </usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
 done

 Please note that you may see some or all of the following notifications
 depending on the particular versions you have of
 libselinux™ and selinux-policy™:

/etc/selinux/targeted/contexts/sepgsql_contexts: line 33 has invalid object type db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts: line 36 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 37 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 38 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 39 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 40 has invalid object type db_language

 These messages are harmless and should be ignored.

 If the installation process completes without error, you can now start the
 server normally.

Regression Tests

 Due to the nature of SELinux™, running the
 regression tests for sepgsql requires several extra
 configuration steps, some of which must be done as root.
 The regression tests will not be run by an ordinary
 make check or make installcheck command; you must
 set up the configuration and then invoke the test script manually.
 The tests must be run in the contrib/sepgsql directory
 of a configured PostgreSQL build tree. Although they require a build tree,
 the tests are designed to be executed against an installed server,
 that is they are comparable to make installcheck not
 make check.

 First, set up sepgsql in a working database
 according to the instructions in the section called “Installation”.
 Note that the current operating system user must be able to connect to the
 database as superuser without password authentication.

 Second, build and install the policy package for the regression test.
 The sepgsql-regtest policy is a special purpose policy package
 which provides a set of rules to be allowed during the regression tests.
 It should be built from the policy source file
 sepgsql-regtest.te, which is done using
 make with a Makefile supplied by SELinux.
 You will need to locate the appropriate
 Makefile on your system; the path shown below is only an example.
 (This Makefile is usually supplied by the
 selinux-policy-devel or
 selinux-policy RPM.)
 Once built, install this policy package using the
 semodule command, which loads supplied policy packages
 into the kernel. If the package is correctly installed,
 semodule -l should list sepgsql-regtest as an
 available policy package:

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp
$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.07

 Third, turn on sepgsql_regression_test_mode.
 For security reasons, the rules in sepgsql-regtest
 are not enabled by default;
 the sepgsql_regression_test_mode parameter enables
 the rules needed to launch the regression tests.
 It can be turned on using the setsebool command:

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode
sepgsql_regression_test_mode --> on

 Fourth, verify your shell is operating in the unconfined_t
 domain:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

 See the section called “External Resources” for details on adjusting your
 working domain, if necessary.

 Finally, run the regression test script:

$./test_sepgsql

 This script will attempt to verify that you have done all the configuration
 steps correctly, and then it will run the regression tests for the
 sepgsql module.

 After completing the tests, it's recommended you disable
 the sepgsql_regression_test_mode parameter:

$ sudo setsebool sepgsql_regression_test_mode off

 You might prefer to remove the sepgsql-regtest policy
 entirely:

$ sudo semodule -r sepgsql-regtest

GUC Parameters

	
 sepgsql.permissive (boolean)

	
 This parameter enables sepgsql to function
 in permissive mode, regardless of the system setting.
 The default is off.
 This parameter can only be set in the postgresql.conf
 file or on the server command line.

 When this parameter is on, sepgsql functions
 in permissive mode, even if SELinux in general is working in enforcing
 mode. This parameter is primarily useful for testing purposes.

	
 sepgsql.debug_audit (boolean)

	
 This parameter enables the printing of audit messages regardless of
 the system policy settings.
 The default is off, which means that messages will be printed according
 to the system settings.

 The security policy of SELinux™ also has rules to
 control whether or not particular accesses are logged.
 By default, access violations are logged, but allowed
 accesses are not.

 This parameter forces all possible logging to be turned on, regardless
 of the system policy.

Features

Controlled Object Classes

 The security model of SELinux™ describes all the access
 control rules as relationships between a subject entity (typically,
 a client of the database) and an object entity (such as a database
 object), each of which is
 identified by a security label. If access to an unlabeled object is
 attempted, the object is treated as if it were assigned the label
 unlabeled_t.

 Currently, sepgsql allows security labels to be
 assigned to schemas, tables, columns, sequences, views, and functions.
 When sepgsql is in use, security labels are
 automatically assigned to supported database objects at creation time.
 This label is called a default security label, and is decided according
 to the system security policy, which takes as input the creator's label,
 the label assigned to the new object's parent object and optionally name
 of the constructed object.

 A new database object basically inherits the security label of the parent
 object, except when the security policy has special rules known as
 type-transition rules, in which case a different label may be applied.
 For schemas, the parent object is the current database; for tables,
 sequences, views, and functions, it is the containing schema; for columns,
 it is the containing table.

DML Permissions

 For tables, db_table:select, db_table:insert,
 db_table:update or db_table:delete are
 checked for all the referenced target tables depending on the kind of
 statement; in addition, db_table:select is also checked for
 all the tables that contain columns referenced in the
 WHERE or RETURNING clause, as a data source
 for UPDATE, and so on.

 Column-level permissions will also be checked for each referenced column.
 db_column:select is checked on not only the columns being
 read using SELECT, but those being referenced in other DML
 statements; db_column:update or db_column:insert
 will also be checked for columns being modified by UPDATE or
 INSERT.

 For example, consider:

UPDATE t1 SET x = 2, y = func1(y) WHERE z = 100;

 Here, db_column:update will be checked for
 t1.x, since it is being updated,
 db_column:{select update} will be checked for
 t1.y, since it is both updated and referenced, and
 db_column:select will be checked for t1.z, since
 it is only referenced.
 db_table:{select update} will also be checked
 at the table level.

 For sequences, db_sequence:get_value is checked when we
 reference a sequence object using SELECT; however, note that we
 do not currently check permissions on execution of corresponding functions
 such as lastval().

 For views, db_view:expand will be checked, then any other
 required permissions will be checked on the objects being
 expanded from the view, individually.

 For functions, db_procedure:{execute} will be checked when
 user tries to execute a function as a part of query, or using fast-path
 invocation. If this function is a trusted procedure, it also checks
 db_procedure:{entrypoint} permission to check whether it
 can perform as entry point of trusted procedure.

 In order to access any schema object, db_schema:search
 permission is required on the containing schema. When an object is
 referenced without schema qualification, schemas on which this
 permission is not present will not be searched (just as if the user did
 not have USAGE privilege on the schema). If an explicit schema
 qualification is present, an error will occur if the user does not have
 the requisite permission on the named schema.

 The client must be allowed to access all referenced tables and
 columns, even if they originated from views which were then expanded,
 so that we apply consistent access control rules independent of the manner
 in which the table contents are referenced.

 The default database privilege system allows database superusers to
 modify system catalogs using DML commands, and reference or modify
 toast tables. These operations are prohibited when
 sepgsql is enabled.

DDL Permissions

 SELinux™ defines several permissions to control common
 operations for each object type; such as creation, alter, drop and
 relabel of security label. In addition, several object types have
 special permissions to control their characteristic operations; such as
 addition or deletion of name entries within a particular schema.

 Creating a new database object requires create permission.
 SELinux™ will grant or deny this permission based on the
 client's security label and the proposed security label for the new
 object. In some cases, additional privileges are required:

	
 CREATE DATABASE additionally requires
 getattr permission for the source or template database.

	
 Creating a schema object additionally requires add_name
 permission on the parent schema.

	
 Creating a table additionally requires permission to create each
 individual table column, just as if each table column were a
 separate top-level object.

	
 Creating a function marked as LEAKPROOF additionally
 requires install permission. (This permission is also
 checked when LEAKPROOF is set for an existing function.)

 When DROP command is executed, drop will be
 checked on the object being removed. Permissions will be also checked for
 objects dropped indirectly via CASCADE. Deletion of objects
 contained within a particular schema (tables, views, sequences and
 procedures) additionally requires remove_name on the schema.

 When ALTER command is executed, setattr will be
 checked on the object being modified for each object types, except for
 subsidiary objects such as the indexes or triggers of a table, where
 permissions are instead checked on the parent object. In some cases,
 additional permissions are required:

	
 Moving an object to a new schema additionally requires
 remove_name permission on the old schema and
 add_name permission on the new one.

	
 Setting the LEAKPROOF attribute on a function requires
 install permission.

	
 Using SECURITY LABEL on an object additionally
 requires relabelfrom permission for the object in
 conjunction with its old security label and relabelto
 permission for the object in conjunction with its new security label.
 (In cases where multiple label providers are installed and the user
 tries to set a security label, but it is not managed by
 SELinux™, only setattr should be checked here.
 This is currently not done due to implementation restrictions.)

Trusted Procedures

 Trusted procedures are similar to security definer functions or setuid
 commands. SELinux™ provides a feature to allow trusted
 code to run using a security label different from that of the client,
 generally for the purpose of providing highly controlled access to
 sensitive data (e.g., rows might be omitted, or the precision of stored
 values might be reduced). Whether or not a function acts as a trusted
 procedure is controlled by its security label and the operating system
 security policy. For example:

postgres=# CREATE TABLE customer (
 cid int primary key,
 cname text,
 credit text
);
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit
 IS 'system_u:object_r:sepgsql_secret_table_t:s0';
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text
 AS 'SELECT regexp_replace(credit, ''-[0-9]+$'', ''-xxxx'', ''g'')
 FROM customer WHERE cid = $1'
 LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)
 IS 'system_u:object_r:sepgsql_trusted_proc_exec_t:s0';
SECURITY LABEL

 The above operations should be performed by an administrative user.

postgres=# SELECT * FROM customer;
ERROR: SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
 cid | cname | show_credit
-----+--------+---------------------
 1 | taro | 1111-2222-3333-xxxx
 2 | hanako | 5555-6666-7777-xxxx
(2 rows)

 In this case, a regular user cannot reference customer.credit
 directly, but a trusted procedure show_credit allows the user
 to print the credit card numbers of customers with some of the digits
 masked out.

Dynamic Domain Transitions

 It is possible to use SELinux's dynamic domain transition feature
 to switch the security label of the client process, the client domain,
 to a new context, if that is allowed by the security policy.
 The client domain needs the setcurrent permission and also
 dyntransition from the old to the new domain.

 Dynamic domain transitions should be considered carefully, because they
 allow users to switch their label, and therefore their privileges,
 at their option, rather than (as in the case of a trusted procedure)
 as mandated by the system.
 Thus, the dyntransition permission is only considered
 safe when used to switch to a domain with a smaller set of privileges than
 the original one. For example:

regression=# select sepgsql_getcon();
 sepgsql_getcon

 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c4');
 sepgsql_setcon

 t
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c1023');
ERROR: SELinux: security policy violation

 In this example above we were allowed to switch from the larger MCS
 range c1.c1023 to the smaller range c1.c4, but
 switching back was denied.

 A combination of dynamic domain transition and trusted procedure
 enables an interesting use case that fits the typical process life-cycle
 of connection pooling software.
 Even if your connection pooling software is not allowed to run most
 of SQL commands, you can allow it to switch the security label
 of the client using the sepgsql_setcon() function
 from within a trusted procedure; that should take some
 credential to authorize the request to switch the client label.
 After that, this session will have the privileges of the target user,
 rather than the connection pooler.
 The connection pooler can later revert the security label change by
 again using sepgsql_setcon() with
 NULL argument, again invoked from within a trusted
 procedure with appropriate permissions checks.
 The point here is that only the trusted procedure actually has permission
 to change the effective security label, and only does so when given proper
 credentials. Of course, for secure operation, the credential store
 (table, procedure definition, or whatever) must be protected from
 unauthorized access.

Miscellaneous

 We reject the LOAD command across the board, because
 any module loaded could easily circumvent security policy enforcement.

Sepgsql Functions

 Table F.31, “Sepgsql Functions” shows the available functions.

Table F.31. Sepgsql Functions
	
 Function

 Description

	
 sepgsql_getcon ()
 text

 Returns the client domain, the current security label of the client.

	
 sepgsql_setcon (text)
 boolean

 Switches the client domain of the current session to the new domain,
 if allowed by the security policy.
 It also accepts NULL input as a request to transition
 to the client's original domain.

	
 sepgsql_mcstrans_in (text)
 text

 Translates the given qualified MLS/MCS range into raw format if
 the mcstrans daemon is running.

	
 sepgsql_mcstrans_out (text)
 text

 Translates the given raw MLS/MCS range into qualified format if
 the mcstrans daemon is running.

	
 sepgsql_restorecon (text)
 boolean

 Sets up initial security labels for all objects within the
 current database. The argument may be NULL, or the
 name of a specfile to be used as alternative of the system default.

Limitations

	Data Definition Language (DDL) Permissions
	
 Due to implementation restrictions, some DDL operations do not
 check permissions.

	Data Control Language (DCL) Permissions
	
 Due to implementation restrictions, DCL operations do not check
 permissions.

	Row-level access control
	
 PostgreSQL™ supports row-level access, but
 sepgsql does not.

	Covert channels
	
 sepgsql does not try to hide the existence of
 a certain object, even if the user is not allowed to reference it.
 For example, we can infer the existence of an invisible object as
 a result of primary key conflicts, foreign key violations, and so on,
 even if we cannot obtain the contents of the object. The existence
 of a top secret table cannot be hidden; we only hope to conceal its
 contents.

External Resources

	SE-PostgreSQL Introduction
	
 This wiki page provides a brief overview, security design, architecture,
 administration and upcoming features.

	SELinux User's and Administrator's Guide
	
 This document provides a wide spectrum of knowledge to administer
 SELinux™ on your systems.
 It focuses primarily on Red Hat operating systems, but is not limited to them.

	Fedora SELinux FAQ
	
 This document answers frequently asked questions about
 SELinux™.
 It focuses primarily on Fedora, but is not limited to Fedora.

Author

 KaiGai Kohei <kaigai@ak.jp.nec.com>

spi — Server Programming Interface features/examples

 The spi module provides several workable examples
 of using the Server Programming Interface
 (SPI) and triggers. While these functions are of
 some value in
 their own right, they are even more useful as examples to modify for
 your own purposes. The functions are general enough to be used
 with any table, but you have to specify table and field names (as described
 below) while creating a trigger.

 Each of the groups of functions described below is provided as a
 separately-installable extension.

refint — Functions for Implementing Referential Integrity

 check_primary_key() and
 check_foreign_key() are used to check foreign key constraints.
 (This functionality is long since superseded by the built-in foreign
 key mechanism, of course, but the module is still useful as an example.)

 check_primary_key() checks the referencing table.
 To use, create a BEFORE INSERT OR UPDATE trigger using this
 function on a table referencing another table. Specify as the trigger
 arguments: the referencing table's column name(s) which form the foreign
 key, the referenced table name, and the column names in the referenced table
 which form the primary/unique key. To handle multiple foreign
 keys, create a trigger for each reference.

 check_foreign_key() checks the referenced table.
 To use, create a BEFORE DELETE OR UPDATE trigger using this
 function on a table referenced by other table(s). Specify as the trigger
 arguments: the number of referencing tables for which the function has to
 perform checking, the action if a referencing key is found
 (cascade — to delete the referencing row,
 restrict — to abort transaction if referencing keys
 exist, setnull — to set referencing key fields to null),
 the triggered table's column names which form the primary/unique key, then
 the referencing table name and column names (repeated for as many
 referencing tables as were specified by first argument). Note that the
 primary/unique key columns should be marked NOT NULL and should have a
 unique index.

 There are examples in refint.example.

autoinc — Functions for Autoincrementing Fields

 autoinc() is a trigger that stores the next value of
 a sequence into an integer field. This has some overlap with the
 built-in “serial column” feature, but it is not the same:
 autoinc() will override attempts to substitute a
 different field value during inserts, and optionally it can be
 used to increment the field during updates, too.

 To use, create a BEFORE INSERT (or optionally BEFORE
 INSERT OR UPDATE) trigger using this function. Specify two
 trigger arguments: the name of the integer column to be modified,
 and the name of the sequence object that will supply values.
 (Actually, you can specify any number of pairs of such names, if
 you'd like to update more than one autoincrementing column.)

 There is an example in autoinc.example.

insert_username — Functions for Tracking Who Changed a Table

 insert_username() is a trigger that stores the current
 user's name into a text field. This can be useful for tracking
 who last modified a particular row within a table.

 To use, create a BEFORE INSERT and/or UPDATE
 trigger using this function. Specify a single trigger
 argument: the name of the text column to be modified.

 There is an example in insert_username.example.

moddatetime — Functions for Tracking Last Modification Time

 moddatetime() is a trigger that stores the current
 time into a timestamp field. This can be useful for tracking
 the last modification time of a particular row within a table.

 To use, create a BEFORE UPDATE
 trigger using this function. Specify a single trigger
 argument: the name of the column to be modified.
 The column must be of type timestamp or timestamp with
 time zone.

 There is an example in moddatetime.example.

sslinfo — obtain client SSL information

 The sslinfo module provides information about the SSL
 certificate that the current client provided when connecting to
 PostgreSQL™. The module is useless (most functions
 will return NULL) if the current connection does not use SSL.

 Some of the information available through this module can also be obtained
 using the built-in system view
 pg_stat_ssl.

 This extension won't build at all unless the installation was
 configured with --with-ssl=openssl.

Functions Provided

	
 ssl_is_used() returns boolean

	
 Returns true if current connection to server uses SSL, and false
 otherwise.

	
 ssl_version() returns text

	
 Returns the name of the protocol used for the SSL connection (e.g., TLSv1.0,
 TLSv1.1, TLSv1.2 or TLSv1.3).

	
 ssl_cipher() returns text

	
 Returns the name of the cipher used for the SSL connection
 (e.g., DHE-RSA-AES256-SHA).

	
 ssl_client_cert_present() returns boolean

	
 Returns true if current client has presented a valid SSL client
 certificate to the server, and false otherwise. (The server
 might or might not be configured to require a client certificate.)

	
 ssl_client_serial() returns numeric

	
 Returns serial number of current client certificate. The combination of
 certificate serial number and certificate issuer is guaranteed to
 uniquely identify a certificate (but not its owner — the owner
 ought to regularly change their keys, and get new certificates from the
 issuer).

 So, if you run your own CA and allow only certificates from this CA to
 be accepted by the server, the serial number is the most reliable (albeit
 not very mnemonic) means to identify a user.

	
 ssl_client_dn() returns text

	
 Returns the full subject of the current client certificate, converting
 character data into the current database encoding. It is assumed that
 if you use non-ASCII characters in the certificate names, your
 database is able to represent these characters, too. If your database
 uses the SQL_ASCII encoding, non-ASCII characters in the name will be
 represented as UTF-8 sequences.

 The result looks like /CN=Somebody /C=Some country/O=Some organization.

	
 ssl_issuer_dn() returns text

	
 Returns the full issuer name of the current client certificate, converting
 character data into the current database encoding. Encoding conversions
 are handled the same as for ssl_client_dn.

 The combination of the return value of this function with the
 certificate serial number uniquely identifies the certificate.

 This function is really useful only if you have more than one trusted CA
 certificate in your server's certificate authority file, or if this CA
 has issued some intermediate certificate authority certificates.

	
 ssl_client_dn_field(fieldname text) returns text

	
 This function returns the value of the specified field in the
 certificate subject, or NULL if the field is not present.
 Field names are string constants that are converted into ASN1 object
 identifiers using the OpenSSL™ object
 database. The following values are acceptable:

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)
organizationName (alias O)
organizationalUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description
dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress

 All of these fields are optional, except commonName.
 It depends
 entirely on your CA's policy which of them would be included and which
 wouldn't. The meaning of these fields, however, is strictly defined by
 the X.500 and X.509 standards, so you cannot just assign arbitrary
 meaning to them.

	
 ssl_issuer_field(fieldname text) returns text

	
 Same as ssl_client_dn_field, but for the certificate issuer
 rather than the certificate subject.

	
 ssl_extension_info() returns setof record

	
 Provide information about extensions of client certificate: extension name,
 extension value, and if it is a critical extension.

Author

 Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD

 Dmitry Voronin <carriingfate92@yandex.ru>

 E-Mail of Cryptocom OpenSSL development group:
 <openssl@cryptocom.ru>

tablefunc — functions that return tables (crosstab and others)

 The tablefunc module includes various functions that return
 tables (that is, multiple rows). These functions are useful both in their
 own right and as examples of how to write C functions that return
 multiple rows.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Functions Provided

 Table F.32, “tablefunc Functions” summarizes the functions provided
 by the tablefunc module.

Table F.32. tablefunc Functions
	
 Function

 Description

	
 normal_rand (numvals integer, mean float8, stddev float8)
 setof float8

 Produces a set of normally distributed random values.

	
 crosstab (sql text)
 setof record

 Produces a “pivot table” containing
 row names plus N value columns, where
 N is determined by the row type specified
 in the calling query.

	
 crosstabN (sql text)
 setof table_crosstab_N

 Produces a “pivot table” containing
 row names plus N value columns.
 crosstab2, crosstab3, and
 crosstab4 are predefined, but you can create additional
 crosstabN functions as described below.

	
 crosstab (source_sql text, category_sql text)
 setof record

 Produces a “pivot table”
 with the value columns specified by a second query.

	
 crosstab (sql text, N integer)
 setof record

 Obsolete version of crosstab(text).
 The parameter N is now ignored, since the
 number of value columns is always determined by the calling query.

	

 connectby (relname text, keyid_fld text, parent_keyid_fld text
 [, orderby_fld text], start_with text, max_depth integer
 [, branch_delim text])
 setof record

 Produces a representation of a hierarchical tree structure.

normal_rand

normal_rand(int numvals, float8 mean, float8 stddev) returns setof float8

 normal_rand produces a set of normally distributed random
 values (Gaussian distribution).

 numvals is the number of values to be returned
 from the function. mean is the mean of the normal
 distribution of values and stddev is the standard
 deviation of the normal distribution of values.

 For example, this call requests 1000 values with a mean of 5 and a
 standard deviation of 3:

test=# SELECT * FROM normal_rand(1000, 5, 3);
 normal_rand

 1.56556322244898
 9.10040991424657
 5.36957140345079
 -0.369151492880995
 0.283600703686639
 .
 .
 .
 4.82992125404908
 9.71308014517282
 2.49639286969028
(1000 rows)

crosstab(text)

crosstab(text sql)
crosstab(text sql, int N)

 The crosstab function is used to produce “pivot”
 displays, wherein data is listed across the page rather than down.
 For example, we might have data like

row1 val11
row1 val12
row1 val13
...
row2 val21
row2 val22
row2 val23
...

 which we wish to display like

row1 val11 val12 val13 ...
row2 val21 val22 val23 ...
...

 The crosstab function takes a text parameter that is an SQL
 query producing raw data formatted in the first way, and produces a table
 formatted in the second way.

 The sql parameter is an SQL statement that produces
 the source set of data. This statement must return one
 row_name column, one
 category column, and one
 value column. N is an
 obsolete parameter, ignored if supplied (formerly this had to match the
 number of output value columns, but now that is determined by the
 calling query).

 For example, the provided query might produce a set something like:

 row_name cat value
----------+-------+-------
 row1 cat1 val1
 row1 cat2 val2
 row1 cat3 val3
 row1 cat4 val4
 row2 cat1 val5
 row2 cat2 val6
 row2 cat3 val7
 row2 cat4 val8

 The crosstab function is declared to return setof
 record, so the actual names and types of the output columns must be
 defined in the FROM clause of the calling SELECT
 statement, for example:

SELECT * FROM crosstab('...') AS ct(row_name text, category_1 text, category_2 text);

 This example produces a set something like:

 <== value columns ==>
 row_name category_1 category_2
----------+------------+------------
 row1 val1 val2
 row2 val5 val6

 The FROM clause must define the output as one
 row_name column (of the same data type as the first result
 column of the SQL query) followed by N value columns
 (all of the same data type as the third result column of the SQL query).
 You can set up as many output value columns as you wish. The names of the
 output columns are up to you.

 The crosstab function produces one output row for each
 consecutive group of input rows with the same
 row_name value. It fills the output
 value columns, left to right, with the
 value fields from these rows. If there
 are fewer rows in a group than there are output value
 columns, the extra output columns are filled with nulls; if there are
 more rows, the extra input rows are skipped.

 In practice the SQL query should always specify ORDER BY 1,2
 to ensure that the input rows are properly ordered, that is, values with
 the same row_name are brought together and
 correctly ordered within the row. Notice that crosstab
 itself does not pay any attention to the second column of the query
 result; it's just there to be ordered by, to control the order in which
 the third-column values appear across the page.

 Here is a complete example:

CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att1','val1');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att2','val2');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att3','val3');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att4','val4');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att1','val5');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att2','val6');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att3','val7');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att4','val8');

SELECT *
FROM crosstab(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2')
AS ct(row_name text, category_1 text, category_2 text, category_3 text);

 row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
 test1 | val2 | val3 |
 test2 | val6 | val7 |
(2 rows)

 You can avoid always having to write out a FROM clause to
 define the output columns, by setting up a custom crosstab function that
 has the desired output row type wired into its definition. This is
 described in the next section. Another possibility is to embed the
 required FROM clause in a view definition.

Note

 See also the \crosstabview
 command in psql, which provides functionality similar
 to crosstab().

crosstabN(text)

crosstabN(text sql)

 The crosstabN functions are examples of how
 to set up custom wrappers for the general crosstab function,
 so that you need not write out column names and types in the calling
 SELECT query. The tablefunc module includes
 crosstab2, crosstab3, and
 crosstab4, whose output row types are defined as

CREATE TYPE tablefunc_crosstab_N AS (
 row_name TEXT,
 category_1 TEXT,
 category_2 TEXT,
 .
 .
 .
 category_N TEXT
);

 Thus, these functions can be used directly when the input query produces
 row_name and value columns of type
 text, and you want 2, 3, or 4 output values columns.
 In all other ways they behave exactly as described above for the
 general crosstab function.

 For instance, the example given in the previous section would also
 work as

SELECT *
FROM crosstab3(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2');

 These functions are provided mostly for illustration purposes. You
 can create your own return types and functions based on the
 underlying crosstab() function. There are two ways
 to do it:

	
 Create a composite type describing the desired output columns,
 similar to the examples in
 contrib/tablefunc/tablefunc--1.0.sql.
 Then define a
 unique function name accepting one text parameter and returning
 setof your_type_name, but linking to the same underlying
 crosstab C function. For example, if your source data
 produces row names that are text, and values that are
 float8, and you want 5 value columns:

CREATE TYPE my_crosstab_float8_5_cols AS (
 my_row_name text,
 my_category_1 float8,
 my_category_2 float8,
 my_category_3 float8,
 my_category_4 float8,
 my_category_5 float8
);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
 RETURNS setof my_crosstab_float8_5_cols
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

	
 Use OUT parameters to define the return type implicitly.
 The same example could also be done this way:

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
 IN text,
 OUT my_row_name text,
 OUT my_category_1 float8,
 OUT my_category_2 float8,
 OUT my_category_3 float8,
 OUT my_category_4 float8,
 OUT my_category_5 float8)
 RETURNS setof record
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

crosstab(text, text)

crosstab(text source_sql, text category_sql)

 The main limitation of the single-parameter form of crosstab
 is that it treats all values in a group alike, inserting each value into
 the first available column. If you want the value
 columns to correspond to specific categories of data, and some groups
 might not have data for some of the categories, that doesn't work well.
 The two-parameter form of crosstab handles this case by
 providing an explicit list of the categories corresponding to the
 output columns.

 source_sql is an SQL statement that produces the
 source set of data. This statement must return one
 row_name column, one
 category column, and one
 value column. It may also have one or more
 “extra” columns.
 The row_name column must be first. The
 category and value
 columns must be the last two columns, in that order. Any columns between
 row_name and
 category are treated as “extra”.
 The “extra” columns are expected to be the same for all rows
 with the same row_name value.

 For example, source_sql might produce a set
 something like:

SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

 row_name extra_col cat value
----------+------------+-----+---------
 row1 extra1 cat1 val1
 row1 extra1 cat2 val2
 row1 extra1 cat4 val4
 row2 extra2 cat1 val5
 row2 extra2 cat2 val6
 row2 extra2 cat3 val7
 row2 extra2 cat4 val8

 category_sql is an SQL statement that produces
 the set of categories. This statement must return only one column.
 It must produce at least one row, or an error will be generated.
 Also, it must not produce duplicate values, or an error will be
 generated. category_sql might be something like:

SELECT DISTINCT cat FROM foo ORDER BY 1;
 cat

 cat1
 cat2
 cat3
 cat4

 The crosstab function is declared to return setof
 record, so the actual names and types of the output columns must be
 defined in the FROM clause of the calling SELECT
 statement, for example:

SELECT * FROM crosstab('...', '...')
 AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);

 This will produce a result something like:

 <== value columns ==>
row_name extra cat1 cat2 cat3 cat4
---------+-------+------+------+------+------
 row1 extra1 val1 val2 val4
 row2 extra2 val5 val6 val7 val8

 The FROM clause must define the proper number of output
 columns of the proper data types. If there are N
 columns in the source_sql query's result, the first
 N-2 of them must match up with the first
 N-2 output columns. The remaining output columns
 must have the type of the last column of the source_sql
 query's result, and there must be exactly as many of them as there
 are rows in the category_sql query's result.

 The crosstab function produces one output row for each
 consecutive group of input rows with the same
 row_name value. The output
 row_name column, plus any “extra”
 columns, are copied from the first row of the group. The output
 value columns are filled with the
 value fields from rows having matching
 category values. If a row's category
 does not match any output of the category_sql
 query, its value is ignored. Output
 columns whose matching category is not present in any input row
 of the group are filled with nulls.

 In practice the source_sql query should always
 specify ORDER BY 1 to ensure that values with the same
 row_name are brought together. However,
 ordering of the categories within a group is not important.
 Also, it is essential to be sure that the order of the
 category_sql query's output matches the specified
 output column order.

 Here are two complete examples:

create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
 'select year, month, qty from sales order by 1',
 'select m from generate_series(1,12) m'
) as (
 year int,
 "Jan" int,
 "Feb" int,
 "Mar" int,
 "Apr" int,
 "May" int,
 "Jun" int,
 "Jul" int,
 "Aug" int,
 "Sep" int,
 "Oct" int,
 "Nov" int,
 "Dec" int
);
 year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
------+------+------+-----+-----+-----+-----+-----+-----+-----+-----+------+------
 2007 | 1000 | 1500 | | | | | 500 | | | | 1500 | 2000
 2008 | 1000 | | | | | | | | | | |
(2 rows)

CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val text);
INSERT INTO cth VALUES('test1','01 March 2003','temperature','42');
INSERT INTO cth VALUES('test1','01 March 2003','test_result','PASS');
INSERT INTO cth VALUES('test1','01 March 2003','volts','2.6987');
INSERT INTO cth VALUES('test2','02 March 2003','temperature','53');
INSERT INTO cth VALUES('test2','02 March 2003','test_result','FAIL');
INSERT INTO cth VALUES('test2','02 March 2003','test_startdate','01 March 2003');
INSERT INTO cth VALUES('test2','02 March 2003','volts','3.1234');

SELECT * FROM crosstab
(
 'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
 'SELECT DISTINCT attribute FROM cth ORDER BY 1'
)
AS
(
 rowid text,
 rowdt timestamp,
 temperature int4,
 test_result text,
 test_startdate timestamp,
 volts float8
);
 rowid | rowdt | temperature | test_result | test_startdate | volts
-------+--------------------------+-------------+-------------+--------------------------+--------
 test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS | | 2.6987
 test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00 2003 | 3.1234
(2 rows)

 You can create predefined functions to avoid having to write out
 the result column names and types in each query. See the examples
 in the previous section. The underlying C function for this form
 of crosstab is named crosstab_hash.

connectby

connectby(text relname, text keyid_fld, text parent_keyid_fld
 [, text orderby_fld], text start_with, int max_depth
 [, text branch_delim])

 The connectby function produces a display of hierarchical
 data that is stored in a table. The table must have a key field that
 uniquely identifies rows, and a parent-key field that references the
 parent (if any) of each row. connectby can display the
 sub-tree descending from any row.

 Table F.33, “connectby Parameters” explains the
 parameters.

Table F.33. connectby Parameters
	Parameter	Description
	relname	Name of the source relation
	keyid_fld	Name of the key field
	parent_keyid_fld	Name of the parent-key field
	orderby_fld	Name of the field to order siblings by (optional)
	start_with	Key value of the row to start at
	max_depth	Maximum depth to descend to, or zero for unlimited depth
	branch_delim	String to separate keys with in branch output (optional)

 The key and parent-key fields can be any data type, but they must be
 the same type. Note that the start_with value must be
 entered as a text string, regardless of the type of the key field.

 The connectby function is declared to return setof
 record, so the actual names and types of the output columns must be
 defined in the FROM clause of the calling SELECT
 statement, for example:

SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);

 The first two output columns are used for the current row's key and
 its parent row's key; they must match the type of the table's key field.
 The third output column is the depth in the tree and must be of type
 integer. If a branch_delim parameter was
 given, the next output column is the branch display and must be of type
 text. Finally, if an orderby_fld
 parameter was given, the last output column is a serial number, and must
 be of type integer.

 The “branch” output column shows the path of keys taken to
 reach the current row. The keys are separated by the specified
 branch_delim string. If no branch display is
 wanted, omit both the branch_delim parameter
 and the branch column in the output column list.

 If the ordering of siblings of the same parent is important,
 include the orderby_fld parameter to
 specify which field to order siblings by. This field can be of any
 sortable data type. The output column list must include a final
 integer serial-number column, if and only if
 orderby_fld is specified.

 The parameters representing table and field names are copied as-is
 into the SQL queries that connectby generates internally.
 Therefore, include double quotes if the names are mixed-case or contain
 special characters. You may also need to schema-qualify the table name.

 In large tables, performance will be poor unless there is an index on
 the parent-key field.

 It is important that the branch_delim string
 not appear in any key values, else connectby may incorrectly
 report an infinite-recursion error. Note that if
 branch_delim is not provided, a default value
 of ~ is used for recursion detection purposes.

 Here is an example:

CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES('row1',NULL, 0);
INSERT INTO connectby_tree VALUES('row2','row1', 0);
INSERT INTO connectby_tree VALUES('row3','row1', 0);
INSERT INTO connectby_tree VALUES('row4','row2', 1);
INSERT INTO connectby_tree VALUES('row5','row2', 0);
INSERT INTO connectby_tree VALUES('row6','row4', 0);
INSERT INTO connectby_tree VALUES('row7','row3', 0);
INSERT INTO connectby_tree VALUES('row8','row6', 0);
INSERT INTO connectby_tree VALUES('row9','row5', 0);

-- with branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text);
 keyid | parent_keyid | level | branch
-------+--------------+-------+---------------------
 row2 | | 0 | row2
 row4 | row2 | 1 | row2~row4
 row6 | row4 | 2 | row2~row4~row6
 row8 | row6 | 3 | row2~row4~row6~row8
 row5 | row2 | 1 | row2~row5
 row9 | row5 | 2 | row2~row5~row9
(6 rows)

-- without branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int);
 keyid | parent_keyid | level
-------+--------------+-------
 row2 | | 0
 row4 | row2 | 1
 row6 | row4 | 2
 row8 | row6 | 3
 row5 | row2 | 1
 row9 | row5 | 2
(6 rows)

-- with branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);
 keyid | parent_keyid | level | branch | pos
-------+--------------+-------+---------------------+-----
 row2 | | 0 | row2 | 1
 row5 | row2 | 1 | row2~row5 | 2
 row9 | row5 | 2 | row2~row5~row9 | 3
 row4 | row2 | 1 | row2~row4 | 4
 row6 | row4 | 2 | row2~row4~row6 | 5
 row8 | row6 | 3 | row2~row4~row6~row8 | 6
(6 rows)

-- without branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int, pos int);
 keyid | parent_keyid | level | pos
-------+--------------+-------+-----
 row2 | | 0 | 1
 row5 | row2 | 1 | 2
 row9 | row5 | 2 | 3
 row4 | row2 | 1 | 4
 row6 | row4 | 2 | 5
 row8 | row6 | 3 | 6
(6 rows)

Author

 Joe Conway

tcn — a trigger function to notify listeners of changes to table content

 The tcn module provides a trigger function that notifies
 listeners of changes to any table on which it is attached. It must be
 used as an AFTER trigger FOR EACH ROW.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

 Only one parameter may be supplied to the function in a
 CREATE TRIGGER statement, and that is optional. If supplied
 it will be used for the channel name for the notifications. If omitted
 tcn will be used for the channel name.

 The payload of the notifications consists of the table name, a letter to
 indicate which type of operation was performed, and column name/value pairs
 for primary key columns. Each part is separated from the next by a comma.
 For ease of parsing using regular expressions, table and column names are
 always wrapped in double quotes, and data values are always wrapped in
 single quotes. Embedded quotes are doubled.

 A brief example of using the extension follows.

test=# create table tcndata
test-# (
test(# a int not null,
test(# b date not null,
test(# c text,
test(# primary key (a, b)
test(#);
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-# after insert or update or delete on tcndata
test-# for each row execute function triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date '2012-12-22', 'one'),
test-# (1, date '2012-12-23', 'another'),
test-# (2, date '2012-12-23', 'two');
INSERT 0 3
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-23'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='2',"b"='2012-12-23'" received from server process with PID 22770.
test=# update tcndata set c = 'uno' where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-23'" received from server process with PID 22770.
test=# delete from tcndata where a = 1 and b = date '2012-12-22';
DELETE 1
Asynchronous notification "tcn" with payload ""tcndata",D,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.

test_decoding — SQL-based test/example module for WAL logical decoding

 test_decoding is an example of a logical decoding
 output plugin. It doesn't do anything especially useful, but can serve as
 a starting point for developing your own output plugin.

 test_decoding receives WAL through the logical decoding
 mechanism and decodes it into text representations of the operations
 performed.

 Typical output from this plugin, used over the SQL logical decoding
 interface, might be:

postgres=# SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'include-xids', '0');
 lsn | xid | data
-----------+-----+--
 0/16D30F8 | 691 | BEGIN
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:2 data[text]:'arg'
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:3 data[text]:'demo'
 0/16D32A0 | 691 | COMMIT
 0/16D32D8 | 692 | BEGIN
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:2
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:3
 0/16D3398 | 692 | COMMIT
(8 rows)

 We can also get the changes of the in-progress transaction, and the typical
 output might be:

postgres[33712]=#* SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'stream-changes', '1');
 lsn | xid | data
-----------+-----+--
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16B21F8 | 503 | streaming change for TXN 503
 0/16B2300 | 503 | streaming change for TXN 503
 0/16B2408 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16BECA8 | 503 | streaming change for TXN 503
 0/16BEDB0 | 503 | streaming change for TXN 503
 0/16BEEB8 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
(10 rows)

tsm_system_rows —
 the SYSTEM_ROWS sampling method for TABLESAMPLE

 The tsm_system_rows module provides the table sampling method
 SYSTEM_ROWS, which can be used in
 the TABLESAMPLE clause of a SELECT
 command.

 This table sampling method accepts a single integer argument that is the
 maximum number of rows to read. The resulting sample will always contain
 exactly that many rows, unless the table does not contain enough rows, in
 which case the whole table is selected.

 Like the built-in SYSTEM sampling
 method, SYSTEM_ROWS performs block-level sampling, so
 that the sample is not completely random but may be subject to clustering
 effects, especially if only a small number of rows are requested.

 SYSTEM_ROWS does not support
 the REPEATABLE clause.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Examples

 Here is an example of selecting a sample of a table with
 SYSTEM_ROWS. First install the extension:

CREATE EXTENSION tsm_system_rows;

 Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_ROWS(100);

 This command will return a sample of 100 rows from the
 table my_table (unless the table does not have 100
 visible rows, in which case all its rows are returned).

tsm_system_time —
 the SYSTEM_TIME sampling method for TABLESAMPLE

 The tsm_system_time module provides the table sampling method
 SYSTEM_TIME, which can be used in
 the TABLESAMPLE clause of a SELECT
 command.

 This table sampling method accepts a single floating-point argument that
 is the maximum number of milliseconds to spend reading the table. This
 gives you direct control over how long the query takes, at the price that
 the size of the sample becomes hard to predict. The resulting sample will
 contain as many rows as could be read in the specified time, unless the
 whole table has been read first.

 Like the built-in SYSTEM sampling
 method, SYSTEM_TIME performs block-level sampling, so
 that the sample is not completely random but may be subject to clustering
 effects, especially if only a small number of rows are selected.

 SYSTEM_TIME does not support
 the REPEATABLE clause.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Examples

 Here is an example of selecting a sample of a table with
 SYSTEM_TIME. First install the extension:

CREATE EXTENSION tsm_system_time;

 Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_TIME(1000);

 This command will return as large a sample of my_table as
 it can read in 1 second (1000 milliseconds). Of course, if the whole
 table can be read in under 1 second, all its rows will be returned.

unaccent — a text search dictionary which removes diacritics

 unaccent is a text search dictionary that removes accents
 (diacritic signs) from lexemes.
 It's a filtering dictionary, which means its output is
 always passed to the next dictionary (if any), unlike the normal
 behavior of dictionaries. This allows accent-insensitive processing
 for full text search.

 The current implementation of unaccent cannot be used as a
 normalizing dictionary for the thesaurus dictionary.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

Configuration

 An unaccent dictionary accepts the following options:

	
 RULES is the base name of the file containing the list of
 translation rules. This file must be stored in
 $SHAREDIR/tsearch_data/ (where $SHAREDIR means
 the PostgreSQL™ installation's shared-data directory).
 Its name must end in .rules (which is not to be included in
 the RULES parameter).

 The rules file has the following format:

	
 Each line represents one translation rule, consisting of a character with
 accent followed by a character without accent. The first is translated
 into the second. For example,

À A
Á A
Â A
Ã A
Ä A
Å A
Æ AE

 The two characters must be separated by whitespace, and any leading or
 trailing whitespace on a line is ignored.

	
 Alternatively, if only one character is given on a line, instances of
 that character are deleted; this is useful in languages where accents
 are represented by separate characters.

	
 Actually, each “character” can be any string not containing
 whitespace, so unaccent dictionaries could be used for
 other sorts of substring substitutions besides diacritic removal.

	
 As with other PostgreSQL™ text search configuration files,
 the rules file must be stored in UTF-8 encoding. The data is
 automatically translated into the current database's encoding when
 loaded. Any lines containing untranslatable characters are silently
 ignored, so that rules files can contain rules that are not applicable in
 the current encoding.

 A more complete example, which is directly useful for most European
 languages, can be found in unaccent.rules, which is installed
 in $SHAREDIR/tsearch_data/ when the unaccent
 module is installed. This rules file translates characters with accents
 to the same characters without accents, and it also expands ligatures
 into the equivalent series of simple characters (for example, Æ to
 AE).

Usage

 Installing the unaccent extension creates a text
 search template unaccent and a dictionary unaccent
 based on it. The unaccent dictionary has the default
 parameter setting RULES='unaccent', which makes it immediately
 usable with the standard unaccent.rules file.
 If you wish, you can alter the parameter, for example

mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES='my_rules');

 or create new dictionaries based on the template.

 To test the dictionary, you can try:

mydb=# select ts_lexize('unaccent','Hôtel');
 ts_lexize

 {Hotel}
(1 row)

 Here is an example showing how to insert the
 unaccent dictionary into a text search configuration:

mydb=# CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
mydb=# ALTER TEXT SEARCH CONFIGURATION fr
 ALTER MAPPING FOR hword, hword_part, word
 WITH unaccent, french_stem;
mydb=# select to_tsvector('fr','Hôtels de la Mer');
 to_tsvector

 'hotel':1 'mer':4
(1 row)

mydb=# select to_tsvector('fr','Hôtel de la Mer') @@ to_tsquery('fr','Hotels');
 ?column?

 t
(1 row)

mydb=# select ts_headline('fr','Hôtel de la Mer',to_tsquery('fr','Hotels'));
 ts_headline

 Hôtel de la Mer
(1 row)

Functions

 The unaccent() function removes accents (diacritic signs) from
 a given string. Basically, it's a wrapper around
 unaccent-type dictionaries, but it can be used outside normal
 text search contexts.

unaccent([dictionary regdictionary,] string text) returns text

 If the dictionary argument is
 omitted, the text search dictionary named unaccent and
 appearing in the same schema as the unaccent()
 function itself is used.

 For example:

SELECT unaccent('unaccent', 'Hôtel');
SELECT unaccent('Hôtel');

uuid-ossp — a UUID generator

 The uuid-ossp module provides functions to generate universally
 unique identifiers (UUIDs) using one of several standard algorithms. There
 are also functions to produce certain special UUID constants.
 This module is only necessary for special requirements beyond what is
 available in core PostgreSQL™. See the section called “UUID Functions” for built-in ways to generate UUIDs.

 This module is considered “trusted”, that is, it can be
 installed by non-superusers who have CREATE privilege
 on the current database.

uuid-ossp Functions

 Table F.34, “Functions for UUID Generation” shows the functions available to
 generate UUIDs.
 The relevant standards ITU-T Rec. X.667, ISO/IEC 9834-8:2005, and
 RFC 4122
 specify four algorithms for generating UUIDs, identified by the
 version numbers 1, 3, 4, and 5. (There is no version 2 algorithm.)
 Each of these algorithms could be suitable for a different set of
 applications.

Table F.34. Functions for UUID Generation
	
 Function

 Description

	

 uuid_generate_v1 ()
 uuid

 Generates a version 1 UUID. This involves the MAC
 address of the computer and a time stamp. Note that UUIDs of this
 kind reveal the identity of the computer that created the identifier
 and the time at which it did so, which might make it unsuitable for
 certain security-sensitive applications.

	

 uuid_generate_v1mc ()
 uuid

 Generates a version 1 UUID, but uses a random multicast
 MAC address instead of the real MAC address of the computer.

	

 uuid_generate_v3 (namespace uuid, name text)
 uuid

 Generates a version 3 UUID in the given namespace using
 the specified input name. The namespace should be one of the special
 constants produced by the uuid_ns_*() functions
 shown in Table F.35, “Functions Returning UUID Constants”. (It could be any UUID
 in theory.) The name is an identifier in the selected namespace.

 For example:

SELECT uuid_generate_v3(uuid_ns_url(), 'http://www.postgresql.org');

 The name parameter will be MD5-hashed, so the cleartext cannot be
 derived from the generated UUID.
 The generation of UUIDs by this method has no random or
 environment-dependent element and is therefore reproducible.

	
 uuid_generate_v4 ()
 uuid

 Generates a version 4 UUID, which is derived entirely
 from random numbers.

	
 uuid_generate_v5 (namespace uuid, name text)
 uuid

 Generates a version 5 UUID, which works like a version 3
 UUID except that SHA-1 is used as a hashing method. Version 5 should
 be preferred over version 3 because SHA-1 is thought to be more secure
 than MD5.

Table F.35. Functions Returning UUID Constants
	
 Function

 Description

	
 uuid_nil ()
 uuid

 Returns a “nil” UUID constant, which does not occur as a
 real UUID.

	
 uuid_ns_dns ()
 uuid

 Returns a constant designating the DNS namespace for UUIDs.

	
 uuid_ns_url ()
 uuid

 Returns a constant designating the URL namespace for UUIDs.

	
 uuid_ns_oid ()
 uuid

 Returns a constant designating the ISO object identifier (OID) namespace for
 UUIDs. (This pertains to ASN.1 OIDs, which are unrelated to the OIDs
 used in PostgreSQL™.)

	
 uuid_ns_x500 ()
 uuid

 Returns a constant designating the X.500 distinguished name (DN)
 namespace for UUIDs.

Building uuid-ossp

 Historically this module depended on the OSSP UUID library, which accounts
 for the module's name. While the OSSP UUID library can still be found
 at http://www.ossp.org/pkg/lib/uuid/, it is not well
 maintained, and is becoming increasingly difficult to port to newer
 platforms. uuid-ossp can now be built without the OSSP
 library on some platforms. On FreeBSD and some other BSD-derived
 platforms, suitable UUID creation functions are included in the
 core libc library. On Linux, macOS, and some other
 platforms, suitable functions are provided in the libuuid
 library, which originally came from the e2fsprogs project
 (though on modern Linux it is considered part
 of util-linux-ng). When invoking configure,
 specify --with-uuid=bsd to use the BSD functions,
 or --with-uuid=e2fs to
 use e2fsprogs' libuuid, or
 --with-uuid=ossp to use the OSSP UUID library.
 More than one of these libraries might be available on a particular
 machine, so configure does not automatically choose one.

Author

 Peter Eisentraut <peter_e@gmx.net>

xml2 — XPath querying and XSLT functionality

 The xml2 module provides XPath querying and
 XSLT functionality.

Deprecation Notice

 From PostgreSQL™ 8.3 on, there is XML-related
 functionality based on the SQL/XML standard in the core server.
 That functionality covers XML syntax checking and XPath queries,
 which is what this module does, and more, but the API is
 not at all compatible. It is planned that this module will be
 removed in a future version of PostgreSQL in favor of the newer standard API, so
 you are encouraged to try converting your applications. If you
 find that some of the functionality of this module is not
 available in an adequate form with the newer API, please explain
 your issue to <pgsql-hackers@lists.postgresql.org> so that the deficiency
 can be addressed.

Description of Functions

 Table F.36, “xml2 Functions” shows the functions provided by this module.
 These functions provide straightforward XML parsing and XPath queries.

Table F.36. xml2 Functions
	
 Function

 Description

	
 xml_valid (document text)
 boolean

 Parses the given document and returns true if the
 document is well-formed XML. (Note: this is an alias for the standard
 PostgreSQL function xml_is_well_formed(). The
 name xml_valid() is technically incorrect since validity
 and well-formedness have different meanings in XML.)

	
 xpath_string (document text, query text)
 text

 Evaluates the XPath query on the supplied document, and
 casts the result to text.

	
 xpath_number (document text, query text)
 real

 Evaluates the XPath query on the supplied document, and
 casts the result to real.

	
 xpath_bool (document text, query text)
 boolean

 Evaluates the XPath query on the supplied document, and
 casts the result to boolean.

	
 xpath_nodeset (document text, query text, toptag text, itemtag text)
 text

 Evaluates the query on the document and wraps the result in XML
 tags. If the result is multivalued, the output will look like:

<toptag>
<itemtag>Value 1 which could be an XML fragment</itemtag>
<itemtag>Value 2....</itemtag>
</toptag>

 If either toptag
 or itemtag is an empty string, the relevant tag
 is omitted.

	
 xpath_nodeset (document text, query text, itemtag text)
 text

 Like xpath_nodeset(document, query, toptag, itemtag) but result omits toptag.

	
 xpath_nodeset (document text, query text)
 text

 Like xpath_nodeset(document, query, toptag, itemtag) but result omits both tags.

	
 xpath_list (document text, query text, separator text)
 text

 Evaluates the query on the document and returns multiple values
 separated by the specified separator, for example Value
 1,Value 2,Value 3 if separator
 is ,.

	
 xpath_list (document text, query text)
 text

 This is a wrapper for the above function that uses ,
 as the separator.

xpath_table

xpath_table(text key, text document, text relation, text xpaths, text criteria) returns setof record

 xpath_table is a table function that evaluates a set of XPath
 queries on each of a set of documents and returns the results as a
 table. The primary key field from the original document table is returned
 as the first column of the result so that the result set
 can readily be used in joins. The parameters are described in
 Table F.37, “xpath_table Parameters”.

Table F.37. xpath_table Parameters
	Parameter	Description
	key	

 the name of the “key” field — this is just a field to be used as
 the first column of the output table, i.e., it identifies the record from
 which each output row came (see note below about multiple values)

	document	

 the name of the field containing the XML document

	relation	

 the name of the table or view containing the documents

	xpaths	

 one or more XPath expressions, separated by |

	criteria	

 the contents of the WHERE clause. This cannot be omitted, so use
 true or 1=1 if you want to
 process all the rows in the relation

 These parameters (except the XPath strings) are just substituted
 into a plain SQL SELECT statement, so you have some flexibility — the
 statement is

 SELECT <key>, <document> FROM <relation> WHERE <criteria>

 so those parameters can be anything valid in those particular
 locations. The result from this SELECT needs to return exactly two
 columns (which it will unless you try to list multiple fields for key
 or document). Beware that this simplistic approach requires that you
 validate any user-supplied values to avoid SQL injection attacks.

 The function has to be used in a FROM expression, with an
 AS clause to specify the output columns; for example

SELECT * FROM
xpath_table('article_id',
 'article_xml',
 'articles',
 '/article/author|/article/pages|/article/title',
 'date_entered > ''2003-01-01'' ')
AS t(article_id integer, author text, page_count integer, title text);

 The AS clause defines the names and types of the columns in the
 output table. The first is the “key” field and the rest correspond
 to the XPath queries.
 If there are more XPath queries than result columns,
 the extra queries will be ignored. If there are more result columns
 than XPath queries, the extra columns will be NULL.

 Notice that this example defines the page_count result
 column as an integer. The function deals internally with string
 representations, so when you say you want an integer in the output, it will
 take the string representation of the XPath result and use PostgreSQL input
 functions to transform it into an integer (or whatever type the AS
 clause requests). An error will result if it can't do this — for
 example if the result is empty — so you may wish to just stick to
 text as the column type if you think your data has any problems.

 The calling SELECT statement doesn't necessarily have to be
 just SELECT * — it can reference the output
 columns by name or join them to other tables. The function produces a
 virtual table with which you can perform any operation you wish (e.g.,
 aggregation, joining, sorting etc.). So we could also have:

SELECT t.title, p.fullname, p.email
FROM xpath_table('article_id', 'article_xml', 'articles',
 '/article/title|/article/author/@id',
 'xpath_string(article_xml,''/article/@date'') > ''2003-03-20'' ')
 AS t(article_id integer, title text, author_id integer),
 tblPeopleInfo AS p
WHERE t.author_id = p.person_id;

 as a more complicated example. Of course, you could wrap all
 of this in a view for convenience.

Multivalued Results

 The xpath_table function assumes that the results of each XPath query
 might be multivalued, so the number of rows returned by the function
 may not be the same as the number of input documents. The first row
 returned contains the first result from each query, the second row the
 second result from each query. If one of the queries has fewer values
 than the others, null values will be returned instead.

 In some cases, a user will know that a given XPath query will return
 only a single result (perhaps a unique document identifier) — if used
 alongside an XPath query returning multiple results, the single-valued
 result will appear only on the first row of the result. The solution
 to this is to use the key field as part of a join against a simpler
 XPath query. As an example:

CREATE TABLE test (
 id int PRIMARY KEY,
 xml text
);

INSERT INTO test VALUES (1, '<doc num="C1">
<line num="L1"><a>12<c>3</c></line>
<line num="L2"><a>1122<c>33</c></line>
</doc>');

INSERT INTO test VALUES (2, '<doc num="C2">
<line num="L1"><a>111222<c>333</c></line>
<line num="L2"><a>111222<c>333</c></line>
</doc>');

SELECT * FROM
 xpath_table('id','xml','test',
 '/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int, val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

 id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
 1 | C1 | L1 | 1 | 2 | 3
 1 | | L2 | 11 | 22 | 33

 To get doc_num on every line, the solution is to use two invocations
 of xpath_table and join the results:

SELECT t.*,i.doc_num FROM
 xpath_table('id', 'xml', 'test',
 '/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
 xpath_table('id', 'xml', 'test', '/doc/@num', 'true')
 AS i(id int, doc_num varchar(10))
WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

 id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
 1 | L1 | 1 | 2 | 3 | C1
 1 | L2 | 11 | 22 | 33 | C1
(2 rows)

XSLT Functions

 The following functions are available if libxslt is installed:

xslt_process

xslt_process(text document, text stylesheet, text paramlist) returns text

 This function applies the XSL stylesheet to the document and returns
 the transformed result. The paramlist is a list of parameter
 assignments to be used in the transformation, specified in the form
 a=1,b=2. Note that the
 parameter parsing is very simple-minded: parameter values cannot
 contain commas!

 There is also a two-parameter version of xslt_process which
 does not pass any parameters to the transformation.

Author

 John Gray <jgray@azuli.co.uk>

 Development of this module was sponsored by Torchbox Ltd. (www.torchbox.com).
 It has the same BSD license as PostgreSQL.

Appendix G. Additional Supplied Programs

 This appendix and the previous one contain information regarding the modules that
 can be found in the contrib directory of the
 PostgreSQL™ distribution. See Appendix F, Additional Supplied Modules and Extensions for
 more information about the contrib section in general and
 server extensions and plug-ins found in contrib
 specifically.

 This appendix covers utility programs found in contrib.
 Once installed, either from source or a packaging system, they are found in
 the bin directory of the
 PostgreSQL™ installation and can be used like any
 other program.

Client Applications

 This section covers PostgreSQL™ client
 applications in contrib. They can be run from anywhere,
 independent of where the database server resides. See
 also PostgreSQL Client Applications for information about client
 applications that are part of the core PostgreSQL™
 distribution.

Server Applications

 Some applications run on the PostgreSQL™ server
 itself. Currently, no such applications are included in the
 contrib directory. See also PostgreSQL Server Applications for information about server applications that
 are part of the core PostgreSQL™ distribution.

Appendix H. External Projects

 PostgreSQL™ is a complex software project,
 and managing the project is difficult. We have found that many
 enhancements to PostgreSQL™ can be more
 efficiently developed separately from the core project.

Client Interfaces

 There are only two client interfaces included in the base
 PostgreSQL™ distribution:

	
 libpq is included because it is the
 primary C language interface, and because many other client interfaces
 are built on top of it.

	
 ECPG is included because it depends on the
 server-side SQL grammar, and is therefore sensitive to changes in
 PostgreSQL™ itself.

 All other language interfaces are external projects and are distributed
 separately. A
 list of language interfaces
 is maintained on the PostgreSQL wiki. Note that some of these packages are
 not released under the same license as PostgreSQL™.
 For more information on each language interface, including licensing terms,
 refer to its website and documentation.

 https://wiki.postgresql.org/wiki/List_of_drivers

Administration Tools

 There are several administration tools available for
 PostgreSQL™. The most popular is
 pgAdmin,
 and there are several commercially available ones as well.

Procedural Languages

 PostgreSQL™ includes several procedural
 languages with the base distribution: PL/pgSQL, PL/Tcl,
 PL/Perl, and PL/Python.

 In addition, there are a number of procedural languages that are developed
 and maintained outside the core PostgreSQL™
 distribution. A list of
 procedural languages
 is maintained on the PostgreSQL wiki. Note that some of these projects are
 not released under the same license as PostgreSQL™.
 For more information on each procedural language, including licensing
 information, refer to its website
 and documentation.

 https://wiki.postgresql.org/wiki/PL_Matrix

Extensions

 PostgreSQL™ is designed to be easily extensible. For
 this reason, extensions loaded into the database can function
 just like features that are built in. The
 contrib/ directory shipped with the source code
 contains several extensions, which are described in
 Appendix F, Additional Supplied Modules and Extensions. Other extensions are developed
 independently, like PostGIS. Even
 PostgreSQL™ replication solutions can be developed
 externally. For example, Slony-I is a popular
 primary/standby replication solution that is developed independently
 from the core project.

Appendix I. The Source Code Repository

 The PostgreSQL™ source code is stored and managed
 using the Git™ version control system. A public
 mirror of the master repository is available; it is updated within a minute
 of any change to the master repository.

 Our wiki, https://wiki.postgresql.org/wiki/Working_with_Git,
 has some discussion on working with Git.

 Note that building PostgreSQL™ from the source
 repository requires reasonably up-to-date versions of bison,
 flex, and Perl.
 These tools are not needed to build from a distribution tarball, because
 the files generated with these tools are included in the tarball.
 Other tool requirements
 are the same as shown in the section called “Requirements”.

Getting the Source via Git™

 With Git™ you will make a copy of the entire code repository
 on your local machine, so you will have access to all history and branches
 offline. This is the fastest and most flexible way to develop or test
 patches.

Procedure I.1. Git
	
 You will need an installed version of Git™, which you can
 get from https://git-scm.com. Many systems already
 have a recent version of Git installed by default, or
 available in their package distribution system.

	
 To begin using the Git™ repository, make a clone of the official mirror:

git clone https://git.postgresql.org/git/postgresql.git

 This will copy the full repository to your local machine, so it may take
 a while to complete, especially if you have a slow Internet connection.
 The files will be placed in a new subdirectory postgresql of
 your current directory.

	
 Whenever you want to get the latest updates in the system, cd
 into the repository, and run:

git fetch

 Git™ can do a lot more things than just fetch the source. For
 more information, consult the Git™ man pages, or see the
 website at https://git-scm.com.

Appendix J. Documentation

 PostgreSQL™ has four primary documentation
 formats:

	
 Plain text, for pre-installation information

	
 HTML, for on-line browsing and reference

	
 PDF, for printing

	
 man pages, for quick reference.

 Additionally, a number of plain-text README files can
 be found throughout the PostgreSQL™ source tree,
 documenting various implementation issues.

 HTML documentation and man pages are part of a
 standard distribution and are installed by default. PDF
 format documentation is available separately for
 download.

DocBook

 The documentation sources are written in
 DocBook, which is a markup language
 defined in XML. In what
 follows, the terms DocBook and XML are both
 used, but technically they are not interchangeable.

 DocBook™ allows an author to specify the
 structure and content of a technical document without worrying
 about presentation details. A document style defines how that
 content is rendered into one of several final forms. DocBook is
 maintained by the
 OASIS group. The
 official DocBook site has good introductory and reference documentation and
 a complete O'Reilly book for your online reading pleasure.
 The
 FreeBSD Documentation Project also uses DocBook and has some good
 information, including a number of style guidelines that might be
 worth considering.

Tool Sets

 The following tools are used to process the documentation. Some
 might be optional, as noted.

	DocBook DTD
	
 This is the definition of DocBook itself. We currently use version
 4.5; you cannot use later or earlier versions. You need
 the XML variant of the DocBook DTD, not
 the SGML variant.

	DocBook XSL Stylesheets
	
 These contain the processing instructions for converting the
 DocBook sources to other formats, such as
 HTML.

 The minimum required version is currently 1.77.0, but it is recommended
 to use the latest available version for best results.

	Libxml2 for xmllint
	
 This library and the xmllint tool it contains are
 used for processing XML. Many developers will already
 have Libxml2 installed, because it is also
 used when building the PostgreSQL code. Note, however,
 that xmllint might need to be installed from a
 separate subpackage.

	Libxslt for xsltproc
	
 xsltproc is an XSLT processor, that is, a program to
 convert XML to other formats using XSLT stylesheets.

	FOP
	
 This is a program for converting, among other things, XML to PDF.
 It is needed only if you want to build the documentation in PDF format.

 We have documented experience with several installation methods for
 the various tools that are needed to process the documentation.
 These will be described below. There might be some other packaged
 distributions for these tools. Please report package status to the
 documentation mailing list, and we will include that information
 here.

Installation on Fedora, RHEL, and Derivatives

 To install the required packages, use:

yum install docbook-dtds docbook-style-xsl libxslt fop

Installation on FreeBSD

 To install the required packages with pkg, use:

pkg install docbook-xml docbook-xsl libxslt fop

 When building the documentation from the doc
 directory you'll need to use gmake, because the
 makefile provided is not suitable for FreeBSD's make.

Debian Packages

 There is a full set of packages of the documentation tools
 available for Debian GNU/Linux™.
 To install, simply use:

apt-get install docbook-xml docbook-xsl libxml2-utils xsltproc fop

macOS

 If you use MacPorts, the following will get you set up:

sudo port install docbook-xml docbook-xsl-nons libxslt fop

 If you use Homebrew, use this:

brew install docbook docbook-xsl libxslt fop

 The Homebrew-supplied programs require the following environment variable
 to be set. For Intel based machines, use this:

export XML_CATALOG_FILES=/usr/local/etc/xml/catalog

 On Apple Silicon based machines, use this:

export XML_CATALOG_FILES=/opt/homebrew/etc/xml/catalog

 Without it, xsltproc will throw errors like this:

I/O error : Attempt to load network entity http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd
postgres.sgml:21: warning: failed to load external entity "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
...

 While it is possible to use the Apple-provided versions
 of xmllint and xsltproc
 instead of those from MacPorts or Homebrew, you'll still need
 to install the DocBook DTD and stylesheets, and set up a catalog
 file that points to them.

Detection by configure

 Before you can build the documentation you need to run the
 configure script, as you would when building
 the PostgreSQL™ programs themselves.
 Check the output near the end of the run; it should look something
 like this:

checking for xmllint... xmllint
checking for xsltproc... xsltproc
checking for fop... fop
checking for dbtoepub... dbtoepub

 If xmllint or xsltproc is not
 found, you will not be able to build any of the documentation.
 fop is only needed to build the documentation in
 PDF format.
 dbtoepub is only needed to build the documentation
 in EPUB format.

 If necessary, you can tell configure where to find
 these programs, for example

./configure ... XMLLINT=/opt/local/bin/xmllint ...

 If you prefer to build PostgreSQL™ using
 Meson, instead run meson setup as described in
 the section called “Building and Installation with Meson”, and then see
 the section called “Building the Documentation with Meson”.

Building the Documentation with Make

 Once you have everything set up, change to the directory
 doc/src/sgml and run one of the commands
 described in the following subsections to build the
 documentation. (Remember to use GNU make.)

HTML

 To build the HTML version of the documentation:

doc/src/sgml$ make html

 This is also the default target. The output appears in the
 subdirectory html.

 To produce HTML documentation with the stylesheet used on postgresql.org instead of the
 default simple style use:

doc/src/sgml$ make STYLE=website html

 If the STYLE=website option is used, the generated HTML
 files include references to stylesheets hosted on postgresql.org and
 require network access to view.

Manpages

 We use the DocBook XSL stylesheets to
 convert DocBook™
 refentry pages to *roff output suitable for man
 pages. To create the man pages, use the command:

doc/src/sgml$ make man

PDF

 To produce a PDF rendition of the documentation
 using FOP™, you can use one of the following
 commands, depending on the preferred paper format:

	
 For A4 format:

doc/src/sgml$ make postgres-A4.pdf

	
 For U.S. letter format:

doc/src/sgml$ make postgres-US.pdf

 Because the PostgreSQL documentation is fairly
 big, FOP™ will require a significant amount of
 memory. Because of that, on some systems, the build will fail with a
 memory-related error message. This can usually be fixed by configuring
 Java heap settings in the configuration
 file ~/.foprc, for example:

FOP binary distribution
FOP_OPTS='-Xmx1500m'
Debian
JAVA_ARGS='-Xmx1500m'
Red Hat
ADDITIONAL_FLAGS='-Xmx1500m'

 There is a minimum amount of memory that is required, and to some extent
 more memory appears to make things a bit faster. On systems with very
 little memory (less than 1 GB), the build will either be very slow due to
 swapping or will not work at all.

 In its default configuration FOP™ will emit an
 INFO message for each page. The log level can be
 changed via ~/.foprc:

LOGCHOICE=-Dorg.apache.commons.logging.Log=​org.apache.commons.logging.impl.SimpleLog
LOGLEVEL=-Dorg.apache.commons.logging.simplelog.defaultlog=WARN

 Other XSL-FO processors can also be used manually, but the automated build
 process only supports FOP.

Plain Text Files

 The installation instructions are also distributed as plain text,
 in case they are needed in a situation where better reading tools
 are not available. The INSTALL file
 corresponds to Chapter 17, Installation from Source Code, with some minor
 changes to account for the different context. To recreate the
 file, change to the directory doc/src/sgml
 and enter make INSTALL. Building text output
 requires Pandoc™ version 1.13 or newer as an
 additional build tool.

 In the past, the release notes and regression testing instructions
 were also distributed as plain text, but this practice has been
 discontinued.

Syntax Check

 Building the documentation can take very long. But there is a
 method to just check the correct syntax of the documentation
 files, which only takes a few seconds:

doc/src/sgml$ make check

Building the Documentation with Meson

 Two options are provided for building the documentation using Meson.
 Change to the build directory before running
 one of these commands, or add -C build to the command.

 To build just the HTML version of the documentation:

build$ ninja docs

 To build all forms of the documentation:

build$ ninja alldocs

 The output appears in the
 subdirectory build/doc/src/sgml.

Documentation Authoring

 The documentation sources are most conveniently modified with an editor
 that has a mode for editing XML, and even more so if it has some awareness
 of XML schema languages so that it can know about
 DocBook™ syntax specifically.

 Note that for historical reasons the documentation source files are named
 with an extension .sgml even though they are now XML
 files. So you might need to adjust your editor configuration to set the
 correct mode.

Emacs

 nXML Mode™, which ships with
 Emacs™, is the most common mode for editing
 XML documents with Emacs™.
 It will allow you to use Emacs to insert tags
 and check markup consistency, and it supports
 DocBook™ out of the box. Check the
 nXML manual for detailed documentation.

 src/tools/editors/emacs.samples contains
 recommended settings for this mode.

Style Guide

Reference Pages

 Reference pages should follow a standard layout. This allows
 users to find the desired information more quickly, and it also
 encourages writers to document all relevant aspects of a command.
 Consistency is not only desired among
 PostgreSQL™ reference pages, but also
 with reference pages provided by the operating system and other
 packages. Hence the following guidelines have been developed.
 They are for the most part consistent with similar guidelines
 established by various operating systems.

 Reference pages that describe executable commands should contain
 the following sections, in this order. Sections that do not apply
 can be omitted. Additional top-level sections should only be used
 in special circumstances; often that information belongs in the
 “Usage” section.

	Name
	
 This section is generated automatically. It contains the
 command name and a half-sentence summary of its functionality.

	Synopsis
	
 This section contains the syntax diagram of the command. The
 synopsis should normally not list each command-line option;
 that is done below. Instead, list the major components of the
 command line, such as where input and output files go.

	Description
	
 Several paragraphs explaining what the command does.

	Options
	
 A list describing each command-line option. If there are a
 lot of options, subsections can be used.

	Exit Status
	
 If the program uses 0 for success and non-zero for failure,
 then you do not need to document it. If there is a meaning
 behind the different non-zero exit codes, list them here.

	Usage
	
 Describe any sublanguage or run-time interface of the program.
 If the program is not interactive, this section can usually be
 omitted. Otherwise, this section is a catch-all for
 describing run-time features. Use subsections if appropriate.

	Environment
	
 List all environment variables that the program might use.
 Try to be complete; even seemingly trivial variables like
 SHELL might be of interest to the user.

	Files
	
 List any files that the program might access implicitly. That
 is, do not list input and output files that were specified on
 the command line, but list configuration files, etc.

	Diagnostics
	
 Explain any unusual output that the program might create.
 Refrain from listing every possible error message. This is a
 lot of work and has little use in practice. But if, say, the
 error messages have a standard format that the user can parse,
 this would be the place to explain it.

	Notes
	
 Anything that doesn't fit elsewhere, but in particular bugs,
 implementation flaws, security considerations, compatibility
 issues.

	Examples
	
 Examples

	History
	
 If there were some major milestones in the history of the
 program, they might be listed here. Usually, this section can
 be omitted.

	Author
	
 Author (only used in the contrib section)

	See Also
	
 Cross-references, listed in the following order: other
 PostgreSQL™ command reference pages,
 PostgreSQL™ SQL command reference
 pages, citation of PostgreSQL™
 manuals, other reference pages (e.g., operating system, other
 packages), other documentation. Items in the same group are
 listed alphabetically.

 Reference pages describing SQL commands should contain the
 following sections: Name, Synopsis, Description, Parameters,
 Outputs, Notes, Examples, Compatibility, History, See
 Also. The Parameters section is like the Options section, but
 there is more freedom about which clauses of the command can be
 listed. The Outputs section is only needed if the command returns
 something other than a default command-completion tag. The Compatibility
 section should explain to what extent
 this command conforms to the SQL standard(s), or to which other
 database system it is compatible. The See Also section of SQL
 commands should list SQL commands before cross-references to
 programs.

Appendix K. PostgreSQL™ Limits

 Table K.1, “PostgreSQL™ Limitations” describes various hard limits of
 PostgreSQL™. However, practical limits, such as
 performance limitations or available disk space may apply before absolute
 hard limits are reached.

Table K.1. PostgreSQL™ Limitations
	Item	Upper Limit	Comment
	database size	unlimited	
	number of databases	4,294,950,911	
	relations per database	1,431,650,303	
	relation size	32 TB	with the default BLCKSZ of 8192 bytes
	rows per table	limited by the number of tuples that can fit onto 4,294,967,295 pages	
	columns per table	1,600	further limited by tuple size fitting on a single page; see note
 below
	columns in a result set	1,664	
	field size	1 GB	
	indexes per table	unlimited	constrained by maximum relations per database
	columns per index	32	can be increased by recompiling PostgreSQL™
	partition keys	32	can be increased by recompiling PostgreSQL™
	identifier length	63 bytes	can be increased by recompiling PostgreSQL™
	function arguments	100	can be increased by recompiling PostgreSQL™
	query parameters	65,535	

 The maximum number of columns for a table is further reduced as the tuple
 being stored must fit in a single 8192-byte heap page. For example,
 excluding the tuple header, a tuple made up of 1,600 int columns
 would consume 6400 bytes and could be stored in a heap page, but a tuple of
 1,600 bigint columns would consume 12800 bytes and would
 therefore not fit inside a heap page.
 Variable-length fields of
 types such as text, varchar, and char
 can have their values stored out of line in the table's TOAST table when the
 values are large enough to require it. Only an 18-byte pointer must remain
 inside the tuple in the table's heap. For shorter length variable-length
 fields, either a 4-byte or 1-byte field header is used and the value is
 stored inside the heap tuple.

 Columns that have been dropped from the table also contribute to the maximum
 column limit. Moreover, although the dropped column values for newly
 created tuples are internally marked as null in the tuple's null bitmap, the
 null bitmap also occupies space.

 Each table can store a theoretical maximum of 2^32 out-of-line values; see
 the section called “TOAST” for a detailed discussion of out-of-line
 storage. This limit arises from the use of a 32-bit OID to identify each
 such value. The practical limit is significantly less than the theoretical
 limit, because as the OID space fills up, finding an OID that is still free
 can become expensive, in turn slowing down INSERT/UPDATE statements.
 Typically, this is only an issue for tables containing many terabytes
 of data; partitioning is a possible workaround.

Appendix L. Acronyms

 This is a list of acronyms commonly used in the PostgreSQL™
 documentation and in discussions about PostgreSQL™.

	ANSI
	

 American National Standards Institute

	API
	
 Application Programming Interface

	ASCII
	
 American Standard
 Code for Information Interchange

	BKI
	
 Backend Interface

	CA
	
 Certificate Authority

	CIDR
	
 Classless
 Inter-Domain Routing

	CPAN
	
 Comprehensive Perl Archive Network

	CRL
	
 Certificate
 Revocation List

	CSV
	
 Comma
 Separated Values

	CTE
	
 Common Table Expression

	CVE
	
 Common Vulnerabilities and Exposures

	DBA
	
 Database
 Administrator

	DBI
	
 Database Interface (Perl)

	DBMS
	
 Database Management
 System

	DDL
	
 Data
 Definition Language, SQL commands such as CREATE
 TABLE, ALTER USER

	DML
	
 Data
 Manipulation Language, SQL commands such as INSERT,
 UPDATE, DELETE

	DST
	
 Daylight
 Saving Time

	ECPG
	
 Embedded C for PostgreSQL

	ESQL
	
 Embedded
 SQL

	FAQ
	
 Frequently Asked
 Questions

	FSM
	
 Free Space Map

	GEQO
	
 Genetic Query Optimizer

	GIN
	
 Generalized Inverted Index

	GiST
	
 Generalized Search Tree

	Git
	
 Git

	GMT
	
 Greenwich Mean Time

	GSSAPI
	
 Generic
 Security Services Application Programming Interface

	GUC
	
 Grand Unified Configuration,
 the PostgreSQL™ subsystem that handles server configuration

	HBA
	
 Host-Based Authentication

	HOT
	
 Heap-Only Tuples

	IEC
	
 International
 Electrotechnical Commission

	IEEE
	
 Institute of Electrical and
 Electronics Engineers

	IPC
	
 Inter-Process
 Communication

	ISO
	
 International Organization for
 Standardization

	ISSN
	
 International Standard
 Serial Number

	JDBC
	
 Java
 Database Connectivity

	JIT
	
 Just-in-Time
 compilation

	JSON
	
 JavaScript Object Notation

	LDAP
	
 Lightweight
 Directory Access Protocol

	LSN
	
 Log Sequence Number

	MCF
	
 Most Common Frequency, that is the frequency associated with some
 Most Common Value

	MCV
	
 Most Common Value, one of the values appearing most often within a
 particular table column

	MITM
	

 Man-in-the-middle attack

	MSVC
	
 Microsoft
 Visual C™

	MVCC
	
 Multi-Version Concurrency Control

	NLS
	
 National
 Language Support

	ODBC
	
 Open
 Database Connectivity

	OID
	
 Object Identifier

	OLAP
	
 Online Analytical
 Processing

	OLTP
	
 Online Transaction
 Processing

	ORDBMS
	
 Object-Relational
 Database Management System

	PAM
	
 Pluggable
 Authentication Modules

	PGSQL
	
 PostgreSQL™

	PGXS
	
 PostgreSQL™ Extension System

	PID
	
 Process Identifier

	PITR
	
 Point-In-Time
 Recovery (Continuous Archiving)

	PL
	
 Procedural Languages (server-side)

	POSIX
	
 Portable Operating
 System Interface

	RDBMS
	
 Relational
 Database Management System

	RFC
	
 Request For
 Comments

	SGML
	
 Standard Generalized
 Markup Language

	SNI
	

 Server Name Indication,
 RFC 6066

	SPI
	
 Server Programming Interface

	SP-GiST
	
 Space-Partitioned Generalized Search Tree

	SQL
	
 Structured Query Language

	SRF
	
 Set-Returning Function

	SSH
	
 Secure
 Shell

	SSL
	
 Secure Sockets Layer

	SSPI
	
 Security
 Support Provider Interface

	SYSV
	
 Unix System V

	TCP/IP
	
 Transmission
 Control Protocol (TCP) / Internet Protocol (IP)

	TID
	
 Tuple Identifier

	TLS
	

 Transport Layer Security

	TOAST
	
 The Oversized-Attribute Storage Technique

	TPC
	
 Transaction Processing
 Performance Council

	URL
	
 Uniform Resource
 Locator

	UTC
	
 Coordinated
 Universal Time

	UTF
	
 Unicode Transformation
 Format

	UTF8
	
 Eight-Bit Unicode
 Transformation Format

	UUID
	
 Universally Unique Identifier

	WAL
	
 Write-Ahead Log

	XID
	
 Transaction Identifier

	XML
	
 Extensible Markup
 Language

Appendix M. Glossary

 This is a list of terms and their meaning in the context of
 PostgreSQL™ and relational database
 systems in general.

	ACID
	
 Atomicity,
 Consistency,
 Isolation, and
 Durability.
 This set of properties of database transactions is intended to
 guarantee validity in concurrent operation and even in event of
 errors, power failures, etc.

	Aggregate function (routine)
	
 A function that
 combines (aggregates) multiple input values,
 for example by counting, averaging or adding,
 yielding a single output value.

 For more information, see
 the section called “Aggregate Functions”.

See Also Window function (routine).

	Analytic function
	See Window function (routine).

	Analyze (operation)
	
 The act of collecting statistics from data in
 tables
 and other relations
 to help the query planner
 to make decisions about how to execute
 queries.

 (Don't confuse this term with the ANALYZE option
 to the EXPLAIN(7) command.)

 For more information, see
 ANALYZE(7).

	Atomic
	
 In reference to a datum:
 the fact that its value cannot be broken down into smaller
 components.

	
 In reference to a
 database transaction:
 see atomicity.

	Atomicity
	
 The property of a transaction
 that either all its operations complete as a single unit or none do.
 In addition, if a system failure occurs during the execution of a
 transaction, no partial results are visible after recovery.
 This is one of the ACID properties.

	Attribute
	
 An element with a certain name and data type found within a
 tuple.

	Autovacuum (process)
	
 A set of background processes that routinely perform
 vacuum
 and analyze operations.
 The auxiliary process
 that coordinates the work and is always present (unless autovacuum
 is disabled) is known as the autovacuum launcher,
 and the processes that carry out the tasks are known as the
 autovacuum workers.

 For more information, see
 the section called “The Autovacuum Daemon”.

	Auxiliary process
	
 A process within an instance
 that is in charge of some specific background task for the instance.
 The auxiliary processes consist of

 the autovacuum launcher
 (but not the autovacuum workers),
 the background writer,
 the checkpointer,
 the logger,
 the startup process,
 the WAL archiver,
 the WAL receiver
 (but not the WAL senders),
 and the WAL writer.

	Backend (process)
	
 Process of an instance
 which acts on behalf of a client session
 and handles its requests.

 (Don't confuse this term with the similar terms
 Background Worker or
 Background Writer).

	Background worker (process)
	
 Process within an instance,
 which runs system- or user-supplied code.
 Serves as infrastructure for several features in
 PostgreSQL™, such as
 logical replication
 and parallel queries.
 In addition, Extensions can add
 custom background worker processes.

 For more information, see
 Chapter 48, Background Worker Processes.

	Background writer (process)
	
 An auxiliary process
 that writes dirty
 data pages from
 shared memory to
 the file system. It wakes up periodically, but works only for a short
 period in order to distribute its expensive I/O
 activity over time to avoid generating larger
 I/O peaks which could block other processes.

 For more information, see
 the section called “Background Writer”.

	Base Backup
	
 A binary copy of all
 database cluster
 files. It is generated by the tool pg_basebackup(1).
 In combination with WAL files it can be used as the starting point
 for recovery, log shipping, or streaming replication.

	Bloat
	
 Space in data pages which does not contain current row versions,
 such as unused (free) space or outdated row versions.

	Bootstrap superuser
	
 The first user initialized in a
 database cluster.

 This user owns all system catalog tables in each database. It is also the role
 from which all granted permissions originate. Because of these things, this
 role may not be dropped.

 This role also behaves as a normal
 database superuser.

	Buffer Access Strategy
	
 Some operations will access a large number of
 pages. A
 Buffer Access Strategy helps to prevent these
 operations from evicting too many pages from
 shared buffers.

 A Buffer Access Strategy sets up references to a limited number of
 shared buffers and
 reuses them circularly. When the operation requires a new page, a victim
 buffer is chosen from the buffers in the strategy ring, which may require
 flushing the page's dirty data and possibly also unflushed
 WAL to permanent storage.

 Buffer Access Strategies are used for various operations such as
 sequential scans of large tables, VACUUM,
 COPY, CREATE TABLE AS SELECT,
 ALTER TABLE, CREATE DATABASE,
 CREATE INDEX, and CLUSTER.

	Cast
	
 A conversion of a datum
 from its current data type to another data type.

 For more information, see
 CREATE CAST(7).

	Catalog
	
 The SQL standard uses this term to
 indicate what is called a
 database in
 PostgreSQL™'s terminology.

 (Don't confuse this term with
 system catalog).

 For more information, see
 the section called “Overview”.

	Check constraint
	
 A type of constraint
 defined on a relation
 which restricts the values allowed in one or more
 attributes. The
 check constraint can make reference to any attribute of the same row in
 the relation, but cannot reference other rows of the same relation or
 other relations.

 For more information, see
 the section called “Constraints”.

	Checkpoint
	
 A point in the WAL sequence
 at which it is guaranteed that the heap and index data files have been
 updated with all information from
 shared memory
 modified before that checkpoint;
 a checkpoint record is written and flushed to WAL
 to mark that point.

 A checkpoint is also the act of carrying out all the actions that
 are necessary to reach a checkpoint as defined above.
 This process is initiated when predefined conditions are met,
 such as a specified amount of time has passed, or a certain volume
 of records has been written; or it can be invoked by the user
 with the command CHECKPOINT.

 For more information, see
 the section called “WAL Configuration”.

	Checkpointer (process)
	
 An auxiliary process
 that is responsible for executing
 checkpoints.

	Class (archaic)
	See Relation.

	Client (process)
	
 Any process, possibly remote, that establishes a
 session
 by connecting to an
 instance
 to interact with a database.

	Cluster owner
	
 The operating system user that owns the
 data directory
 and under which the postgres process is run.
 It is required that this user exist prior to creating a new
 database cluster.

 On operating systems with a root user,
 said user is not allowed to be the cluster owner.

	Column
	
 An attribute found in
 a table or
 view.

	Commit
	
 The act of finalizing a
 transaction within
 the database, which
 makes it visible to other transactions and assures its
 durability.

 For more information, see
 COMMIT(7).

	Concurrency
	
 The concept that multiple independent operations happen within the
 database at the same time.
 In PostgreSQL™, concurrency is controlled by
 the multiversion concurrency control
 mechanism.

	Connection
	
 An established line of communication between a client process and a
 backend process,
 usually over a network, supporting a
 session. This term is
 sometimes used as a synonym for session.

 For more information, see
 the section called “Connections and Authentication”.

	Consistency
	
 The property that the data in the
 database
 is always in compliance with
 integrity constraints.
 Transactions may be allowed to violate some of the constraints
 transiently before it commits, but if such violations are not resolved
 by the time it commits, such a transaction is automatically
 rolled back.
 This is one of the ACID properties.

	Constraint
	
 A restriction on the values of data allowed within a
 table,
 or in attributes of a
 domain.

 For more information, see
 the section called “Constraints”.

	Cumulative Statistics System
	
 A system which, if enabled, accumulates statistical information
 about the instance's
 activities.

 For more information, see
 the section called “The Cumulative Statistics System”.

	Data area
	See Data directory.

	Database
	
 A named collection of
 local SQL objects.

 For more information, see
 the section called “Overview”.

	Database cluster
	
 A collection of databases and global SQL objects,
 and their common static and dynamic metadata.
 Sometimes referred to as a
 cluster.
 A database cluster is created using the
 initdb(1) program.

 In PostgreSQL™, the term
 cluster is also sometimes used to refer to an instance.
 (Don't confuse this term with the SQL command CLUSTER.)

 See also cluster owner,
 the operating-system owner of a cluster,
 and bootstrap superuser,
 the PostgreSQL™ owner of a cluster.

	Database server
	See Instance.

	Database superuser
	
 A role having superuser status
 (see the section called “Role Attributes”).

 Frequently referred to as superuser.

	Data directory
	
 The base directory on the file system of a
 server that contains all
 data files and subdirectories associated with a
 database cluster
 (with the exception of
 tablespaces,
 and optionally WAL).
 The environment variable PGDATA is commonly used to
 refer to the data directory.

 A cluster's storage
 space comprises the data directory plus any additional tablespaces.

 For more information, see
 the section called “Database File Layout”.

	Data page
	
 The basic structure used to store relation data.
 All pages are of the same size.
 Data pages are typically stored on disk, each in a specific file,
 and can be read to shared buffers
 where they can be modified, becoming
 dirty. They become clean when written
 to disk. New pages, which initially exist in memory only, are also
 dirty until written.

	Datum
	
 The internal representation of one value of an SQL
 data type.

	Delete
	
 An SQL command which removes
 rows from a given
 table
 or relation.

 For more information, see
 DELETE(7).

	Domain
	
 A user-defined data type that is based on another underlying data type.
 It acts the same as the underlying type except for possibly restricting
 the set of allowed values.

 For more information, see the section called “Domain Types”.

	Durability
	
 The assurance that once a
 transaction has
 been committed, the
 changes remain even after a system failure or crash.
 This is one of the ACID properties.

	Epoch
	See Transaction ID.

	Extension
	
 A software add-on package that can be installed on an
 instance to
 get extra features.

 For more information, see
 the section called “Packaging Related Objects into an Extension”.

	File segment
	
 A physical file which stores data for a given
 relation.
 File segments are limited in size by a configuration value
 (typically 1 gigabyte),
 so if a relation exceeds that size, it is split into multiple segments.

 For more information, see
 the section called “Database File Layout”.

 (Don't confuse this term with the similar term
 WAL segment).

	Foreign data wrapper
	
 A means of representing data that is not contained in the local
 database so that it appears as if were in local
 table(s). With a foreign data wrapper it is
 possible to define a foreign server and
 foreign tables.

 For more information, see
 CREATE FOREIGN DATA WRAPPER(7).

	Foreign key
	
 A type of constraint
 defined on one or more columns
 in a table which
 requires the value(s) in those columns to
 identify zero or one row
 in another (or, infrequently, the same)
 table.

	Foreign server
	
 A named collection of
 foreign tables which
 all use the same
 foreign data wrapper
 and have other configuration values in common.

 For more information, see
 CREATE SERVER(7).

	Foreign table (relation)
	
 A relation which appears to have
 rows and
 columns similar to a
 regular table, but will forward
 requests for data through its
 foreign data wrapper,
 which will return result sets
 structured according to the definition of the
 foreign table.

 For more information, see
 CREATE FOREIGN TABLE(7).

	Fork
	
 Each of the separate segmented file sets in which a relation is stored.
 The main fork is where the actual data resides.
 There also exist two secondary forks for metadata:
 the free space map
 and the visibility map.
 Unlogged relations
 also have an init fork.

	Free space map (fork)
	
 A storage structure that keeps metadata about each data page of a table's
 main fork. The free space map entry for each page stores the
 amount of free space that's available for future tuples, and is structured
 to be efficiently searched for available space for a new tuple of a given
 size.

 For more information, see
 the section called “Free Space Map”.

	Function (routine)
	
 A type of routine that receives zero or more arguments, returns zero or more
 output values, and is constrained to run within one transaction.
 Functions are invoked as part of a query, for example via
 SELECT.
 Certain functions can return
 sets; those are
 called set-returning functions.

 Functions can also be used for
 triggers to invoke.

 For more information, see
 CREATE FUNCTION(7).

	GMT
	See UTC.

	Grant
	
 An SQL command that is used to allow a
 user or
 role to access
 specific objects within the database.

 For more information, see
 GRANT(7).

	Heap
	
 Contains the values of row
 attributes (i.e., the data) for a
 relation.
 The heap is realized within one or more
 file segments
 in the relation's main fork.

	Host
	
 A computer that communicates with other computers over a network.
 This is sometimes used as a synonym for
 server.
 It is also used to refer to a computer where
 client processes run.

	Index (relation)
	
 A relation that contains
 data derived from a table
 or materialized view.
 Its internal structure supports fast retrieval of and access to the original
 data.

 For more information, see
 CREATE INDEX(7).

	Insert
	
 An SQL command used to add new data into a
 table.

 For more information, see
 INSERT(7).

	Instance
	
 A group of backend and
 auxiliary processes
 that communicate using a common shared memory area. One
 postmaster process
 manages the instance; one instance manages exactly one
 database cluster
 with all its databases. Many instances can run on the same
 server
 as long as their TCP ports do not conflict.

 The instance handles all key features of a DBMS:
 read and write access to files and shared memory,
 assurance of the ACID properties,
 connections to
 client processes,
 privilege verification, crash recovery, replication, etc.

	Isolation
	
 The property that the effects of a transaction are not visible to
 concurrent transactions
 before it commits.
 This is one of the ACID properties.

 For more information, see the section called “Transaction Isolation”.

	Join
	
 An operation and SQL keyword used in
 queries
 for combining data from multiple
 relations.

	Key
	
 A means of identifying a row within a
 table or
 other relation by
 values contained within one or more
 attributes
 in that relation.

	Lock
	
 A mechanism that allows a process to limit or prevent simultaneous
 access to a resource.

	Log file
	
 Log files contain human-readable text lines about events.
 Examples include login failures, long-running queries, etc.

 For more information, see
 the section called “Log File Maintenance”.

	Logged
	
 A table is considered
 logged if changes to it are sent to the
 WAL. By default, all regular
 tables are logged. A table can be specified as
 unlogged either at
 creation time or via the ALTER TABLE command.

	Logger (process)
	
 An auxiliary process
 which, if enabled, writes information about database events into the current
 log file.
 When reaching certain time- or
 volume-dependent criteria, a new log file is created.
 Also called syslogger.

 For more information, see
 the section called “Error Reporting and Logging”.

	Log record
	
 Archaic term for a WAL record.

	Log sequence number
	
 Byte offset into the WAL,
 increasing monotonically with each new WAL record.

 For more information, see pg_lsn and the section called “WAL Internals”.

	LSN
	See Log sequence number.

	Master (server)
	See Primary (server).

	Materialized
	
 The property that some information has been pre-computed and stored
 for later use, rather than computing it on-the-fly.

 This term is used in
 materialized view,
 to mean that the data derived from the view's query is stored on
 disk separately from the sources of that data.

 This term is also used to refer to some multi-step queries to mean that
 the data resulting from executing a given step is stored in memory
 (with the possibility of spilling to disk), so that it can be read multiple
 times by another step.

	Materialized view (relation)
	
 A relation that is
 defined by a SELECT statement
 (just like a view),
 but stores data in the same way that a
 table does. It cannot be
 modified via INSERT, UPDATE,
 DELETE, or MERGE operations.

 For more information, see
 CREATE MATERIALIZED VIEW(7).

	Merge
	
 An SQL command used to conditionally add, modify,
 or remove rows
 in a given table,
 using data from a source
 relation.

 For more information, see
 MERGE(7).

	Multi-version concurrency control (MVCC)
	
 A mechanism designed to allow several
 transactions to be
 reading and writing the same rows without one process causing other
 processes to stall.
 In PostgreSQL™, MVCC is implemented by
 creating copies (versions) of
 tuples as they are
 modified; after transactions that can see the old versions terminate,
 those old versions need to be removed.

	Null
	
 A concept of non-existence that is a central tenet of relational
 database theory. It represents the absence of a definite value.

	Optimizer
	See Query planner.

	Parallel query
	
 The ability to handle parts of executing a
 query to take advantage
 of parallel processes on servers with multiple CPUs.

	Partition
	
 One of several disjoint (not overlapping) subsets of a larger set.

	
 In reference to a
 partitioned table:
 One of the tables that each contain part of the data of the partitioned table,
 which is said to be the parent.
 The partition is itself a table, so it can also be queried directly;
 at the same time, a partition can sometimes be a partitioned table,
 allowing hierarchies to be created.

	
 In reference to a window function
 in a query,
 a partition is a user-defined criterion that identifies which neighboring
 rows
 of the query's result set
 can be considered by the function.

	Partitioned table (relation)
	
 A relation that is
 in semantic terms the same as a table,
 but whose storage is distributed across several
 partitions.

	Postmaster (process)
	
 The very first process of an instance.
 It starts and manages the
 auxiliary processes
 and creates backend processes
 on demand.

 For more information, see
 the section called “Starting the Database Server”.

	Primary key
	
 A special case of a
 unique constraint
 defined on a
 table or other
 relation that also
 guarantees that all of the
 attributes
 within the primary key
 do not have null values.
 As the name implies, there can be only one
 primary key per table, though it is possible to have multiple unique
 constraints that also have no null-capable attributes.

	Primary (server)
	
 When two or more databases
 are linked via replication,
 the server
 that is considered the authoritative source of information is called
 the primary,
 also known as a master.

	Procedure (routine)
	
 A type of routine.
 Their distinctive qualities are that they do not return values,
 and that they are allowed to make transactional statements such
 as COMMIT and ROLLBACK.
 They are invoked via the CALL command.

 For more information, see
 CREATE PROCEDURE(7).

	Query
	
 A request sent by a client to a backend,
 usually to return results or to modify data on the database.

	Query planner
	
 The part of PostgreSQL™ that is devoted to
 determining (planning) the most efficient way to
 execute queries.
 Also known as query optimizer,
 optimizer, or simply planner.

	Record
	See Tuple.

	Recycling
	See WAL file.

	Referential integrity
	
 A means of restricting data in one relation
 by a foreign key
 so that it must have matching data in another
 relation.

	Relation
	
 The generic term for all objects in a
 database
 that have a name and a list of
 attributes
 defined in a specific order.
 Tables,
 sequences,
 views,
 foreign tables,
 materialized views,
 composite types, and
 indexes are all relations.

 More generically, a relation is a set of tuples; for example,
 the result of a query is also a relation.

 In PostgreSQL™,
 Class is an archaic synonym for
 relation.

	Replica (server)
	
 A database that is paired
 with a primary
 database and is maintaining a copy of some or all of the primary database's
 data. The foremost reasons for doing this are to allow for greater access
 to that data, and to maintain availability of the data in the event that
 the primary
 becomes unavailable.

	Replication
	
 The act of reproducing data on one
 server onto another
 server called a replica.
 This can take the form of physical replication,
 where all file changes from one server are copied verbatim,
 or logical replication where a defined subset
 of data changes are conveyed using a higher-level representation.

	Restartpoint
	
 A variant of a checkpoint performed on a
 replica.

 For more information, see the section called “WAL Configuration”.

	Result set
	
 A relation transmitted
 from a backend process
 to a client upon the
 completion of an SQL command, usually a
 SELECT but it can be an
 INSERT, UPDATE, or
 DELETE command if the RETURNING
 clause is specified.

 The fact that a result set is a relation means that a query can be used
 in the definition of another query, becoming a
 subquery.

	

	Revoke
	
 A command to prevent access to a named set of
 database objects for a
 named list of roles.

 For more information, see
 REVOKE(7).

	Role
	
 A collection of access privileges to the
 instance.
 Roles are themselves a privilege that can be granted to other roles.
 This is often done for convenience or to ensure completeness
 when multiple users need
 the same privileges.

 For more information, see
 CREATE ROLE(7).

	Rollback
	
 A command to undo all of the operations performed since the beginning
 of a transaction.

 For more information, see
 ROLLBACK(7).

	Routine
	
 A defined set of instructions stored in the database system
 that can be invoked for execution.
 A routine can be written in a variety of programming
 languages. Routines can be
 functions
 (including set-returning functions and
 trigger functions),
 aggregate functions,
 and procedures.

 Many routines are already defined within PostgreSQL™
 itself, but user-defined ones can also be added.

	Row
	See Tuple.

	Savepoint
	
 A special mark in the sequence of steps in a
 transaction.
 Data modifications after this point in time may be reverted
 to the time of the savepoint.

 For more information, see
 SAVEPOINT(7).

	Schema
	
 A schema is a namespace for
 SQL objects,
 which all reside in the same
 database.
 Each SQL object must reside in exactly one schema.

 All system-defined SQL objects reside in schema pg_catalog.

	
 More generically, the term schema is used to mean
 all data descriptions (table definitions,
 constraints, comments, etc.)
 for a given database or
 subset thereof.

 For more information, see
 the section called “Schemas”.

	Segment
	See File segment.

	Select
	
 The SQL command used to request data from a
 database.
 Normally, SELECT commands are not expected to modify the
 database in any way,
 but it is possible that
 functions invoked within
 the query could have side effects that do modify data.

 For more information, see
 SELECT(7).

	Sequence (relation)
	
 A type of relation that is used to generate values.
 Typically the generated values are sequential non-repeating numbers.
 They are commonly used to generate surrogate
 primary key
 values.

	Server
	
 A computer on which PostgreSQL™
 instances run.
 The term server denotes real hardware, a
 container, or a virtual machine.

 This term is sometimes used to refer to an instance or to a host.

	Session
	
 A state that allows a client and a backend to interact,
 communicating over a connection.

	Shared memory
	
 RAM which is used by the processes common to an
 instance.
 It mirrors parts of database
 files, provides a transient area for
 WAL records,
 and stores additional common information.
 Note that shared memory belongs to the complete instance, not to a single
 database.

 The largest part of shared memory is known as shared buffers
 and is used to mirror part of data files, organized into pages.
 When a page is modified, it is called a dirty page until it is
 written back to the file system.

 For more information, see
 the section called “Memory”.

	SQL object
	
 Any object that can be created with a CREATE
 command. Most objects are specific to one database, and are commonly
 known as local objects.

 Most local objects reside in a specific
 schema in their
 containing database, such as
 relations (all types),
 routines (all types),
 data types, etc.
 The names of such objects of the same type in the same schema
 are enforced to be unique.

 There also exist local objects that do not reside in schemas; some examples are
 extensions,
 data type casts, and
 foreign data wrappers.
 The names of such objects of the same type are enforced to be unique
 within the database.

 Other object types, such as
 roles,
 tablespaces,
 replication origins, subscriptions for logical replication, and
 databases themselves are not local SQL objects since they exist
 entirely outside of any specific database;
 they are called global objects.
 The names of such objects are enforced to be unique within the whole
 database cluster.

 For more information, see
 the section called “Overview”.

	SQL standard
	
 A series of documents that define the SQL language.

	Standby (server)
	See Replica (server).

	Startup process
	
 An auxiliary process
 that replays WAL during crash recovery and in a
 physical replica.

 (The name is historical: the startup process was named before
 replication was implemented; the name refers to its task as it
 relates to the server startup following a crash.)

	Superuser
	
 As used in this documentation, it is a synonym for
 database superuser.

	System catalog
	
 A collection of tables
 which describe the structure of all
 SQL objects
 of the instance.
 The system catalog resides in the schema pg_catalog.
 These tables contain data in internal representation and are
 not typically considered useful for user examination;
 a number of user-friendlier views,
 also in schema pg_catalog, offer more convenient access to
 some of that information, while additional tables and views
 exist in schema information_schema
 (see Chapter 37, The Information Schema) that expose some
 of the same and additional information as mandated by the
 SQL standard.

 For more information, see
 the section called “Schemas”.

	Table
	
 A collection of tuples having
 a common data structure (the same number of
 attributes, in the same
 order, having the same name and type per position).
 A table is the most common form of
 relation in
 PostgreSQL™.

 For more information, see
 CREATE TABLE(7).

	Tablespace
	
 A named location on the server file system.
 All SQL objects
 which require storage beyond their definition in the
 system catalog
 must belong to a single tablespace.
 Initially, a database cluster contains a single usable tablespace which is
 used as the default for all SQL objects, called pg_default.

 For more information, see
 the section called “Tablespaces”.

	Temporary table
	
 Tables that exist either
 for the lifetime of a
 session or a
 transaction, as
 specified at the time of creation.
 The data in them is not visible to other sessions, and is not
 logged.
 Temporary tables are often used to store intermediate data for a
 multi-step operation.

 For more information, see
 CREATE TABLE(7).

	TOAST
	
 A mechanism by which large attributes of table rows are split and
 stored in a secondary table, called the TOAST table.
 Each relation with large attributes has its own TOAST table.

 For more information, see
 the section called “TOAST”.

	Transaction
	
 A combination of commands that must act as a single
 atomic command: they all
 succeed or all fail as a single unit, and their effects are not visible to
 other sessions until
 the transaction is complete, and possibly even later, depending on the
 isolation level.

 For more information, see
 the section called “Transaction Isolation”.

	Transaction ID
	
 The numerical, unique, sequentially-assigned identifier that each
 transaction receives when it first causes a database modification.
 Frequently abbreviated as xid.
 When stored on disk, xids are only 32-bits wide, so only
 approximately four billion write transaction IDs can be generated;
 to permit the system to run for longer than that,
 epochs are used, also 32 bits wide.
 When the counter reaches the maximum xid value, it starts over at
 3 (values under that are reserved) and the
 epoch value is incremented by one.
 In some contexts, the epoch and xid values are
 considered together as a single 64-bit value; see the section called “Transactions and Identifiers” for more details.

 For more information, see
 the section called “Object Identifier Types”.

	Transactions per second (TPS)
	
 Average number of transactions that are executed per second,
 totaled across all sessions active for a measured run.
 This is used as a measure of the performance characteristics of
 an instance.

	Trigger
	
 A function which can
 be defined to execute whenever a certain operation (INSERT,
 UPDATE, DELETE,
 TRUNCATE) is applied to a
 relation.
 A trigger executes within the same
 transaction as the
 statement which invoked it, and if the function fails, then the invoking
 statement also fails.

 For more information, see
 CREATE TRIGGER(7).

	Tuple
	
 A collection of attributes
 in a fixed order.
 That order may be defined by the table
 (or other relation)
 where the tuple is contained, in which case the tuple is often called a
 row. It may also be defined by the structure of a
 result set, in which case it is sometimes called a record.

	Unique constraint
	
 A type of constraint
 defined on a relation
 which restricts the values allowed in one or a combination of columns
 so that each value or combination of values can only appear once in the
 relation — that is, no other row in the relation contains values
 that are equal to those.

 Because null values are
 not considered equal to each other, multiple rows with null values are
 allowed to exist without violating the unique constraint.

	Unlogged
	
 The property of certain relations
 that the changes to them are not reflected in the
 WAL.
 This disables replication and crash recovery for these relations.

 The primary use of unlogged tables is for storing
 transient work data that must be shared across processes.

 Temporary tables
 are always unlogged.

	Update
	
 An SQL command used to modify
 rows
 that may already exist in a specified table.
 It cannot create or remove rows.

 For more information, see
 UPDATE(7).

	User
	
 A role that has the
 login privilege
 (see the section called “Role Attributes”).

	User mapping
	
 The translation of login credentials in the local
 database to credentials
 in a remote data system defined by a
 foreign data wrapper.

 For more information, see
 CREATE USER MAPPING(7).

	UTC
	
 Universal Coordinated Time, the primary global time reference,
 approximately the time prevailing at the zero meridian of longitude.
 Often but inaccurately referred to as GMT (Greenwich Mean Time).

	Vacuum
	
 The process of removing outdated
 tuple versions
 from tables or materialized views, and other closely related
 processing required by PostgreSQL™'s
 implementation of MVCC.
 This can be initiated through the use of
 the VACUUM command, but can also be handled automatically
 via autovacuum processes.

 For more information, see
 the section called “Routine Vacuuming” .

	View
	
 A relation that is defined by a
 SELECT statement, but has no storage of its own.
 Any time a query references a view, the definition of the view is
 substituted into the query as if the user had typed it as a subquery
 instead of the name of the view.

 For more information, see
 CREATE VIEW(7).

	Visibility map (fork)
	
 A storage structure that keeps metadata about each data page
 of a table's main fork. The visibility map entry for
 each page stores two bits: the first one
 (all-visible) indicates that all tuples
 in the page are visible to all transactions. The second one
 (all-frozen) indicates that all tuples
 in the page are marked frozen.

	WAL
	See Write-ahead log.

	WAL archiver (process)
	
 An auxiliary process
 which, if enabled, saves copies of
 WAL files
 for the purpose of creating backups or keeping
 replicas current.

 For more information, see
 the section called “Continuous Archiving and Point-in-Time Recovery (PITR)”.

	WAL file
	
 Also known as WAL segment or
 WAL segment file.
 Each of the sequentially-numbered files that provide storage space for
 WAL.
 The files are all of the same predefined size
 and are written in sequential order, interspersing changes
 as they occur in multiple simultaneous sessions.
 If the system crashes, the files are read in order, and each of the
 changes is replayed to restore the system to the state it was in
 before the crash.

 Each WAL file can be released after a
 checkpoint
 writes all the changes in it to the corresponding data files.
 Releasing the file can be done either by deleting it, or by changing its
 name so that it will be used in the future, which is called
 recycling.

 For more information, see
 the section called “WAL Internals”.

	WAL record
	
 A low-level description of an individual data change.
 It contains sufficient information for the data change to be
 re-executed (replayed) in case a system failure
 causes the change to be lost.
 WAL records use a non-printable binary format.

 For more information, see
 the section called “WAL Internals”.

	WAL receiver (process)
	
 An auxiliary process
 that runs on a replica
 to receive WAL from the
 primary server
 for replay by the
 startup process.

 For more information, see
 the section called “Log-Shipping Standby Servers”.

	WAL segment
	See WAL file.

	WAL sender (process)
	
 A special backend process
 that streams WAL over a network. The receiving end can be a
 WAL receiver
 in a replica,
 pg_receivewal(1), or any other client program
 that speaks the replication protocol.

	WAL writer (process)
	
 An auxiliary process
 that writes WAL records
 from shared memory to
 WAL files.

 For more information, see
 the section called “Write Ahead Log”.

	Window function (routine)
	
 A type of function
 used in a query
 that applies to a partition
 of the query's result set;
 the function's result is based on values found in
 rows of the same partition or frame.

 All aggregate functions
 can be used as window functions, but window functions can also be
 used to, for example, give ranks to each of the rows in the partition.
 Also known as analytic functions.

 For more information, see
 the section called “Window Functions”.

	Write-ahead log
	
 The journal that keeps track of the changes in the
 database cluster
 as user- and system-invoked operations take place.
 It comprises many individual
 WAL records written
 sequentially to WAL files.

Appendix N. Color Support

 Most programs in the PostgreSQL package can produce colorized console
 output. This appendix describes how that is configured.

When Color is Used

 To use colorized output, set the environment variable
 PG_COLOR
 as follows:

	
 If the value is always, then color is used.

	
 If the value is auto and the standard error stream
 is associated with a terminal device, then color is used.

	
 Otherwise, color is not used.

Configuring the Colors

 The actual colors to be used are configured using the environment variable
 PG_COLORS
 (note plural). The value is a colon-separated list of
 key=value
 pairs. The keys specify what the color is to be used for. The values are
 SGR (Select Graphic Rendition) specifications, which are interpreted by the
 terminal.

 The following keys are currently in use:

	error
	used to highlight the text “error” in error messages

	warning
	used to highlight the text “warning” in warning
 messages

	note
	used to highlight the text “detail” and
 “hint” in such messages

	locus
	used to highlight location information (e.g., program name and
 file name) in messages

 The default value is
 error=01;31:warning=01;35:note=01;36:locus=01
 (01;31 = bold red, 01;35 = bold
 magenta, 01;36 = bold cyan, 01 = bold
 default color).

Tip

 This color specification format is also used by other software packages
 such as GCC™, GNU
 coreutils™, and GNU grep™.

Appendix O. Obsolete or Renamed Features

 Functionality is sometimes removed from PostgreSQL, feature, setting
 and file names sometimes change, or documentation moves to different
 places. This section directs users coming from old versions of the
 documentation or from external links to the appropriate new location
 for the information they need.

recovery.conf file merged into postgresql.conf

 PostgreSQL 11 and below used a configuration file named
 recovery.conf

 to manage replicas and standbys. Support for this file was removed in PostgreSQL 12. See
 the release notes for PostgreSQL 12 for details
 on this change.

 On PostgreSQL 12 and above,
 archive recovery, streaming replication, and PITR
 are configured using
 normal server configuration parameters.
 These are set in postgresql.conf or via
 ALTER SYSTEM
 like any other parameter.

 The server will not start if a recovery.conf exists.

 PostgreSQL 15 and below had a setting
 promote_trigger_file, or
 trigger_file before 12.
 Use pg_ctl promote or call
 pg_promote() to promote a standby instead.

 The
 standby_mode

 setting has been removed. A standby.signal file in the data directory
 is used instead. See Standby Server Operation for details.

Default Roles Renamed to Predefined Roles

 PostgreSQL 13 and below used the term “Default Roles”. However, as these
 roles are not able to actually be changed and are installed as part of the
 system at initialization time, the more appropriate term to use is “Predefined Roles”.
 See the section called “Predefined Roles” for current documentation regarding
 Predefined Roles, and the release notes for
 PostgreSQL 14 for details on this change.

pg_xlogdump renamed to pg_waldump

 PostgreSQL 9.6 and below provided a command named
 pg_xlogdump

 to read write-ahead-log (WAL) files. This command was renamed to pg_waldump, see
 pg_waldump(1) for documentation of pg_waldump and see
 the release notes for PostgreSQL 10 for details
 on this change.

pg_resetxlog renamed to pg_resetwal

 PostgreSQL 9.6 and below provided a command named
 pg_resetxlog

 to reset the write-ahead-log (WAL) files. This command was renamed to pg_resetwal, see
 pg_resetwal(1) for documentation of pg_resetwal and see
 the release notes for PostgreSQL 10 for details
 on this change.

pg_receivexlog renamed to pg_receivewal

 PostgreSQL 9.6 and below provided a command named
 pg_receivexlog

 to fetch write-ahead-log (WAL) files. This command was renamed to pg_receivewal, see
 pg_receivewal(1) for documentation of pg_receivewal and see
 the release notes for PostgreSQL 10 for details
 on this change.

Bibliography

 Selected references and readings for SQL
 and PostgreSQL™.

 Some white papers and technical reports from the original
 POSTGRES™ development team
 are available at the University of California, Berkeley, Computer Science
 Department web site.

SQL Reference Books
[bowman01] The Practical SQL Handbook. Using SQL Variants. Fourth Edition. Judith Bowman, Sandra Emerson, and Marcy Darnovsky. 0-201-70309-2. Addison-Wesley Professional. 2001.

[date97] A Guide to the SQL Standard. A user's guide to the standard database language SQL. Fourth Edition. C. J. Date and Hugh Darwen. 0-201-96426-0. Addison-Wesley. 1997.

[date04] An Introduction to Database Systems. Eighth Edition. C. J. Date. 0-321-19784-4. Addison-Wesley. 2003.

[elma04] Fundamentals of Database Systems. Fourth Edition. Ramez Elmasri and Shamkant Navathe. 0-321-12226-7. Addison-Wesley. 2003.

[melt93] Understanding the New SQL. A complete guide. Jim Melton and Alan R. Simon. 1-55860-245-3. Morgan Kaufmann. 1993.

[ull88] Principles of Database and Knowledge-Base Systems. Classical Database Systems. Jeffrey D. Ullman. Volume 1. Computer Science Press. 1988.

[sqltr-19075-6] SQL Technical Report. Part 6: SQL support for JavaScript Object
 Notation (JSON). First Edition. 2017.

PostgreSQL-specific Documentation
[sim98] Enhancement of the ANSI SQL Implementation of PostgreSQL. Stefan Simkovics. Department of Information Systems, Vienna University of Technology. Vienna, Austria. November 29, 1998.

[yu95] The Postgres95. User Manual. A. Yu and J. Chen. University of California. Berkeley, California. Sept. 5, 1995.

[fong] The
 design and implementation of the POSTGRES™ query
 optimizer. Zelaine Fong. University of California, Berkeley, Computer Science Department.

Proceedings and Articles
[ports12] “Serializable Snapshot Isolation in PostgreSQL”. D. Ports and K. Grittner. VLDB Conference. August 2012. Istanbul, Turkey. .

[berenson95] “A Critique of ANSI SQL Isolation Levels”. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. ACM-SIGMOD Conference on Management of Data. June 1995. San Jose, California. .

[olson93] Partial indexing in POSTGRES: research project. Nels Olson. UCB Engin T7.49.1993 O676. University of California. Berkeley, California. 1993.

[ong90] “A Unified Framework for Version Modeling Using Production Rules in a Database System”. L. Ong and J. Goh. ERL Technical Memorandum M90/33. University of California. Berkeley, California. April, 1990.

[rowe87] “The POSTGRES™
 data model”. L. Rowe and M. Stonebraker. VLDB Conference. Sept. 1987. Brighton, England. .

[seshadri95] “Generalized
 Partial Indexes”. P. Seshadri and A. Swami. Eleventh International Conference on Data Engineering. 6–10 March 1995. Taipeh, Taiwan. . Cat. No.95CH35724. IEEE Computer Society Press. Los Alamitos, California. 1995. 420–7.

[ston86] “The
 design of POSTGRES™”. M. Stonebraker and L. Rowe. ACM-SIGMOD Conference on Management of Data. May 1986. Washington, DC. .

[ston87a] “The design of the POSTGRES™ rules system”. M. Stonebraker, E. Hanson, and C. H. Hong. IEEE Conference on Data Engineering. Feb. 1987. Los Angeles, California. .

[ston87b] “The
 design of the POSTGRES™ storage
 system”. M. Stonebraker. VLDB Conference. Sept. 1987. Brighton, England. .

[ston89] “A
 commentary on the POSTGRES™ rules
 system”. M. Stonebraker, M. Hearst, and S. Potamianos. SIGMOD Record 18(3). Sept. 1989.

[ston89b] “The
 case for partial indexes”. M. Stonebraker. SIGMOD Record 18(4). Dec. 1989. 4–11.

[ston90a] “The
 implementation of POSTGRES™”. M. Stonebraker, L. A. Rowe, and M. Hirohama. Transactions on Knowledge and Data Engineering 2(1). IEEE. March 1990.

[ston90b] “On
 Rules, Procedures, Caching and Views in Database Systems”. M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. ACM-SIGMOD Conference on Management of Data. June 1990. .

[ston92] “
 An overview of the Sequoia 2000 project
 ”. M. Stonebraker. Digest of Papers COMPCON Spring 1992. 1992. 383–388.

Index

Symbols
	$, Positional Parameters
	$libdir, Dynamic Loading
	$libdir/plugins, Shared Library Preloading, Description
	*, Select-List Items
	.pgpass, The Password File
	.pg_service.conf, The Connection Service File
	::, Type Casts
	_PG_archive_module_init, Initialization Functions
	_PG_init, Dynamic Loading
	_PG_output_plugin_init, Initialization Function

A
	abbrev, Network Address Functions and Operators
	ABORT, ABORT
	abs, Mathematical Functions and Operators
	ACL, Privileges
	aclcontains, Access Privilege Inquiry Functions
	acldefault, Access Privilege Inquiry Functions
	aclexplode, Access Privilege Inquiry Functions
	aclitem, Privileges
	aclitemeq, Access Privilege Inquiry Functions
	acos, Mathematical Functions and Operators
	acosd, Mathematical Functions and Operators
	acosh, Mathematical Functions and Operators
	administration tools
		externally maintained, Administration Tools

	adminpack, adminpack — pgAdmin support toolpack
	advisory lock, Advisory Locks
	age, Date/Time Functions and Operators, Transaction ID and Snapshot Information Functions
	aggregate function, Aggregate Functions, Aggregate Expressions, Aggregate Functions, User-Defined Aggregates
		built-in, Aggregate Functions
	invocation, Aggregate Expressions
	moving aggregate, Moving-Aggregate Mode
	ordered set, Ordered-Set Aggregates
	partial aggregation, Partial Aggregation
	polymorphic, Polymorphic and Variadic Aggregates
	support functions for, Support Functions for Aggregates
	user-defined, User-Defined Aggregates
	variadic, Polymorphic and Variadic Aggregates

	AIX, AIX
		installation on, AIX
	IPC configuration, Shared Memory and Semaphores

	akeys, hstore Operators and Functions
	alias, Table and Column Aliases, Column Labels
		for table name in query, Joins Between Tables
	in the FROM clause, Table and Column Aliases
	in the select list, Column Labels

	ALL, GROUPING SETS, CUBE, and ROLLUP, DISTINCT, Subquery Expressions, Row and Array Comparisons
		GROUP BY ALL, GROUPING SETS, CUBE, and ROLLUP
	SELECT ALL, DISTINCT

	allow_in_place_tablespaces configuration parameter, Developer Options
	allow_system_table_mods configuration parameter, Developer Options
	ALTER AGGREGATE, ALTER AGGREGATE
	ALTER COLLATION, ALTER COLLATION
	ALTER CONVERSION, ALTER CONVERSION
	ALTER DATABASE, ALTER DATABASE
	ALTER DEFAULT PRIVILEGES, ALTER DEFAULT PRIVILEGES
	ALTER DOMAIN, ALTER DOMAIN
	ALTER EVENT TRIGGER, ALTER EVENT TRIGGER
	ALTER EXTENSION, ALTER EXTENSION
	ALTER FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER
	ALTER FOREIGN TABLE, ALTER FOREIGN TABLE
	ALTER FUNCTION, ALTER FUNCTION
	ALTER GROUP, ALTER GROUP
	ALTER INDEX, ALTER INDEX
	ALTER LANGUAGE, ALTER LANGUAGE
	ALTER LARGE OBJECT, ALTER LARGE OBJECT
	ALTER MATERIALIZED VIEW, ALTER MATERIALIZED VIEW
	ALTER OPERATOR, ALTER OPERATOR
	ALTER OPERATOR CLASS, ALTER OPERATOR CLASS
	ALTER OPERATOR FAMILY, ALTER OPERATOR FAMILY
	ALTER POLICY, ALTER POLICY
	ALTER PROCEDURE, ALTER PROCEDURE
	ALTER PUBLICATION, ALTER PUBLICATION
	ALTER ROLE, Role Attributes, ALTER ROLE
	ALTER ROUTINE, ALTER ROUTINE
	ALTER RULE, ALTER RULE
	ALTER SCHEMA, ALTER SCHEMA
	ALTER SEQUENCE, ALTER SEQUENCE
	ALTER SERVER, ALTER SERVER
	ALTER STATISTICS, ALTER STATISTICS
	ALTER SUBSCRIPTION, ALTER SUBSCRIPTION
	ALTER SYSTEM, ALTER SYSTEM
	ALTER TABLE, ALTER TABLE
	ALTER TABLESPACE, ALTER TABLESPACE
	ALTER TEXT SEARCH CONFIGURATION, ALTER TEXT SEARCH CONFIGURATION
	ALTER TEXT SEARCH DICTIONARY, ALTER TEXT SEARCH DICTIONARY
	ALTER TEXT SEARCH PARSER, ALTER TEXT SEARCH PARSER
	ALTER TEXT SEARCH TEMPLATE, ALTER TEXT SEARCH TEMPLATE
	ALTER TRIGGER, ALTER TRIGGER
	ALTER TYPE, ALTER TYPE
	ALTER USER, ALTER USER
	ALTER USER MAPPING, ALTER USER MAPPING
	ALTER VIEW, ALTER VIEW
	amcheck, amcheck — tools to verify table and index consistency
	ANALYZE, Updating Planner Statistics, ANALYZE
	AND (operator), Logical Operators
	anonymous code blocks, DO
	any, Pseudo-Types
	ANY, Aggregate Functions, Subquery Expressions, Row and Array Comparisons
	anyarray, Pseudo-Types
	anycompatible, Pseudo-Types
	anycompatiblearray, Pseudo-Types
	anycompatiblemultirange, Pseudo-Types
	anycompatiblenonarray, Pseudo-Types
	anycompatiblerange, Pseudo-Types
	anyelement, Pseudo-Types
	anyenum, Pseudo-Types
	anymultirange, Pseudo-Types
	anynonarray, Pseudo-Types
	anyrange, Pseudo-Types
	any_value, Aggregate Functions
	applicable role, applicable_roles
	application_name configuration parameter, What to Log
	arbitrary precision numbers, Arbitrary Precision Numbers
	Archive Modules, Archive Modules
	archive_cleanup_command configuration parameter, Archive Recovery
	archive_command configuration parameter, Archiving
	archive_library configuration parameter, Archiving
	archive_mode configuration parameter, Archiving
	archive_timeout configuration parameter, Archiving
	area, Geometric Functions and Operators
	armor, armor(), dearmor()
	array, Arrays
		accessing, Accessing Arrays
	constant, Array Value Input
	constructor, Array Constructors
	declaration, Declaration of Array Types
	I/O, Array Input and Output Syntax
	modifying, Modifying Arrays
	of user-defined type, User-Defined Types
	searching, Searching in Arrays

	ARRAY, Array Constructors, UNION, CASE, and Related Constructs
		determination of result type, UNION, CASE, and Related Constructs

	array_agg, Aggregate Functions, Functions
	array_append, Array Functions and Operators
	array_cat, Array Functions and Operators
	array_dims, Array Functions and Operators
	array_fill, Array Functions and Operators
	array_length, Array Functions and Operators
	array_lower, Array Functions and Operators
	array_ndims, Array Functions and Operators
	array_nulls configuration parameter, Previous PostgreSQL Versions
	array_position, Array Functions and Operators
	array_positions, Array Functions and Operators
	array_prepend, Array Functions and Operators
	array_remove, Array Functions and Operators
	array_replace, Array Functions and Operators
	array_sample, Array Functions and Operators
	array_shuffle, Array Functions and Operators
	array_to_json, Processing and Creating JSON Data
	array_to_string, Array Functions and Operators
	array_to_tsvector, Text Search Functions and Operators
	array_upper, Array Functions and Operators
	ascii, String Functions and Operators
	asin, Mathematical Functions and Operators
	asind, Mathematical Functions and Operators
	asinh, Mathematical Functions and Operators
	ASSERT
		in PL/pgSQL, Checking Assertions

	assertions
		in PL/pgSQL, Checking Assertions

	asynchronous commit, Asynchronous Commit
	AT TIME ZONE, AT TIME ZONE
	atan, Mathematical Functions and Operators
	atan2, Mathematical Functions and Operators
	atan2d, Mathematical Functions and Operators
	atand, Mathematical Functions and Operators
	atanh, Mathematical Functions and Operators
	authentication_timeout configuration parameter, Authentication
	auth_delay, auth_delay — pause on authentication failure
	auth_delay.milliseconds configuration parameter, Configuration Parameters
	auto-increment (see serial)
	autocommit
		bulk-loading data, Disable Autocommit
	psql, Variables

	autosummarize storage parameter, Index Storage Parameters
	autovacuum
		configuration parameters, Automatic Vacuuming
	general information, The Autovacuum Daemon

	autovacuum configuration parameter, Automatic Vacuuming
	autovacuum_analyze_scale_factor
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_analyze_threshold
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_enabled storage parameter, Storage Parameters
	autovacuum_freeze_max_age
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_freeze_min_age storage parameter, Storage Parameters
	autovacuum_freeze_table_age storage parameter, Storage Parameters
	autovacuum_max_workers configuration parameter, Automatic Vacuuming
	autovacuum_multixact_freeze_max_age
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_multixact_freeze_min_age storage parameter, Storage Parameters
	autovacuum_multixact_freeze_table_age storage parameter, Storage Parameters
	autovacuum_naptime configuration parameter, Automatic Vacuuming
	autovacuum_vacuum_cost_delay
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_vacuum_cost_limit
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_vacuum_insert_scale_factor
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_vacuum_insert_threshold
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_vacuum_scale_factor
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_vacuum_threshold
		configuration parameter, Automatic Vacuuming
	storage parameter, Storage Parameters

	autovacuum_work_mem configuration parameter, Memory
	auto_explain, auto_explain — log execution plans of slow queries
	auto_explain.log_analyze configuration parameter, Configuration Parameters
	auto_explain.log_buffers configuration parameter, Configuration Parameters
	auto_explain.log_format configuration parameter, Configuration Parameters
	auto_explain.log_level configuration parameter, Configuration Parameters
	auto_explain.log_min_duration configuration parameter, Configuration Parameters
	auto_explain.log_nested_statements configuration parameter, Configuration Parameters
	auto_explain.log_parameter_max_length configuration parameter, Configuration Parameters
	auto_explain.log_settings configuration parameter, Configuration Parameters
	auto_explain.log_timing configuration parameter, Configuration Parameters
	auto_explain.log_triggers configuration parameter, Configuration Parameters
	auto_explain.log_verbose configuration parameter, Configuration Parameters
	auto_explain.log_wal configuration parameter, Configuration Parameters
	auto_explain.sample_rate configuration parameter, Configuration Parameters
	avals, hstore Operators and Functions
	average, Aggregate Functions
	avg, Aggregate Functions

B
	B-Tree (see index)
	backend_flush_after configuration parameter, Asynchronous Behavior
	Background workers, Background Worker Processes
	backslash escapes, String Constants with C-Style Escapes
	backslash_quote configuration parameter, Previous PostgreSQL Versions
	backtrace_functions configuration parameter, Developer Options
	backup, Backup Control Functions, Backup and Restore
	Backup Manifest, Backup Manifest Format
	base type, The PostgreSQL™ Type System
	base64 format, Binary String Functions and Operators
	basebackup_to_shell, basebackup_to_shell — example "shell" pg_basebackup module
	basebackup_to_shell.command configuration parameter, Configuration Parameters
	basebackup_to_shell.required_role configuration parameter, Configuration Parameters
	BASE_BACKUP, Streaming Replication Protocol
	basic_archive, basic_archive — an example WAL archive module
	basic_archive.archive_directory configuration parameter, Configuration Parameters
	batch mode, Pipeline Mode
		in libpq, Pipeline Mode

	BEGIN, BEGIN
	BETWEEN, Comparison Functions and Operators
	BETWEEN SYMMETRIC, Comparison Functions and Operators
	BGWORKER_BACKEND_​DATABASE_CONNECTION, Background Worker Processes
	BGWORKER_SHMEM_ACCESS, Background Worker Processes
	bgwriter_delay configuration parameter, Background Writer
	bgwriter_flush_after configuration parameter, Background Writer
	bgwriter_lru_maxpages configuration parameter, Background Writer
	bgwriter_lru_multiplier configuration parameter, Background Writer
	bigint, Numeric Constants, Integer Types
	bigserial, Serial Types
	binary data, Binary Data Types, Binary String Functions and Operators
		functions, Binary String Functions and Operators

	binary string
		concatenation, Binary String Functions and Operators
	converting to character string, Binary String Functions and Operators
	length, Binary String Functions and Operators

	bison, Requirements
	bit string, Bit-String Constants, Bit String Types
		constant, Bit-String Constants
	data type, Bit String Types
	length, Bit String Functions and Operators

	bit strings, Bit String Functions and Operators
		functions, Bit String Functions and Operators

	bitmap scan, Combining Multiple Indexes, Planner Method Configuration
	bit_and, Aggregate Functions
	bit_count, Binary String Functions and Operators, Bit String Functions and Operators
	bit_length, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators
	bit_or, Aggregate Functions
	bit_xor, Aggregate Functions
	BLOB (see large object)
	block_size configuration parameter, Preset Options
	bloom, bloom — bloom filter index access method
	bonjour configuration parameter, Connection Settings
	bonjour_name configuration parameter, Connection Settings
	Boolean, Boolean Type
		data type, Boolean Type
	operators (see operators, logical)

	bool_and, Aggregate Functions
	bool_or, Aggregate Functions
	booting
		starting the server during, Starting the Database Server

	bound_box, Geometric Functions and Operators
	box, Geometric Functions and Operators
	box (data type), Boxes
	bpchar, Character Types
	BRIN (see index)
	brin_desummarize_range, Index Maintenance Functions
	brin_metapage_info, BRIN Functions
	brin_page_items, BRIN Functions
	brin_page_type, BRIN Functions
	brin_revmap_data, BRIN Functions
	brin_summarize_new_values, Index Maintenance Functions
	brin_summarize_range, Index Maintenance Functions
	broadcast, Network Address Functions and Operators
	BSD Authentication, BSD Authentication
	btree_gin, btree_gin — GIN operator classes with B-tree behavior
	btree_gist, btree_gist — GiST operator classes with B-tree behavior
	btrim, String Functions and Operators, Binary String Functions and Operators
	bt_index_check, Functions
	bt_index_parent_check, Functions
	bt_metap, B-Tree Functions
	bt_multi_page_stats, B-Tree Functions
	bt_page_items, B-Tree Functions
	bt_page_stats, B-Tree Functions
	buffering storage parameter, Index Storage Parameters
	bytea, Binary Data Types
	bytea_output configuration parameter, Statement Behavior

C
	C, libpq — C Library, ECPG — Embedded SQL in C
	C++, Using C++ for Extensibility
	CALL, CALL
	canceling, Canceling Queries in Progress
		SQL command, Canceling Queries in Progress

	cardinality, Array Functions and Operators
	CASCADE, Dependency Tracking
		with DROP, Dependency Tracking
	foreign key action, Foreign Keys

	Cascading Replication, High Availability, Load Balancing, and Replication
	CASE, Conditional Expressions, UNION, CASE, and Related Constructs
		determination of result type, UNION, CASE, and Related Constructs

	case sensitivity
		of SQL commands, Identifiers and Key Words

	cast, CREATE CAST
		I/O conversion, CREATE CAST

	cbrt, Mathematical Functions and Operators
	ceil, Mathematical Functions and Operators
	ceiling, Mathematical Functions and Operators
	center, Geometric Functions and Operators
	Certificate, Certificate Authentication
	chained transactions, Transaction Management, Parameters, Parameters
		in PL/pgSQL, Transaction Management

	char, Character Types
	character, Character Types
	character set, Locale and Formatting, Preset Options, Character Set Support
	character string, String Constants, Character Types
		concatenation, String Functions and Operators
	constant, String Constants
	converting to binary string, Binary String Functions and Operators
	data types, Character Types
	length, String Functions and Operators
	prefix test, String Functions and Operators

	character varying, Character Types
	character_length, String Functions and Operators
	char_length, String Functions and Operators
	check constraint, Check Constraints
	CHECK OPTION, CREATE VIEW
	checkpoint, WAL Configuration
	CHECKPOINT, CHECKPOINT
	checkpoint_completion_target configuration parameter, Checkpoints
	checkpoint_flush_after configuration parameter, Checkpoints
	checkpoint_timeout configuration parameter, Checkpoints
	checkpoint_warning configuration parameter, Checkpoints
	checksums, Data Checksums
	check_function_bodies configuration parameter, Statement Behavior
	chr, String Functions and Operators
	cid, Object Identifier Types
	cidr, cidr
	circle, Circles, Geometric Functions and Operators
	citext, citext — a case-insensitive character string type
	client authentication, Client Authentication
		timeout during, Authentication

	client_connection_check_interval configuration parameter, TCP Settings
	client_encoding configuration parameter, Locale and Formatting
	client_min_messages configuration parameter, Statement Behavior
	clock_timestamp, Date/Time Functions and Operators
	CLOSE, CLOSE
	cluster
		of databases (see database cluster)

	CLUSTER, CLUSTER
	clusterdb, clusterdb
	clustering, High Availability, Load Balancing, and Replication
	cluster_name configuration parameter, Process Title
	cmax, System Columns
	cmin, System Columns
	COALESCE, COALESCE
	COLLATE, Collation Expressions
	collation, Collation Support
		in PL/pgSQL, Collation of PL/pgSQL Variables
	in SQL functions, SQL Functions with Collations

	COLLATION FOR, System Catalog Information Functions
	color, Color Support
	column, Concepts, Table Basics
		adding, Adding a Column
	removing, Removing a Column
	renaming, Renaming a Column
	system column, System Columns

	column data type
		changing, Changing a Column's Data Type

	column reference, Column References
	col_description, Comment Information Functions
	comment, Comments
		about database objects, Comment Information Functions
	in SQL, Comments

	COMMENT, COMMENT
	COMMIT, COMMIT
	COMMIT PREPARED, COMMIT PREPARED
	commit_delay configuration parameter, Settings
	commit_siblings configuration parameter, Settings
	common table expression (see WITH)
	comparison, Comparison Functions and Operators, Subquery Expressions
		composite type, Row and Array Comparisons
	operators, Comparison Functions and Operators
	row constructor, Row and Array Comparisons
	subquery result row, Subquery Expressions

	compiling, Building libpq Programs
		libpq applications, Building libpq Programs

	composite type, Composite Types, The PostgreSQL™ Type System
		comparison, Row and Array Comparisons
	constant, Constructing Composite Values
	constructor, Row Constructors

	computed field, Using Composite Types in Queries
	compute_query_id configuration parameter, Statistics Monitoring
	concat, String Functions and Operators
	concat_ws, String Functions and Operators
	concurrency, Concurrency Control
	conditional expression, Conditional Expressions
	configuration
		of recovery
		general settings, Recovery
	of a standby server, Archive Recovery

	of the server, Server Configuration
	of the server
		functions, Configuration Settings Functions

	configure, Installation Procedure
	configure environment variables, configure Environment Variables
	configure options, configure Options
	config_file configuration parameter, File Locations
	conjunction, Logical Operators
	connectby, Functions Provided, connectby
	connection service file, The Connection Service File
	conninfo, Connection Strings
	constant, Constants
	constraint, Constraints
		adding, Adding a Constraint
	check, Check Constraints
	exclusion, Exclusion Constraints
	foreign key, Foreign Keys
	name, Check Constraints
	NOT NULL, Not-Null Constraints
	primary key, Primary Keys
	removing, Removing a Constraint
	unique, Unique Constraints

	constraint exclusion, Partitioning and Constraint Exclusion, Other Planner Options
	constraint_exclusion configuration parameter, Other Planner Options
	container type, The PostgreSQL™ Type System
	CONTINUE
		in PL/pgSQL, CONTINUE

	continuous archiving, Backup and Restore
		in standby, Continuous Archiving in Standby

	control file, Extension Files
	convert, Binary String Functions and Operators
	convert_from, Binary String Functions and Operators
	convert_to, Binary String Functions and Operators
	COPY, Populating a Table With Rows, Functions Associated with the COPY Command, COPY
		with libpq, Functions Associated with the COPY Command

	corr, Aggregate Functions
	correlation, Aggregate Functions
		in the query planner, Extended Statistics

	cos, Mathematical Functions and Operators
	cosd, Mathematical Functions and Operators
	cosh, Mathematical Functions and Operators
	cot, Mathematical Functions and Operators
	cotd, Mathematical Functions and Operators
	count, Aggregate Functions
	covariance
		population, Aggregate Functions
	sample, Aggregate Functions

	covar_pop, Aggregate Functions
	covar_samp, Aggregate Functions
	covering index, Index-Only Scans and Covering Indexes
	cpu_index_tuple_cost configuration parameter, Planner Cost Constants
	cpu_operator_cost configuration parameter, Planner Cost Constants
	cpu_tuple_cost configuration parameter, Planner Cost Constants
	CREATE ACCESS METHOD, CREATE ACCESS METHOD
	CREATE AGGREGATE, CREATE AGGREGATE
	CREATE CAST, CREATE CAST
	CREATE COLLATION, CREATE COLLATION
	CREATE CONVERSION, CREATE CONVERSION
	CREATE DATABASE, Creating a Database, CREATE DATABASE
	CREATE DOMAIN, CREATE DOMAIN
	CREATE EVENT TRIGGER, CREATE EVENT TRIGGER
	CREATE EXTENSION, CREATE EXTENSION
	CREATE FOREIGN DATA WRAPPER, CREATE FOREIGN DATA WRAPPER
	CREATE FOREIGN TABLE, CREATE FOREIGN TABLE
	CREATE FUNCTION, CREATE FUNCTION
	CREATE GROUP, CREATE GROUP
	CREATE INDEX, CREATE INDEX
	CREATE LANGUAGE, CREATE LANGUAGE
	CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW
	CREATE OPERATOR, CREATE OPERATOR
	CREATE OPERATOR CLASS, CREATE OPERATOR CLASS
	CREATE OPERATOR FAMILY, CREATE OPERATOR FAMILY
	CREATE POLICY, CREATE POLICY
	CREATE PROCEDURE, CREATE PROCEDURE
	CREATE PUBLICATION, CREATE PUBLICATION
	CREATE ROLE, Database Roles, CREATE ROLE
	CREATE RULE, CREATE RULE
	CREATE SCHEMA, CREATE SCHEMA
	CREATE SEQUENCE, CREATE SEQUENCE
	CREATE SERVER, CREATE SERVER
	CREATE STATISTICS, CREATE STATISTICS
	CREATE SUBSCRIPTION, CREATE SUBSCRIPTION
	CREATE TABLE, Creating a New Table, CREATE TABLE
	CREATE TABLE AS, CREATE TABLE AS
	CREATE TABLESPACE, Tablespaces, CREATE TABLESPACE
	CREATE TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION
	CREATE TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY
	CREATE TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER
	CREATE TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE
	CREATE TRANSFORM, CREATE TRANSFORM
	CREATE TRIGGER, CREATE TRIGGER
	CREATE TYPE, CREATE TYPE
	CREATE USER, CREATE USER
	CREATE USER MAPPING, CREATE USER MAPPING
	CREATE VIEW, CREATE VIEW
	createdb, Creating a Database, Creating a Database, createdb
	createrole_self_grant
		configuration parameter, Statement Behavior

	createrole_self_grant configuration parameter
		use in securing functions, Writing SECURITY DEFINER Functions Safely

	createuser, Database Roles, createuser
	CREATE_REPLICATION_SLOT, Streaming Replication Protocol
	cross compilation, Build Process Details, Build Process Details
	cross join, Joined Tables
	crosstab, crosstab(text), crosstabN(text), crosstab(text, text)
	crypt, crypt()
	cstring, Pseudo-Types
	CSV (Comma-Separated Values) format
		in psql, Meta-Commands

	ctid, System Columns
	CTID, View Rules in Non-SELECT Statements
	CUBE, GROUPING SETS, CUBE, and ROLLUP
	cube (extension), cube — a multi-dimensional cube data type
	cume_dist, Window Functions
		hypothetical, Aggregate Functions

	current_catalog, Session Information Functions
	current_database, Session Information Functions
	current_date, Date/Time Functions and Operators
	current_logfiles
		and the log_destination configuration parameter, Where to Log
	and the pg_current_logfile function, Session Information Functions

	current_query, Session Information Functions
	current_role, Session Information Functions
	current_schema, Session Information Functions
	current_schemas, Session Information Functions
	current_setting, Configuration Settings Functions
	current_time, Date/Time Functions and Operators
	current_timestamp, Date/Time Functions and Operators
	current_user, Session Information Functions
	currval, Sequence Manipulation Functions
	cursor, Cursors, CLOSE, DECLARE, EXPLAIN, FETCH, MOVE
		CLOSE, CLOSE
	DECLARE, DECLARE
	FETCH, FETCH
	in PL/pgSQL, Cursors
	MOVE, MOVE
	showing the query plan, EXPLAIN

	cursor_tuple_fraction configuration parameter, Other Planner Options
	custom scan provider, Writing a Custom Scan Provider
		handler for, Writing a Custom Scan Provider

	Cygwin, Cygwin
		installation on, Cygwin

D
	daitch_mokotoff, Daitch-Mokotoff Soundex
	data area (see database cluster)
	data partitioning, High Availability, Load Balancing, and Replication
	data type, Data Types, Numeric Types, Enumerated Types, Domain Types, Type Conversion, The PostgreSQL™ Type System, The PostgreSQL™ Type System, The PostgreSQL™ Type System, Polymorphic Types, Base Types in C-Language Functions, User-Defined Types
		base, The PostgreSQL™ Type System
	category, Overview
	composite, The PostgreSQL™ Type System
	constant, Constants of Other Types
	container, The PostgreSQL™ Type System
	conversion, Type Conversion
	domain, Domain Types
	enumerated (enum), Enumerated Types
	internal organization, Base Types in C-Language Functions
	numeric, Numeric Types
	polymorphic, Polymorphic Types
	type cast, Type Casts
	user-defined, User-Defined Types

	database, Creating a Database, Managing Databases
		creating, Creating a Database
	privilege to create, Role Attributes

	database activity, Monitoring Database Activity
		monitoring, Monitoring Database Activity

	database cluster, Concepts, Creating a Database Cluster
	data_checksums configuration parameter, Preset Options
	data_directory configuration parameter, File Locations
	data_directory_mode configuration parameter, Preset Options
	data_sync_retry configuration parameter, Error Handling
	date, Date/Time Types, Dates
		constants, Special Values
	current, Current Date/Time
	output format, Date/Time Output
		(see also formatting)

	DateStyle configuration parameter, Locale and Formatting
	date_add, Date/Time Functions and Operators
	date_bin, date_bin
	date_part, Date/Time Functions and Operators, EXTRACT, date_part
	date_subtract, Date/Time Functions and Operators
	date_trunc, Date/Time Functions and Operators, date_trunc
	dblink, dblink — connect to other PostgreSQL databases, dblink
	dblink_build_sql_delete, dblink_build_sql_delete
	dblink_build_sql_insert, dblink_build_sql_insert
	dblink_build_sql_update, dblink_build_sql_update
	dblink_cancel_query, dblink_cancel_query
	dblink_close, dblink_close
	dblink_connect, dblink_connect
	dblink_connect_u, dblink_connect_u
	dblink_disconnect, dblink_disconnect
	dblink_error_message, dblink_error_message
	dblink_exec, dblink_exec
	dblink_fetch, dblink_fetch
	dblink_get_connections, dblink_get_connections
	dblink_get_notify, dblink_get_notify
	dblink_get_pkey, dblink_get_pkey
	dblink_get_result, dblink_get_result
	dblink_is_busy, dblink_is_busy
	dblink_open, dblink_open
	dblink_send_query, dblink_send_query
	db_user_namespace configuration parameter, Authentication
	deadlock, Deadlocks
		timeout during, Lock Management

	deadlock_timeout configuration parameter, Lock Management
	DEALLOCATE, DEALLOCATE
	dearmor, armor(), dearmor()
	debug_assertions configuration parameter, Preset Options
	debug_deadlocks configuration parameter, Developer Options
	debug_discard_caches configuration parameter, Developer Options
	debug_io_direct configuration parameter, Developer Options
	debug_logical_replication_streaming configuration parameter, Developer Options
	debug_parallel_query configuration parameter, Developer Options
	debug_pretty_print configuration parameter, What to Log
	debug_print_parse configuration parameter, What to Log
	debug_print_plan configuration parameter, What to Log
	debug_print_rewritten configuration parameter, What to Log
	decimal (see numeric)
	DECLARE, DECLARE
	decode, Binary String Functions and Operators
	decode_bytea
		in PL/Perl, Utility Functions in PL/Perl

	decrypt, Raw Encryption Functions
	decrypt_iv, Raw Encryption Functions
	deduplicate_items storage parameter, Index Storage Parameters
	default value, Default Values
		changing, Changing a Column's Default Value

	default-roles, Default Roles Renamed to Predefined Roles
	default_statistics_target configuration parameter, Other Planner Options
	default_tablespace configuration parameter, Statement Behavior
	default_table_access_method configuration parameter, Statement Behavior
	default_text_search_config configuration parameter, Locale and Formatting
	default_toast_compression configuration parameter, Statement Behavior
	default_transaction_deferrable configuration parameter, Statement Behavior
	default_transaction_isolation configuration parameter, Statement Behavior
	default_transaction_read_only configuration parameter, Statement Behavior
	deferrable transaction, Statement Behavior
		setting, SET TRANSACTION
	setting default, Statement Behavior

	defined, hstore Operators and Functions
	degrees, Mathematical Functions and Operators
	delay, Delaying Execution
	DELETE, Deletions, Deleting Data, Returning Data from Modified Rows, DELETE
		RETURNING, Returning Data from Modified Rows

	delete, hstore Operators and Functions
	deleting, Deleting Data
	dense_rank, Window Functions
		hypothetical, Aggregate Functions

	diagonal, Geometric Functions and Operators
	diameter, Geometric Functions and Operators
	dict_int, dict_int —
 example full-text search dictionary for integers
	dict_xsyn, dict_xsyn — example synonym full-text search dictionary
	difference, Soundex
	digest, digest()
	dirty read, Transaction Isolation
	DISCARD, DISCARD
	disjunction, Logical Operators
	disk drive, WAL Internals
	disk space, Recovering Disk Space
	disk usage, Determining Disk Usage
	DISTINCT, Querying a Table, GROUPING SETS, CUBE, and ROLLUP, DISTINCT
		GROUP BY DISTINCT, GROUPING SETS, CUBE, and ROLLUP
	SELECT DISTINCT, DISTINCT

	div, Mathematical Functions and Operators
	dmetaphone, Double Metaphone
	dmetaphone_alt, Double Metaphone
	DO, DO
	document, What Is a Document?
		text search, What Is a Document?

	dollar quoting, Dollar-Quoted String Constants
	domain, Domain Types
	double precision, Floating-Point Types
	DROP ACCESS METHOD, DROP ACCESS METHOD
	DROP AGGREGATE, DROP AGGREGATE
	DROP CAST, DROP CAST
	DROP COLLATION, DROP COLLATION
	DROP CONVERSION, DROP CONVERSION
	DROP DATABASE, Destroying a Database, DROP DATABASE
	DROP DOMAIN, DROP DOMAIN
	DROP EVENT TRIGGER, DROP EVENT TRIGGER
	DROP EXTENSION, DROP EXTENSION
	DROP FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER
	DROP FOREIGN TABLE, DROP FOREIGN TABLE
	DROP FUNCTION, DROP FUNCTION
	DROP GROUP, DROP GROUP
	DROP INDEX, DROP INDEX
	DROP LANGUAGE, DROP LANGUAGE
	DROP MATERIALIZED VIEW, DROP MATERIALIZED VIEW
	DROP OPERATOR, DROP OPERATOR
	DROP OPERATOR CLASS, DROP OPERATOR CLASS
	DROP OPERATOR FAMILY, DROP OPERATOR FAMILY
	DROP OWNED, DROP OWNED
	DROP POLICY, DROP POLICY
	DROP PROCEDURE, DROP PROCEDURE
	DROP PUBLICATION, DROP PUBLICATION
	DROP ROLE, Database Roles, DROP ROLE
	DROP ROUTINE, DROP ROUTINE
	DROP RULE, DROP RULE
	DROP SCHEMA, DROP SCHEMA
	DROP SEQUENCE, DROP SEQUENCE
	DROP SERVER, DROP SERVER
	DROP STATISTICS, DROP STATISTICS
	DROP SUBSCRIPTION, DROP SUBSCRIPTION
	DROP TABLE, Creating a New Table, DROP TABLE
	DROP TABLESPACE, DROP TABLESPACE
	DROP TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION
	DROP TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY
	DROP TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER
	DROP TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE
	DROP TRANSFORM, DROP TRANSFORM
	DROP TRIGGER, DROP TRIGGER
	DROP TYPE, DROP TYPE
	DROP USER, DROP USER
	DROP USER MAPPING, DROP USER MAPPING
	DROP VIEW, DROP VIEW
	dropdb, Destroying a Database, dropdb
	dropuser, Database Roles, dropuser
	DROP_REPLICATION_SLOT, Streaming Replication Protocol
	DTD, Creating XML Values
	DTrace, Developer Options, Developer Options, Dynamic Tracing
	duplicate, Querying a Table
	duplicates, DISTINCT
	dynamic loading, Other Defaults, Dynamic Loading
	dynamic_library_path, Dynamic Loading
	dynamic_library_path configuration parameter, Other Defaults
	dynamic_shared_memory_type configuration parameter, Memory

E
	each, hstore Operators and Functions
	earth, Cube-Based Earth Distances
	earthdistance, earthdistance — calculate great-circle distances
	earth_box, Cube-Based Earth Distances
	earth_distance, Cube-Based Earth Distances
	ECPG, ECPG — Embedded SQL in C
	ecpg, ecpg
	effective_cache_size configuration parameter, Planner Cost Constants
	effective_io_concurrency configuration parameter, Asynchronous Behavior
	elog, Reporting Errors Within the Server
		in PL/Perl, Utility Functions in PL/Perl
	in PL/Python, Utility Functions
	in PL/Tcl, Database Access from PL/Tcl

	embedded SQL, ECPG — Embedded SQL in C
		in C, ECPG — Embedded SQL in C

	enabled role, enabled_roles
	enable_async_append configuration parameter, Planner Method Configuration
	enable_bitmapscan configuration parameter, Planner Method Configuration
	enable_gathermerge configuration parameter, Planner Method Configuration
	enable_hashagg configuration parameter, Planner Method Configuration
	enable_hashjoin configuration parameter, Planner Method Configuration
	enable_incremental_sort configuration parameter, Planner Method Configuration
	enable_indexonlyscan configuration parameter, Planner Method Configuration
	enable_indexscan configuration parameter, Planner Method Configuration
	enable_material configuration parameter, Planner Method Configuration
	enable_memoize configuration parameter, Planner Method Configuration
	enable_mergejoin configuration parameter, Planner Method Configuration
	enable_nestloop configuration parameter, Planner Method Configuration
	enable_parallel_append configuration parameter, Planner Method Configuration
	enable_parallel_hash configuration parameter, Planner Method Configuration
	enable_partitionwise_aggregate configuration parameter, Planner Method Configuration
	enable_partitionwise_join configuration parameter, Planner Method Configuration
	enable_partition_pruning configuration parameter, Planner Method Configuration
	enable_presorted_aggregate configuration parameter, Planner Method Configuration
	enable_seqscan configuration parameter, Planner Method Configuration
	enable_sort configuration parameter, Planner Method Configuration
	enable_tidscan configuration parameter, Planner Method Configuration
	encode, Binary String Functions and Operators
	encode_array_constructor
		in PL/Perl, Utility Functions in PL/Perl

	encode_array_literal
		in PL/Perl, Utility Functions in PL/Perl

	encode_bytea
		in PL/Perl, Utility Functions in PL/Perl

	encode_typed_literal
		in PL/Perl, Utility Functions in PL/Perl

	encrypt, Raw Encryption Functions
	encryption, Encryption Options, pgcrypto — cryptographic functions
		for specific columns, pgcrypto — cryptographic functions

	encrypt_iv, Raw Encryption Functions
	END, END
	enumerated types, Enumerated Types
	enum_first, Enum Support Functions
	enum_last, Enum Support Functions
	enum_range, Enum Support Functions
	environment variable, Environment Variables
	ephemeral named relation
		registering with SPI, SPI_register_relation, SPI_register_trigger_data
	unregistering from SPI, SPI_unregister_relation

	ereport, Reporting Errors Within the Server
	erf, Mathematical Functions and Operators
	erfc, Mathematical Functions and Operators
	error codes, PostgreSQL™ Error Codes
		libpq, Main Functions
	list of, PostgreSQL™ Error Codes

	error message, Connection Status Functions
	escape format, Binary String Functions and Operators
	escape string syntax, String Constants with C-Style Escapes
	escape_string_warning configuration parameter, Previous PostgreSQL Versions
	escaping strings, Escaping Strings for Inclusion in SQL Commands
		in libpq, Escaping Strings for Inclusion in SQL Commands

	event log, Registering Event Log on Windows
		event log, Registering Event Log on Windows

	event trigger, Event Triggers, Writing Event Trigger Functions in C
		in C, Writing Event Trigger Functions in C
	in PL/Tcl, Event Trigger Functions in PL/Tcl

	event_source configuration parameter, Where to Log
	event_trigger, Pseudo-Types
	every, Aggregate Functions
	EXCEPT, Combining Queries (UNION, INTERSECT, EXCEPT)
	exceptions
		in PL/pgSQL, Trapping Errors
	in PL/Tcl, Error Handling in PL/Tcl

	exclusion constraint, Exclusion Constraints
	EXECUTE, EXECUTE
	exist, hstore Operators and Functions
	EXISTS, Subquery Expressions
	EXIT
		in PL/pgSQL, EXIT

	exit_on_error configuration parameter, Error Handling
	exp, Mathematical Functions and Operators
	EXPLAIN, Using EXPLAIN, EXPLAIN
	expression, Value Expressions
		order of evaluation, Expression Evaluation Rules
	syntax, Value Expressions

	extending SQL, Extending SQL
	extension, Packaging Related Objects into an Extension
		externally maintained, Extensions

	external_pid_file configuration parameter, File Locations
	extract, Date/Time Functions and Operators, EXTRACT, date_part
	extra_float_digits configuration parameter, Locale and Formatting

F
	factorial, Mathematical Functions and Operators
	failover, High Availability, Load Balancing, and Replication
	false, Boolean Type
	family, Network Address Functions and Operators
	fast path, The Fast-Path Interface
	fastupdate storage parameter, Index Storage Parameters
	fdw_handler, Pseudo-Types
	FETCH, FETCH
	field
		computed, Using Composite Types in Queries

	field selection, Field Selection
	file system mount points, Use of Secondary File Systems
	file_extend_method configuration parameter, Disk
	file_fdw, file_fdw — access data files in the server's file system
	fillfactor storage parameter, Index Storage Parameters, Storage Parameters
	FILTER, Aggregate Expressions
	first_value, Window Functions
	flex, Requirements
	float4 (see real)
	float8 (see double precision)
	floating point, Floating-Point Types
	floating-point
		display, Locale and Formatting

	floor, Mathematical Functions and Operators
	foreign data, Foreign Data
	foreign data wrapper, Writing a Foreign Data Wrapper
		handler for, Writing a Foreign Data Wrapper

	foreign key, Foreign Keys, Foreign Keys
		self-referential, Foreign Keys

	foreign table, Foreign Data
	format, String Functions and Operators, format
		use in PL/pgSQL, Executing Dynamic Commands

	formatting, Data Type Formatting Functions
	format_type, System Catalog Information Functions
	Free Space Map, Free Space Map
	FreeBSD
		IPC configuration, Shared Memory and Semaphores
	shared library, Compiling and Linking Dynamically-Loaded Functions
	start script, Starting the Database Server

	from_collapse_limit configuration parameter, Other Planner Options
	FSM (see Free Space Map)
	fsm_page_contents, General Functions
	fsync configuration parameter, Settings
	full text search, Text Search Types, Text Search Types, Full Text Search
		data types, Text Search Types
	functions and operators, Text Search Types

	full_page_writes configuration parameter, Settings
	function, Table Functions, Functions and Operators, Statistics Information Functions, Functions, Polymorphic Types, User-Defined Functions, Query Language (SQL) Functions, Internal Functions, C-Language Functions
		default values for arguments, SQL Functions with Default Values for Arguments
	in the FROM clause, Table Functions
	internal, Internal Functions
	invocation, Function Calls
	mixed notation, Using Mixed Notation
	named argument, Arguments for SQL Functions
	named notation, Using Named Notation
	output parameter, SQL Functions with Output Parameters
	polymorphic, Polymorphic Types
	positional notation, Using Positional Notation
	RETURNS TABLE, SQL Functions Returning TABLE
	statistics, Statistics Information Functions
	type resolution in an invocation, Functions
	user-defined, User-Defined Functions, Query Language (SQL) Functions, C-Language Functions
		in C, C-Language Functions
	in SQL, Query Language (SQL) Functions

	variadic, SQL Functions with Variable Numbers of Arguments
	with SETOF, SQL Functions Returning Sets

	functional dependency, The GROUP BY and HAVING Clauses
	fuzzystrmatch, fuzzystrmatch — determine string similarities and distance

G
	gcd, Mathematical Functions and Operators
	gc_to_sec, Cube-Based Earth Distances
	generated column, Generated Columns, Parameters, Parameters
		in
 triggers, Overview of Trigger Behavior

	generate_series, Set Returning Functions
	generate_subscripts, Set Returning Functions
	genetic query optimization, Genetic Query Optimizer
	gen_random_bytes, Random-Data Functions
	gen_random_uuid, UUID Functions, Random-Data Functions
	gen_salt, gen_salt()
	GEQO (see genetic query optimization)
	geqo configuration parameter, Genetic Query Optimizer
	geqo_effort configuration parameter, Genetic Query Optimizer
	geqo_generations configuration parameter, Genetic Query Optimizer
	geqo_pool_size configuration parameter, Genetic Query Optimizer
	geqo_seed configuration parameter, Genetic Query Optimizer
	geqo_selection_bias configuration parameter, Genetic Query Optimizer
	geqo_threshold configuration parameter, Genetic Query Optimizer
	get_bit, Binary String Functions and Operators, Bit String Functions and Operators
	get_byte, Binary String Functions and Operators
	get_current_ts_config, Text Search Functions and Operators
	get_raw_page, General Functions
	GIN (see index)
	gin_clean_pending_list, Index Maintenance Functions
	gin_fuzzy_search_limit configuration parameter, Other Defaults
	gin_leafpage_items, GIN Functions
	gin_metapage_info, GIN Functions
	gin_page_opaque_info, GIN Functions
	gin_pending_list_limit
		configuration parameter, Statement Behavior
	storage parameter, Index Storage Parameters

	GiST (see index)
	gist_page_items, GiST Functions
	gist_page_items_bytea, GiST Functions
	gist_page_opaque_info, GiST Functions
	global data, Global Data in PL/Tcl
		in PL/Python, Sharing Data
	in PL/Tcl, Global Data in PL/Tcl

	GRANT, Privileges, GRANT
	GREATEST, GREATEST and LEAST, UNION, CASE, and Related Constructs
		determination of result type, UNION, CASE, and Related Constructs

	Gregorian calendar, History of Units
	GROUP BY, Aggregate Functions, The GROUP BY and HAVING Clauses
	grouping, The GROUP BY and HAVING Clauses
	GROUPING, Aggregate Functions
	GROUPING SETS, GROUPING SETS, CUBE, and ROLLUP
	gssapi, Secure TCP/IP Connections with GSSAPI Encryption
	GSSAPI, GSSAPI Authentication
		with
 libpq, Parameter Key Words

	gss_accept_delegation configuration parameter, Authentication
	GUID, UUID Type

H
	hash (see index)
	hash_bitmap_info, Hash Functions
	hash_mem_multiplier configuration parameter, Memory
	hash_metapage_info, Hash Functions
	hash_page_items, Hash Functions
	hash_page_stats, Hash Functions
	hash_page_type, Hash Functions
	has_any_column_privilege, Access Privilege Inquiry Functions
	has_column_privilege, Access Privilege Inquiry Functions
	has_database_privilege, Access Privilege Inquiry Functions
	has_foreign_data_wrapper_privilege, Access Privilege Inquiry Functions
	has_function_privilege, Access Privilege Inquiry Functions
	has_language_privilege, Access Privilege Inquiry Functions
	has_parameter_privilege, Access Privilege Inquiry Functions
	has_schema_privilege, Access Privilege Inquiry Functions
	has_sequence_privilege, Access Privilege Inquiry Functions
	has_server_privilege, Access Privilege Inquiry Functions
	has_tablespace_privilege, Access Privilege Inquiry Functions
	has_table_privilege, Access Privilege Inquiry Functions
	has_type_privilege, Access Privilege Inquiry Functions
	HAVING, Aggregate Functions, The GROUP BY and HAVING Clauses
	hba_file configuration parameter, File Locations
	heap_page_items, Heap Functions
	heap_page_item_attrs, Heap Functions
	heap_tuple_infomask_flags, Heap Functions
	height, Geometric Functions and Operators
	hex format, Binary String Functions and Operators
	hierarchical database, Concepts
	high availability, High Availability, Load Balancing, and Replication
	history, A Brief History of PostgreSQL™
		of PostgreSQL, A Brief History of PostgreSQL™

	hmac, hmac()
	host, Network Address Functions and Operators
	host
 name, Parameter Key Words
	hostmask, Network Address Functions and Operators
	hot standby, High Availability, Load Balancing, and Replication
	hot_standby configuration parameter, Standby Servers
	hot_standby_feedback configuration parameter, Standby Servers
	hstore, hstore — hstore key/value datatype, hstore Operators and Functions
	hstore_to_array, hstore Operators and Functions
	hstore_to_json, hstore Operators and Functions
	hstore_to_jsonb, hstore Operators and Functions
	hstore_to_jsonb_loose, hstore Operators and Functions
	hstore_to_json_loose, hstore Operators and Functions
	hstore_to_matrix, hstore Operators and Functions
	huge_pages configuration parameter, Memory
	huge_page_size configuration parameter, Memory
	hypothetical-set aggregate
		built-in, Aggregate Functions

I
	icount, intarray Functions and Operators
	ICU, Anti-Features, PostgreSQL™ Features, Locale Providers, Managing Collations, Parameters, Parameters
	icu_validation_level configuration parameter, Locale and Formatting
	ident, Ident Authentication
	identifier, Identifiers and Key Words
		length, Identifiers and Key Words
	syntax of, Identifiers and Key Words

	IDENTIFY_SYSTEM, Streaming Replication Protocol
	ident_file configuration parameter, File Locations
	idle_in_transaction_session_timeout configuration parameter, Statement Behavior
	idle_session_timeout configuration parameter, Statement Behavior
	idx, intarray Functions and Operators
	IFNULL, COALESCE
	ignore_checksum_failure configuration parameter, Developer Options
	ignore_invalid_pages configuration parameter, Developer Options
	ignore_system_indexes configuration parameter, Developer Options
	IMMUTABLE, Function Volatility Categories
	IMPORT FOREIGN SCHEMA, IMPORT FOREIGN SCHEMA
	IN, Subquery Expressions, Row and Array Comparisons
	INCLUDE
		in index definitions, Index-Only Scans and Covering Indexes

	include
		in configuration file, Managing Configuration File Contents

	include_dir
		in configuration file, Managing Configuration File Contents

	include_if_exists
		in configuration file, Managing Configuration File Contents

	index, Indexes, Multicolumn Indexes, Indexes and ORDER BY, Combining Multiple Indexes, Unique Indexes, Indexes on Expressions, Partial Indexes, Index-Only Scans and Covering Indexes, Index-Only Scans and Covering Indexes, Examining Index Usage, Preferred Index Types for Text Search, Preferred Index Types for Text Search, Locking and Indexes, Interfacing Extensions to Indexes, Building Indexes Concurrently, Rebuilding Indexes Concurrently, Operators and Functions
		and ORDER BY, Indexes and ORDER BY
	B-Tree, B-Tree, B-Tree Indexes
	BRIN, BRIN, BRIN Indexes
	building concurrently, Building Indexes Concurrently
	combining multiple indexes, Combining Multiple Indexes
	covering, Index-Only Scans and Covering Indexes
	examining usage, Examining Index Usage
	on expressions, Indexes on Expressions
	for user-defined data type, Interfacing Extensions to Indexes
	GIN, GIN, Preferred Index Types for Text Search, GIN Indexes
		text search, Preferred Index Types for Text Search

	GiST, GiST, Preferred Index Types for Text Search, GiST Indexes
		text search, Preferred Index Types for Text Search

	hash, Hash
	Hash, Hash Indexes
	index-only scans, Index-Only Scans and Covering Indexes
	locks, Locking and Indexes
	multicolumn, Multicolumn Indexes
	partial, Partial Indexes
	rebuilding concurrently, Rebuilding Indexes Concurrently
	SP-GiST, SP-GiST, SP-GiST Indexes
	unique, Unique Indexes

	Index Access Method, Index Access Method Interface Definition
	index scan, Planner Method Configuration
	index-only scan, Index-Only Scans and Covering Indexes
	indexam
		Index Access Method, Index Access Method Interface Definition

	index_am_handler, Pseudo-Types
	inet (data type), inet
	inet_client_addr, Session Information Functions
	inet_client_port, Session Information Functions
	inet_merge, Network Address Functions and Operators
	inet_same_family, Network Address Functions and Operators
	inet_server_addr, Session Information Functions
	inet_server_port, Session Information Functions
	infinity
		floating point, Floating-Point Types
	numeric (data type), Arbitrary Precision Numbers

	information schema, The Information Schema
	inheritance, Inheritance, Inheritance
	initcap, String Functions and Operators
	initdb, Creating a Database Cluster, initdb
	Initialization Fork, The Initialization Fork
	input function, User-Defined Types
	INSERT, Populating a Table With Rows, Inserting Data, Returning Data from Modified Rows, INSERT
		RETURNING, Returning Data from Modified Rows

	inserting, Inserting Data
	installation, Installation from Source Code
		binaries, Installation from Binaries
	on Windows, Installation from Source Code on Windows™

	instr function, Appendix
	int2 (see smallint)
	int4 (see integer)
	int8 (see bigint)
	intagg, intagg — integer aggregator and enumerator
	intarray, intarray — manipulate arrays of integers
	integer, Numeric Constants, Integer Types
	integer_datetimes configuration parameter, Preset Options
	interfaces
		externally maintained, Client Interfaces

	internal, Pseudo-Types
	INTERSECT, Combining Queries (UNION, INTERSECT, EXCEPT)
	interval, Date/Time Types, Interval Input
		output format, Interval Output
		(see also formatting)

	IntervalStyle configuration parameter, Locale and Formatting
	intset, intarray Functions and Operators
	int_array_aggregate, Functions
	int_array_enum, Functions
	inverse distribution, Aggregate Functions
	in_hot_standby configuration parameter, Preset Options
	in_range support functions, B-Tree Support Functions
	IS DISTINCT FROM, Comparison Functions and Operators, Row and Array Comparisons
	IS DOCUMENT, IS DOCUMENT
	IS FALSE, Comparison Functions and Operators
	IS JSON, Processing and Creating JSON Data
	IS NOT DISTINCT FROM, Comparison Functions and Operators, Row and Array Comparisons
	IS NOT DOCUMENT, IS NOT DOCUMENT
	IS NOT FALSE, Comparison Functions and Operators
	IS NOT NULL, Comparison Functions and Operators
	IS NOT TRUE, Comparison Functions and Operators
	IS NOT UNKNOWN, Comparison Functions and Operators
	IS NULL, Comparison Functions and Operators, Platform and Client Compatibility
	IS TRUE, Comparison Functions and Operators
	IS UNKNOWN, Comparison Functions and Operators
	isclosed, Geometric Functions and Operators
	isempty, Range/Multirange Functions and Operators
	isfinite, Date/Time Functions and Operators
	isn, isn — data types for international standard numbers (ISBN, EAN, UPC, etc.)
	ISNULL, Comparison Functions and Operators
	isn_weak, Functions and Operators
	isopen, Geometric Functions and Operators
	is_array_ref
		in PL/Perl, Utility Functions in PL/Perl

	is_valid, Functions and Operators

J
	JIT, Just-in-Time Compilation (JIT)
	jit configuration parameter, Other Planner Options
	jit_above_cost configuration parameter, Planner Cost Constants
	jit_debugging_support configuration parameter, Developer Options
	jit_dump_bitcode configuration parameter, Developer Options
	jit_expressions configuration parameter, Developer Options
	jit_inline_above_cost configuration parameter, Planner Cost Constants
	jit_optimize_above_cost configuration parameter, Planner Cost Constants
	jit_profiling_support configuration parameter, Developer Options
	jit_provider configuration parameter, Shared Library Preloading
	jit_tuple_deforming configuration parameter, Developer Options
	join, Joins Between Tables, Joined Tables, Controlling the Planner with Explicit JOIN Clauses
		controlling the order, Controlling the Planner with Explicit JOIN Clauses
	cross, Joined Tables
	left, Joined Tables
	natural, Joined Tables
	outer, Joins Between Tables, Joined Tables
	right, Joined Tables
	self, Joins Between Tables

	join_collapse_limit configuration parameter, Other Planner Options
	JSON, JSON Types, JSON Functions and Operators
		functions and operators, JSON Functions and Operators

	JSONB, JSON Types
	jsonb
		containment, jsonb Containment and Existence
	existence, jsonb Containment and Existence
	indexes on, jsonb Indexing

	jsonb_agg, Aggregate Functions
	jsonb_agg_strict, Aggregate Functions
	jsonb_array_elements, Processing and Creating JSON Data
	jsonb_array_elements_text, Processing and Creating JSON Data
	jsonb_array_length, Processing and Creating JSON Data
	jsonb_build_array, Processing and Creating JSON Data
	jsonb_build_object, Processing and Creating JSON Data
	jsonb_each, Processing and Creating JSON Data
	jsonb_each_text, Processing and Creating JSON Data
	jsonb_extract_path, Processing and Creating JSON Data
	jsonb_extract_path_text, Processing and Creating JSON Data
	jsonb_insert, Processing and Creating JSON Data
	jsonb_object, Processing and Creating JSON Data
	jsonb_object_agg, Aggregate Functions
	jsonb_object_agg_strict, Aggregate Functions
	jsonb_object_agg_unique, Aggregate Functions
	jsonb_object_agg_unique_strict, Aggregate Functions
	jsonb_object_keys, Processing and Creating JSON Data
	jsonb_path_exists, Processing and Creating JSON Data
	jsonb_path_exists_tz, Processing and Creating JSON Data
	jsonb_path_match, Processing and Creating JSON Data
	jsonb_path_match_tz, Processing and Creating JSON Data
	jsonb_path_query, Processing and Creating JSON Data
	jsonb_path_query_array, Processing and Creating JSON Data
	jsonb_path_query_array_tz, Processing and Creating JSON Data
	jsonb_path_query_first, Processing and Creating JSON Data
	jsonb_path_query_first_tz, Processing and Creating JSON Data
	jsonb_path_query_tz, Processing and Creating JSON Data
	jsonb_populate_record, Processing and Creating JSON Data
	jsonb_populate_recordset, Processing and Creating JSON Data
	jsonb_pretty, Processing and Creating JSON Data
	jsonb_set, Processing and Creating JSON Data
	jsonb_set_lax, Processing and Creating JSON Data
	jsonb_strip_nulls, Processing and Creating JSON Data
	jsonb_to_record, Processing and Creating JSON Data
	jsonb_to_recordset, Processing and Creating JSON Data
	jsonb_to_tsvector, Text Search Functions and Operators
	jsonb_typeof, Processing and Creating JSON Data
	jsonpath, jsonpath Type
	json_agg, Aggregate Functions
	json_agg_strict, Aggregate Functions
	json_array, Processing and Creating JSON Data
	json_arrayagg, Aggregate Functions
	json_array_elements, Processing and Creating JSON Data
	json_array_elements_text, Processing and Creating JSON Data
	json_array_length, Processing and Creating JSON Data
	json_build_array, Processing and Creating JSON Data
	json_build_object, Processing and Creating JSON Data
	json_each, Processing and Creating JSON Data
	json_each_text, Processing and Creating JSON Data
	json_extract_path, Processing and Creating JSON Data
	json_extract_path_text, Processing and Creating JSON Data
	json_object, Processing and Creating JSON Data
	json_objectagg, Aggregate Functions
	json_object_agg, Aggregate Functions
	json_object_agg_strict, Aggregate Functions
	json_object_agg_unique, Aggregate Functions
	json_object_agg_unique_strict, Aggregate Functions
	json_object_keys, Processing and Creating JSON Data
	json_populate_record, Processing and Creating JSON Data
	json_populate_recordset, Processing and Creating JSON Data
	json_strip_nulls, Processing and Creating JSON Data
	json_to_record, Processing and Creating JSON Data
	json_to_recordset, Processing and Creating JSON Data
	json_to_tsvector, Text Search Functions and Operators
	json_typeof, Processing and Creating JSON Data
	Julian date, Julian Dates
	Just-In-Time compilation (see JIT)
	justify_days, Date/Time Functions and Operators
	justify_hours, Date/Time Functions and Operators
	justify_interval, Date/Time Functions and Operators

K
	key word, Identifiers and Key Words, SQL Key Words
		list of, SQL Key Words
	syntax of, Identifiers and Key Words

	krb_caseins_users configuration parameter, Authentication
	krb_server_keyfile configuration parameter, Authentication

L
	label (see alias)
	lag, Window Functions
	language_handler, Pseudo-Types
	large object, Large Objects
	lastval, Sequence Manipulation Functions
	last_value, Window Functions
	LATERAL, LATERAL Subqueries
		in the FROM clause, LATERAL Subqueries

	latitude, Cube-Based Earth Distances
	lca, Operators and Functions
	lcm, Mathematical Functions and Operators
	lc_messages configuration parameter, Locale and Formatting
	lc_monetary configuration parameter, Locale and Formatting
	lc_numeric configuration parameter, Locale and Formatting
	lc_time configuration parameter, Locale and Formatting
	LDAP, PostgreSQL™ Features, PostgreSQL™ Features, LDAP Authentication
	LDAP connection parameter lookup, LDAP Lookup of Connection Parameters
	ldconfig, Shared Libraries
	lead, Window Functions
	LEAST, GREATEST and LEAST, UNION, CASE, and Related Constructs
		determination of result type, UNION, CASE, and Related Constructs

	left, String Functions and Operators
	left join, Joined Tables
	length, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators, Geometric Functions and Operators, Text Search Functions and Operators
		of a binary string (see binary strings, length)
	of a character string (see character string, length)

	length(tsvector), Manipulating Documents
	levenshtein, Levenshtein
	levenshtein_less_equal, Levenshtein
	lex, Requirements
	libedit, Requirements
		in psql, Command-Line Editing

	libperl, Requirements
	libpq, libpq — C Library, Pipeline Mode, Retrieving Query Results Row-by-Row
		pipeline mode, Pipeline Mode
	single-row mode, Retrieving Query Results Row-by-Row

	libpq-fe.h, libpq — C Library, Connection Status Functions
	libpq-int.h, Connection Status Functions
	libpython, Requirements
	library initialization function, Dynamic Loading
	LIKE, LIKE
		and locales, Behavior

	LIKE_REGEX, Differences from SQL Standard and XQuery, SQL/JSON Regular Expressions
		in SQL/JSON, SQL/JSON Regular Expressions

	LIMIT, LIMIT and OFFSET
	line, Lines, Geometric Functions and Operators
	line segment, Line Segments
	linear regression, Aggregate Functions
	Linux
		IPC configuration, Shared Memory and Semaphores
	shared library, Compiling and Linking Dynamically-Loaded Functions
	start script, Starting the Database Server

	LISTEN, LISTEN
	listen_addresses configuration parameter, Connection Settings
	llvm-config, PostgreSQL™ Features, PostgreSQL™ Features
	ll_to_earth, Cube-Based Earth Distances
	ln, Mathematical Functions and Operators
	lo, lo — manage large objects
	LOAD, LOAD
	load balancing, High Availability, Load Balancing, and Replication
	locale, Creating a Database Cluster, Locale Support
	localtime, Date/Time Functions and Operators
	localtimestamp, Date/Time Functions and Operators
	local_preload_libraries configuration parameter, Shared Library Preloading
	lock, Explicit Locking, Advisory Locks, Viewing Locks
		advisory, Advisory Locks
	monitoring, Viewing Locks

	LOCK, Table-Level Locks, LOCK
	lock_timeout configuration parameter, Statement Behavior
	log, Mathematical Functions and Operators
	log shipping, High Availability, Load Balancing, and Replication
	log10, Mathematical Functions and Operators
	Logging
		current_logfiles file and the pg_current_logfile
 function, Session Information Functions
	pg_current_logfile function, Session Information Functions

	logging_collector configuration parameter, Where to Log
	Logical Decoding, Logical Decoding, Logical Decoding
	logical_decoding_work_mem configuration parameter, Memory
	login privilege, Role Attributes
	log_autovacuum_min_duration
		configuration parameter, What to Log
	storage parameter, Storage Parameters

	log_btree_build_stats configuration parameter, Developer Options
	log_checkpoints configuration parameter, What to Log
	log_connections configuration parameter, What to Log
	log_destination configuration parameter, Where to Log
	log_directory configuration parameter, Where to Log
	log_disconnections configuration parameter, What to Log
	log_duration configuration parameter, What to Log
	log_error_verbosity configuration parameter, What to Log
	log_executor_stats configuration parameter, Statistics Monitoring
	log_filename configuration parameter, Where to Log
	log_file_mode configuration parameter, Where to Log
	log_hostname configuration parameter, What to Log
	log_line_prefix configuration parameter, What to Log
	log_lock_waits configuration parameter, What to Log
	log_min_duration_sample configuration parameter, When to Log
	log_min_duration_statement configuration parameter, When to Log
	log_min_error_statement configuration parameter, When to Log
	log_min_messages configuration parameter, When to Log
	log_parameter_max_length configuration parameter, What to Log
	log_parameter_max_length_on_error configuration parameter, What to Log
	log_parser_stats configuration parameter, Statistics Monitoring
	log_planner_stats configuration parameter, Statistics Monitoring
	log_recovery_conflict_waits configuration parameter, What to Log
	log_replication_commands configuration parameter, What to Log
	log_rotation_age configuration parameter, Where to Log
	log_rotation_size configuration parameter, Where to Log
	log_startup_progress_interval configuration parameter, When to Log
	log_statement configuration parameter, What to Log
	log_statement_sample_rate configuration parameter, When to Log
	log_statement_stats configuration parameter, Statistics Monitoring
	log_temp_files configuration parameter, What to Log
	log_timezone configuration parameter, What to Log
	log_transaction_sample_rate configuration parameter, When to Log
	log_truncate_on_rotation configuration parameter, Where to Log
	longitude, Cube-Based Earth Distances
	looks_like_number
		in PL/Perl, Utility Functions in PL/Perl

	loop, Simple Loops
		in PL/pgSQL, Simple Loops

	lower, String Functions and Operators, Range/Multirange Functions and Operators
		and locales, Behavior

	lower_inc, Range/Multirange Functions and Operators
	lower_inf, Range/Multirange Functions and Operators
	lo_close, Closing a Large Object Descriptor
	lo_compat_privileges configuration parameter, Previous PostgreSQL Versions
	lo_creat, Creating a Large Object, Server-Side Functions
	lo_create, Creating a Large Object
	lo_export, Exporting a Large Object, Server-Side Functions
	lo_from_bytea, Server-Side Functions
	lo_get, Server-Side Functions
	lo_import, Importing a Large Object, Server-Side Functions
	lo_import_with_oid, Importing a Large Object
	lo_lseek, Seeking in a Large Object
	lo_lseek64, Seeking in a Large Object
	lo_open, Opening an Existing Large Object
	lo_put, Server-Side Functions
	lo_read, Reading Data from a Large Object
	lo_tell, Obtaining the Seek Position of a Large Object
	lo_tell64, Obtaining the Seek Position of a Large Object
	lo_truncate, Truncating a Large Object
	lo_truncate64, Truncating a Large Object
	lo_unlink, Removing a Large Object, Server-Side Functions
	lo_write, Writing Data to a Large Object
	lpad, String Functions and Operators
	lseg, Line Segments, Geometric Functions and Operators
	LSN, WAL Internals
	ltree, ltree — hierarchical tree-like data type
	ltree2text, Operators and Functions
	ltrim, String Functions and Operators, Binary String Functions and Operators

M
	MAC address (see macaddr)
	MAC address (EUI-64 format) (see macaddr)
	macaddr (data type), macaddr
	macaddr8 (data type), macaddr8
	macaddr8_set7bit, Network Address Functions and Operators
	macOS, macOS
		installation on, macOS
	IPC configuration, Shared Memory and Semaphores
	shared library, Compiling and Linking Dynamically-Loaded Functions

	magic block, Dynamic Loading
	maintenance, Routine Database Maintenance Tasks
	maintenance_io_concurrency configuration parameter, Asynchronous Behavior
	maintenance_work_mem configuration parameter, Memory
	make, Requirements
	makeaclitem, Access Privilege Inquiry Functions
	make_date, Date/Time Functions and Operators
	make_interval, Date/Time Functions and Operators
	make_time, Date/Time Functions and Operators
	make_timestamp, Date/Time Functions and Operators
	make_timestamptz, Date/Time Functions and Operators
	make_valid, Functions and Operators
	MANPATH, Environment Variables
	masklen, Network Address Functions and Operators
	materialized view, Materialized Views
		implementation through rules, Materialized Views

	materialized views, pg_matviews
	max, Aggregate Functions
	max_connections configuration parameter, Connection Settings
	max_files_per_process configuration parameter, Kernel Resource Usage
	max_function_args configuration parameter, Preset Options
	max_identifier_length configuration parameter, Preset Options
	max_index_keys configuration parameter, Preset Options
	max_locks_per_transaction configuration parameter, Lock Management
	max_logical_replication_workers configuration parameter, Subscribers
	max_parallel_apply_workers_per_subscription configuration parameter, Subscribers
	max_parallel_maintenance_workers configuration parameter, Asynchronous Behavior
	max_parallel_workers configuration parameter, Asynchronous Behavior
	max_parallel_workers_per_gather configuration parameter, Asynchronous Behavior
	max_pred_locks_per_page configuration parameter, Lock Management
	max_pred_locks_per_relation configuration parameter, Lock Management
	max_pred_locks_per_transaction configuration parameter, Lock Management
	max_prepared_transactions configuration parameter, Memory
	max_replication_slots configuration parameter
		in a sending server, Sending Servers
	in a subscriber, Subscribers

	max_slot_wal_keep_size configuration parameter, Sending Servers
	max_stack_depth configuration parameter, Memory
	max_standby_archive_delay configuration parameter, Standby Servers
	max_standby_streaming_delay configuration parameter, Standby Servers
	max_sync_workers_per_subscription configuration parameter, Subscribers
	max_wal_senders configuration parameter, Sending Servers
	max_wal_size configuration parameter, Checkpoints
	max_worker_processes configuration parameter, Asynchronous Behavior
	md5, String Functions and Operators, Binary String Functions and Operators
	MD5, Password Authentication
	median, Aggregate Expressions
		(see also percentile)

	memory context
		in SPI, Memory Management

	memory overcommit, Linux Memory Overcommit
	MERGE, MERGE
	Meson, Requirements
	metaphone, Metaphone
	min, Aggregate Functions
	MinGW, MinGW/Native Windows
		installation on, MinGW/Native Windows

	min_dynamic_shared_memory configuration parameter, Memory
	min_parallel_index_scan_size configuration parameter, Planner Cost Constants
	min_parallel_table_scan_size configuration parameter, Planner Cost Constants
	min_scale, Mathematical Functions and Operators
	min_wal_size configuration parameter, Checkpoints
	mod, Mathematical Functions and Operators
	mode
		statistical, Aggregate Functions

	monitoring, Monitoring Database Activity
		database activity, Monitoring Database Activity

	MOVE, MOVE
	moving-aggregate mode, Moving-Aggregate Mode
	multirange (function), Range/Multirange Functions and Operators
	multirange type, Range Types
	Multiversion Concurrency Control, Introduction
	MultiXactId, Multixacts and Wraparound
	MVCC, Introduction
	mxid_age, Transaction ID and Snapshot Information Functions

N
	name, Identifiers and Key Words
		qualified, Creating a Schema
	syntax of, Identifiers and Key Words
	unqualified, The Schema Search Path

	NaN (see not a number)
	natural join, Joined Tables
	negation, Logical Operators
	NetBSD
		IPC configuration, Shared Memory and Semaphores
	shared library, Compiling and Linking Dynamically-Loaded Functions
	start script, Starting the Database Server

	netmask, Network Address Functions and Operators
	network, Network Address Types, Network Address Functions and Operators
		data types, Network Address Types

	nextval, Sequence Manipulation Functions
	NFS, NFS
	nlevel, Operators and Functions
	non-durable, Non-Durable Settings
	nonblocking connection, Database Connection Control Functions, Asynchronous Command Processing
	nonrepeatable read, Transaction Isolation
	normalize, String Functions and Operators
	normalized, String Functions and Operators
	normal_rand, normal_rand
	NOT (operator), Logical Operators
	not a number
		floating point, Floating-Point Types
	numeric (data type), Arbitrary Precision Numbers

	NOT IN, Subquery Expressions, Row and Array Comparisons
	not-null constraint, Not-Null Constraints
	notation, Calling Functions
		functions, Calling Functions

	notice processing, Notice Processing
		in libpq, Notice Processing

	notice processor, Notice Processing
	notice receiver, Notice Processing
	NOTIFY, Asynchronous Notification, NOTIFY
		in libpq, Asynchronous Notification

	NOTNULL, Comparison Functions and Operators
	now, Date/Time Functions and Operators
	npoints, Geometric Functions and Operators
	nth_value, Window Functions
	ntile, Window Functions
	null value
		with check constraints, Check Constraints
	comparing, Comparison Functions and Operators
	default value, Default Values
	in DISTINCT, DISTINCT
	in libpq, Retrieving Query Result Information
	in PL/Perl, PL/Perl Functions and Arguments
	in PL/Python, Null, None
	with unique constraints, Unique Constraints

	NULLIF, NULLIF
	number
		constant, Numeric Constants

	numeric, Numeric Constants
	numeric (data type), Arbitrary Precision Numbers
	numnode, Text Search Functions and Operators, Manipulating Queries
	num_nonnulls, Comparison Functions and Operators
	num_nulls, Comparison Functions and Operators
	NVL, COALESCE

O
	object identifier, Object Identifier Types
		data type, Object Identifier Types

	object-oriented database, Concepts
	obj_description, Comment Information Functions
	OCCURRENCES_REGEX, Differences from SQL Standard and XQuery
	octet_length, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators
	OFFSET, LIMIT and OFFSET
	oid, Object Identifier Types
	OID
		in libpq, Retrieving Other Result Information

	oid2name, oid2name
	old_snapshot, old_snapshot — inspect old_snapshot_threshold state
	old_snapshot_threshold configuration parameter, Asynchronous Behavior
	ON CONFLICT, INSERT
	ONLY, The FROM Clause
	OOM, Linux Memory Overcommit
	OpenBSD
		IPC configuration, Shared Memory and Semaphores
	shared library, Compiling and Linking Dynamically-Loaded Functions
	start script, Starting the Database Server

	OpenSSL, PostgreSQL™ Features, PostgreSQL™ Features
		(see also SSL)

	operator, Operators, Operator Precedence, Functions and Operators, Logical Operators, Operators, User-Defined Operators
		invocation, Operator Invocations
	logical, Logical Operators
	precedence, Operator Precedence
	syntax, Operators
	type resolution in an invocation, Operators
	user-defined, User-Defined Operators

	operator class, Operator Classes and Operator Families, Index Methods and Operator Classes
	operator family, Operator Classes and Operator Families, Operator Classes and Operator Families
	optimization information, Function Optimization Information, Operator Optimization Information
		for functions, Function Optimization Information
	for operators, Operator Optimization Information

	OR (operator), Logical Operators
	Oracle, Porting from Oracle™ PL/SQL
		porting from PL/SQL to PL/pgSQL, Porting from Oracle™ PL/SQL

	ORDER BY, Querying a Table, Sorting Rows (ORDER BY)
		and locales, Behavior

	ordered-set aggregate, Aggregate Expressions
		built-in, Aggregate Functions

	ordering operator, System Dependencies on Operator Classes
	ordinality, Set Returning Functions
	outer join, Joined Tables
	output function, User-Defined Types
	OVER clause, Window Function Calls
	overcommit, Linux Memory Overcommit
	OVERLAPS, Date/Time Functions and Operators
	overlay, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators
	overloading, Function Overloading
		functions, Function Overloading
	operators, User-Defined Operators

	owner, Privileges

P
	pageinspect, pageinspect — low-level inspection of database pages
	pages_per_range storage parameter, Index Storage Parameters
	page_checksum, General Functions
	page_header, General Functions
	palloc, Writing Code
	PAM, PostgreSQL™ Features, PostgreSQL™ Features, PAM Authentication
	parallel query, Parallel Query
	parallel_leader_participation configuration parameter, Asynchronous Behavior
	parallel_setup_cost configuration parameter, Planner Cost Constants
	parallel_tuple_cost configuration parameter, Planner Cost Constants
	parallel_workers storage parameter, Storage Parameters
	parameter
		syntax, Positional Parameters

	parenthesis, Value Expressions
	parse_ident, String Functions and Operators
	partition pruning, Partition Pruning
	partitioned table, Table Partitioning
	partitioning, Table Partitioning
	password, Role Attributes
		authentication, Password Authentication
	of the superuser, Creating a Database Cluster

	password file, The Password File
	passwordcheck, passwordcheck — verify password strength
	password_encryption configuration parameter, Authentication
	path, Geometric Functions and Operators
		for schemas, Statement Behavior

	PATH, Environment Variables
	path (data type), Paths
	pattern matching, Pattern Matching
	patterns
		in psql and pg_dump, Patterns

	pclose, Geometric Functions and Operators
	peer, Peer Authentication
	percentile
		continuous, Aggregate Functions
	discrete, Aggregate Functions

	percent_rank, Window Functions
		hypothetical, Aggregate Functions

	performance, Performance Tips
	perl, Requirements
	Perl, PL/Perl — Perl Procedural Language
	permission (see privilege)
	pfree, Writing Code
	PGAPPNAME, Environment Variables
	pgbench, pgbench
	PGcancel, Canceling Queries in Progress
	PGCHANNELBINDING, Environment Variables
	PGCLIENTENCODING, Environment Variables
	PGconn, Database Connection Control Functions
	PGCONNECT_TIMEOUT, Environment Variables
	pgcrypto, pgcrypto — cryptographic functions
	PGDATA, Creating a Database Cluster
	PGDATABASE, Environment Variables
	PGDATESTYLE, Environment Variables
	PGEventProc, Event Callback Procedure
	PGGEQO, Environment Variables
	PGGSSDELEGATION, Environment Variables
	PGGSSENCMODE, Environment Variables
	PGGSSLIB, Environment Variables
	PGHOST, Environment Variables
	PGHOSTADDR, Environment Variables
	PGKRBSRVNAME, Environment Variables
	PGLOADBALANCEHOSTS, Environment Variables
	PGLOCALEDIR, Environment Variables
	PGOPTIONS, Environment Variables
	PGPASSFILE, Environment Variables
	PGPASSWORD, Environment Variables
	PGPORT, Environment Variables
	pgp_armor_headers, pgp_armor_headers
	pgp_key_id, pgp_key_id()
	pgp_pub_decrypt, pgp_pub_decrypt()
	pgp_pub_decrypt_bytea, pgp_pub_decrypt()
	pgp_pub_encrypt, pgp_pub_encrypt()
	pgp_pub_encrypt_bytea, pgp_pub_encrypt()
	pgp_sym_decrypt, pgp_sym_decrypt()
	pgp_sym_decrypt_bytea, pgp_sym_decrypt()
	pgp_sym_encrypt, pgp_sym_encrypt()
	pgp_sym_encrypt_bytea, pgp_sym_encrypt()
	PGREQUIREAUTH, Environment Variables
	PGREQUIREPEER, Environment Variables
	PGREQUIRESSL, Environment Variables
	PGresult, Main Functions
	pgrowlocks, pgrowlocks — show a table's row locking information, Overview
	PGSERVICE, Environment Variables
	PGSERVICEFILE, Environment Variables
	PGSSLCERT, Environment Variables
	PGSSLCERTMODE, Environment Variables
	PGSSLCOMPRESSION, Environment Variables
	PGSSLCRL, Environment Variables
	PGSSLCRLDIR, Environment Variables
	PGSSLKEY, Environment Variables
	PGSSLMAXPROTOCOLVERSION, Environment Variables
	PGSSLMINPROTOCOLVERSION, Environment Variables
	PGSSLMODE, Environment Variables
	PGSSLROOTCERT, Environment Variables
	PGSSLSNI, Environment Variables
	pgstatginindex, Functions
	pgstathashindex, Functions
	pgstatindex, Functions
	pgstattuple, pgstattuple — obtain tuple-level statistics, Functions
	pgstattuple_approx, Functions
	PGSYSCONFDIR, Environment Variables
	PGTARGETSESSIONATTRS, Environment Variables
	PGTZ, Environment Variables
	PGUSER, Environment Variables
	pgxs, Extension Building Infrastructure
	pg_advisory_lock, Advisory Lock Functions
	pg_advisory_lock_shared, Advisory Lock Functions
	pg_advisory_unlock, Advisory Lock Functions
	pg_advisory_unlock_all, Advisory Lock Functions
	pg_advisory_unlock_shared, Advisory Lock Functions
	pg_advisory_xact_lock, Advisory Lock Functions
	pg_advisory_xact_lock_shared, Advisory Lock Functions
	pg_aggregate, pg_aggregate
	pg_am, pg_am
	pg_amcheck, pg_amcheck
	pg_amop, pg_amop
	pg_amproc, pg_amproc
	pg_archivecleanup, pg_archivecleanup
	pg_attrdef, pg_attrdef
	pg_attribute, pg_attribute
	pg_authid, pg_authid
	pg_auth_members, pg_auth_members
	pg_available_extensions, pg_available_extensions
	pg_available_extension_versions, pg_available_extension_versions
	pg_backend_memory_contexts, pg_backend_memory_contexts
	pg_backend_pid, Session Information Functions
	pg_backup_start, Backup Control Functions
	pg_backup_stop, Backup Control Functions
	pg_basebackup, pg_basebackup
	pg_blocking_pids, Session Information Functions
	pg_buffercache, pg_buffercache — inspect PostgreSQL™
 buffer cache state
	pg_buffercache_pages, pg_buffercache — inspect PostgreSQL™
 buffer cache state
	pg_buffercache_summary, pg_buffercache — inspect PostgreSQL™
 buffer cache state
	pg_cancel_backend, Server Signaling Functions
	pg_cast, pg_cast
	pg_char_to_encoding, System Catalog Information Functions
	pg_checksums, pg_checksums
	pg_class, pg_class
	pg_client_encoding, String Functions and Operators
	pg_collation, pg_collation
	pg_collation_actual_version, Database Object Management Functions
	pg_collation_is_visible, Schema Visibility Inquiry Functions
	PG_COLOR, When Color is Used
	PG_COLORS, Configuring the Colors
	pg_column_compression, Database Object Management Functions
	pg_column_size, Database Object Management Functions
	pg_config, pg_config, pg_config
		with
 ecpg, Processing Embedded SQL Programs
	with libpq, Building libpq Programs
	with user-defined C functions, Writing Code

	pg_conf_load_time, Session Information Functions
	pg_constraint, pg_constraint
	pg_controldata, pg_controldata
	pg_control_checkpoint, Control Data Functions
	pg_control_init, Control Data Functions
	pg_control_recovery, Control Data Functions
	pg_control_system, Control Data Functions
	pg_conversion, pg_conversion
	pg_conversion_is_visible, Schema Visibility Inquiry Functions
	pg_copy_logical_replication_slot, Replication Management Functions
	pg_copy_physical_replication_slot, Replication Management Functions
	pg_create_logical_replication_slot, Replication Management Functions
	pg_create_physical_replication_slot, Replication Management Functions
	pg_create_restore_point, Backup Control Functions
	pg_ctl, Creating a Database Cluster, Starting the Database Server, pg_ctl
	pg_current_logfile, Session Information Functions
	pg_current_snapshot, Transaction ID and Snapshot Information Functions
	pg_current_wal_flush_lsn, Backup Control Functions
	pg_current_wal_insert_lsn, Backup Control Functions
	pg_current_wal_lsn, Backup Control Functions
	pg_current_xact_id, Transaction ID and Snapshot Information Functions
	pg_current_xact_id_if_assigned, Transaction ID and Snapshot Information Functions
	pg_cursors, pg_cursors
	pg_database, Template Databases, pg_database
	pg_database_collation_actual_version, Database Object Management Functions
	pg_database_size, Database Object Management Functions
	pg_db_role_setting, pg_db_role_setting
	pg_ddl_command, Pseudo-Types
	pg_default_acl, pg_default_acl
	pg_depend, pg_depend
	pg_describe_object, Object Information and Addressing Functions
	pg_description, pg_description
	pg_drop_replication_slot, Replication Management Functions
	pg_dump, pg_dump
	pg_dumpall, pg_dumpall
		use during upgrade, Upgrading Data via pg_dumpall

	pg_encoding_to_char, System Catalog Information Functions
	pg_enum, pg_enum
	pg_event_trigger, pg_event_trigger
	pg_event_trigger_ddl_commands, Capturing Changes at Command End
	pg_event_trigger_dropped_objects, Processing Objects Dropped by a DDL Command
	pg_event_trigger_table_rewrite_oid, Handling a Table Rewrite Event
	pg_event_trigger_table_rewrite_reason, Handling a Table Rewrite Event
	pg_export_snapshot, Snapshot Synchronization Functions
	pg_extension, pg_extension
	pg_extension_config_dump, Extension Configuration Tables
	pg_filenode_relation, Database Object Management Functions
	pg_file_rename, adminpack — pgAdmin support toolpack
	pg_file_settings, pg_file_settings
	pg_file_sync, adminpack — pgAdmin support toolpack
	pg_file_unlink, adminpack — pgAdmin support toolpack
	pg_file_write, adminpack — pgAdmin support toolpack
	pg_foreign_data_wrapper, pg_foreign_data_wrapper
	pg_foreign_server, pg_foreign_server
	pg_foreign_table, pg_foreign_table
	pg_freespace, Functions
	pg_freespacemap, pg_freespacemap — examine the free space map
	pg_function_is_visible, Schema Visibility Inquiry Functions
	pg_get_catalog_foreign_keys, System Catalog Information Functions
	pg_get_constraintdef, System Catalog Information Functions
	pg_get_expr, System Catalog Information Functions
	pg_get_functiondef, System Catalog Information Functions
	pg_get_function_arguments, System Catalog Information Functions
	pg_get_function_identity_arguments, System Catalog Information Functions
	pg_get_function_result, System Catalog Information Functions
	pg_get_indexdef, System Catalog Information Functions
	pg_get_keywords, System Catalog Information Functions
	pg_get_multixact_members, Transaction ID and Snapshot Information Functions
	pg_get_object_address, Object Information and Addressing Functions
	pg_get_partition_constraintdef, System Catalog Information Functions
	pg_get_partkeydef, System Catalog Information Functions
	pg_get_ruledef, System Catalog Information Functions
	pg_get_serial_sequence, System Catalog Information Functions
	pg_get_statisticsobjdef, System Catalog Information Functions
	pg_get_triggerdef, System Catalog Information Functions
	pg_get_userbyid, System Catalog Information Functions
	pg_get_viewdef, System Catalog Information Functions
	pg_get_wal_replay_pause_state, Recovery Control Functions
	pg_get_wal_resource_managers, Recovery Control Functions
	pg_group, pg_group
	pg_has_role, Access Privilege Inquiry Functions
	pg_hba.conf, The pg_hba.conf File
	pg_hba_file_rules, pg_hba_file_rules
	pg_ident.conf, User Name Maps
	pg_identify_object, Object Information and Addressing Functions
	pg_identify_object_as_address, Object Information and Addressing Functions
	pg_ident_file_mappings, pg_ident_file_mappings
	pg_import_system_collations, Database Object Management Functions
	pg_index, pg_index
	pg_indexam_has_property, System Catalog Information Functions
	pg_indexes, pg_indexes
	pg_indexes_size, Database Object Management Functions
	pg_index_column_has_property, System Catalog Information Functions
	pg_index_has_property, System Catalog Information Functions
	pg_inherits, pg_inherits
	pg_init_privs, pg_init_privs
	pg_input_error_info, Data Validity Checking Functions
	pg_input_is_valid, Data Validity Checking Functions
	pg_isready, pg_isready
	pg_is_in_recovery, Recovery Control Functions
	pg_is_other_temp_schema, Session Information Functions
	pg_is_wal_replay_paused, Recovery Control Functions
	pg_jit_available, Session Information Functions
	pg_language, pg_language
	pg_largeobject, pg_largeobject
	pg_largeobject_metadata, pg_largeobject_metadata
	pg_last_committed_xact, Committed Transaction Information Functions
	pg_last_wal_receive_lsn, Recovery Control Functions
	pg_last_wal_replay_lsn, Recovery Control Functions
	pg_last_xact_replay_timestamp, Recovery Control Functions
	pg_listening_channels, Session Information Functions
	pg_locks, pg_locks
	pg_logdir_ls, adminpack — pgAdmin support toolpack
	pg_logical_emit_message, Replication Management Functions
	pg_logical_slot_get_binary_changes, Replication Management Functions
	pg_logical_slot_get_changes, Replication Management Functions
	pg_logical_slot_peek_binary_changes, Replication Management Functions
	pg_logical_slot_peek_changes, Replication Management Functions
	pg_log_backend_memory_contexts, Server Signaling Functions
	pg_log_standby_snapshot, Snapshot Synchronization Functions
	pg_lsn, pg_lsn Type
	pg_ls_archive_statusdir, Generic File Access Functions
	pg_ls_dir, Generic File Access Functions
	pg_ls_logdir, Generic File Access Functions
	pg_ls_logicalmapdir, Generic File Access Functions
	pg_ls_logicalsnapdir, Generic File Access Functions
	pg_ls_replslotdir, Generic File Access Functions
	pg_ls_tmpdir, Generic File Access Functions
	pg_ls_waldir, Generic File Access Functions
	pg_matviews, pg_matviews
	pg_mcv_list_items, Inspecting MCV Lists
	pg_my_temp_schema, Session Information Functions
	pg_namespace, pg_namespace
	pg_notification_queue_usage, Session Information Functions
	pg_notify, pg_notify
	pg_opclass, pg_opclass
	pg_opclass_is_visible, Schema Visibility Inquiry Functions
	pg_operator, pg_operator
	pg_operator_is_visible, Schema Visibility Inquiry Functions
	pg_opfamily, pg_opfamily
	pg_opfamily_is_visible, Schema Visibility Inquiry Functions
	pg_options_to_table, System Catalog Information Functions
	pg_parameter_acl, pg_parameter_acl
	pg_partitioned_table, pg_partitioned_table
	pg_partition_ancestors, Database Object Management Functions
	pg_partition_root, Database Object Management Functions
	pg_partition_tree, Database Object Management Functions
	pg_policies, pg_policies
	pg_policy, pg_policy
	pg_postmaster_start_time, Session Information Functions
	pg_prepared_statements, pg_prepared_statements
	pg_prepared_xacts, pg_prepared_xacts
	pg_prewarm, pg_prewarm — preload relation data into buffer caches
	pg_prewarm.autoprewarm configuration parameter, Configuration Parameters
	pg_prewarm.autoprewarm_interval configuration parameter, Configuration Parameters
	pg_proc, pg_proc
	pg_promote, Recovery Control Functions
	pg_publication, pg_publication
	pg_publication_namespace, pg_publication_namespace
	pg_publication_rel, pg_publication_rel
	pg_publication_tables, pg_publication_tables
	pg_range, pg_range
	pg_read_binary_file, Generic File Access Functions
	pg_read_file, Generic File Access Functions
	pg_receivewal, pg_receivewal
	pg_receivexlog, pg_receivexlog renamed to pg_receivewal (see pg_receivewal)
	pg_recvlogical, pg_recvlogical
	pg_relation_filenode, Database Object Management Functions
	pg_relation_filepath, Database Object Management Functions
	pg_relation_size, Database Object Management Functions
	pg_reload_conf, Server Signaling Functions
	pg_relpages, Functions
	pg_replication_origin, pg_replication_origin
	pg_replication_origin_advance, Replication Management Functions
	pg_replication_origin_create, Replication Management Functions
	pg_replication_origin_drop, Replication Management Functions
	pg_replication_origin_oid, Replication Management Functions
	pg_replication_origin_progress, Replication Management Functions
	pg_replication_origin_session_is_setup, Replication Management Functions
	pg_replication_origin_session_progress, Replication Management Functions
	pg_replication_origin_session_reset, Replication Management Functions
	pg_replication_origin_session_setup, Replication Management Functions
	pg_replication_origin_status, pg_replication_origin_status
	pg_replication_origin_xact_reset, Replication Management Functions
	pg_replication_origin_xact_setup, Replication Management Functions
	pg_replication_slots, pg_replication_slots
	pg_replication_slot_advance, Replication Management Functions
	pg_resetwal, pg_resetwal
	pg_resetxlog, pg_resetxlog renamed to pg_resetwal (see pg_resetwal)
	pg_restore, pg_restore
	pg_rewind, pg_rewind
	pg_rewrite, pg_rewrite
	pg_roles, pg_roles
	pg_rotate_logfile, Server Signaling Functions
	pg_rules, pg_rules
	pg_safe_snapshot_blocking_pids, Session Information Functions
	pg_seclabel, pg_seclabel
	pg_seclabels, pg_seclabels
	pg_sequence, pg_sequence
	pg_sequences, pg_sequences
	pg_service.conf, The Connection Service File
	pg_settings, pg_settings
	pg_settings_get_flags, System Catalog Information Functions
	pg_shadow, pg_shadow
	pg_shdepend, pg_shdepend
	pg_shdescription, pg_shdescription
	pg_shmem_allocations, pg_shmem_allocations
	pg_shseclabel, pg_shseclabel
	pg_size_bytes, Database Object Management Functions
	pg_size_pretty, Database Object Management Functions
	pg_sleep, Delaying Execution
	pg_sleep_for, Delaying Execution
	pg_sleep_until, Delaying Execution
	pg_snapshot_xip, Transaction ID and Snapshot Information Functions
	pg_snapshot_xmax, Transaction ID and Snapshot Information Functions
	pg_snapshot_xmin, Transaction ID and Snapshot Information Functions
	pg_split_walfile_name, Backup Control Functions
	pg_statio_all_indexes, Viewing Statistics, pg_statio_all_indexes
	pg_statio_all_sequences, Viewing Statistics, pg_statio_all_sequences
	pg_statio_all_tables, Viewing Statistics, pg_statio_all_tables
	pg_statio_sys_indexes, Viewing Statistics
	pg_statio_sys_sequences, Viewing Statistics
	pg_statio_sys_tables, Viewing Statistics
	pg_statio_user_indexes, Viewing Statistics
	pg_statio_user_sequences, Viewing Statistics
	pg_statio_user_tables, Viewing Statistics
	pg_statistic, Single-Column Statistics, pg_statistic
	pg_statistics_obj_is_visible, Schema Visibility Inquiry Functions
	pg_statistic_ext, Extended Statistics, pg_statistic_ext
	pg_statistic_ext_data, Extended Statistics, pg_statistic_ext
	pg_stats, Single-Column Statistics, pg_stats
	pg_stats_ext, pg_stats_ext
	pg_stats_ext_exprs, pg_stats_ext_exprs
	pg_stat_activity, Viewing Statistics, pg_stat_activity
	pg_stat_all_indexes, Viewing Statistics, pg_stat_all_indexes
	pg_stat_all_tables, Viewing Statistics, pg_stat_all_tables
	pg_stat_archiver, Viewing Statistics, pg_stat_archiver
	pg_stat_bgwriter, Viewing Statistics, pg_stat_bgwriter
	pg_stat_clear_snapshot, Statistics Functions
	pg_stat_database, Viewing Statistics, pg_stat_database
	pg_stat_database_conflicts, Viewing Statistics, pg_stat_database_conflicts
	pg_stat_file, Generic File Access Functions
	pg_stat_get_activity, Statistics Functions
	pg_stat_get_backend_activity, Statistics Functions
	pg_stat_get_backend_activity_start, Statistics Functions
	pg_stat_get_backend_client_addr, Statistics Functions
	pg_stat_get_backend_client_port, Statistics Functions
	pg_stat_get_backend_dbid, Statistics Functions
	pg_stat_get_backend_idset, Statistics Functions
	pg_stat_get_backend_pid, Statistics Functions
	pg_stat_get_backend_start, Statistics Functions
	pg_stat_get_backend_subxact, Statistics Functions
	pg_stat_get_backend_userid, Statistics Functions
	pg_stat_get_backend_wait_event, Statistics Functions
	pg_stat_get_backend_wait_event_type, Statistics Functions
	pg_stat_get_backend_xact_start, Statistics Functions
	pg_stat_get_snapshot_timestamp, Statistics Functions
	pg_stat_get_xact_blocks_fetched, Statistics Functions
	pg_stat_get_xact_blocks_hit, Statistics Functions
	pg_stat_gssapi, Viewing Statistics, pg_stat_gssapi
	pg_stat_io, Viewing Statistics, pg_stat_io
	pg_stat_progress_analyze, Viewing Statistics, ANALYZE Progress Reporting
	pg_stat_progress_basebackup, Viewing Statistics, Base Backup Progress Reporting
	pg_stat_progress_cluster, Viewing Statistics, CLUSTER Progress Reporting
	pg_stat_progress_copy, Viewing Statistics, COPY Progress Reporting
	pg_stat_progress_create_index, Viewing Statistics, CREATE INDEX Progress Reporting
	pg_stat_progress_vacuum, Viewing Statistics, VACUUM Progress Reporting
	pg_stat_recovery_prefetch, Viewing Statistics, pg_stat_recovery_prefetch
	pg_stat_replication, Viewing Statistics, pg_stat_replication
	pg_stat_replication_slots, Viewing Statistics, pg_stat_replication_slots
	pg_stat_reset, Statistics Functions
	pg_stat_reset_replication_slot, Statistics Functions
	pg_stat_reset_shared, Statistics Functions
	pg_stat_reset_single_function_counters, Statistics Functions
	pg_stat_reset_single_table_counters, Statistics Functions
	pg_stat_reset_slru, Statistics Functions
	pg_stat_reset_subscription_stats, Statistics Functions
	pg_stat_slru, Viewing Statistics, pg_stat_slru
	pg_stat_ssl, Viewing Statistics, pg_stat_ssl
	pg_stat_statements, pg_stat_statements — track statistics of SQL planning and execution
		function, Functions

	pg_stat_statements.max configuration parameter, Configuration Parameters
	pg_stat_statements.save configuration parameter, Configuration Parameters
	pg_stat_statements.track configuration parameter, Configuration Parameters
	pg_stat_statements.track_planning configuration parameter, Configuration Parameters
	pg_stat_statements.track_utility configuration parameter, Configuration Parameters
	pg_stat_statements_info, The pg_stat_statements_info View
	pg_stat_statements_reset, Functions
	pg_stat_subscription, Viewing Statistics, pg_stat_subscription
	pg_stat_subscription_stats, Viewing Statistics, pg_stat_subscription_stats
	pg_stat_sys_indexes, Viewing Statistics
	pg_stat_sys_tables, Viewing Statistics
	pg_stat_user_functions, Viewing Statistics, pg_stat_user_functions
	pg_stat_user_indexes, Viewing Statistics
	pg_stat_user_tables, Viewing Statistics
	pg_stat_wal, Viewing Statistics, pg_stat_wal
	pg_stat_wal_receiver, Viewing Statistics, pg_stat_wal_receiver
	pg_stat_xact_all_tables, Viewing Statistics
	pg_stat_xact_sys_tables, Viewing Statistics
	pg_stat_xact_user_functions, Viewing Statistics
	pg_stat_xact_user_tables, Viewing Statistics
	pg_subscription, pg_subscription
	pg_subscription_rel, pg_subscription_rel
	pg_surgery, pg_surgery — perform low-level surgery on relation data
	pg_switch_wal, Backup Control Functions
	pg_tables, pg_tables
	pg_tablespace, pg_tablespace
	pg_tablespace_databases, System Catalog Information Functions
	pg_tablespace_location, System Catalog Information Functions
	pg_tablespace_size, Database Object Management Functions
	pg_table_is_visible, Schema Visibility Inquiry Functions
	pg_table_size, Database Object Management Functions
	pg_temp, Statement Behavior
		securing functions, Writing SECURITY DEFINER Functions Safely

	pg_terminate_backend, Server Signaling Functions
	pg_test_fsync, pg_test_fsync
	pg_test_timing, pg_test_timing
	pg_timezone_abbrevs, pg_timezone_abbrevs
	pg_timezone_names, pg_timezone_names
	pg_total_relation_size, Database Object Management Functions
	pg_transform, pg_transform
	pg_trgm, pg_trgm —
 support for similarity of text using trigram matching
	pg_trgm.similarity_threshold configuration parameter, GUC Parameters
	pg_trgm.strict_word_similarity_threshold configuration parameter, GUC Parameters
	pg_trgm.word_similarity_threshold configuration parameter, GUC Parameters
	pg_trigger, pg_trigger
	pg_trigger_depth, Session Information Functions
	pg_try_advisory_lock, Advisory Lock Functions
	pg_try_advisory_lock_shared, Advisory Lock Functions
	pg_try_advisory_xact_lock, Advisory Lock Functions
	pg_try_advisory_xact_lock_shared, Advisory Lock Functions
	pg_ts_config, pg_ts_config
	pg_ts_config_is_visible, Schema Visibility Inquiry Functions
	pg_ts_config_map, pg_ts_config_map
	pg_ts_dict, pg_ts_dict
	pg_ts_dict_is_visible, Schema Visibility Inquiry Functions
	pg_ts_parser, pg_ts_parser
	pg_ts_parser_is_visible, Schema Visibility Inquiry Functions
	pg_ts_template, pg_ts_template
	pg_ts_template_is_visible, Schema Visibility Inquiry Functions
	pg_type, pg_type
	pg_typeof, System Catalog Information Functions
	pg_type_is_visible, Schema Visibility Inquiry Functions
	pg_upgrade, pg_upgrade
	pg_user, pg_user
	pg_user_mapping, pg_user_mapping
	pg_user_mappings, pg_user_mappings
	pg_verifybackup, pg_verifybackup
	pg_views, pg_views
	pg_visibility, pg_visibility — visibility map information and utilities
	pg_visible_in_snapshot, Transaction ID and Snapshot Information Functions
	pg_waldump, pg_waldump
	pg_walfile_name, Backup Control Functions
	pg_walfile_name_offset, Backup Control Functions
	pg_walinspect, pg_walinspect — low-level WAL inspection
	pg_wal_lsn_diff, Backup Control Functions
	pg_wal_replay_pause, Recovery Control Functions
	pg_wal_replay_resume, Recovery Control Functions
	pg_xact_commit_timestamp, Committed Transaction Information Functions
	pg_xact_commit_timestamp_origin, Committed Transaction Information Functions
	pg_xact_status, Transaction ID and Snapshot Information Functions
	pg_xlogdump, pg_xlogdump renamed to pg_waldump (see pg_waldump)
	phantom read, Transaction Isolation
	phraseto_tsquery, Text Search Functions and Operators, Parsing Queries
	pi, Mathematical Functions and Operators
	PIC, Compiling and Linking Dynamically-Loaded Functions
	PID
		determining PID of server process
		in libpq, Connection Status Functions

	pipelining, Pipeline Mode, Pipelining
		in libpq, Pipeline Mode
	protocol specification, Pipelining

	PITR, Backup and Restore
	PITR standby, High Availability, Load Balancing, and Replication
	pkg-config, Requirements
		with
 ecpg, Processing Embedded SQL Programs
	with
 libpq, Building libpq Programs

	PL/Perl, PL/Perl — Perl Procedural Language
	PL/PerlU, Trusted and Untrusted PL/Perl
	PL/pgSQL, PL/pgSQL — SQL Procedural Language
	PL/Python, PL/Python — Python Procedural Language
	PL/SQL (Oracle), Porting from Oracle™ PL/SQL
		porting to PL/pgSQL, Porting from Oracle™ PL/SQL

	PL/Tcl, PL/Tcl — Tcl Procedural Language
	plainto_tsquery, Text Search Functions and Operators, Parsing Queries
	plan_cache_mode configuration parameter, Other Planner Options
	plperl.on_init configuration parameter, Configuration
	plperl.on_plperlu_init configuration parameter, Configuration
	plperl.on_plperl_init configuration parameter, Configuration
	plperl.use_strict configuration parameter, Configuration
	plpgsql.check_asserts configuration parameter, Checking Assertions
	plpgsql.variable_conflict configuration parameter, Variable Substitution
	pltcl.start_proc configuration parameter, PL/Tcl Configuration
	pltclu.start_proc configuration parameter, PL/Tcl Configuration
	point, Points, Geometric Functions and Operators
	point-in-time recovery, Backup and Restore
	policy, Row Security Policies
	polygon, Polygons, Geometric Functions and Operators
	polymorphic function, Polymorphic Types
	polymorphic type, Polymorphic Types
	popcount (see bit_count)
	popen, Geometric Functions and Operators
	populate_record, hstore Operators and Functions
	port, Parameter Key Words
	port configuration parameter, Connection Settings
	portal
		DECLARE, DECLARE
	in PL/pgSQL, Opening Cursors

	position, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators
	POSITION_REGEX, Differences from SQL Standard and XQuery
	POSTGRES, The Berkeley POSTGRES™ Project
	postgres, Architectural Fundamentals, Starting the Database Server, Creating a Database, postgres
	postgres user, The PostgreSQL™ User Account
	Postgres95, Postgres95™
	postgresql.auto.conf, Parameter Interaction via the Configuration File
	postgresql.conf, Parameter Interaction via the Configuration File
	postgres_fdw, postgres_fdw —
 access data stored in external PostgreSQL™
 servers
	postgres_fdw.application_name configuration parameter, Configuration Parameters
	post_auth_delay configuration parameter, Developer Options
	power, Mathematical Functions and Operators
	PQbackendPID, Connection Status Functions
	PQbinaryTuples, Retrieving Query Result Information
		with COPY, Functions Associated with the COPY Command

	PQcancel, Canceling Queries in Progress
	PQclear, Main Functions
	PQclientEncoding, Control Functions
	PQcmdStatus, Retrieving Other Result Information
	PQcmdTuples, Retrieving Other Result Information
	PQconndefaults, Database Connection Control Functions
	PQconnectdb, Database Connection Control Functions
	PQconnectdbParams, Database Connection Control Functions
	PQconnectionNeedsPassword, Connection Status Functions
	PQconnectionUsedGSSAPI, Connection Status Functions
	PQconnectionUsedPassword, Connection Status Functions
	PQconnectPoll, Database Connection Control Functions
	PQconnectStart, Database Connection Control Functions
	PQconnectStartParams, Database Connection Control Functions
	PQconninfo, Database Connection Control Functions
	PQconninfoFree, Miscellaneous Functions
	PQconninfoParse, Database Connection Control Functions
	PQconsumeInput, Asynchronous Command Processing
	PQcopyResult, Miscellaneous Functions
	PQdb, Connection Status Functions
	PQdescribePortal, Main Functions
	PQdescribePrepared, Main Functions
	PQencryptPassword, Miscellaneous Functions
	PQencryptPasswordConn, Miscellaneous Functions
	PQendcopy, Obsolete Functions for COPY
	PQenterPipelineMode, Functions Associated with Pipeline Mode
	PQerrorMessage, Connection Status Functions
	PQescapeBytea, Escaping Strings for Inclusion in SQL Commands
	PQescapeByteaConn, Escaping Strings for Inclusion in SQL Commands
	PQescapeIdentifier, Escaping Strings for Inclusion in SQL Commands
	PQescapeLiteral, Escaping Strings for Inclusion in SQL Commands
	PQescapeString, Escaping Strings for Inclusion in SQL Commands
	PQescapeStringConn, Escaping Strings for Inclusion in SQL Commands
	PQexec, Main Functions
	PQexecParams, Main Functions
	PQexecPrepared, Main Functions
	PQexitPipelineMode, Functions Associated with Pipeline Mode
	PQfformat, Retrieving Query Result Information
		with COPY, Functions Associated with the COPY Command

	PQfinish, Database Connection Control Functions
	PQfireResultCreateEvents, Miscellaneous Functions
	PQflush, Asynchronous Command Processing
	PQfmod, Retrieving Query Result Information
	PQfn, The Fast-Path Interface
	PQfname, Retrieving Query Result Information
	PQfnumber, Retrieving Query Result Information
	PQfreeCancel, Canceling Queries in Progress
	PQfreemem, Miscellaneous Functions
	PQfsize, Retrieving Query Result Information
	PQftable, Retrieving Query Result Information
	PQftablecol, Retrieving Query Result Information
	PQftype, Retrieving Query Result Information
	PQgetCancel, Canceling Queries in Progress
	PQgetCopyData, Functions for Receiving COPY Data
	PQgetisnull, Retrieving Query Result Information
	PQgetlength, Retrieving Query Result Information
	PQgetline, Obsolete Functions for COPY
	PQgetlineAsync, Obsolete Functions for COPY
	PQgetResult, Asynchronous Command Processing
	PQgetssl, Connection Status Functions
	PQgetSSLKeyPassHook_OpenSSL, Database Connection Control Functions
	PQgetvalue, Retrieving Query Result Information
	PQhost, Connection Status Functions
	PQhostaddr, Connection Status Functions
	PQinitOpenSSL, SSL Library Initialization
	PQinitSSL, SSL Library Initialization
	PQinstanceData, Event Support Functions
	PQisBusy, Asynchronous Command Processing
	PQisnonblocking, Asynchronous Command Processing
	PQisthreadsafe, Behavior in Threaded Programs
	PQlibVersion, Miscellaneous Functions
		(see also PQserverVersion)

	PQmakeEmptyPGresult, Miscellaneous Functions
	PQnfields, Retrieving Query Result Information
		with COPY, Functions Associated with the COPY Command

	PQnotifies, Asynchronous Notification
	PQnparams, Retrieving Query Result Information
	PQntuples, Retrieving Query Result Information
	PQoidStatus, Retrieving Other Result Information
	PQoidValue, Retrieving Other Result Information
	PQoptions, Connection Status Functions
	PQparameterStatus, Connection Status Functions
	PQparamtype, Retrieving Query Result Information
	PQpass, Connection Status Functions
	PQping, Database Connection Control Functions
	PQpingParams, Database Connection Control Functions
	PQpipelineStatus, Functions Associated with Pipeline Mode
	PQpipelineSync, Functions Associated with Pipeline Mode
	PQport, Connection Status Functions
	PQprepare, Main Functions
	PQprint, Retrieving Query Result Information
	PQprotocolVersion, Connection Status Functions
	PQputCopyData, Functions for Sending COPY Data
	PQputCopyEnd, Functions for Sending COPY Data
	PQputline, Obsolete Functions for COPY
	PQputnbytes, Obsolete Functions for COPY
	PQregisterEventProc, Event Support Functions
	PQrequestCancel, Canceling Queries in Progress
	PQreset, Database Connection Control Functions
	PQresetPoll, Database Connection Control Functions
	PQresetStart, Database Connection Control Functions
	PQresStatus, Main Functions
	PQresultAlloc, Miscellaneous Functions
	PQresultErrorField, Main Functions
	PQresultErrorMessage, Main Functions
	PQresultInstanceData, Event Support Functions
	PQresultMemorySize, Miscellaneous Functions
	PQresultSetInstanceData, Event Support Functions
	PQresultStatus, Main Functions
	PQresultVerboseErrorMessage, Main Functions
	PQsendDescribePortal, Asynchronous Command Processing
	PQsendDescribePrepared, Asynchronous Command Processing
	PQsendFlushRequest, Functions Associated with Pipeline Mode
	PQsendPrepare, Asynchronous Command Processing
	PQsendQuery, Asynchronous Command Processing
	PQsendQueryParams, Asynchronous Command Processing
	PQsendQueryPrepared, Asynchronous Command Processing
	PQserverVersion, Connection Status Functions
	PQsetClientEncoding, Control Functions
	PQsetdb, Database Connection Control Functions
	PQsetdbLogin, Database Connection Control Functions
	PQsetErrorContextVisibility, Control Functions
	PQsetErrorVerbosity, Control Functions
	PQsetInstanceData, Event Support Functions
	PQsetnonblocking, Asynchronous Command Processing
	PQsetNoticeProcessor, Notice Processing
	PQsetNoticeReceiver, Notice Processing
	PQsetResultAttrs, Miscellaneous Functions
	PQsetSingleRowMode, Retrieving Query Results Row-by-Row
	PQsetSSLKeyPassHook_OpenSSL, Database Connection Control Functions
	PQsetTraceFlags, Control Functions
	PQsetvalue, Miscellaneous Functions
	PQsocket, Connection Status Functions
	PQsslAttribute, Connection Status Functions
	PQsslAttributeNames, Connection Status Functions
	PQsslInUse, Connection Status Functions
	PQsslStruct, Connection Status Functions
	PQstatus, Connection Status Functions
	PQtrace, Control Functions
	PQtransactionStatus, Connection Status Functions
	PQtty, Connection Status Functions
	PQunescapeBytea, Escaping Strings for Inclusion in SQL Commands
	PQuntrace, Control Functions
	PQuser, Connection Status Functions
	predicate locking, Serializable Isolation Level
	PREPARE, PREPARE
	PREPARE TRANSACTION, PREPARE TRANSACTION
	prepared statements, DEALLOCATE, EXECUTE, EXPLAIN, PREPARE
		creating, PREPARE
	executing, EXECUTE
	removing, DEALLOCATE
	showing the query plan, EXPLAIN

	preparing a query
		in PL/pgSQL, Plan Caching
	in PL/Python, Database Access Functions
	in PL/Tcl, Database Access from PL/Tcl

	pre_auth_delay configuration parameter, Developer Options
	primary key, Primary Keys
	primary_conninfo configuration parameter, Standby Servers
	primary_slot_name configuration parameter, Standby Servers
	privilege, Privileges, Schemas and Privileges, Rules and Privileges, Rules and Privileges
		querying, Access Privilege Inquiry Functions
	with rules, Rules and Privileges
	for schemas, Schemas and Privileges
	with views, Rules and Privileges

	procedural language, Procedural Languages, Writing a Procedural Language Handler
		externally maintained, Procedural Languages
	handler for, Writing a Procedural Language Handler

	procedure, User-Defined Procedures
		user-defined, User-Defined Procedures

	procedures
		output parameter, SQL Procedures with Output Parameters

	protocol, Frontend/Backend Protocol
		frontend-backend, Frontend/Backend Protocol

	ps, Standard Unix Tools
		to monitor activity, Standard Unix Tools

	psql, Accessing a Database, psql
	Python, PL/Python — Python Procedural Language

Q
	qualified name, Creating a Schema
	query, Querying a Table, Queries
	query plan, Using EXPLAIN
	query tree, The Query Tree
	querytree, Text Search Functions and Operators, Manipulating Queries
	quotation marks
		and identifiers, Identifiers and Key Words
	escaping, String Constants

	quote_all_identifiers configuration parameter, Previous PostgreSQL Versions
	quote_ident, String Functions and Operators
		in PL/Perl, Utility Functions in PL/Perl
	use in PL/pgSQL, Executing Dynamic Commands

	quote_literal, String Functions and Operators
		in PL/Perl, Utility Functions in PL/Perl
	use in PL/pgSQL, Executing Dynamic Commands

	quote_nullable, String Functions and Operators
		in PL/Perl, Utility Functions in PL/Perl
	use in PL/pgSQL, Executing Dynamic Commands

R
	radians, Mathematical Functions and Operators
	radius, Geometric Functions and Operators
	RADIUS, RADIUS Authentication
	RAISE
		in PL/pgSQL, Reporting Errors and Messages

	random, Mathematical Functions and Operators
	random_normal, Mathematical Functions and Operators
	random_page_cost configuration parameter, Planner Cost Constants
	range table, The Query Tree
	range type, Range Types
		exclude, Constraints on Ranges
	indexes on, Indexing

	range_agg, Aggregate Functions
	range_intersect_agg, Aggregate Functions
	range_merge, Range/Multirange Functions and Operators
	rank, Window Functions
		hypothetical, Aggregate Functions

	read committed, Read Committed Isolation Level
	read-only transaction, Statement Behavior
		setting, SET TRANSACTION
	setting default, Statement Behavior

	readline, Requirements
	Readline
		in psql, Command-Line Editing

	READ_REPLICATION_SLOT, Streaming Replication Protocol
	real, Floating-Point Types
	REASSIGN OWNED, REASSIGN OWNED
	record, Pseudo-Types
	recovery.conf, recovery.conf file merged into postgresql.conf
	recovery.signal, Archive Recovery
	recovery_end_command configuration parameter, Archive Recovery
	recovery_init_sync_method configuration parameter, Error Handling
	recovery_min_apply_delay configuration parameter, Standby Servers
	recovery_prefetch configuration parameter, Recovery
	recovery_target configuration parameter, Recovery Target
	recovery_target_action configuration parameter, Recovery Target
	recovery_target_inclusive configuration parameter, Recovery Target
	recovery_target_lsn configuration parameter, Recovery Target
	recovery_target_name configuration parameter, Recovery Target
	recovery_target_time configuration parameter, Recovery Target
	recovery_target_timeline configuration parameter, Recovery Target
	recovery_target_xid configuration parameter, Recovery Target
	rectangle, Boxes
	RECURSIVE, CREATE VIEW
		in common table expressions, Recursive Queries
	in views, CREATE VIEW

	recursive_worktable_factor configuration parameter, Other Planner Options
	referential integrity, Foreign Keys, Foreign Keys
	REFRESH MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW
	regclass, Object Identifier Types
	regcollation, Object Identifier Types
	regconfig, Object Identifier Types
	regdictionary, Object Identifier Types
	regexp_count, String Functions and Operators, POSIX Regular Expressions
	regexp_instr, String Functions and Operators, POSIX Regular Expressions
	regexp_like, String Functions and Operators, POSIX Regular Expressions
	regexp_match, String Functions and Operators, POSIX Regular Expressions
	regexp_matches, String Functions and Operators, POSIX Regular Expressions
	regexp_replace, String Functions and Operators, POSIX Regular Expressions
	regexp_split_to_array, String Functions and Operators, POSIX Regular Expressions
	regexp_split_to_table, String Functions and Operators, POSIX Regular Expressions
	regexp_substr, String Functions and Operators, POSIX Regular Expressions
	regnamespace, Object Identifier Types
	regoper, Object Identifier Types
	regoperator, Object Identifier Types
	regproc, Object Identifier Types
	regprocedure, Object Identifier Types
	regression intercept, Aggregate Functions
	regression slope, Aggregate Functions
	regression test, Installation Procedure, Installation Procedure
	regression tests, Regression Tests
	regrole, Object Identifier Types
	regr_avgx, Aggregate Functions
	regr_avgy, Aggregate Functions
	regr_count, Aggregate Functions
	regr_intercept, Aggregate Functions
	regr_r2, Aggregate Functions
	regr_slope, Aggregate Functions
	regr_sxx, Aggregate Functions
	regr_sxy, Aggregate Functions
	regr_syy, Aggregate Functions
	regtype, Object Identifier Types
	regular expression, SIMILAR TO Regular Expressions, POSIX Regular Expressions
		(see also pattern matching)

	regular expressions
		and locales, Behavior

	reindex, Routine Reindexing
	REINDEX, REINDEX
	reindexdb, reindexdb
	relation, Concepts
	relational database, Concepts
	RELEASE SAVEPOINT, RELEASE SAVEPOINT
	remove_temp_files_after_crash configuration parameter, Developer Options
	repeat, String Functions and Operators
	repeatable read, Repeatable Read Isolation Level
	replace, String Functions and Operators
	replication, High Availability, Load Balancing, and Replication
	Replication Origins, Replication Progress Tracking
	Replication Progress Tracking, Replication Progress Tracking
	replication slot
		logical replication, Replication Slots
	streaming replication, Replication Slots

	reporting errors
		in PL/pgSQL, Reporting Errors and Messages

	reserved_connections configuration parameter, Connection Settings
	RESET, RESET
	restartpoint, WAL Configuration
	restart_after_crash configuration parameter, Error Handling
	restore_command configuration parameter, Archive Recovery
	RESTRICT, Dependency Tracking
		with DROP, Dependency Tracking
	foreign key action, Foreign Keys

	restrict_nonsystem_relation_kind
		configuration parameter, Statement Behavior

	retryable error, Serialization Failure Handling
	RETURN NEXT
		in PL/pgSQL, RETURN NEXT and RETURN QUERY

	RETURN QUERY
		in PL/pgSQL, RETURN NEXT and RETURN QUERY

	RETURNING, Returning Data from Modified Rows
	RETURNING INTO, Executing a Command with a Single-Row Result
		in PL/pgSQL, Executing a Command with a Single-Row Result

	reverse, String Functions and Operators
	REVOKE, Privileges, REVOKE
	right, String Functions and Operators
	right join, Joined Tables
	role, Database Roles, Role Membership, Predefined Roles
		applicable, applicable_roles
	enabled, enabled_roles
	membership in, Role Membership
	privilege to bypass, Role Attributes
	privilege to create, Role Attributes
	privilege to inherit, Role Attributes
	privilege to initiate replication, Role Attributes
	privilege to limit connection, Role Attributes

	ROLLBACK, ROLLBACK
	rollback
		psql, Variables

	ROLLBACK PREPARED, ROLLBACK PREPARED
	ROLLBACK TO SAVEPOINT, ROLLBACK TO SAVEPOINT
	ROLLUP, GROUPING SETS, CUBE, and ROLLUP
	round, Mathematical Functions and Operators
	routine, User-Defined Procedures
	routine maintenance, Routine Database Maintenance Tasks
	row, Concepts, Table Basics
	ROW, Row Constructors
	row estimation, Row Estimation Examples
		multivariate, Multivariate Statistics Examples
	planner, Row Estimation Examples

	row type, Composite Types
		constructor, Row Constructors

	row-level security, Row Security Policies
	row-wise comparison, Row and Array Comparisons
	row_number, Window Functions
	row_security configuration parameter, Statement Behavior
	row_security_active, Access Privilege Inquiry Functions
	row_to_json, Processing and Creating JSON Data
	rpad, String Functions and Operators
	rtrim, String Functions and Operators, Binary String Functions and Operators
	rule, The Rule System, Views and the Rule System, How SELECT Rules Work, Materialized Views, Rules on INSERT, UPDATE, and DELETE, Rules on INSERT, UPDATE, and DELETE, Rules on INSERT, UPDATE, and DELETE, Rules Versus Triggers
		and materialized views, Materialized Views
	and views, Views and the Rule System
	for DELETE, Rules on INSERT, UPDATE, and DELETE
	for INSERT, Rules on INSERT, UPDATE, and DELETE
	for SELECT, How SELECT Rules Work
	compared with triggers, Rules Versus Triggers
	for UPDATE, Rules on INSERT, UPDATE, and DELETE

S
	SAVEPOINT, SAVEPOINT
	savepoints, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT, SAVEPOINT
		defining, SAVEPOINT
	releasing, RELEASE SAVEPOINT
	rolling back, ROLLBACK TO SAVEPOINT

	scalar (see expression)
	scale, Mathematical Functions and Operators
	schema, Schemas, Creating a Schema, The Public Schema, Overview
		creating, Creating a Schema
	current, The Schema Search Path, Session Information Functions
	public, The Public Schema
	removing, Creating a Schema

	SCRAM, Password Authentication
	scram_iterations configuration parameter, Authentication
	search path, The Schema Search Path
		current, Session Information Functions
	object visibility, Schema Visibility Inquiry Functions

	search_path configuration parameter, The Schema Search Path, Statement Behavior
		use in securing functions, Writing SECURITY DEFINER Functions Safely

	SECURITY LABEL, SECURITY LABEL
	sec_to_gc, Cube-Based Earth Distances
	seg, seg — a datatype for line segments or floating point intervals
	segment_size configuration parameter, Preset Options
	SELECT, Querying a Table, Queries, SELECT Output Columns, SELECT
		determination of result type, SELECT Output Columns
	select list, Select Lists

	SELECT INTO, Executing a Command with a Single-Row Result, SELECT INTO
		in PL/pgSQL, Executing a Command with a Single-Row Result

	semaphores, Shared Memory and Semaphores
	send_abort_for_crash configuration parameter, Developer Options
	send_abort_for_kill configuration parameter, Developer Options
	sepgsql, sepgsql —
 SELinux-, label-based mandatory access control (MAC) security module
	sepgsql.debug_audit configuration parameter, GUC Parameters
	sepgsql.permissive configuration parameter, GUC Parameters
	sequence, Sequence Manipulation Functions
		and serial type, Serial Types

	sequential scan, Planner Method Configuration
	seq_page_cost configuration parameter, Planner Cost Constants
	serial, Serial Types
	serial2, Serial Types
	serial4, Serial Types
	serial8, Serial Types
	serializable, Serializable Isolation Level
	Serializable Snapshot Isolation, Introduction
	serialization anomaly, Transaction Isolation, Serializable Isolation Level
	serialization failure, Serialization Failure Handling
	server log, Error Reporting and Logging, Log File Maintenance
		log file maintenance, Log File Maintenance

	Server Name Indication, Parameter Key Words
	server spoofing, Preventing Server Spoofing
	server_encoding configuration parameter, Preset Options
	server_version configuration parameter, Preset Options
	server_version_num configuration parameter, Preset Options
	session_preload_libraries configuration parameter, Shared Library Preloading
	session_replication_role configuration parameter, Statement Behavior
	session_user, Session Information Functions
	SET, Configuration Settings Functions, SET
	SET CONSTRAINTS, SET CONSTRAINTS
	set difference, Combining Queries (UNION, INTERSECT, EXCEPT)
	set intersection, Combining Queries (UNION, INTERSECT, EXCEPT)
	set operation, Combining Queries (UNION, INTERSECT, EXCEPT)
	set returning functions, Set Returning Functions
		functions, Set Returning Functions

	SET ROLE, SET ROLE
	SET SESSION AUTHORIZATION, SET SESSION AUTHORIZATION
	SET TRANSACTION, SET TRANSACTION
	set union, Combining Queries (UNION, INTERSECT, EXCEPT)
	SET XML OPTION, Statement Behavior
	setseed, Mathematical Functions and Operators
	setval, Sequence Manipulation Functions
	setweight, Text Search Functions and Operators, Manipulating Documents
		setweight for specific lexeme(s), Text Search Functions and Operators

	set_bit, Binary String Functions and Operators, Bit String Functions and Operators
	set_byte, Binary String Functions and Operators
	set_config, Configuration Settings Functions
	set_limit, Functions and Operators
	set_masklen, Network Address Functions and Operators
	sha224, Binary String Functions and Operators
	sha256, Binary String Functions and Operators
	sha384, Binary String Functions and Operators
	sha512, Binary String Functions and Operators
	shared library, Shared Libraries, Compiling and Linking Dynamically-Loaded Functions
	shared memory, Shared Memory and Semaphores
	shared_buffers configuration parameter, Memory
	shared_memory_size configuration parameter, Preset Options
	shared_memory_size_in_huge_pages configuration parameter, Preset Options
	shared_memory_type configuration parameter, Memory
	shared_preload_libraries, Shared Memory and LWLocks
	shared_preload_libraries configuration parameter, Shared Library Preloading
	shobj_description, Comment Information Functions
	SHOW, Configuration Settings Functions, SHOW, Streaming Replication Protocol
	show_limit, Functions and Operators
	show_trgm, Functions and Operators
	shutdown, Shutting Down the Server
	SIGHUP, Parameter Interaction via the Configuration File, The pg_hba.conf File, User Name Maps
	SIGINT, Shutting Down the Server
	sign, Mathematical Functions and Operators
	signal
		backend processes, Server Signaling Functions

	significant digits, Locale and Formatting
	SIGQUIT, Shutting Down the Server
	SIGTERM, Shutting Down the Server
	SIMILAR TO, SIMILAR TO Regular Expressions
	similarity, Functions and Operators
	sin, Mathematical Functions and Operators
	sind, Mathematical Functions and Operators
	single-user mode, Options for Single-User Mode
	sinh, Mathematical Functions and Operators
	skeys, hstore Operators and Functions
	sleep, Delaying Execution
	slice, hstore Operators and Functions
	sliced bread (see TOAST)
	slope, Geometric Functions and Operators
	SLRU, pg_stat_slru
	smallint, Integer Types
	smallserial, Serial Types
	Solaris, Solaris
		installation on, Solaris
	shared library, Compiling and Linking Dynamically-Loaded Functions
	start script, Starting the Database Server

	SOME, Aggregate Functions, Subquery Expressions, Row and Array Comparisons
	sort, intarray Functions and Operators
	sorting, Sorting Rows (ORDER BY)
	sort_asc, intarray Functions and Operators
	sort_desc, intarray Functions and Operators
	soundex, Soundex
	SP-GiST (see index)
	SPI, Server Programming Interface, spi — Server Programming Interface features/examples
		examples, spi — Server Programming Interface features/examples

	spi_commit
		in PL/Perl, Database Access from PL/Perl

	SPI_commit, SPI_commit
	SPI_commit_and_chain, SPI_commit
	SPI_connect, SPI_connect
	SPI_connect_ext, SPI_connect
	SPI_copytuple, SPI_copytuple
	spi_cursor_close
		in PL/Perl, Database Access from PL/Perl

	SPI_cursor_close, SPI_cursor_close
	SPI_cursor_fetch, SPI_cursor_fetch
	SPI_cursor_find, SPI_cursor_find
	SPI_cursor_move, SPI_cursor_move
	SPI_cursor_open, SPI_cursor_open
	SPI_cursor_open_with_args, SPI_cursor_open_with_args
	SPI_cursor_open_with_paramlist, SPI_cursor_open_with_paramlist
	SPI_cursor_parse_open, SPI_cursor_parse_open
	SPI_exec, SPI_exec
	SPI_execp, SPI_execp
	SPI_execute, SPI_execute
	SPI_execute_extended, SPI_execute_extended
	SPI_execute_plan, SPI_execute_plan
	SPI_execute_plan_extended, SPI_execute_plan_extended
	SPI_execute_plan_with_paramlist, SPI_execute_plan_with_paramlist
	SPI_execute_with_args, SPI_execute_with_args
	spi_exec_prepared
		in PL/Perl, Database Access from PL/Perl

	spi_exec_query
		in PL/Perl, Database Access from PL/Perl

	spi_fetchrow
		in PL/Perl, Database Access from PL/Perl

	SPI_finish, SPI_finish
	SPI_fname, SPI_fname
	SPI_fnumber, SPI_fnumber
	spi_freeplan
		in PL/Perl, Database Access from PL/Perl

	SPI_freeplan, SPI_freeplan
	SPI_freetuple, SPI_freetuple
	SPI_freetuptable, SPI_freetuptable
	SPI_getargcount, SPI_getargcount
	SPI_getargtypeid, SPI_getargtypeid
	SPI_getbinval, SPI_getbinval
	SPI_getnspname, SPI_getnspname
	SPI_getrelname, SPI_getrelname
	SPI_gettype, SPI_gettype
	SPI_gettypeid, SPI_gettypeid
	SPI_getvalue, SPI_getvalue
	SPI_is_cursor_plan, SPI_is_cursor_plan
	SPI_keepplan, SPI_keepplan
	SPI_modifytuple, SPI_modifytuple
	SPI_palloc, SPI_palloc
	SPI_pfree, SPI_pfree
	spi_prepare
		in PL/Perl, Database Access from PL/Perl

	SPI_prepare, SPI_prepare
	SPI_prepare_cursor, SPI_prepare_cursor
	SPI_prepare_extended, SPI_prepare_extended
	SPI_prepare_params, SPI_prepare_params
	spi_query
		in PL/Perl, Database Access from PL/Perl

	spi_query_prepared
		in PL/Perl, Database Access from PL/Perl

	SPI_register_relation, SPI_register_relation
	SPI_register_trigger_data, SPI_register_trigger_data
	SPI_repalloc, SPI_repalloc
	SPI_result_code_string, SPI_result_code_string
	SPI_returntuple, SPI_returntuple
	spi_rollback
		in PL/Perl, Database Access from PL/Perl

	SPI_rollback, SPI_rollback
	SPI_rollback_and_chain, SPI_rollback
	SPI_saveplan, SPI_saveplan
	SPI_scroll_cursor_fetch, SPI_scroll_cursor_fetch
	SPI_scroll_cursor_move, SPI_scroll_cursor_move
	SPI_start_transaction, SPI_start_transaction
	SPI_unregister_relation, SPI_unregister_relation
	split_part, String Functions and Operators
	SQL/CLI, SQL Conformance
	SQL/Foundation, SQL Conformance
	SQL/Framework, SQL Conformance
	SQL/JRT, SQL Conformance
	SQL/JSON, JSON Functions and Operators
		functions and expressions, JSON Functions and Operators

	SQL/JSON path language, The SQL/JSON Path Language
	SQL/MDA, SQL Conformance
	SQL/MED, SQL Conformance
	SQL/OLB, SQL Conformance
	SQL/PGQ, SQL Conformance
	SQL/PSM, SQL Conformance
	SQL/Schemata, SQL Conformance
	SQL/XML, SQL Conformance
		limits and conformance, XML Limits and Conformance to SQL/XML

	sqrt, Mathematical Functions and Operators
	ssh, Secure TCP/IP Connections with SSH Tunnels
	SSI, Introduction
	SSL, Secure TCP/IP Connections with SSL, SSL Support
		in libpq, Connection Status Functions
	with libpq, Parameter Key Words
	TLS, Secure TCP/IP Connections with SSL, SSL Support

	ssl configuration parameter, SSL
	sslinfo, sslinfo — obtain client SSL information
	ssl_ca_file configuration parameter, SSL
	ssl_cert_file configuration parameter, SSL
	ssl_cipher, Functions Provided
	ssl_ciphers configuration parameter, SSL
	ssl_client_cert_present, Functions Provided
	ssl_client_dn, Functions Provided
	ssl_client_dn_field, Functions Provided
	ssl_client_serial, Functions Provided
	ssl_crl_dir configuration parameter, SSL
	ssl_crl_file configuration parameter, SSL
	ssl_dh_params_file configuration parameter, SSL
	ssl_ecdh_curve configuration parameter, SSL
	ssl_extension_info, Functions Provided
	ssl_issuer_dn, Functions Provided
	ssl_issuer_field, Functions Provided
	ssl_is_used, Functions Provided
	ssl_key_file configuration parameter, SSL
	ssl_library configuration parameter, Preset Options
	ssl_max_protocol_version configuration parameter, SSL
	ssl_min_protocol_version configuration parameter, SSL
	ssl_passphrase_command configuration parameter, SSL
	ssl_passphrase_command_supports_reload configuration parameter, SSL
	ssl_prefer_server_ciphers configuration parameter, SSL
	ssl_version, Functions Provided
	SSPI, SSPI Authentication
	STABLE, Function Volatility Categories
	standard deviation, Aggregate Functions
		population, Aggregate Functions
	sample, Aggregate Functions

	standard_conforming_strings configuration parameter, Previous PostgreSQL Versions
	standby server, High Availability, Load Balancing, and Replication
	standby.signal, Archive Recovery, Standby Server Operation, Setting Up a Standby Server
		for hot standby, Administrator's Overview
	pg_basebackup --write-recovery-conf, Options

	standby_mode (see standby.signal)
	START TRANSACTION, START TRANSACTION
	starts_with, String Functions and Operators
	START_REPLICATION, Streaming Replication Protocol
	statement_timeout configuration parameter, Statement Behavior
	statement_timestamp, Date/Time Functions and Operators
	statistics, Aggregate Functions, Statistics Used by the Planner, Extended Statistics, Updating Planner Statistics, The Cumulative Statistics System
		of the planner, Statistics Used by the Planner, Extended Statistics, Updating Planner Statistics

	stats_fetch_consistency configuration parameter, Cumulative Query and Index Statistics
	stddev, Aggregate Functions
	stddev_pop, Aggregate Functions
	stddev_samp, Aggregate Functions
	STONITH, High Availability, Load Balancing, and Replication
	storage parameters, Storage Parameters
	Streaming Replication, High Availability, Load Balancing, and Replication
	strict_word_similarity, Functions and Operators
	string (see character string)
	strings
		backslash quotes, Previous PostgreSQL Versions
	escape warning, Previous PostgreSQL Versions
	standard conforming, Previous PostgreSQL Versions

	string_agg, Aggregate Functions
	string_to_array, String Functions and Operators
	string_to_table, String Functions and Operators
	strip, Text Search Functions and Operators, Manipulating Documents
	strpos, String Functions and Operators
	subarray, intarray Functions and Operators
	subltree, Operators and Functions
	subpath, Operators and Functions
	subquery, Aggregate Functions, Scalar Subqueries, Subqueries, Subquery Expressions
	subscript, Subscripts
	substr, String Functions and Operators, Binary String Functions and Operators
	substring, String Functions and Operators, Binary String Functions and Operators, Bit String Functions and Operators, SIMILAR TO Regular Expressions, POSIX Regular Expressions
	SUBSTRING_REGEX, Differences from SQL Standard and XQuery
	subtransactions
		in PL/Tcl, Explicit Subtransactions in PL/Tcl

	sum, Aggregate Functions
	superuser, Accessing a Database, Role Attributes
	superuser_reserved_connections configuration parameter, Connection Settings
	support functions
		in_range, B-Tree Support Functions

	suppress_redundant_updates_trigger, Trigger Functions
	svals, hstore Operators and Functions
	synchronize_seqscans configuration parameter, Previous PostgreSQL Versions
	synchronous commit, Asynchronous Commit
	Synchronous Replication, High Availability, Load Balancing, and Replication
	synchronous_commit configuration parameter, Settings
	synchronous_standby_names configuration parameter, Primary Server
	syntax, SQL Syntax
		SQL, SQL Syntax

	syslog_facility configuration parameter, Where to Log
	syslog_ident configuration parameter, Where to Log
	syslog_sequence_numbers configuration parameter, Where to Log
	syslog_split_messages configuration parameter, Where to Log
	system catalog, The System Catalog Schema
		schema, The System Catalog Schema

	systemd, PostgreSQL™ Features, PostgreSQL™ Features, Starting the Database Server
		RemoveIPC, systemd RemoveIPC

	system_user, Session Information Functions

T
	table, Concepts, Table Basics, Modifying Tables
		creating, Table Basics
	inheritance, Inheritance
	modifying, Modifying Tables
	partitioning, Table Partitioning
	removing, Table Basics
	renaming, Renaming a Table

	Table Access Method, Table Access Method Interface Definition
	TABLE command, SELECT
	table expression, Table Expressions
	table function, Table Functions, xmltable
		XMLTABLE, xmltable

	table sampling method, Writing a Table Sampling Method
	tableam
		Table Access Method, Table Access Method Interface Definition

	tablefunc, tablefunc — functions that return tables (crosstab and others)
	tableoid, System Columns
	TABLESAMPLE method, Writing a Table Sampling Method
	tablespace, Tablespaces
		default, Statement Behavior
	temporary, Statement Behavior

	table_am_handler, Pseudo-Types
	tan, Mathematical Functions and Operators
	tand, Mathematical Functions and Operators
	tanh, Mathematical Functions and Operators
	target list, The Query Tree
	Tcl, PL/Tcl — Tcl Procedural Language
	tcn, tcn — a trigger function to notify listeners of changes to table content
	tcp_keepalives_count configuration parameter, TCP Settings
	tcp_keepalives_idle configuration parameter, TCP Settings
	tcp_keepalives_interval configuration parameter, TCP Settings
	tcp_user_timeout configuration parameter, TCP Settings
	template0, Creating a Database, Template Databases
	template1, Creating a Database, Template Databases
	temp_buffers configuration parameter, Memory
	temp_file_limit configuration parameter, Disk
	temp_tablespaces configuration parameter, Statement Behavior
	test, Regression Tests
	test_decoding, test_decoding — SQL-based test/example module for WAL logical decoding
	text, Character Types, Network Address Functions and Operators
	text search, Text Search Types, Text Search Types, Full Text Search, Preferred Index Types for Text Search
		data types, Text Search Types
	functions and operators, Text Search Types
	indexes, Preferred Index Types for Text Search

	text2ltree, Operators and Functions
	threads, Behavior in Threaded Programs
		with libpq, Behavior in Threaded Programs

	tid, Object Identifier Types
	time, Date/Time Types, Times
		constants, Special Values
	current, Current Date/Time
	output format, Date/Time Output
		(see also formatting)

	time span, Date/Time Types
	time with time zone, Date/Time Types, Times
	time without time zone, Date/Time Types, Times
	time zone, Time Zones, Locale and Formatting, POSIX Time Zone Specifications
		conversion, AT TIME ZONE
	input abbreviations, Date/Time Configuration Files
	POSIX-style specification, POSIX Time Zone Specifications

	time zone data, Build Process Details, Build Process Details
	time zone names, Locale and Formatting
	timelines, Backup and Restore
	TIMELINE_HISTORY, Streaming Replication Protocol
	timeofday, Date/Time Functions and Operators
	timeout
		client authentication, Authentication
	deadlock, Lock Management

	timestamp, Date/Time Types, Time Stamps
	timestamp with time zone, Date/Time Types, Time Stamps
	timestamp without time zone, Date/Time Types, Time Stamps
	timestamptz, Date/Time Types
	TimeZone configuration parameter, Locale and Formatting
	timezone_abbreviations configuration parameter, Locale and Formatting
	TOAST, TOAST
		and user-defined types, TOAST Considerations
	per-column storage settings, Description, Parameters
	per-type storage settings, Description
	versus large objects, Introduction

	toast_tuple_target storage parameter, Storage Parameters
	token, Lexical Structure
	to_ascii, String Functions and Operators
	to_char, Data Type Formatting Functions
		and locales, Behavior

	to_date, Data Type Formatting Functions
	to_hex, String Functions and Operators
	to_json, Processing and Creating JSON Data
	to_jsonb, Processing and Creating JSON Data
	to_number, Data Type Formatting Functions
	to_regclass, System Catalog Information Functions
	to_regcollation, System Catalog Information Functions
	to_regnamespace, System Catalog Information Functions
	to_regoper, System Catalog Information Functions
	to_regoperator, System Catalog Information Functions
	to_regproc, System Catalog Information Functions
	to_regprocedure, System Catalog Information Functions
	to_regrole, System Catalog Information Functions
	to_regtype, System Catalog Information Functions
	to_timestamp, Data Type Formatting Functions, Date/Time Functions and Operators
	to_tsquery, Text Search Functions and Operators, Parsing Queries
	to_tsvector, Text Search Functions and Operators, Parsing Documents
	trace_locks configuration parameter, Developer Options
	trace_lock_oidmin configuration parameter, Developer Options
	trace_lock_table configuration parameter, Developer Options
	trace_lwlocks configuration parameter, Developer Options
	trace_notify configuration parameter, Developer Options
	trace_recovery_messages configuration parameter, Developer Options
	trace_sort configuration parameter, Developer Options
	trace_userlocks configuration parameter, Developer Options
	track_activities configuration parameter, Cumulative Query and Index Statistics
	track_activity_query_size configuration parameter, Cumulative Query and Index Statistics
	track_commit_timestamp configuration parameter, Sending Servers
	track_counts configuration parameter, Cumulative Query and Index Statistics
	track_functions configuration parameter, Cumulative Query and Index Statistics
	track_io_timing configuration parameter, Cumulative Query and Index Statistics
	track_wal_io_timing configuration parameter, Cumulative Query and Index Statistics
	transaction, Transactions
	transaction ID, Preventing Transaction ID Wraparound Failures
		wraparound, Preventing Transaction ID Wraparound Failures

	transaction isolation, Transaction Isolation
	transaction isolation level, Transaction Isolation, Statement Behavior
		read committed, Read Committed Isolation Level
	repeatable read, Repeatable Read Isolation Level
	serializable, Serializable Isolation Level
	setting, SET TRANSACTION
	setting default, Statement Behavior

	transaction log (see WAL)
	transaction_deferrable configuration parameter, Statement Behavior
	transaction_isolation configuration parameter, Statement Behavior
	transaction_read_only configuration parameter, Statement Behavior
	transaction_timestamp, Date/Time Functions and Operators
	transform_null_equals configuration parameter, Platform and Client Compatibility
	transition tables, CREATE TRIGGER
		(see also ephemeral named relation)
	implementation in PLs, SPI_register_trigger_data
	referencing from C trigger, Writing Trigger Functions in C

	translate, String Functions and Operators
	TRANSLATE_REGEX, Differences from SQL Standard and XQuery
	transparent
 huge pages, Memory
	trigger, Pseudo-Types, Triggers, Writing Trigger Functions in C, Rules Versus Triggers, Trigger Functions, Trigger Functions
		arguments for trigger functions, Overview of Trigger Behavior
	constraint trigger, Description
	for updating a derived tsvector column, Triggers for Automatic Updates
	in C, Writing Trigger Functions in C
	in PL/pgSQL, Trigger Functions
	in PL/Python, Trigger Functions
	in PL/Tcl, Trigger Functions in PL/Tcl
	compared with rules, Rules Versus Triggers

	triggered_change_notification, tcn — a trigger function to notify listeners of changes to table content
	trim, String Functions and Operators, Binary String Functions and Operators
	trim_array, Array Functions and Operators
	trim_scale, Mathematical Functions and Operators
	true, Boolean Type
	trunc, Mathematical Functions and Operators, Network Address Functions and Operators
	TRUNCATE, TRUNCATE
	trusted, Trusted and Untrusted PL/Perl
		PL/Perl, Trusted and Untrusted PL/Perl

	tsm_handler, Pseudo-Types
	tsm_system_rows, tsm_system_rows —
 the SYSTEM_ROWS sampling method for TABLESAMPLE
	tsm_system_time, tsm_system_time —
 the SYSTEM_TIME sampling method for TABLESAMPLE
	tsquery (data type), tsquery
	tsquery_phrase, Text Search Functions and Operators, Manipulating Queries
	tsvector (data type), tsvector
	tsvector concatenation, Manipulating Documents
	tsvector_to_array, Text Search Functions and Operators
	tsvector_update_trigger, Trigger Functions
	tsvector_update_trigger_column, Trigger Functions
	ts_debug, Text Search Functions and Operators, Configuration Testing
	ts_delete, Text Search Functions and Operators
	ts_filter, Text Search Functions and Operators
	ts_headline, Text Search Functions and Operators, Highlighting Results
	ts_lexize, Text Search Functions and Operators, Dictionary Testing
	ts_parse, Text Search Functions and Operators, Parser Testing
	ts_rank, Text Search Functions and Operators, Ranking Search Results
	ts_rank_cd, Text Search Functions and Operators, Ranking Search Results
	ts_rewrite, Text Search Functions and Operators, Query Rewriting
	ts_stat, Text Search Functions and Operators, Gathering Document Statistics
	ts_token_type, Text Search Functions and Operators, Parser Testing
	tuple_data_split, Heap Functions
	txid_current, Transaction ID and Snapshot Information Functions
	txid_current_if_assigned, Transaction ID and Snapshot Information Functions
	txid_current_snapshot, Transaction ID and Snapshot Information Functions
	txid_snapshot_xip, Transaction ID and Snapshot Information Functions
	txid_snapshot_xmax, Transaction ID and Snapshot Information Functions
	txid_snapshot_xmin, Transaction ID and Snapshot Information Functions
	txid_status, Transaction ID and Snapshot Information Functions
	txid_visible_in_snapshot, Transaction ID and Snapshot Information Functions
	type (see data type)
	type cast, Numeric Constants, Type Casts
	typedef
		in ECPG, Typedefs

U
	UESCAPE, Identifiers and Key Words, String Constants with Unicode Escapes
	unaccent, unaccent — a text search dictionary which removes diacritics, Functions
	Unicode escape, String Constants with Unicode Escapes
		in identifiers, Identifiers and Key Words
	in string constants, String Constants with Unicode Escapes

	Unicode normalization, String Functions and Operators
	UNION, Combining Queries (UNION, INTERSECT, EXCEPT), UNION, CASE, and Related Constructs
		determination of result type, UNION, CASE, and Related Constructs

	uniq, intarray Functions and Operators
	unique constraint, Unique Constraints
	unistr, String Functions and Operators
	Unix domain socket, Parameter Key Words
	unix_socket_directories configuration parameter, Connection Settings
	unix_socket_group configuration parameter, Connection Settings
	unix_socket_permissions configuration parameter, Connection Settings
	unknown, Pseudo-Types
	UNLISTEN, UNLISTEN
	unnest, Array Functions and Operators
		for multirange, Range/Multirange Functions and Operators
	for tsvector, Text Search Functions and Operators

	unqualified name, The Schema Search Path
	updatable views, Updatable Views
	UPDATE, Updates, Updating Data, Returning Data from Modified Rows, UPDATE
		RETURNING, Returning Data from Modified Rows

	update_process_title configuration parameter, Process Title
	updating, Updating Data
	upgrading, Upgrading a PostgreSQL™ Cluster
	upper, String Functions and Operators, Range/Multirange Functions and Operators
		and locales, Behavior

	upper_inc, Range/Multirange Functions and Operators
	upper_inf, Range/Multirange Functions and Operators
	UPSERT, INSERT
	URI, Connection Strings
	user, Session Information Functions, Database Roles
		current, Session Information Functions

	user mapping, Foreign Data
	User name maps, User Name Maps
	user_catalog_table storage parameter, Storage Parameters
	UUID, UUID Type, UUID Functions, PostgreSQL™ Features, PostgreSQL™ Features
		generating, UUID Functions

	uuid-ossp, uuid-ossp — a UUID generator
	uuid_generate_v1, uuid-ossp Functions
	uuid_generate_v1mc, uuid-ossp Functions
	uuid_generate_v3, uuid-ossp Functions

V
	vacuum, Routine Vacuuming
	VACUUM, VACUUM
	vacuumdb, vacuumdb
	vacuumlo, vacuumlo
	vacuum_buffer_usage_limit configuration parameter, Memory
	vacuum_cost_delay configuration parameter, Cost-based Vacuum Delay
	vacuum_cost_limit configuration parameter, Cost-based Vacuum Delay
	vacuum_cost_page_dirty configuration parameter, Cost-based Vacuum Delay
	vacuum_cost_page_hit configuration parameter, Cost-based Vacuum Delay
	vacuum_cost_page_miss configuration parameter, Cost-based Vacuum Delay
	vacuum_failsafe_age configuration parameter, Statement Behavior
	vacuum_freeze_min_age configuration parameter, Statement Behavior
	vacuum_freeze_table_age configuration parameter, Statement Behavior
	vacuum_index_cleanup storage parameter, Storage Parameters
	vacuum_multixact_failsafe_age configuration parameter, Statement Behavior
	vacuum_multixact_freeze_min_age configuration parameter, Statement Behavior
	vacuum_multixact_freeze_table_age configuration parameter, Statement Behavior
	vacuum_truncate storage parameter, Storage Parameters
	value expression, Value Expressions
	VALUES, VALUES Lists, UNION, CASE, and Related Constructs, VALUES
		determination of result type, UNION, CASE, and Related Constructs

	varchar, Character Types
	variadic function, SQL Functions with Variable Numbers of Arguments
	variance, Aggregate Functions
		population, Aggregate Functions
	sample, Aggregate Functions

	var_pop, Aggregate Functions
	var_samp, Aggregate Functions
	version, Accessing a Database, Session Information Functions, Upgrading a PostgreSQL™ Cluster
		compatibility, Upgrading a PostgreSQL™ Cluster

	view, Views, Views and the Rule System, Materialized Views, Cooperation with Views
		implementation through rules, Views and the Rule System
	materialized, Materialized Views
	updating, Cooperation with Views

	Visibility Map, Visibility Map
	VM (see Visibility Map)
	void, Pseudo-Types
	VOLATILE, Function Volatility Categories
	volatility, Function Volatility Categories
		functions, Function Volatility Categories

	VPATH, Installation Procedure, Extension Building Infrastructure

W
	WAL, Reliability and the Write-Ahead Log
	wal_block_size configuration parameter, Preset Options
	wal_buffers configuration parameter, Settings
	wal_compression configuration parameter, Settings
	wal_consistency_checking configuration parameter, Developer Options
	wal_debug configuration parameter, Developer Options
	wal_decode_buffer_size configuration parameter, Recovery
	wal_init_zero configuration parameter, Settings
	wal_keep_size configuration parameter, Sending Servers
	wal_level configuration parameter, Settings
	wal_log_hints configuration parameter, Settings
	wal_receiver_create_temp_slot configuration parameter, Standby Servers
	wal_receiver_status_interval configuration parameter, Standby Servers
	wal_receiver_timeout configuration parameter, Standby Servers
	wal_recycle configuration parameter, Settings
	wal_retrieve_retry_interval configuration parameter, Standby Servers
	wal_segment_size configuration parameter, Preset Options
	wal_sender_timeout configuration parameter, Sending Servers
	wal_skip_threshold configuration parameter, Settings
	wal_sync_method configuration parameter, Settings
	wal_writer_delay configuration parameter, Settings
	wal_writer_flush_after configuration parameter, Settings
	warm standby, High Availability, Load Balancing, and Replication
	websearch_to_tsquery, Text Search Functions and Operators
	WHERE, The WHERE Clause
	where to log, Where to Log
	WHILE
		in PL/pgSQL, WHILE

	width, Geometric Functions and Operators
	width_bucket, Mathematical Functions and Operators
	window function, Window Functions, Window Function Calls, Window Function Processing, Window Functions
		built-in, Window Functions
	invocation, Window Function Calls
	order of execution, Window Function Processing

	WITH, WITH Queries (Common Table Expressions), SELECT
		in SELECT, WITH Queries (Common Table Expressions), SELECT

	WITH CHECK OPTION, CREATE VIEW
	WITHIN GROUP, Aggregate Expressions
	witness server, High Availability, Load Balancing, and Replication
	word_similarity, Functions and Operators
	work_mem configuration parameter, Memory
	wraparound
		of multixact IDs, Multixacts and Wraparound
	of transaction IDs, Preventing Transaction ID Wraparound Failures

X
	xid, Object Identifier Types
	xid8, Object Identifier Types
	xmax, System Columns
	xmin, System Columns
	XML, XML Type
	XML export, Mapping Tables to XML
	XML Functions, XML Functions
	XML option, Creating XML Values, Statement Behavior
	xml2, xml2 — XPath querying and XSLT functionality
	xmlagg, xmlagg, Aggregate Functions
	xmlbinary configuration parameter, Statement Behavior
	xmlcomment, xmlcomment
	xmlconcat, xmlconcat
	xmlelement, xmlelement
	XMLEXISTS, XMLEXISTS
	xmlforest, xmlforest
	xmloption configuration parameter, Statement Behavior
	xmlparse, Creating XML Values
	xmlpi, xmlpi
	xmlroot, xmlroot
	xmlserialize, Creating XML Values
	xmltable, xmltable
	xml_is_well_formed, xml_is_well_formed
	xml_is_well_formed_content, xml_is_well_formed
	xml_is_well_formed_document, xml_is_well_formed
	XPath, xpath
	xpath_exists, xpath_exists
	xpath_table, xpath_table
	XQuery regular expressions, Differences from SQL Standard and XQuery
	xslt_process, xslt_process

Y
	yacc, Requirements

Z
	zero_damaged_pages configuration parameter, Developer Options
	zlib, Requirements, Anti-Features, Anti-Features

OEBPS/re43.html

Name

SPI_scroll_cursor_move — move a cursor

Synopsis

void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,
 long count)

Description

 SPI_scroll_cursor_move skips over some number of rows
 in a cursor. This is equivalent to the SQL command
 MOVE.

Arguments

		Portal portal

		
 portal containing the cursor

		FetchDirection direction

		
 one of FETCH_FORWARD,
 FETCH_BACKWARD,
 FETCH_ABSOLUTE or
 FETCH_RELATIVE

		long count

		
 number of rows to move for
 FETCH_FORWARD or
 FETCH_BACKWARD; absolute row number to move to for
 FETCH_ABSOLUTE; or relative row number to move to for
 FETCH_RELATIVE

Return Value

 SPI_processed is set as in
 SPI_execute if successful.
 SPI_tuptable is set to NULL, since
 no rows are returned by this function.

Notes

 See the SQL FETCH(7) command
 for details of the interpretation of the
 direction and
 count parameters.

 Direction values other than FETCH_FORWARD
 may fail if the cursor's plan was not created
 with the CURSOR_OPT_SCROLL option.

OEBPS/re28.html

Name

SPI_getargcount — return the number of arguments needed by a statement
 prepared by SPI_prepare

Synopsis

int SPI_getargcount(SPIPlanPtr plan)

Description

 SPI_getargcount returns the number of arguments needed
 to execute a statement prepared by SPI_prepare.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

Return Value

 The count of expected arguments for the plan.
 If the plan is NULL or invalid,
 SPI_result is set to SPI_ERROR_ARGUMENT
 and -1 is returned.

OEBPS/re24.html

Name

SPI_prepare — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)

Description

 SPI_prepare creates and returns a prepared
 statement for the specified command, but doesn't execute the command.
 The prepared statement can later be executed repeatedly using
 SPI_execute_plan.

 When the same or a similar command is to be executed repeatedly, it
 is generally advantageous to perform parse analysis only once, and
 might furthermore be advantageous to re-use an execution plan for the
 command.
 SPI_prepare converts a command string into a
 prepared statement that encapsulates the results of parse analysis.
 The prepared statement also provides a place for caching an execution plan
 if it is found that generating a custom plan for each execution is not
 helpful.

 A prepared command can be generalized by writing parameters
 ($1, $2, etc.) in place of what would be
 constants in a normal command. The actual values of the parameters
 are then specified when SPI_execute_plan is called.
 This allows the prepared command to be used over a wider range of
 situations than would be possible without parameters.

 The statement returned by SPI_prepare can be used
 only in the current invocation of the C function, since
 SPI_finish frees memory allocated for such a
 statement. But the statement can be saved for longer using the functions
 SPI_keepplan or SPI_saveplan.

Arguments

		const char * command

		
 command string

		int nargs

		
 number of input parameters ($1, $2, etc.)

		Oid * argtypes

		
 pointer to an array containing the OIDs of
 the data types of the parameters

Return Value

 SPI_prepare returns a non-null pointer to an
 SPIPlan, which is an opaque struct representing a prepared
 statement. On error, NULL will be returned,
 and SPI_result will be set to one of the same
 error codes used by SPI_execute, except that
 it is set to SPI_ERROR_ARGUMENT if
 command is NULL, or if
 nargs is less than 0, or if nargs is
 greater than 0 and argtypes is NULL.

Notes

 If no parameters are defined, a generic plan will be created at the
 first use of SPI_execute_plan, and used for all
 subsequent executions as well. If there are parameters, the first few uses
 of SPI_execute_plan will generate custom plans
 that are specific to the supplied parameter values. After enough uses
 of the same prepared statement, SPI_execute_plan will
 build a generic plan, and if that is not too much more expensive than the
 custom plans, it will start using the generic plan instead of re-planning
 each time. If this default behavior is unsuitable, you can alter it by
 passing the CURSOR_OPT_GENERIC_PLAN or
 CURSOR_OPT_CUSTOM_PLAN flag to
 SPI_prepare_cursor, to force use of generic or custom
 plans respectively.

 Although the main point of a prepared statement is to avoid repeated parse
 analysis and planning of the statement, PostgreSQL™ will
 force re-analysis and re-planning of the statement before using it
 whenever database objects used in the statement have undergone
 definitional (DDL) changes since the previous use of the prepared
 statement. Also, if the value of search_path changes
 from one use to the next, the statement will be re-parsed using the new
 search_path. (This latter behavior is new as of
 PostgreSQL™ 9.3.) See PREPARE(7) for more information about the behavior of prepared
 statements.

 This function should only be called from a connected C function.

 SPIPlanPtr is declared as a pointer to an opaque struct type in
 spi.h. It is unwise to try to access its contents
 directly, as that makes your code much more likely to break in
 future revisions of PostgreSQL™.

 The name SPIPlanPtr is somewhat historical, since the data
 structure no longer necessarily contains an execution plan.

OEBPS/re25.html

Name

SPI_prepare_cursor — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,
 Oid * argtypes, int cursorOptions)

Description

 SPI_prepare_cursor is identical to
 SPI_prepare, except that it also allows specification
 of the planner's “cursor options” parameter. This is a bit mask
 having the values shown in nodes/parsenodes.h
 for the options field of DeclareCursorStmt.
 SPI_prepare always takes the cursor options as zero.

 This function is now deprecated in favor
 of SPI_prepare_extended.

Arguments

		const char * command

		
 command string

		int nargs

		
 number of input parameters ($1, $2, etc.)

		Oid * argtypes

		
 pointer to an array containing the OIDs of
 the data types of the parameters

		int cursorOptions

		
 integer bit mask of cursor options; zero produces default behavior

Return Value

 SPI_prepare_cursor has the same return conventions as
 SPI_prepare.

Notes

 Useful bits to set in cursorOptions include
 CURSOR_OPT_SCROLL,
 CURSOR_OPT_NO_SCROLL,
 CURSOR_OPT_FAST_PLAN,
 CURSOR_OPT_GENERIC_PLAN, and
 CURSOR_OPT_CUSTOM_PLAN. Note in particular that
 CURSOR_OPT_HOLD is ignored.

OEBPS/re37.html

Name

SPI_cursor_open_with_paramlist — set up a cursor using parameters

Synopsis

Portal SPI_cursor_open_with_paramlist(const char *name,
 SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only)

Description

 SPI_cursor_open_with_paramlist sets up a cursor
 (internally, a portal) that will execute a statement prepared by
 SPI_prepare.
 This function is equivalent to SPI_cursor_open
 except that information about the parameter values to be passed to the
 query is presented differently. The ParamListInfo
 representation can be convenient for passing down values that are
 already available in that format. It also supports use of dynamic
 parameter sets via hook functions specified in ParamListInfo.

 The passed-in parameter data will be copied into the cursor's portal, so it
 can be freed while the cursor still exists.

Arguments

		const char * name

		
 name for portal, or NULL to let the system
 select a name

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		ParamListInfo params

		
 data structure containing parameter types and values; NULL if none

		bool read_only

		true for read-only execution

Return Value

 Pointer to portal containing the cursor. Note there is no error
 return convention; any error will be reported via elog.

OEBPS/re38.html

Name

SPI_cursor_parse_open — set up a cursor using a query string and parameters

Synopsis

Portal SPI_cursor_parse_open(const char *name,
 const char *command,
 const SPIParseOpenOptions * options)

Description

 SPI_cursor_parse_open sets up a cursor
 (internally, a portal) that will execute the specified query string.
 This is comparable to SPI_prepare_cursor followed
 by SPI_cursor_open_with_paramlist, except that
 parameter references within the query string are handled entirely by
 supplying a ParamListInfo object.

 For one-time query execution, this function should be preferred
 over SPI_prepare_cursor followed by
 SPI_cursor_open_with_paramlist.
 If the same command is to be executed with many different parameters,
 either method might be faster, depending on the cost of re-planning
 versus the benefit of custom plans.

 The options->params object should normally
 mark each parameter with the PARAM_FLAG_CONST flag,
 since a one-shot plan is always used for the query.

 The passed-in parameter data will be copied into the cursor's portal, so it
 can be freed while the cursor still exists.

Arguments

		const char * name

		
 name for portal, or NULL to let the system
 select a name

		const char * command

		
 command string

		const SPIParseOpenOptions * options

		
 struct containing optional arguments

 Callers should always zero out the entire options
 struct, then fill whichever fields they want to set. This ensures forward
 compatibility of code, since any fields that are added to the struct in
 future will be defined to behave backwards-compatibly if they are zero.
 The currently available options fields are:

		ParamListInfo params

		
 data structure containing query parameter types and values; NULL if none

		int cursorOptions

		
 integer bit mask of cursor options; zero produces default behavior

		bool read_only

		true for read-only execution

Return Value

 Pointer to portal containing the cursor. Note there is no error
 return convention; any error will be reported via elog.

OEBPS/re32.html

Name

SPI_execute_plan_extended — execute a statement prepared by SPI_prepare

Synopsis

int SPI_execute_plan_extended(SPIPlanPtr plan,
 const SPIExecuteOptions * options)

Description

 SPI_execute_plan_extended executes a statement
 prepared by SPI_prepare or one of its siblings.
 This function is equivalent to SPI_execute_plan,
 except that information about the parameter values to be passed to the
 query is presented differently, and additional execution-controlling
 options can be passed.

 Query parameter values are represented by
 a ParamListInfo struct, which is convenient for passing
 down values that are already available in that format. Dynamic parameter
 sets can also be used, via hook functions specified
 in ParamListInfo.

 Also, instead of always accumulating the result tuples into a
 SPI_tuptable structure, tuples can be passed to a
 caller-supplied DestReceiver object as they are
 generated by the executor. This is particularly helpful for queries
 that might generate many tuples, since the data can be processed
 on-the-fly instead of being accumulated in memory.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		const SPIExecuteOptions * options

		
 struct containing optional arguments

 Callers should always zero out the entire options
 struct, then fill whichever fields they want to set. This ensures forward
 compatibility of code, since any fields that are added to the struct in
 future will be defined to behave backwards-compatibly if they are zero.
 The currently available options fields are:

		ParamListInfo params

		
 data structure containing query parameter types and values; NULL if none

		bool read_only

		true for read-only execution

		bool allow_nonatomic

		
 true allows non-atomic execution of CALL and DO
 statements (but this field is ignored unless
 the SPI_OPT_NONATOMIC flag was passed
 to SPI_connect_ext)

		bool must_return_tuples

		
 if true, raise error if the query is not of a kind
 that returns tuples (this does not forbid the case where it happens to
 return zero tuples)

		uint64 tcount

		
 maximum number of rows to return,
 or 0 for no limit

		DestReceiver * dest

		
 DestReceiver object that will receive any tuples
 emitted by the query; if NULL, result tuples are accumulated into
 a SPI_tuptable structure, as
 in SPI_execute_plan

		ResourceOwner owner

		
 The resource owner that will hold a reference count on the plan while
 it is executed. If NULL, CurrentResourceOwner is used. Ignored for
 non-saved plans, as SPI does not acquire reference counts on those.

Return Value

 The return value is the same as for SPI_execute_plan.

 When options->dest is NULL,
 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute_plan.
 When options->dest is not NULL,
 SPI_processed is set to zero and
 SPI_tuptable is set to NULL. If a tuple count
 is required, the caller's DestReceiver object must
 calculate it.

OEBPS/re18.html

Name

SPI_connect, SPI_connect_ext — connect a C function to the SPI manager

Synopsis

int SPI_connect(void)

int SPI_connect_ext(int options)

Description

 SPI_connect opens a connection from a
 C function invocation to the SPI manager. You must call this
 function if you want to execute commands through SPI. Some utility
 SPI functions can be called from unconnected C functions.

 SPI_connect_ext does the same but has an argument that
 allows passing option flags. Currently, the following option values are
 available:

		SPI_OPT_NONATOMIC

		
 Sets the SPI connection to be nonatomic, which
 means that transaction control calls (SPI_commit,
 SPI_rollback) are allowed. Otherwise,
 calling those functions will result in an immediate error.

 SPI_connect() is equivalent to
 SPI_connect_ext(0).

Return Value

		SPI_OK_CONNECT

		
 on success

		SPI_ERROR_CONNECT

		
 on error

OEBPS/re48.html

Name

SPI_unregister_relation — remove an ephemeral named relation from the registry

Synopsis

int SPI_unregister_relation(const char * name)

Description

 SPI_unregister_relation removes an ephemeral named
 relation from the registry for the current connection.

Arguments

		const char * name

		
 the relation registry entry name

Return Value

 If the execution of the command was successful then the following
 (nonnegative) value will be returned:

		SPI_OK_REL_UNREGISTER

		
 if the tuplestore has been successfully removed from the registry

 On error, one of the following negative values is returned:

		SPI_ERROR_ARGUMENT

		
 if name is NULL

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

		SPI_ERROR_REL_NOT_FOUND

		
 if name is not found in the registry for the
 current connection

OEBPS/re35.html

Name

SPI_cursor_open — set up a cursor using a statement created with SPI_prepare

Synopsis

Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,
 Datum * values, const char * nulls,
 bool read_only)

Description

 SPI_cursor_open sets up a cursor (internally,
 a portal) that will execute a statement prepared by
 SPI_prepare. The parameters have the same
 meanings as the corresponding parameters to
 SPI_execute_plan.

 Using a cursor instead of executing the statement directly has two
 benefits. First, the result rows can be retrieved a few at a time,
 avoiding memory overrun for queries that return many rows. Second,
 a portal can outlive the current C function (it can, in fact, live
 to the end of the current transaction). Returning the portal name
 to the C function's caller provides a way of returning a row set as
 result.

 The passed-in parameter data will be copied into the cursor's portal, so it
 can be freed while the cursor still exists.

Arguments

		const char * name

		
 name for portal, or NULL to let the system
 select a name

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		Datum * values

		
 An array of actual parameter values. Must have same length as the
 statement's number of arguments.

		const char * nulls

		
 An array describing which parameters are null. Must have same length as
 the statement's number of arguments.

 If nulls is NULL then
 SPI_cursor_open assumes that no parameters
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding parameter
 value is non-null, or 'n' if the corresponding parameter
 value is null. (In the latter case, the actual value in the
 corresponding values entry doesn't matter.) Note
 that nulls is not a text string, just an array:
 it does not need a '\0' terminator.

		bool read_only

		true for read-only execution

Return Value

 Pointer to portal containing the cursor. Note there is no error
 return convention; any error will be reported via elog.

OEBPS/re49.html

Name

SPI_register_trigger_data — make ephemeral trigger data available in SPI queries

Synopsis

int SPI_register_trigger_data(TriggerData *tdata)

Description

 SPI_register_trigger_data makes any ephemeral
 relations captured by a trigger available to queries planned and executed
 through the current SPI connection. Currently, this means the transition
 tables captured by an AFTER trigger defined with a
 REFERENCING OLD/NEW TABLE AS ... clause. This function
 should be called by a PL trigger handler function after connecting.

Arguments

		TriggerData *tdata

		
 the TriggerData object passed to a trigger
 handler function as fcinfo->context

Return Value

 If the execution of the command was successful then the following
 (nonnegative) value will be returned:

		SPI_OK_TD_REGISTER

		
 if the captured trigger data (if any) has been successfully registered

 On error, one of the following negative values is returned:

		SPI_ERROR_ARGUMENT

		
 if tdata is NULL

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

		SPI_ERROR_REL_DUPLICATE

		
 if the name of any trigger data transient relation is already
 registered for this connection

OEBPS/re44.html

Name

SPI_cursor_close — close a cursor

Synopsis

void SPI_cursor_close(Portal portal)

Description

 SPI_cursor_close closes a previously created
 cursor and releases its portal storage.

 All open cursors are closed automatically at the end of a
 transaction. SPI_cursor_close need only be
 invoked if it is desirable to release resources sooner.

Arguments

		Portal portal

		
 portal containing the cursor

OEBPS/re29.html

Name

SPI_getargtypeid — return the data type OID for an argument of
 a statement prepared by SPI_prepare

Synopsis

Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)

Description

 SPI_getargtypeid returns the OID representing the type
 for the argIndex'th argument of a statement prepared by
 SPI_prepare. First argument is at index zero.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		int argIndex

		
 zero based index of the argument

Return Value

 The type OID of the argument at the given index.
 If the plan is NULL or invalid,
 or argIndex is less than 0 or
 not less than the number of arguments declared for the
 plan,
 SPI_result is set to SPI_ERROR_ARGUMENT
 and InvalidOid is returned.

OEBPS/re40.html

Name

SPI_cursor_fetch — fetch some rows from a cursor

Synopsis

void SPI_cursor_fetch(Portal portal, bool forward, long count)

Description

 SPI_cursor_fetch fetches some rows from a
 cursor. This is equivalent to a subset of the SQL command
 FETCH (see SPI_scroll_cursor_fetch
 for more functionality).

Arguments

		Portal portal

		
 portal containing the cursor

		bool forward

		
 true for fetch forward, false for fetch backward

		long count

		
 maximum number of rows to fetch

Return Value

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute if successful.

Notes

 Fetching backward may fail if the cursor's plan was not created
 with the CURSOR_OPT_SCROLL option.

OEBPS/re30.html

Name

SPI_is_cursor_plan — return true if a statement
 prepared by SPI_prepare can be used with
 SPI_cursor_open

Synopsis

bool SPI_is_cursor_plan(SPIPlanPtr plan)

Description

 SPI_is_cursor_plan returns true
 if a statement prepared by SPI_prepare can be passed
 as an argument to SPI_cursor_open, or
 false if that is not the case. The criteria are that the
 plan represents one single command and that this
 command returns tuples to the caller; for example, SELECT
 is allowed unless it contains an INTO clause, and
 UPDATE is allowed only if it contains a RETURNING
 clause.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

Return Value

 true or false to indicate if the
 plan can produce a cursor or not, with
 SPI_result set to zero.
 If it is not possible to determine the answer (for example,
 if the plan is NULL or invalid,
 or if called when not connected to SPI), then
 SPI_result is set to a suitable error code
 and false is returned.

OEBPS/re45.html

Name

SPI_keepplan — save a prepared statement

Synopsis

int SPI_keepplan(SPIPlanPtr plan)

Description

 SPI_keepplan saves a passed statement (prepared by
 SPI_prepare) so that it will not be freed
 by SPI_finish nor by the transaction manager.
 This gives you the ability to reuse prepared statements in the subsequent
 invocations of your C function in the current session.

Arguments

		SPIPlanPtr plan

		
 the prepared statement to be saved

Return Value

 0 on success;
 SPI_ERROR_ARGUMENT if plan
 is NULL or invalid

Notes

 The passed-in statement is relocated to permanent storage by means
 of pointer adjustment (no data copying is required). If you later
 wish to delete it, use SPI_freeplan on it.

OEBPS/re46.html

Name

SPI_saveplan — save a prepared statement

Synopsis

SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)

Description

 SPI_saveplan copies a passed statement (prepared by
 SPI_prepare) into memory that will not be freed
 by SPI_finish nor by the transaction manager,
 and returns a pointer to the copied statement. This gives you the
 ability to reuse prepared statements in the subsequent invocations of
 your C function in the current session.

Arguments

		SPIPlanPtr plan

		
 the prepared statement to be saved

Return Value

 Pointer to the copied statement; or NULL if unsuccessful.
 On error, SPI_result is set thus:

		SPI_ERROR_ARGUMENT

		
 if plan is NULL or invalid

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

Notes

 The originally passed-in statement is not freed, so you might wish to do
 SPI_freeplan on it to avoid leaking memory
 until SPI_finish.

 In most cases, SPI_keepplan is preferred to this
 function, since it accomplishes largely the same result without needing
 to physically copy the prepared statement's data structures.

OEBPS/re306.html

Name

vacuumlo — remove orphaned large objects from a PostgreSQL™ database

Synopsis

vacuumlo [option...] dbname...

Description

 vacuumlo is a simple utility program that will remove any
 “orphaned” large objects from a
 PostgreSQL™ database. An orphaned large object (LO) is
 considered to be any LO whose OID does not appear in any oid or
 lo data column of the database.

 If you use this, you may also be interested in the lo_manage
 trigger in the lo module.
 lo_manage is useful to try
 to avoid creating orphaned LOs in the first place.

 All databases named on the command line are processed.

Options

 vacuumlo accepts the following command-line arguments:

		-l limit, --limit=limit

		
 Remove no more than limit large objects per
 transaction (default 1000). Since the server acquires a lock per LO
 removed, removing too many LOs in one transaction risks exceeding
 max_locks_per_transaction. Set the limit to
 zero if you want all removals done in a single transaction.

		-n, --dry-run

		Don't remove anything, just show what would be done.

		-v, --verbose

		Write a lot of progress messages.

		-V, --version

		
 Print the vacuumlo version and exit.

		-?, --help

		
 Show help about vacuumlo command line
 arguments, and exit.

 vacuumlo also accepts the following command-line
 arguments for connection parameters:

		-h host, --host=host

		Database server's host.

		-p port, --port=port

		Database server's port.

		-U username, --username=username

		User name to connect as.

		-w, --no-password

		
 Never issue a password prompt. If the server requires password
 authentication and a password is not available by other means
 such as a .pgpass file, the connection
 attempt will fail. This option can be useful in batch jobs and
 scripts where no user is present to enter a password.

		-W, --password

		
 Force vacuumlo to prompt for a
 password before connecting to a database.

 This option is never essential, since
 vacuumlo will automatically prompt
 for a password if the server demands password authentication.
 However, vacuumlo will waste a
 connection attempt finding out that the server wants a password.
 In some cases it is worth typing -W to avoid the extra
 connection attempt.

Environment

		PGHOST, PGPORT, PGUSER

		
 Default connection parameters.

 This utility, like most other PostgreSQL™ utilities,
 also uses the environment variables supported by libpq
 (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 vacuumlo works by the following method:
 First, vacuumlo builds a temporary table which contains all
 of the OIDs of the large objects in the selected database. It then scans
 through all columns in the database that are of type
 oid or lo, and removes matching entries from the temporary
 table. (Note: Only types with these names are considered; in particular,
 domains over them are not considered.) The remaining entries in the
 temporary table identify orphaned LOs. These are removed.

Author

 Peter Mount <peter@retep.org.uk>

OEBPS/re26.html

Name

SPI_prepare_extended — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare_extended(const char * command,
 const SPIPrepareOptions * options)

Description

 SPI_prepare_extended creates and returns a prepared
 statement for the specified command, but doesn't execute the command.
 This function is equivalent to SPI_prepare,
 with the addition that the caller can specify options to control
 the parsing of external parameter references, as well as other facets
 of query parsing and planning.

Arguments

		const char * command

		
 command string

		const SPIPrepareOptions * options

		
 struct containing optional arguments

 Callers should always zero out the entire options
 struct, then fill whichever fields they want to set. This ensures forward
 compatibility of code, since any fields that are added to the struct in
 future will be defined to behave backwards-compatibly if they are zero.
 The currently available options fields are:

		ParserSetupHook parserSetup

		
 Parser hook setup function

		void * parserSetupArg

		
 pass-through argument for parserSetup

		RawParseMode parseMode

		
 mode for raw parsing; RAW_PARSE_DEFAULT (zero)
 produces default behavior

		int cursorOptions

		
 integer bit mask of cursor options; zero produces default behavior

Return Value

 SPI_prepare_extended has the same return conventions as
 SPI_prepare.

OEBPS/re41.html

Name

SPI_cursor_move — move a cursor

Synopsis

void SPI_cursor_move(Portal portal, bool forward, long count)

Description

 SPI_cursor_move skips over some number of rows
 in a cursor. This is equivalent to a subset of the SQL command
 MOVE (see SPI_scroll_cursor_move
 for more functionality).

Arguments

		Portal portal

		
 portal containing the cursor

		bool forward

		
 true for move forward, false for move backward

		long count

		
 maximum number of rows to move

Notes

 Moving backward may fail if the cursor's plan was not created
 with the CURSOR_OPT_SCROLL option.

OEBPS/images/callouts/4.png

OEBPS/images/callouts/5.png

OEBPS/images/callouts/6.png

OEBPS/images/callouts/7.png

OEBPS/images/callouts/8.png

OEBPS/images/callouts/9.png

OEBPS/re23.html

Name

SPI_execute_with_args — execute a command with out-of-line parameters

Synopsis

int SPI_execute_with_args(const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, long count)

Description

 SPI_execute_with_args executes a command that might
 include references to externally supplied parameters. The command text
 refers to a parameter as $n, and
 the call specifies data types and values for each such symbol.
 read_only and count have
 the same interpretation as in SPI_execute.

 The main advantage of this routine compared to
 SPI_execute is that data values can be inserted
 into the command without tedious quoting/escaping, and thus with much
 less risk of SQL-injection attacks.

 Similar results can be achieved with SPI_prepare followed by
 SPI_execute_plan; however, when using this function
 the query plan is always customized to the specific parameter values
 provided.
 For one-time query execution, this function should be preferred.
 If the same command is to be executed with many different parameters,
 either method might be faster, depending on the cost of re-planning
 versus the benefit of custom plans.

Arguments

		const char * command

		
 command string

		int nargs

		
 number of input parameters ($1, $2, etc.)

		Oid * argtypes

		
 an array of length nargs, containing the
 OIDs of the data types of the parameters

		Datum * values

		
 an array of length nargs, containing the actual
 parameter values

		const char * nulls

		
 an array of length nargs, describing which
 parameters are null

 If nulls is NULL then
 SPI_execute_with_args assumes that no parameters
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding parameter
 value is non-null, or 'n' if the corresponding parameter
 value is null. (In the latter case, the actual value in the
 corresponding values entry doesn't matter.) Note
 that nulls is not a text string, just an array:
 it does not need a '\0' terminator.

		bool read_only

		true for read-only execution

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 The return value is the same as for SPI_execute.

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute if successful.

OEBPS/images/callouts/1.png

OEBPS/images/callouts/2.png

OEBPS/images/callouts/3.png

OEBPS/re19.html

Name

SPI_finish — disconnect a C function from the SPI manager

Synopsis

int SPI_finish(void)

Description

 SPI_finish closes an existing connection to
 the SPI manager. You must call this function after completing the
 SPI operations needed during your C function's current invocation.
 You do not need to worry about making this happen, however, if you
 abort the transaction via elog(ERROR). In that
 case SPI will clean itself up automatically.

Return Value

		SPI_OK_FINISH

		
 if properly disconnected

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

OEBPS/re39.html

Name

SPI_cursor_find — find an existing cursor by name

Synopsis

Portal SPI_cursor_find(const char * name)

Description

 SPI_cursor_find finds an existing portal by
 name. This is primarily useful to resolve a cursor name returned
 as text by some other function.

Arguments

		const char * name

		
 name of the portal

Return Value

 pointer to the portal with the specified name, or
 NULL if none was found

Notes

 Beware that this function can return a Portal object
 that does not have cursor-like properties; for example it might not
 return tuples. If you simply pass the Portal pointer
 to other SPI functions, they can defend themselves against such
 cases, but caution is appropriate when directly inspecting
 the Portal.

OEBPS/re36.html

Name

SPI_cursor_open_with_args — set up a cursor using a query and parameters

Synopsis

Portal SPI_cursor_open_with_args(const char *name,
 const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, int cursorOptions)

Description

 SPI_cursor_open_with_args sets up a cursor
 (internally, a portal) that will execute the specified query.
 Most of the parameters have the same meanings as the corresponding
 parameters to SPI_prepare_cursor
 and SPI_cursor_open.

 For one-time query execution, this function should be preferred
 over SPI_prepare_cursor followed by
 SPI_cursor_open.
 If the same command is to be executed with many different parameters,
 either method might be faster, depending on the cost of re-planning
 versus the benefit of custom plans.

 The passed-in parameter data will be copied into the cursor's portal, so it
 can be freed while the cursor still exists.

 This function is now deprecated in favor
 of SPI_cursor_parse_open, which provides equivalent
 functionality using a more modern API for handling query parameters.

Arguments

		const char * name

		
 name for portal, or NULL to let the system
 select a name

		const char * command

		
 command string

		int nargs

		
 number of input parameters ($1, $2, etc.)

		Oid * argtypes

		
 an array of length nargs, containing the
 OIDs of the data types of the parameters

		Datum * values

		
 an array of length nargs, containing the actual
 parameter values

		const char * nulls

		
 an array of length nargs, describing which
 parameters are null

 If nulls is NULL then
 SPI_cursor_open_with_args assumes that no parameters
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding parameter
 value is non-null, or 'n' if the corresponding parameter
 value is null. (In the latter case, the actual value in the
 corresponding values entry doesn't matter.) Note
 that nulls is not a text string, just an array:
 it does not need a '\0' terminator.

		bool read_only

		true for read-only execution

		int cursorOptions

		
 integer bit mask of cursor options; zero produces default behavior

Return Value

 Pointer to portal containing the cursor. Note there is no error
 return convention; any error will be reported via elog.

OEBPS/re305.html

Name

oid2name — resolve OIDs and file nodes in a PostgreSQL™ data directory

Synopsis

oid2name [option...]

Description

 oid2name is a utility program that helps administrators to
 examine the file structure used by PostgreSQL. To make use of it, you need
 to be familiar with the database file structure, which is described in
 Chapter 73, Database Physical Storage.

Note

 The name “oid2name” is historical, and is actually rather
 misleading, since most of the time when you use it, you will really
 be concerned with tables' filenode numbers (which are the file names
 visible in the database directories). Be sure you understand the
 difference between table OIDs and table filenodes!

 oid2name connects to a target database and
 extracts OID, filenode, and/or table name information. You can also have
 it show database OIDs or tablespace OIDs.

Options

 oid2name accepts the following command-line arguments:

		-f filenode, --filenode=filenode

		show info for table with filenode filenode.

		-i, --indexes

		include indexes and sequences in the listing.

		-o oid, --oid=oid

		show info for table with OID oid.

		-q, --quiet

		omit headers (useful for scripting).

		-s, --tablespaces

		show tablespace OIDs.

		-S, --system-objects

		include system objects (those in
 information_schema, pg_toast
 and pg_catalog schemas).

		-t tablename_pattern, --table=tablename_pattern

		show info for table(s) matching tablename_pattern.

		-V, --version

		
 Print the oid2name version and exit.

		-x, --extended

		display more information about each object shown: tablespace name,
 schema name, and OID.

		-?, --help

		
 Show help about oid2name command line
 arguments, and exit.

 oid2name also accepts the following command-line
 arguments for connection parameters:

		-d database, --dbname=database

		database to connect to.

		-h host, --host=host

		database server's host.

		-H host

		database server's host. Use of this parameter is
 deprecated as of
 PostgreSQL™ 12.

		-p port, --port=port

		database server's port.

		-U username, --username=username

		user name to connect as.

 To display specific tables, select which tables to show by
 using -o, -f and/or -t.
 -o takes an OID,
 -f takes a filenode,
 and -t takes a table name (actually, it's a LIKE
 pattern, so you can use things like foo%).
 You can use as many
 of these options as you like, and the listing will include all objects
 matched by any of the options. But note that these options can only
 show objects in the database given by -d.

 If you don't give any of -o, -f or -t,
 but do give -d, it will list all tables in the database
 named by -d. In this mode, the -S and
 -i options control what gets listed.

 If you don't give -d either, it will show a listing of database
 OIDs. Alternatively you can give -s to get a tablespace
 listing.

Environment

		PGHOST, PGPORT, PGUSER

		
 Default connection parameters.

 This utility, like most other PostgreSQL™
 utilities, also uses the environment variables supported by
 libpq (see the section called “Environment Variables”).

 The environment variable PG_COLOR specifies whether to use
 color in diagnostic messages. Possible values are
 always, auto and
 never.

Notes

 oid2name requires a running database server with
 non-corrupt system catalogs. It is therefore of only limited use
 for recovering from catastrophic database corruption situations.

Examples

$ # what's in this database server, anyway?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # OK, let's look into database alvherre
$ cd $PGDATA/base/17228

$ # get top 10 db objects in the default tablespace, ordered by size
$ ls -lS * | head -10
-rw------- 1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw------- 1 alvherre alvherre 17965056 sep 14 09:51 1155291
-rw------- 1 alvherre alvherre 1204224 sep 14 09:51 16717
-rw------- 1 alvherre alvherre 581632 sep 6 17:51 1255
-rw------- 1 alvherre alvherre 237568 sep 14 09:50 16674
-rw------- 1 alvherre alvherre 212992 sep 14 09:51 1249
-rw------- 1 alvherre alvherre 204800 sep 14 09:51 16684
-rw------- 1 alvherre alvherre 196608 sep 14 09:50 16700
-rw------- 1 alvherre alvherre 163840 sep 14 09:50 16699
-rw------- 1 alvherre alvherre 122880 sep 6 17:51 16751

$ # I wonder what file 155173 is ...
$ oid2name -d alvherre -f 155173
From database "alvherre":
 Filenode Table Name

 155173 accounts

$ # you can ask for more than one object
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
 Filenode Table Name

 155173 accounts
 1155291 accounts_pkey

$ # you can mix the options, and get more details with -x
$ oid2name -d alvherre -t accounts -f 1155291 -x
From database "alvherre":
 Filenode Table Name Oid Schema Tablespace
--
 155173 accounts 155173 public pg_default
 1155291 accounts_pkey 1155291 public pg_default

$ # show disk space for every db object
$ du [0-9]* |
> while read SIZE FILENODE
> do
> echo "$SIZE `oid2name -q -d alvherre -i -f $FILENODE`"
> done
16 1155287 branches_pkey
16 1155289 tellers_pkey
17561 1155291 accounts_pkey
...

$ # same, but sort by size
$ du [0-9]* | sort -rn | while read SIZE FN
> do
> echo "$SIZE `oid2name -q -d alvherre -f $FN`"
> done
133466 155173 accounts
17561 1155291 accounts_pkey
1177 16717 pg_proc_proname_args_nsp_index
...

$ # If you want to see what's in tablespaces, use the pg_tblspc directory
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # what databases have objects in tablespace "fastdisk"?
$ ls -d 155151/*
155151/17228/ 155151/PG_VERSION

$ # Oh, what was database 17228 again?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ # Let's see what objects does this database have in the tablespace.
$ cd 155151/17228
$ ls -l
total 0
-rw------- 1 postgres postgres 0 sep 13 23:20 155156

$ # OK, this is a pretty small table ... but which one is it?
$ oid2name -d alvherre -f 155156
From database "alvherre":
 Filenode Table Name

 155156 foo

Author

 B. Palmer <bpalmer@crimelabs.net>

OEBPS/re20.html

Name

SPI_execute — execute a command

Synopsis

int SPI_execute(const char * command, bool read_only, long count)

Description

 SPI_execute executes the specified SQL command
 for count rows. If read_only
 is true, the command must be read-only, and execution overhead
 is somewhat reduced.

 This function can only be called from a connected C function.

 If count is zero then the command is executed
 for all rows that it applies to. If count
 is greater than zero, then no more than count rows
 will be retrieved; execution stops when the count is reached, much like
 adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

 will retrieve at most 5 rows from the table. Note that such a limit
 is only effective when the command actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

 inserts all rows from bar, ignoring the
 count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);

 at most 5 rows would be inserted, since execution would stop after the
 fifth RETURNING result row is retrieved.

 You can pass multiple commands in one string;
 SPI_execute returns the
 result for the command executed last. The count
 limit applies to each command separately (even though only the last
 result will actually be returned). The limit is not applied to any
 hidden commands generated by rules.

 When read_only is false,
 SPI_execute increments the command
 counter and computes a new snapshot before executing each
 command in the string. The snapshot does not actually change if the
 current transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in
 READ COMMITTED mode the snapshot update allows each command to
 see the results of newly committed transactions from other sessions.
 This is essential for consistent behavior when the commands are modifying
 the database.

 When read_only is true,
 SPI_execute does not update either the snapshot
 or the command counter, and it allows only plain SELECT
 commands to appear in the command string. The commands are executed
 using the snapshot previously established for the surrounding query.
 This execution mode is somewhat faster than the read/write mode due
 to eliminating per-command overhead. It also allows genuinely
 stable functions to be built: since successive executions
 will all use the same snapshot, there will be no change in the results.

 It is generally unwise to mix read-only and read-write commands within
 a single function using SPI; that could result in very confusing behavior,
 since the read-only queries would not see the results of any database
 updates done by the read-write queries.

 The actual number of rows for which the (last) command was executed
 is returned in the global variable SPI_processed.
 If the return value of the function is SPI_OK_SELECT,
 SPI_OK_INSERT_RETURNING,
 SPI_OK_DELETE_RETURNING, or
 SPI_OK_UPDATE_RETURNING,
 then you can use the
 global pointer SPITupleTable *SPI_tuptable to
 access the result rows. Some utility commands (such as
 EXPLAIN) also return row sets, and SPI_tuptable
 will contain the result in these cases too. Some utility commands
 (COPY, CREATE TABLE AS) don't return a row set, so
 SPI_tuptable is NULL, but they still return the number of
 rows processed in SPI_processed.

 The structure SPITupleTable is defined
 thus:

typedef struct SPITupleTable
{
 /* Public members */
 TupleDesc tupdesc; /* tuple descriptor */
 HeapTuple *vals; /* array of tuples */
 uint64 numvals; /* number of valid tuples */

 /* Private members, not intended for external callers */
 uint64 alloced; /* allocated length of vals array */
 MemoryContext tuptabcxt; /* memory context of result table */
 slist_node next; /* link for internal bookkeeping */
 SubTransactionId subid; /* subxact in which tuptable was created */
} SPITupleTable;

 The fields tupdesc,
 vals, and
 numvals
 can be used by SPI callers; the remaining fields are internal.
 vals is an array of pointers to rows.
 The number of rows is given by numvals
 (for somewhat historical reasons, this count is also returned
 in SPI_processed).
 tupdesc is a row descriptor which you can pass to
 SPI functions dealing with rows.

 SPI_finish frees all
 SPITupleTables allocated during the current
 C function. You can free a particular result table earlier, if you
 are done with it, by calling SPI_freetuptable.

Arguments

		const char * command

		
 string containing command to execute

		bool read_only

		true for read-only execution

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 If the execution of the command was successful then one of the
 following (nonnegative) values will be returned:

		SPI_OK_SELECT

		
 if a SELECT (but not SELECT
 INTO) was executed

		SPI_OK_SELINTO

		
 if a SELECT INTO was executed

		SPI_OK_INSERT

		
 if an INSERT was executed

		SPI_OK_DELETE

		
 if a DELETE was executed

		SPI_OK_UPDATE

		
 if an UPDATE was executed

		SPI_OK_MERGE

		
 if a MERGE was executed

		SPI_OK_INSERT_RETURNING

		
 if an INSERT RETURNING was executed

		SPI_OK_DELETE_RETURNING

		
 if a DELETE RETURNING was executed

		SPI_OK_UPDATE_RETURNING

		
 if an UPDATE RETURNING was executed

		SPI_OK_UTILITY

		
 if a utility command (e.g., CREATE TABLE)
 was executed

		SPI_OK_REWRITTEN

		
 if the command was rewritten into another kind of command (e.g.,
 UPDATE became an INSERT) by a rule.

 On error, one of the following negative values is returned:

		SPI_ERROR_ARGUMENT

		
 if command is NULL or
 count is less than 0

		SPI_ERROR_COPY

		
 if COPY TO stdout or COPY FROM stdin
 was attempted

		SPI_ERROR_TRANSACTION

		
 if a transaction manipulation command was attempted
 (BEGIN,
 COMMIT,
 ROLLBACK,
 SAVEPOINT,
 PREPARE TRANSACTION,
 COMMIT PREPARED,
 ROLLBACK PREPARED,
 or any variant thereof)

		SPI_ERROR_OPUNKNOWN

		
 if the command type is unknown (shouldn't happen)

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

Notes

 All SPI query-execution functions set both
 SPI_processed and
 SPI_tuptable (just the pointer, not the contents
 of the structure). Save these two global variables into local
 C function variables if you need to access the result table of
 SPI_execute or another query-execution function
 across later calls.

OEBPS/re33.html

Name

SPI_execute_plan_with_paramlist — execute a statement prepared by SPI_prepare

Synopsis

int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only,
 long count)

Description

 SPI_execute_plan_with_paramlist executes a statement
 prepared by SPI_prepare.
 This function is equivalent to SPI_execute_plan
 except that information about the parameter values to be passed to the
 query is presented differently. The ParamListInfo
 representation can be convenient for passing down values that are
 already available in that format. It also supports use of dynamic
 parameter sets via hook functions specified in ParamListInfo.

 This function is now deprecated in favor
 of SPI_execute_plan_extended.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		ParamListInfo params

		
 data structure containing parameter types and values; NULL if none

		bool read_only

		true for read-only execution

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 The return value is the same as for SPI_execute_plan.

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute_plan if successful.

OEBPS/re22.html

Name

SPI_execute_extended — execute a command with out-of-line parameters

Synopsis

int SPI_execute_extended(const char *command,
 const SPIExecuteOptions * options)

Description

 SPI_execute_extended executes a command that might
 include references to externally supplied parameters. The command text
 refers to a parameter as $n,
 and the options->params object (if supplied)
 provides values and type information for each such symbol.
 Various execution options can be specified
 in the options struct, too.

 The options->params object should normally
 mark each parameter with the PARAM_FLAG_CONST flag,
 since a one-shot plan is always used for the query.

 If options->dest is not NULL, then result
 tuples are passed to that object as they are generated by the executor,
 instead of being accumulated in SPI_tuptable. Using
 a caller-supplied DestReceiver object is particularly
 helpful for queries that might generate many tuples, since the data can
 be processed on-the-fly instead of being accumulated in memory.

Arguments

		const char * command

		
 command string

		const SPIExecuteOptions * options

		
 struct containing optional arguments

 Callers should always zero out the entire options
 struct, then fill whichever fields they want to set. This ensures forward
 compatibility of code, since any fields that are added to the struct in
 future will be defined to behave backwards-compatibly if they are zero.
 The currently available options fields are:

		ParamListInfo params

		
 data structure containing query parameter types and values; NULL if none

		bool read_only

		true for read-only execution

		bool allow_nonatomic

		
 true allows non-atomic execution of CALL and DO
 statements (but this field is ignored unless
 the SPI_OPT_NONATOMIC flag was passed
 to SPI_connect_ext)

		bool must_return_tuples

		
 if true, raise error if the query is not of a kind
 that returns tuples (this does not forbid the case where it happens to
 return zero tuples)

		uint64 tcount

		
 maximum number of rows to return,
 or 0 for no limit

		DestReceiver * dest

		
 DestReceiver object that will receive any tuples
 emitted by the query; if NULL, result tuples are accumulated into
 a SPI_tuptable structure, as
 in SPI_execute

		ResourceOwner owner

		
 This field is present for consistency
 with SPI_execute_plan_extended, but it is
 ignored, since the plan used
 by SPI_execute_extended is never saved.

Return Value

 The return value is the same as for SPI_execute.

 When options->dest is NULL,
 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute.
 When options->dest is not NULL,
 SPI_processed is set to zero and
 SPI_tuptable is set to NULL. If a tuple count
 is required, the caller's DestReceiver object must
 calculate it.

OEBPS/re21.html

Name

SPI_exec — execute a read/write command

Synopsis

int SPI_exec(const char * command, long count)

Description

 SPI_exec is the same as
 SPI_execute, with the latter's
 read_only parameter always taken as
 false.

Arguments

		const char * command

		
 string containing command to execute

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 See SPI_execute.

OEBPS/re31.html

Name

SPI_execute_plan — execute a statement prepared by SPI_prepare

Synopsis

int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char * nulls,
 bool read_only, long count)

Description

 SPI_execute_plan executes a statement prepared by
 SPI_prepare or one of its siblings.
 read_only and
 count have the same interpretation as in
 SPI_execute.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		Datum * values

		
 An array of actual parameter values. Must have same length as the
 statement's number of arguments.

		const char * nulls

		
 An array describing which parameters are null. Must have same length as
 the statement's number of arguments.

 If nulls is NULL then
 SPI_execute_plan assumes that no parameters
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding parameter
 value is non-null, or 'n' if the corresponding parameter
 value is null. (In the latter case, the actual value in the
 corresponding values entry doesn't matter.) Note
 that nulls is not a text string, just an array:
 it does not need a '\0' terminator.

		bool read_only

		true for read-only execution

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 The return value is the same as for SPI_execute,
 with the following additional possible error (negative) results:

		SPI_ERROR_ARGUMENT

		
 if plan is NULL or invalid,
 or count is less than 0

		SPI_ERROR_PARAM

		
 if values is NULL and
 plan was prepared with some parameters

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute if successful.

OEBPS/images/callouts/10.png

OEBPS/images/callouts/14.png

OEBPS/images/callouts/13.png

OEBPS/images/callouts/12.png

OEBPS/images/callouts/11.png

OEBPS/images/callouts/15.png

OEBPS/re42.html

Name

SPI_scroll_cursor_fetch — fetch some rows from a cursor

Synopsis

void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,
 long count)

Description

 SPI_scroll_cursor_fetch fetches some rows from a
 cursor. This is equivalent to the SQL command FETCH.

Arguments

		Portal portal

		
 portal containing the cursor

		FetchDirection direction

		
 one of FETCH_FORWARD,
 FETCH_BACKWARD,
 FETCH_ABSOLUTE or
 FETCH_RELATIVE

		long count

		
 number of rows to fetch for
 FETCH_FORWARD or
 FETCH_BACKWARD; absolute row number to fetch for
 FETCH_ABSOLUTE; or relative row number to fetch for
 FETCH_RELATIVE

Return Value

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute if successful.

Notes

 See the SQL FETCH(7) command
 for details of the interpretation of the
 direction and
 count parameters.

 Direction values other than FETCH_FORWARD
 may fail if the cursor's plan was not created
 with the CURSOR_OPT_SCROLL option.

OEBPS/re47.html

Name

SPI_register_relation — make an ephemeral named relation available by name in SPI queries

Synopsis

int SPI_register_relation(EphemeralNamedRelation enr)

Description

 SPI_register_relation makes an ephemeral named
 relation, with associated information, available to queries planned and
 executed through the current SPI connection.

Arguments

		EphemeralNamedRelation enr

		
 the ephemeral named relation registry entry

Return Value

 If the execution of the command was successful then the following
 (nonnegative) value will be returned:

		SPI_OK_REL_REGISTER

		
 if the relation has been successfully registered by name

 On error, one of the following negative values is returned:

		SPI_ERROR_ARGUMENT

		
 if enr is NULL or its
 name field is NULL

		SPI_ERROR_UNCONNECTED

		
 if called from an unconnected C function

		SPI_ERROR_REL_DUPLICATE

		
 if the name specified in the name field of
 enr is already registered for this connection

OEBPS/re27.html

Name

SPI_prepare_params — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare_params(const char * command,
 ParserSetupHook parserSetup,
 void * parserSetupArg,
 int cursorOptions)

Description

 SPI_prepare_params creates and returns a prepared
 statement for the specified command, but doesn't execute the command.
 This function is equivalent to SPI_prepare_cursor,
 with the addition that the caller can specify parser hook functions
 to control the parsing of external parameter references.

 This function is now deprecated in favor
 of SPI_prepare_extended.

Arguments

		const char * command

		
 command string

		ParserSetupHook parserSetup

		
 Parser hook setup function

		void * parserSetupArg

		
 pass-through argument for parserSetup

		int cursorOptions

		
 integer bit mask of cursor options; zero produces default behavior

Return Value

 SPI_prepare_params has the same return conventions as
 SPI_prepare.

OEBPS/re34.html

Name

SPI_execp — execute a statement in read/write mode

Synopsis

int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls, long count)

Description

 SPI_execp is the same as
 SPI_execute_plan, with the latter's
 read_only parameter always taken as
 false.

Arguments

		SPIPlanPtr plan

		
 prepared statement (returned by SPI_prepare)

		Datum * values

		
 An array of actual parameter values. Must have same length as the
 statement's number of arguments.

		const char * nulls

		
 An array describing which parameters are null. Must have same length as
 the statement's number of arguments.

 If nulls is NULL then
 SPI_execp assumes that no parameters
 are null. Otherwise, each entry of the nulls
 array should be ' ' if the corresponding parameter
 value is non-null, or 'n' if the corresponding parameter
 value is null. (In the latter case, the actual value in the
 corresponding values entry doesn't matter.) Note
 that nulls is not a text string, just an array:
 it does not need a '\0' terminator.

		long count

		
 maximum number of rows to return,
 or 0 for no limit

Return Value

 See SPI_execute_plan.

 SPI_processed and
 SPI_tuptable are set as in
 SPI_execute if successful.

