Rules and Privileges
PostgreSQL 9.3.24 Documentation | ||||
---|---|---|---|---|
Prev | Up | Chapter 38. The Rule System | Next |
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the original query get accessed. When update rules are used, this can include write access to tables.
Rewrite rules don't have a separate owner. The owner of a relation (table or view) is automatically the owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior of the default access control system. Relations that are used due to rules get checked against the privileges of the rule owner, not the user invoking the rule. This means that a user only needs the required privileges for the tables/views that he names explicitly in his queries.
For example: A user has a list of phone numbers where some of them are private, the others are of interest for the secretary of the office. He can construct the following:
CREATE TABLE phone_data (person text, phone text, private boolean); CREATE VIEW phone_number AS SELECT person, CASE WHEN NOT private THEN phone END AS phone FROM phone_data; GRANT SELECT ON phone_number TO secretary;
Nobody except him (and the database superusers) can access the phone_data table. But because of the GRANT , the secretary can run a SELECT on the phone_number view. The rule system will rewrite the SELECT from phone_number into a SELECT from phone_data . Since the user is the owner of phone_number and therefore the owner of the rule, the read access to phone_data is now checked against his privileges and the query is permitted. The check for accessing phone_number is also performed, but this is done against the invoking user, so nobody but the user and the secretary can use it.
The privileges are checked rule by rule. So the secretary is for now the only one who can see the public phone numbers. But the secretary can setup another view and grant access to that to the public. Then, anyone can see the phone_number data through the secretary's view. What the secretary cannot do is to create a view that directly accesses phone_data . (Actually he can, but it will not work since every access will be denied during the permission checks.) And as soon as the user will notice, that the secretary opened his phone_number view, he can revoke his access. Immediately, any access to the secretary's view would fail.
One might think that this rule-by-rule checking is a security hole, but in fact it isn't. But if it did not work this way, the secretary could set up a table with the same columns as phone_number and copy the data to there once per day. Then it's his own data and he can grant access to everyone he wants. A GRANT command means, "I trust you" . If someone you trust does the thing above, it's time to think it over and then use REVOKE .
Note that while views can be used to hide the contents of certain columns using the technique shown above, they cannot be used to reliably conceal the data in unseen rows unless the security_barrier flag has been set. For example, the following view is insecure:
CREATE VIEW phone_number AS SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';
This view might seem secure, since the rule system will rewrite any
SELECT
from
phone_number
into a
SELECT
from
phone_data
and add the
qualification that only entries where
phone
does not begin
with 412 are wanted. But if the user can create his or her own functions,
it is not difficult to convince the planner to execute the user-defined
function prior to the
NOT LIKE
expression.
For example:
CREATE FUNCTION tricky(text, text) RETURNS bool AS $$ BEGIN RAISE NOTICE '% => %', $1, $2; RETURN true; END $$ LANGUAGE plpgsql COST 0.0000000000000000000001; SELECT * FROM phone_number WHERE tricky(person, phone);
Every person and phone number in the
phone_data
table will be
printed as a
NOTICE
, because the planner will choose to
execute the inexpensive
tricky
function before the
more expensive
NOT LIKE
. Even if the user is
prevented from defining new functions, built-in functions can be used in
similar attacks. (For example, most casting functions include their
input values in the error messages they produce.)
Similar considerations apply to update rules. In the examples of the previous section, the owner of the tables in the example database could grant the privileges SELECT , INSERT , UPDATE , and DELETE on the shoelace view to someone else, but only SELECT on shoelace_log . The rule action to write log entries will still be executed successfully, and that other user could see the log entries. But he cannot create fake entries, nor could he manipulate or remove existing ones. In this case, there is no possibility of subverting the rules by convincing the planner to alter the order of operations, because the only rule which references shoelace_log is an unqualified INSERT . This might not be true in more complex scenarios.
When it is necessary for a view to provide row-level security, the security_barrier attribute should be applied to the view. This prevents maliciously-chosen functions and operators from being invoked on rows until after the view has done its work. For example, if the view shown above had been created like this, it would be secure:
CREATE VIEW phone_number WITH (security_barrier) AS SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';
Views created with the security_barrier may perform far worse than views created without this option. In general, there is no way to avoid this: the fastest possible plan must be rejected if it may compromise security. For this reason, this option is not enabled by default.
The query planner has more flexibility when dealing with functions that have no side effects. Such functions are referred to as LEAKPROOF , and include many simple, commonly used operators, such as many equality operators. The query planner can safely allow such functions to be evaluated at any point in the query execution process, since invoking them on rows invisible to the user will not leak any information about the unseen rows. In contrast, a function that might throw an error depending on the values received as arguments (such as one that throws an error in the event of overflow or division by zero) are not leak-proof, and could provide significant information about the unseen rows if applied before the security view's row filters.
It is important to understand that even a view created with the security_barrier option is intended to be secure only in the limited sense that the contents of the invisible tuples will not be passed to possibly-insecure functions. The user may well have other means of making inferences about the unseen data; for example, they can see the query plan using EXPLAIN , or measure the run time of queries against the view. A malicious attacker might be able to infer something about the amount of unseen data, or even gain some information about the data distribution or most common values (since these things may affect the run time of the plan; or even, since they are also reflected in the optimizer statistics, the choice of plan). If these types of "covert channel" attacks are of concern, it is probably unwise to grant any access to the data at all.