PostgreSQL 9.6.12 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.6.12 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlvi
1. What iS POSEZIESQLT ...c.oeiiiiiiiiiiieieete ettt sttt st xlvi
2. A Brief History of POStZreSQLu........ooviiiiiiiieiieie ittt et sae st xlvii

2.1. The Berkeley POSTGRES Projectcccueecvieriierieniiiieeniienieeieeieeniee e eve e sae e xlvii
2.2, POSEEIESOS ..ottt ettt ettt ettt et e st e et e e baenaaeenten xlviii
2.3, POSEEIESQLou. ittt ettt st ettt et e et et esnbeenbeenaaeeateen xlviii
3. COMNVEINTIONS ...ttt ettt ettt ettt et b sttt et e e st e bt sbeesae s bt easenbe e st et e ebeenaesuesnnennesueens xlix
4. Further INfOrmation........coccoveriiiiiiiiniiiec ettt sttt ettt b sae e xlix
5. Bug Reporting GUIEIINES........ccviiiiiriiiniiiiieieerite ettt ettt ettt e beesaeesaee s xlix
5.1, TAentifying BUES ...co.eeeieiiieiiieieeeee ettt ettt et sttt et n 1
5.2, What t0 REPOTT ..ttt sttt ettt st sabe st esbaesaae st s 1
5.3. Where to RePOTt BUZS ..cc..eiiiiiiiiiiiiiiieieeeeteeteee ettt sttt s lii
I. Tutorial 1
1. GENG STATTEA ...cueeieeiieieeiieie ettt ettt et st ae e e sne s enesneae 1
1.1 INSEALIALION ..ttt ettt et e e e e sbe e et e e bt e sbaesbeebeenne 1
1.2. Architectural Fundamentals.............coceeiiiiiiiiiriiiiiiiieeeeecteeeeeete et 1
1.3. Creating @ Databasececveruieuierieeieeiesie ettt ettt et ese et et e eesae et ete e ens 2
1.4, AcCeSSING @ DAtaDASEccveeuieiietieiiiieiere ettt ettt ettt naeene 3
2. The SQL LaNZUAZEooueeuieiieeieie ettt ettt ettt et ettt et sttt esbe e st e e sb e et e steeatenbesseenbenbeans 6
2.1, INEEOAUCTION 1.utiiieitiiieteet ettt ettt b e et b et e bt eat e te e bt e e e s beene e beebeeneeneeeae 6
2.2 CONCEPLS ...eneeeeeieeteettete et ettt et et s bt et e bt e b et e e bt e st e sbeea e et e ebees e bt eaeenbesbeemtesbeestenbeebeeneeneeene 6
2.3. Creating @ NeW TabIecccoiiiiiiiiiiieieeeeeee ettt 6
2.4. Populating a Table With ROWScccoeriiiiiiiiiiieiectee e 7
2.5. QUErYING @ TaADIEooueiiiiiiiiiiiiiee ettt 8
2.6. J0Ins BetWeen Tables.cccoiiiiiriiriiiiiieieneeteestee ettt s 10
2.7. AgEregate FUNCHIONScoeeviiiiiiirieeiteteeteeteste ettt sttt sbe e eaees 12
2.8 UPAALES ...ttt sttt ettt ettt ettt et b ettt e b et bbb bbb et b enees 14
2.9, DIETIONS ...ttt sttt ettt ettt ettt st e e b e eb et ebeetesbe et e b e et b et sbeeneesaeenaen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiiiieiteteecee ettt ettt ettt s ettt st et sbe e sbeeneen 16
3.1 INEEOAUCTION 1.ttt ettt sttt ettt bbbt sbeeneesueenees 16
3.2 VIBWS ittt ettt ettt ettt st h ettt e be et bbbttt ebe et saeeneen 16
3.3, FOTEIZN KBYS....iiiiiiiieiieiieete ettt ettt ettt ettt sttt e sat e st e st e ebeesaeesaseensaensee e 16
34, TTANSACHIONS ..c.eevteniiiietieteete sttt ettt ettt et et st e e b e eet et eae e aesaeess e besbn et e sbeeneesaeennen 17
3.5. WIndOW FUNCHONSoouiriiiiniiiieniinieieeieetentcet ettt ettt et sae e e 19
3.6. INHETILANCE ..ottt ettt et sbe e s 22
3.7 CONCIUSION ...ttt sttt ettt ettt et ettt e b e et eae e saeess e b san et sbeeneesaeennen 24

I1. The SQL Language 25

4. SQL SYNEAX ..entiiieiieiieiee ettt ettt e sttt a e et st e n et ne et s re e neeane 27

4.1, LeXiCal SIUCTUTE.eiitieiiieieeieeite ettt ettt et ettt st e bt et st e nbeesaeesaee s 27
4.1.1. Identifiers and Key Words.........ccoceeviiriiniiiniiniinieieeeetceeeeesee e 27

A 1.2, CONSLANLS .euvteeieeuieeieeeite et et et te sttt et e bt e sat e et e bt esbe e s bt e bt esbeesabeebeenbeesaseeseenseenas 29
4.1.2.1. String CONSLANLScceiuiiiiiiiiriiiiiiieeee ettt e 29

4.1.2.2. String Constants with C-style ESCapes.........ccccocevveveeererenenienreeeennennen 29

4.1.2.3. String Constants with Unicode Escapes..........cccceeeeieneneenenenieniennenne 31

4.1.2.4. Dollar-quoted String CONSANLSc.cevverueerieriieierieeeeee et 32

iii

4.1.2.5. Bit-String CONSIANTScc.eervierierieeiienienieeieesieeste et esitesatesteenaeesieesaeeen 33

4.1.2.6. Numeric CONSLANLSccccvruiiiriiniiieiiieieiee e 33

4.1.2.7. Constants of Other TYPEScccueevuerrrierieriiiiiienieeree ettt 33

1.3, OPCTALOTS ...ueeneieeiiieieeeite ettt ettt et e bt e s et e s bt e bt e sbtesabeebeesaeesabeeseesbeesaseeseenseenan 34

4. 1.4, SPECTial CharACLEIS....ccoueiruieeiieniieniieeitette ettt e rite sttt ettt e sttt sbeesbeesareebeesaee e 35
4.1.5. COMMENLScueniiiiriiieiieie ettt ettt ettt n e e e e st ne s b e nesaeenee 35
4.1.6. Operator PreCedeNCecc.cevuiriiriiiinieiinieiene ettt 36

4.2. Value EXPIEeSSIONS.coouiiiiiiiiiiiiiieiee ettt ettt s 37
4.2.1. Column REfEIENCEScouiiiiiiiiniiiiteitere ettt 38
4.2.2. Positional Parameters........c.cceeveeriiriiinieniiiieeteste ettt 38
4.2.3. SUDSCIIPES ..ttt e e e 39
4.2.4. Field SEIECLIONoeuieuiiiieiieiecteeete ettt ettt st e e ene s 39
4.2.5. Operator INVOCALIONSc...evvuieriiriieiieiterie ettt ettt ettt saee e 40
4.2.6. FUNCHION CallS ..ottt st 40
4.2.77. Aggregate EXPreSSIONS.eeruiitirieriieiieienttete ettt sttt et te b eeee e see s 40
4.2.8. Window Function Calls...........cceeoieiiiiininieieneeieieseee e 43
4.2.9. TYPE CASS ...t e s 45
4.2.10. Collation EXPreSSIONScccceruerierterieniinieeteniesiteiesteeitesieeiee e etesbeseeeneeseeene 45
4.2.11. Scalar SUDQUETIESccouerteriertiriieiieitete ettt ettt sbe e 46
4.2.12. Array CONSLIUCLOTS ..c..eeviritenteteeiteteeitete st ete st st et st eeat et et esaesbeebenbesssesesbeenee 47
4.2.13. ROW CONSIIUCLOTS......eviuiiinienienieiieiietesie ettt st sttt et saesnennenesnesaeas 48
4.2.14. Expression Evaluation RUlescccccoceviinininiinininicceccecee 50

4.3, Calling FUNCHONS.coutirieriieiiiieitenic ettt ettt ettt st et ettt sbe e s e et sbe e sie e 51
4.3.1. Using Positional NOtationcecuevuerieniineeienenieieneeteneeeene et 52
4.3.2. Using Named NOTAIONcccveeruieriieriieniienieesieesiteniteeteesieesieesseesseesseessseesseesseenes 52
4.3.3. Using MixXed NOTAtION.......eeruierieriieitenie st eieesite st ete et esitesbeesaeesieesereeaeenaee e 53

5. Data DefINItIONc.couiiiiiiiiiiiii e 55
5.1 Table BASICSoouiiuiiiiiiiiiciiiciccece e 55
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiccccee e 56
5.3 CONSILANES ...c.cuiiiiiiieieeeec ettt s saea 57
5.3.1. Check CONSLIAINLScciuiiuiiiiiiieiiiii it 57
5.3.2. NOt-NUll CONSIAINLSoeviiiiiiiiiiiiiiieieeee e 59
5.3.3. UnNiqUe CONSLIAINES.eertiiiiieiieniieiieeiteenite st eieeiee st e ebeeteesbtesabeebeesbeesaresaseennes 60
5.3.4. Primary KeYS......coeoiiiiiiiiiiceceeeceeee e 61
5.3.5. FOreign KeYScouiiiiiiiiiiiiieieneceeeeete et 62
5.3.6. EXClUSION CONSIIAINLSeeruveeiieiieriieeieeiee sttt e sttt e b s 65

5.4. System COIUMISc..oouiiiiiiiiiieiieee ettt et st s 65
5.5. Modifying TabIes........ccooiiiiiiiiiiiiciee e e 66
5.5.1. Adding @ COIUMNcc.ooiiiiiiiiiiiicecee e e 67
5.5.2. Removing @ COIUMIc..coiuiiuiiiiitieieieeieie ettt 67
5.5.3. Adding @ CONSIAINEc.eeiiieeieieiteeieieetiete ettt ettt st sbeseee e e enes 68
5.5.4. Removing @ CONSIIAINEeeueeriiitirieieetieteettete st ete et ete et et saeeeesbeseeeneeseeenes 68
5.5.5. Changing a Column’s Default Value...........ccccooeieriiiinieiiiiieceeeceee 68
5.5.6. Changing a Column’s Data TYPecceeieruirienienieiereeeeecee e 69
5.5.7. Renaming @ COIUMcc.coouiiuiiiiiiiiiienieeiee sttt 69
5.5.8. Renaming @ TabIecccoeiuiiiiiiiiiiiiiiiee e 69

5.6, PLIVIIEZES ..ttt sttt ettt sttt eb e aeen 69
5.7. ROW SECUIILY POLICIEScveeuiiiiiiieiieiieieeitetesie ettt sttt s 70

5.8 SCREIMAS ...ttt ee e e e et e e e ee e e e e e et r e e e e e ta e e e e eetrreeeeearaeeas 76

5.8.1. Creating @ SCREMA ..c...covuiiiiiiiiiie et s 76
5.8.2. The PUBLiC SChemMaccceoouimiiiiiiiiiiiriciiccecceceeee e 77
5.8.3. The Schema Search Path.........c..coccociiiiiiiiiniiiiiiccceceeeeeee 77
5.8.4. Schemas and Privil€@es........ccoceeriiriiiiiiiniieiiieieeeee ettt 79
5.8.5. The System Catalog SChemaccccceeieviinieiiniiiecceeeeeeere e 79
5.8.6. USAZE PALEINSc..eouiiniiiiiiieiiciccceeetete ettt s 80
5.8. 7. POTtaADIIIEY ...ttt sttt eneenes 80

5.9, INREIILANCE ...cuveeniieeiieeieette ettt ettt sat e st st e et esbe e saaeesbeenbee e 81
5.9, 1. CAVEALS ..ottt ettt et st ettt sttt e b e et 84

5.10. PartitiOningc.coouiiuiiiieiiiiiiieieeet ettt sttt et st e s 85
5101, OVEIVIEW ..ttt ettt ettt ettt sttt e be e s eate e 85
5.10.2. Implementing Partitioningcceceeierienieneneeiesieeiiee ettt 85
5.10.3. Managing Partitionsc..coeeueieiriniinienienieeetnene ettt e 89
5.10.4. Partitioning and Constraint EXCIUSIONccccccevevvinininienieiiininieneiceeeeennene 89
5.10.5. Alternative Partitioning Methods...........ccoeeveeeininininienieieineneseeeeeeeenee 91
5.10.6. CAVEALS ...ttt ettt ettt ettt b et bt et be e b et e be et sbe et besbe et b enee 91

S5.11. FOreign Dataoueeuiiiiiieiieiieeeete ettt sttt sb e e 92
5.12. Other Database ODJECLScc.cerueruerieriiriieiinieetenie sttt ettt sbte st sbeeeesaeeaees 93
5.13. Dependency TraCKingc.cooeeiererieriinieienieeeest ettt ettt s 93
6. Datd ManipUlation.........coueeeeiiriiienie ettt ettt ettt et sttt eba et bt e e e sbeeneen 95
6.1. INSEItiNg DIAta ...c..eiuiiiiiiiiiiiiiiiee ettt b 95
6.2. UPdating Datal......cc.eeviiiriieiiniiiienieeiteet ettt sttt ettt sttt sbe et b aaes 96
6.3. DEleting DIatal.......ccueeuiiiiriiiiiiiiieeeteeet ettt ettt ettt s 97
6.4. Returning Data From Modified ROWSccccviviiiiiiiiiinieciiciieeee e 97
T QUBTICS ..vvieueeieeiiieeeteeeettee ettt e ettt e etteeeateeeeaaeeeetseeaaesesansseeaasaeesssseansseesassaaassesassasassaeanssesasseeessaans 99
T 1 OVEIVIEBW ..ttt ettt ettt et bt ettt sbe et s b et e besaeennesbeenee 99
7.2, Table EXPIESSIONS ..cuveeuvieriiieieiiientieeieeieesttesite et et esitesabeebeesatesatesabeeseesssesaseenseesseesnsean 99
7.2.1. The FROM CLAUSE......cccveruirieiinieeienieetenieeiteteeteete st et sae sttt eeesaesaeeaesaeennens 100
7.2.1.1. JOIN@d TaDIESc.oerueeiiiiieiiiiieiieerectecetec ettt 100

7.2.1.2. Table and Column ALIASES.......c..coceeeverririenirienieneereneeeereeeeie e 104

T.2.1.3. SUDQUETIES ...eonvveiiiiiieiieeiieeteett et ettt ettt ettt sttt esatesabeeabees 105

7.2.1.4. Table FUNCHONS ..c..cocuiviiriiriiiiiieniicieeeeee et 106

7.2.1.5. LATERAL SUDQUETIEScoueeruiriiiiiiieiiiieeeniceeeere et eanens 107

7.2.2. The WHERE ClAUSE...cc.certiriieieiriieniteeieesieesiteeite et e siteste st e bt esatesateenbeesaeesaneens 108
7.2.3. The GROUP BY and HAVING ClauSes.......cccccerieeuirieienienieieniieeeie e 109
7.2.4. GROUPING SETS, CUBE, aNd ROLLUP ...ccvvttiieeitiieeeeeeirreeeeeireeeeeeenreeeeeeeneneeeens 111
7.2.5. Window Function Processingcccccoceeieiiiriiiiniiiinenieieniceee e 114

7.3 SELECTE LSS .eeutieiiieiieiieeeite ettt ettt ettt sttt et st e b e sbe e st et e 114
7.3.1. SeleCt-LiSt TEOIMS ...c..eeieitieiieiieicee ettt ettt et 115
7.3.2. Column Labelscoceiiiiiiiiiiiiieeeeeeeeeee e 115

7.3, 3. DISTINCT utteueeuteteeueetesteeuteete et etesteestesbe et e et e ebeenteeaeemeesbesseentanbeeneenaeeaeensesueeneens 116

7.4. COMDINING QUETIES.....cuveeueeiiieieieetieiieeteeite ittt e et eit et et e et eaeetesbeestesbeestentesseenaesbeennans 116
7.5, SOTtING ROWS ..ttt et sttt sttt et st nae b ennns 117
7.6, LIMIT QN0 OF FSETuuiuiitiiteeiteteeteeteeteetestesttetesteententeeseetesbeeseesbesseensesbeentensesseensesueennens 118
TT. VALUES LSS 1ttt ettt st et b e et be et e b st enaesbeenaens 119
7.8. wITH Queries (Common Table EXPIressions)ccceveeeerereerienenienieneeienieseene e 120
7.8.1. SELECT 1N WITH teieieuieuieiinienieteteeeit ettt ettt ese bt eeneenes 120

7.8.2. Data-Modifying Statements in WITHccoverreriierriienienienieenieeseeseeesieesieesneens 123

8. DALA TYPES .. uttenrieiteeite ettt ettt ettt ettt e st st e bt e s bt e sa bt e be e s bt e s e bt e bt e ht e s et e e b e enhtesate e beenbaenaneen 126
8. 1. INUMETIC TYPES .uveentiiiieniieeite ettt ettt ettt ettt st eate bt e st e st e bt e satesatesbeesatesanesabean 127
8L L. INtEZET TYPES .cueieiiiiiiiiienite ettt ettt sttt st e bee e 128
8.1.2. Arbitrary Precision NUMDETScccoevviiriiiiiiinieniiiieeieeeeteee e 129
8.1.3. Floating-Point TYPESccceeririeiiriieieiieiete ettt 130
814, Serial TYPES...ccuviuiieiieiiriieiereeteteet ettt et s 131

8.2. MONELATY TYPES ...ttt st e e 132
8.3, Character TYPESccouermiiiiiiiieeeeet ettt e e 133
8.4. BINary Data TYPEScoueeiiiiiiiiiieiieierit ettt s e 135
8.4.1. bytea HEX FOrmMaL........ccooeiiiiiiieiieeee ettt e 136
8.4.2. bytea Escape FOrmat.........cocccoviiiiiiiiiiiiiiiiiiceeeec et 136

8.5, Date/TimME TYPES....eeueerueeieteeiieieett ettt ettt ettt ettt ettt et s bt et e e steeaeeaesneeneenbeeneenes 137
8.5.1. Date/Time INPULcc.ccueiiiriiiiinieicieietee ettt s 139
LT TN B TR D 1 (<O USSP U U SRR 140

8.5 1.2, TIIMES .ttt sttt ettt st sae st e b e 140

8.5.1.3. TIME SEAMPS ...cuvieieieieieieiteeitete ettt sttt st st 141

8.5.1.4. Special ValUeSccccoieiiriiiieiieiieie et 142

8.5.2. Date/Time OULPULc.eevuieuiiiiriieierieeitet ettt ettt ettt b e 143
8.5.3. TIME ZIOMES ...ttt ettt sttt ettt et et sbe bt b e 144
8.5.4. Interval INPUL.....cc.eiiiiiiiiiiete ettt 146
8.5.5. INtErVal OULPULeveeiiiiiiiiinieeitetetet ettt et 148

8.6. BOOLEAN TYPEC...ueiviiniiiiiiiieeitcteeteete ettt sttt et st st 148
8.7. ENUMETAEA TYPES ..veeuveeureeireiiieniieeieeitesteete et esitesitesateesbeesatessteebeesasesssesnseesssesssesnsens 149
8.7.1. Declaration of Enumerated TYPeS......c.cecvveriierieriiiiiiienienieeieeieesee e 150
872, OTAETINGeenvieiieeiieeieeieeete ettt ettt et e st e st st e st e satesabeebeesseessbeenseenseenens 150
8.7.3. TYPE SATELY .ottt ettt sttt 151
8.7.4. Implementation DetailS.........c.eevuiirierieriiieiienienie ettt 151

8.8. GEOMELIIC TYPES ..euurieutieriieetieiieriteete ettt ettt et e st et e bt e s tesate e bt e satesabeebeesssesasesaseas 152
881 POINTS ..ottt et 152
8L8.2. LLINES .ottt et e 152
8.8.3. LiNE SEZMENLS....c.eiiiiiiiiiiieieeieeite sttt ettt ettt st e e s e st ebe b e sae 153
B84 BOXES ..ttt et e 153
885, PathS .ttt 153
8.8.6. POLYZONS.....c.iiiiiiiiiiciie et e 154
88T CICIES ..ttt ettt sttt st st ae e e 154

8.9. Network Address TYPES.......covecuiruieiiriiieeeiieeee ettt e 154
IR ST SRR R 155

LIRS N X USSP 155
LI G T o T i I e oSSR 156
8.9.4. MACAAAT wvtieriiieeiie ettt ettt et e e ettt e e e et e e st e e e ta e e e nbeeeanbeeeanteeeenbeeenaeenn 156

8.10. Bit SEING TYPES ..ttt ettt ettt sttt et s b et sttt et et e ae s aeeseenbeenee e 157
811, TeXt SEATCH TYPES ..ccuvieeieeitiiiieiieete ettt ettt st ettt s es 157
LT B B e =Y ol e X TSP 157

8.l 1. 2. £ SQUETY teiiiitiiee ettt e et e e et e e e et e e e e e atae e e e e baaeeeeerraaeeeeanens 159

BL12. UUID TYPC .ttt ettt sttt ettt ettt et s b et bt et e bt sbt e e sbeesaenbeeaeenee 160
813, XIML TYPE ettt ettt s b et bt ettt st e e bt et e b e 161
8.13.1. Creating XML ValUesc.ccocterieriiiiniinienie ettt 161

Vi

8.13.2. Encoding Handlingccceevueiriierieniieeniienieeie ettt st 162

8.13.3. Accessing XIML ValUes.......c.eevuieriierieiiieiieniteeieeieesiteste sttt st 163

B4, JSON TYPES weeeeteeuiieiieniteete ettt ettt et et e bt e st sate e bt e s abesabe e bt e satesabesbeesabesasesaseas 163
8.14.1. JSON Input and Output SYNLAX......cccverrueeriierieriierieenienee et eiee e see e esiee e 165
8.14.2. Designing JSON documents effectivelyccccoeveevieniiiniiinnienienieeieeieee 166
8.14.3. ysonb Containment and EXiSteNCEe..........cccuierciieriireeiir e esiieeeree e 166
8.14.4. F5onD INAEXING.....cocviriiiiiiiiieieecect e e 168

BLL5. ATITAYS ..ttt ettt et st 170
8.15.1. Declaration of Array TYPES.....cc.coceecueriieieriinieieneeieieeeeeere e e 170
8.15.2. Array Value INPUL..........ccoiiiiiiiiiiiic e 171
8.15.3. ACCESSING ATTAYS ..uviviiiiiiiiicieeiieet ettt e s 172
8.15.4. MOAIfYING AITAYS...c.eieueeieieieiieieetieieet e eete ettt e sttt ettt seeesteseesaeeneesseeneenes 175
8.15.5. Searching in ALTAYS......cccuererierieeiieieetiee ettt ettt et see e seeenee e 178
8.15.6. Array Input and OUtPUL SYNAX ...c..ccveeririirrenieieieinenenteeeeee e sresrereeeneeneas 179

8.16. COMPOSIEE TYPES ..ottt ettt ettt b ettt et ettt e e b eseenbeeaeenes 180
8.16.1. Declaration of COmMPOSIte TYPES....ccuervirieriiririeniieiieieeeeee et 180
8.16.2. Constructing Composite ValUes...........ceceeririerieriinienienieiene e 181
8.16.3. Accessing COmPOSIte TYPES ...ccuevueeureriirieriiriieienieeiteeeteeee et 182
8.16.4. Modifying COmpOSIte TYPES...c.eruerreriirieriiriieienieniteie ettt 183
8.16.5. Using Composite Types in QUETIES.......ccceruerueeriererienieneeieneetenesieeee e 183
8.16.6. Composite Type Input and Output SYNtaX.......cceoevveriereerienerreeneneerienieneenns 186

B 17. RANEZE TYPLS ettt ettt sttt ettt s 187
8.17.1. Built-in Range TYPES ...ccvevuirmieiiniieiiiietete ettt 187
8172, EXAMPIES...utiiiieiiiieiieiieste ettt sttt ettt ettt e st e e seaeenbeenseeneee 187
8.17.3. Inclusive and Exclusive Boundscoccceeieiiininininicniiiiiicncciciecenns 188
8.17.4. Infinite (Unbounded) RanNges.........ccceveuieriierieriiiiienienie ettt 188
8.17.5. Range INPUL/OULPUL......covuieriieiieiieeieeie ettt ettt sttt et ebe b 188
8.17.6. Constructing RaANGEScc.eevviiiiiiiiiiiieiieiierteete ettt e 189
8.17.7. Discrete Range TYPES ...ccveeuerriiiiiierieiieesieesteete ettt sttt st e 190
8.17.8. Defining New Range TYPES ..cccueevveerieriiiiiienieeieeieesteete sttt 190

8. 17.9. INAEXING ..evvieniieiiieieeeesite ettt ettt st et st st e be et e s b enbeeaeesaee 192
8.17.10. Constraints 0n RANZES.........cocueerierieriiiiiiierieeie ettt 192

8.18. Object IAeNtfIET TYPES ..eeeuveriieriiiriieeieeniteete ettt ettt sttt sttt sabe s 193
819, PEISTI TYPC..eniiieierieeteteee ettt sttt s e 195
8.20. PSEUAO-TYPES ...ttt et sttt st e 195
9. Functions and OPETALOLSccecuiririeriirieienieeientt ettt ettt eesre et ese st s e reeaeenesaeenesaeennens 197
9.1. LOZICAl OPETALOTSooviiuieniiriieieiieieie ettt ettt ettt e st e a e s e ne e eanens 197
9.2. Comparison Functions and OPEratorscccccoeecueriieiieniiiienieneeeeeeeeee e 197
9.3. Mathematical Functions and OPEerators............ccccoeeueruieeeriiiienieieeieieeeeie e 200
9.4. String Functions and OPEratorscc.cecueruiriiiiiniiiieiieiee e 204
L T e % o - SRR 220

9.5. Binary String Functions and OPeratorsc.ccoeruerueirreriniinrenienieeeenenensesseneneeneene 222
9.6. Bit String Functions and OPeratorsc.ecceerereruereireneniiereniereeeneeesessessenseneeneene 224
9.7. Pattern MatCRINGccooverieiieiiiiiitinteeteteteese sttt sttt s e 225
0.7 1. LIKE ctiteteitetteteetetete ettt sttt ettt sttt 226
9.7.2. SIMILAR TO Regular EXPressionscccceevuerierienenienenienieniieienieeceee e 227
9.7.3. POSIX Regular EXPreSSionscocceruerierierieniienienieeienieniteiesieeieenieseeeneesieennens 228
9.7.3.1. Regular Expression Detailsc.cccceeervieninienenienienenienescene e 231

Vii

9.7.3.2. Bracket EXPIeSSIONSceveerveerieeriiisieeiieniieeieeieesieeste et saesaeeeneees 234

9.7.3.3. Regular EXpression ESCapes.........c.coveerieniiiieinieeniienieeieeee e 235

9.7.3.4. Regular Expression MetasyntaXccecceeveerrveenieenieenuenseeenieesneseesnnees 237

9.7.3.5. Regular Expression Matching Rulesccccoeeeeniiniinninninnieniennen, 239

9.7.3.6. Limits and Compatibilityccccecuerverrienieriieiieeniiesieeieeeesee e 241

9.7.3.7. Basic Regular EXPIessionsccccueevueerieenierieisieenieenieeieesiee e eee e 241

9.8. Data Type Formatting FUNCHONScccocuiriiiieiiiniiieniieicie e 241
9.9. Date/Time Functions and OPErators..........c..coceevuerueeieriieieniineenieneereseeeeeeeeeseeseenens 249
9.9.1. EXTRACT, AATE_PATE tttiiiiiiieieeeeitreeeeeeeteeeeeeeitreeeeeeetareeeeeesraeeeesentraeeeeeesreeaeens 255

LR NG N oY oo Y o o SN 259
9.9.3. AT TIME ZONE..coiiiiiiiiiiieieiieieeee st eeeste et etesteeee s e e e sesae et e bt e e e saeeaeenesaeennens 259
9.9.4. Current Date/TIMmeceoueiiieeiieiiiiiieeieeeerteeee ettt ettt 260
9.9.5. Delaying EXECULION........c.coiririirieieieititietesteteeeieeesie ettt ettt 262

9.10. Enum Support FUNCHONSccoviruiriirieieieintinenetceeteese sttt 263
9.11. Geometric Functions and OPErators............ceeeererueeeirereniinreniereeeeeesesaessenneneenenne 264
9.12. Network Address Functions and OPerators..........c..ccueceeererienreriereeeenenensenseseeenene 268
9.13. Text Search Functions and OPerators...........c.ccceeerveeerrereniinreniereeeieesesesseneneeneene 270
0.14. XML FUNCHONS ...eeutitiiiieiiiiteienteeiesie ettt sttt ettt et e st bt te b st e st saeenaesbeennens 276
9.14.1. Producing XML CONLENL.........cccerieieriirieiiniieienieetenie sttt eeeenee e 276
9.14.1.1. XML COMMENT +eerviertrerererreerieenteesteesseesseessaeesseesseesseessessseesseesssessesnses 276

0.14.1.2. XINLCONCAL teureerierieeniieeiienieesttesteesteesteessaesbeeseesseesssessseensaesssesssesnses 276

0.14.1.3. XIMLELEMENT weeectierirereieeiiesiienitesieesteesteestaeeteeseesseessseeseensaesssesssesses 277

0.14.1.4. XINLEOTE@SE teverrieriierieeieesieesttesteesteesteestaesseeseessaesesesnseensaesasesssesnseas 278

014, 1.5, XINLP I weeiirieeiieienitetesteete sttt ettt st ettt ettt sbee e s eanens 279

9.14.1.6. XIMLT OO0 tetreeuieeieerieeniieeieesteenttesiteesteesteestaesbeeseenseesasesnseenseesasesssesnsens 279

0. 14.1.7. XINLAGG tttiiiiittrieeeeeireeeeeeeireeeeeeiaeeeeeeraeeeeeeestareeeeeeaereeeeetrreeeseetareeeean 280

9.14.2. XML PrediCatescc.coeeueriireeniineeienieniteteeieete st niesieetesteeiee st sveeeesaeennens 281
0.14.2.1. IS DOCUMENT ...oouiruitiieienienieriere sttt sa e 281

9.14.2.2. IS NOT DOCUMENT....ccuirtiuiemiiriirirteteniententene st s 281

0.14.2.3. XMLEKXISTS weeieuieuiiuiitiieieieeeiiee sttt 281

0.14.2.4. X1 1S WELL FOTME tuuuueeeaaeeaeeeeas 281

9.14.3. Processing XIMLcooiiiiiiiiiiieiieeieeteste ettt ettt st et 282
9.14.4. Mapping Tables t0 XML....c.c.cooiiriiiiiiiienieeieeieeteeee ettt 284

9.15. JSON Functions and OPETatOrScecuerueerreerierieerieenieenitesieesieesieessessseesseesssessesnsens 287
9.16. Sequence Manipulation FUNCHONScccervieiiirieiieniieiiiiiccienecreeeeete e 297
9.17. Conditional EXPIeSSIONScccueruieiiriieiiiinieieseetete et ae s enens 299
0. 177 L. CASE ittt ettt ettt ettt ettt ettt ae e n et e et ent e aeeneeseeneentens 299
9.17.2. CORLESCE ..utiuiiiiiieeienieeeete ettt sttt et et st st nesaeeanens 301
9.17.3. NULLIF ottt ettt s et st st s 301
9.17.4. GREATEST AQNd LEAST c..ecuiiiiiiieie sttt ettt ettt sse e s s 301

9.18. Array Functions and OPETatorsccceeveeerirerenueieteenientierereeeneeneeressessessenseneeneene 302
9.19. Range Functions and OPETators...........cceeueutrrirereniereietnentieseniereneereeresiessessenseneeneene 306
9.20. Aggregate FUNCHIONS........ccueoiiiiiriinieieictetetese ettt sttt s e 308
0.21. WiINdOW FUNCHONSc..eiiieiiiiieieitieiee ettt sttt s v 317
9.22. SubquETy EXPIESSIONS ..c.ccveuieuiriiriinieieieieiieitsiestesteteet ettt 319
0.22. 1. EXIST S ettt et e s 319
0.22.2. TNttt e et b e 320
9.22.3. NOT INuuteuieuietiteteeeteiteieste sttt et sttt s ettt s sae st sa et ebe et et ae e e e eneenes 320

viii

9.22. 4. ANY/SOME ..ceeeerveieeeeereeeeeeeeueeeeeeeiteeeeeeeetareeeeeetreeseeeeteseeeeenraseeseentsseeeesetrseeeens 321

9.22.5. ALL ettt 321
9.22.6. Single-roW COMPATISONeeveiriieriieieeiieniteeteeieesteete et esbeesitesateenbeesaeesaeeens 322

9.23. Row and Array COMPATISONSeerureruieriieniieriiesieereenieesitesieesteesseesseesseesseesssessesssens 322
9.23. 1. IN c s 322
9.23. 2. NOT INuuiiuiiiiiiiiiicie ettt st 323
9.23.3. ANY/SOME (QITAY) .veeveerreerurernreenieesiteeiteesteesitessesseessaessesateesseesseesasesnsessseesaeans 323
0.23.4, ALL (AITAY) cuveervreenreenteeniteeteeieesttesiteete e beesbtesate s bt e s bt e sabesate e bt esbeesateebeessaesaeeans 323
9.23.5. Row Constructor COMPAriSON........cccueruerreriruieeenieeierreseeeenseeeesaeeeesnesueennens 324
9.23.6. Composite Type COMPAriSON.........cccueruiriieiiriieiinieeieniereereste e eneeaesaeeanens 325

9.24. Set Returning FUNCHIONSccciuiiiiiiiiiiiiiiieienieeee e s 325
9.25. System Information FUNCHIONSccueeieieirinineniiicieenenrcceeeeeese e 329
9.26. System Administration FUNCHONSccccceviririnenieniiiiininieceeeeeene e 346
9.26.1. Configuration Settings FUNCHONS.ccccoerverieirinininicicieeeceeserceeeeene 346
9.26.2. Server Signaling FUNCHONScc.ccoevirimierienieieinineneeceereeeeee e 346
9.26.3. Backup Control FUNCHONSccecvririimiinienieieininenenteeeeee et 347
9.26.4. Recovery Control FUNCHONScoouiiiiiiiiiniiiineeeestee e 350
9.26.5. Snapshot Synchronization FUNCHONScc.ceeeviireriiinenieienieeeeeee e 352
9.26.6. Replication FUNCLONSccoceeriiiiiiiiiieieeieteseeee ettt e 353
9.26.7. Database Object Management FUNCHONS.cceveeiererienieninieneniee e 357
9.26.8. Index Maintenance FUNCIONSccccivuirierieieieininiciccieeeeeeceeeeene 360
9.26.9. Generic File Access FUNCHONS..........cccoviierieiiiiininieicceeec e 360
9.26.10. Advisory Lock FUNCHONS......cccevteierieriiiiniiiieneeieestetest e 361

0.27. Trig@er FUNCHIONSooviiiiiiiiiiiiniieieeetec ettt sttt s 363
9.28. Event Trigger FUNCLIONSoccviviiieriieeieiiieitesite sttt st sve et esveeae et e senesnseeneees 364
9.28.1. Capturing Changes at Command End..........ccccecueiniiniiniiininniieniieeenceeiens 364
9.28.2. Processing Objects Dropped by a DDL Commandccccevcveveiienieeneennenns 365
9.28.3. Handling a Table Rewrite EVentcccccovvviriiriiiinienieeieeeeeese et 367

1O, TYPE CONVETSION. ..ccuuiiriiiiniieiieniieeteesttesttesteeteesteesiteeteebeesstesabessteesbaesasesateenseesstesasesnseessaesnsenns 368
LO.L. OVEIVIEW ittt s 368
TO.2. OPETALOTS ...euvveeutieiieeiieeittesiteeite et e bt esttesiteebee bt e satesbe e bt esbtesabeesbeebeesabesaseenbaesasesasesnseas 369
LO.3. FUNCLIONS ...iiiiiiiiiiicice et s 373
1O.4. VAl SOTAZEeeouieeiiiiiieiieniie ettt ettt sit e ettt e s bt s be et e bt e sabesabeenbeesateeaseenbeas 377
10.5. UNION, CASE, and Related CONStIUCES..........cccviieieeiiiiieeieeiiiee e eerree e e e e e 378
L1 TAEXES vttt ettt sttt et e st et e bt e s bt e eabeea bt e s bt e satesateesbeesbtesabeenbeesaaenaeeens 381
111, INETOAUCTION ..ottt ettt et sttt e sbee st et et e st e ebe e b e nae 381
T1.2. INAEX TYPES...etiniiniiiieeerieee ettt ettt st e s 382
11.3. Multicolumn INAEXESccoeeriiiriiirieniieieeeerte ettt ettt st 384
11.4. Indexes and ORDER BY .c..cevtirtirrieerieniteeieeniteniteeteesueesteesaseesueesseesasesseesseesssesnsesnseenses 385
11.5. Combining Multiple INAEXESceuerieriirieieiiieieseeeee ettt 386
11.6. UNIQUE INAEXES ..ottt ettt ettt ettt sb et et eaesreeneens 387
11.7. Indexes On EXPreSSIONSccueeuieieriirieniieiieie ettt sttt sttt e nae e e 388
11.8. Partial INAEXESc.oeueeiiiiiiieieeiieee ettt sttt sttt et s 388
11.9. Operator Classes and Operator FAmiliesc..coecevveinininenenienininenencieiceeeenns 391
11.10. Indexes and COlAtioNS.ceueeueririeriiiieiesieetete ettt sttt st eneens 393
11,11, INdEX-ONLY SCANS ...cueertiriiiiintieiiieetete ettt sttt st ettt st enae e 393
11.12. Examining INdeX USAZE........coueeuiriirieniiiieieniceiteteeieete ettt st s 395
12, FUll TEXt SEATCHoviiiiiiiciieiiiiitetec ettt st st enee 397

12,1, INEEOAUCHION «.vvveiieeiiiiiee ettt eeet e e eetr e e eeeaae e e e eeetareeeeeeaaeeeeeenaneeeeeeensnnens 397

12.1.1. What Is a DOCUMENT?....c..coouiviiiiniiiiinienieienceieste ettt s 398
12.1.2. Basic Text MatChingcccecueeiiienieniiiiiieiiesieeie ettt ettt 399
12.1.3. CONTIGUIALIONSuveriiietieriieeieeteesite et ettt sit e ettt e sate st ebeesbeesatesbeesaeesaneens 401

12.2. Tables and INAEXES.......cceeveriirieriiririeierieeeeeeee ettt st 401
12.2.1. Searching @ Table.......c..ccccouiriiiiniiiiieeieece e 401
12.2.2. Creating INAEXESc..couieiiiirieieriieieieeeeeeeeeie ettt 402

12.3. Controlling Text SEArch..........cccoeceriiiiniiiieieiieieeeeee et 403
12.3.1. Parsing DOCUMENLScccoeouieuieiiiniiiieieniieieete ettt s 404
12.3.2. Parsing QUETIEScccueiuieuieiieiieierieeieieeit ettt ettt et s s 405
12.3.3. Ranking Search Resultscccocooiiiiiiiiiiiiicceec e 406
12.3.4. Highlighting RESUILSccoeriiviiiiiiiiineiececteene e 409

12.4. Additional FEaturescccocieuieiiirieieie ettt 410
12.4.1. Manipulating DOCUMENLS........cccueruirrierieriieieeieiese et 410
12.4.2. Manipulating QUETIES.ccueeueerierierienieeiieieettete st eete e st e et eseeseesaeenaesbeeneens 411
12.4.2.1. QUery REWIIING ...cccveiuieiiiiiiieie et 412

12.4.3. Triggers for Automatic UPdatesc..coceevuerierieninienieniieiesieeteie e 414
12.4.4. Gathering Document StatiStCSccceruerteruerieiienerienienitee et eeeesee e 415

125, PATSEIS ...ttt ettt sttt sttt s bt eae e 415
12.6. DICHONALIES.cveveiiieiieiieiieie ettt sttt ettt s st e s enean 417
12.6.1. STOP WOIAS ..ottt ettt s st 419
12.6.2. SIMPIE DICHONATY ..cvventiiiiniirieeienieetenieet ettt sttt s nee e eanens 419
12.6.3. Synonym DIiCHONATYccceeouireeniiriiienienieienieetesie ettt sieeanens 421
12.6.4. Thesaurus DICHONATYeecvereieeriienienieeieentesieeteesieeseesteesseeseeeseseeseenseenens 422
12.6.4.1. Thesaurus CONfiUIationcccueevveerueereeniieriieeniesresieeesieesresaesvees 423

12.6.4.2. Thesaurus EXampleccceevieriiniieiiienienieeieereesreeie e 424

12.6.5. ISPEIl DICHONATYveeiieiieeiieeiieiienite ettt ettt e sitesete bt esbeeseneebeebeesene 425
12.6.6. SNOWDAIl DICHONATY ...uveeviieriiieiieiienie ettt ettt sttt st ebeesaeesaneens 427

12.7. Configuration EXample........ccceeiiiriiniiiiiiiieiienieeieeteste ettt 428
12.8. Testing and Debugging Text S€archccceeeeviiiiiinienienieeeeie e 429
12.8.1. Configuration TEeSHING.....c.cueecveeiiierieriiiiieieete ettt sttt e 430
12.8.2. ParSer TESTINZ .. ceeverieeiieiieeie ettt ettt ettt sttt et sat e s beesaeesaeeeas 432
12.8.3. Dictionary TESNZ.....ccceerierieiiieniienteeieeniteete ettt st be et e st b e saeesaeeeas 433

12.9. GIN and GiST INdeX TYPESooueruririirieiiiietenieeieteee ettt sttt 434
12.10. PSQL SUPPOTLL...eeiiiiiiieiieieciieteeteet ettt ettt ettt et ene e eanens 435
12,11, LAMIEATIONS . ..eenvteeeteeiteeteeeite ettt ettt ettt stt e st e bt e s bt e st e e bt e bt e sateeabeebeesabeeabeenbeenae 437
12.12. Migration from Pre-8.3 Text Search..........ccccccoeviiiiiiiiininiiiccee e 438
13. ConcurrenCy CONIOL......cc.cioiiiiiiiiiiiieieeeeteee ettt st 439
13,1, INEFOAUCTION ...ttt et et sttt st et e bt e st e e e b e nae 439
13.2. Transaction ISOIAtIONcecuieuieiiiriieieie ettt et 439
13.2.1. Read Committed Isolation Levelcccooieieiiniriiniieeceee e 440
13.2.2. Repeatable Read Isolation Level..........ccocceiiiieiininiiniiieeceececee e 442
13.2.3. Serializable Isolation Level...........cooeiiiiiiiiieiinieeeeeeee e 443

13.3. EXPLCIt LOCKING ..ottt et s 445
13.3.1. Table-1eVel LOCKSc..ciuiiieiieiieiesieeteeeiteee ettt 446
13.3.2. ROW-1EVEL LOCKSovieiiiieiiiceesceeeee et 448
13.3.3. Page-1evel LOCKSccc.oiuiiiiiiiieiesieeeeteeet ettt 449
13.3.4. DEAdIOCKS.....cviienienieiieiiiieriertctetet ettt ettt 450

13.3.5. AdVISOTY LOCKSeiiiiiiiiiieeiectteteett ettt sttt st e 451

13.4. Data Consistency Checks at the Application Level..........ccocceeviiniinieniiinieniienieenen, 451
13.4.1. Enforcing Consistency With Serializable Transactions..........cccccccceceevuereennene 452
13.4.2. Enforcing Consistency With Explicit Blocking Locksc..cccceeircvencnennens 452

I3.5. CAVEALS....ccueiniieiieieiecteteet ettt ettt ettt ettt st st a e et b e 453

13.6. Locking and INAEXES.....c..covecuiriiriiniinieiiieeiese ettt et 454

14, Performance TIPSc.coeeieiirieieniee ettt ettt st e st s 455

14.1. USING EXPLATIN .eeutieuieieieeieetenteeeesteeeeeseseeesnesseeasesseeseessesseeseessesueessesseessesesneensesseennens 455
14.1.1. EXPLAIN BASICS ..ouuiiiiiiiiiiiieiieie ettt s 455
14.1.2. EXPLAIN ANALYZE coiiiieieiieiieiesteenesie st esesseeeesaeeseesesseesnesseeseenesaeennesaeennens 461
T4, 1.3, CAVEALS ..ottt ettt ettt ettt sttt et e st st et e s bt e sate e beesbeenaeeeas 465

14.2. Statistics Used by the Plannerccocoviiieiiiienieieeeeeee e 466

14.3. Controlling the Planner with Explicit JOIN ClauSes.........ccecerereerierieerieneeeenieseeens 467

14.4. Populating @ Databaseccceeevuerieieirinininiiieietet ettt s 469
14.4.1. Disable AULOCOMIMIULcc.ueitieuieierteeienteetteieett ettt eete e st te st eseeseesaeenaesbeeneens 470
14.4.2. TUSE COPY .eteutiiieie ittt ettt sttt ettt et ettt e sae e et e te s bt e e s be e st e et eaeeneesbeennens 470
14.4.3. REMOVE INAEXEScouvetiiiieiieiieie sttt s 470
14.4.4. Remove Foreign Key CONStraintscoceevuereerienerienenieeneeieneeseeniesieenens 470
14.4.5. InCcrease maint eNancCe. WOTK_ MMM . ceeeeeeieeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeaees 471
14.4.6. INCrease Max_Wal_SI1ZE ..cccerererrererienienieetenieeitente st e e st eeee et saeeneesbeeneens 471
14.4.7. Disable WAL Archival and Streaming Replicationc..cocceceeviveencnennene 471
14.4.8. Run ANALYZE Afterwards.........ccceceeviriniinienieiiinincneceeeeeeeeeeeeeeeenes 472
14.4.9. Some Notes About PE_dUMP ...c..ooeriereriiiiinieiineeteeseeeseete e e 472

14.5. NON-DUTIable SEtHNES ...c.eeuveiiriiriiniirieiiieetenieetet ettt ettt ettt sbeeae e eanens 473

15, Paralle]l QUETYeevuieiiieiieiieeiie et ette st ettt et e sete e bt ebeessaesabeenbeesbaesssesaseensaenssesnseenseessnennsenns 474

15.1. How Parallel QUEry WOTKSc.covieriiriiiieeiieeieeieeiceste ettt st 474

15.2. When Can Parallel Query Be Used?.........cooeeviiiiiiiiiniienieeieeieete st 475

15.3. Paralle]l PLansc..coeeoieriiriiiinieieniecicteseeteetcetee sttt st 476
15.3.1. Paralle] SCanScoeeveriirieiineeienceeerteteettete ettt s 476
15.3.2. Paralle] JOINScc.erueeieriiriiiinieieniceteceitecetete et s 476
15.3.3. Parallel AZEIegationcecueeviierieriiiiiieniienie sttt ste st et e st e st ebeesaeesaneeas 476
15.3.4. Paralle] P1an TiPs ..ccceevveerierieeiiienieete ettt sttt st ettt s be e 477

15.4. Paralle]l Safety........coouiiiiiiiiieieetee ettt sttt 477
15.4.1. Parallel Labeling for Functions and Aggregates..........coceevevveevenuireenueneenens 478

I11. Server Administration 479
16. Installation from SOUTCE COAEccceeruiiriiriiiiiiiiieeieeeerte ettt ettt 481

16.1. SROTE VETSION ..euviiniiiiiiieiiiiteeitee ettt ettt st sttt st e e b nae 481

16.2. REQUITEIMEGIILS ...ttt eee et te it eeeete st et e b et et e sbe e e esbesseensesseensesseeneensesneeneans 481

16.3. Getting The SOUICE........oouiieieiietieiee ettt sttt sttt e s eeens 483

16.4. Installation ProCedure.............coeeiiiriiiiniiieesieeeeeee ettt 483

16.5. Post-InStallation SEIUP........ccccerirterierieieiiinerestetetetet ettt st eneas 494
16.5.1. Shared LiDIariesccceeeeriieierierieeiesieeiieieeieete sttt s 494
16.5.2. Environment Variablesccceoererierenieiinieiese et 495

16.6. Supported PLatfOrmsco.eiiiiriiiiiiieieie ettt 495

16.7. Platform-specific NOLESccueruiiiiririeieiceesteete ettt 496
LO. 7.1 ALX ettt ettt ettt sttt 496

16.7.1.1. GCC ISSULS ..ceneneieiieieeiteteeitete sttt ettt et sttt et sbe et e 497

Xi

16.7.1.2. Unix-Domain Sockets BroKEN..........cccvveieeeviiieieeeeiiiieee e 497

16.7.1.3. Internet Address ISSUES........ccccovviviniiiiiiiiiiiciccc e 497

16.7.1.4. Memory Managementccceeueeuerrueeneenieniieenieesreseeesieesisesnesvees 498

References and ResoUICesccccciiiiiiiiiniiiiiiiiiiccc 499

16.7.2. CYZWIN ettt ettt ettt et st b e st st e be e s bt e sate s beesbeesaneeas 499
16.7.3. HP-UX ..ottt ettt sttt sttt 500
16.7.4. MACOS ...ttt ettt ettt st sttt 501
16.7.5. MINGW/Native WINAOWScooviieriiiriiriieniienienieesiteste st esieesiee st eseeesieeens 502
16.7.5.1. Collecting Crash Dumps on Windowsccccoccecerieieninneencnennns 502

16.7.6. SCO OpenServer and SCO UnixWare............ccccoeieieniniecenieicniieeeneenens 502
16.7.6.1. SKUNKWATEcoouviiiiiiiiiiieieeeeiteet ettt st 502

16.7.6.2. GNU MaKEcouveiirriniiieieieieinentesteteetee ettt s 503

16.7.6.3. ReAALINE......coueiiieiieieiieeiete ettt st 503

16.7.6.4. Using the UDK 0n OpenServer...........ceceveeeenereeneneeienieeeeneeeeeenees 503

16.7.6.5. Reading the PostgreSQL Man Pages..........ccccooeveeneninienieniencecnee. 503

16.7.6.6. C99 Issues with the 7.1.1b Feature Supplementccceeveevevenenen. 504

16.7.6.7. Threading on UnixXWarec.ccoceveieeieniinieneneeie e 504

LO.7.77. SOLATTS ...ttt ettt ettt sttt st e s e et saeeaesbeennens 504
16.7.7.1. Required TOOIScc.coeeiiririeieniiieicetee ettt 504

16.7.7.2. Problems with OpenSSLcccccceviiririiininieienieieeeeeeeee e 504

16.7.7.3. configure Complains About a Failed Test Programc..cccccoueenee. 505

16.7.7.4. 64-bit Build Sometimes Crashes..........ccccccecevivenienieinininenicieeennn 505

16.7.7.5. Compiling for Optimal Performance............cccccoccevieninienincencnennens 505

16.7.7.6. Using DTrace for Tracing PostgreSQL........cccccoceevieninvienineenenennnens 505

17. Installation from Source Code 0n WINdOWSccceviririiniiiiiieiiiiinenicieieeee e 507
17.1. Building with Visual C++ or the Microsoft Windows SDK...........ccccceeevvriiniieniennnen. 507
17.1.1. REQUITEIMENLS ..ccuvveeirieiiieiieeieeieenieentesteenteesteesitesnbeesseesseesabeeseenseessseensesseenens 508
17.1.2. Special Considerations for 64-bit Windowscccceeceerciirneeniieniieeneeneennens 510
17.1.3. BUIIAING ..o 510
17.1.4. Cleaning and INStalliNngccceerieriiiiiienienie ettt ettt 510
17.1.5. Running the Regression TeStSccueviirriierienieriieiiertesie ettt 511
17.1.6. Building the DocUMEeNtation...........cecueriierienieriiieniienie sttt 512

17.2. Building libpq with Visual C++ or Borland CH+.......cccooiiiiiiiiiiniiiieniccienieeieeee, 512
17.2.1. Generated FIlescocceciiiiiiiiiiniiiieieniceeee e 513

18. Server Setup and OPETationc.cceceevieriieieriieienieeteent ettt st e s er et see s et ene e eanens 514
18.1. The PostgreSQL USEr ACCOUNLc..cocueriiruieieiieietieieeteste ettt eae e 514
18.2. Creating a Database CIUSLETccoovieriiiiiiiiiiiieieciceceee et 514
18.2.1. Use of Secondary File SyStems..........ccccecveeiiririeniiiicniinieienieeee e 515
18.2.2. Use of Network File SyStemsccccccoeiiiiiiiiiniiiiiiicesiecc e 516

18.3. Starting the Database SEIVET..........cccieciiriiiiirieiieiereeete ettt 516
18.3.1. Server Start-up Failuresccccevieeiiiiiinienieneeteeeeee e 518
18.3.2. Client Connection Problemsccooerieiinieiienieeieienieeeseee e 519

18.4. Managing Kernel RESOUICES........cc.coueeeuiriiririniiieieieteeetesieseeeeeeie e enens 519
18.4.1. Shared Memory and Semaphoresc.cceoeeeeriereeienenieeneeeenie e 519
18.4.2. systemd RemOVeIPCcc.ooiiiiiiiiiiiiieeeeee e 525
18.4.3. ReSOUICE LIMILSeeuiiiiiiieiieiieiesiceteieeiteeet ettt 526
18.4.4. Linux Memory OVEIrCOMIMILc..couerierierieiiniieienieeitenienieetesteeiteneeseeeneesieeneens 527
18.4.5. Linux HUZE PaESocouiiiiiiiiiiiiiiiiectceceee et 528

Xii

18.5. Shutting DOWN the SEIVET....cc.coiiiiiiiiiriiiiieieeiteee ettt sttt eabees 529

18.6. Upgrading a Post@reSQL CIUSIETcc.eeviirriieriieriieeieeitenite ettt sttt et eeees 530
18.6.1. Upgrading Data via pg_dumpall.........c.cccerieriiiriiiinienieniiiieeniesie e 531
18.6.2. Upgrading Data via pg_upgradecoceeveerieriiiiniienieniienieenie e esreesieeseeens 532
18.6.3. Upgrading Data via Replication..........ccceevuierieniiiinienieniieieentesie e 532

18.7. Preventing Server SPOOfINGcc.coirieriiiieienirietieeetenie ettt 533

18.8. ENCryption OPLONS.corueiuieiiiieieiieitete ettt et saeene st e re et enesaeennens 533

18.9. Secure TCP/IP Connections With SSLcccccooviiiiiiiiiniiiiiieceeeeee e 535
18.9.1. Using Client CertifiCatesccerieruerierieiienieieneeeeieseerese e seeeaesaeenens 535
18.9.2. SSL Server File USagecc.ooiiviiiiiiiiiiieiiiiceet e 536
18.9.3. Creating CertifiCates.ccoeieriiriiiiiriiiieieei et 536

18.10. Secure TCP/IP Connections with SSH Tunnelsccooceeeevenienenieieneecee e 538

18.11. Registering Event Log on WINAOWScoccvuerieieirininineneicieiecse e 539

19. Server CONfIZUIATIONc..ccueveiruiriirtetetetettetesest ettt sttt ettt se e ese et et sae st ssenneneenens 540

19.1. Setting Parameterscccecvriruiriirienieieiieiinene ettt ettt s sa et ne e enean 540
19.1.1. Parameter Names and ValUues...........ccooerieiinieiieninienenceeseeee e 540
19.1.2. Parameter Interaction via the Configuration File..........c..ccccooveiviniinieninnnnn. 540
19.1.3. Parameter Interaction via SQL...........cccciiiiiiiiiiiiiiiieeeeeeeee e 541
19.1.4. Parameter Interaction via the Shell...........cccocoiiniiininiiecee 542
19.1.5. Managing Configuration File COontents...........cccceeerveerenienenenieneneeneneenens 542

19.2. FIle LOCALIONS ...eviiiieiieieiiteieeiteiteie ettt ettt ettt ettt st e e s eanens 544

19.3. Connections and AUthentiCatiON.ccoereerierierieniinieieneetene sttt 545
19.3.1. CONNECHION SELHINES ...euveevrenririeeierieetenieniteieeteete st et ste st et eite et sbeenaesaeennens 545
19.3.2. Security and AUthentiCatiON..........eeverriterieereenieeieereeneesreesreeseeesneesseesseenens 547

19.4. ReSoUIce CONSUMPLION.....cc.veriieriieriieriieieesieentteeteenseesieessseesseesseesssessseenseesssesssessseessns 550
19,4, 1. IMIEIMOTY ..eitteiitesiie ettt estte et e et e bt e s tte st esbeesteesaaesabeeseesseessteensaenseesasesnsesnseensns 550
19.4.2. DISK ettt s 552
19.4.3. Kernel Resource USage........c.cevueerieriiiiiieniienieniieniteste st eieesieesteeseesieesineens 553
19.4.4. Cost-based Vacuum Delayccccceecuirriieniiniiiniiiiiieniesieeieeste st 553
19.4.5. Background WIILeT.........cocueriieiiienieniieiteiteste ettt st ettt e e e saneeas 554
19.4.6. Asynchronous Behavior.............cooueviiiiiiiniiniiiniiiiteniesic e 555

19.5. WIite AREAd L0 ...covviiiniiiiiiiieeieetete ettt ettt sttt et st ebees 557
1.5, 1. SEUNES .c..eeentietieeiteete ettt ettt et ettt sttt e st e st e be e s bt e satesbeenbeesaneeas 557
19.5.2. CheCKPOINLS.....coviiieiiiieiietieieeteste ettt ettt eae s ne s ennens 561
19.5.30 ATCRIVING ettt s s 562

19.6. REPLICALION.cuiiiiiiiieieieeeeie ettt ettt et st et eae s 563
19.6.1. SeNdING SETVET(S) ..cuveerriirieriiiiieniteeteete ettt ettt et sttt et et be e b e saee e 563
19.6.2. IMASIET SEIVET ...eeuieeuiieiieniieeteetee st eit et ettt sttt e site st e bt e sbtesateebeesneesaaeeas 564
19.6.3. Standby SETVETScc.couiiiiiiiiiiieiieeeeeee et s 566

19.7. Query PIANNINGcc.ooiiiiiiiiii et e s 567
19.7.1. Planner Method Configuration.............ceeeuervereeirenenenienienieeeieresreseeeeeneenes 567
19.7.2. Planner Cost CONSLANLSccveerteerieriiriieniienienteenreesite st eieesreesaeeereesseesseeeas 568
19.7.3. Genetic QUETY OPHIMIZETcccecveuteiriinienieieteteene ettt eeneenes 570
19.7.4. Other Planner OPLiONS.........co.ceueveieirinienienieteteene ettt sseeeeeneenes 571

19.8. Error Reporting and LOZZINGcceeieriiiiinieniiiieieecee ettt 573
19.8.1. WHEre TO LOZ .uveuiiieiieiieiieieee ettt s s 573
19.8.2. WHen TO L0 ..couveiiiieiieiieietee sttt s 576
19.8.3. WHhat TO LLOZ «..cenveiiiieieeiieeeeees ettt s s 578

Xiii

19.8.4. Using CSV-Format Log OULPULcovieiieriierieniieiieriesie ettt 581

19.8.5. Process Title.....c.coueeiiriiriiiiniieiiniteieiceteteettete sttt s 583

19.9. RUN-tIME STALISTICS...ccuvirtieiietiriieienierteienieeteetceet ettt ettt sre et s beeanenes 583
19.9.1. Query and Index StatistiCS COIECLOTcceevuerriiiriierieniieieenee e 583
19.9.2. StatisticS MONILOTINGccouverveeriieriientieteeniteete et ertteste sttt e sieesatesbeesaeesaeeens 584
19.10. Automatic VACUUIMINGccuevuiriiriirieiiiieienieeteteete et ene st sresveeae e ennens 584
19.11. Client Connection Defaultsccccoecuiiriiiriiniiiiiiiiieeeeee e 586
19.11.1. Statement BERaVIOToccueiiiiiniiriiiiieiteeteee ettt 587
19.11.2. Locale and FOrmattingc.ccocceceririeiininiine e 591
19.11.3. Shared Library Preloadingcccccceiiiiiiiniiniiiiiinceneccceccceeeens 593
19.11.4. Other Defaults.........cooiiiiiriiiiieieeceieeeete ettt 594
19.12. Lock ManagemeNntcc.cecuiiuiiiiiiiiiieii ettt e 595
19.13. Version and Platform Compatibilityccocevevierieririnininenenieieincne e 596
19.13.1. Previous PostgreSQL VEISIONSc.cceevverieeeirinerenieieieeeieresreseeeeeeneenes 596
19.13.2. Platform and Client Compatibility...........ccccceevirirverenierrenieeninenereeeeenene 598
19.14. Error HandIINEc..coveoveiiiiiriinieieiceeteteenteseteteeet ettt s st 598
19.15. Preset OPtiONS. . c.ceeuteierieeeieieetiete ettt sttt st et ettt et e sbe et esbesbtentesbeeneenbesaeebesbeeneens 599
19.16. CUSLtOMIZEA OPLIONS ...cuveeieniitieiieiieiieie ettt ettt e ettt st tesbeeste bt sbeenaesbeeneens 600
19.17. DEVElOPEr OPHONS ..c..eeveiieniiniieitenieeiteie sttt ettt ete st et esbesbeetesbeestentesaeenaesbeennens 601
19.18. SHOTIT OPIONS ...ttt ettt ettt e e st e e bt sbt e e sb et e bt sbeeaesbeennens 603
20. Client AUhENTICALIONeoueetiriieiirieeienieeetee ettt ettt ettt et sbe ettt eat et bt eaesbeennens 605
20.1. The pg_hba . CoOnE FIlE .couiiiiiiiieii e 605
20.2. USEr NAME MAPS ..cuviniiiiiiiiniieienieeiesieeteste sttt ettt sttt b st saeesaesreennens 612
20.3. Authentication MethOdscccoeeiiririiiniinienenietetcetee ettt 613
20.3.1. Trust AUthentiCationc..ceceevueriieieniieieniinieetenerteteeeee et 613
20.3.2. Password AUthentiCationc..coccecveruieeeniereenienenieieneeeene et 614
20.3.3. GSSAPI AUthentiCationcccuevieieriinienieneeienienteteneeeenie et 614
20.3.4. SSPI AUthentiCation......ccceeouieeeriirieienienieienieeteseetene ettt saeennens 615
20.3.5. Ident AUthentiCation..........coeeeeruireeienerieieneetese ettt saeeanens 616
20.3.6. Peer AUthentiCation...........coeeveeruereeienirieiinieeieneetese ettt et saeennens 617
20.3.7. LDAP AUthentiCationc..cccceeuerieienerieniinieienieetenieniterestceeenaeeneenesaeennens 617
20.3.8. RADIUS AuthentiCation..........c.ccoceevuerierierienieriineeienieneerenieeeenseeneenesaeennens 620
20.3.9. Certificate AUtheNtiCatiONcc.coeevierierieiinieieneeeerereeteeteeeeae e e 620
20.3.10. PAM AUthentiCationcccceeuirierienierieiinietenceeenesieetesteeeeae e e eanens 621
20.3.11. BSD AUthentiCationcccueivuiiriiriierieeniieeieeteesiteete ettt st siee s 621

20.4. Authentication ProbIemsc.c.coiieriiriiiiiiinieiieeectete ettt 622
21. Database ROIEScoouiiiiiiiiiieeit ettt ettt et e b e st st b e saeesaee e 623
21.1. Database ROIESeocueiiiiiiiinieiiieiteeee ettt sttt 623
21.2. ROIE AUITDULES ...coneteeiieiiieriteeteee ettt ettt et st et sinesaaeebees 624
21.3. ROIE MEMDEISHIPeovieiieiieiieei ettt e 625
21.4. Dropping ROIES.......c.oouiiieiiiieieeiee ettt ettt ettt sae e 627
21.5. Default ROLESoouieiiiiieiieie ettt et ettt s e e b 628
21.6. FUNCHION SECULILY ... eeotiiuieiiiiteieitceie sttt ettt sttt ettt e e st sbe et e be e st entesaeenaesbeennens 628
22. Managing Databasesccueeierieririeniieiieieeie ettt ettt et et s b ettt at et it et saeeneen 629
22.1. OVEIVIBW ..ttt eite sttt e et e ettt e bt s at et e s bt e e et e e st e et ebteaesbeestenbeestentesaeenaesbeennans 629
22.2. Creating @ Databaseccouevieieriiiiiniieiee sttt sttt s 629
22.3. Template Databasescccceeeerieriieiiniieieie ettt sttt et s nae e 630
22.4. Database CONfIGUIAtIONccoueruieiiriiriienienteenteetesteeite st eiee ettt e st saeesae e ennens 631

Xiv

22.5. Destroying @ Databasececueeuieriierieriiieiierie sttt sttt ettt saaeebees 632

22.6. TADIESPACESeeuvieiteeieeiiesite ettt ettt sttt e s ate st et eteesbt e sbe e bt e bt e sateebe e beesabeeabeenbeas 632
23, LOCAlIZATION. ...ttt 635
23.1. LOCALE SUPPOTIL...eiiiiiiiiiieiieeieeit ettt ettt st ettt e st s bt e bt e bt e sateebeebeesaaesasesabeas 635
23,11 OVEIVIBW ..ot 635
23.1.2. BERAVIOT ..ottt ettt st s 636

23 1.3, PTODICIIS .ttt ettt ettt ettt be et e s e 637

23.2. COlation SUPPOIT......covirieiirieieniieieie et et et ete st eee et esnesaeenesre e e eaesaeenesaeennens 637
23.2. 1. CONCEPLS. ..ottt ettt sttt et et ettt b e ae e nesaeeanens 638
23.2.2. Managing COllationsS.........ccoeveeruiiieiieniinieieeeeiese ettt 639

23.3. Character SEt SUPPOTL......c.coeeviiruiriiiiieieie ettt e s 640
23.3.1. Supported CharaCter SELS........ccceeruerrerieerienienieente ettt saee e 641
23.3.2. Setting the Character Sel...........ccovieruerieieriieiieie sttt eee e saeeneens 643
23.3.3. Automatic Character Set Conversion Between Server and Client.................. 644
23.3.4. Further REadingccceciiiiiieiiiiieeeeeee et 647

24. Routine Database Maintenance TasKS..........cceceereriiiierieiieieniieiese et 648
24.1. ROUtINE VACUUIMINEeeuteniiiiteientieiienteeitentesitete st eete st ettenteeaeeaesbeestesbesseentesaeeneesbeennens 648
24.1.1. Vacuuming BasiCscceeuiririeriiiiiierieeieeei ettt e 648
24.1.2. Recovering DiSK SPACEcc.eoeeruiiiiieniiiieieei ettt e 649
24.1.3. Updating Planner StatiStiCscouereeruerierieniinieienieetenesiteiesi et 650
24.1.4. Updating The Visibility Mapc.cccocererierieninriinenienenteieniceeenie e 651
24.1.5. Preventing Transaction ID Wraparound Failures..........c..ccccceeeveninencncnnn. 651
24.1.5.1. Multixacts and Wraparound............ceccecevereeneneenieneneeneneeneneenens 654

24.1.6. The Autovacuum Daemoncccceeiviriiniiiiiieiniiiecieeeeec e 655

24.2. ROUtING REINACKINGeeuvieiiieiiiiiieiieeie ettt sttt sbe bt e st e seaeebeebeesaaesnsesnsees 656
24.3. L.0g File MaINtENANCE.......cccuevieeiieriierieeiieieeste st eteesitesitesbeesteesseeseseeseebeesasesnsesnseas 656
25. BacKUP and RESTOTEeeuiiriiiriiiiiieitesiie ettt sttt te ettt s e st e sbeesbeesabesateenbeessnesaneens 658
25.1. SQL DUMIP ..ottt e 658
25.1.1. Restoring the DUMPcocueeiiiiiiiiiieieeieereeeet ettt st et 659
25.1.2. Using pg_dumpall......cc.ccocueeviiiriieiiieieeiienieeie ettt ettt st ebeesaee e ens 660
25.1.3. Handling Large Databasescoceevuerriierieniieeiieniiesieeieeieesite st 660

25.2. File System Level BaCKUP ...cc.coiiuiiiiiiiiiiieieeteee ettt 661
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)......ccccccocevveiniiniiniennnen. 662
25.3.1. Setting Up WAL ATChIVING......cceoiiiiiniiriiiinicieeeeeneeteeeeete e 663
25.3.2. Making a Base BaCKUPcccoceeviiriiiiiniiiiiiiciecccesceteeeee e 665
25.3.3. Making a Base Backup Using the Low Level API...........ccccoceiiiiininnnnn. 666
25.3.3.1. Making a non-exclusive low level backupcccocoecininiininnnnn. 666

25.3.3.2. Making an exclusive low level backup..........cccoceeeiiiiiininiencnnnnnns 667

25.3.3.3. Backing up the data dir€Ctory..........coceeceeviiiienininiieniciceeeceeeee 668

25.3.4. Recovering Using a Continuous Archive Backupcccccecevinincncnnencenene. 669
25.3.5. TIMELINES ...c.veeuieieeiieieete ettt ettt sttt ettt et eaeenaesaeeneens 671
25.3.6. Tips and EXamplescccueeieieiiiiiieiieieieeieete ettt s 672
25.3.6.1. Standalone Hot Backupscccceeeueriiriieniiieniiieeseeee e 672

25.3.6.2. Compressed Archive LOgsccoeevieriieiieniiienienieesieeee e 673

25.3.6.3. archive_command SCIPLS ..ccecveerierrierienirienieseetesieeiee e sae e 673

25.3.7. CAVEALS ..ttt sttt h et sttt b et b ettt st sbeeneen 673

26. High Availability, Load Balancing, and Replication............cccccecueririeneninnieneniencncene s 675
26.1. Comparison of Different SOIUtIONS.........ccouereerieririiniiiiene et 675

XV

26.2. Log-Shipping Standby SETVETS.........ccceriuiiriierieniieieerienieeieeitesieesreese et e saesaaeeeees 679

26.2.1. PIANNING ...eotiiiiiiieeiteite ettt sttt et ettt et e st st e e beesaeesaneen 679
26.2.2. Standby Server OPETationcocueevueereerieriienriienientesieesieesteseeesseeseesineens 680
26.2.3. Preparing the Master for Standby SErversc..ccooveevvieriienieniieniieenieeneeniens 680
26.2.4. Setting Up @ Standby SeTVETceevueeiiieriiniiniienieeteeeeee et 680
26.2.5. Streaming RepliCation...........ccceouerievieriirieiiniieieneeieeseeresteeeeae e e 681
26.2.5.1. AUthentiCAtIONeocueeuieriiiiiieiterite ettt ettt et erees 682

26.2.5.2. MONILOTING.....c.veeiieriiieienieeieeie sttt ettt et re e nesaeeae s nens 683

26.2.6. ReplCAtiON SIOTSc..oiuiiiiiiiiiiieiieieeeeteee ettt e s 683
26.2.6.1. Querying and manipulating replication slotsc..ccccceeeveenennenens 683

26.2.6.2. Configuration EXampleccccecvineniiiiiininineneeeenenencseeeeeeeee 683

26.2.7. Cascading RepliCAtiONc.ceoeeiuirieiienieeiieiietieie et s 684
26.2.8. Synchronous Replicationcoceecueruieieriinieiese et 684
26.2.8.1. Basic ConfigUration..........ccecueiuerierieniieiienieeeerie ettt 685

26.2.8.2. Multiple Synchronous Standbys.........ccccoeceeeeererierenieiieneecene e 686

26.2.8.3. Planning for Performance............cccooceeveniriiniiiniinicieeecee e 686

26.2.8.4. Planning for High Availabilityc..ccccoooiriiniiiiiiiniiieceeeee 687

26.2.9. Continuous archiving in standbyccccecivieiiniiniinienieeeeceee e 687

26.3. FAIIOVET ...ttt sttt e e 688
26.4. Alternative Method for Log Shippingcccceveieeiiininiininiinieniceieseetececee s 689
26.4.1. IMPLEMENTATION «..vvtiuieniieiieiieiiete ettt ettt sttt sb et e st st eeesbeenaens 690
26.4.2. Record-based Log ShipPing........cccceeuerierienienieriinenienieniteiesicetesie e e 690

26.5. HOt StandDycoouiviiiiiiiiiiiiiiiieeeee et e 691
26.5.1. USEI'S OVEIVIEW ...c.eeuiiiiiiiiiiiiicieicit sttt s 691
26.5.2. Handling QUery COnfliCtScceerierieriiieriienienieeieeseesee e see e 693
26.5.3. AdmiIniStrator’s OVEIVIEWcc.ccueiiiriniiniiieieieiieesiesecieeecse st 695
26.5.4. Hot Standby Parameter Referencecccovveeviiiiiienieniiiiiieienie e 697
20.5.5. CAVEALS ..ot 698

27. RecOVETY CONTIGUIALIONeeuiiriiiiiieniieniteeieeieenite sttt e st e ebe et esbtesateeabeesbeesatesateenbeessaesanenns 699
27.1. Archive RECOVETY SELLINES ..eoveriieriierieriieriiesite sttt sttt ettt e et et sateeaeeenbeas 699
27.2. ReCOVETY Target SELUNES .. .cevveriieriieeiieeieettesite sttt ettt ettt e st ettt e sateeaneeabees 700
27.3. Standby SerVer SETNZSceeutriiieriierieiiterteeste sttt e sttt ettt esbeesbeebeesbeesaaeeaeeeabeas 701
28. Monitoring Database ACHIVILYc.eevteriiriierrieeniierieeitteniee st et et e sitesatesteesbeesatesatesbeesaaesaneens 704
28.1. Standard UnixX TOOIScccouirierierieiiniieice ettt 704
28.2. The StatiStiCs COIIECIOT....cuuiriiiiiiriieriieeie ettt ettt ettt et et ebees 705
28.2.1. Statistics Collection CONfIUIALIONcc.eevieuieiirieieieneeieeieeeeie e 705
28.2.2. VIEWING STALISTICS ...ccuveurieiietieiieieiieeeenie ettt ettt 706
28.2.3. StatisticS FUNCHONS ...coouviiiiiiiiiiiiiieieeeertceteeeteetee ettt 727

28.3. VIEWING LOCKS ...ttt et s s 730
28.4. Progress REPOITINGcccueruiiieiieitieieeie ettt et ettt et e st s e naeseeennens 730
28.4.1. VACUUM Progress RepOrting..........ccceeeerueeuienieneeienienieiesiceee e 730

28.5. DYNAMIC TTACINE ..cuvitieiieiieiieie ettt ettt et e sbe et et et estesseenaesbeennens 732
28.5.1. Compiling for Dynamic Tracing........ccccecueruerierieneeienienieeientceie e 733
28.5.2. BUIIt-I0 PrODES ...ceeiniiiieiieiieicee ettt 733
28.5.3. USING PrODES ...ccuviiiiiiiiieiieiei ettt st s 742
28.5.4. Defining New Probesccccoceriiiirieniiieiieieeseeeestee et 743

29. Monitoring DiSK USAZEccueruieiiriiiiiiieiieieeieete sttt ettt sttt sttt s e b 745
29.1. Determining DisK USAZEcoouevuieieriiriiiniiiienieiieetesteeteee sttt 745

xvi

20.2. DiSK FUIl FAILUIEuvviiiiiiiiiieeeeeieeee ettt eetrv e e eetare e e eevareeeeenans 746

30. Reliability and the Write-Ahead LOZ......cccceviiriiirieriiiiietee ettt 747
30.1. REHADIIILY ...cviiiiiiiiicicic e 747
30.2. Write-Ahead Logging (WAL)cooiiiiiiiiiiieieeie ettt sttt 749
30.3. ASyNnchronous COMIMIL........cecuerrieeriierierieeieente ettt sttt et sate e b e bt e sabesaeeeabees 749
30.4. WAL CONfIZUIALIONeouviiiiieieniieiieieeeete ettt ne st ene e ennens 751
30.5. WAL INEETNALS ...eoiiieiiiiiieiiieieeieeit ettt ettt et sbt e sttt e sabesaeeeabees 754

31 REGIESSION TESTSeeuiintiiiieiiiieeteteet ettt ettt et s e 756
31.1. RUNNING the TESESeouiiiiiiiiiieieieeiee ettt st s 756

31.1.1. Running the Tests Against a Temporary Installation.............c.ccccccoceiininnene. 756
31.1.2. Running the Tests Against an Existing Installationc.cccccccceiiiiininene. 757
31.1.3. Additional TeSt SUILESecuerueerieriieiertieeierteeteeee ettt sbe e 757
31.1.4. Locale and Encoding...........cocueierieieniieiene ittt 758
3115, EXITA TESES ..eeeuiieiiieieiieeriteeee ettt ettt st st e 758
31.1.6. Testing HOt Standbycccoeieriiriiiiinieieie et 758

31.2. TeSt EVAIUALION «.cuveuiiiieiieieieteiect ettt ettt sttt s naesbe e 759
31.2.1. Error Message Differences.........coccecuerieieriiienieninieieeieeese e 760
31.2.2. Locale Differencescoereerieriieiieniieieie sttt 760
31.2.3. Date and Time Differencesccccceveveriivieieieinininiercecreenc e 760
31.2.4. Floating-Point Differences............ceceririeriniinienenieieneeeneetere e 760
31.2.5. Row Ordering Differencesccccecvevirieniiniinienenieieneeeseeeere e 761
31.2.6. Insufficient Stack Depth..........cocooieiininiiniiiiiinceceeeeeeeeee 761
31.2.7. The “random” TESt........cccciviriiriiriiiiiiiiiieetee et 761
31.2.8. Configuration Parameters..........ccccveevercuiereerienieeieeneeneesreesaeeseeseeeseenseesens 762

31.3. Variant CompariSon FIlEscccoeviiriiiiiiinieiieeieeeetese et 762
314 TAP TESES .ottt e e 763
31.5. Test Coverage EXamination............ccccecveiieiiiiiniiniiiiiiinc et 763
IV. Client Interfaces 765

32, THDPQ = C LADTATY oottt st e sbe e st s e e bt e bt e satesbeensaesaneens 767

32.1. Database Connection Control FUNCHIONSc..coccecveviieiiniinieninieieneeeeieeceie e 767

32.1.1. CONNECLION STINZS ..veeuveeiiieiieeieeitiesieeteeteeste st eb e st e siee st ebeesbeesaaeebeenseesae 773
32.1.1.1. Keyword/Value Connection Stringsc...cceceevveeneeruenseeeneeneesseennnens 774

32.1.1.2. Connection URIScccoviiiiiiiniiniiiieeeenie ettt 774

32.1.2. Parameter Key WOIdScccooiiiiiiiiiiiiiiiiieeeeeeeeeece e 775

32.2. Connection Status FUNCHONScocuiriiriiiiiiinieniie ettt 779
32.3. Command Execution FUNCHONScccueriiiiiiiiieniiiieceeniceieeeeite et 784
32.3.1. Main FUNCHONSooieiiiiiiiiieeieeteeteee ettt st 784
32.3.2. Retrieving Query Result INformationc.ccoceceeverveneneniecincencneneniennecenens 792
32.3.3. Retrieving Other Result Informationccccceceeivenenenecinencnenenienneeenens 795
32.3.4. Escaping Strings for Inclusion in SQL Commandsccccccecererenreniennecnnns 796

32.4. Asynchronous Command Processing..........cccevevervevueirenininenienneeeeneneneseeneeenene 799
32.5. Retrieving Query Results ROW-BY-ROWccccoiiiiiiiiiiiniiiiecceeeececee s 803
32.6. Canceling QUEries in PrOgress.......cccouiriiririiniiiiieienieeee ettt 804
32.7. The Fast-Path INterface..........ccocevimiirieiiiiieiiiiiiccceece et 805
32.8. Asynchronous NOtHICAIONc..evueeiiriiriinierieierieeiete ettt sttt s 806
32.9. Functions Associated with the COPY Commandccocoeivieviiienininiinenenieieinnnn 807
32.9.1. Functions for Sending COPY Data........ccccoeererieninienienieieneeeenceeenieeeeenne 808

xvii

32.9.2. Functions for Receiving COPY Data........ccceevveviiiiienienieiiieieeee e 809

32.9.3. Obsolete Functions fOr COPY ..c..cciecieririeniinienienienicienecenecetesec e 809
32.10. Control FUNCHONScocviiiiieiiriieieiieeeenteest ettt ettt s e 811
32.11. Miscellaneous FUNCHIONScoccecueriiriiniirienieniieieniieeete ettt 813
32.12. NOtICE PrOCESSING ...uveeuiieiieeiieiiieiteeite ettt sttt et sttt sbe e st e b e sbeesabesaeeeabees 815
32,130 EVENE SYSIBIM ...cuiiiiiieiieieeteteeie ettt sttt ettt s e e ne s ene e eanens 816

32131 EVENE TYPLS ..ottt et 817

32.13.2. Event Callback Procedure...........ccocceevueeriiiniiniiiiiiienieniccieecesee e 819

32.13.3. Event Support FUNCHONSc..cccoiiiiiiiiiiiiiieieeceecece e 819

32.13.4. Event EXampIecccoociiiiiiiiiiiiiiiiccc e 820
32.14. Environment Variablesccoceeiiiriiiiiiiiiiiieiiieieeeesite ettt 823
32.15. The PassWord Filecccooiiiiiiiiiiieee ettt 825
32.16. The Connection Service Filecoooieiiiiiiieiiiieeieee e 825
32.17. LDAP Lookup of Connection Parameters............cccoeeoeevirieneneeiienieieneecese e 826
32.18. SSL SUPPOTL..ntiiiiieieiiieitteete ettt sttt ettt ettt e bt e b e saeesaeeenees 827

32.18.1. Client Verification of Server Certificatescceouerereeriererreereneeieneeeene 827

32.18.2. Client CertifiCateS.......ceoueruiruieientieientiettete st te ettt be e 828

32.18.3. Protection Provided in Different Modesccceeovevenieiinineninieicncnne 828

32.18.4. SSL Client File USAe.......cccuerieriiriiniieiienierieeienieeeteieeieeee et 830

32.18.5. SSL Library InitialiZationc..cecuevirierinienienienienieneeiene e 831
32.19. Behavior in Threaded Programs...........ccocceceeveiirieninienenienienceieseeeesieseenee e 831
32.20. Building libpq Programs..........c..cccueveriinirienenieienieeieniescete ettt 832
32.21. EXample Prorams........coceoeererieiininieienceesieetesteeitete et sttt s s 833

33.LAIZE ODJECLS ..evvenveeutiiieiteiesieetest ettt ettt sttt ettt ettt et sae et e b sb e et e sb e bttt eae et s bt b e b eaeenee 844
331 TEFOAUCTION ...ttt sttt ettt sttt et saeeeesbeennens 844
33.2. Implementation FEALUIEScccverierieiiieieeriere ettt st eaees 844
33.3. CHENt INTEIaCES. ...cc.vieverieiiriieierieeteeetetc ettt ettt s s 844

33.3.1. Creating a Large ODJECt......c.eevuierierieriieiienieeee ettt sttt st e 845

33.3.2. Importing a Large ODJECT......cccuierierieriieiiierieeie ettt sttt 845

33.3.3. EXxporting a Large ODJECT......cccueerierieriiiniienieeteeieeniteete sttt st 846

33.3.4. Opening an Existing Large ObJect.........cccceevieriiriiienienieiieeieesee st 846

33.3.5. Writing Data to a Large ObJeCt......cccuevcuiriiierieniiiiieiierie ettt 847

33.3.6. Reading Data from a Large ObjJectcccceevieriiriiienieniieniiiiceree e 847

33.3.7. Seeking in a Large ObJeCt.......cccovierieriieiiiiirierieeieeteete ettt 847

33.3.8. Obtaining the Seek Position of a Large Object.........cccceceevvenirveeninienicncnnnn. 848

33.3.9. Truncating a Large ObJEctccceecueviieiiiiiniiieniciceeeeee e 848

33.3.10. Closing a Large Object DEeSCIIPLOLcceoievieriirieienieeenie e 848

33.3.11. Removing a Large ODbJectccccccveviiiiiiiiiiiiiiiceecce e 849
33.4. Server-side FUNCHONScccueviiiiiiiiiiieiietetert ettt st 849
33.5. EXample PrOGramcoccoviiiiiiiiiiiiiieiiteteteec ettt st 850

34. ECPG - Embedded SQL N C.....oviiiiiiiiiiiiieicieieenie sttt st enean 856
34.1. THE CONCEPL....cueetieiieiieiieie ettt ettt ettt st et bt et e st et ente e et eaesbe et enbeeseentesaeeneesbeennans 856
34.2. Managing Database CONNECTIONSeeveruirierueriieientieienteeicentesteete e eseeneeeseeneesaeennens 856

34.2.1. Connecting to the Database Servercocoeeveririeiinieeneeecee e 856

34.2.2. ChooSing @ CONNECIONeoueeuietieiietietietesteete st eeteie sttt este e b eneesbeeaee e 858

34.2.3. CloSing @ CONNECHION.......oouiruieientieiientiettetesteete st et te et et e et eate st sbeeseesbeeaeenes 859
34.3. Running SQL COomMmMAandS..........ccceecueruirierinienieniieienieetenee ettt sieesee e 859

34.3.1. Executing SQL Statementsccccecuertirieriererrienienienieneeeenieeeeniesieeeesiesaeenee 860

XViii

34.3.2. USING CUTSOTS..ccuuvieureeiieniierieeteenteesteeteesteesstesstesteesseesseesseesseesseesssesnsessseessns 861

34.3.3. Managing TranSactionsceceereerieriieeniienienieeieesiteste st eieesieeseeeseeneee s 861
34.3.4. Prepared StateImENTS.ccoueeverrieeriierieeieesieesitesite et esieesitesteeaeesseesateeseenseesee 861

34.4. USING HOSt VATTabIEs ...c...eovuiiiiiiiiiiieeiieeie ettt st sttt e 862
3441 OVEIVIEW ..ottt 863
34.4.2. DEClare SECHONS.c..eouteieriiriereniieretieetete sttt sttt sae et sae s eanenns 863
34.4.3. Retrieving Query ResultS........c..cccoeceriieiiiiiiiiinincienecece e 864
34.4.4. TYPE MAPPING ...oveeiiiiieieieieeeeeeett ettt et 865
34.4.4.1. Handling Character Stringscccceceeveerireenieneerrenieeeereeeesee e 865

34.4.4.2. Accessing Special Data Types........cccceeveviiiiniiiniiniiieiceceneees 866

34.4.4.2.1. timestamp, date........cceceeviierieriiiniieeente e 866

34.4.4.2.2. INLEIVAL ..ot 867

34.4.4.2.3. numeric, deCimMal.......cccooeeeeeeeeeeeeeee e 868

34.4.4.3. Host Variables with Nonprimitive Typescccccceeererrenvererrecueennenn 869

34.4.4.3. 1. ATITAYS ..o 869

34.4.4.3.2. STIUCHUTES ...eevuvieniieniieniiieieenieeeite et siee sttt e i e s e reesnee e 870

34.4.4.3.3. TYPEAELS...c..eiiiiiieiiieieiteeee et 871

34.4.4.3.4. POINLETS ...euveiiriieiieieeieniteiie ettt et sttt eite st s ae e eneens 872

34.4.5. Handling Nonprimitive SQL Data TyPes.......cccceverieriineevienenieneieeiesceeene 872
3445, 1. ALTAYS .eonteiieiieteeiteeeteee sttt ettt sttt et b ettt s 872

34.4.5.2. COMPOSILE TYPES ..uvenveemeiiiriieieniieienieetenie ettt ettt 874

34.4.5.3. User-defined Base TYPESccceveervereriienirienenieienieeeecsceee e 876

34.4.6. INAICALOTS.ouiriiiiiiieieiieiiteeeete ettt st 877

34.5. DYNamic SQL.....coiieiiiiiieiieeie ettt ettt ettt ettt st b et st e e be e beesebeeaaeearees 878
34.5.1. Executing Statements without a Result Setcccoevvevviiiiiinienienieeieeeee 878
34.5.2. Executing a Statement with Input Parametersccoeceevvvieneeneeniennieeneenne 878
34.5.3. Executing a Statement with a Result Setccccoovvevieriiiiiiiinieniecieeeeee 879

34.6. PELYPES LIDTATY ..couuiiiiiiiieiieeie ettt ettt sttt et sttt e st eateeabees 880
34.6.1. CRaraCter STINZS. ..ccveeruierierieeiientieste et esieestesiteebeesitesitesabeeseesseeseteenseenseesans 880
34.6.2. The NUMETIC TYPE ...veevieriiieiiiiieiieeieete ettt sttt st s 880
34.6.3. The date TYPC...eouvteeeeeieriieeieeieette ettt ettt st ettt s aee e 883
34.6.4. The timestamp TYPE.....ceveeriiriiieriieiieeieeiee sttt ettt st ebe b 887
34.6.5. The INterVal TYPEeeeeviiriiiiiieiieiite ettt sttt e 890
34.6.6. The decimal TYPE.....ccceeriiriiiiieiteeieee ettt st 891
34.6.7. errno Values of pLypeslibc..coccecierieiiiiiiiiieniiceccee e 892
34.6.8. Special Constants of pgtypeslib........cc.coceviiriiiininiiiiinieeeeeee 893

34.7. USING DESCIIPLOT ATEASveveeuieniieiiiiieieeieetete sttt et eeeenesaeene s eaesneene e ennens 893
34.7.1. Named SQL DeScriptor AT€ascccecceevuiruieiieniinieieneeeene e 893
34.7.2. SQLDA DeSCIIPtOT ATEASeeviiieiierieiieieiteeienie ettt 896
34.7.2.1. SQLDA Data StrUCHUIE.......cccvteeeuieeeiieeeiieeeiieeeieeeeieeeeieeesaeeesreeenns 896

34.7.2.1.1. sqlda_t STUCLUTEcooviriiiiieniiiieeeeec e 896

34.7.2.1.2. SQIVAr_t STrUCIUIEeerueiiiiiiieniiceieeeeee e 897

34.7.2.1.3. struct SqINAmMe SrUCtUIEc.cecererueruevereininrenienieeeeenenes 898

34.7.2.2. Retrieving a Result Set Using an SQLDAccccccecvininincniennnenn. 899

34.7.2.3. Passing Query Parameters Using an SQLDA..........cccccvveninierennnnn. 900

34.7.2.4. A Sample Application Using SQLDAcccceoviiiininiiinineneneene 901

34.8. Error HandIingcc.oouiiieiiiiiieiiieieieee ettt sttt s s 907
34.8.1. Setting CallbDaCKScceevieririeieiiieieiietee ettt 907

Xix

34.8.2. SQICA cuveeeitetteite ettt sttt sttt e st ebe e b saee 909

34.8.3. SQLSTATE VS. SOLCODE t.utteuttetterteerresteeteesstesieesteesseesseessseesseesseesssesnsessseessns 911

34.9. PreproCesSOr DITECTIVES ...ccuviriiriieiieniesieeieesite st ettt e sttt ettt e satesbe e beesiaesanesabees 914
34.9.1. INClUudIng FAIESooviiiiiiiiiieeieeite ettt s 915
34.9.2. The define and undef DIr€Ctivesccceeecvieecieeeiiieeeiie e ecree e e 915
34.9.3. ifdef, ifndef, else, elif, and endif DIrectives........coooveevvveveieiiieeiieeeeeeeeeeiiniens 916
34.10. Processing Embedded SQL Programs..........c..coccocueeiieiiiniiniineneeienineeieeeenee e 917
34.11. Library FUNCHONScccceiuiiiiiiiiiiiiieiee ettt 918
34.12. Large ODJECES....c.uieuriiieiieieiiteieeie ettt ettt ettt ettt s 918
3413, CH4 APPLCALIONS ..viiiiniiiiieieiieiee et s 920
34.13.1. Scope for Host Variables...........cccceirerinienienieinineneneieieenc et 921
34.13.2. C++ Application Development with External C Modulecccccveeveuennen. 922
34.14. Embedded SQL COmMMANAScccveeeiuiereiireiiieeniieeeieeeeieeesiieeesaeeesseeesnseeesnseeesneeens 924
ALLOCATE DESCRIPTORoootiiiitiieeee et 924
CONNECT ... et e e e e et e e et e e eeaae e eeteeeeteeeeaeeeeaenean 926
DEALLOCATE DESCRIPTORcoooitiiiiiiieeee et 929
DECLARE ...t et e e et e e et e e ete e e teeeeaaaean 930
DESCRIBE ...ttt ettt e et e e et e e e teeeeataeeeareean 932
DISCONNECT ...t et e e e e e et e e et e e e eae e e eteeeeateeeeaseeeeareean 934
EXECUTE IMMEDIATE ...ttt ettt e 936

GET DESCRIPTORooiiiiiieeeeeeee et ettt ettt eeeanee s 937
OPEN ...ttt et e e et e e e et e e et e e e tb e e eta e e eteeeanteeeearaeeaaraean 940
PREPARE ...ttt ettt et eeta e e s taeeeateeeeasaeeareeas 942

SET AUTOCOMMIT ...ttt ettt ettt e e e e et e e sve e e eave s eanaeearaa s 944

SET CONNECTIONooiiiiiiiieeteetee ettt ettt e e s ba e e saveseeareseanaeeavaeas 945

SET DESCRIPTORooootiiiiieeeee ettt ettt e e e e va e e s veseeave e eanaeeanaeas 946
TYPE. ... oot e e et e e et e e ab e e et e e e ab e e e tb e e sbaeaenbaeenaraeearaaas 948

VAR .ottt e et e e b e e e tbe e e ab e e e bt e e sbaeeanbaeenaraeaaraaas 951
WHENEVER ..ottt ettt ettt e et e st e e beeeeareeeaens 952
34.15. Informix Compatibility MOAEcccueviiiriiinieniiiieeieste ettt 954
34.15.1. Additional TYPESeeoveeruiiriieiieitierieete ettt ettt sttt st e 954
34.15.2. Additional/Missing Embedded SQL Statementscceceeveereervennieenneene 954
34.15.3. Informix-compatible SQLDA Descriptor AT€as........c.cceeeveevveereereeerueenueennes 955
34.15.4. Additional FUNCHONS..........eiiiiieiiiieeiie et et et iee et eesreeesereeeeseeeeneeas 958
34.15.5. Additional CONSLANTS..........ccoeiuviieeiiiiirieeeeeireeeeeeetreeeeeeereeeeeeetrreeeeeenrreeeeeenans 967
34,16, INLEINALSevvvieieeiiiee ettt ettt e e e ettt e e e e eeabe e e e e eettaeeeeeeabaeeeeeeesraseeeeennes 968
35. The Information SCREIMA.c.veiiiiiiiiiei e et e e et e e e eerae e e e eearaeeeean 971
35.1. The SCREIMIAvvieiieiiiee e et e et e e e e et e e e e eebareeeeeenbaeeeeeennes 971
35.2. Data TYPES ..ottt et s e 971
35.3. information_schema_catalog NAME ..ocieeeeeciieeeeeeiireeeeeeeirreeeeeeereeeeeeeerereeeeennns 972
35.4. administrable_role_authorizZationS .o eeeeeieeeeeeeeeeeeeerarerereeeeeeeas 972
R R T o NI Ty o Y Y oo B =Y SRR 973
R I TS ok < U R == TR 973
3. C AT A Ot T SO S tutiieeee e ettt e et e e e e e e ettt e e e e e e e et ettt —————————————aa 977
35.8. check_constraint_rOULIiNE_USAGE .iciiiiieieeiiiiiieeeeiiieeeeeeetreeeeeeerareeeeesraneeesennns 978
3.0, C i O K COMSE T AITIE S ttuetettttee e et e et e e e et e e e e eeae e e e eeaaeseeaeneseeeannaeesennnaeseenanaaaes 979
35,10, COL LAt 0N S aiiiiiiieiieeetee ettt e ettt e et eett e e e te e e et e e e tteeeeateeeeteeeetaeeetaeeeaeeeebeeeeteeeaareaan 979
35.11. collation_character_set_applicCability coiieoiieiiieeiiieeeieeeeieeeeeneaa 980

XX

35.12.
35.13.
35.14.
35.15.
35.16.
35.17.
35.18.
35.19.
35.20.
35.21.
35.22.
35.23.
35.24.
35.25.
35.26.
35.27.
35.28.
35.29.
35.30.
35.31.
35.32.
35.33.
35.34.
35.35.
35.36.
35.37.
35.38.
35.39.
35.40.
35.41.
35.42.
35.43.
35.44.
35.45.
35.46.
35.47.
35.48.
35.49.
35.50.
35.51.
35.52.
35.53.
35.54.
35.55.
35.56.
35.57.
35.58.
35.59.

COLUMN_AOMAIN_ USEGE citiitriieeeiiirreeeeeritreeeeeeiitreeeeeeireeeeeestareeeeeeiasreeeeesirreeeeeentrreeeens 980

COLUIMNL_OPE A OIS teeeeiurireeeeeitreeeeeeireeeeeesitreeeeeeetreeeeeeiseeeseesaseeeeeesssreeeeessreeesensrsreeeens 981
COLUMN_ PTIVILEGES ttiiiiiiitriieeeiitreeeeeeireeeeeeeitreeeeeeisreeeeestareeeeeeitsreeeeestreeeeeentrreeeens 981
COLUMN L UAE TS A G e tttttieeiiitrereeeiirreeeeeiirreeeeeirreeeeesirreeseestsreeeeeesssseeeeesisseeeseessseeeens 982
COLUIMIIS 1tvteeutrieeereesteeesseeessseeassseeasseessseeasssseassseessseassssessssseesssseeansssessssesseessssesensnes 983
CONStTAint_COLUMN_USAGE tieiiiirieeeeiirrieeeeeirreeeeeeireeeeeeiisreeeeeeiaseeeeeesisseeeeesssseeeens 988
[oTe)oY Rubal=N B s R il =1 o} K U < 1= L 1= SNSRI PTP 989
o RN 74 o LT o B o Iy R R =Y 1Y = U PR SRTRR 989
(oIS (TR oWl ele) o¥=3 uh o=t I o} o = RO UTUUPURRN 990
AOMA LN _ AL TS BT Mt uuurrrrerreeeeeeereeeeierrnrererrrreeeeeeeseesaesesassesssssssssssssesesesseesasasnesssssssans 991
AOMMAITIS teeteeeeeeeeieieiittrertreeeeeeeeeeaeaeaesassnssssssssesesaaaaeasaesesassassssssssssssseeaeeessesasasnansssssnns 991
ELEMENT L VDS utttttieiiitiee e ettt e ettt e e e ettt e e e ee et ee e e bbb e e e s ettt e e e s beteeeeenabeeeeseneaeas 995
I3 TN SR R =Ye M ot e Y K =Y= ST RUUUTRUTURPUURN 998
foreign_data_wWrapPer_ _OPTIiONS i iitee e e eiete e e et e e e st e e e e eieeeeeeas 998
FOrEign_data WIAPDE TS tiiiiiiiieteeiittee ettt e e ettt e e e st e e e e ettt e e e s ebbteeeeeanbeeeeeean 999
Sifohat=hes MIN-TVanTa=Y allite) okl ie) o F= TN UN R PUPUPPRN 999
Bl o3 a1=% Ko § oM =1=$ V4 =¥ ol TN U TSP U TR SPUPRRRPUPP 1000
FOreign_table _OPLiONS i ceiiiieeeeeciree e e etree e e e st e e e e e ratreeeeeeraaeeeeennaaaeeeas 1000
FOT A g L AD LS ctiiiiitiiieiie ettt et e ete e eeta e et e e et e e e eaa e e eae e e eteeeeateeeeaaeeenareeeaes 1001
KOV CO UM USAGC tttiiittieeetreeeiteeeetreeeetreeeeteeeesteseeseeeseseeeaseseessesesssseesssesanssesenseeas 1001
P T AT @ Suttiitiieeetrieeitreeeeteeeeiteeeeeteeeeseeessseesseeesasssesaseseasseseessseenssaeenssesensseeensseaans 1002
TEFETENTIAL CONSETAINTS ttttteeeeeeeeeee ettt e e eeeeeeeeeeeeeeeee e eeeaaeaeeeeeeeeeenan 1005
T01E_COLUMN_GTANES tieeierirreeeeeerirreeeeeeiiareeeeesireeeeeesisreeeeesssreesesssseseseesssressessninees 1006
01 TOULINE _GTANES ciiiiiiiieiieiieeeeeeeitreeeeeeireeeeeerareeeeeeatreeeeesareeeeeesareeeeeensnees 1007
01 _£AD L GTANES trriiiieiitiiieeeeiireeeeeeitreeeeerireeeeeerareeeeeestaeeeeeesareeeseesareeeeennanees 1007
Fe R =Y O Te e 3 ar=t o} ot - BN RO RO PP RRRRURRPRRRRRRRRt 1008
0L _USAGE_GTANTES trrieeierirrieeeeeiireeeeeeiirreeeeenireeeeeesisreeeeeestsreesesssseeeseesissesseesssnees 1009
T OUL INE_ PTAVILEGES tiiiieiitriieeeeiitreeeeeeiitreeeeeeireeeeeesitreeeeeesteeeeeesareeeseessreeeeennnnees 1010
L OUE LN @S tetitiieeiiie ettt e etteeeteeesbeeestbeeetbeeetbeaestbeeessseesasaeeassssesssseesssaeassseeensseeessaaans 1010
S CEMAT @ teeeutrieeirieirieestieeeteeesteeesaseeessseeesseaassseeassseessaaeassseeassseeasseeaasseeensseeessenans 1016
S UEIICE S teteeeeurreeeeeetrreeeeesitreeeeeeiisseeeeeassreseesaissseeseessseeeeenatsseeeeesasrseeseennreeeeennnrees 1017
SOL AT UTES utriieieeitrrieeeeeteee e eectte e e e eectr e e e eeeiar e e e e eeeaaeeeeeetrreeeeesarreeeeenarreeeeeanrees 1018
Sql_implementation_INFO .o eeere e eerr e e e e e eeerre e e eennaes 1019
SAL_LANGUAGES trereeeeitrreeeeeeireeeeeeiireeeeeeitrreeseesisteeseesissseseesitsseeseesissesseesssseeseessrees 1020
SOL_PACKAGES wurrteeeeruriieeeeiitieeeeeitteeeessaarteeesasaseeeesansteeseassseeeesasasseeesssssseeeensanees 1020
Lo I o= = B PUPPRRUPPPPRURINt 1021
Lo =T I o o PSP PUPUPRUPPPPRRPINt 1021
SAL_S1ZING PTOFLLES ttiiiiiiieiieiiiiee ettt e e e ettt e e e et e e e et e e e s e bt e e e e e anteeeeennnaes 1022
LDl E CONSETAINES tttttieeieeieiiieieeeieeee et reeeeeeeeeeeeeeeeeeearaaraaeeeeeeeeseereeressssrananas 1022
o=t RN oF o v T =Y =Y TR O U S U U U PP URRUOPUPUPRON 1023
LI L@ ttttttieiitiee e e ettt e e e eet e e e e ee et e e e e eetae e e e eettaeeeeeabbaeeeeaaatataeeaabbaaeeeaanttaeeeearraeaeeanns 1024
L AN FOTTMS cuttieeeieitieeeeeiiteeeeeeitteeeeeetteeeeeestaseeeaassraseeeaassaseeesanssaseeeaassseeeeeansrenaeeanns 1025
triggered_UpPdate_COLUMMNS . eeiieeeeeeitrereeeeerreeeeeeerreeeeesessaeeeeessseeeeeans 1026
Lohah e fo 1=% ol UUU O TS PRSP U TR PUPUPRON 1027
[0TG Ll o} o A B =Y 18 = U T O U U UPU RPN 1028
PESEETe 1SN o o v T =Y 1Y T OO OO URRUU PPN 1029
USET _Ae AN L YPES tiitiieiitiieeitieeeitte e ettt e etee e ettt e eeteeeeteeeeteeeetreseesseeeesseeensseeanes 1030
USET_MaPPING_OPELOMS tiiieitiiiiitieeeitieeeeteeeetteeeteeeeteeeeteeesreeeesresensseeessseeessseeennes 1031

XXi

35.60. USE T _MAPPITIGS tertreeeieeirrieeeeeirreeeeeeireeeeeesitreeeeeeerreeeeestareeeeeesareeeeeeiareeeeesiareeeeeans 1032

35.601. VieW_COLUMN_USEGE tirrrreieeeeirreeeeeiinreeeeeeiitreeeeenisreeseesiseeeseesissesseessisseeseesiseeeeennes 1033
35.602. VieW _TOULINE_ USAGE tirriiiiieiriieeeeiitrteeeeesitreeeeeeetreeeeesiseeeeeesiareeeeeessreeeeesiareeeeenes 1033
35,03, VieW L a0 @ USATC e iiiiitieeeeeirreeeeeeitrteeeeeeitreeeeeeerreeeeestareeeeeesareeeeeeetreeeeeenareeeeennns 1034
304, VEEWS wetriieieeite ettt ettt st et h e bt st et e bt e st e ebe e bee st e eaae et 1035
V. Server Programming 1037
36. EXtending SQL.......coooiiiiiieeee ettt e e 1039
36.1. How Extensibility WOTKS........cccociiiiiiiiiiiiiieec e 1039
36.2. The PostgreSQL Type SyStem..........ccieiiiiiriiiiiiiiiieieieee e 1039
36.2.1. BASE TYPES .everuiriiriieieieieeiere ettt ettt ettt sttt 1039
36.2.2. COMPOSILE TYPES ...eeviruieierieientieiieettettete sttt sttt et et e e st te st eeee e e eaeeneesaes 1040
36.2.3. DOMAINS ...ttt ettt ettt ettt sttt ettt e nee s et e e beese et e eaeeeesaes 1040
36.2.4. PSEUAO-TYPES -.cuveeuieeieiieieeieeeet ettt ettt et sttt 1040
36.2.5. POlymOIPhic TYPES ...couveieriieiiiieiieeie ettt ettt 1040

36.3. User-defined FUNCHONS.......co.eiriiiiiieiieiieiese ettt 1041
36.4. Query Language (SQL) FUNCHONS ...c..ooueiiiriiiiieniirieieniieeceterie e 1042
36.4.1. Arguments for SQL FUnctions..........cccceoveriereniniieninienie e 1043
36.4.2. SQL Functions on Base TYPESccceeeererierieniinieniinienie et 1043
36.4.3. SQL Functions on Composite TYPESccceevuerverieniereeneneeienienienieneenee e 1045
36.4.4. SQL Functions with Output Parametersc..ceceveeeeneneenencnienienceneenne. 1048
36.4.5. SQL Functions with Variable Numbers of Arguments...........cccceceevvercencnne. 1049
36.4.6. SQL Functions with Default Values for Arguments...........ccoccoeecvevvencenncnne. 1050
36.4.7. SQL Functions as Table SOUICESc.ccoovieeviiiieiiieciieeeree e 1051
36.4.8. SQL Functions RetUrning Setscccceerierieriiieriienienienieeieenee e eieenaeens 1051
36.4.9. SQL Functions RetUrning TABLEccceeruierierieesieeneeneesreenieenieesreesseenaeens 1054
36.4.10. Polymorphic SQL FUNCHONScovoiiriiiiiiiriieniieiienieenee sttt 1054
36.4.11. SQL Functions with Collations............c.ccceeevuiieeiieeiiieeeiie e esveeeeree e 1056

36.5. FUnction OVerloadingcecveriierierieniieiiente sttt ettt ste et ebeesaresane e 1057
36.6. Function Volatility CateOTiesccuerueriirrieerierieeieenieesiteeieeieesieesteeieebeesiresaeenne 1058
36.7. Procedural Language FUNCHIONScccueriiiiiienieniiiieetenec et 1059
36.8. Internal FUNCHONSccoiiiiiiiiiiiiicccc s 1059
36.9. C-Language FUNCHONS.c..cociiiiiiiiirieienccrceeeeeeeete e e 1060
36.9.1. Dynamic Loading..........coccoveiiinieiiniinieiiiieieneeecte e 1060
36.9.2. Base Types in C-Language Functions............cccceceeievieninieienenieniencenene. 1061
36.9.3. Version 0 Calling CONVENLIONSccccoueruierieniieieniieeeee e 1064
36.9.4. Version 1 Calling CONVENLIONScccccouiruieieniieiiiieieee e 1067
36.9.5. WIItING COAE.....covirriiinieieiiniinertestcetet ettt st 1069
36.9.6. Compiling and Linking Dynamically-loaded Functions...........cccccceceevevuenneee 1070
36.9.7. CompoSite-type ATZUIMENLSc..coveverruerrirrinreniereneereeenseneeseneeesessessessensens 1072
36.9.8. Returning Rows (Composite TYPES)cocerverrerrenveerinienienieeeieeeenresrenrennens 1074
36.9.9. REtUINING SELS......eovirieieuieiieiirierienieeetee ettt ettt sttt sae e sae e 1075
36.9.10. Polymorphic Arguments and Return TYpesccoceeeeevereirenenienenceee 1081
36.9.11. Transform FUNCHONScc.eeiiiriiiiiiiiieiestee et 1082
36.9.12. Shared Memory and LWLOCKScocceviiiiniininienieniee e 1083
36.9.13. Using C++ for EXtensibility........ccocorvieriniininiiiiiceneececeecce e 1084
36.10. User-defined AZZIEZALESccueruerureriirieienieeienieniteteetteste st eite st bt etesbeeieentesaeeneesees 1084
36.10.1. Moving-Aggregate MOde.........cccuevirieriirieienienienie et 1086

xxii

36.10.2. Polymorphic and Variadic Agregates........ccovvuervieeneenieriienieeneenieerieenaeens 1087

36.10.3. Ordered-Set AZEIEZALESecvueerrierierieeiierieeteeteeniteste st eieesieesireeseenaeens 1089
36.10.4. Partial AGEregationcecveevueeriierierieeniieniteeteeieesitesitesteesbeesseesieeeseenseens 1090
36.10.5. Support Functions for AZEregatesceeveeriersieenieneeniienieeneeseeesieeneeens 1091
36.11. User-defined TYPES ...cccueeruierieriieriieeteeie ettt ettt ettt sare s 1092
36.11.1. TOAST ConSiderations.........ccceecveeuieeeruerienuenieeieniieeeneeneeresieeneneseeenenaee 1095
36.12. User-defined OPETatOrS.........cceoueeieierietinierenieneereeteeesreeeesaeseeene s esneseeaeenesnee 1096
36.13. Operator Optimization Information.............ccccceeeieiinieiiniiieniiceecee e 1097
36.13. 1. COMMUTATOR tuveeueentieitetenieeteete ettt et eae st ene s st e et et esae st ene s e eanesneeneenenaee 1097
36.13.2. NEGATOR ..ottt ettt ettt et st ae sttt et sae st e ne e e n e e ene e 1098
36.13.3. RESTRICT wouieiiiuieiieieeiesieete sttt et st e ae st sae st e s e e ne e 1099
30.13.4. TOTIN ettt ettt ettt sttt ettt et s e et aesa e b enennene 1100
360.13.5. HASHES c.teutiuieiirtieteteeeteuteie st sttt ettt st be et et eaeebe b sa et esesneenesnennene 1100
360.13.0. MERGES . c.ccutiutruirtitetetenteutetesiesteseesestestsutssessesseseeneeseeuessesaessensennentesessensensens 1101
36.14. Interfacing Extensions To INAeXes.........cccoverrieririeninieienceese e 1102
36.14.1. Index Methods and Operator CIassesccceeeereereenereerienenieieecenee e 1102
36.14.2. Index Method Strategiesc.eecueririererieienieeiene e 1103
36.14.3. Index Method Support ROUHNESccceiieieniiriiniiiienie e 1105
36.14.4. An EXQAMPIE ...c..oouiiiiiiiiiiiieieeee e e 1108
36.14.5. Operator Classes and Operator Families..........cccccocevceeneneincneniencncenene. 1110
36.14.6. System Dependencies on Operator Classescocceceerereerienenienieneeneenne 1113
36.14.7. Ordering OPETratorsc..ccceeeeieriertenereenienieetenieeieeneesieetesiesssessesseeneenaes 1114
36.14.8. Special Features of Operator Classes.........c..coeeverereenenennieneneenieneeneennes 1114
36.15. Packaging Related Objects into an EXtensioncccceceverveeneneeneneneenienceneenne. 1115
36.15.1. Defining EXtension ODJECEScecveeruerriierienieeiienienteeieeieeseeesereeveeneeens 1116
36.15.2. EXtension Files.........ccccoviiiiiniiniiiiiiiiiiniccicceceeec e 1116
36.15.3. Extension Relocatabilityccccveveierciiinienieniieiiencesee e 1118
36.15.4. Extension Configuration Tables...........ceceerieriienieenieniieniieieenee e 1119
36.15.5. EXtension UPdatescceevveeriieriierieniieiienienieeieesite sttt eieesiee e eseeaee s 1120
36.15.6. EXtension EXaAmPIecoceeviiiiiiinieniiiiiienieeie ettt 1121
36.16. Extension Building INfrastruCtureo.cceecieviiiieinieniiieeceie e 1122
BT TIIZEOTS ettt ettt ettt ettt s ettt et e s at e st e bt e s bt e s abe e bt e bt e s et e enbe e st e saseeabe e bt e sateenbeensaenaees 1126
37.1. Overview of Trigger Behavior.........ccocivviiiiiiiiiniiiicecceceee e 1126
37.2. Visibility of Data Changes.........c..ccceeueeieiinieiienenieieneeeteeee e 1128
37.3. Writing Trigger Functions in Cc..cccociniiiininieiinieceeeesecreseeeete e 1129
37.4. A Complete Trigger EXample...........cccoeiiiiiniiiininiiienieicceeeseceseeeeee e 1132
38 EVENE TIIZEETS ..ottt et s 1136
38.1. Overview of Event Trigger Behavior ..o 1136
38.2. Event Trigger Firing MatriXc..coccoiiiiiiiniiiiiiiiieceeeeie e 1137
38.3. Writing Event Trigger Functions in C..........ccocceviiiiiiiiiniiiiineeneeieeeeieeseeeeeee 1142
38.4. A Complete Event Trigger EXamPplecccceeveiirieiinieiineeee e 1143
38.5. A Table Rewrite Event Trigger Example..........ccccoooieiiniiiiniiienieeeecece e 1144
39. The RUIE SYSIEIMuevieiiiiiiieiieiiiestestetetee ettt sttt s aene 1146
39.1. The QUETY TTEE.....cceoiiiiiiiiiiiiie e e 1146
39.2. Views and the Rule SYStemccoioiiiiiiiiiiiiiiieieeeeecee e 1148
39.2.1. How SELECT Rules WOrkcccoociiiiiiiiiiiiiiiee e 1148
39.2.2. View Rules in NON-SELECT Statementscceeveeeueeerieruenuemeneenuenrennennens 1153
39.2.3. The Power of Views in PostgreSQLc..cccoeririiininiieneniieneeieeeceee e 1154

XXiil

39.2.4. UPAAtiNg @ VIBW...ccveiiiiiieiieeiteitie e et et e sitesite st esieesate st eseesaeesateenseenseens 1154

39.3. MaterialiZe€d VIEWS ...c..coceevuiriieiiriiiieiineetenie ettt ettt ettt sttt e 1155
39.4. Rules on INSERT, UPDATE, ad DELETEcccoeviiuinuiniiieiiiiniiiiiesie e 1158
39.4.1. How Update Rules WOTKcccooieriiriiiiiiiienieeeeeeteee e 1159
39.4.1.1. A First Rule Step by Step....cooeeriiiiieiiiiiiiieeeeieeeeeee e 1160

39.4.2. Cooperation With VIEWS........cocieriiriiriiiiiiienieeieeeesiteste et 1163

39.5. Rules and Privileesccooieiiniiieiiinieiinteeceeeeee e e 1169
39.6. Rules and Command STAtUS..........coceereeriiireenienie ettt st ebee st 1171
39.7. Rules Versus TIIZZETSccueruierieriirieiieiieieee ettt s 1172
40. Procedural Languagesc..cooecueiiiiiiiiieienieeceeeeeeee ettt s 1175
40.1. Installing Procedural Languagesccccoievieriiieniiieieniceeii e 1175
41. PL/pgSQL - SQL Procedural Languageccoceevueeriiniiiiieeiieniceieeieeteseeeeeiee e 1178
A1.1. OVEIVIEW ittt ettt et ettt e bt ea e e et e st e et e st e besat et e ebeenee et eseenaeseeensenbeeneanteene 1178
41.1.1. Advantages of Using PL/PZSQLc.cccoiiiiiiiiiieiie e 1178
41.1.2. Supported Argument and Result Data Types.......c.cccceeveveneeieenienicncneennenn 1179

41.2. Structure of PL/PZSQL......ooiiiiiiieieeee ettt st 1179
41.3. DECLATALIONScevteteiteteeitete ettt ettt ettt ettt st et sbt et e b eatenbe e bt enaesbeenbenbesneenteene 1181
41.3.1. Declaring Function Parameters.............ccoccevererienienieiieneniencncee e 1182
4132, BLTIAS oottt ettt ettt s eae 1184
41.3.3. COPYING TYPES vttt ettt sttt sttt ettt st sbe e e e eae 1185
4134, ROW TYPES.cnitieniiiieienieeitetesttet ettt sttt ettt et st naeeae 1185
41.3.5. RECOIA TYPES vttt sttt st 1186
41.3.6. Collation of PL/pgSQL Variablescccccocererienienirnieninieneneeieneereniene 1186

1.4, EXPIESSIONS .ccuuterureeteerieerireeteeteenttesteeteeseessaessseeseesseesssesssessseesseesnsesnsessseesssesssesnseens 1187
41.5. BaSIC STALBIMEIES....cuveuteriieutiieeitenteeiteie sttt ettt et et st et st e eat et sbeeaesbeensenbesanensenne 1188
41.5.1. ASSIZNIMENLE ..eeuvieniieiieeiieeiteettesteeteesttestteeteesteesteesbeebeebeesasesssesnseesssesssesnne 1188
41.5.2. Executing a Command With No Result..........cccooovvriieiiiniiniiiniiienieniee 1188
41.5.3. Executing a Query with a Single-row Result...........cccecveviinieniiiininnieniennne 1189
41.5.4. Executing Dynamic Commandsccccueevueerieenieniiennieenienieeieenieesnesneenne 1191
41.5.5. Obtaining the Result Status..........cocueiriiiriirieiiienieeieeeeite st 1194
41.5.6. Doing Nothing At Allccceeviiiiiiieeierie ettt ettt 1195

41.6. CONLIOL SIIUCTUTES......overiieuriiieiienteetete ettt ettt sttt een ettt ene et enesbeeanenreene 1196
41.6.1. Returning From a FUNCHONc.cooiiiiiiiiiiiiectcececteeeeeee e 1196
41.6.1.1. RETURN ...eetieiietinttetente et eteeteeeresaeeseesaesaeesnesieesseseseeesnesaeennesnesanensene 1196

41.6.1.2. RETURN NEXT and RETURN QUERY ..cccceevuerrueerieeruenrreenieesinessesnueens 1197

41.6.2. CoNAIIONALSeeeeiiiiiiiiieieeieeste ettt ettt e 1198
A1.6.2. 1. TE—THEN .iitttitterteeniteniteeteerieenite st esteesbeesate e bt enbeesatesbeesbeesaseenseenseens 1199

41.6.2.2. TE—THEN=ELSE s..eettertteteerieeniteeieesteenieesteesseenseesisesseesseesmsesnsesnneens 1199

41.6.2.3. TF—THEN=ELSTIF .iiittrtteieenieenitenieenteenieesteesseenseesisessessseesmsessesnseens 1200

41.6.2.4. SIMPIE CASE .eoiieieieiteeiieieetiete ettt sttt te et esee st eseesae st eeesbeeneenseens 1201

41.6.2.5. SeArChed CASE...ccuiiiiiitieiieieetieieeie ettt ettt st eaee e ene 1201

41.6.3. SIMPLE LOOPS ...envitieiieieeieeteet ettt et st 1202
41.6.3.1. LOOP utieuietieiiete ettt sttt ettt ettt st b et e sttt enbesae et e s beenaenteeae 1202

41.0.3.2. EXTIT cotteieiieiiete et ete st ettt et et ettt e bt sat e tesbe e st e bt eaeenaesbeentesbeennenteeae 1202

41.6.3.3. CONTINUE ..eeutetirteetentereteteeteentesteestentesutestesbeestensesaeensesaeensesbesanensenne 1203

41,634 WHILE c.eiuieriieiieie ettt ettt ettt e st ettt sbt e e b este bt s st enaesbeesesbesanenteene 1204

41.6.3.5. FOR (Integer Variant)ceceevuereeienienienienieeienieeiceniesieeeesieeeeneeene 1204

41.6.4. Looping Through Query Resultsccceveririeniniiieniiiencieecnieeeee 1205

XXV

41.6.5. Looping Through ATTAYSc.covvueeiiriiinieeieeieeritesieeie ettt 1206

41.6.6. Trapping EITOTS ..cc.eevuiiiiiiiieiieseeecterte ettt ettt et 1207
41.6.6.1. Obtaining Information About an Error...........coeceevviiiiennienienienenne 1209

41.6.7. Obtaining Execution Location Informationc.cccecceevievieniiennennieninennne 1210

AT, CULSOTS ..ttt ettt ettt ettt st et s bt et ae st e bt st esne s bt eane bt eaeesnesaeennenbeeanennene 1211
41.7.1. Declaring Cursor Variablescoceerieriirierieenienieeieeieesteeee et 1211
41.7.2. Opening CUTSOTSccceruerueerrerieientieeeteeieenresueenesresteesesseeeesaesaeesesseenneseene 1212
41.7.2.1. OPEN FOR QUET Y eereueeesrrrerereersereesiseeeassesesssseessseessssesssssesssssesssssesnsnns 1212

41.7.2.2. OPEN FOR EXECUTE ..eocteciiruieeeniieeetesieeresieeieeseeneessesmeesnesnesanenene 1213

41.7.2.3. Opening a Bound CUursor...........cccccceviiieiiininiicniieecicseeieceeeeee 1213

41.7.3. USING CUISOTS....c.ceitiiiiiiiiiieieiteeiete ettt st s ne s eaeeneene 1214
41731 FETCH ottt st st 1214

41.7.3.2. MOVE .ottt sttt ettt ettt es st st saesr e nene 1215

41.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..ccceeiiiiuiiieniiiieienienieiene 1215

41.7.3.4. CLOSE ettt sttt ettt et s et s st sae b 1215

41.7.3.5. Returning CUISOIScccuerueeuierienieieniesiieienieeitenteeieentesaeeeesbesaeeneeene 1215

41.7.4. Looping Through a Cursor’s Result..........cccccoerieniniiiininieniieeenieeeee 1217

41.8. Errors and MESSAZESc..ueueruieieniieiienieaiteieetteite st eite sttt ete st eate sttt enteseeebesbeeaaeneeeae 1218
41.8.1. Reporting Errors and MeESSAZESccccevuerueerieririenienieienieetenesieeeesieeeeeneeene 1218
41.8.2. ChecKing ASSEITIONS ...c..ecueeruerterientiriienienieeienieeetentesteetesteeaeesaesbeeaesbeeaseneeene 1220

41.9. TrigEEr PrOCEAUIESc..eouteuiiiiiiiiniieiieieeiteteet ettt sttt ettt sae e sbesane e 1220
41.9.1. Triggers on Data Changes.........ccccoeeeerereinienenienenieieneetene st 1220
41.9.2. Triggers 0N EVENLScoccociiriiiiiiiniiiieciteenceteeee ettt 1228
41.10. PL/pgSQL Under the HOOdc..coceririiiiniiiiiniiienientcteneeteeeceee e 1228
41.10.1. Variable SUDStItULIONccoerieiiriirieiirceenceteeeeeetee et 1228
41.10.2. Plan CaChingcc.ceeeiiiieiiieriieiieeieetesite ettt steeteebeesbessbeebeesanesaneenne 1230
41.11. Tips for Developing in PL/PZSQL.......cooiiriiriiiiienienieeieerieeste sttt 1232
41.11.1. Handling of Quotation Marksccccevueriiernienienieeieeieeeieeieeiee e 1232
41.11.2. Additional Compile-time Checksceevuervieniiriieniieiniierieeieeeesee e 1234
41.12. Porting from Oracle PL/SQL.......ccccoeiiiiiiiiniiniieiieieee ettt 1235
41.12.1. POrting EXAmMPIESceouviriieiiieriiieieeitenite ettt ettt st e 1235
41.12.2. Other Things to Watch FOr.........ccccooiiiiiiiiiiiiieeeceeeeceeeee e 1241
41.12.2.1. Implicit Rollback after EXCEpPtions...........cccceeveirieerienneenienieneene 1241

41.12.2.2. EXECUTE ittt sttt s 1242

41.12.2.3. Optimizing PL/pgSQL Functions..........cccecceceeuirveeninveeneneninennene 1242

41123, APPENAIX.cuiiiiiiiiriiiiiieiieeeee ettt s 1242

42. PL/Tcl - Tcl Procedural Language..........c.ccccuevieieiiniieiinieieieeeeieseeeere e 1245
A2 1. OVETVIEW ..ttt ettt et e ettt ettt e sbtesa b e s bt e sbeesbeesateeabe e beesateeseebeens 1245
42.2. PL/Tcl Functions and ATZUMENLTS............cccuiiuiiiiiiiienieiteienieeeete e e 1245
42.3. Data Values in PL/TCLu.cc...ooiiiiiiiiiieeeete ettt 1247
42.4. Global Data in PLITCcoccoiiiiiiiiieininenceteteeneeteteteeeeeree et 1247
42.5. Database Access from PL/TClcocoiiiiiiiiiiii et 1247
42.6. Trigger Procedures in PL/TCL.....ccoooiiiiiiiiiieie et 1250
42.7. Event Trigger Procedures in PL/TCl.........cccooiiiiiiiiiiiiiiiceeeec e 1252
42.8. Error Handling in PL/TCL.....cc.cooiiiiiiiiiiiieeet et 1252
42.9. Modules and the unknown Command............cccccocerieriniineniniiene e 1253
42.10. Tcl Procedure NAMEScc.cecueririeniiniiienieeiese ettt ettt 1253
43. PL/Perl - Perl Procedural Language...........cocceverierieriiniiniiienieniteiesieetesie et 1255

XXV

43.1. PL/Perl Functions and ATZUMENLS.........ccceerierierrieenienieeieenieenieesreesseesieesaesnseenseens 1255
43.2. Data Values in PL/PerL.........cccociniiiiiniiniiiiieictceccnteeneeeee e 1259
43.3. BUilt-in FUNCHONS ..c..eoiiiiiiiiiiiiiieiceetcetcetc ettt s 1259
43.3.1. Database Access from PL/Perl..........cccccoocevininiiiiniiiiiienceccncercine 1259
43.3.2. Utility Functions in PL/Perlccccooiiiiiiiiiiiiiieceeceeceeeeeeee 1262

43.4. Global Values in PL/PEILccccoiiiiiiiiiiiiiicneeete ettt 1264
43.5. Trusted and Untrusted PL/Per]cocooiiiriiniiiiiiinieeeeteceeeeee e 1265
43.6. PL/PEIL TIIZZELS ...eouveniiiieiiiiieieeie ettt ettt st 1266
43.7. PL/Perl EVent TIIZZETScc.coieiiriiiieiiiiieieeieeeete ettt e 1267
43.8. PL/Per] Under the HOOdcocoiimiiniiiiiiiiiieeetee ettt 1268
43.8.1. CONAIGUIALION ..ottt s s 1268
43.8.2. Limitations and Missing Features.........c..c.ccoeeveviririninenencneenencneneeenn 1269

44. PL/Python - Python Procedural Language............coccceveeriiriiiiieniiiieeeeecseeeeeeeseeeieeae 1271
44.1. Python 2 vs. PYthOn 3 ..cc..cooiiiiiiieeteet ettt 1271
44.2. PL/PYthon FUNCHONScc.eiiiiiiiiiiieeieie ettt st 1272
44.3. DAtA VAIUESeoueeiieiieieeiieee ettt ettt sttt ettt bbbt eae 1274
44.3.1. Data TYPE MappPing........cceceevuerueeieniieienieeiteeesieeitenieettete st eee s st e e sbeeaeeneeeae 1274
AA.3.2. NULL NOTIE ...ttt e e e et e et e e eeaeeseseesesssssareraeerees 1275
44.3.3. AITAYS, LASTS .evieuiitieiierieeitetest ettt sttt ettt st bt 1275
44.3.4. COmMPOSILE TYPES..cviruiiriiriiiientieienieetee ettt st ae e 1276
44.3.5. Set-returning FUNCHONS.......c.eoeiiiiriirieiiceiencetee et 1278

44.4. Sharing DAlooeeiiriiiiiieieeeeee ettt ettt et sttt 1279
44.5. Anonymous Code BIOCKScccevirieniniiiiiniiieniieene sttt 1279
44.6. TrigEer FUNCHONS ..c..eovviiiiiiiriiiiinieiieiesitetestcetee ettt ettt e nee e 1280
44.77. DAtaDASE ACCESS ...vevvemreriienrenieeitenieeitentesitetesteettesttestestesutessesbeeesessesseenaesbeensenbesanensenne 1280
44.7.1. Database Access FUNCHONS.......c..coerieriiriineninieiencciceeeenc e 1281
44.7.2. Trapping BITOTS ..ccviiriiiiieieeiiesieee ettt ettt ettt st et e e sare e 1283

44.8. EXPLICIt SUDLTANSACTIONS ...evveruiieiieriieeiieetienite et eteesitesatesbeesteesseesabeesbeenseeseseeseenseens 1284
44.8.1. Subtransaction Context Managerseecueereerierieeiieeneenieniieeseesiesneenne 1284
44.8.2. Older Python VETSIONSc.ceciirieiiieiriieniieeieeieesite st et ettt ete e e sne v 1285

44.9. ULIILY FUNCIONS ..c..veiiieiieeieeteeiteeteete ettt ettt ettt ettt ebe e esiteebeeaee s 1286
44.10. Environment VariabIesccccoceeveririiiininiiniieeenientereneerete et 1287
45. Server Programming INEETaCEooviriiiriiiiiiiiiiieeeese ettt 1289
45.1. Interface FUNCHONS ..c.c.eeruiiriiiiiiiieeteee ettt ettt st st e 1289
N &4 B0} 111 (= AR RN 1289

N o (031 o TSP 1291

N o (51 o TSP 1292
SPI_POP e e e e e 1293

N & B 0 1 LSRN 1294

N & B RN 1298
SPL_eXeCUte_WIth_arEScceeiiiieiuieieetieieee ettt sttt 1299
SPI_PIEPATE ...ttt ettt sttt st 1301

SPI PIEPATE _CUISOTeiuiiiuieiteeiteeiteeteete ettt ettt e st st e b e bt e saeeereeneens 1303
SPI_PIePare_PAaraImscocueevueeriiirierieenieeniteete et site st et e et e st sttt e sreesaeeereenee s 1304
SPI_ELArZCOUNLcouiitieiiitieiiete ettt sttt et st e e b esee e eaeeaesaes 1305
SPL_getargtyPeid......ccueeteeiiiieiieieiiteest ettt ettt s 1306
SPL_iS_CUISOT_PIAN ...ttt ettt 1307
SPI_eXECULE_PIAM.c..eeuiiiiiiiiiiriteieeieetet ettt sttt 1308

XXVi

SPI_execute_plan_with_paramliSt.........ccceeeueeriieniienienieniiienienee e 1310

N o I (1] o TSRO U PPN 1311

P CUISOT_OPEII ...ttt ettt sttt ettt ettt e bt e st st ebee bt e sateenbeenaeens 1312
SPI_cursor_Open_wWith_argsceecueereeriienienieeiterteete ettt sttt s 1314
SPI_cursor_open_with_paramliSt.........ccceeceervieenienieniieniienieneesieeieesee e 1316
SPL_cursor_fiNd........cc.ooieiiiniiiiiiiieieee e e e 1317

N &4 BEI 150 Al (<1 o) 4 DT RN 1318

N &4 e Y0 Al 1 101/ 1319
SPL_SCIOll_CUISOT_fEtCH....uveviiiiiiiiiiicie e 1320
SPI_SCIOIl_CUISOI_INOVE ...vvvvveeiiiieeeeeeeeeeeeeceteee e eeee e e e e e e e e e e eeeaaaaaeeeeeeeeeeeeeeesesennsnnees 1321

SPI CUISOT _CLOSE...coiteeeeeeeee e ettt e e e e e e e e e eete et s reseeaeeeeas 1322
SPIKEEPPIAN ..ottt 1323
SPIL_SAVEPIAN ...ttt ettt 1324

45.2. Interface SUPPOrt FUNCHONSc.covuiriiriiiiiiiitieiee ettt 1325
SPLUTNAME ..ot e e e e e e e e e e e e e e eeeeeeeeeeeeeeaeaeaaaa 1325
SPLUNUIMDET c.cciiiiieeeeeeeeeeeeeeeeeeeee et e e et e e eeeeeeeeeeseeeesans 1326
SPI_ZEVALUE ...ttt et sttt 1327
SPL_getbinvalccuiiiiiiiiiiiiieeee et e 1328
SPL_GEIEYPE .ottt ettt ettt et e 1329
SPI_EttYPEIA....cueiiiiiiiieieeeee ettt sttt 1330
SPI_ZELIEINAMEc..eeuiiiieiieiieitetertetet ettt sttt 1331
SPI_ZENSPNAIME. ...c..ccuveiieiieiieiieieeitetet ettt ettt sttt e ettt sbs et saeeeeseee 1332

45.3. MemoOory Managementc..cocereeieruenienienteeienienieenienieesestesieentesseensesueessensessnensenne 1333
N o I 01 Lo OO UPTU PR 1333

N o I () 2211 0TSSP PTOPRRPRRT 1335

N o I o) TR PTUPRRPSPR 1336

N o B0 0) 211 o) (<O RSP TUPRRPRP 1337
SPIL_TEIUINTUPIE ...oovvieniieiiieiieieecite ettt sttt sttt et st e st ebeesaeesateenbeenneens 1338
SPL_MOIFYTUPIE ..ottt sttt st e 1339
SPI_TEEIUPIE.eeeeeieiieeite ettt ettt sttt st et 1341
SPI_fretUPLabIe.coouiiiiieiieiieiie ettt sttt st e 1342
SPI_TEEPIAN ...ttt ettt st et 1343

45.4. Visibility of Data Changes..........c.ceeuerieiriienieniieieeniteete ettt et 1344
45.5. EXAMPIES ..ottt st st st 1344
46. Background Worker ProCESSES.........cocueviirieiiininieiinieieetceee et 1348
47. LogICal DECOTINGeeiiiiieiiiieieiieeee sttt 1352
47.1. Logical Decoding EXamPpIEs..........cccccouiiieiiiniiiiiiniiienieiteeeneeeete e 1352
47.2. Logical Decoding CONCEPLSccueevueruiririiniieieiieeenie sttt 1354
47.2.1. Logical DeCOING........cccovviiiiiiiiiiiiiieiitcie e 1354
47.2.2. Replication SIOtScceoieieiiiiieieitieeie ettt et 1354
47.2.3. OUtPUL PIUGINS ..ottt 1355
47.2.4. EXported SNapShOLS.c.coiiiiiuieieitieiieie ettt 1355

47.3. Streaming Replication Protocol Interfacecoceveiieiiniiiiniiencieeeeeee 1355
47.4. Logical Decoding SQL INterface..........cccceouerieieriiieneiieiesieeeie e 1356
47.5. System Catalogs Related to Logical Decodingc.ccoceevereriienenieneneenenenienene 1356
47.6. Logical Decoding Output PIUZINSc..coeeiiiriiiiiiniiieniciteiesieeee e 1356
47.6.1. Initialization FUNCHON..........cccoieviiiiiiiiinicicicicce e 1356
47.6.2. CaPADILILIES ...cuveenvitieiieiiiiieiesteet ettt sttt ettt et ae e 1357

XXVii

47.6.3. OULPUL MOAES.....eoueieiieriiieieeiee sttt ettt ettt steete et estesabeebeesaaesaneenne 1357

47.6.4. Output Plugin Callbacksccocueevierriiniinieiieeniieeieeieesiee sttt 1357
47.6.4.1. Startup Callbackcccveevvieriiiniiiiiiieie e 1358

47.6.4.2. Shutdown Callback............cccecuririiiiiiniiniiiiiiiiinciee 1358

47.6.4.3. Transaction Begin Callbackcccceviiriiiiiiiniiiiiiiiiiienieeeeee 1358

47.6.4.4. Transaction End Callbackc..cccccoirieiiniiniininiiniieciecieiee 1358

47.6.4.5. Change Callbackcccocevieiiinieiiiniiieienieicieece e 1359

47.6.4.6. Origin Filter Callback.........c..ccccoeieiiiniiiieiininiiiieciceeeeeeeie 1359

47.6.4.7. Generic Message Callbackccccoeiiiiiiiiiininiiniiccieciee 1359

47.6.5. Functions for Producing Output.............cccccoeiiriiiiiniiiiiniiencneeeseeeeiene 1360

47.7. Logical Decoding Output WIIETSccc.eevueerieriiriiienienieeieerieesiee et eeeaeens 1360
47.8. Synchronous Replication Support for Logical Decoding..........ccccoeeeevererreneniennnne 1360
48. Replication Progress TIaCKingcecvererierieririeiietieie ettt ee b 1362
VI. Reference 1363
L. SQL COMMANGS.......uiiiiiiiiiiieeeiie et ettt ettt e et e e et e e eeaeeeeteeeeveseeaeeeeaseeeesseseesseeensraeens 1365
ABORT ...ttt et s s 1366
ALTER AGGREGATEcciiiiiiiiiiiieieteseeee ettt s s 1368
ALTER COLLATION ..ottt sttt st s s 1371
ALTER CONVERSIONcoiiiiiiiiiiieieteteseeeet ettt s s 1373
ALTER DATABASE ..ottt s s 1375
ALTER DEFAULT PRIVILEGESccccooiiiiiiiiiiinneeeeeteeeeeeeee e 1378
ALTER DOMAIN ..ottt st 1381
ALTER EVENT TRIGGERcccocoiiiiiiiiiiiiiiiiiicinccctee e 1385
ALTER EXTENSIONooiiiiiiiiiiiiiieciieeeeeee sttt 1386
ALTER FOREIGN DATA WRAPPERccccoctiiiimiiiiiniiienentcteneetente et 1390
ALTER FOREIGN TABLEcccociiiiiiiiiiiiiicinceeeee e 1392
ALTER FUNCTION ..ottt 1398
ALTER GROUP ..ot 1402
ALTER INDEX ..ottt 1404
ALTER LANGUAGE........ccocciiiiiiiiiiiiiii e 1407
ALTER LARGE OBJECTc..oooiiiiiiitiieentctesttetett ettt ettt 1408
ALTER MATERIALIZED VIEWccocoiiiiiiiiiinintetetnenesteeteteesie et 1409
ALTER OPERATORc..cotiiiiiiiriinieteteee ettt sttt sttt s 1411
ALTER OPERATOR CLASS.... .ottt sttt ettt sttt 1413
ALTER OPERATOR FAMILYc..ootiitiiiieiniinienenteteitne sttt ettt aene 1415
ALTER POLICY ...ootiiiiiiieietieniisteetetee ettt sttt sttt ettt st s s nenee 1419
ALTER ROLEooiiiiiiiiiiiiietitneeetetee ettt sttt et b e et s st aenee 1421
ALTER RULE ..ottt ettt sttt ettt st s s aeaee 1426
ALTER SCHEMA ..ottt ettt sttt ettt st s s 1428
ALTER SEQUENCEccooiitiiniiniiicietetetteeseetetet ettt ettt st s e aeaee 1429
ALTER SERVERcotiiiiiiiieeete ettt sttt ettt s s 1432
ALTER SYSTEM ..ottt sttt sttt ettt s s 1434
ALTER TABLE ..ottt ettt 1436
ALTER TABLESPACEcooiiiiiiiieieeeteseetete sttt s e 1449
ALTER TEXT SEARCH CONFIGURATIONc..ccceotiimimiiieieieininienieeeeeeee e 1451
ALTER TEXT SEARCH DICTIONARYccoiiriiiiiiiininiinieicreteeeeeseseeeeeee e 1453
ALTER TEXT SEARCH PARSERccccciiiiiiiiiiiiiineceeeeteseeeeeeee s 1455

XXViil

ALTER TEXT SEARCH TEMPLATEcc.cocteiiiiiiiiiiienentcteneeteteeeeee e 1456

ALTER TRIGGERc.cooiiiiiiiiiiiiiiiiiiiicce e 1457
ALTER TYPE.....ciiiiiiee st 1459
ALTER USER ..ot 1463
ALTER USER MAPPINGcccocoiiiiiiiiiiiiiiiiccici s 1465
ALTER VIEW Lo 1467
ANALYZE ...ttt st st n et et st 1470
BEGIN ...ttt et st et st e 1473
CHECKPOINT ..ottt sttt s st et 1475
CLOSE ...ttt ettt et st 1476
CLUSTER ...t et e st 1478
COMMENT ...t e e s 1481
COMMIT ... e st s 1486
COMMIT PREPARED......ccooiiiiiiiiiiiiiiic e s 1488
COPY e e e 1490
CREATE ACCESS METHODcccoiiiiiiiiiiiieeee e 1501
CREATE AGGREGATEc.oooiiiiiiiiii s 1503
CREATE CAST ... e s s 1511
CREATE COLLATION ..ottt sttt st aee 1516
CREATE CONVERSIONcoiiiiiiiiiiiiicieeeteee sttt s 1518
CREATE DATABASE ...ttt s 1520
CREATE DOMAIN......coutiiiiiiiiieietet sttt sttt sttt s e 1524
CREATE EVENT TRIGGER.........cccccooiiniiiiiiiiiiiiiicceeeeeeeeee e 1527
CREATE EXTENSION.......couiiiiiiiiiiititieeeteeetne sttt s 1529
CREATE FOREIGN DATA WRAPPER.........ccccccooiiiiiiiiiiicieecceee e 1532
CREATE FOREIGN TABLEccccocoiiiiiiiiiiiiiiccccee e 1534
CREATE FUNCTIONcoooiiiiiiiiiiiiitiicecteeete e s 1538
CREATE GROUP........c.ooiiiiiiiiiiiiiiteeeet et 1547
CREATE INDEX......c.oociiiiiiiiiiiiiiiinneeee et s 1548
CREATE LANGUAGEc.coiiiiiiiiiiicccec s 1555
CREATE MATERIALIZED VIEWccocciiiiiiiiiiiiiiniiiiccieeeeeese s 1559
CREATE OPERATORcoiiiiiiiiiiiiiiiicccic s 1561
CREATE OPERATOR CLASS ...t 1564
CREATE OPERATOR FAMILYcooiiiiiiiiiienteereneereeeetete e 1568
CREATE POLICY ...ttt ettt et s et 1570
CREATE ROLE ..ottt st 1576
CREATE RULE ..ottt e st 1581
CREATE SCHEMA ...ttt st e 1584
CREATE SEQUENCEc.oooiiiiiiiieeeee ettt s 1587
CREATE SERVER ..o e 1591
CREATE TABLE ... e e e e 1593
CREATE TABLE AS ..o e e e 1609
CREATE TABLESPACE.........cooiiiiie e s 1612
CREATE TEXT SEARCH CONFIGURATION........ccccooiiiiiiiiiiiiiiciieceecee e 1614
CREATE TEXT SEARCH DICTIONARYccooiiiiiiiiiic e 1616
CREATE TEXT SEARCH PARSER ... 1618
CREATE TEXT SEARCH TEMPLATE.........cccccoiiiiiiiniiieieietceieeeeeeese s 1620
CREATE TRANSFORM........couiiiiiiiiiiinticeteeetetee ettt s 1622

XXIX

CREATE TRIGGER.........cccooiiiiiiiiiiiiiiiiiccce et 1625

CREATE TYPE ... 1631
CREATE USER.......cciiiiiiiiiiiiiii e s 1641
CREATE USER MAPPING........ccoociiiiiiiiiiiiiiiiicc s 1642
CREATE VIEW ..ot 1644
DEALLOCATEociiiiiiiiiiccee e s 1649
DECLARE ...ttt ettt et st e 1650
DELETE ...ttt et st 1654
DISCARD ...ttt ettt et st e a e et st ne e e ene 1657
DO et e sttt e 1659
DROP ACCESS METHOD.......ccocoiiiiiiiiiiiceeet ettt 1661
DROP AGGREGATEooiiiiiiiii ettt 1663
DROP CAST ...t et e st e 1665
DROP COLLATION ..ottt st e e 1667
DROP CONVERSIONottt 1669
DROP DATABASE ... e 1671
DROP DOMALIN ...t s s e 1672
DROP EVENT TRIGGERcccoooiiiiiiiiiiiiiiiiiiii i 1674
DROP EXTENSION ..ot 1676
DROP FOREIGN DATA WRAPPERccociiiiiiiiiiiinieceeceeteseeeeeeee e 1678
DROP FOREIGN TABLE........cccoooiiiiiiiiiiiececetec ettt 1680
DROP FUNCTION ..ottt sttt s s s 1682
DROP GROUP ..ottt ettt 1684
DROP INDEX ..ottt sttt 1685
DROP LANGUAGE.........cooiiiiiiiiiiiictceteeee et 1687
DROP MATERIALIZED VIEWcciiiiiiiiiiiiiiiieinneeeecee et 1689
DROP OPERATORc..ooiiiiiiiiiiiiicicicicteeee et s 1691
DROP OPERATOR CLASS ..ottt 1693
DROP OPERATOR FAMILYccooiiiiiiiiiiiiiiiiieicicecece e 1695
DROP OWNEDcooiiiiiiiiiiiiiiiictcceeee et 1697
DROP POLICY ..ottt s 1699
DROP ROLEcooiiiiiiiiiiiiiiitccceee e 1701
DROP RULLE ..ottt s 1703
DROP SCHEMAcoooiiiiiiiiiiiiccete e 1705
DROP SEQUENCE........ccciiiiiiiiiteiet ettt et sttt et st 1707
DROP SERVER ..ottt et sttt e st 1709
DROP TABLE ...ttt ettt e s 1711
DROP TABLESPACEoiiiiiet ettt et st 1713
DROP TEXT SEARCH CONFIGURATIONcccoiiiiiiiiiiiiienieeee e 1715
DROP TEXT SEARCH DICTIONARY ..ot 1717
DROP TEXT SEARCH PARSERccoiiiii e 1719
DROP TEXT SEARCH TEMPLATEccccooiiiiiiiiii e 1721
DROP TRANSFORM ..ottt 1723
DROP TRIGGERoooiiiiiiii e 1725
DROP TYPE.... ..o e e 1727
DROP USER ...t e e 1729
DROP USER MAPPINGootiiriiiiiiiiieietieseeeteteie ettt ettt s s 1730
DROP VIEW .ottt sttt st s e 1732

XXX

EXECUTE ..ottt 1736
EXPLAIN ..ottt ettt ettt st sttt saenesnenen 1738
FETCH ...t 1744
GRANT ..ottt 1748
IMPORT FOREIGN SCHEMAc..coiiiiititninienienteieiteie sttt ettt ettt 1756
INSERT ..ottt ettt sttt ettt b b aene et et besae st et enee 1758
LISTEN L.ttt sttt sttt b e bbb et besae st et enee 1765
LIOAD ..ttt ettt ettt st aee 1767
LIOCK .ttt ettt sttt et b ettt st nee 1768
IMOVE..... ittt ettt sttt sttt ettt b bbbt e aee 1771
INOTIFY .ttt ettt sttt sttt ettt be e et aesae st aenee 1773
PREPARE ...ttt sttt et st e 1776
PREPARE TRANSACTIONc.ootitiiiieteitetinenietetet ettt ettt sae s aene 1779
REASSIGN OWNEDcciiiiiiiniiiiicietetettseseetetet ettt eb e st e nee 1781
REFRESH MATERIALIZED VIEWccoiiiiiiniiiiiiineiesteereteeeresesreseeeeeeie e 1783
REINDEX ...ttt ettt sttt sttt et b e st nene 1785
RELEASE SAVEPOINTooiitiiiiieietetetesee ettt s s 1788
RESET ..ottt sttt et s et 1790
REVOKE ...ttt sttt s s 1792
ROLLBACK ...ttt sttt sttt st s s aee 1796
ROLLBACK PREPAREDc.cocoiiiiiiiiiiiiieceeetee sttt 1798
ROLLBACK TO SAVEPOINToouiiiiiiiiiiieceeetee ettt 1800
SAVEPOINT ..ottt st s s 1802
SECURITY LABEL.....ccooiiriiiniiieieectntctne ettt sttt 1804
SELECT ...ttt st 1807
SELECT INTO ...c.coviiiiiirieinieerieereee ettt ettt st s 1829
SET . e 1831
SET CONSTRAINTS ..ottt 1835
SET ROLE ... s 1837
SET SESSION AUTHORIZATION.........cceiioirieirieiinieienieeneeeeereteneeseee e ne 1839
SET TRANSACTION ..ottt ettt 1841
SHOW .o s 1844
START TRANSACTION ..ottt sttt sttt ettt s ne 1847
TRUNCATE ...ttt sttt sttt ettt st et be s et enee 1848
UNLISTEN ...ttt ettt ettt ettt sttt ettt eb b b et besae et enee 1851
UPDATE ...ttt ettt ettt sttt ettt b bt be e st et eaee 1853
VACUUM ..ottt ettt ettt ettt st ettt se et b e b e st bt saesaeaenee 1858
VALUES ...ttt ettt sttt ettt b e e et be et et enee 1861
I1. PostgreSQL Client APPIICALIONSco.eeiuiruieieriieiesieeiteie ettt ettt ettt eeste et ee b eseeseeeseenee e 1864
CIUSEEIAD ..ttt sttt sttt et e ae e b 1865
CIEALEAD ...ttt ettt ettt st et b ettt et she e tenbeente e ene 1868
CIEALELAIIZ ...ttt ettt ettt ettt bt et e b e s et e st e besbtemteebeeaee bt eseebeseeenbenbeententeene 1872
CIEALEUSET «..uveeeientettenteeteente bt ete et e et e estesaeea e e b e ebeem e e bt es e e et eat e besaeemse bt emee bt eseensesbeenbenbesntanteane 1875
ATOPAD ..ttt b ettt sttt s b et b ettt e at et bt et b e eateteeae 1880
ATOPLANEZ ..ottt ettt b et b ettt st e st e s bt et e bt e bt e bt ebeebesbe e benbeenaenteene 1883
ATOPUSET ...ttt ettt ettt b e e b et e st s ae e besbe et e bt ebe e bt eaeenbesbeenbenbesanenteene 1886
BOPE e enveteemtenterttent et e e st e et e e a b et e bt a e bt e a e e bt e bt et eh e e st bt e bt h e e bt e bt eh e e a b e bt eb e et e bt ebesbe e be bt ebtenteeae 1889

XXXI

PEDENCH. ..ttt sttt st a et st e b e st ebeeaeens 1899
PE_CONTIZ ittt ettt et et e s et et e s bt e s ate s st e e bt e beesabe e be e beesateebeebeens 1912
PE_QUINIP .ttt ettt e b e bt st et e bt e s at e s st e e bt e bt e sa b e e bt e bt e sateebeeaeens 1915
PE_AUMPALL...eiiiiiiiiiieeee et ettt st ettt e eae e 1928
PEASTEAAY ..evveiieititieiieett ettt ettt et st et st eae 1934
PE_TECEIVEXIOZ ..ttt sttt et st 1937
PETECVIOZICAL ...ttt e 1941
PE_TESTOTE ...ttt sttt s et 1945
PO e et st a e et st ene 1955
TEINAEXAD ..ttt st ettt sttt st e ae e 1991
VACUUIMIAD ...ttt ettt et et a e st e be e bt st e be e b e sate e b ebeens 1995
II1. PostgreSQL Server APPLCALIONSccccoveeruirererienieieieteteetenteseeeeieee e sttt eresrenene 1999
ITEAD ettt sttt st ettt e ae e 2000
PE_ArCRIVECICANUP ...c..eitiiiiiiieiiee ettt ettt et sbeeeee e 2004
PE_CONEIOLAALA ...ttt ettt ettt st b e st et e st e naesbeesbesbeeneeteene 2007
POt bttt s h et b it e bt e be et e bt et beeate it eae 2008
PETESEERIOE 1.ttt ettt s b et b e ea ettt sbe et b et e e eae 2014
PE_TEWINA ..ttt b ettt et e bt s b et b ettt e be e e sbe et e b eaa et eae 2017
PELEST_ESYIIC .ttt ettt b ettt et bbb et eae 2020
PELEST_LIMINE ..eenetieiieteeiteieeit ettt ettt b ettt et e st sb et e s b ebt et e bt ebesbeenbenbesanenteeae 2022
PEUPEIAE ...ttt ettt ettt ettt b ettt st e bt sbe et e b e ebt et s bt et bt et e b e eete it ene 2026
PEXIOZAUIMP ...ttt ettt sttt ettt et sae bt e b sene it eae 2034
POSEIES 1.ttt sttt et ettt et eat et e bt et e s bt et e b e bt et s bt et sbeeab e bt eb b et ebee b sbe et e besenenteene 2037
POSIIMASTET ...ttt ettt ettt sttt e sb et e bt et e bt s bt e bt sbeenb e bt ebae bt ebeentesbeenbenbeesnensene 2045
VII. Internals 2046
49. Overview of PostgreSQL INtErNalscooeerieriiiiiienienie ettt 2048
49.1. The Path Of @ QUETYcovuiiriiiiiiiieeieeie ettt sttt e aee s 2048
49.2. How Connections are Establishedcccccocieviiriiieniniinininieniceceerenecrenee 2048
49.3. The Parser STAZEcecueeriiriiiiieiieeieete ettt ettt st s be e e st ebeeaee s 2049
.31 PATSET ...ttt e s 2049
49.3.2. Transformation ProCess.......cccuevuerieriiiniirieiieeriteeteeieett ettt 2050

49.4. The PostgreSQL Rule SyStemccceoiiiiriiiiiiniiiieieneeteneeeete e e 2050
49.5. Planner/OPtiMiZerc..covecuiruieiieniieieieeeeeete ettt st ne e sne e ne e eaneneene 2051
49.5.1. Generating Possible Plans............ccocooiiiiiiiiiiiiniecceceeeee 2051

40.6. EXECULOTeeiutiiiiieieeieesite ettt ettt ettt ettt ettt st e bt e sbeesat e ebe e bt e sateebeebeens 2052
50. SYSEM CALALOZS ..eeeeentieiieiieeiie ettt ettt st e bt s bt e st e st e bt e st sat e e be e b e naees 2054
50.1. OVEIVIEW ..ottt ettete et te st e et ettt et e s ae et e sbess e et e e bt ene e bt eneessesseenseabeeneanseeneeneeenes 2054
R UR oTe JF-Ye fo b ol=Te I= 1 o =S NSO RO RSO USRS USROS P TR UUPUUUURINS 2056
503, PG AM ittt e e e e e et e e e e e taa e e e e e abaaa e e e ttbaeaeeaataaaeeaanaraeaeaanns 2058
IO oTe BN 1o < SRS PRRTOPSRRINY 2059
50, S PG M T OC e iuttiiieeecitiee ettt e e et e e e et e e e e et e e e e e taa e e e e e ataaeeeaatbaaeeeaataaaeeantraeaaaanns 2060
50,6, PG AT E T Furiiiiiieeeiie et et eete et ee e e et et e et e et e e ete e e eteeeeteeeeateeeeaaeaeetreeeaes 2061
] RE o e =R ol ol o I < YO L o =SOSR PU ORI 2061
50.8. PG AUE NI ctiiiiiiiieie et ettt e e e ete e et e e eetaeeeeaaeeetreeenes 2065
50.9. PG AUL N MEMIDET S cutiiieiiiieitiecettie et e ettt e ettt e et e e eteeeeteeeeateeesaeeeeeseseesseeeeasseensseeenes 2066
50,10, PG CASE tiiiitiieitie e et ete et et e ettt et e et e et e e e te e e etae e steeeebeeeetreeeeareaeatreeanes 2066

XXXIT

50.11.
50.12.
50.13.
50.14.
50.15.
50.16.
50.17.
50.18.
50.19.
50.20.
50.21.
50.22.
50.23.
50.24.
50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.
50.57.
50.58.

PO CLaSS ttiiiiiiteiieeeeiteeeeeeeee et e e eeereeeeeeetae e e e e e ereaeeeeereaeeeeataaaeeeearaaeeeearaaaeeenaraaeean 2068
PO COLLAT L OM ttttiiiiitiiieeeeeieeee e ettt e e eetee e e e e et e e e e eetreeeeeeeteeeeeeeareeeeeeerreeeeenareeeeas 2072
PO_CONSTILAINT tiiiiiiiiieeiiiitiieeeeeireeeeeeeteeeeeeeereeeeeeeitreeeeeeeteeeeeeetreeeeeearseeseesinreeeeas 2073
PO CONVEELSI0OM tiiiietriieeeiitreeeeeeiteeeeeeeitaeeeeesereeeeeeeitreeeeeeetseeeeesisreeeeesasseeseensnreeeeas 2076
JoYe Mo =N =Y o Y- F=T= U U USROS UU RO URRRURSPT 2077
PY_ A T0Le SEtEANG ciiiiitiiieeieiieee e e ettt eeere e e et e e et e e et e e e eerae e e e enaraaae s 2079
Jole Mo SN A= LU0 - Vo APPSR 2080
o3 Mo (3 o<1 s T FURU PRSPPI 2081
o3 Mo [SY=Teohal o] uli Ko o WU PRSPPI 2082
o1 =) oL b PRSPPI 2083
SIS MR RVA=Y oY Ul o o e £ 1% OO SPRTUUPRPPPRNN 2084
PO X ENSION tiiiiittiiieieciie e ettt e e ettt e e e etee e e e ettt e e e e e e atee e e e eetreeeeeeateaeeeeanrraaaeeaans 2084
PG _fOreign_data_WEADPET reeeeieiirreeeeeiitereeeeeireeeeeeerereeeseisreeeeessssreseeeassseesesans 2085
PO fOr @GN SEIVET titiitiiieeieiiieee e ettt e e eeeiteeeeeeetreeeeeeettaeeeeseasraeeeeassaeseeesnsseeaeeanes 2086
jole e} o=t e oo N ot=Y 2 K= TN USROS U U UU RO PUPUPRN 2087
PO ANIAE X tetetitiieeeeiitee e eeeite e e e ee ettt e e e e eette e e e e e ttae e e e e taa e e e e e abareeeaanbtaaeeeartaaeeeeanrraeaeeanns 2087
o1 T oD Y=l A = SO OO PO PPO U OPUUPRTUPPPP 2090
Yo M o A ol o % ok Iy = SO U USSP 2091
PO LANGUAGE ceittieeetiieeetiee ettt e ettt e et e e eeteeeeeteeeeeaeeeeteeeeateeeesseeeeasseeasseeeesseseesseeenseaeans 2092
PO LT GEOD JECE tetiiiiitiieeiieeeite e ettt e eteeeete e e e te e e e teeeeateeeeaaeeeeaaeeeetseeeeabeseeareeeearaaans 2093
PY_largeobject_METadata wii i iieeeiieeeiiieeeteeeeteeeeteeeeaeeeetreeeeareeeeaseeesareaens 2094
PO _TIAIMESDECE terreeierrrieeeiirerteeeeireeseeiestaseseesstessesessreseeeinstsssesesssreseeesnsssseseesssseeses 2094
[T He) < TR === T OSSR 2095
[Te M) o= =N cle USSR 2096
PO OPTEAMI LY trrtieiieitieieeeieieeeeeeeireeeeeeeteeeeeesesteeeeeeesareeeeeenteeeeeessreeeeeensreeseenssreeeees 2097
[T M S A =S 1} M= N ot = SOOI 2097
PO PO LA OV titiitreieeeeeiteee e eee e e eet e e e eetae e e e e et e e e e e eetr e e e e e e etaaeeeeearaaeeeeataaaeeenaraaeeas 2098
PO DT OC ttttteeeeetreeeeeeeitreeeeeetteeeeeeeereeeeeeetaeeeeesasreseesentreeeeeaasteseeeaaareeeeeearseeeeeanreeeeas 2099
oY A o= oY 1= USROS TR 2104
PY_rePlication _OrdigiNa e eeiieeeeeeeireeeeeeerre e eeetree e e eeerreeeeeeareeee s 2105
PO L WL A @ iittiiieeieitieie e e ettt e e eeere e e e e eetreeeeeeetreeeeeeetreeeeeeeabaeeeeeeareeeeeeenraeeeeennreeeeas 2106
PO_SECLADEL wuttiiiiiiitreie e ettt eeeee e e e eetre e e e esete e e e e e e reeeeeeetraeeeeearaaeeeeatraeeeeaarraaeas 2107
PO SNACIENA wuttiiiiieiieie ettt ettt e ettt e e e et e e e e et e e e e eta e e e e e e aba e e e e eetaaeeeenaraaeeas 2107
PO SN S Cr AP L O uutiiiiiiiiiieeeeereee ettt eete e e et e e eeetr e e e e e tr e e e e e e raeeeeeearaaeeas 2109
PO_SHSECLADEL tiiiiiiiieeeeiiiee ettt e e ettt e e ettt e e e e st e e e e s te e e e e ntaeeeesrtaeeeennraeeens 2109
o1 AL =N ol =1 o I« PSRRI 2110
o1 B ot R} o T Y1 PSPPI 2112
o1 L TR a0 Y= B e X HUU PSPPI 2113
o1 L o o Ko [o 15 o SPRTUPRPPPRN 2113
PO LS CONE LG tiiiiiiiiee et e ettt e e ettt e e e ettt e e e e ettt e e e e e e ttae e e e eeateeeeeentaaeeeeanrraaaeeaans 2115
PO LS CONE LG MAPD .ttt ieiitiiieeieitieeeeeeiteeeeeeiteeeeeeetreeeeesesreseeesesreseeeaassaeeeeeansreeeeeanns 2116
PO LS A Clttttiieieeiiiee e ettt ettt e et e e e et e e e e et e e e e e e ttae e e e e rbaeeeeeataaaeeeanrraaaeeanns 2116
PO L S DA ST teiiiitiiieeeeciteeeeeeetteeeeeetteeeeeettaeeeesabteeeeeattaseeeaanrreseeeantaaeeeeanaraaaeeanes 2117
PO LS LMD AT cuttieiieiiiieeeeeiiieeeeeetteeeeeettaeeeeeettreeeeestbaseeeeenrraseeeassaeeeeennrraeaeeanes 2118
JoTe M vl 74 o 1= S U ST RS UURRRPPP 2118
JoYe MRDE-T=S ol 111 o) o 11 o Yo SUUNNU U USRS UURRRPPP 2127
SYSTEIM VIEWS ..ottt ettt ettt ettt st b ettt et et s aesbeeasenteene 2127
PY_available_ eXTENSIONS iiiiiiiieeeitieeeiteeeeiteeeereeeeteeeeseeessseeeesseseesseeessseeans 2128

XXXIi1

50.59. pg_available_ exXtenSion_VeIrSIiONS i ierieeeeeiireeeeeniireeeeeesireeeeeens 2129

5060, PG CONE LG uttiiiieiirieeeeeiireee e eeert e e e eeer e e eestr e e eeeeareeeeestraaeeeeearaaeeeenrraeeeeaareaeeeanns 2129
500], PG CU T SOT S uutiiiieiurieeeeeiireeeeeetteeeeeeeireeeeeestreeeeeeeareeeeestasseeeeesareeeeeeatreeeeeenareeeeennns 2130
50,62, PG _file SEtE AN S iiiiiiriieieeiirieeeeeeireeeeeeiitreeeeeeiareeeeesireeeeeesrreeeeeeerraeeeenareeeeeanns 2131
50,03, DG gL OUD cetttrtieeeeeireee e eeeree e e eecte e eee vt ee e e e et e e e e e eaaeeeeeaabeaeeeeaabaeeeeetraaeeeeaareeaeeanns 2132
RO oo B B oV LoD == TSR RSROPSRINE 2132
50,05, PG LOCKS tettieeitieeeiieeeitieesteeestteeeseteeestseeestseeassaessaeeansseeassaeesnseeaasseeensseeeanseeesseeannns 2132
50.600. PG_IMATTVIEWS terrreeerireeireeririeesrteesreeesseeessreeessseesasseeasseeesssseessseeesssessssseessseessssessnsns 2136
O O o Te i <Y I o I =Y TR PSSOPSRNE 2137
50.68. pg_prepared_StatemMeNT S i eeeieeerreeeieeeeieeeessreesseeessseesssseesssseeessseesnnn 2138
50.69. PG _PTEPATEA_XACES irererieeriieerieeeiieeesreeesteessseeeaseeeassaeessseesssseesasseessssesssssessnnns 2139
50.70. pg_replication _0rigin_StatUS e iieeeieeeieeesieeesreeeereeesaeeessreeenns 2139
50.71. PG _rePliCation_SLOtS ciiiiiiiiieeeeiitrieeeeeitteeeeeeettreeeeesareeeeeeetrreeeeeeearaeeeeennrraeaeeaans 2140
50, 7 DG L0l cettiiee ettt e e e e e e e e e e et e e e e e a—a e e e e anttaaaaeeatraaaeeennrraaaeaanns 2141
50, 73, DG T UL S ceittiiee ettt ettt e e e et e e e e et e e e e et e e e e e aba e e e e attbaaaeeaataaaeeaarraaaaaanns 2143
50,74, PG _SECLADELS ceritiieeieeiiieeeeeettee e eeete e e e et e e e et e e e e et e e e e e tab e e e e eeataaaeeenrraaaeaanns 2143
50,7 PG SEEEANGS tottieeitiieeitie e etee et eet e et e et e e et e e et e e et e e te e e ete e e e teeeeareeeeaeeeetaeeenes 2144
50,760, PG SN AAOW attiiitieeetieeeiee e et e ettt e eet e e et e e et e e eete e e eeteeeeeteeeetee e eteeeeateseeateeeeateaeatreeenes 2147
50,77 PG ST AT S cetttieiitiee ettt ettt et e et e et e et e et e et e e e eta e e eete e e etee e eteeeeateeeetteeeetaeaeatreeenes 2147
50,78, PG AL @S utiiiiiieeieeeetee et et e et e e e et e et et e e e te e e e tae e staeeeteeeeateeeeaaeeetreeeans 2151
50.79. PGt iMEZONE_abDT VS tiitiiieiieeeiieeectieeeetteeeeteeeeetteeeeteeeeteeesseeeebeseeaseseeaseaensseeenes 2152
50.80. PGt iMEZONE_NAMES tervreeeeeeirreeeeeiitreeeeeeiireeeeeeiiareeeeesireeeeeesiseeseessiseseeeesssreeeeeanes 2152
TR g B T R U =T= OO ORPRRRTN 2153
RIOR I oo MRV =T=F ol =Y o) ok oL 1= TUUUUN USRS P PR 2153
TR R T oY T = 2= S USSR RRTN 2154
51. Frontend/Backend ProtoCol..........coccocueriiririiniinieniiiieieniceteieeteteseeeeesie sttt 2155
ST.L. OVEIVIBW ..eniiiniieiiieeieeite sttt e st e s ite st et e s et e sate s beesbaessbesabeessaeseesabesnseenseesasesnseense 2155
ST.1.1. MeSSAZING OVETVIEW.....eeruiieiieiieriieeieeitesiteeteeieesieesresteebeesstesaseeseesssesnnes 2155
51.1.2. Extended QUETY OVEIVIEWccceerieriieiiiieniienieeieeniteeteeieenieesiteseteenieesaeesanes 2156
51.1.3. Formats and Format Codesc..coceveririeniinieniineeieneneeienieerenee e 2156

51.2. MESSAZE FIOW ...eoniiiiiiiiieiteeeetet ettt ettt sttt et sttt e b e st esane e 2157
ST.2.1. SEATEUP ettt ettt et e b e st st e b e saees 2157
51.2.2. SIMPIE QUETY ..ttt ettt ettt ettt e be e st sate e beesaeesaees 2159
51.2.3. Extended QUETYcccoeeieiiimieieniiiieienieeteie ettt 2161
S51.2.4. FUNCLION Call.......ooiiiiieiiieeiie ettt ettt stee e e sere e eneeeereeenens 2163
51.2.5. COPY OPEIALONSoocuieuieiriniieieiieiieienieeieie et eeeene e ee e 2164
51.2.6. Asynchronous OpPerations...........c.cceceevuerueeieriieeenueneereene oo eeeae e 2165
51.2.7. Canceling Requests in Progress.........c.coceceeiieiiniiicniiiccneccececeee 2166
S5T1.2.8. TIMINALIONeeeueireiieeiiieeeieeetee et e eteeettee e teeeeeeeessseeessseessnseesnnseeensseennnns 2167
51.2.9. SSL Session ENCIYPHON.c..cevevveieieiriinerenieeeteene ettt seenee 2167

51.3. Streaming Replication Protocol...........cocoeciiiiiieiinieieeecee e 2168
51.4. MesSAZE DAt TYPES ...eeuveiruiiriiiiieiiteeite ettt ettt sttt et st b e s 2174
51.5. MeSSaZE FOIMALSouiiuiiiiitieieiteeee ettt ettt st b et 2175
51.6. Error and Notice Message Fieldscccccceoeiiiniininiinieinieinincieeeeeeene e 2191
51.7. Summary of Changes since Protocol 2.0..........ccccevieriniiiiininieneieeseeeeeeee e 2193
52. PostgreSQL Coding CONVENTIONSccuertteiertirienieniterienieeitenteettete st estestesseenaesteeseensesseenaesaes 2195
52.1. FOIMATNGeeuietieiieiieiieie sttt ettt ettt b et e sttt e b sbe et e sbees e et e eaeenaesees 2195
52.2. Reporting Errors Within the Server........c.ccoeveriiieniniiieniiieneneeeseeeeecee e 2196

XXXIV

52.3. Error Message Style GUIAC........c.eerieriiriiiniierieeie ettt ettt sttt 2199

52.3.1. What GOES WHETEcc.evueiiiniiiiiniiiieienieeiesteetete ettt a e 2199
52.3.2. FOIMALtINEcoouviiiieiieiieiteeieesite sttt ettt et ettt e st st e b e st e sate e beesaaesaees 2199
52.3.3. QUOLAtION IMATKSeviiiiiiiieiieciee et ettt e ee e e e sve e e veeesebee e aaaeeebeeenens 2200
52.3.4. USE Of QUOLES......eiiiriieiiieeeiieeieeeiieeeiteeestteeetteesteeesebaeesesaeessseeessaeensseennnns 2200
52.3.5. Grammar and Punctuationc..cccceeerieiieniinieniinieneneeeeeneeeee e 2200
52.3.6. Upper Case vs. LOWET CaSec..coerieiiriiiieiieieiieieeeeneeeeeeseeeeee e 2200
52.3.7. AvOid PasSive VOICEccoueruiiriiiriiieieiitesiteete ettt ettt 2201
52.3.8. Present vs. Past TENSEcccueevueiriiiiiiiieiiienieeieee ettt 2201
52.3.9. Type Of the ObJECt......ccuiviiiiiiiiiiiiicicce e e 2201
52.3.10. BIACKELS..c..eeiiuiiiiieiieiie ettt ettt 2201
52.3.11. Assembling Error MESSagescoceevieeriirieriieenienienieeieeeteeeeeieeseee e 2202
52.3.12. Reasons fOr EITOTS.c.cociriiiiiiiiee ettt 2202
52.3.13. FUNCHON NAMES ...c.uvetiiieiiitieiesie ettt ettt ettt enee e 2202
52.3.14. Tricky WOrds t0 AVOIdcoceeriiriiierieniieieeee et 2202
52.3.15. Proper SPelling.......c.coeiieiiirieiiiieieestee ettt 2203
52.3.16. LOCAHZAION.eeviiieiiiieieeteete ettt sttt 2203

52.4. Miscellaneous Coding CONVENTIONSc.eeveruerierierienieniieienieeeenieseeetesteeneeneesaeeneenees 2203
52.4.1. C Standard..........cceeveveiiinininiciceceteee e 2204
52.4.2. Function-Like Macros and Inline Functions............ccccoceeevvecieneininencnenne 2204
52.4.3. Writing Signal Handlersccccooceeieviniiiininiinineeiencecceeeeeeceee e 2204

53. Native Language SUPPOTL......cc.cecieririeriiriieienieeitente sttt sitet et este st eseeste st estesbeeasestesseenaesaes 2206
53.1. FOr the Translatorc.ccccueiiiiiiiniiieieieieine ettt s 2206
53.1.1. REQUITEIMENLSeouveeniieiieeiiieieeitesieete et esiteeteeteesteesaresnbeebaesssessseenseensnennnes 2206

53, 1.2, COMCEPLS..eeeueierurirreeieeniieeteesttesttesteeteebeesetessbeenteessaesasesnseensaesssessseenseenseennnes 2206
53.1.3. Creating and Maintaining Message Catalogsccecveeeveeriieniercieeneeneenne. 2207
53.1.4. Editing the PO Filesccccciriiiiniiiiniiiiiieieeccccncceceeece e 2208

53.2. FOr the PrOZrammeTcccviriiriiieniienieeie ettt st ettt st ste et este et et e savesaneenee 2209
53.2.1. MECRANICS ...eveeniiieeiieiiiteteeieetestc ettt ettt sttt st 2209
53.2.2. Message-writing GUIdEIINEScccceevueeriienieniieeiieeniieeieeie et 2210

54. Writing A Procedural Language Handlerccocooviiiiiniiniiiiiienieieceeeeee e 2212
55. Writing A Foreign Data WTaPPETcooviiiiiiiiiiiiiieeteitesteee ettt sttt st e 2215
55.1. Foreign Data Wrapper FUNCHONSccccoocuiiiiiinieniiiieeeenic ettt 2215
55.2. Foreign Data Wrapper Callback Routines...........c.cccceeiecieniiiienineeneninieiieeeeee 2215
55.2.1. FDW Routines For Scanning Foreign Tablesccccoccoveiiniiiiinincencnne. 2216
55.2.2. FDW Routines For Scanning Foreign Joins...........coccoceniriiiiininicnineennene. 2218
55.2.3. FDW Routines For Planning Post-Scan/Join Processing............ccccccecceeenne. 2218
55.2.4. FDW Routines For Updating Foreign Tablescccoccooiiiiiiiininnnnne. 2219
55.2.5. FDW Routines For Row Lockingc..cccccciiiiiniiiiniiiiiniiciciccee, 2224
55.2.6. FDW Routines for EXPLATN ...ccevtrierierieeienteeneeneeeeeeeeseeeneeeesseeneeseeeneeneeenes 2225
55.2.7. FDW Routines for ANALYZEcceetrterierieeienieeneenieeaeeeeseeeeeseesseeneeseeeneeneeeaes 2226
55.2.8. FDW Routines For IMPORT FOREIGN SCHEMA.....cecervirrerrerveeererrenrersenvenne 2227
55.2.9. FDW Routines for Parallel EXecution............cccccevirieiininieienieicnecceee 2227

55.3. Foreign Data Wrapper Helper FUnctions...........c.ccecveverieieniiienenieieniceececee e 2228
55.4. Foreign Data Wrapper Query Planning..........ccoocevveienieiiininienenieeniceececee e 2229
55.5. Row Locking in Foreign Data WIappers.........cccoceveerierieienenieneneeienieeeeie e 2232
56. Writing A Table Sampling Method...........cccoiiiiiiiiiiiiniiieeeeee e 2234
56.1. Sampling Method Support FUNCHONScc.cvervieriirieiinieieceterie e 2234

XXXV

57. Writing A Custom SCan PrOVIAETcooviiviiiriiiiieiiiieteeeeeete ettt 2238

57.1. Creating Custom Scan Pathscooceiiiiiiiiniiniiiee e 2238
57.1.1. Custom Scan Path Callbackscccccoceririiininieniniiicncrceneccceeee e 2239

57.2. Creating Custom Scan PIanscooceviiiiieniiniiiecienceeeccte e 2239
57.2.1. Custom Scan Plan Callbacksccccoerieieniniiniinieeneieceneeeeeeeeee e 2240

57.3. Executing CUSTOM SCANSc..eeveruirreiiniietenieeretenieeresitesesneentessesaeesnesieesnenseeneennenaee 2240
57.3.1. Custom Scan Execution Callbackscccceeevuerviiiniiniieniiinienienieeieeneeae. 2241

58. Genetic QUETY OPHIMUIZETccueeueruiiieieriieietieeete ettt ettt e sae s ne s sr e e enesaee 2243
58.1. Query Handling as a Complex Optimization Problem.............cc..c.ccccooiiniinnnnnne 2243

58.2. Genetic AIZOTItIMSc.oooiiiiiiiiiiiiiiiic e e 2243

58.3. Genetic Query Optimization (GEQO) in PostgreSQLcoccceiiiriiniinniiniinene 2244
58.3.1. Generating Possible Plans with GEQO...........cccceviriiiiniiiiieneceeee 2245

58.3.2. Future Implementation Tasks for PostgreSQL GEQOccccceeviivercennnne. 2245

58.4. Further REAdINGcoueeuiiiiiiiieieiieeeteee ettt st e 2246

59. Index Access Method Interface Definitioncccoeeeriiirieninieiineeee e 2247
59.1. Basic API Structure for INdeXeSceceerueririierinieeeieee e 2247

59.2. Index Access Method FUNCHONS.coveiiiiiieniiieieieec e 2249

59.3. TNAEX SCANMIINEZevieniiiieieitieierteetete ettt ettt ettt et et sbe et e b e es e et e eaeeaesees 2254

59.4. Index Locking Considerations..........c..ceeeruereerierierienieniieienieeteniesieetesieeieeneesaeeneesees 2256

59.5. Index Uniqueness ChECKS..........coerieriirieriinieienierteesitet ettt 2257

59.6. Index Cost Estimation FUNCHONS......c..coeeviiririieniiniiienieteceeee e 2258

60. GeNeriC WAL RECOTAScoouiriiriiiiiiieienitetetee ettt ettt sttt ettt 2262
61, GIST INACKESceutiieiiieieeiteteeteete ettt ettt ettt ettt sae bbb et et ebeeaenaee 2264
61.1. TNEFOAUCTION ...ttt ettt st ae e 2264

61.2. BUilt-in Operator ClaSSESc.eevveerieriieriieniieniesteerieesieesiresseesseesseesseesseesseesssesssesnne 2264

61.3. EXIENSIDIIIEY ...eouveiieiieiieiieiericcte ettt ettt st s 2265

61.4. TMPIEMENTALION......eiiiiiiieiieete ettt ettt ettt et e ser e st e ebeesbeesabeenbeenbeesasesaseenne 2274
61.4.1. GiST buffering build.........ccccoceevieririieniniiiecceceee e 2274

61.5. EXAMPIES ...eouviiniieiiieiieiieriteete ettt st ettt st et e bt e st st e e bt esbeesabeenbeenbeesabesnneenne 2274

02, SP-GiST INAEXES ..c..eoueemiiiieiintietereetetereet ettt sttt ettt ae et st sb et eaee e naee 2276
62.1. TNITOAUCHION «...eeniiiiiiiieiieie ettt sttt ettt 2276

62.2. BUilt-in Operator ClaSSESeecveerieriieriieriieniteniieeieesitesiteebeereesbeesteebeebeesaresneenne 2276

62.3. EXENSIDIIILY ...eoviiiiiiiiiiierteeeeee ettt st st st 2277

62.4. IMPIEMENTAION......coueiiieiieiiiiieieeeteteee ettt sttt ettt eaeennesaee 2283
62.4.1. SP-GIST LIMILS.....ueeoieitieiieiieiieieeieeteniesteeie e eee e eeesseseeeesseeneeseeeneensesnes 2284

62.4.2. SP-GiST Without Node Labels........cccccevieierieieieeeiereeeee e 2284

62.4.3. “All-the-same” Inner TUPIesccccoeririiiiiiiiiiiiccceece e 2284

62.5. EXAMPIESooeeiiiiiiiiiiieiee ettt e 2285

63, GIN INAEXES ..ottt ettt ettt sttt et ettt et e s bt e sat e st e bt e satesateebeenaeenaees 2286
63.1. INEEOAUCLION ...ttt ettt ettt e sbe st e e s beene e teeneeaeeaes 2286

63.2. Built-in Operator CIASSEScceceeeerteruieieneeienteeetesteeteeee st eeestesseetesbeeseeneesneeneesnes 2286

63.3. EXIENSIDIIIEY . ..ccueetieiieieetieie ettt ettt sttt e 2287

63.4. IMPIEMENTATIONeouirtiiiieieietett ettt sttt ettt e e e e senee 2290
63.4.1. GIN Fast Update Technique.........c.ccceceeuirenenienieiiinenenrereieeeeerese e 2290

63.4.2. Partial Match AlOrithmcccooiiiiiiiiiiiiiiieceeee e 2291

63.5. GIN Tips And TTICKSeeueeiiriieienieeiteieet ettt sttt s 2291

63.0. LIMITATIONSeeutetieiietietiete sttt ettt ettt et ettt b et e bt satesbesbe et e s bt ebeebesaeenaesaee 2292

03.7. EXAMPLES ..ottt ettt ettt ettt st s be et bbbt e e e saes 2292

XXXVI

O4. BRIN INAEXES ...uvviieiiiiriiee ettt ettt eeetee e e eetaae e e e eeaaeeeeeesaaeeeeeesasseeeeeetsseeseensreeeeennes 2294

64.1. TNIFOAUCHION «...cvveniiiiiniieiieie ittt ettt ettt saeene e 2294
64.1.1. IndeX MaINteNANCE......c..coveieriieieniirieienieetenteee et ettt sneeeee e e 2294

64.2. BUilt-in Operator ClaSSESeecveerieriieriieriienitenieeieesitesitesteeieesieesbeeteebeesaresneeane 2294

4.3, EXENSIDIIILY ...eotiiiiiiiiiiierieeeee ettt sttt st et st 2296

65. Database PhySical STOTAZEcccueruieriiriiiiieieeite ettt ettt 2300
65.1. Database File Layout.......c..c.cccoeiiiiiiiiniiiinieeeneeeeeeeee et 2300

05.2. TOAST ..ottt ettt ettt et e s bt s et et e et e e st e st eneessesneenseeseeneenseeneenseens 2302
65.2.1. Out-of-line, on-disk TOAST StOTaZEcevveeuervieeniienienieeieeeteete e 2303

65.2.2. Out-of-line, in-memory TOAST Storage..........cccceeevevenervieceniececnieeeeenes 2305

65.3. Free SPace Mapc..couiiiiiiiiiiiice e e e 2305

65.4. VISIDIIEY IMAD ..ottt ettt et st beene e teene e e eees 2306

65.5. The Initialization FOrK..........ccooiiiiiiiiiieie e e 2306

65.6. Database Page LayOuLtcccooceiirieiinieiseeeee et 2306

66. BKI Backend INtEIface.couieiiriiiieiiiieeee et 2310
66.1. BKI File FOIMALccouiiiiiiiiiiiieiieitee ettt 2310

66.2. BKIT COMMANGSceeeniiiieiiiiieieiteeitetest ettt ettt sttt s e e e 2310

66.3. Structure of the Bootstrap BKI File.........ccccociiiiiiiiiiiiniiiiiieceeeeeeee e 2311

00.4. EXAMPLE ..ottt ettt ettt ettt st ae bbbt bt et eaee e sas 2312

67. How the Planner USes StatiStICS......couerterirrieriirienieniteiesieeiteieett ettt sttt 2313
67.1. Row Estimation EXamples.........ccccecieririeniiniiiininieeneeeeetene e 2313

67.2. Planner Statistics and SECULILYccc.cvuerieriireriienienieertetee ettt 2318

VIIIL. Appendixes 2320
A. POStEIeSQL ErrOr COES....couiiiiiieiieiieeiie ettt sttt ettt ettt e ettt e saaesateesbaenaaesanas 2321
B. Date/Time SUPPOTT c...eeeuiieiieiieiieeiterteste et eieesite st e bt ebeesatessbeebeesbaesabesaseenbeesssesssesnseesssesanas 2330
B.1. Date/Time Input INterpretationcueeveeriierieniieiienieeie ettt st esiee e e e naee s 2330

B.2. Handling of Invalid or Ambiguous Timestamps..........cecveerveereeneerieeneeneesieenieeneeens 2331

B.3. Date/Time Key WOTdS........cocueiiiiniiinieniieitieiteete ettt ettt sttt st e 2332

B.4. Date/Time Configuration FIlescceciiiiirieiiiiiiinieniccieeeee e 2333

B.5. HiStOry Of UNILS ...coouiieiieiiiiieeieeiieeteee ettt sttt st e st e i 2335

C. SQL KEY WOTAS.....eeiuiieiiiiiiiiteiie ettt ettt st ettt et e bttt esbt e st e st e bt e sabesateebeesaeesaees 2337
D. SQL CONOIMANCEccuvviiiiiieiiieeeiieeeieeestee et e eteeeteeeeaeesteeesseeesssesesssesessseeesssessssseessssenans 2362
D.1. Supported FEAtUIESc..coeeiiriiiiiiiiieiecicteeeee ettt 2363

D.2. Unsupported FEAtUIESccciecuiriiieniiiieieniieecit ettt 2379

E. REIEASE INOLESveeiiiiiieiieiteete ettt ettt ettt et sttt e bt st e sabe e beesbbesaneeane 2395
E 1L REICASE 9.0.12 ..ottt ettt et sttt st e 2395
E.1.1. Migration to Version 9.6.12...........ccociiiiiiiiiiiiiiiicccceeece e 2395

E 1.2 Changesoouiiuiiiiiiieie e e e 2395

E.2. REIEASE 9.0.11 ..ottt sttt st e 2399
E.2.1. Migration to Version 9.6.11........ccccceviririnineneniininenenreieeeeeeeese e 2399

E.2.2. Changescc.ooiiiiiiiie s 2399

E.3. ReIEaSE 9.6.10 ..ottt et st b et 2403
E.3.1. Migration to Version 9.6.10........ccccceeveirinininieniiininenceiereeeeeeee e 2403

E.3.2. CRANEES ..ttt e 2403

E 4. REIEASE 9.0.9 ..ottt bttt 2406
E.4.1. Migration to Version 9.0.9........cccccociviiniiiiiiniinieneneeeneeeeseee e 2406

Ei4.2. CRANZES ..cuteiiiieierieeeteeteeete ettt sttt sttt 2407

XXXVID

E.5.REICASE 0.0.8 ...ttt e e e e e e e e et e e e e earraa s 2410

E.5.1. Migration to Version 9.6.8........cccccvueeiiiiiiienienieeieenteete ettt 2410
E.5.2. CRANEES .uveeiieiieeieete ettt ettt st ettt 2411

E.6. REIEASE 9.6.7cneiiiieiieeeeeete ettt sttt et st e 2412
E.6.1. Migration to VErsion 9.60.7cccceevieriieiiienienieeieesiteete ettt 2412
E.6.2. CRANZES ...uveeiiiiieiieetet ettt ettt sttt st e 2412

E.7. REIEASE 9.0.6 ...ttt sttt st et st 2415
E.7.1. Migration to Version 9.0.0.........ccccoceovieviiniiiiniiiieiieeeeeseeeeeseeeene e 2416
E.7.2. CRANEES ..ot 2416

E.8. REICASE 9.0.5 ..ottt ettt sttt st et 2418
E.8.1. Migration to Version 9.0.5.........ccccociiiiiiiiiiiiiiiiiie e 2418
E.8.2. ChaNEScoiiiiiiiiiieee e e e 2419

ELO. REIEASE 9.0.4 ...ttt ettt sttt st e 2420
E.9.1. Migration to Version 9.6.4..........ccccceevririninenenieieeneneneseeeeeeenese e 2420
E.9.2. Changescc.ooiiiiiiii e 2420

E.10. RelEaSE 9.0.3 ..ottt ettt ettt et st b et 2426
E.10.1. Migration to Version 9.6.3........cccccceoveirinineneniiinineneeteeeeeeeeese e 2426
E.10.2. CRANEZES ..ottt ettt sttt st b ettt nae s 2426
E.TT.REICASE 9.6.2 ...ttt s e 2430
E.11.1. Migration to Version 9.6.2.........ccccceviereriirieniinieniineeienieeeeiesie e 2430

E. 112, CRANEZES ..ottt st sttt e 2431
E.12.Release 9.6.1 ..ot 2436
E.12.1. Migration to Version 9.6.1......cc.ccocceveeviniriiininieniineeienieeeeesieeteeeeeee e 2436
E.12.2. CHANZES ..veevieiieeiieieeite ettt sttt ettt et ettt e st e st e ebaessaesnteenbeenanesnnes 2436

E 130 REICASE 0.0 ..ttt sttt st sttt 2439
EL 1301 OVEIVIEW ouviiiiiiiiiiiieieeiteteeteetestt ettt ettt st ettt et s 2439
E.13.2. Migration to VErsion 9.6........ccccevieriiiiiiieniieieeieeniteste ettt st 2439
E.13.3. ChanGes ...cccueeeuiiiiieiieiie ettt sttt ettt ettt s e et e st esateebeenaaesanes 2440

B 130301 SEIVET ..ttt ettt st 2441

E.13.3.1.1. Parallel QUETIeSccceeevurieeirieeiieeciie et siree e 2441

E.13.3.1.2. INAEXES....veoueeierieeieniieirenieeeee sttt 2441

E.13.3.1.3. SOTtING ..ottt 2441

E.13.3.1.4. LOCKING.c..ccutiiiriieieiieieieeeeie ettt 2442

E.13.3.1.5. Optimizer StatiStiCScevveeruerrierienierieenieenee st eieeseenaees 2442

E.13.3.1.6. VACUUM . c..tiiiiiieeieieeecte ettt s 2442

E.13.3.1.7. General Performance..........c..ccoceeveenieniiinneeneenieeieeseeee. 2443

E.13.3.1.8. MONItOTING......couiiiiiieiiiiieeeieieereseeeete e 2444

E.13.3.1.9. AuthentiCationccccceeveeriierieenienienieeieesee st 2445

E.13.3.1.10. Server Configurationc.cceceeuieieeiiniencneeseneeeenene 2446

E.13.3.1.11. Reabilityccveiieieieiieiee e 2446

E.13.3.2. Replication and RECOVEIYccceevieririeiiinieieieee e 2447

B 13.3.3, QUETIES .veeieeieeeeiee ettt ettt e e e aeeeeaae e 2447

E.13.3.4. Utility COomMAndS...........cceeuierierieienienieienieeienie et 2448

E.13.3.5. Permissions Managementcecuevueeeenuenieeienieneenienieeiesieeeeneeene 2449

E.13.3.6. Data TYPES .eveeeireieieieeiieieet ettt st 2450

E.13.3.7. FUNCHONS ...ttt st 2450

E.13.3.8. Server-Side Languagescccccoceeviererienienieiienieeeene e 2452

E.13.3.9. Client INterfacesccoueeueieiririniinieieicieieene e 2452

XXXVIii

E.13.3.10. Client APPICAtIONScc.eevuieriiriieriieniesieeieenieeste e eniee e eee e 2453

E. 13310, 1. PSQL.ntiiiiieiiiiiesteee ettt 2453

E.13.3.10.2. pEDENCH ..ottt 2454

E.13.3.11. Server ApPliCatiONS........ccceerierrieerienierieeieeiee st eieeiee st eve e 2455

E.13.3.12. SOUTCE COAE....uvieiiiiiiiiieiieniieeieeiteste ettt st 2455

E.13.3.13. Additional MOdUIESccceevuirriieriinieiieeieeee et 2457
E.13.3.13.]. pOStgres_fdW e ecieeerieeereeereeeeteeesaeeesereeeeseesnneas 2458

E 14, Prior REIEASES.......eeieiiiieeiie ettt ettt e st e e et e e eseeeeseeesnseesnneeensnaenns 2459
F. Additional Supplied MoOdUIEScc.oociiiiiiiiiiiiiicieee et 2460
FoL adminpack......cc.oooiiiiiiiiiiice ettt e 2461
F2. QUth_delay.....oooueiiiiieeeee ettt s 2462
F.2.1. Configuration Parameters.cceveeierienuieieniieiieie e 2462

FL2.20 AUENOT ettt ettt et 2462

FL3. QUEO_EXPIAIN. ..ttt ettt ettt be et eae 2462
F.3.1. Configuration Parameters.cccoeeeiereriirieniieiene et 2463
F3.20 EXAMPIE ..ottt e 2464

330 AULNOT .ttt ettt e et e et e st e e beenaaeeneas 2465

L o) (oo 1 ORI 2465
Fid. 1. Parametersco.ceuiiuieieiieiieieeie ettt st sttt e 2465

Fid.2. EXAMPIESeoiiiiiiiiiieeieietee ettt sttt 2466
F.4.3. Operator Class INterface.........ccccecuevirieneninieninieieneeeneeeeeseeee e 2468
Fi4. 4, LAMITAIONS ..cuveriiiniiiiiiieiieitetestcet ettt ettt sttt enae e 2468
Fid.5. AUNOTLS .c..eoiiiiiiiiierieee ettt et 2468

LD 015 (TSN~ | 1 OO OO PRSP UURRPRRRTI 2468
F.5.1. EXQAMPIE USAZE ...oovveenvieiiiiieeieeite sttt ettt ettt seteseteebeesanesnnes 2469
FL5.2. AULNOTS ..ottt ettt ettt e et e st e sate e beenaaesanes 2469

FLB. DLIEE_ISt .eeutieniieiieeieeeert ettt ettt ettt ettt e st e st e be e bt e sabeenbeenbeesabeenbeenneens 2469
F.6.1. EXQAMPIE USAZE ...eouveeuiieiiiiieeiieitesieete ettt ettt st ettt 2470
FiB.2. AULNOTLS .c..coiiiiiiiiiiirieeieectcteete ettt sttt st 2470

FL7. CHKPASS. e ittt ettt ettt st ettt e st e beeaee s 2470
FU7 1 AUNOT «caiiiieee ettt 2471

FL8L CIEXT oottt ettt et sttt ettt st 2471
F.8.1. RAtIONALL «...couiiiiiiiiieiieiie ettt st 2472
F.8.2. HOW 10 USE Lttt 2472
F.8.3. String Comparison Behavior..............ccccccviiiiiiiniininieincceceececceeeee e 2472
F.8.4. LIMIAtIONSuviieeiiiieiiieeeiieeeieeeiee et e eireesteeeesteeessaeessseeesssaesnseeessaeensseennnns 2473
FL8.5. AULNOL ettt ettt eeens 2474

FLO. CUDR....c..eeeeeee ettt ettt e e st e e e e e te e et e e e nteeennaeenraeans 2474
FLO L. SYNEAX <ot e 2474

FLO. 2. PreCISIONuiiitiiiiiciietiectie ettt te ettt e ae et e e te e e b e e ebeebaessaeesseensaensnennnas 2475

FLO.3. USAZE....ne e s 2475

FLO.4. DEfaUILS ...c.veeeiiiiieiieieec ettt ettt et ettt et aaeesbe e beenaaeeneas 2479

FLO.5. INOEES ..ottt ettt et b ettt 2480
FLO.6. CIedits ..cueuieiieiieie ettt ettt ettt et ee s 2480

FoLO. dDIINK Lottt sttt ettt st b et 2480
ADIINK COMMECT ..eeeiiieiieeeee ittt ettt e e e e e e e e sesees e s aaeeeeeaeeeeseenans 2481
ADIINK COMMECE_Uiiiiiiiiiieieeeeeeeeeeee ettt ettt e e e e e e e e eeseeseseaaaaaeeeeaeeeeeeenans 2484
ADIINK _AISCONMMECT ..eeveiiiiieieeeeeeeeee ettt ettt e e e e e e e e s e s e es e e aaeeeeeaeeeeseenens 2485

XXXIX

F11.

F.12.

F.13.

F.18.

ABINK L. 2486

ADIINK_EXEC ..vviiiiriieeiiiieeiie ettt ee ettt e ettt e et e e s teeeetaeeesaaeessbaeessseeessseeessaeensseaanens 2490
ADIINK_OPCI. ...ttt ettt ettt e be e st e st b e saeesanes 2492
ADINK_FELCH ..veiiiiieciie ettt e e e b e e seb e e e abaeeebeeenens 2494
ADIINK_CLOSE ..veeeviieeiiieeeiie ettt et et e et e e st e e et aeesstaeessbee e sbaeessseeessaeensseennnns 2496
dblink_GEt_CONNECHIONScouveuiiiieiiiiieieiceeetee ettt 2498
ADIINK_EITOT_MESSAZEuveeuvieiieriieeieeite sttt ettt et ettt s e st be et e st e beesaeesaees 2499
ADIINK_SENA_QUETY ...eenviiiiiiiieiie ettt ettt st e 2500
ADINK_IS_DUSY vttt ettt ettt 2501
ABINK_ @Ot NOUIEY .eoueiiiiiiieeieetc ettt 2502
ADINK_ @O TESUIL..cueiiiiiiiieieeiic ettt st 2504
ADINK_CANCEL_QUETY . .eoueiiieiieiieiieieetee ettt ettt 2507
ADINK_ GOt PKEY ...eeeieiieee ettt 2508
dblink_build_SQI_INSeIT......eeoviiuieiieiieiieieeet ettt 2510
dblink_build_sql_delete.........cceriiiiirieiiiieiee e e 2512
dblink_build_sql_Update........cceeiiiiirieiirieieieeee e e 2514
QECT AN 1ttt ettt et e e e e e e e e e e e e s e e e et e e e eeeeeeeeesaase s s aaaaeeeaaaeaeearaas 2516
FoI1.1. CONfIGUIALION ..eoutiiiiiieiiiiieieeieetesee ettt sttt e 2516
Bl .2, USAZE. .ttt ettt sttt sttt ettt s 2516
QICE XS YTttt ettt ettt sttt st et b et b e bt et bbbt bt e bt ebe et naes 2516
Fo12.1. CONfIGUIALION ..eovviriiiniiniiniieiisieeiteste ettt sttt et 2517
FlI2.2. USAZE..cuieiieniieitetenieeteteett ettt ettt st sttt sttt 2517
CATTNAISTANCE ...ecuvviieiiie ettt ettt et e et e e e te e eeae e e s abeeeeabeseeseeeeaseeeeseeennes 2518
F.13.1. Cube-based Earth DiStancesccccceeveeiiuiieeiiiieeiieeciee e e 2518
F.13.2. Point-based Earth DiStancesc.ccoevviiiiiieeiiiieeiiee et 2520
FIIE_FAW .ttt ettt et e et e e b e e etr e e e abeeeabeaenens 2520
TUZZYSIIMALCH. ...ttt ettt st ettt st ebeenaeenanas 2522
Fo15.1. SOUNAEX...oiiiiiiiieiii ittt ettt ette et e e e e e sibae e tbaeeeabeeeesaeeneseeannns 2523
Fo15.2. LeVENSNLEIN ...ocoeuiiiiiiiieciie ettt et e ae e e svee e iv e e eabeeeaaaeeeseeenens 2523
Fi15.3. MEtaPRONE. ...cocuviiiieiieiie ittt ettt ettt e e e 2524
F.15.4. Double Metaphone.........cocueevueeriienieriieeiieniieeieeie ettt ettt 2525
RISTOTE ..ttt e et e e st e e e ste e e e ataeestbee e abeeesseeesseeenssaaenssaeensseeensseanns 2525
F.16.1. hstore External Representationccoeueeuerrieenieniieniieenieenie e 2525
F.16.2. hstore Operators and FUNCHONSc..coceecieriieieniinienieninecreneeicic e 2526
FoL10.3. INAEXES ..vveeieeiiieee ettt e e et e e e e are e e e eearaeeeeeeanreeeees 2530
Fi16.4. EXAMPIESoooiiiiiiiiieieieeetee ettt e 2530
FL16.5. SATSICS ..eeinvieeeeie ettt e et e e e e et e e e e e eeneeeenneeeeareeenns 2531
F.16.6. COMPAtDILILY ...ovevieieiieiieieeeeee ettt 2532
F.16.7. TransSfOrmsooviieiiiiie ettt ettt e et e e e e arae e e e eeenaaeee s 2532
FLL16.8. AUTNOTS....coiiiiiiiii ettt e e et e e e et e e e eeaaaaeee s 2533
IIEAZE ettt ettt et et e ettt e bt bt st e bt e e bt s et e b e bt sat e e e bt e saeeebeenbeenaees 2533
Fo17.1. FUNCHONS ...ttt e e et e et e e et e eeaaeeeeaeeeenns 2533
Fo17.2. Sample USES.....cooveiiiiiiiiiieieeitenteeeeeesteee ettt 2533
TIUEATTAY «. ettt ettt ettt et b e et et e b et e s et e st e bt e bt e e e b e e st e bt eatebesbeensenbeestenteeneentenaes 2534
F.18.1. intarray Functions and Operators............ccceeceevereerieneneenenieeienieeeenee e 2534
FoI8.2. TNAEX SUPPOIT..ccuiiiiiiiiiieiieieeieeie ettt sttt st 2536
FoI8.3. EXAMPIE ..ottt sttt e 2536
F18.4. BENChMAIKccviiiiiiiiiiiii et e 2537

xl

o0 IS8Tttt et sttt st sttt 2537
FL1O.1. Data TYPES...ueesuiiiiieiieniie ettt sttt ettt et ettt e be e st e st e b e saeesaees 2537
FiI1O.2. CaSES cueniiiieiieeeetereeeee ettt et sttt e 2538
F.19.3. Functions and OPETatorscccceevuerrueerieeniieniieniieeniteeteeieesieessteseseenseesaeesanes 2539
Fi19.4. EXAMPIES ..ottt 2540
F.19.5. BiDHOZIaphy.....ccooiiiiiiiiiieiiicc e 2541
L TN 11 4 o) TSP 2541

FL20. 10 ottt ettt ettt et et et e naeene e teeneenteteene 2541
F.20.1. RAONALEveeeiieeiieeciie ettt et e e stee et e e enseeensaeeneseeennns 2541
F.20.2. HOW t0 USE Tt .neiiieiiieeciieeee ettt etee et st 2542
F.20.3. LIMILAIONS ...eevviivieiieiiieeieesieeseesteeteeteestaeeaeeseessaeessessseessaesssessseenseessesssns 2542
F.20.4. AUNOT ...ttt et et 2542

FL2T TEEEE ettt b ettt et e bt s at et b et e bt e st e besae et e nbeenteteene 2543
F21.1. DefiNitiONScccuviiiieiiieiiecieeieesite e cte et sieeeteeteestaeesaeebeesaesssessseenseenseesnnas 2543
F.21.2. Operators and FUNCHONScoceiiiieriinieienieeee et 2544
F21.30 INAEXES ..ottt ettt et et e et e st e s aaeeeaeeeenaee 2547
F21.4 EXAMPIE ..ottt sttt s 2547
F.21.5. TransSfOrmS «..c..cooviiiiiieiiiiieieeieetet ettt 2549
F21.6. AUTNOTS.....ooniiiieiiieee ettt 2549

FL22. PAGEINSPECT ..ttt ettt ettt st sae bt be b saae b eae 2550
F22.1. FUNCLIOMNS ...oueiieiieiieeiteieeie ettt sttt 2550

F.23. pasSWOIACHECKcouiriiriiiiiiiiieceteectee ettt 2554

F24. pg DUffercache.......cocuoveiiiiiiiiiiiiictcetc ettt 2554
F.24.1. The pg_buffercache VIEW ... ioieieeeeiieeeeeeeeieeee e e e eaaeee s 2555
F.24.2. Sample OULPULooouieriiiiiieieeitesieeieeite sttt ettt et esaae st e e e saeesnees 2555
F.24.3. AUTNOTS...c..oiiiiiiiiiieceeee ettt 2556

FL25. PECTYPLO ettt ettt s e et et e st e st e be e st e sabeesbeenbeesabeenbeeseens 2556
F.25.1. General Hashing FUNCHONScoceeviiiiiiiiiiniiiieeieeieeeeeee e 2556

F25.1.1. AigeSt () coveeveeriereeienienieieeieeteste ettt sttt et sae s ee e 2556

B2 L2 NINAC () eeeieeeeeeeeeeeeeeee e e e e e e e e e e e e e e et e e aeeaeaeeeeeeaanae 2557
F.25.2. Password Hashing FUNCHIONScocueiiiieniiniiiiiieiieiecicceeteee e 2557
Fo25. 2.1, CYPE () tttieeeiitieee ettt e e et e e e e aree e e eeanees 2558
F.25.2.2. GEN_SAL1E () totrteeeeieiieee ettt et eeete e e et e e et e eearae e e eeanaes 2558
F.25.3. PGP Encryption FUNCHONS.......cccoiiiieiiiniiieiieeeicecceeeeeeeeeee e 2559
F.25.3.1. DOD_SYM_ENCTYDE () tereeererreerrieiireeesireesiereesseeesereeessseesssseeenssessnns 2560
F.25.3.2. pgp_SYM_dECTYDE () trreeererreerrieiieieeesiieesiereesseeesreeesseeessseeenssesnnns 2560
F.25.3.3. DOP_PUD_ENCTYDE () trreeerrieeiiieiirieeeiieesereesseeessreeesseesssseeenssesnnns 2560
F.25.3.4. pgp_pub_deCTYPE () ceeeereeeerieeeiieeeiieeeieteesreeesreeesseesssseeensseennns 2561
Fo25.3.5. DGR _KeY_ 1A () ittt ettt et e eanaes 2561
F.25.3.6. armor (), AEATIMOT () teeeseesesesnannans 2561
F.25.3.7. pgp_armor_headers .iiicecciieeececieee ettt aree e e eiaaes 2562
F.25.3.8. Options for PGP FUnctions...........cccccoerierienieiieniniene e 2562
F.25.3.8.1. CIPher-al@occcceoueiuieiiieieieeieeeeee e 2562

F.25.3.8.2. COMPIESsS-al@Ocouiruiruiiiiniieieiiieiesieete et 2562

F.25.3.8.3. compress-1eVelcoceririeniiiinieniiiiececee e 2562

F.25.3.8.4. cOnVert-Crif......c.cooouiriiiiiiiiiieiieeeeecee e 2563

F.25.3.8.5. diSable-mdC........ccouemieiiniinieeiieiesieeeeeecee e 2563

xli

F.26.

F27.

F.28.

F.29.

F.30.

F31.

F.32.

F.25.3.8.6. SESS-KEY .uveeeuiiiiieiieeieeteteete ettt 2563

F.25.3.8.7. S2K-MOdE......ccoereeiiniiriiiieieiereeiesceee et 2563

F.25.3.8.8. S2K-COUNL.....coruiriiiiiiiniiiieeeereeeseeitere e 2563

F.25.3.8.9. S2K-digest-al@O0...ccuueruiriiiiienieeiieitenee ettt 2564
F.25.3.8.10. s2K-Cipher-algocccceereerieriiiinienienieeeeee e 2564
F.25.3.8.11. unicode-mode...........ccccouireeruerienieninieiieeeeeneereneeeenene 2564

F.25.3.9. Generating PGP Keys with GnuPG............c..cccccoiviininnnnininine 2564
F.25.3.10. Limitations of PGP Codec.ccceeceiniiriiiniiiiiiiieeieeeeeene 2565
F.25.4. Raw Encryption FUNCtioNS..........ccccocieviiniiiiniiiiiiiiceecceceneece e 2565
F.25.5. Random-Data FUNCHIONScoviiriiriieiiiiniieeieeieeiteeteee et 2566
FL25.0. INOLES -ttt ettt ettt et e ae e sae et e b e e be e s e eeeneeneeenes 2566
F.25.6.1. CoNfiGUIation........cccueiuieiieiiieeieieeieeie ettt 2567
F.25.6.2. NULL Handlingccccecueiieieiinieesie et 2567
F.25.6.3. Security Limitationscccceeererierieniesieienieeiesee e neesieeee e eneeeeene 2567
F.25.6.4. Useful Reading.........ccccooueiiieieiiinieieieeieieicee e 2568
F.25.6.5. Technical References..........ccccecevieieniiienienieiesiceee e 2568
F25. 7. AUTNOT ...ttt 2568
PE_TEESPACEIMAD ...ttt ettt st et b ettt eb et sbe et e bt e e eae 2569
F.26.1. FUNCLIONS ...ueiieiieiieeieieeieet ettt st sttt e 2569
F.26.2. Sample OULPUL c...oeeiuiiiiiiieiiniieiesie ettt sttt 2569
F.20.3. AUTNOT ...ttt e 2570
PE_PIEWAITIL ..ttt et eate st et eate bt ebt et ebteeesbeesbesbeeates bt ebeenaesbeesbenbeessensenne 2570
F27. 1. FUNCHOMNS ...ttt sttt et s 2570
F27.2. AUTNOT ..ottt 2571
PEIOWIOCKS ...ttt ettt ettt ettt s e st e et e e s aaesabeenbaesasesaseenbeesanansnennse 2571
F28.1. OVEIVIBW ..ouiiiiniiieiieieeitcteeteetestt ettt sttt s e 2571
F.28.2. Sample OULPULoovuieiiiiiieieeite sttt ettt st et te st e beesaeesaees 2572
F.28.3. AUNOT ..ottt 2572
PE_StAL_SEALEINIENESeeueieeieeiiieieeeite et et site et ebtesatesabeenbeesatesabeenbeesaeesaseenbeesanesanennse 2572
F.29.1. The pg_stat_statements VIEWccocoeeeeeiirrieeeeiireeeeeeeireeeeeeerreeeeeenneeeeen 2573
F.29.2. FUNCHONS ...ttt ettt 2576
F.29.3. Configuration Parameters.cevveeieriiienienienieeniieeieeie ettt 2576
F.29.4. Sample OULPULoooviiiiiiiiieiieiteetee ettt ettt 2577
F29.5. AUTNOTS......ooiiiiiiiieceeee et 2578
PESTALLUPLE ...ttt et sttt st 2578
F.30. 1. FUNCHONS ..ttt ettt ettt e 2578
FL30.2. AUTNOTSeiieieiieeeetee ettt ettt 2582
PETEIML it 2582
F.31.1. Trigram (or Trigraph) CONCepLs.........cccevuirieriiiiiniiiicieneeeceseeeee e 2582
F.31.2. Functions and OPEIatorsceeeeieruerueerierieeieneeseeeieseeeeeseesseeneeseeeneeneeenes 2582
F.31.3. GUC Parameterscoceeeueerueenienieeieeieeniteete ettt sttt saeesaees 2584
F.31.4. INAEX SUPPOIL...ciriiiiiiiiiiiieeeeiteetee ettt ettt ettt e 2584
F.31.5. Text Search INteZrationcccecuereeierenieienieeiee et 2586
F.31.6. REFEICNCEScueeniiiieiieieeiee ettt 2587
F31. 7. AUTNOTS ...ttt et 2587
PE_VISIDIIIEY Lttt sttt bbb 2587
F32. 1. FUNCLIOMNS ...ueiieie ittt sttt sttt s 2587
F32.2. AUTNOT ..ottt 2588

xlii

FL33. POSEEIES_FAW ...eiiiieiieieeite ettt ettt sttt st e 2588

F.34.

F.35.

F.36.

F.33.1. FDW Options of postgres_fdwcocceeviiviiniiiiiinienieciecieeeeeie e 2589
F.33.1.1. Connection OPLioNS..........cevueerierieerieenienieenieeniee e enreesieesresveeneeens 2589
F.33.1.2. Object Name OPHONSccceerierrieenieenieiieeieeniee e eieesieesieesveeieens 2589
F.33.1.3. Cost Estimation OPtions........ccc.cevueereeneeriernieeniienieeieeniee e eveeieens 2590
F.33.1.4. Remote Execution OPtions........c.cceceruerierieniieiieniineenieneeeeneeeenene 2591
F.33.1.5. Updatability OPtionsceceeeuerierienienieieniieieieeeenneseereseenenene 2591
F.33.1.6. Importing OPtionscceeeeveinieieninieieneeieie e e 2591

F.33.2. Connection Managementcoeeeevueruieieniieeeniineeienie e 2592

F.33.3. Transaction Managementcocceceevueririeniinieniineeiese e 2592

F.33.4. Remote Query OptimiZationcccccoeiirieiiinieniinieiene e 2593

F.33.5. Remote Query Execution Environmentccocooininiiiiniininnenne. 2593

F.33.6. Cross-Version Compatibility.........cccccecerirerenienieirninieninieneneeeeeeesesieneeneen 2593

F33. 7. EXAMPIES ... e e 2594

FL33.8. ATNOT ..ottt 2594

B ettt e h e b h e s a e e st a e b et h e e s nenre s 2595

F.34.1. RAtONALE ...ttt sttt 2595

Fl34.2. SYNEAX c.eeiieiieiiee ettt sttt st 2595

F.34.3. PIECISION.....cuitiiiieieieiieiteie sttt sttt s 2596

FL34.4, USAZE..c.ueeueeiieieete ettt ettt st ettt ettt e 2597

FL34.5. NNOLES ..ottt sttt s 2598

F34.6. CIedits ...ooueuiiiiiieieicieitecreeec ettt s 2598

SEPESAL ¢ttt ettt st et ettt ebe et bt et b 2598

F35. 1. OVEIVIEW .ttt s 2598

F.35.2. INStallation.......couiiiieiiiiiiiiiiieicicictcteee e 2599

F.35.3. RegIession TESES....cccueriiriiieriieniienieeieeite st ete et esitesre et esbeesareseteebeesanesnnes 2600

F.35.4. GUC Parametersccccccevevuiriiieiiiiiiiiiiienieicceese st 2601

F35.5. FEALUIESoouiiiiiiiicicicccc e 2601
F.35.5.1. Controlled Object CIaSSEScccuervueerieerieriienieeniesieenieenieesreeveeeeens 2602
F.35.5.2. DML PermiSsions........cccccueoueiririniinienieieiiiiiie e 2602
F.35.5.3. DDL Permissionsccccccueiririniiniiniiiiiiiicncnieieiecee e 2603
F.35.5.4. Trusted Procedurescccocuviviiiiiiiniiiiiiiiiciciciccccscciee 2603
F.35.5.5. Dynamic Domain TranSitions...........cceeeerveereeneeniennieeneeseeseeeiens 2604
F.35.5.6. MISCEIIAN@OUScocveiiriieiiniieiiiceieie sttt st 2605

F.35.6. Sepgsql FUNCLIONSc.coeiiiniiiiiiiiieienicietee e 2605

F.35.7. LIMITALONS ...ceuviiiiieiieiie ittt ettt ettt sttt e esaeesaees 2606

F.35.8. EXternal RESOUICES.cc.ccoueeieiiiiiniieieeiteciteeeee ettt 2606

F.35.9. ATNOT ..ottt 2607

] 01 FO OO ST S U P PR UUPPTUTRRPRRRTRN 2607

F.36.1. refint — Functions for Implementing Referential Integrity................cc........ 2607

F.36.2. timetravel — Functions for Implementing Time Travelc.cccccoeceeneenne. 2607

F.36.3. autoinc — Functions for Autoincrementing Fieldsccccooeiiiinienne. 2608

F.36.4. insert_username — Functions for Tracking Who Changed a Table.............. 2609

F.36.5. moddatetime — Functions for Tracking Last Modification Time................. 2609

SSIINTO. .ttt b ettt sae b nae s 2609

F.37.1. Functions Providedcccooieiiniiiiniiiiiieieeesceee e 2609

F37.2. AUNOT ..o e 2611

LADIETUNC ... s 2611

xliii

F.38.1. Functions Providedcccveiiiiiiiiiiieiiiiie et 2611

Fo38.1.1. NOTMAL TANG tttttttteeeeeee e e e e e e e e e e e e et e eaeeeeeeeeeeeeaeees 2612

Fo38. .2, Cr oS St A (£OKE) tueeeeeeeeee et e e e e et eeeaeeeeeeeeeeeeeeee 2613

FL38. 1.3, CroS St AN (£EXE) eeeeeeeieeeeeeeeeeeeeee e e e e e e e e e e et eeeeeeaeeeeeeeeeeeeanees 2615

F.38.1.4. crosstab (£eXt, TOXE) wiutitiiiieenees 2616

F.38.1.5. CONNE DY ittt et e ee e e et e e e eeannes 2619

FL38.2. AULNOT ..ttt ettt ettt eb e e be e tbeeebe e beeeaaeennas 2621

L3O LI ittt ettt et e e b e e tb e e tb e b e e ba e taeeabeenba e beesebeebeereens 2622
Fl40. teSt_d@COAINEveeuieiieeiieeieete ettt ettt sttt e eae e 2622
FAT1. tSCAICRZ ...ttt e e ettt e e e et e e e e e e arae e e e e araaaeas 2623
F.41.1. Portability ISSUEScciiiiiiiiiiiiiiiieieice e 2623
F.41.2. Converting a pre-8.3 Installation..........cccceeceeruieienineeieneeeeeeeeee e 2624
Fid1.3. REFEICICESoooeeieieeie ettt e eeaae e 2624

Fl42. tSIMN_SYSIIMN_TOWS . .euiitiiiieiietieiie st eite ittt et e ite st e e sbesat et e sbeesee bt eseenaesaeentenbeeneaneeene 2625
FiA2. 1. EXAMPLES ...ttt sttt st 2625

Fl43. tSM_SYSIEIM_LIINIC ...cueintiiieiietieitesie ettt ettt ettt st b ettt e enae e entesbeseneeeeae 2625
FiA3. 1. EXAMPLES ..ottt st sttt et e 2626

Fidd, UNACCENL ..c.uvietieieieeieeieecte ettt ettt et e et e s teeeabe e bee s st e ssbeesbeesseesseessseenseenseessseenseenseens 2626
F44.1. CONfIGUIALION ..eouviiiiiiiiieiieieeieetese ettt sttt 2626
Fldd. 2. USAZE..c.ueoueiiieieete ettt ettt ettt ettt et 2627
Fld4.3. FUNCHONS ..ceuviiiieeiieiteiie ettt st et ettt eaeeteestaessbeenbeenbeessnessseenseenanennnes 2628

FiAS. UUIA-08SP vttt ettt b ettt st sae bbb sane e eae 2628
F45.1. uuid-05sp FUNCHONS ..cooouvviiiiiiiiiiic e e 2628
F45.2. Building utid—0SSD ceoeeieriinieiiniiiieienieetenieeitete ettt 2630
Fid5.3. AULNOT ..ottt et ve e e b e e eare e e aaaeeareeennns 2630

FLlAO. XIMI2 ..ottt e e e et e e st e e et e s e abaeesebeeesabeseeseeessaaans 2630
F.46.1. Deprecation INOTICEcocueeriierienieeieetie st eie et esite e ste bt e siteseteebeenaeesnnes 2630
F.46.2. Description Of FUNCHONScooiiriiriiiiiienieeiecieeeeeee et 2631

| ST T oY= N ol s W o= o 1 I = Y USROS RSP 2632
F.46.3.1. Multivalued ReSults..........ccceeeviiiiiiieciiieeie e 2633

Fi46.4. XSLT FUNCHONSeoviiiiiiiiieieeitesieeie ettt ettt ettt e e s 2634
FAG.4. 1. XS 1t 0T OCESS wiiiiiiiiieeeeeeiteeeeeeeteee e eeete e e eeta e e e s ireee e e eeareeeeeeanees 2635

FldB.5. AULNOTooiiiiieee ettt ettt e e sbee e b e e e sseeensaeeneseesnnns 2635

G. Additional Supplied Programscccccoceecieriiriiniinienininieieeeereeeeere e 2636
G.1. Client APPLCALIONSc..eoeeiiriieieiieieieee ettt st e 2636
OLAZIAINEeei et eeeciiee et e et e e e ettt e e e e ettt e e e e e taaeeeeeetbaeeeeesanreeeeeeansseeeeennnreeeens 2636
VACUUINIO ...ttt ettt ettt e e ettt e e ettt e e e eeataeeeeeeabeeeeeeeanseeeeeensseeeeennnseeeeas 2641

G.2. Server APPLCALIONSceevuiiiiiiiiiiiieiieeete ettt et e 2643
PE_SLANADY ..ot e 2643

H. EXternal PrOJECES ...ceoueiiiiiiieieeie ettt sttt st st e 2647
H.1. ClEnt INEEITACESoeeoueeeeeeeie ettt e e e e e e et eeeaneeen 2647
H.2. AdminiStration TOOISc..cooiuiiiiiieieiie et ettt et et e e e eaeeeeaaeens 2647
H.3. Procedural Languages..........coeeuerieiereiieiesteeie sttt sttt ettt sbe et 2648
H4. EXEENSIONS....ccoutiiiieiieeeeiee ettt ettt et e et e e et e e eteeeeaeeeeateeeeaaeeeeaseeeeaneeenseneans 2648
. The Source Code REPOSITOTYcccceriiieriiriieieniieiiete sttt ettt sttt 2649
L.1. Getting The SOUICE VIA Glcc.eeieriirieiiiieieeicetere ettt st 2649
J. DOCUIMENEALION ...vveiveeeiieiieniteeiteeieesieeeteeteesteesteeseteeseesseessseesseeseessseasseesseenssesnsessseenseesssenssennns 2650
I B B 10Ted 270 T) OO PR UTUUSRRPSRRTI 2650

xliv

J 2. TOOL SEES...uuveieeeeeeeie ettt ee et e e e et e e e eeaaa e e e eeetreeeeeesareeeeeetrreeeeeearaaeeas 2650

J.2.1. Installation on Fedora, RHEL, and Derivatives...........ccccccceevveeivieiiivnninreeeeenens 2651

J.2.2. Installation on FreeBSDc.ccocoviiiiiiiiiiniiinciicieecccceee e 2652

J.2.3. Debian Packages.......ccocueriieiieiiiiiiiieieeitesiteeeee ettt 2652

J2.4. 08 X s 2652

J.2.5. Manual Installation from SOUICE..........cceeieveririieniiniiieieec e 2652

J.2.5.1. Installing OpenJadecccceceevuinieiieninieienieice e 2653

J.2.5.2. Installing the DocBook DTD Kit........ccccoceeciinieiiininieniiiieieieceeiee 2653

J.2.5.3. Installing the DocBook DSSSL Style Sheetscccccccoveeverieieninnne 2654

J.2.5.4. Installing JadeTeXcoceoiiriiiiiniiieiiceeet e 2654

J.2.6. Detection by CONELIGUIE .coiiiiiiiiiiiiieeeie e 2655

J.3. Building The DOCUMENtAtION........oceeieriieeieieetieieie ettt ettt 2655
J3UT HTML ettt ettt s 2655

J.3.2. MIANPAZES. ..ottt ettt ettt ettt et et h et b ettt et s ae e te bt et eae 2656

J.3.3. Print Output via JAdeTeXccoooiriiiiiiieieiee e 2656

J.3.4. OVEIIOW TEXL ..cueieuiiiieiieieeiteteet ettt et st s e e eae 2657

J.3.5. Print Output via RTFooiiiiiiiiieie et 2657

J.3.6. Plain TexXt FIleSc.ovuiiiiiiiieieeieeiece et 2659

J.3.7. SYNLAX CRECK. ...ttt e e 2659

J.4. Documentation AULROTINGcoceririeririiienieiet ettt 2659
JA4.1. EMAcS/PSGML......cooiiiiiiiiiiiciceictee ettt 2659

J.4.2. Other EMacs MOAEScccoevuiiiiiieiiiiiienieicicieeet et 2660

J.5.StYle GUIAR.....oviiiiiiiiciei e e 2660
J.5.1. Reference Pagesccoeviiiiiiiieiieiieeieeitecite ettt ettt sttt 2661

KL ACTOMYIMNS 1iteeiiietieeite ettt ettt ettt s e st e bt e tte st e e bt enbeessbeenseesbeessaesabesnseensaesssesnseensaensaenanas 2663
Bibliography 2669
Index 2671

xly

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. http://db.cs.berkeley.edu/postgres.html

xlvi

Preface

« functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlvii

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

xlviii

Preface

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’ list,
and detailed information about many more topics.

‘Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

xlix

Preface

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

+ A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.

Preface

And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

li

Preface

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

« Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postgres —-versionand psql --version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package might have. If you are talking about a Git
snapshot, mention that, including the commit hash.

If your version is older than 9.6.12 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have installation
problems then information about the toolchain on your machine (compiler, make, and so on) is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don’t say “the server crashed” when you mean a single
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “psql”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@lists.postgresqgl.org>.
You are requested to use a descriptive subject for your email message, perhaps parts of the error message.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

lii

Preface

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as
<pgsgl-sqgl@lists.postgresql.org> or <pgsqgl-general@lists.postgresqgl.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@lists.postgresql.org>. This list is for discussing the
development of PostgreSQL, and it would be nice if we could keep the bug reports separate. We might
choose to take up a discussion about your bug report on pgsgl-hackers, if the problem needs more
review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresgl.org>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresqgl.org>, so we (and you) can work on porting PostgreSQL to
your platform.

Note: Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If you
wish to subscribe to the lists, please visit hitps://lists.postgresql.org/ for instructions.

10. https://www.postgresql.org/

liii

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT might
also have to be set. The bottom line is this: if you try to start an application program and it complains
that it cannot connect to the database, you should consult your site administrator or, if that is you, the
documentation to make sure that your environment is properly set up. If you did not understand the
preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb
If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your

Chapter 1. Getting Started

operating system user name; in that case you need to use the —U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

+ Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb
If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (9.6.12)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.6.12 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,

(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

64-bit

Chapter 1. Getting Started

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those files,
first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are in
the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for fable. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copYy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process, not
the client, since the backend process reads the file directly. You can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT ~ is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 B mman s T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT x FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B S
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do:

Chapter 2. The SQL Language

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT =*

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 B R S S S

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you’d need to gualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— Bt E e st e gt e
Hayward \ 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Bt T e et e et
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =«
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather

WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the

maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, b
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching

that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

cilty | max
_________ IS
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we

only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’'S%'®
GROUP BY city
HAVING max (temp_lo) < 40;

13

Chapter 2. The SQL Language

O The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt B s mattt el S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

14

SELECT x FROM weather;

city | temp_lo | temp_hi
,,,,,,,,,,,,,,, e

San Francisco | 46 | 50

San Francisco | 41 | 55

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Chapter 2. The SQL Language

| prcp | date
Fm———— Fmm
| 0.25 | 1994-11-27
| 0 | 1994-11-29

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system

will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced. sql in
the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: 1insert or update on table "weather" violates foreign key constraint "weather_city_f
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and commIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = "Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function. But
unlike regular aggregate functions, use of a window function does not cause rows to become grouped into
a single output row — the rows retain their separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000

19

Chapter 3. Advanced Features

develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed across
an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function’s name
and argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions,
that share the same values of the PARTITION BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
77777777777 et
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 | 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways by means of different OVER clauses, but
they all act on the same collection of rows defined by this virtual table.

20

Chapter 3. Advanced Features

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Many (but not all) window functions act only on the rows of
the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows that
are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default
frame consists of all rows in the partition. ' Here is an example using sun:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, b
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP By, HAVING and WHERE clauses. This is because they logically

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Chapter 3. Advanced Features

execute after the processing of those clauses. Also, window functions execute after regular aggregate
functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -—— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int —— (in ft)
)i

22

Chapter 3. Advanced Features

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int -—— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ +__________

23

Chapter 3. Advanced Features

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site” for links to more
resources.

2. https://www.postgresql.org

24

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

27

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with Us (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example Us "foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

28

Chapter 4. SQL Syntax
Ug"d!0061t!+000061" UESCAPE 7!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (”), for example
"This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT ' foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

29

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (oc=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. When the server encoding is UTF-
8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF' 8. When other server encod-
ings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single
code point that is then encoded in UTF-8.)

30

Chapter 4. SQL Syntax

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape string
constants. However, as of PostgreSQL 9.1, the default is on, meaning that
backslash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to off, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to represent
a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with Us (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for ex-
ample Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively a backslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ’ data’
could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

U&"d!0061t!+000061” UESCAPE " !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single code point
that is then encoded in UTF-8.)

31

Chapter 4. SQL Syntax

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

SSDianne’s horses
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ S$qgS[\t\r\n\v\\]1g);
END;
Sfunction$

Here, the sequence q[\t\r\n\v\\]1qg represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, SO tagString contenttag is correct, but
$TAGS$String contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

32

Chapter 4. SQL Syntax

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B/ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer ifits value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

33

Chapter 4. SQL Syntax

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F/<>=~1@# D N&I"?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#D &I ?

For example, @- is an allowed operator name, but »- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

34

Chapter 4. SQL Syntax

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X« @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

+ The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (+) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

35

Chapter 4. SQL Syntax

where the comment begins with /+ and extends to the matching occurrence of «/. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have the
same precedence and are left-associative. The precedence and associativity of the operators is hard-wired
into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
8 left exponentiation
/% left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE range containment, set
SIMILAR membership, string matching
<> =<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL,
IS DISTINCT FROM, etc
NOT right logical negation

36

Chapter 4. SQL Syntax

Operator/Element Associativity Description
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other opera-
tor”. This is true no matter which specific operator appears inside OPERATOR () .

Note: PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; 1s tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having the
precedence of not rather than BeTweEN. These rules were changed for better compliance with the
SQL standard and to reduce confusion from inconsistent treatment of logically equivalent constructs.
In most cases, these changes will result in no behavioral change, or perhaps in “no such operator” fail-
ures which can be resolved by adding parentheses. However there are corner cases in which a query
might change behavior without any parsing error being reported. If you are concerned about whether
these changes have silently broken something, you can test your application with the configuration
parameter operator_precedence_warning turned on to see if any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value

+ A column reference

+ A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

A field selection expression

« An operator invocation

37

Chapter 4. SQL Syntax

A function call

« An aggregate expression
+ A window function call
+ A type cast

« A collation expression

« A scalar subquery

+ An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

38

Chapter 4. SQL Syntax

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An impor-
tant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

39

Chapter 4. SQL Syntax

You can ask for all fields of a composite value by writing . «:
(compositecol) .

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the notations
col (table) and table.col are interchangeable. This behavior is not SQL-standard but is provided
in PostgreSQL because it allows use of functions to emulate “computed fields”. For more information
see Section 8.16.5.

40

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER (WHERE filter clause) |
aggregate_name (ALL expression [, ... 1 [order_by clause]) [FILTER (WHERE filter_clause)
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER (WHERE filter clau
aggregate_name (%) [FILTER (WHERE filter_clause)]

aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by clause) [FILTER (WHERE f

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order._by_clause and filter._clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is
the same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generally only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count («) yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields the number
of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and st ring_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order._by_clause can
be used to specify the desired ordering. The order._by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it’s a constant).

41

Chapter 4. SQL Syntax

If DISTINCT is specified in addition to an order._by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included in
the DISTINCT list.

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when ordering
the input rows for a “normal” aggregate for which ordering is optional. There is a subclass of aggregate
functions called ordered-set aggregates for which an order_by_clause is required, usually because
the aggregate’s computation is only sensible in terms of a specific ordering of its input rows. Typical ex-
amples of ordered-set aggregates include rank and percentile calculations. For an ordered-set aggregate,
the order_by_clause is written inside WITHIN GROUP (...), as shown in the final syntax alterna-
tive above. The expressions in the order_by clause are evaluated once per input row just like normal
aggregate arguments, sorted as per the order by _clause’s requirements, and fed to the aggregate func-
tion as input arguments. (This is unlike the case for a non-WITHIN GROUP order_by_clause, which
is not treated as argument(s) to the aggregate function.) The argument expressions preceding WITHIN
GROUP, if any, are called direct arguments to distinguish them from the aggregated arguments listed in
the order_by_clause. Unlike normal aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those vari-
ables are grouped by GROUP BY; this restriction is the same as if the direct arguments were not inside an
aggregate expression at all. Direct arguments are typically used for things like percentile fractions, which
only make sense as a single value per aggregation calculation. The direct argument list can be empty; in
this case, write just () not (*). (PostgreSQL will actually accept either spelling, but only the first way
conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the i ncome column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
rows.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count () FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

42

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
(and filter_ clause if any) contain only outer-level variables: the aggregate then belongs to the nearest
such outer level, and is evaluated over the rows of that query. The aggregate expression as a whole is then
an outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect to
the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER window_.i
function_name (|[expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (windo
function_name (*) [FILTER (WHERE filter clause)] OVER window_name

function _name (*) [FILTER (WHERE filter clause)] OVER (window definition)

where window_definition has the syntax

[existing _window_name]

[PARTITION BY expression [, ...] 1]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [, ...] 1]
[

frame_clause]
and the optional frame_clause can be one of

{ RANGE | ROWS } frame start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

43

Chapter 4. SQL Syntax

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the wINDOW clause; see the SELECT reference page for details. It’s worth
pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes a
frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY option
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame_start to
the frame end. If frame end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the parti-
tion, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row
of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s first
peer row (arow that ORDER BY considers equivalent to the current row), while a frame _end of CURRENT
ROW means the frame ends with the last equivalent ORDER BY peer. In ROWS mode, CURRENT ROW simply
means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROws mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row. value
must be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from
the partition start up through the current row’s last ORDER BY peer. Without ORDER BY, all rows of the
partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING iS not
allowed.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept a
FILTER clause.

The built-in window functions are described in Table 9-56. Other window functions can be added by
the user. Also, any built-in or user-defined normal aggregate function can be used as a window function.
Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count () OVER (PARTITION BY x ORDER BY y).The asterisk («) is customarily not used

44

Chapter 4. SQL Syntax

for non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent £1oat8 can. Also, the names interval, time,
and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast syn-
taxes is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on. For further details
see CREATE CAST.

45

Chapter 4. SQL Syntax

4.2.10. Collation Expressions

The cOLLATE clause overrides the collation of an expression. It is appended to the expression it applies
to:

expr COLLATE collation
where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-

ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT = FROM tbl WHERE a > 'foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT * FROM tbl WHERE (a > ’'foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)

46

Chapter 4. SQL Syntax

FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

{1,2,7}
(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.
Multidimensional array values can be built by nesting array constructors. In the inner constructors, the

key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],([3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int([], £f2 int[]);

47

Chapter 4. SQL Syntax

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, ’"{{9,10},{11,12}}"::int[]] FROM arr;
array

{({{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, ix2] FROM generate_series(1l,5) AS a(i));

{{1,2},{2,4},1{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery’s output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery’s output column. If the subquery’s output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case all the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

48

Chapter 4. SQL Syntax

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .+ syntax is used at the top level of a SELECT list (see Section
8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW (t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior is
usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (t, 42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’/SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));

ERROR: function getfl (record) is not unique

SELECT getfl(ROW(1,2.5,"this is a test’)::mytable);
getfl

49

Chapter 4. SQL Syntax

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For exam-
ple, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

50

Chapter 4. SQL Syntax

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that it
does not prevent early evaluation of constant subexpressions. As described in Section 36.6, functions and
operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is executed.
Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at run
time.

While that particular example might seem silly, related cases that don’t obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables can
be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters
can be omitted; while in positional notation parameters can only be omitted from right to left.

51

Chapter 4. SQL Syntax
PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.
The following examples will illustrate the usage of all three notations, using the following function defi-
nition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S$S1 || ' 7 || $2)
ELSE LOWER(S$1 || ' 7 || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, 'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

52

Chapter 4. SQL Syntax

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper (a => "Hello’, b => ’"World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => ’'Hello’, b => ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => "Hello’, uppercase => true, b => ’'World’);
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper(a := ’"Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having nu-

53

Chapter 4. SQL Syntax

merous parameters that have default values, named or mixed notation can save a great deal of writing and
reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

54

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order
of the rows in a table. When a table is read, the rows will appear in an unspecified order, unless sorting
is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in a table. This is a consequence of the
mathematical model that underlies SQL but is usually not desirable. Later in this chapter we will see how
to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

55

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

56

Chapter 5. Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is gen-
erating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.16). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

57

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

58

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

59

Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among all
the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column names
separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

60

Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

61

Chapter 5. Data Definition

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

62

Chapter 5. Data Definition

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
« Delete the orders as well
+ Something else?

63

Chapter 5. Data Definition

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don’t want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a row
from the referenced table or an UPDATE of a referenced column will require a scan of the referencing table
for rows matching the old value, it is often a good idea to index the referencing columns too. Because this

64

Chapter 5. Data Definition

is not always needed, and there are many choices available on how to index, declaration of a foreign key
constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.
oid

The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDS, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.18 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

65

Chapter 5. Data Definition

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ct id can be used to
locate the row version very quickly, a row’s ctid will change if it is updated or moved by vacuuM
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2°? (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing

66

Chapter 5. Data Definition

tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

+ Remove constraints
 Change default values

« Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using uppATE, and then add any desired default as described below.

5.5.2. Removing a Column

To remove a column, use a command like:
ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not

67

Chapter 5. Data Definition

silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

68

Chapter 5. Data Definition

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser) can
do anything with the object. To allow other roles to use it, privileges must be granted.

69

Chapter 5. Data Definition

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular
object vary depending on the object’s type (table, function, etc). For complete information on the different
types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections
and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details see
Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted, up-
dated, or deleted by data modification commands. This feature is also known as Row-Level Security. By
default, tables do not have any policies, so that if a user has access privileges to a table according to the
SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table’s owner is typically not subject to row security policies.) If no policy exists for
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

70

Chapter 5. Data Definition

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that returns
a Boolean result. This expression will be evaluated for each row prior to any conditions or functions
coming from the user’s query. (The only exceptions to this rule are leakproof functions, which are
guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the rows
which are allowed to be modified. Policy expressions are run as part of the query and with the privileges
of the user running the query, although security-definer functions can be used to access data not available
to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when accessing
a table. Table owners normally bypass row security as well, though a table owner can choose to be subject
to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible if
any policy allows it. This is similar to the rule that a given role has the privileges of all roles that they are
a member of.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

71

Chapter 5. Data Definition

To use a different policy for rows that are being added to the table compared to those rows that are visible,
multiple policies can be combined. This pair of policies would allow all users to view all rows in the
users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd

emulates a Unix password file:

—-— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; -- Administrator
CREATE ROLE bob; —— Normal user
CREATE ROLE alice; —-- Normal user

—— Populate the table
INSERT INTO passwd VALUES
("admin’, " xxx’,0,0,"”Admin’ ,”111-222-3333" ,null,’ /root’,’ /bin/dash’);
INSERT INTO passwd VALUES
("bob’,"xxx’,1,1,"'Bob’,"123-456-7890’ ,null,’ /home/bob’,’ /bin/zsh’);
INSERT INTO passwd VALUES
("alice’,’'xxx’',2,1,"Alice’,"098-765-4321’ ,null,’ /home/alice’,’ /bin/zsh’);

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies

—— Administrator can see all rows and add any rows

CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows

72

Chapter 5. Data Definition

CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—-— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN (’/bin/bash’,’/bin/sh’,’/bin/dash’,’/bin/zsh’,’ /bin/tcsh’)
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it’s important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;

SET
postgres=> table passwd;

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
——————————— e e T e R amat s Lt e
admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root

bob | xxx | 1 1 | Bob | 123-456-7890 | | /home/bob
alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice
(3 rows)

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir | shell
77777777777 Bt e st e
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = ' Jjoe’;

ERROR: permission denied for relation passwd

—-— Alice is allowed to change her own real_ name, but no others
postgres=> update passwd set real_name = ’'Alice Doe’;

UPDATE 1

73

Chapter 5. Data Definition

postgres=> update passwd set real_name = ’'John Doe’ where user_name = ’'admin’;
UPDATE 0

postgres=> update passwd set shell = ’/bin/xx’;

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values (’'xxx’);

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = "abc’;

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when developing
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when taking
a backup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of£. This does not in itself
bypass row security; what it does is throw an error if any query’s results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it’s best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTs, or functions that contain SELECTs, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow information
leakage if care is not taken. As an example, consider the following table design:

—-— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES
(1, "low’),
(2, "medium’),
(5, "high’);

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

—-— definition of users’ privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO users VALUES
("alice’, 5),
("bob’, 2),
('mallory’, 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

74

Chapter 5. Data Definition

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO information VALUES
("barely secret’, 1),
("slightly secret’, 2),
("very secret’, 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row’s group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

—-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory’;

UPDATE information SET info = ’secret from mallory’ WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice’s does. It blocks waiting for
alice’s transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory’s privilege level and allows her to see the
updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the refer-
enced table (here users) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could
be embedded into a security definer function.) Also, heavy concurrent use of row share locks on the refer-
enced table could pose a performance problem, especially if updates of it are frequent. Another solution,
practical if updates of the referenced table are infrequent, is to take an exclusive lock on the referenced
table when updating it, so that no concurrent transactions could be examining old row values. Or one

75

Chapter 5. Data Definition

could just wait for all concurrent transactions to end after committing an update of the referenced table
and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in
any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:

+ To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

+ Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

76

Chapter 5. Data Definition

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

77

Chapter 5. Data Definition

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

78

Chapter 5. Data Definition

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR (schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won’t suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

79

Chapter 5. Data Definition

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily supported
by the default configuration, only one of which suffices when database users mistrust other database users:

+ Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
If affected users had logged in before this, consider auditing the public schema for objects named like
objects in schema pg_catalog. Recall that the default search path starts with Suser, which resolves
to the user name. Therefore, if each user has a separate schema, they access their own schemas by
default.

« Remove the public schema from each user’s default search path using ALTER ROLE user SET
search_path = "Suser". Everyone retains the ability to create objects in the public schema, but
only qualified names will choose those objects. While qualified table references are fine, calls to
functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the
setting. If you create functions or extensions in the public schema or grant CREATEROLE to users not
warranting this almost-superuser ability, use the first pattern instead.

+ Remove the public schema from search_path in postgresqgl.conf. The ensuing user experience
matches the previous pattern. In addition to that pattern’s implications for functions and CREATEROLE,
this trusts database owners like CREATEROLE. If you create functions or extensions in the public schema
or assign the CREATEROLE privilege, CREATEDB privilege or individual database ownership to users not
warranting almost-superuser access, use the first pattern instead.

« Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world. How-
ever, any user can issue arbitrary queries under the identity of any user not electing to protect itself
individually. This pattern is acceptable only when the database has a single user or a few mutually-
trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user _name.table name. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

80

Chapter 5. Data Definition

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
,,,,,,,,,,, e
Las Vegas | 2174
Mariposa | 1953
Madison | 845

81

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953

Here the onLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing « to explicitly specify that descendant tables are included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the
sql_inheritance configuration option). However writing = might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ o
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude

82

Chapter 5. Data Definition

__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect is to use the regclass pseudo-type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (/Albany’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-null
constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-null
if any one of the column definitions it came from is marked not-null. Check constraints are merged if they
have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this
the new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

83

Chapter 5. Data Definition

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish to
remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE option
(see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also) in
the parent table. But the capitals table could not be updated directly without an additional grant. In a
similar way, the parent table’s row security policies (see Section 5.7) are applied to rows coming from
child tables during an inherited query. A child table’s policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child
tables and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (Reference I, SOL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

» If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

84

Chapter 5. Data Definition

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the vAcUUM overhead caused by a bulk
DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

85

Chapter 5. Data Definition

5.10.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

. Create several “child” tables that each inherit from the master table. Normally, these tables will not

add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables
(or, possibly, foreign tables).

. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

. For each partition, create an index on the key column(s), as well as any other indexes you might want.

(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate

partition.

. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresqgl.conf.

If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table

like:

CREATE TABLE measurement (

)i

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs

86

Chapter 5. Data Definition

to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from the

measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01" AND logdate < DATE ’2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’2007-11-01" AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’2007-12-01" AND logdate < DATE ’2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’2008-02-01'")
) INHERITS (measurement);

4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

87

Chapter 5. Data Definition

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$$

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE "2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’'2008-01-01’ AND
NEW.logdate < DATE ’2008-02-01’) THEN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
ELSE
RAISE EXCEPTION ’'Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger’s tests in the same order as in other parts of
this example.

88

functi

Chapter 5. Data Definition

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

89

Chapter 5. Data Definition

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

90

Chapter 5. Data Definition

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m0l1 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however, the
trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally if
you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of rules
doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set. In practice this method has little to recommend it compared to using inheritance.

91

Chapter 5. Data Definition

5.10.6. Caveats

The following caveats apply to partitioned tables:

 There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each
by hand.

+ The schemes shown here assume that the partition key column(s) of a row never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

« INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child relations.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants using
B-tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don’t try to use many thousands of
partitions.

5.11. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

92

Chapter 5. Data Definition

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 55.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of the remote data. A
foreign table can be used in queries just like a normal table, but a foreign table has no storage in the
PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the
external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, sse CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

« Views

« Functions and operators

+ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it

93

Chapter 5. Data Definition

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In this
case, it doesn’t remove the orders table, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will do,
run DROP without CASCADE and read the DETAIL output.)

Almost all DrROP commands in PostgreSQL support specifying cAscaDpe. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required in a brop
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT OF CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tabl from tab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s
externally-visible properties, such as its argument and result types, but not dependencies that could only
be known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
"SELECT note FROM my_colors WHERE color = $1’/
LANGUAGE SQL;

(See Section 36.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still valid
in some sense if the table is missing, though executing it would cause an error; creating a new table of the
same name would allow the function to work again.

94

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is time
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

95

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = ’"today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information on
improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

96

Chapter 6. Data Manipulation

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use of

97

Chapter 6. Data Manipulation

RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using those
columns. A common shorthand is RETURNING x, which selects all columns of the target table in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’"Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.
In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:
UPDATE products SET price = price * 1.10

WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’today’
RETURNING x;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as mod-
ified by the triggers. Thus, inspecting columns computed by triggers is another common use-case for
RETURNING.

98

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification » means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

99

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FrROM list is an intermediate virtual table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write = after the table name to explicitly specify
that descendant tables are included. Writing « is not necessary since that behavior is the default (unless
you have changed the setting of the sql_inheritance configuration option). However writing = might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have
N and M rows respectively, the joined table will have N * M rows.

100

Chapter 7. Queries

FROM T1 CROSS JOIN T2isequivalentto FROM T1 INNER JOIN T2 ON TRUE (see below). It is
also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JOIN binds more tightly than comma. For example FRoM 71 CROSS JOIN 72 INNER JOIN
T3 ON condition iS not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 11 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
Tl NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and 72 match if the ON expression
evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of

101

Chapter 7. Queries

the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 71 and T2 with USING (a, b) produces the join condition ON Ti.a =
T2.a AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JOIN ON produces all columns
from 71 followed by all columns from T2, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USTNG, these columns appear only once in the output table. If
there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t 1:

m | name
I
1] a

2 | b

3] ¢

t2

m | value
__+ _______
1 | xxx

3 1 yyy

5 | zzz

then we get the following results for the various joins:

=>

SELECT * FROM tl CROSS JOIN t2;

num | name | num | value

+ _______
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xXxx
|
|

YYyy
ZZ7Z

W wWwwNDNNDRE P
Q0 Q 0o o009 o w
O W kR 0 weE o weE

102

Chapter 7. Queries

(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a \ 1 | xxx
3 1 c \ 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 ¢ l yyy
(2 rows)

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ e
1] a | xxx
31 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
1] a | 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT » FROM tl LEFT JOIN t2 USING (num);

num | name | value
,,,,, e
1] a | xxxX
2 |1 b \
3 1 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a \ 1 | xxx
3 1 c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 F————
11 a \ 1 | xxx
2 1 Db \ |
3 1 ¢ \ 3 | yyy

103

Chapter 7. Queries

\ \ 5 | zzz

(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
_____ oy
11 a \ 1 | xxx
2 1 b \ |
3 1 c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

————— et e
11 a \ 1 | xxx

(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a lot
with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table reference AS alias
or

FROM table_reference alias

The s key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id = a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; —— wrong

104

Chapter 7. Queries

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT % FROM my_table AS a CROSS JOIN my_table AS b
SELECT x= FROM (my_table AS a CROSS JOIN my_table) AS Db

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’‘smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

105

Chapter 7. Queries

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the
ordinal column is called ordinality, but a different column name can be assigned to it using an AS
clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,
If no table _alias is specified, the function name is used as the table name; in the case of a ROWS
FROM () construct, the first function’s name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get the
names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS S$$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;
SELECT = FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z

WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT % FROM getfoo(l);

SELECT x FROM vw_getfoo;

106

Chapter 7. Queries

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column _definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the FROM item; the names in the column definitions serve as col-
umn aliases. When using the ROWS FROM () syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause,
a column_definition list can be written in place of a column alias list following ROWS FROM ().

Consider this example:

SELECT «
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what » should expand to.

7.2.1.5. L.ATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function’s arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing the
columns, the LATERAL item is evaluated using that row or row set’s values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set of
rows from the column source table(s).

A trivial example of LATERAL is

SELECT FROM foo, LATERAL (SELECT » FROM bar WHERE bar.id = foo.bar_id) ss;

This is not especially useful since it has exactly the same result as the more conventional

107

Chapter 7. Queries

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the waERE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

108

FROM a,

and:

FROM a INNER JOIN b ON

or perhaps even:

Chapter 7. Queries

b WHERE a.id = b.id AND b.val > 5

(a.id

= b.id) WHERE b.val > 5

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the From clause is probably
not as portable to other SQL database management systems, even though it is in the SQL standard.
For outer joins there is no choice: they must be done in the rFrom clause. The on or UsSING clause
of an outer join is not equivalent to a waeRE condition, because it results in the addition of rows (for
unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

FROM

FROM

FROM

FROM

FROM

FROM

fdt

fdt

fdt

fdt

fdt

fdt

WHERE

WHERE

WHERE

WHERE

WHERE

cl

cl

cl

cl

cl

> 5

IN (1, 2, 3)

IN (SELECT cl FROM t2)

IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

BETWEEN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how £dt is referenced in
the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list

FROM
[WHERE

-1

GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each

109

AND 100

Chapter 7. Queries

set of rows having common values into one group row that represents all rows in the group. This is done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM testl;

(3 rows)

In the second query, we could not have written SELECT = FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in

aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Q

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the p1sTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in

110

Chapter 7. Queries

the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for each
product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) % (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price = s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is a
single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same is
true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

111

Chapter 7. Queries

7.2.4. GROUPING SETS, CUBE, ahd ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FrROM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
,,,,,,, e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand), (size),

brand | size | sum
_______ o
Foo | | 30
Bar | | 20
| L | 15
| M | 35
| [50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for grouping
sets in which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9-55.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),
(el, e2),
(e1),
()

This is commonly used for analysis over hierarchical data; e.g. total salary by department, division, and
company-wide total.

112

0);

Chapter 7. Queries
A clause of the form
CUBE (el, €2, ...)
represents the given list and all of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)
is equivalent to

GROUPING SETS (
a, b, c),

(

(a, b)
(a, c),
(a)y
(b, c),
(b)
(c),
(

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))

is equivalent to

GROUPING SETS (
(a, b, ¢, d

)
(a, b)
(c, d),
()

and
ROLLUP (a, (b, c), d)
is equivalent to
GROUPING SETS (
(a, b, ¢, d

)
(a, b, ¢)
(a),
()

113

Chapter 7. Queries

The cuBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to

GROUP BY GROUPING SETS (
a, b, ¢, d), (a, b, ¢, e),

(

(a, b, d), (a, b, e),
(a, c, d), (a, ¢, e),
(a, d), (a, e)

Note: The construct (a, b) is normally recognized in expressions as a row constructor. Within the
GROUP BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a
list of expressions as described above. If for some reason you need a row constructor in a grouping
expression, Uuse ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the
query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions hav-
ing different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering of
rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered accord-
ing to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not recommended
to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the results are
sorted in a particular way.

114

Chapter 7. Queries

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is « which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM
When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted
for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + c¢c AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

115

Chapter 7. Queries

SELECT a value, b + ¢ AS sum FROM

but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see Section
7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select list is
the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] gquery2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

116

Chapter 7. Queries

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of queryI and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional Asc or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. '

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for
asc and DEscC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

117

Chapter 7. Queries

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y
DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + cCj; —— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

118

Chapter 7. Queries

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’'one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list, like this:

=> SELECT % FROM (VALUES (1, ’'one’), (2, 'two’), (3, "three’)) AS t (num,letter);
num | letter

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

119

Chapter 7. Queries

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example
is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used
in top_regions and the output of top_regions is used in the primary SELECT query. This example
could have been written without WITH, but we’d have needed two levels of nested sub-SELECTS. It’s a bit
easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

120

Chapter 7. Queries

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query’s own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recur-
sive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSTVE is the terminology cho-
sen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often

121

Chapter 7. Queries

a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT % FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path
and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT x FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY(path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT x FROM search_graph;

122

Chapter 7. Queries

Tip: Omit the row () syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query orbpER BY a “path” column
constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won’t work if you make the outer query sort the recursive
query’s results or join them to some other table, because in such cases the outer query will usually try to
fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary subquery. The WITH query will generally be evaluated as
written, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to per-
form several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND

123

Chapter 7. Queries

"date" < ’2010-11-01"
RETURNING =*

)
INSERT INTO products_log
SELECT x» FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH clauses
that are attached to the top-level statement. However, normal wITH visibility rules apply, so it is possible
to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. Therefore,
when using data-modifying statements in WITH, the order in which the specified updates actually happen
is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” one another’s effects on the target tables. This alleviates the effects of the unpredictability of the

124

Chapter 7. Queries

actual order of row updates, and means that RETURNING data is the only way to communicate changes

between different WITH sub-statements and the main query. An example of this is that in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =

)
SELECT x FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price » 1.05
RETURNING =

)
SELECT » FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing WITH sub-statements that could affect the same rows changed by the main statement or a sibling

sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional

rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

125

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$ double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p) time span

]

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

126

Chapter 8. Data Types

time zone

Name Aliases Description

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte
integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

Zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,

127

and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Chapter 8. Data Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807
decimal variable user-specified precision, |up to 131072 digits
exact before the decimal
point; up to 16383 digits
after the decimal point
numeric variable user-specified precision, |up to 131072 digits
exact before the decimal
point; up to 16383 digits
after the decimal point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

128

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numeric
values yield exact results where possible, e.g. addition, subtraction, multiplication. However, calculations
on numeric values are very slow compared to the integer types, or to the floating-point types described
in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits in the
whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric is
the count of decimal digits in the fractional part, to the right of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

129

Chapter 8. Data Types

Note: In most implementations of the “not-a-number” concept, nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x::numeric) AS num_round,
round (x: :double precision) AS dbl_round

FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
______ T
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1 | 0
1.5 | 2 | 2
2.5 | 3 | 2
3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

«+ If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality might not always work as expected.

130

Chapter 8. Data Types

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of o, the output is the same
on every platform supported by PostgreSQL. Increasing it will produce output that more accurately
represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

ELINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity’. On input, these strings are
recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, PostgreSQL
treats Nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

Note: The assumption that real and double precision have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms it
might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational con-
venience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

CREATE TABLE tablename (

131

Chapter 8. Data Types

colname SERIAL
)i

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval ('’ tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there may
be "holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 2°' identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The fractional
precision is determined by the database’s lc_monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as $1,000.00’. Output is generally in the
latter form but depends on the locale.

Table 8-3. Monetary Types

Name ‘ Storage Size Description Range

132

Chapter 8. Data Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real
and double precision data types can be done by casting to numeric first, for example:

SELECT "12.34’ ::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money: :numeric::float8§;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a
money value is divided by another money value, the result is double precision (i.e., a pure number,
not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store

133

Chapter 8. Data Types

the shorter string.

If one explicitly casts a value to character varying (n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type character. In collations where whitespace is significant,
this behavior can produce unexpected results; for example SELECT ‘a ’::CHAR(2) collate "C" <
E’a\n’ : :CHAR (2) returns true, even though C locale would consider a space to be greater than a new-
line. Trailing spaces are removed when converting a character value to one of the other string types.
Note that trailing spaces are semantically significant in character varyingand text values, and when
using pattern matching, that is LIKE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn’t be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 23.3.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);

SELECT a, char_length(a) FROM testl; —-- ©
a | char_length

______ e

ok | 2

134

Chapter 8. Data Types

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’'too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); —-- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database’s
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for

135

Chapter 8. Data Types

storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL’s historical “es-
cape” format. Both of these are always accepted on input. The output format depends on the configuration
parameter bytea_output; the default is hex. (Note that the hex format was introduced in PostgreSQL 9.0;
earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the
hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit pairs (but
not within a digit pair nor in the starting \ x sequence). The hex format is compatible with a wide range of
external applications and protocols, and it tends to be faster to convert than the escape format, so its use
is preferred.

Example:

SELECT ’ \xDEADBEEF’;

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practice it is usually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and precede it
by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by double back-
slashes. Table 8-7 shows the characters that must be escaped, and gives the alternative escape sequences
where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Hex
Value Representation Representation
0 zero octet ’\000"’ SELECT \x00

"\000' : :bytea;

136

Chapter 8. Data Types

Decimal Octet | Description Escaped Input | Example Hex

Value Representation Representation

39 single quote 7ror ' \047’ SELECT \x27
""ibytea;

92 backslash "\\’ or "\134’ SELECT \x5¢
"\\’ ::bytea;

0to31 and 127 to | “non-printable” "\xxx’ (octal SELECT \x01

255 octets value) ’\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8-7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just one
single quote, which it treats as a plain data character. However, the bytea input function treats backslashes
as special, and the other behaviors shown in Table 8-7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most “print-

able” octets are output by their standard representation in the client character set, e.g.:
SET bytea_output = ’'escape’;

SELECT "abc \153\154\155 \052\251\124’ : :bytea;
bytea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

255

octets

\001’ : :bytea;

Decimal Octet | Description Escaped Output | Example Output Result
Value Representation
92 backslash A\ SELECT \\
"\134' ::bytea;
0to 31 and 127 to | “non-printable” \xxx (octal value) |SELECT \001

32to 126

“printable” octets

client character set

SELECT

representation '\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

137

Chapter 8. Data Types

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.5 for more information).

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
(p) 1 [time (no time 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and |4713 BC 294276 AD 1 microsecond /
(p) 1 with time, with time 14 digits
time zone zone
date 4 bytes date (no time of | 4713 BC 5874897 AD 1 day

day)
time [(p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond /
] [without date) 14 digits
time zone]
time [(p) 12 bytes times of day 00:00:00+1459 |24:00:00-1459 |1 microsecond /
] with time only, with time 14 digits
zone zone
interval [16 bytes time interval -178000000 178000000 1 microsecond /
fields] [years years 14 digits
(p) 1

Note: The SQL standard requires that writing just t imestamp be equivalent to timestamp without
time zone, and PostgreSQL honors that behavior. t imestamptz is accepted as an abbreviation for
timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When t imestamp values are stored as double preci-
sion floating-point numbers instead (a deprecated compile-time option), the effective limit of precision
might be less than 6. timestamp values are stored as seconds before or after midnight 2000-01-
01. When timestamp values are implemented using floating-point numbers, microsecond precision is
achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away.
Note that using floating-point datetimes allows a larger range of t imestamp values to be represented
than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large interval values de-

138

Chapter 8. Data Types

grade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abst ime and relt ime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 ’"value’

139

Chapter 8. Data Types
where p is an optional precision specification giving the number of fractional digits in the seconds field.

Precision can be specified for t ime, t imestamp, and interval types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description
1999-01-08 ISO 8601; January 8 in any mode (recommended
format)
January 8, 1999 unambiguous in any datestyle input mode
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
pMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC
8.5.1.2. Times
The time-of-day types are time [(p)] without time zone and time [(p)] with time

zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset
is recorded in the time with time zone value.

Table 8-11. Time Input

140

Chapter 8. Data Types

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8

ISO 8601

04:05:06-08:00 ISO 8601
04:05-08:00 ISO 8601
040506-08 ISO 8601

04:05:06 PST

time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York

time zone specified by full name

Table 8-12. Time Zone Input

Example

Description

PST

Abbreviation (for Pacific Standard Time)

America/New_York

Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

Z

Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time

zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

141

Chapter 8. Data Types

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according
to the standard,

TIMESTAMP '2004-10-19 10:23:54’

isatimestamp without time zone, while

TIMESTAMP ’2004-10-19 10:23:54+02’

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s TimeZone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and —infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon as
they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

142

Chapter 8. Data Types

Input String Valid Types Description

—infinity date, timestamp earlier than all other time stamps
now date, time, timestamp current transaction’s start time
today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LocALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8-14 shows examples of each output style. The output of the date and time types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

150 ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Postgres original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00
PST

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than 1, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows examples.

Table 8-15. Date Order Conventions

143

Chapter 8. Data Types

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00
CET

SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00
PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle pa-
rameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
IANA (Olson) time zone database for information about historical time zone rules. For times in the future,
the assumption is that the latest known rules for a given time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 50.80). PostgreSQL uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

144

Chapter 8. Data Types

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 50.79). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset
is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT were not already a
recognized zone name, it would be accepted and would be functionally equivalent to United States East
Coast time. In this syntax, a zone abbreviation can be a string of letters, or an arbitrary string surrounded
by angle brackets (<>). When a daylight-savings zone abbreviation is present, it is assumed to be
used according to the same daylight-savings transition rules used in the IANA time zone database’s
posixrules entry. In a standard PostgreSQL installation, posixrules is the same as US/Eastern,
so that POSIX-style time zone specifications follow USA daylight-savings rules. If needed, you can
adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific off-
set from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have two
possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Stan-
dard Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC+4
in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most re-
cently meant) on the specified date; but, as with the EST example above, this is not necessarily the same
as local civil time on that date.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE TO
FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC. Another
issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations west of
Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive timezone offsets
are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from config-
uration files stored under . . ./share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresqgl.conf, or in any of the other
standard ways described in Chapter 19. There are also some special ways to set it:

+ The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

145

Chapter 8. Data Types

« The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit iS microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals
of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the
different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For exam-
ple,”1 12:59:10" isread the same as ' 1 day 12 hours 59 min 10 sec’. Also, a combination of
years and months can be specified with a dash; for example ' 200-10" is read the same as ' 200 years
10 months’. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when Intervalstyleis setto sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is
before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

»lz[=[ol=]=]<

Seconds

In the alternative format:

P [years—months—days] [T hours:minutes:seconds]

146

Chapter 8. Data Types

the string must begin with P, and a T separates the date and time parts of the interval. The values are given
as numbers similar to ISO 8601 dates.

When writing an interval constant with a £ields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL ‘1’ YEAR isread as 1 year, whereas INTERVAL ‘1’ means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL ’1 day 2:03:04’ HOUR TO MINUTE results
in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative
sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04" applies to both
the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and tradition-
ally treats each field in the textual representation as independently signed, so that the hour/minute/second
part is considered positive in this example. If IntervalStyle is set to sgl_standard then a leading
sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional
PostgreSQL interpretation is used. To avoid ambiguity, it’s recommended to attach an explicit sign to each
field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example * 1.5 week’ or*01:02:03.45’. Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of months
or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and
1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days. Only seconds will ever be
shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and seconds. This is done because the number of
days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is involved.
The months and days fields are integers while the seconds field can store fractions. Because intervals are
usually created from constant strings or t imestamp subtraction, this storage method works well in most
cases, but can cause unexpected results:

SELECT EXTRACT (hours from ’80 minutes’::interval);
date_part

147

Chapter 8. Data Types

SELECT EXTRACT (days from ’80 hours’::interval);
date_part

Functions justify_days and justify_hours are available for adjusting days and hours that overflow
their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for interval
literal strings, if the interval value meets the standard’s restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to IS0.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification | Year-Month Interval |Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06
postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06
postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins | @ 1 year 2 mons -3
6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-
6S

148

8.6. Boolean Type

Chapter 8. Data Types

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8-19. Boolean Data Type

Name

Storage Size

Description

boolean

1 byte

state of true or false

Valid literal values for the “true” state are:

TRUE
Itl
"true’
ny
,yeS,
’OH’
Il!

For the “false” state, the following values can be used:

FALSE
Ifl
"false’
Inf
’HO’
"off’
IOV

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE are
the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.

Example 8-2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES
INSERT INTO testl VALUES
SELECT * FROM testl;

a | b

t | sic est

(TRUE, ’sic est’);
(FALSE, ’'non est’);

149

Chapter 8. Data Types

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enum types supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, 'ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)
INSERT INTO person VALUES (’Moe’, ’"happy’);
SELECT % FROM person WHERE current_mood = "happy’;

name | current_mood
______ o
Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums. For
example:

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT = FROM person WHERE current_mood > ’'sad’;

name | current_mood
,,,,,,, .
Moe | happy

Curly | ok

(2 rows)

SELECT x FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;

name | current_mood
,,,,,,, .
Curly | ok

Moe | happy

(2 rows)

150

SELECT name
FROM person
WHERE current_mood = (SELECT MIN (current_mood) FROM person);

name

8.7.3.

Type Safety

Chapter 8. Data Types

Each enumerated data type is separate and cannot be compared with other enumerated types. See this

example:

CREATE
CREATE

TYPE happiness AS ENUM (’happy’, ’very happy’

TABLE holidays (

num_weeks integer,
happiness happiness

)i

INSERT
INSERT
INSERT
INSERT
ERROR:

SELECT person.name,

WHERE
ERROR:

INTO holidays (num_weeks, happiness)
INTO holidays (num_weeks, happiness)
INTO holidays (num_weeks, happiness)
INTO holidays (num_weeks, happiness)

VALUES
VALUES
VALUES
VALUES

invalid input value for enum happiness:

person.current_mood = holidays.happiness;
operator does not exist: mood = happiness

(4,
(6,
(8,
(2,

14

"sad"

holidays.num_weeks FROM person,

"ecstatic’);

"happy’);
"very happy’);
"ecstatic’);
"sad’);

holidays

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

______ B,

Moe | 4

(1 row)

8.7.4.

Implementation Details

Enum labels are case sensitive, so ' happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be

151

Chapter 8. Data Types

removed from an enum type, nor can the sort ordering of such values be changed, short of dropping and
re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL.

Table 8-20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,y1),...)
polygon)

path 16+16n bytes Open path [(xL,yl),...]

polygon 40+16n bytes Polygon (similar to (x1,yD),...)
closed path)

circle 24 bytes Circle <(X,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using either of the following syntaxes:

(x, v)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

152

Chapter 8. Data Types

8.8.2. Lines

Lines are represented by the linear equation Ax + By + ¢ = 0, where A and B are not both zero. Values of
type 1ine are input and output in the following form:

{4 B, C}
Alternatively, any of the following forms can be used for input:

[(x1, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seg are specified using any of the following syntaxes:

[(x1, yI) , (x2, y2)]
((x1, y1), (x2, y2))
(x1, y1) , (%2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1, y1) , (%2, y2)
x1 , yl , x2 , y2

where (x1, y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are considered not connected, or closed, where the first and last points are considered connected.

153

Chapter 8. Data Types

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn) 1]
((xt, y1), ... , (xn, yn))
(x1 , y1) , .. , (xn , yn)
(x1 , vyl ;oee e g xn , yn)
x1 , yl ;o ee e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1) indicate
an open path, while parentheses (()) indicate a closed path. When the outermost parentheses are omitted,
as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, vi) , «o. , (xn , yn))
(x1, y1) , .. , (xn , yn)
(x1 , yl ;e xn , yn)
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of the
following syntaxes:

>
)

< (x, vy r
((x, v),r
(x, v) , r
X,y r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

154

Chapter 8. Data Types

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, [IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”™). If the
netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In
IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to
accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

155

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:418:3:ba::/64 2001:418:3:ba::/64

2001:418:3:ba:2e0:811f:fe22:d1f1//12801:418:3:ba:2e0:811f:fe22:d1{1/12801:418:3:ba:2e0:811f:fe22:d1f1

:offff:1.2.3.0/120 =ffff:1.2.3.0/120 =ffff:1.2.3/120
ffff:1.2.3.0/128 =ffff:1.2.3.0/128 =ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
70800.2b01.0203"
70800-2b01-0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-
03 =01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for obsolete
network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal, and all accepted
formats use the canonical LSB order.

156

Chapter 8. Data Types

The remaining five input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where nis a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit
varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, I
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the t squery type simi-
larly represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

157

Chapter 8. Data Types

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT ’"a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

"a’ "and’ 'ate’ ’cat’ ’fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ! contains spaces$$::tsvector;
tsvector
! ' ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT Sthe lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ "a’ ’"contains’ ’lexeme’ ’‘quote’ ’the’
Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 ’cat’:3 ’'fat’:2,11 'mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be a, B, C, or D. D is the
default and hence is not shown on output:

SELECT ’"a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the t svector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT ’'The Fat Rats’ ::tsvector;
tsvector

158

Chapter 8. Data Types

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn’t care. Raw document text should usually be passed through to_t svector to normalize
the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <n> of the FOLLOWED BY operator, where n is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the
least tightly.

Here are some examples:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT ’fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

Optionally, lexemes in a t squery can be labeled with one or more weight letters, which restricts them to
match only tsvector lexemes with one of those weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

159

Chapter 8. Data Types

Also, lexemes in a t squery can be labeled with to specify prefix matching:

SELECT ’super:«’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

Note that t o_t squery will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector(’'postgraduate’) @@ to_tsquery(’'postgres:x’);
?column?

because postgres gets stemmed to postgr:

SELECT to_tsvector(’'postgraduate’), to_tsquery(’'postgres:x’);
to_tsvector | to_tsquery

,,,,,,,,,,,,,,, b

"postgradu’ :1 | ’'postgr’ :x

which will match the stemmed form of postgraduate.

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%d380all

160

Chapter 8. Data Types

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four digits.
Examples are:

AOEEBC99-9CO0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
aleebc999c0b4ef8bb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{aleebc99-9c0bd4ef8-bbodobb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not include
any function for generating UUIDs, because no single algorithm is well suited for every application. The
uuid-ossp module provides functions that implement several standard algorithms. The pgcrypto module
also provides a generation function for random UUIDs. Alternatively, UUIDs could be generated by client
applications or other libraries invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text field is
that it checks the input values for well-formedness, and there are support functions to perform type-safe
operations on it; see Section 9.14. Use of this data type requires the installation to have been built with

configure —--with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by the production XMLDecl1? content in the XML standard. Roughly, this
means that content fragments can have more than one top-level element or character node. The expression
xmlvalue IS DOCUMENT can be used to evaluate whether a particular xm1 value is a full document or
only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter><
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
'<foo>bar</foo>’ ::xml

can also be used.

161

Chapter 8. Data Types

The xm1 type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

typecanbe character, character varying, or text (or an alias for one of those). Again, according
to the SQL standard, this is the only way to convert between type xm1 and character types, but PostgreSQL
also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does not
accept them. If you need to do that, either use xuMLPARSE or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 23.3. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while traveling between client and server, because the embedded encoding declaration is
not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xm1 type are ignored, and content is assumed to be in the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xm1 will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in the
XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required by the
XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an encoding

162

Chapter 8. Data Types

declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it will be
omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server
encoding is not UTF-8. This is known to be an issue for xpath () in particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because there
is no well-defined and universally useful comparison algorithm for XML data. One consequence of this
is that you cannot retrieve rows by comparing an xm1 column against a search value. XML values should
therefore typically be accompanied by a separate key field such as an ID. An alternative solution for com-
paring XML values is to convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159'. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each stored
value is valid according to the JSON rules. There are also assorted JSON-specific functions and operators
available for data stored in these data types; see Section 9.15.

There are two JSON data types: json and jsonb. They accept almost identical sets of values as input. The
major practical difference is one of efficiency. The json data type stores an exact copy of the input text,
which processing functions must reparse on each execution; while jsonb data is stored in a decomposed
binary format that makes it slightly slower to input due to added conversion overhead, but significantly
faster to process, since no reparsing is needed. jsonb also supports indexing, which can be a significant
advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing

1. https://tools.ietf.org/html/rfc7159

163

Chapter 8. Data Types

functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are
specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite specialized
needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the JSON
types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts to
directly include characters that cannot be represented in the database encoding will fail; conversely, char-
acters that can be represented in the database encoding but not in UTFS8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uxxxx. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input func-
tion for jsonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above U+007F)
unless the database encoding is UTF8. The jsonb type also rejects \u0000 (because that cannot be rep-
resented in PostgreSQL’s text type), and it insists that any use of Unicode surrogate pairs to designate
characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted
to the equivalent ASCII or UTFS character for storage; this includes folding surrogate pairs into a single
character.

Note: Many of the JSON processing functions described in Section 9.15 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even if their input
is of type json not jsonb. The fact that the json input function does not make these checks may be
considered a historical artifact, although it does allow for simple storage (without processing) of JSON
Unicode escapes in a non-UTF8 database encoding. In general, it is best to avoid mixing Unicode
escapes in JSON with a non-UTF8 database encoding, if possible.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native PostgreSQL types, as shown in Table 8-23. Therefore, there are some minor
additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor to
JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the PostgreSQL numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, as it is common to represent
JSON’s number primitive type as IEEE 754 double precision floating point (which RFC 7159 explicitly
anticipates and allows for). When using JSON as an interchange format with such systems, the danger of
losing numeric precision compared to data originally stored by PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding PostgreSQL types.

Table 8-23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string text \u0000 is disallowed, as are
non-ASCII Unicode escapes if
database encoding is not UTF8

164

Chapter 8. Data Types

JSON primitive type PostgreSQL type Notes

number numeric NaN and infinity values are
disallowed

boolean boolean Only lowercase true and false
spellings are accepted

null (none) SQL nuLL is a different concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

-— Simple scalar/primitive value
—-— Primitive wvalues can be numbers, quoted strings, true, false, or null
SELECT ’5’::json;

—-— Array of zero or more elements (elements need not be of same type)
SELECT " [1, 2, "foo", null]’::json;

—-— Object containing pairs of keys and values
—-— Note that object keys must always be quoted strings
SELECT ' {"bar": "baz", "balance": 7.77, "active": false}’::json;

—-— Arrays and objects can be nested arbitrarily
SELECT " {"foo": [true, "bar"], "tags": {"a": 1, "b": null}}’::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row)
SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::jsonb;
jsonb
{"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according to
the behavior of the underlying numeric type. In practice this means that numbers entered with E notation
will be printed without it, for example:

SELECT ' {"reading": 1.230e-5}'"::json, ’'{"reading": 1.230e-5}’::jsonb;
json | jsonb

165

Chapter 8. Data Types

_______________________ +_________________________
{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications where
maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed struc-
ture. The structure is typically unenforced (though enforcing some business rules declaratively is possi-
ble), but having a predictable structure makes it easier to write queries that usefully summarize a set of
“documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documents to a manageable size in order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic
datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

8.14.3. jsonb Containment and Existence

Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

—-— Simple scalar/primitive values contain only the identical value:
SELECT ' "foo"’::jsonb @> ’""foo"’::jsonb;

—— The array on the right side is contained within the one on the left:
SELECT ' [1, 2, 3]’::jsonb @> ’'[1, 3]’::jsonb;

—— Order of array elements is not significant, so this is also true:
SELECT " [1, 2, 3]'::jsonb @> " [3, 1]’::]jsonb;

—— Duplicate array elements don’t matter either:
SELECT " [1, 2, 3]’::jsonb @> "[1, 2, 2]'::]jsonb;

—— The object with a single pair on the right side is contained
-— within the object on the left side:
SELECT ' {"product": "PostgreSQL", "version": 9.4, "jsonb": true}’::jsonb @> ' {"version": 9.

—— The array on the right side is not considered contained within the

—-— array on the left, even though a similar array is nested within it:
SELECT ' [1, 2, [1, 3]]1’::jsonb @> ’[1, 3]’::jsonb; -— yields false

166

Chapter 8. Data Types

—-— But with a layer of nesting, it is contained:
SELECT " [1, 2, [1, 3]1’::jsonb @> ’"[[1, 3]]’::jsonb;

-— Similarly, containment is not reported here:
SELECT " {"foo": {"bar": "baz"}}’::jsonb @> ’{"bar": "baz"}’::jsonb; -— yields false

—-— A top-level key and an empty object is contained:
SELECT ' {"foo": {"bar": "baz"}}’::Jsonb @> ’"{"foo": {}}’'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs from
the containing object. But remember that the order of array elements is not significant when doing a
containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain a
primitive value:

—-— This array contains the primitive string value:
SELECT ' ["foo", "bar"]’::jsonb @> ’"bar"’::jsonb;

—— This exception is not reciprocal —-- non-containment is reported here:
SELECT ’"bar"’::jsonb @> ' ["bar"]’::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

—-— String exists as array element:
SELECT ' ["foo", "bar", "baz"]’::jsonb ? ’'bar’;

—-— String exists as object key:
SELECT " {"foo": "bar"}’::jsonb ? ’"foo’;

—— Object values are not considered:
SELECT ' {"foo": "bar"}’::jsonb ? ’'bar’; -— yields false

—-— As with containment, existence must match at the top level:
SELECT " {"foo": {"bar": "baz"}}’::jsonb ? ’'bar’; -- yields false

-— A string is considered to exist if it matches a primitive JSON string:
SELECT ""foo"’::jsonb ? ’foo’;

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need
to be searched linearly.

Tip: Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level, with
most objects containing tags fields that contain arrays of sub-objects. This query finds entries in
which sub-objects containing both "term": "paris" and "term":"food" appear, while ignoring any
such keys outside the tags array:

167

Chapter 8. Data Types

SELECT doc—->'site_name’ FROM websites
WHERE doc @> ' {"tags":[{"term":"paris"}, {"term":"food"}]}’;

One could accomplish the same thing with, say,

SELECT doc—>'site_name’ FROM websites
WHERE doc->’tags’ @> ' [{"term":"paris"}, {"term":"food"}]’;

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified key or
array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions are
documented in Section 9.15.

8.14.4. jsonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators 2, 2& and ? |
operators and path/value-exists operator @ >. (For details of the semantics that these operators implement,
see Table 9-43.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An ex-
ample of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl-7fb5-4d5b-83b4-90356a46061a",
"name": "Angela Barton",
"is_active": true,
"company": "Magnafone",
"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08:00",
"latitude": 19.793713,
"longitude": 86.513373,
"tags": [
"enim",
"aliquip",
n qui n

168

Chapter 8. Data Types

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is
created on this column, queries like the following can make use of the index:

—-— Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->’'guid’, jdoc—->’name’ FROM api WHERE jdoc @> ' {"company": "Magnafone"}’;

However, the index could not be used for queries like the following, because though the operator 2 is
indexable, it is not applied directly to the indexed column jdoc:

—-— Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->’'guid’, jdoc->’name’ FROM api WHERE jdoc -> ’'tags’ ? ’'qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for partic-
ular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> ’tags’));

Now, the WHERE clause jdoc -> ’tags’ 2 ’qui’ will be recognized as an application of the index-
able operator 2 to the indexed expression jdoc -> ’tags’. (More information on expression indexes
can be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

—-— Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->’guid’, jdoc—>’name’ FROM api WHERE jdoc @> ' {"tags": ["qui"]l}’;

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since it
supports queries about any key), targeted expression indexes are likely to be smaller and faster to search
than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has notable
performance advantages over the default operator class jsonb_ops. A jsonb_path_ops index is usu-
ally much smaller than a jsonb_ops index over the same data, and the specificity of searches is better,
particularly when queries contain keys that appear frequently in the data. Therefore search operations
typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. > Basically, each jsonb_path_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would
be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query
looking for this structure would result in an extremely specific index search; but there is no way at all to
find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three index
items representing foo, bar, and baz separately; then to do the containment query, it would look for rows
containing all three of these items. While GIN indexes can perform such an AND search fairly efficiently,

2. For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements
distinct from values within objects.

169

Chapter 8. Data Types

it will still be less specific and slower than the equivalent jsonb_path_ops search, especially if there
are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}. If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited
for applications that often perform such searches.

jsonb also supports bt ree and hash indexes. These are usually useful only if it’s important to check
equality of complete JSON documents. The bt ree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements
Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before
longer keys, this can lead to results that might be unintuitive, such as:

{ "aall: 1, "C": 1} > {llbll: l, 'ldll: 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, element-2

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
data type. Strings are compared using the default database collation.

8.15. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of domains
are not yet supported.

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer|[],
schedule text[][]
)i

170

Chapter 8. Data Types

As shown, an array data type is named by appending square brackets ([]) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer([3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it does
not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of an
array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

171

Chapter 8. Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT % FROM sal_emp;

name | pay_by_quarter | schedule

,,,,,,, T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error, for
example:

INSERT INTO sal_emp
VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’"lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

172

Chapter 8. Data Types

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with array[1] and ends with
array([n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing Iower-bound: upper—bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified. For
example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

173

Chapter 8. Data Types

It is possible to omit the 1ower-bound and/or upper-bound of a slice specifier; the missing bound is
replaced by the lower or upper limit of the array’s subscripts. For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{lunch}, {presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3] [1:2] then referencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

174

Chapter 8. Data Types

array_length

(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = ’‘Carol’;

cardinality

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

The slice syntaxes with omitted Iower—-bound and/or upper-bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6]1;
myarray [5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

175

Chapter 8. Data Types

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,103,41]1;
?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result is
an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1l || "[0:1]={2,3}" ::int([]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,4]1]1 || ARRAY[[5,6],17,81,109,011);
array_dims

[1:5][1:2]
(1 row)

176

Chapter 8. Data Types

When an N-dimensional array is pushed onto the beginning or end of an nN+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the n+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,61]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these functions.
However, because the concatenation operator is overloaded to serve all three cases, there are situations
where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || {3, 4}'; —-— the untyped literal is taken as an array
?column?

177

Chapter 8. Data Types
{1,2,3,4}

SELECT ARRAY([1, 2] || "7"; -— so 1s this one
ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; —— so 1s an undecorated NULL
?column?
{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —-— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and a
constant of undetermined type on the other. The heuristic it uses to resolve the constant’s type is to assume
it’s of the same type as the operator’s other input — in this case, integer array. So the concatenation
operator is presumed to represent array_cat, not array_append. When that’s the wrong choice, it
could be fixed by casting the constant to the array’s element type; but explicit use of array_append
might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know the
size of the array. For example:

[1] = 10000 OR
pay_by_qgquarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_qgquarter[4] = 10000;

SELECT x FROM sal_emp WHERE pay_by_quarter

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT x FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_dquarter,
generate_subscripts (pay_by_gquarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_dquarter([s] = 10000;

178

Chapter 8. Data Types

This function is described in Table 9-58.

You can also search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT x FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an appropriate
index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions
functions. The former returns the subscript of the first occurrence of a value in an array; the latter returns
an array with the subscripts of all occurrences of the value in the array. For example:

SELECT array_position (ARRAY[’'sun’,’mon’,’tue’,’wed’,’thu’,’ fri’,’ sat’], ’'mon’);
array_positions

SELECT array_positions (ARRAY[1, 4, 3, 1, 3, 4, 2, 11, 1);
array_positions

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array’s element type. Among the standard data types provided in the
PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a multidi-
mensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([1) around each array dimension’s lower and upper bounds,

179

Chapter 8. Data Types

with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:51={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or the data type’s delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to protect all
data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip: The arraY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values are
written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (

180

Chapter 8. Data Types

=

double precision,
i double precision

)

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a different kind of CREATE TYPE command is meant, and you will get odd syntax
errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)

INSERT INTO on_hand VALUES (ROW (’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS 'SELECT $1l.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas

181

Chapter 8. Data Types

or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
r ("ll,42,) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary to tell which type to convert the constant to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can be simplified to:

(" fuzzy dice’, 42, 1.99)
(", 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;

182

Chapter 8. Data Types

or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name « means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.
We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after ST, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don’t know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table’s current row. For example, if we had a table inventory_item as shown above, we
could write:

183

Chapter 8. Data Types
SELECT c¢ FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example works
only because there is no column named c in the query’s tables.

The ordinary qualified-column-name syntax table name.column_name can be understood as applying
field selection to the composite value of the table’s current row. (For efficiency reasons, it’s not actually
implemented that way.)

When we write
SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
____________ I T
fuzzy dice | 42 | 1.99
(1 row)

as if the query were
SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . » is applied to whenever it’s not a simple
table name. For example, if myfunc () is a function returning a composite type with columns a, b, and c,
then these two queries have the same result:

SELECT (myfunc(x)).x FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip: PostgreSQL handles column expansion by actually transforming the first form into the second.
So, in this example, myfunc () would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT (m).x FROM (SELECT myfunc(x) AS m FROM some_table OFFSET 0) ss;

The orrseT 0 clause keeps the optimizer from “flattening” the sub-select to arrive at the form with
multiple calls of my func ().

The composite_value.* syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause, or a row

184

Chapter 8. Data Types

constructor. In all other contexts (including when nested inside one of those constructs), attaching . » to a
composite value does not change the value, since it means “all columns” and so the same composite value
is produced again. For example, if somefunc () accepts a composite-valued argument, these queries are
the same:

SELECT somefunc(c.x) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item cj;

In both cases, the current row of inventory_itemis passed to the function as a single composite-valued
argument. Even though . « does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider c in c. » to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . «, it is not clear whether c
means a table name or a column name, and in fact the column-name interpretation will be preferred if
there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c¢ ORDER BY c;
SELECT x= FROM inventory_item c ORDER BY c.=x;
SELECT x= FROM inventory_item c ORDER BY ROW(c.x);

All of these ORDER BY clauses specify the row’s composite value, resulting in sorting the rows according
to the rules described in Section 9.23.6. However, if inventory_item contained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT x= FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT = FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word Row omitted.)

Another special syntactical behavior associated with composite values is that we can use functional no-
tation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c¢ WHERE c.price > 1000;
SELECT name (c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.x) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn’t
need to be directly aware that somefunc isn’t a real column of the table.

Tip: Because of this behavior, it's unwise to give a function that takes a single composite-type ar-
gument the same name as any of the fields of that composite type. If there is ambiguity, the field-

185

Chapter 8. Data Types

name interpretation will be preferred, so that such a function could not be called without tricks.
One way to force the function interpretation is to schema-qualify the function name, that is, write

schema. func (compositevalue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

I(42)/

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in a
composite value, you'd need to write:

INSERT ... VALUES (/ ("\"\\")’");

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need to
double backslashes.

186

Chapter 8. Data Types

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In row, individual field values are written the same way
they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range’s sub-
type). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and t imestamp
is the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for schedul-
ing purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so
forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

+ int4range — Range of integer

+ int8range — Range of bigint

« numrange — Range of numeric

+ tsrange — Range of timestamp without time zone
+ tstzrange — Range of timestamp with time zone
« daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, "[2010-01-01 14:30, 2010-01-01 15:30)");

—-— Containment
SELECT int4range (10, 20) @> 3;

—-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

187

Chapter 8. Data Types

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—-— Compute the intersection
SELECT int4range (10, 20) % int4range (15, 25);

—-— Is the range empty?
SELECT isempty (numrange(l, 5));

See Table 9-49 and Table 9-50 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by ““[” while an exclusive lower bound
is represented by ““ (. Likewise, an inclusive upper bound is represented by “1”, while an exclusive upper
bound is represented by “) . (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are included
in the range. Likewise, if the upper bound of the range is omitted, then all points greater than the lower
bound are included in the range. If both lower and upper bounds are omitted, all values of the element
type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range’s element type, and
can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you try to
write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing as
[today,).But [today, infinity] means something different from [today, infinity) — the latter
excludes the special t imestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respec-
tively.

188

Chapter 8. Data Types

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(Iower-bound, upper-bound)
(Iower-bound, upper—bound]
[Iower-bound, upper-bound)
[Iower-bound, upper—bound]

empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range that
contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper—-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would oth-
erwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "", since
writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note: These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

—-— includes 3, does not include 7, and does include all points in between
SELECT ' [3,7)’ ::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)'" ::int4range;

—— includes only the single point 4
SELECT ' [4,4]’ ::int4range;

—— includes no points (and will be normalized to ’'empty’)
SELECT ' [4,4)’ ::int4range;

189

Chapter 8. Data Types

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
“11”. For example:

third argument must be one of the strings “ (), “ (17, “[)”, or
—— The full form is: lower bound, upper bound, and text argument indicating
-— inclusivity/exclusivity of bounds.

SELECT numrange (1.0, 14.0, " (]1');

—-— If the third argument is omitted, ’'[)’ is assumed.
SELECT numrange (1.0, 14.0);

—— Although ' (]’ is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range (1, 14, ' (1');

—— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it’s always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated
as discrete, it’s better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range’s bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the
element type. The canonicalization function is charged with converting equivalent values of the range type
to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonical-
ization function is not specified, then ranges with different formatting will always be treated as unequal,
even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other con-
ventions, however.

190

Chapter 8. Data Types

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over subtypes
not provided among the built-in range types. For example, to define a new range type of subtype £loat8:

CREATE TYPE floatrange AS RANGE (
subtype = floats,
subtype_diff = float8mi

)i

SELECT " [1.234, 5.678]’::floatrange;

Because f1oat8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output for
two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8),
must be identical. It doesn’t matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over t imestamp could be defined to have a step size of an hour, in
which case the canonicalization function would need to round off bounds that weren’t a multiple of an
hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subtype_di ff, function. (The index will still work without subtype_diff, butitis likely
to be considerably less efficient than if a difference function is provided.) The subtype difference function
takes two input values of the subtype, and returns their difference (i.e., X minus v) represented as a f1loat$
value. In our example above, the function float8mi that underlies the regular f1oat8 minus operator
can be used; but for any other subtype, some type conversion would be necessary. Some creative thought
about how to represent differences as numbers might be needed, too. To the greatest extent possible,
the subtype_diff function should agree with the sort ordering implied by the selected operator class
and collation; that is, its result should be positive whenever its first argument is greater than its second
according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
' SELECT EXTRACT (EPOCH FROM (x - vy))’ LANGUAGE sgl STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = time,
subtype_diff = time_subtype_diff
)i

SELECT " [11:10, 23:00]’::timerange;

See CREATE TYPE for more information about creating range types.

191

Chapter 8. Data Types

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a GiST
index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, s&, <@, @8>, <<,
>>, - |-, &<, and &> (see Table 9-49 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types’ B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USING GIST (during WITH &&)
)

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
(" [2010-01-01 11:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
(" [2010-01-01 14:45, 2010-01-01 15:45)");
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")) .

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after bt ree_gist is
installed, the following constraint will reject overlapping ranges only if the meeting room numbers are
equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
room text,
during tsrange,
EXCLUDE USING GIST (room WITH =, during WITH &&)

192

Chapter 8. Data Types

)

INSERT INTO room_reservation VALUES
(7123A", "[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO room_reservation VALUES

("123A’, ’'[2010-01-01 14:30, 2010-01-01 15:30)7");
ERROR: conflicting key value violates exclusion constraint "room_reservation_room_during_e
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
("123B’, "[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created, or
the default_with_oids configuration variable is enabled. Type oid represents an object identifier. There
are also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass
regtype, regrole, regnamespace, regconfig, and regdictionary. Table 8-24 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT FROM pg_attribute WHERE attrelid = 'mytable’ ::regclass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it

193

Chapter 8. Data Types

does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-24. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier | 564182
regproc Pg_proc function name sum
regprocedure Pg_proc function with argument | sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | » (integer, integer)
types or - (NONE, integer)
regclass pg_class relation name pPg_type
regtype pPg_type data type name integer
regrole pg_authid role name smithee
regnamespace pg_namespace namespace name pg_catalog
regconfig pg_ts_config text search configuration | english
regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure or regoperator
are more appropriate. For regoperator, unary operators are identified by writing NONE for the unused
operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (‘my_seq’ : :regclass), PostgreSQL understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default ex-
pression. regrole is the only exception for the property. Constants of this type are not allowed in such
expressions.

Note: The OID alias types do not completely follow transaction isolation rules. The planner also treats
them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

194

Chapter 8. Data Types

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. pg_Isn Type

The pg_1sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
a location in the XLOG. This type is a representation of XLogRecPtr and an internal system type of
PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example,
16/B374D848. The pg_1lsn type supports the standard comparison operators, like = and >. Two LSNs
can be subtracted using the — operator; the result is the number of bytes separating those write-ahead log
positions.

8.20. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-25
lists the existing pseudo-types.

Table 8-25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyelement Indicates that a function accepts any data type (see
Section 36.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 36.2.5).

anynonarray Indicates that a function accepts any non-array

data type (see Section 36.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 36.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 36.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a
null-terminated C string.

195

Chapter 8. Data Types

Name

Description

internal

Indicates that a function accepts or returns a
server-internal data type.

language_handler

A procedural language call handler is declared to
return language_handler.

fdw_handler

A foreign-data wrapper handler is declared to
return fdw_handler.

index_am_handler

An index access method handler is declared to
return index_am_handler.

tsm_handler

A tablesample method handler is declared to return

tsm_handler

record Identifies a function taking or returning an
unspecified row type.
trigger A trigger function is declared to return trigger.

event_trigger

An event trigger function is declared to return

event_trigger.

pg_ddl_command

Identifies a representation of DDL commands that
is available to event triggers.

void

Indicates that a function returns no value.

opaque

An obsolete type name that formerly served all the

above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only void and record as a result type (plus trigger or event_trigger when the function is
used as a trigger or event trigger). Some also support polymorphic functions using the types anyelement,

anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

196

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many cases this functionality is compatible and consis-
tent between the various implementations. This chapter is also not exhaustive; additional functions appear
in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of subex-
pressions.

197

Chapter 9. Functions and Operators

9.2. Comparison Functions and Operators

The usual comparison operators are available, as shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!= not equal

Note: The ' = operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary oper-
ators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there is no
< operator to compare a Boolean value with 3).

There are also some comparison predicates, as shown in Table 9-2. These behave much like operators, but
have special syntax mandated by the SQL standard.

Table 9-2. Comparison Predicates

Predicate Description

a BETWEEN x AND y between

aNOT BETWEEN x AND y not between

a BETWEEN SYMMETRIC x AND y between, after sorting the comparison values
aNOT BETWEEN SYMMETRIC x AND y not between, after sorting the comparison values
a IS DISTINCT FROM b not equal, treating null like an ordinary value
a IS NOT DISTINCT FROM b equal, treating null like an ordinary value
expression IS NULL is null

expression IS NOT NULL is not null

expression ISNULL is null (nonstandard syntax)

expression NOTNULL is not null (nonstandard syntax)
boolean_expression IS TRUE is true

boolean_ _expression IS NOT TRUE is false or unknown

boolean_expression IS FALSE is false

boolean_expression IS NOT FALSE is true or unknown

boolean_expression IS UNKNOWN 1s unknown

198

Chapter 9. Functions and Operators

Predicate Description

boolean_expression IS NOT UNKNOWN is true or false

The BETWEEN predicate simplifies range tests:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y
is equivalent to
a < x OR a > y

BETWEEN SYMMETRIC is like BETWEEN except there is no requirement that the argument to the left of
AND be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input is
null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the IS [NOT] DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is
identical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these predicates effectively act as though null were a normal data value, rather than
“unknown”.

To check whether a value is or is not null, use the predicates:

expression 1S NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, predicates:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip: Some applications might expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the

199

Chapter 9. Functions and Operators

SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x Is NULL.

If the expression is row-valued, then IS NULL is true when the row expression itself is null or when
all the row’s fields are null, while IS NOT NULL is true when the row expression itself is non-null and all
the row’s fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. In some cases, it may be preferable to write row IS
DISTINCT FROM NULL or row IS NOT DISTINCT FROM NULL, which will simply check whether the
overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the predicates

boolean _expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean _expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean _expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

Some comparison-related functions are also available, as shown in Table 9-3.

Table 9-3. Comparison Functions

Function Description Example Example Result
returns the number of num_nonnulls (1, 2

num_nonnulls (VARIADTON-null arguments NULL, 2)

llany")

returns the number of num_nulls(l, NULL, |1
num_nulls (VARIADIC |null arguments 2)

"any")

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathemati-
cal conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-4 shows the available mathematical operators.

Table 9-4. Mathematical Operators

Operator Description Example Result

200

Chapter 9.

Functions and Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4 /2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
(associates left to right)
I/ square root |/ 25.0 5
L1/ cube root [1/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-13.

Table 9-5 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases can therefore vary depending on the host system.

Table 9-5. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) nearest integer ceil (-42.8) -42

numeric) greater than or

equal to argument

201

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

ceiling(dp or

numeric)

(same as input)

nearest integer
greater than or
equal to argument
(same as ceil)

ceiling (-95.3)

-95

degrees (dp) dp radians to degrees |degrees (0.5) 28.647889756541
div (y numeric, numeric integer quotient of |div (9, 4) 2

X numeric) y/x
exp (dp or (same as input) exponential exp (1.0) 2.7182818284590

numeric)

floor (dp or

(same as input)

nearest integer less
than or equal to

floor (-42.8)

-43

numeric)
argument

1n(dp or (same as input) natural logarithm |1n(2.0) 0.6931471805599
numeric)

log(dp or (same as input) base 10 logarithm |1og(100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base b | log (2.0, 64.0) |6.0000000000
numeric)

mod (y, x) (same as argument |remainder of y/x mod (9, 4) 1

types)

pi() dp “mr” constant pi() 3.1415926535897

power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)

radians (dp) dp degrees to radians | radians (45.0) |0.7853981633974

round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |numeric round to s decimal | round (42.4382, |42.44
s int) places 2)
scale (numeric) integer scale of the scale (8.41) 2
argument (the
number of decimal
digits in the
fractional part)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731

numeric)

202

Chapter 9. Functions and Operators

int)

histogram having
count equal-width
buckets spanning
the range b1 to b2;
returns 0 or
count+1 for an
input outside the
range

Function Return Type Description Example Result
trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Zero
trunc (v numeric, |numeric truncate to s trunc(42.4382, |(42.43
s int) decimal places 2)
int return the bucket width_bucket (5.[3%,
width_bucket (operpnd number to which 0.024, 10.06,
dp, bl dp, b2 dp, operand would be | 5)
count int) assigned in a
histogram having
count equal-width
buckets spanning
the range b1 to b2;
returns 0 or
count+1 for an
input outside the
range
width_bucket (operphat return the bucket width_bucket (5.[3%,
numeric, bl number to which 0.024, 10.06,
numeric, b2 operand would be | 5)
numeric, count assigned in a

width_bucket (oper
anyelement,
thresholds

anyarray)

phat

return the bucket
number to which
operand would be
assigned given an
array listing the
lower bounds of
the buckets; returns
0 for an input less
than the first lower
bound; the
thresholds array
must be sorted,
smallest first, or
unexpected results
will be obtained

width_bucket (no
array[’yesterda
"today’,

"tomorrow’]::ti

W) ,
v’

estamptz([])

Table 9-6 shows functions for generating random numbers.

203

Chapter 9. Functions and Operators

Table 9-6. Random Functions

Function Return Type Description
random () dp random value in the range 0.0
<=x<1.0
setseed (dp) void set seed for subsequent
random () calls (value between
-1.0 and 1.0, inclusive)

The characteristics of the values returned by random() depend on the system implementation. It is not
suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9-7 shows the available trigonometric functions. All trigonometric functions take arguments
and return values of type double precision. Each of the trigonometric functions comes in two variants,
one that measures angles in radians and one that measures angles in degrees.

Table 9-7. Trigonometric Functions

Function (radians) Function (degrees) Description
acos (x) acosd (x) inverse cosine
asin (x) asind (x) inverse sine
atan (x) atand (x) inverse tangent
atan2 (y, x) atan2d(y, x) inverse tangent of y/x
cos (x) cosd (x) cosine
cot (x) cotd (x) cotangent
sin (x) sind (x) sine
tan (x) tand (x) tangent

Note: Another way to work with angles measured in degrees is to use the unit transformation functions
radians () and degrees () shown earlier. However, using the degree-based trigonometric functions is
preferred, as that way avoids roundoff error for special cases such as sind (30).

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of the types character, character varying, and text. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the
bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-9).

204

Chapter 9. Functions and Operators

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those coer-
cions have been removed because they frequently caused surprising behaviors. However, the string
concatenation operator (| |) still accepts non-string input, so long as at least one input is of a string
type, as shown in Table 9-8. For other cases, insert an explicit coercion to text if you need to duplicate
the previous behavior.

Table 9-8. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation "greSQL’
string || text String 'vValue: ' || Value: 42
non-string Or concatenation with | 42
non-string || one non-string
string input

int Number of bitsin |bit_length (’ jose32
bit_length (string string

int Number of char_length (’ jojs&’)

char_length (string characters in string

or

character_length (string)

lower (string) text Convert string to lower (’ TOM’) tom
lower case
int Number of bytes in | octet_length (’ joke’)
octet_length (stripg) string
overlay (string |text Replace substring |overlay (’ Txxxxalsfhomas
placing string placing ’"hom’
from int [for from 2 for 4)
int])
int Location of position (’ om’ 3
position (substring specified substring |in ' Thomas’)

in string)

text Extract substring | substring (’/ Thomdsdm
substring (string from 2 for 3)
[from int] [for
int])

205

Chapter 9. Functions and Operators

upper case

Function Return Type Description Example Result
substring (string |text Extract substring | substring (' Thomasds
from pattern) matching POSIX from "...$")

regular expression.

See Section 9.7 for

more information

on pattern

matching.
substring (string |text Extract substring | substring (’ Thomasia
from pattern for matching SQL from
escape) regular expression. "SH#"o_a#"_ !

See Section 9.7 for | for "#')

more information

on pattern

matching.

trim([leading | |text Remove the trim(both Tom

trailing | both] longest string 'xyz' from
[characters] from containing only " yxTomxx')
string) characters from

characters (a

space by default)

from the start, end,

or both ends (both

is the default) of

string
trim([leading | |text Non-standard trim(both from |Tom
trailing | both] syntax for trim() |’yxTomxx’,
[from] string [, "xyz")
characters])

upper (string) text Convert string to upper (' tom’) TOM

Additional string manipulation functions are available and are listed in Table 9-9. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other String Functions

Function

Return Type

Description

Example

Result

206

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of the
first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the
argument must be
an ASCII
character.

ascii('x")

120

btrim(string
text [,

characters text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(/xyxtrimy

Ixyzl)

yee* im

chr (int)

text

Character with the
given code. For
UTF8 the
argument is treated
as a Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

concat (str

any" [, str

"any" [, ...1 1)

text

Concatenate the
text representations
of all the
arguments. NULL
arguments are
ignored.

concat (' abcde’,
2, NULL, 22)

abcde222

207

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

concat_ws (sep
text, str "any"
[, str "any" [,

1

text

Concatenate all
but the first
argument with
separators. The
first argument is
used as the
separator string.
NULL arguments
are ignored.

concat_ws(’,’,
"abcde’, 2,
NULL, 22)

abcde, 2,22

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can be
defined by CREATE
CONVERSTION. Also
there are some
predefined
conversions. See
Table 9-10 for
available
conversions.

convert (' text_1i
'UTF8’,
"LATINL')

Nt ettt 8¥n_ut£8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(stri
bytea,
src_encoding

name)

text
g

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from ('t
"UTF8")

ebextinl o8 §
represented in the
current database
encoding

convert_to(string
text,
dest_encoding

name)

bytea

Convert string to

dest_encoding.

convert_to (' som
text’, 'UTF8’)

esome text
represented in the
UTF8 encoding

208

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

decode (string
text, format

text)

bytea

Decode binary
data from textual
representation in
string. Options
for format are
same as in

encode.

decode (" MTIzAAE
"baseb4d’)

F\%3132330001

encode (data
bytea, format

text)

text

Encode binary
data into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.

encode (" 123\000
"basebd’)

\WDIZAAE=

format (formatstr
text [,
formatarg

L, ...1 1

"any"

text

Format arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format ("Hello
%$s, %$1S$s’,
"World’)

Hello World,
World

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

left (str text,

n int)

text

Return first n
characters in the
string. When n is
negative, return all
but last Inl
characters.

left ("abcde’,
2)

ab

209

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

length (string)

int

Number of
characters in

string

length (’ jose’)

4

length (string
bytea, encoding

name)

int

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length(’ jose’,
"UTF8')

lpad (string
text, length int

[, fill text])

text

Fill up the string
to length length
by prepending the
characters £i11 (a
space by default).
If the stringis
already longer than
length then it is
truncated (on the
right).

lpad("hi’, 5,
Ixy!)

xyxhi

ltrim(string
text [,

characters text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim(’ zzzytest

lxyzr)

'tLest

md5 (string)

text

Calculates the
MDS5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24fb
d6963£7d28el7£7

210

(@)

Chapter 9. Functions and Operators

Function Return Type Description Example Result
text[] Split parse_ident (/ " Spofeshrnemtaeinas,osmT
parse_ident (qualified_identifier qualified_identlifier
text [, into an array of
strictmode identifiers,
boolean DEFAULT removing any
true]) quoting of
individual

identifiers. By
default, extra
characters after the
last identifier are
considered an
error; but if the
second parameter
is false, then
such extra
characters are
ignored. (This
behavior is useful
for parsing names
for objects like
functions.) Note
that this function
does not truncate
over-length
identifiers. If you
want truncation
you can cast the
result to name [].

pg_client_encodin

name

g()

Current client
encoding name

pg_client_encod

iSEI(ASCIT

211

sthdlel 9 }

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_ident (strin

text)

text
5]

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 41-1.

quote_ident (' Fol

bar’)

o"Foo bar"

quote_literal (str

text)

text

ing

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on null
input; if the
argument might be
null,
quote_nullable
is often more
suitable. See also
Example 41-1.

quote_literal (E

O Rt Ty)

quote_literal (val

anyelement)

ueext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (4

2'.&B) .57

212

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (st

text)

text

ring

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
41-1.

quote_nullable (

INNUZILT)

quote_nullable (v4

anyelement)

lwext

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable (

4'245)5"

regexp_matches (st
text, pattern
text [, flags

text])

setof text[]

ring

Return all
captured substrings
resulting from
matching a POSIX
regular expression
against the
string. See
Section 9.7.3 for
more information.

regexp_matches (
" (bar) (beque))

" feabardmopieba z

regexp_replace (sy
text, pattern
text, replacement
text [, flags

text])

text

ring

Replace
substring(s)
matching a POSIX
regular expression.
See Section 9.7.3
for more
information.

regexp_replace (
/. [mN]a.’,

IMI)

'THibmas’ ,

213

Chapter 9. Functions and Operators

Function Return Type Description Example Result
text[] Split string regexp_split_to| ghrehlo(, inedlld}
regexp_split_to_drray (string using a POSIX world’, ’\s+’)
text, pattern regular expression
text [, flags as the delimiter.
text 1) See Section 9.7.3
for more
information.
setof text Split string regexp_split_to| hebllewdhkd (3
regexp_split_to_table (string using a POSIX world’, ’'\s+’) |rows)
text, pattern regular SXPICSSiOH
text [, flags as the delimiter.
text]) See Section 9.7.3
for more
information.
repeat (string text Repeat st ring the | repeat (' Pg’, PgPgPgPg
text, number int) specified number | 4)
of times
replace (string |text Replace all replace (' abcde fladdaXieeff gbXXe f
text, from text, occurrences in red’, TXX')
to text) string of
substring from
with substring to
reverse (str) text Return reversed reverse (' abcde’|)edcba
string.
right (str text, |text Return last n right (' abcde’, |de
n int) characters in the 2)
string. When n is
negative, return all
but first Inl
characters.
rpad (string text Fillup the string |rpad('hi’, 5, |hixyx
text, length int to length length |’xy’)
[, fill text]) by appending the
characters fi11 (a
space by default).
If the stringis
already longer than
length then it is
truncated.

214

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

rtrim(string
text [,

characters text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the end of

string

rtrim(’testxxzx|

rxyz')

'tLest

split_part (string
text, delimiter

text, field int)

text

Split string on
delimiter and
return the given
field (counting
from one)

split_part (' abc
I~@~I’ 2)

~feflef~@~ghi’,

strpos (string,

substring)

int

Location of
specified substring
(same as

position (substri
in string), but
note the reversed
argument order)

strpos (’high’,
Iig!)

substr (string,

from [, count])

text

Extract substring
(same as
substring (string
from from for

count))

substr (" alphabe
3, 2)

h

to_ascii (string
text [, encoding

text])

text

Convert string
to ASCII from
another encoding
(only supports
conversion from
LATINI1, LATIN2,
LATINO, and
WIN1250
encodings)

to_ascii ('Karel

'Harel

to_hex (number

int or bigint)

text

Convert number to
its equivalent
hexadecimal

representation

to_hex (21474836

ATHELEEEE

215

Chapter 9. Functions and Operators

Function

Return Type

Description

Example Result

translate (string
text, from text,

to text)

text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to
set. If fromis
longer than to,
occurrences of the
extra characters in

from are removed.

translate (/' 1234/45x5
71437, "ax')

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to be
concatenated or formatted as an array marked with the VARIADIC keyword (see Section 36.4.5). The
array’s elements are treated as if they were separate ordinary arguments to the function. If the variadic
array argument is NULL, concat and concat_ws return NULL, but format treats a NULL as a zero-

element array.

See also the aggregate function st ring_agg in Section 9.20.

Table 9-10. Built-in Conversions

Conversion Name -

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf8 SQL_ASCII UTF8
big5_to_euc_tw BIG5S EUC_TW
big5_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTFE8
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigb EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8

216

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_10_to_utfs LATING UTF8
iso_8859_13_to_utf8 LATIN7 UTFE8
iso0_8859_14_to_utf8 LATINS UTFE8
is0_8859_15_to_utf8 LATINO UTF8
iso_8859_16_to_utfs LATIN1O UTF8
is0_8859_1_to_mic LATINI MULE_INTERNAL
is0_8859_1_to_utfs8 LATIN1 UTF8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859_2 to_utfs8 LATINZ UTFE8
is0_8859_2_to_windows_1250LATINZ2 WIN1250
is0_8859_3_to_mic LATIN3 MULE_INTERNAL
is0_8859_3_to_utfs8 LATIN3 UTF8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
is0_8859_4_to_utfs8 LATIN4 UTF8
is0_8859_5_to_koi8_r ISO_8859_5 KOI8R
is0_8859_5_to_mic IS0_8859_5 MULE_INTERNAL
is0_8859_5_to_utfs8 ISO_8859_5 UTF8

iso_8859 5 to_windows_125]1IS0O_8859_5 WIN1251
iso0_8859_5_ to_windows_866|IS0O_8859_5 WIN866
is0_8859_6_to_utf8 ISO_8859_6 UTF8
1is0_8859_7_to_utfs8 IS0_8859_7 UTF8
is0_8859_8_to_utf8 IS0_8859_8 UTF8
iso_8859_ 9 to_utfs8 LATINS UTF8
johab_to_utfs8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R I50_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTFE8
koi8_r_to_windows_1251 KOI8R WIN1251
koi8_r_ to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigs MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW

217

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_1iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATINA
mic_to_iso_8859_5 MULE_INTERNAL IS0O_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_ijp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTFE8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGSH
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
ut£8_to_gbk UTF8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_ 13 UTF8 LATIN7
utf8_to_iso_8859_ 14 UTF8 LATINS
utf8_to_iso_8859_15 UTF8 LATINY
utf8_to_iso_8859_16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 IS0O_8859_7
utf8_to_iso_8859_8 UTF8 ISO_8859_8
utf8_to_iso_8859_9 UTF8 LATINS

ut £8_to_johab UTF8 JOHAB

218

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_koi8_r UTFS8 KOI8R
utf8_to_koi8_u UTF8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
ut£8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTF8 WIN1257
utf8_to_windows_866 UTFS8 WIN866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_iso_8859_2WIN1250 LATINZ
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859_bWIN1251 IS0_8859_5
windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251 to_windows_8¢WIN1251 WIN866
windows_1252_ to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_5|WIN866 I5S0_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WIN866 MULE_INTERNAL
windows_866_to_utf8 WINS866 UTF8
windows_866_to_windows_12pPWIN866 WIN
windows_874_to_utf8 WINB74 UTF8
euc_jis_2004_to_utfs EUC_JIS_2004 UTFES8
utf8_to_euc_jis_2004 UTF8 EUC_JIS_2004
shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8

219

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_jis_2004_to_shift_jis|R0UQ4JIS_2004 SHIFT_JIS_2004
shift_jis_2004_to_euc_jis|SHOBT_JIS_2004 EUC_JIS_2004

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores, followed by _to_, followed by the
similarly processed destination encoding name. Therefore, the names might deviate from the customary
encoding names.

9.4.1. format

The function format produces output formatted according to a format string, in a style similar to the C
function sprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

formatstr is a format string that specifies how the result should be formatted. Text in the format string is
copied directly to the result, except where format specifiers are used. Format specifiers act as placeholders
in the string, defining how subsequent function arguments should be formatted and inserted into the result.
Each formatarg argument is converted to text according to the usual output rules for its data type, and
then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a % character and have the form
% [position] [flags] [width] type

where the component fields are:

position (optional)
A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after formatstr. If the position is omitted, the default is to use the next argument in sequence.
flags (optional)

Additional options controlling how the format specifier’s output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier’s output to be left-justified.
This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier’s output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the width.
A too-small width does not cause truncation of the output, but is simply ignored. The width may
be specified using any of the following: a positive integer; an asterisk («) to use the next function
argument as the width; or a string of the form »n$ to use the nth function argument as the width.

220

Chapter 9. Functions and Operators

If the width comes from a function argument, that argument is consumed before the argument that is
used for the format specifier’s value. If the width argument is negative, the result is left aligned (as if
the - flag had been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier’s output. The following types
are supported:

s formats the argument value as a simple string. A null value is treated as an empty string.

« I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for
the value to be null (equivalent to quote_ident).

+ L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, without
quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence $% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format ('Hello %s’, ’'World’);
Result: Hello World

o

SELECT format (' Testing %s, %s, %s, %%’, ’'one’, ’"two’, ’'three’);

Result: Testing one, two, three, %

SELECT format (/ INSERT INTO %I VALUES(%L)’, ’'Foo bar’, E’O\’Reilly’);
Result: INSERT INTO "Foo bar" VALUES (’0O”Reilly’)

SELECT format (' INSERT INTO %I VALUES(%L)’, ’locations’, ’'C:\Program Files’);
Result: INSERT INTO locations VALUES (’'C:\Program Files’

Here are examples using width fields and the - flag:

SELECT format ('’ |%$10s]|’, 'foo’);
Result: | foo

SELECT format (' |%-10s|’, ’'foo’);
Result: |foo |

SELECT format ('’ |%*s]|’, 10, ’"foo’);
Result: | foo

SELECT format ('’ |%*s|’, -10, ’'foo’);
Result: |foo |

SELECT format ('’ |%$-*s|’, 10, ’"foo’);
Result: |foo |

221

Chapter 9. Functions and Operators

SELECT format ('’ |%-*s|’, -10, ’"foo’);
Result: |foo |

These examples show use of position fields:

SELECT format (' Testing %3$s, %2S$s, %1$s’, ’'one’, ’'two’, ’'three’);

Result: Testing three, two, one

SELECT format (' |%$x2S$s|’, ’'foo’, 10, ’'bar’);
Result: | bar

SELECT format (' |%1$x2S$s|’, ’'foo’, 10, ’'bar’);
Result: | foo

Unlike the standard C function sprintf, PostgreSQL’s format function allows format specifiers with
and without position fields to be mixed in the same format string. A format specifier without
a position field always uses the next argument after the last argument consumed. In addition, the
format function does not require all function arguments to be used in the format string. For example:

SELECT format (' Testing %3$s, %2S$s, %s’, ’'one’, ’'two’, 'three’);
Result: Testing three, two, three

The %I and %L format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 41-1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details
are in Table 9-11. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-12).

Note: The sample results shown on this page assume that the server parameter bytea_output is set
to escape (the traditional PostgreSQL format).

Table 9-11. SQL Binary String Functions and Operators

Function \ Return Type Description Example Result

222

Chapter 9. Functions and Operators

Function Return Type Description Example Result
string || bytea String "\\Post’ : :bytea| \\Post’ gres\000
string concatenation ||
"\047gres\000’ :|:bytea
int Number of bytes in | octet_length (’ joh000se’ : :bytea)

octet_length (stri

9)

binary string

overlay (string |bytea Replace substring |overlay (’ Th\000ckasd &2 PyEe3mas
placing string placing
from int [for "\002\003" : :bytlea
int]) from 2 for 3)
int Location of position (/\000on3 : :bytea
position (substrin specified substring | in
in string) "Th\00OOomas’ : :bytea)
bytea Extract substring | substring (’ Th\0[0D\®GES : :bytea
substring (string from 2 for 3)
[from int] [for
int])
trim([both] bytea Remove the trim (/' \000\0O1l’|:Tdytea

bytes from

string)

longest string
containing only
bytes appearing in
bytes from the
start and end of

string

from
\000Tom\001" ::

bytea)

Additional binary string manipulation functions are available and are listed in Table 9-12. Some of them

are used internally to implement the SQL-standard string functions listed in Table 9-11.

Table 9-12. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim (/' \000trim\OOilt : :bytea,

bytea, bytes longest string \000\001’ : :bytlea)

bytea) containing only

bytes appearing in
bytes from the
start and end of

string

223

Chapter 9. Functions and Operators

Function Return Type Description Example Result
decode (string bytea Decode binary decode (Y 123\0004583,000456
text, format data from textual 'escape’)
text) representation in
string. Options
for format are
same as in
encode.
encode (data text Encode binary encode (123\ 0004BEB3 B4 RS,
bytea, format data into a textual |’escape’)
text) representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.
get_bit (string, |int Extract bit from get_bit (' Th\00Olchas’ : :bytea,
offset) string 45)
int Extract byte from |get_byte (' Th\00[0bi2s’ : :bytea,
get_byte (string, string 4)
offset)
length (string) int Length of binary | length(’ jo\000sEB : :bytea)
string
md5 (string) text Calculates the md5 (/ Th\00Oomas| &aiddtz=9689aafl
MDS5 hash of b4958c334c82d8b)
string, returning
the result in
hexadecimal
set_bit (string, |bytea Set bit in string set_bit (Th\000CH=aI tCdyAsa,
offset, newvalue) 45, 0)
bytea Set byte in string | set_byte (/ Th\00[0Bma® Calakea,

set_byte (string,

offset, newvalue)

4, 64)

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit
number bits from the right within each byte; for example bit O is the least significant bit of the first byte,
and bit 15 is the most significant bit of the second byte.

See also the aggregate function string_agg in Section 9.20 and the large object functions in Section

33.4.

224

=

Chapter 9. Functions and Operators

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-13 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-13. Bit String Operators

Operator Description Example Result
| concatenation B’ 10001’ || B’011’ [10001011
& bitwise AND B’10001’" & 00001
B’01101'
bitwise OR B’10001" | 11101
B/01101
bitwise XOR B’10001" # 11100
B/01101"
~ bitwise NOT ~ B’10001" 01110
<< bitwise shift left B’10001’" << 3 01000
>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When working
with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::pbit (3) 100

cast (=44 as bit (12)) 111111010100
71110’ ::bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant bit
of the integer.

Note: Casting an integer to bit (n) copies the rightmost n bits. Casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular

225

Chapter 9. Functions and Operators

expressions. Aside from the basic “does this string match this pattern?”” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular
expressions can be contrived that take arbitrary amounts of time and memory to
process. Be wary of accepting regular-expression search patterns from hostile
sources. If you must do so, it is advisable to impose a statement timeout.

Searches using s1MILAR TO patterns have the same security hazards, since
SIMILAR TO provides many of the same capabilities as POSIX-style regular
expressions.

LIKE searches, being much simpler than the other two options, are safer to use with
possibly-hostile pattern sources.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT
LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

If pat tern does not contain percent signs or underscores, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, if it’s desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

226

Chapter 9. Functions and Operators

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~x
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is un-
like common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . « in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« « denotes repetition of the previous item zero or more times.

« + denotes repetition of the previous item one or more times.

« 2 denotes repetition of the previous item zero or one time.

« {m} denotes repetition of the previous item exactly m times.

« {m, } denotes repetition of the previous item m or more times.

- {m, n} denotes repetition of the previous item at least m and not more than n times.

+ Parentheses () can be used to group items into a single logical item.

» A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

227

Chapter 9. Functions and Operators

Some examples:

"abc’ SIMILAR TO ’"abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO 'S (bld

"(blc)

s’ true
"abc’ SIMILAR TO b ’

)

false

The substring function with three parameters, substring(string from pattern for
escape-character) , provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from ’"#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-14 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-14. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case |’ thomas’ ~ ’.xthomas.*’
sensitive
~x Matches regular expression, case |’ thomas’ ~x /.xThomas.x*’
insensitive
I~ Does not match regular "thomas’ !~ ’.xThomas.x’
expression, case sensitive
[Does not match regular "thomas’ !~* ’.+vadim.«’
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

228

Chapter 9. Functions and Operators

Some examples:

"abc’ ~ "abc’ true
"abc’ ~ ’""a’ true
rabc” ~ " (b|d)’ true
"abc’ ~ "~ (b|c)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (’ foobar’ from "o0.b’) oob
substring (’ foobar’ from ’‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
]). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \ n, where nis 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate
that the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal
backslash in the replacement text. The f1ags parameter is an optional text string containing zero or more
single-letter flags that change the function’s behavior. Flag i specifies case-insensitive matching, while
flag g specifies replacement of each matching substring rather than only the first one. Supported flags
(though not g) are described in Table 9-22.

Some examples:

regexp_replace (' foobarbaz’, ’'b..", "X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, 'X’, 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, "X\1Y’, 'g’)

fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from match-
ing a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern|[, flags
1). The function can return no rows, one row, or multiple rows (see the g flag below). If the pattern does
not match, the function returns no rows. If the pattern contains no parenthesized subexpressions, then
each row returned is a single-element text array containing the substring matching the whole pattern. If

229

Chapter 9. Functions and Operators

the pattern contains parenthesized subexpressions, the function returns a text array whose n’th element is
the substring matching the n’th parenthesized subexpression of the pattern (not counting “non-capturing”
parentheses; see below for details). The flags parameter is an optional text string containing zero or
more single-letter flags that change the function’s behavior. Flag g causes the function to find each match
in the string, not only the first one, and return a row for each such match. Supported flags (though not g)
are described in Table 9-22.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["b]l+) (b["b]+)", "g’);
regexp_matches

{bar, beque}
{bazil,barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

{barbeque}
(1 row)

It is possible to force regexp_matches () to always return one row by using a sub-select; this is partic-
ularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)’)) FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no
match to the pattern, the function returns the string. If there is at least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. The f1ags parameter is an optional text string containing zero or more single-letter flags that
change the function’s behavior. regexp_split_to_table supports the flags described in Table 9-22.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the gquick brown fox jumps over the lazy dog’,

foo

230

"\s+’)

Chapter 9. Functions and Operators

the
lazy
dog
(9 rows)

SELECT regexp_split_to_array (’'the quick brown fox jumps over the lazy dog’, ’'\s+’);
regexp_split_to_array

{the, quick, brown, fox, jumps, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, ’\sx’) AS foo;
foo

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by regexp_matches, but is usually the most convenient behavior
in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both

231

Chapter 9. Functions and Operators

forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset of
EREs, but BREs have several notational incompatibilities (as well as being much more limited). We first
describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how BREs
differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9-15. The possible quantifiers and their meanings are shown in
Table 9-16.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9-17; some more constraints are described later.

Table 9-15. Regular Expression Atoms

Atom Description
(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting
(?:re) as above, but the match is not noted for reporting

(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

\¢ where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

232

Chapter 9. Functions and Operators

Atom

Description

when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

where x is a single character with no other
significance, matches that character

An RE cannot end with a backslash (\).

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9-16. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom

{m, n} a sequence of m through n (inclusive) matches of

the atom; m cannot exceed n

*? non-greedy version of «

+? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { . . . } are known as bounds. The numbers m and n within a bound are unsigned decimal

integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See

Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier cannot
begin an expression or subexpression or follow ~ or |.

Table 9-17. Regular Expression Constraints

233

Chapter 9. Functions and Operators

Constraint Description
~ matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(2! re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching re ends (AREs only)

(?<!re) negative lookbehind matches at any point where
no substring matching re ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all paren-
theses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of the list.
If two characters in the list are separated by -, this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal — as the first endpoint
of arange, enclose itin [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression’s list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .1.)
For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=]1], and [o"] are
all synonymous. An equivalence class cannot be an endpoint of a range.

234

Chapter 9. Functions and Operators

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard,
but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9-18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-20.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-21). For example, ([bc]) \1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9-18. Regular Expression Character-entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C
\B synonym for backslash (\) to help reduce the need
for backslash doubling
\cX (where X is any character) the character whose

low-order 5 bits are the same as those of x, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

235

Chapter 9. Functions and Operators

Escape Description

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the character whose hexadecimal value is Oxwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxstuvwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
1S Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings de-
pendent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example \u1234 means the character U+1234. For other multibyte encodings, character-
entry escapes usually just specify the concatenation of the byte values for the character. If the escape value
does not correspond to any legal character in the database encoding, no error will be raised, but it will

never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \ 135 does not terminate a bracket expression.

Table 9-19. Regular Expression Class-shorthand Escapes

Escape Description

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [~[:digit:]]

\S [*[:space:]]

\W [~[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \s, and \w are illegal.

236

Chapter 9. Functions and Operators

(So, for example, [a—-c\d] is equivalent to [a—-c[:digit:]]. Also, [a-c\D], which is equivalent to

[a—c”[:digit:]1],isillegal.)

Table 9-20. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning or
end of a word
\Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)
A word is defined as in the specification of [[:<:1] and [[:>:]] above. Constraint escapes are illegal

within bracket expressions.

Table 9-21. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more

digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th

subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates an
octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e., the number is in the legal range for a back reference), and otherwise is taken as

octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic

facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with =« x :, the rest of the RE
is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs; but it
does have an effect if ERE or BRE mode had been specified by the £1ags parameter to a regex function.)

237

Chapter 9. Functions and Operators

If an RE begins with «+x=, the rest of the RE is taken to be a literal string, with all characters considered
ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or the
flags parameter to a regex function. The available option letters are shown in Table 9-22. Note that these
same option letters are used in the £1ags parameters of regex functions.

Table 9-22. ARE Embedded-option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)

(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

P partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the ««+ : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

« a white-space character or # preceded by \ is retained
- white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (2 :

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (2#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-

238

Chapter 9. Functions and Operators

character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial «**= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

« A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy (prefers
longest match).

« A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

+ A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’/XY1234ZzZ", "Y*x([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’"XY12347z’, '"Yx2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v« is greedy. It can match beginning at the v, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y« ? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression

239

Chapter 9. Functions and Operators

[0-91{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1, 1} and {1, 1}? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what’s deduced from its elements. As an example, suppose that we are trying to separate a
string containing some digits into the digits and the parts before and after them. We might try to do that
like this:

SELECT regexp_matches ("abc01234xyz’, ' (.*) (\d+) (.*)");
Result: {abc0123,4,xyz}

That didn’t work: the first . « is greedy so it “eats” as much as it can, leaving the \d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_matches (’abc01234xyz’, ' (.%?) (\d+) (.*)");
Result: {abc,0,""}

That didn’t work either, because now the RE as a whole is non-greedy and so it ends the overall match as
soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_matches (’abc01234xyz’, 7 (2:(.*?) (\d+) (.*)){1,1}");
Result: {abc,01234,xyz}

Controlling the RE’s overall greediness separately from its components’ greediness allows great flexibility
in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb* matches
the three middle characters of abbbc; (week|wee) (night |knights) matches all ten characters of
weeknights; when (.*) . is matched against abc the parenthesized subexpression matches all three
characters; and when (ax) » is matched against bc both the whole RE and the parenthesized subexpres-
sion match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [x] becomes [xX] and [~x] becomes [~xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~ and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ~ and s.

240

Chapter 9. Functions and Operators

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX ERE:s is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «+«+ syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special
treatment for a trailing newline, the addition of complemented bracket expressions to the things affected by
newline-sensitive matching, the restrictions on parentheses and back references in lookahead/lookbehind
constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \ { and \ '}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and) by themselves
ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a pare