Foreign Data Wrapper Callback Routines
PostgreSQL 9.5.14 Documentation | |||
---|---|---|---|
Prev | Up | Chapter 54. Writing A Foreign Data Wrapper | Next |
The FDW handler function returns a palloc'd FdwRoutine struct containing pointers to the callback functions described below. The scan-related functions are required, the rest are optional.
The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h , which see for additional details.
54.2.1. FDW Routines For Scanning Foreign Tables
void GetForeignRelSize (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid);
Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query that scans a foreign table. root is the planner's global information about the query; baserel is the planner's information about this table; and foreigntableid is the pg_class OID of the foreign table. ( foreigntableid could be obtained from the planner data structures, but it's passed explicitly to save effort.)
This function should update baserel->rows to be the expected number of rows returned by the table scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows is just a constant default estimate, which should be replaced if at all possible. The function may also choose to update baserel->width if it can compute a better estimate of the average result row width.
See Section 54.4 for additional information.
void GetForeignPaths (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid);
Create possible access paths for a scan on a foreign table.
This is called during query planning.
The parameters are the same as for
GetForeignRelSize
,
which has already been called.
This function must generate at least one access path
(
ForeignPath
node) for a scan on the foreign table and
must call
add_path
to add each such path to
baserel->pathlist
. It's recommended to use
create_foreignscan_path
to build the
ForeignPath
nodes. The function can generate multiple
access paths, e.g., a path which has valid
pathkeys
to
represent a pre-sorted result. Each access path must contain cost
estimates, and can contain any FDW-private information that is needed to
identify the specific scan method intended.
See Section 54.4 for additional information.
ForeignScan * GetForeignPlan (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid, ForeignPath *best_path, List *tlist, List *scan_clauses, Plan *outer_plan);
Create a
ForeignScan
plan node from the selected foreign
access path. This is called at the end of query planning.
The parameters are as for
GetForeignRelSize
, plus
the selected
ForeignPath
(previously produced by
GetForeignPaths
or
GetForeignJoinPaths
),
the target list to be emitted by the plan node,
the restriction clauses to be enforced by the plan node,
and the outer subplan of the
ForeignScan
,
which is used for rechecks performed by
RecheckForeignScan
.
(If the path is for a join rather than a base
relation,
foreigntableid
is
InvalidOid
.)
This function must create and return a
ForeignScan
plan
node; it's recommended to use
make_foreignscan
to build the
ForeignScan
node.
See Section 54.4 for additional information.
void BeginForeignScan (ForeignScanState *node, int eflags);
Begin executing a foreign scan. This is called during executor startup.
It should perform any initialization needed before the scan can start,
but not start executing the actual scan (that should be done upon the
first call to
IterateForeignScan
).
The
ForeignScanState
node has already been created, but
its
fdw_state
field is still NULL. Information about
the table to scan is accessible through the
ForeignScanState
node (in particular, from the underlying
ForeignScan
plan node, which contains any FDW-private
information provided by
GetForeignPlan
).
eflags
contains flag bits describing the executor's
operating mode for this plan node.
Note that when
(eflags & EXEC_FLAG_EXPLAIN_ONLY)
is
true, this function should not perform any externally-visible actions;
it should only do the minimum required to make the node state valid
for
ExplainForeignScan
and
EndForeignScan
.
TupleTableSlot * IterateForeignScan (ForeignScanState *node);
Fetch one row from the foreign source, returning it in a tuple table slot
(the node's
ScanTupleSlot
should be used for this
purpose). Return NULL if no more rows are available. The tuple table
slot infrastructure allows either a physical or virtual tuple to be
returned; in most cases the latter choice is preferable from a
performance standpoint. Note that this is called in a short-lived memory
context that will be reset between invocations. Create a memory context
in
BeginForeignScan
if you need longer-lived storage, or use
the
es_query_cxt
of the node's
EState
.
The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must match the row type of the foreign table being scanned. If you choose to optimize away fetching columns that are not needed, you should insert nulls in those column positions, or else generate a fdw_scan_tlist list with those columns omitted.
Note that PostgreSQL 's executor doesn't care whether the rows returned violate any constraints that were defined on the foreign table - but the planner does care, and may optimize queries incorrectly if there are rows visible in the foreign table that do not satisfy a declared constraint. If a constraint is violated when the user has declared that the constraint should hold true, it may be appropriate to raise an error (just as you would need to do in the case of a data type mismatch).
void ReScanForeignScan (ForeignScanState *node);
Restart the scan from the beginning. Note that any parameters the scan depends on may have changed value, so the new scan does not necessarily return exactly the same rows.
void EndForeignScan (ForeignScanState *node);
End the scan and release resources. It is normally not important to release palloc'd memory, but for example open files and connections to remote servers should be cleaned up.
54.2.2. FDW Routines For Scanning Foreign Joins
If an FDW supports performing foreign joins remotely (rather than by fetching both tables' data and doing the join locally), it should provide this callback function:
void GetForeignJoinPaths (PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, JoinPathExtraData *extra);
Create possible access paths for a join of two (or more) foreign tables
that all belong to the same foreign server. This optional
function is called during query planning. As
with
GetForeignPaths
, this function should
generate
ForeignPath
path(s) for the
supplied
joinrel
, and call
add_path
to add these
paths to the set of paths considered for the join. But unlike
GetForeignPaths
, it is not necessary that this function
succeed in creating at least one path, since paths involving local
joining are always possible.
Note that this function will be invoked repeatedly for the same join relation, with different combinations of inner and outer relations; it is the responsibility of the FDW to minimize duplicated work.
If a ForeignPath path is chosen for the join, it will represent the entire join process; paths generated for the component tables and subsidiary joins will not be used. Subsequent processing of the join path proceeds much as it does for a path scanning a single foreign table. One difference is that the scanrelid of the resulting ForeignScan plan node should be set to zero, since there is no single relation that it represents; instead, the fs_relids field of the ForeignScan node represents the set of relations that were joined. (The latter field is set up automatically by the core planner code, and need not be filled by the FDW.) Another difference is that, because the column list for a remote join cannot be found from the system catalogs, the FDW must fill fdw_scan_tlist with an appropriate list of TargetEntry nodes, representing the set of columns it will supply at run time in the tuples it returns.
See Section 54.4 for additional information.
54.2.3. FDW Routines For Updating Foreign Tables
If an FDW supports writable foreign tables, it should provide some or all of the following callback functions depending on the needs and capabilities of the FDW:
void AddForeignUpdateTargets (Query *parsetree, RangeTblEntry *target_rte, Relation target_relation);
UPDATE and DELETE operations are performed against rows previously fetched by the table-scanning functions. The FDW may need extra information, such as a row ID or the values of primary-key columns, to ensure that it can identify the exact row to update or delete. To support that, this function can add extra hidden, or "junk" , target columns to the list of columns that are to be retrieved from the foreign table during an UPDATE or DELETE .
To do that, add
TargetEntry
items to
parsetree->targetList
, containing expressions for the
extra values to be fetched. Each such entry must be marked
resjunk
=
true
, and must have a distinct
resname
that will identify it at execution time.
Avoid using names matching
ctid
N
,
wholerow
, or
wholerow
N
, as the core system can
generate junk columns of these names.
If the extra expressions are more complex than simple Vars, they
must be run through
eval_const_expressions
before adding them to the targetlist.
Although this function is called during planning, the information provided is a bit different from that available to other planning routines. parsetree is the parse tree for the UPDATE or DELETE command, while target_rte and target_relation describe the target foreign table.
If the
AddForeignUpdateTargets
pointer is set to
NULL
, no extra target expressions are added.
(This will make it impossible to implement
DELETE
operations, though
UPDATE
may still be feasible if the FDW
relies on an unchanging primary key to identify rows.)
List * PlanForeignModify (PlannerInfo *root, ModifyTable *plan, Index resultRelation, int subplan_index);
Perform any additional planning actions needed for an insert, update, or
delete on a foreign table. This function generates the FDW-private
information that will be attached to the
ModifyTable
plan
node that performs the update action. This private information must
have the form of a
List
, and will be delivered to
BeginForeignModify
during the execution stage.
root is the planner's global information about the query. plan is the ModifyTable plan node, which is complete except for the fdwPrivLists field. resultRelation identifies the target foreign table by its range table index. subplan_index identifies which target of the ModifyTable plan node this is, counting from zero; use this if you want to index into plan->plans or other substructure of the plan node.
See Section 54.4 for additional information.
If the
PlanForeignModify
pointer is set to
NULL
, no additional plan-time actions are taken, and the
fdw_private
list delivered to
BeginForeignModify
will be NIL.
void BeginForeignModify (ModifyTableState *mtstate, ResultRelInfo *rinfo, List *fdw_private, int subplan_index, int eflags);
Begin executing a foreign table modification operation. This routine is
called during executor startup. It should perform any initialization
needed prior to the actual table modifications. Subsequently,
ExecForeignInsert
,
ExecForeignUpdate
or
ExecForeignDelete
will be called for each tuple to be
inserted, updated, or deleted.
mtstate
is the overall state of the
ModifyTable
plan node being executed; global data about
the plan and execution state is available via this structure.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table. (The
ri_FdwState
field of
ResultRelInfo
is available for the FDW to store any
private state it needs for this operation.)
fdw_private
contains the private data generated by
PlanForeignModify
, if any.
subplan_index
identifies which target of
the
ModifyTable
plan node this is.
eflags
contains flag bits describing the executor's
operating mode for this plan node.
Note that when
(eflags & EXEC_FLAG_EXPLAIN_ONLY)
is
true, this function should not perform any externally-visible actions;
it should only do the minimum required to make the node state valid
for
ExplainForeignModify
and
EndForeignModify
.
If the
BeginForeignModify
pointer is set to
NULL
, no action is taken during executor startup.
TupleTableSlot * ExecForeignInsert (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Insert one tuple into the foreign table. estate is global execution state for the query. rinfo is the ResultRelInfo struct describing the target foreign table. slot contains the tuple to be inserted; it will match the row-type definition of the foreign table. planSlot contains the tuple that was generated by the ModifyTable plan node's subplan; it differs from slot in possibly containing additional "junk" columns. (The planSlot is typically of little interest for INSERT cases, but is provided for completeness.)
The return value is either a slot containing the data that was actually inserted (this might differ from the data supplied, for example as a result of trigger actions), or NULL if no row was actually inserted (again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.
The data in the returned slot is used only if the INSERT query has a RETURNING clause or the foreign table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. Regardless, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignInsert
pointer is set to
NULL
, attempts to insert into the foreign table will fail
with an error message.
TupleTableSlot * ExecForeignUpdate (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Update one tuple in the foreign table.
estate
is global execution state for the query.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table.
slot
contains the new data for the tuple; it will match the
row-type definition of the foreign table.
planSlot
contains the tuple that was generated by the
ModifyTable
plan node's subplan; it differs from
slot
in possibly containing additional
"junk"
columns. In particular, any junk columns that were requested by
AddForeignUpdateTargets
will be available from this slot.
The return value is either a slot containing the row as it was actually updated (this might differ from the data supplied, for example as a result of trigger actions), or NULL if no row was actually updated (again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.
The data in the returned slot is used only if the UPDATE query has a RETURNING clause or the foreign table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. Regardless, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignUpdate
pointer is set to
NULL
, attempts to update the foreign table will fail
with an error message.
TupleTableSlot * ExecForeignDelete (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Delete one tuple from the foreign table.
estate
is global execution state for the query.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table.
slot
contains nothing useful upon call, but can be used to
hold the returned tuple.
planSlot
contains the tuple that was generated by the
ModifyTable
plan node's subplan; in particular, it will
carry any junk columns that were requested by
AddForeignUpdateTargets
. The junk column(s) must be used
to identify the tuple to be deleted.
The return value is either a slot containing the row that was deleted, or NULL if no row was deleted (typically as a result of triggers). The passed-in slot can be used to hold the tuple to be returned.
The data in the returned slot is used only if the DELETE query has a RETURNING clause or the foreign table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. Regardless, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignDelete
pointer is set to
NULL
, attempts to delete from the foreign table will fail
with an error message.
void EndForeignModify (EState *estate, ResultRelInfo *rinfo);
End the table update and release resources. It is normally not important to release palloc'd memory, but for example open files and connections to remote servers should be cleaned up.
If the
EndForeignModify
pointer is set to
NULL
, no action is taken during executor shutdown.
int IsForeignRelUpdatable (Relation rel);
Report which update operations the specified foreign table supports. The return value should be a bit mask of rule event numbers indicating which operations are supported by the foreign table, using the CmdType enumeration; that is, (1 << CMD_UPDATE) = 4 for UPDATE , (1 << CMD_INSERT) = 8 for INSERT , and (1 << CMD_DELETE) = 16 for DELETE .
If the
IsForeignRelUpdatable
pointer is set to
NULL
, foreign tables are assumed to be insertable, updatable,
or deletable if the FDW provides
ExecForeignInsert
,
ExecForeignUpdate
, or
ExecForeignDelete
respectively. This function is only needed if the FDW supports some
tables that are updatable and some that are not. (Even then, it's
permissible to throw an error in the execution routine instead of
checking in this function. However, this function is used to determine
updatability for display in the
information_schema
views.)
54.2.4. FDW Routines For Row Locking
If an FDW wishes to support late row locking (as described in Section 54.5 ), it must provide the following callback functions:
RowMarkType GetForeignRowMarkType (RangeTblEntry *rte, LockClauseStrength strength);
Report which row-marking option to use for a foreign table. rte is the RangeTblEntry node for the table and strength describes the lock strength requested by the relevant FOR UPDATE/SHARE clause, if any. The result must be a member of the RowMarkType enum type.
This function is called during query planning for each foreign table that appears in an UPDATE , DELETE , or SELECT FOR UPDATE/SHARE query and is not the target of UPDATE or DELETE .
If the
GetForeignRowMarkType
pointer is set to
NULL
, the
ROW_MARK_COPY
option is always used.
(This implies that
RefetchForeignRow
will never be called,
so it need not be provided either.)
See Section 54.5 for more information.
HeapTuple RefetchForeignRow (EState *estate, ExecRowMark *erm, Datum rowid, bool *updated);
Re-fetch one tuple from the foreign table, after locking it if required. estate is global execution state for the query. erm is the ExecRowMark struct describing the target foreign table and the row lock type (if any) to acquire. rowid identifies the tuple to be fetched. updated is an output parameter.
This function should return a palloc'ed copy of the fetched tuple,
or
NULL
if the row lock couldn't be obtained. The row lock
type to acquire is defined by
erm->markType
, which is the
value previously returned by
GetForeignRowMarkType
.
(
ROW_MARK_REFERENCE
means to just re-fetch the tuple without
acquiring any lock, and
ROW_MARK_COPY
will never be seen by
this routine.)
In addition, *updated should be set to true if what was fetched was an updated version of the tuple rather than the same version previously obtained. (If the FDW cannot be sure about this, always returning true is recommended.)
Note that by default, failure to acquire a row lock should result in raising an error; a NULL return is only appropriate if the SKIP LOCKED option is specified by erm->waitPolicy .
The rowid is the ctid value previously read for the row to be re-fetched. Although the rowid value is passed as a Datum , it can currently only be a tid . The function API is chosen in hopes that it may be possible to allow other data types for row IDs in future.
If the
RefetchForeignRow
pointer is set to
NULL
, attempts to re-fetch rows will fail
with an error message.
See Section 54.5 for more information.
bool RecheckForeignScan (ForeignScanState *node, TupleTableSlot *slot);
Recheck that a previously-returned tuple still matches the relevant scan and join qualifiers, and possibly provide a modified version of the tuple. For foreign data wrappers which do not perform join pushdown, it will typically be more convenient to set this to NULL and instead set fdw_recheck_quals appropriately. When outer joins are pushed down, however, it isn't sufficient to reapply the checks relevant to all the base tables to the result tuple, even if all needed attributes are present, because failure to match some qualifier might result in some attributes going to NULL, rather than in no tuple being returned. RecheckForeignScan can recheck qualifiers and return true if they are still satisfied and false otherwise, but it can also store a replacement tuple into the supplied slot.
To implement join pushdown, a foreign data wrapper will typically construct an alternative local join plan which is used only for rechecks; this will become the outer subplan of the ForeignScan . When a recheck is required, this subplan can be executed and the resulting tuple can be stored in the slot. This plan need not be efficient since no base table will return more than one row; for example, it may implement all joins as nested loops.
54.2.5. FDW Routines for EXPLAIN
void ExplainForeignScan (ForeignScanState *node, ExplainState *es);
Print additional
EXPLAIN
output for a foreign table scan.
This function can call
ExplainPropertyText
and
related functions to add fields to the
EXPLAIN
output.
The flag fields in
es
can be used to determine what to
print, and the state of the
ForeignScanState
node
can be inspected to provide run-time statistics in the
EXPLAIN
ANALYZE
case.
If the
ExplainForeignScan
pointer is set to
NULL
, no additional information is printed during
EXPLAIN
.
void ExplainForeignModify (ModifyTableState *mtstate, ResultRelInfo *rinfo, List *fdw_private, int subplan_index, struct ExplainState *es);
Print additional
EXPLAIN
output for a foreign table update.
This function can call
ExplainPropertyText
and
related functions to add fields to the
EXPLAIN
output.
The flag fields in
es
can be used to determine what to
print, and the state of the
ModifyTableState
node
can be inspected to provide run-time statistics in the
EXPLAIN
ANALYZE
case. The first four arguments are the same as for
BeginForeignModify
.
If the
ExplainForeignModify
pointer is set to
NULL
, no additional information is printed during
EXPLAIN
.
54.2.6. FDW Routines for ANALYZE
bool AnalyzeForeignTable (Relation relation, AcquireSampleRowsFunc *func, BlockNumber *totalpages);
This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics for this foreign table, it should return true , and provide a pointer to a function that will collect sample rows from the table in func , plus the estimated size of the table in pages in totalpages . Otherwise, return false .
If the FDW does not support collecting statistics for any tables, the
AnalyzeForeignTable
pointer can be set to
NULL
.
If provided, the sample collection function must have the signature
int AcquireSampleRowsFunc (Relation relation, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows);
A random sample of up to targrows rows should be collected from the table and stored into the caller-provided rows array. The actual number of rows collected must be returned. In addition, store estimates of the total numbers of live and dead rows in the table into the output parameters totalrows and totaldeadrows . (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)
54.2.7. FDW Routines For IMPORT FOREIGN SCHEMA
List * ImportForeignSchema (ImportForeignSchemaStmt *stmt, Oid serverOid);
Obtain a list of foreign table creation commands. This function is called when executing IMPORT FOREIGN SCHEMA , and is passed the parse tree for that statement, as well as the OID of the foreign server to use. It should return a list of C strings, each of which must contain a CREATE FOREIGN TABLE command. These strings will be parsed and executed by the core server.
Within the ImportForeignSchemaStmt struct, remote_schema is the name of the remote schema from which tables are to be imported. list_type identifies how to filter table names: FDW_IMPORT_SCHEMA_ALL means that all tables in the remote schema should be imported (in this case table_list is empty), FDW_IMPORT_SCHEMA_LIMIT_TO means to include only tables listed in table_list , and FDW_IMPORT_SCHEMA_EXCEPT means to exclude the tables listed in table_list . options is a list of options used for the import process. The meanings of the options are up to the FDW. For example, an FDW could use an option to define whether the NOT NULL attributes of columns should be imported. These options need not have anything to do with those supported by the FDW as database object options.
The FDW may ignore the local_schema field of the ImportForeignSchemaStmt , because the core server will automatically insert that name into the parsed CREATE FOREIGN TABLE commands.
The FDW does not have to concern itself with implementing the filtering
specified by
list_type
and
table_list
,
either, as the core server will automatically skip any returned commands
for tables excluded according to those options. However, it's often
useful to avoid the work of creating commands for excluded tables in the
first place. The function
IsImportableForeignTable()
may be
useful to test whether a given foreign-table name will pass the filter.
If the FDW does not support importing table definitions, the
ImportForeignSchema
pointer can be set to
NULL
.