PostgreSQL 9.6.22 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.6.22 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2021 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlvii
1. What iS POStZIESQLT ...ccueiiiiiiiiiiiieetetet ettt sttt xlvii
2. A Brief History of POStreSQLu.....c..cioiiiiiieriiiiieiieite ettt ettt e st sveesiee e sbeesseenane e x1viii

2.1. The Berkeley POSTGRES Projectcceeeveriieiienienieeiieneeeteeieeniee sttt sene s xlIviii
2.2, POSEEIESOS ...ttt ettt ettt st e e be e st e e be e beesabeeabeentes xlix
2.3, POSEEIESQLou. ittt ettt ettt st b e st ebeebeesabeeabeentes xlix
3. COMNVEINTIONS ...ttt ettt ettt et sae sttt ettt saee bt sbe et e s bt e s et e e bt embesaeesaenbeeenentesbeentesneennen 1
4. Further INfOrMation........ccc.coieiiririeiiinieietee ettt ettt ettt et et sae st e s eb e 1
5. Bug Reporting GUIAEIINES........ccuieriierierieeiieriieeie ettt sttt ettt et e st e sttt e bt e saeesabeenseenseesas 1
5.1, TAentifying BUgSooueiiiiiiiieieeitecie ettt ettt li
5.2. What t0 REPOTT ..ttt ettt ettt sttt et st st esbaesane e li
5.3. Where to RePOTt BUEZS ..cc..eoiuiiiiiiiiiiieieeeete ettt s liii
I. Tutorial 1
1. GENG STATTEA ...cueeieeiieieeiieie ettt ettt et st ae e e sne s enesneae 1
1.1 INSEALIALION ..ttt ettt et e e e e sbe e et e e bt e sbaesbeebeenne 1
1.2. Architectural Fundamentals.............coceeiiiiiiiiiriiiiiiiieeeeecteeeeeete et 1
1.3. Creating @ Databasececveruieuierieeieeiesie ettt ettt et ese et et e eesae et ete e ens 2
1.4, AcCeSSING @ DAtaDASEccveeuieiietieiiiieiere ettt ettt ettt naeene 3
2. The SQL LaNZUAZEooueeuieiieeieie ettt ettt ettt et ettt et sttt esbe e st e e sb e et e steeatenbesseenbenbeans 6
2.1, INEEOAUCTION 1.utiiieitiiieteet ettt ettt b e et b et e bt eat e te e bt e e e s beene e beebeeneeneeeae 6
2.2 CONCEPLS ...eneeeeeieeteettete et ettt et et s bt et e bt e b et e e bt e st e sbeea e et e ebees e bt eaeenbesbeemtesbeestenbeebeeneeneeene 6
2.3. Creating @ NeW TabIecccoiiiiiiiiiiieieeeeeee ettt 6
2.4. Populating a Table With ROWScccoeriiiiiiiiiiieiectee e 7
2.5. QUErYING @ TaADIEooueiiiiiiiiiiiiiee ettt 8
2.6. J0Ins BetWeen Tables.cccoiiiiiriiriiiiiieieneeteestee ettt s 10
2.7. AgEregate FUNCHIONScoeeviiiiiiirieeiteteeteeteste ettt sttt sbe e eaees 12
2.8 UPAALES ...ttt sttt ettt ettt ettt et b ettt e b et bbb bbb et b enees 14
2.9, DIETIONS ...ttt sttt ettt ettt ettt st e e b e eb et ebeetesbe et e b e et b et sbeeneesaeenaen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiiiieiteteecee ettt ettt ettt s ettt st et sbe e sbeeneen 16
3.1 INEEOAUCTION 1.ttt ettt sttt ettt bbbt sbeeneesueenees 16
3.2 VIBWS ittt ettt ettt ettt st h ettt e be et bbbttt ebe et saeeneen 16
3.3, FOTEIZN KBYS....iiiiiiiieiieiieete ettt ettt ettt ettt sttt e sat e st e st e ebeesaeesaseensaensee e 16
34, TTANSACHIONS ..c.eevteniiiietieteete sttt ettt ettt et et st e e b e eet et eae e aesaeess e besbn et e sbeeneesaeennen 17
3.5. WIndOW FUNCHONSoouiriiiiniiiieniinieieeieetentcet ettt ettt et sae e e 19
3.6. INHETILANCE ..ottt ettt et sbe e s 22
3.7 CONCIUSION ...ttt sttt ettt ettt et ettt e b e et eae e saeess e b san et sbeeneesaeennen 24

I1. The SQL Language 25

4. SQL SYNEAX ..entiiieiieiieiee ettt ettt e sttt a e et st e n et ne et s re e neeane 27

4.1, LeXiCal SIUCTUTE.eiitieiiieieeieeite ettt ettt et ettt st e bt et st e nbeesaeesaee s 27
4.1.1. Identifiers and Key Words.........ccoceeviiriiniiiniiniinieieeeetceeeeesee e 27

A 1.2, CONSLANLS .euvteeieeuieeieeeite et et et te sttt et e bt e sat e et e bt esbe e s bt e bt esbeesabeebeenbeesaseeseenseenas 29
4.1.2.1. String CONSLANLScceiuiiiiiiiiriiiiiiieeee ettt e 29

4.1.2.2. String Constants with C-style ESCapes.........ccccocevveveeererenenienreeeennennen 29

4.1.2.3. String Constants with Unicode Escapes..........cccceeeeieneneenenenieniennenne 31

4.1.2.4. Dollar-quoted String CONSANLSc.cevverueerieriieierieeeeee et 32

iii

4.1.2.5. Bit-String CONSIANTScc.eervierierieeiienienieeieesieeste et esitesatesteenaeesieesaeeen 33

4.1.2.6. Numeric CONSLANLSccccvruiiiriiniiieiiieieiee e 33

4.1.2.7. Constants of Other TYPEScccueevuerrrierieriiiiiienieeree ettt 33

1.3, OPCTALOTS ...ueeneieeiiieieeeite ettt ettt et e bt e s et e s bt e bt e sbtesabeebeesaeesabeeseesbeesaseeseenseenan 34

4. 1.4, SPECTial CharACLEIS....ccoueiruieeiieniieniieeitette ettt e rite sttt ettt e sttt sbeesbeesareebeesaee e 35
4.1.5. COMMENLScueniiiiriiieiieie ettt ettt ettt n e e e e st ne s b e nesaeenee 35
4.1.6. Operator PreCedeNCecc.cevuiriiriiiinieiinieiene ettt 36

4.2. Value EXPIEeSSIONS.coouiiiiiiiiiiiiiieiee ettt ettt s 37
4.2.1. Column REfEIENCEScouiiiiiiiiniiiiteitere ettt 38
4.2.2. Positional Parameters........c.cceeveeriiriiinieniiiieeteste ettt 38
4.2.3. SUDSCIIPES ..ttt e e e 39
4.2.4. Field SEIECLIONoeuieuiiiieiieiecteeete ettt ettt st e e ene s 39
4.2.5. Operator INVOCALIONSc...evvuieriiriieiieiterie ettt ettt ettt saee e 40
4.2.6. FUNCHION CallS ..ottt st 40
4.2.77. Aggregate EXPreSSIONS.eeruiitirieriieiieienttete ettt sttt et te b eeee e see s 40
4.2.8. Window Function Calls...........cceeoieiiiiininieieneeieieseee e 43
4.2.9. TYPE CASS ...t e s 45
4.2.10. Collation EXPreSSIONScccceruerierterieniinieeteniesiteiesteeitesieeiee e etesbeseeeneeseeene 45
4.2.11. Scalar SUDQUETIESccouerteriertiriieiieitete ettt ettt sbe e 46
4.2.12. Array CONSLIUCLOTS ..c..eeviritenteteeiteteeitete st ete st st et st eeat et et esaesbeebenbesssesesbeenee 47
4.2.13. ROW CONSIIUCLOTS......eviuiiinienienieiieiietesie ettt st sttt et saesnennenesnesaeas 48
4.2.14. Expression Evaluation RUlescccccoceviinininiinininicceccecee 50

4.3, Calling FUNCHONS.coutirieriieiiiieitenic ettt ettt ettt st et ettt sbe e s e et sbe e sie e 51
4.3.1. Using Positional NOtationcecuevuerieniineeienenieieneeteneeeene et 52
4.3.2. Using Named NOTAIONcccveeruieriieriieniienieesieesiteniteeteesieesieesseesseesseessseesseesseenes 52
4.3.3. Using MixXed NOTAtION.......eeruierieriieitenie st eieesite st ete et esitesbeesaeesieesereeaeenaee e 53

5. Data DefINItIONc.couiiiiiiiiiiiii e 55
5.1 Table BASICSoouiiuiiiiiiiiiciiiciccece e 55
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiccccee e 56
5.3 CONSILANES ...c.cuiiiiiiieieeeec ettt s saea 57
5.3.1. Check CONSLIAINLScciuiiuiiiiiiieiiiii it 57
5.3.2. NOt-NUll CONSIAINLSoeviiiiiiiiiiiiiiieieeee e 60
5.3.3. UnNiqUe CONSLIAINES.eertiiiiieiieniieiieeiteenite st eieeiee st e ebeeteesbtesabeebeesbeesaresaseennes 60
5.3.4. Primary KeYS......coeoiiiiiiiiiiceceeeceeee e 62
5.3.5. FOreign KeYScouiiiiiiiiiiiiieieneceeeeete et 62
5.3.6. EXClUSION CONSIIAINLSeeruveeiieiieriieeieeiee sttt e sttt e b s 65

5.4. System COIUMISc..oouiiiiiiiiiieiieee ettt et st s 66
5.5. Modifying TabIes........ccooiiiiiiiiiiiiciee e e 67
5.5.1. Adding @ COIUMNcc.ooiiiiiiiiiiiicecee e e 68
5.5.2. Removing @ COIUMIc..coiuiiuiiiiitieieieeieie ettt 68
5.5.3. Adding @ CONSIAINEc.eeiiieeieieiteeieieetiete ettt ettt st sbeseee e e enes 68
5.5.4. Removing @ CONSIIAINTcc.evueveieiririietenteieeeeeese ettt ene e 69
5.5.5. Changing a Column’s Default Value............ccccceeverinininieniininininenceeeeenenne 69
5.5.6. Changing a Column’s Data TYPecceeieruirienienieiereeeeecee e 70
5.5.7. Renaming @ COIUMcc.coouiiuiiiiiiiiiienieeiee sttt 70
5.5.8. Renaming @ TabIecccoeiuiiiiiiiiiiiiiiiee e 70

5.6, PLIVIIEZES ..ttt sttt ettt sttt eb e aeen 70
5.7. ROW SECUIILY POLICIEScveeuiiiiiiieiieiieieeitetesie ettt sttt s 71

5.8 SCREIMAS ...ttt ee e e e et e e e ee e e e e e et r e e e e e ta e e e e eetrreeeeearaeeas 76

5.8.1. Creating @ SCREMA ..c...covuiiiiiiiiiie et s 77
5.8.2. The PUBLiC SChemMaccceoouimiiiiiiiiiiiriciiccecceceeee e 78
5.8.3. The Schema Search Path.........c..coccociiiiiiiiiniiiiiiccceceeeeeee 78
5.8.4. Schemas and Privil€@es........ccoceeriiriiiiiiiniieiiieieeeee ettt 80
5.8.5. The System Catalog SChemaccccceeieviinieiiniiiecceeeeeeere e 80
5.8.6. USAZE PALEINSc..eouiiniiiiiiieiiciccceeetete ettt s 80
5.8. 7. POTtaADIIIEY ...ttt sttt eneenes 81

5.9, INREIILANCE ...cuveeniieeiieeieette ettt ettt sat e st st e et esbe e saaeesbeenbee e 81
5.9, 1. CAVEALS ..ottt ettt et st ettt sttt e b e et 85

5.10. PartitiOningc.coouiiuiiiieiiiiiiieieeet ettt sttt et st e s 85
5101, OVEIVIEW ..ttt ettt ettt ettt sttt e be e s eate e 86
5.10.2. Implementing Partitioningcceceeierienieneneeiesieeiiee ettt 86
5.10.3. Managing Partitionsc..coeeueieiriniinienienieeetnene ettt e 90
5.10.4. Partitioning and Constraint EXCIUSIONccccccevevvinininienieiiininieneiceeeeennene 90
5.10.5. Alternative Partitioning Methods...........ccoeeveeeininininienieieineneseeeeeeeenee 92
5.10.6. CAVEALS ...ttt ettt ettt ettt b et bt et be e b et e be et sbe et besbe et b enee 92

S5.11. FOreign Dataoueeuiiiiiieiieiieeeete ettt sttt sb e e 93
5.12. Other Database ODJECLScc.cerueruerieriiriieiinieetenie sttt ettt sbte st sbeeeesaeeaees 94
5.13. Dependency TraCKingc.cooeeiererieriinieienieeeest ettt ettt s 94
6. Datd ManipUlation.........coueeeeiiriiienie ettt ettt ettt et sttt eba et bt e e e sbeeneen 96
6.1. INSEItiNg DIAta ...c..eiuiiiiiiiiiiiiiiiee ettt b 96
6.2. UPdating Datal......cc.eeviiiriieiiniiiienieeiteet ettt sttt ettt sttt sbe et b aaes 97
6.3. DEleting DIatal.......ccueeuiiiiriiiiiiiiieeeteeet ettt ettt ettt s 98
6.4. Returning Data From Modified ROWSccccviviiiiiiiiiinieciiciieeee e 98
T QUBTICS ..vveeeereeeetieeeette et e et e e ettt e etaeeestaeeeataeeeatseesabaeaasseeassaeesssaeansseeanssaeansseeansseeassseeasseeanssesennnes 100
To1 OVEIVIEW ..ttt sttt ettt st sae st b e bt et e bt saeenaesueennens 100
7.2. Table EXPIESSIONSveetiiriieeieeiieiieete et et e site sttt e sitesitesabeesbeesaeesabeebeesbeesaseenseenseenans 100
7.2.1. The FROM CLAUSE......cccveruirieiinieeienieetenieeiteteeteete st et sae sttt eeesaesaeeaesaeennens 101
7.2.1.1. JOIN@d TaDIESc.oerueeiiiiieiiiiieiieerectecetec ettt 101

7.2.1.2. Table and Column ALIASES.......c..coceeeverririenirienieneereneeeereeeeie e 105

T.2.1.3. SUDQUETIES ...eonvveiiiiiieiieeiieeteett et ettt ettt ettt sttt esatesabeeabees 106

7.2.1.4. Table FUNCHONS ..c..cocuiviiriiriiiiiieniicieeeeee et 107

7.2.1.5. LATERAL SUDQUETIEScoueeruiriiiiiiieiiiieeeniceeeere et eanens 108

7.2.2. The WHERE ClAUSE...cc.certiriieieiriieniteeieesieesiteeite et e siteste st e bt esatesateenbeesaeesaneens 110
7.2.3. The GROUP BY and HAVING ClauSes........ccooverieriiiiniinienieenieeste e 111
7.2.4. GROUPING SETS, CUBE, aNd ROLLUP ...ccvvttiieeitiieeeeeeirreeeeeireeeeeeenreeeeeeeneneeeens 113
7.2.5. Window Function Processingcccccoceeieiiiriiiiniiiinenieieniceee e 115

7.3 SELECTE LSS .eeutieiiieiieiieeeite ettt ettt ettt sttt et st e b e sbe e st et e 116
7.3.1. SeleCt-LiSt TEOIMS ...c..eeieitieiieiieicee ettt ettt et 116
7.3.2. Column Labelscoceiiiiiiiiiiiiieeeeeeeeeee e 117

73,3 DISTINCT weteeueenueeeieenteentee st eteesbee st e eate e bt e sbeeeutesabeesbeeeatesate e bt esbeesaeeenbeesseenaneaas 117

7.4. COMDINING QUETIES.....cuveeueeiiieieieetieiieeteeite ittt e et eit et et e et eaeetesbeestesbeestentesseenaesbeennans 118
7.5, SOTtING ROWS ..ttt et sttt sttt et st nae b ennns 118
7.6, LIMIT QN0 OF FSETuuiuiitiiteeiteteeteeteeteetestesttetesteententeeseetesbeeseesbesseensesbeentensesseensesueennens 119
TT. VALUES LSS 1ttt ettt st et b e et be et e b st enaesbeenaens 120
7.8. wITH Queries (Common Table EXPIressions)ccceveeeerereerienenienieneeienieseene e 121
7.8.1. SELECT 1N WITH teieieuieuieiinienieteteeeit ettt ettt ese bt eeneenes 121

7.8.2. Data-Modifying Statements in WITHccoverreriierriienienienieenieeseeseeesieesieesneens 125

8. DALA TYPES .. uttenrieiteeite ettt ettt ettt ettt e st st e bt e s bt e sa bt e be e s bt e s e bt e bt e ht e s et e e b e enhtesate e beenbaenaneen 128
8. 1. INUMETIC TYPES .uveentiiiieniieeite ettt ettt ettt ettt st eate bt e st e st e bt e satesatesbeesatesanesabean 129
8L L. INtEZET TYPES .cueieiiiiiiiiienite ettt ettt sttt st e bee e 130
8.1.2. Arbitrary Precision NUMDETScccoevviiriiiiiiinieniiiieeieeeeteee e 131
8.1.3. Floating-Point TYPESccceeririeiiriieieiieiete ettt 132
814, Serial TYPES...ccuviuiieiieiiriieiereeteteet ettt et s 133

8.2. MONELATY TYPES ...ttt st e e 134
8.3, Character TYPESccouermiiiiiiiieeeeet ettt e e 135
8.4. BINary Data TYPEScoueeiiiiiiiiiieiieierit ettt s e 137
8.4.1. bytea HEX FOrmMaL........ccooeiiiiiiieiieeee ettt e 138
8.4.2. bytea Escape FOrmat.........cocccoviiiiiiiiiiiiiiiiiiceeeec et 138

8.5, Date/TimME TYPES....eeueerueeieteeiieieett ettt ettt ettt ettt ettt et s bt et e e steeaeeaesneeneenbeeneenes 140
8.5.1. Date/Time INPULc.coiiiiiiiiiiiiieectee et 141
LT TN B TR D 1 (<O USSP U U SRR 142

8.5 1.2, TIIMES .ttt sttt ettt st sae st e b e 142

8.5.1.3. TIME SEAMPS ...cuvieieieieieieiteeitete ettt sttt st st 143

8.5.1.4. Special ValUeSccccoieiiriiiieiieiieie et 144

8.5.2. Date/Time OULPULc.eevuieuiiiiriieierieeitet ettt ettt ettt b e 145
8.5.3. TIME ZIOMES ...ttt ettt sttt ettt et et sbe bt b e 146
8.5.4. Interval INPUL.....cc.eiiiiiiiiiiete ettt 147
8.5.5. INtErVal OULPULeveeiiiiiiiiinieeitetetet ettt et 150

8.6. BOOLEAN TYPEC...ueiviiniiiiiiiieeitcteeteete ettt sttt et st st 150
8.7. ENUMETAEA TYPES ..veeuveeureeireiiieniieeieeitesteete et esitesitesateesbeesatessteebeesasesssesnseesssesssesnsens 151
8.7.1. Declaration of Enumerated TYPeS......c.cecvveriierieriiiiiiienienieeieeieesee e 152
872, OTAETINGeenvieiieeiieeieeieeete ettt ettt et e st e st st e st e satesabeebeesseessbeenseenseenens 152
8.7.3. TYPE SATELY .ottt ettt sttt 153
8.7.4. Implementation DetailS.........c.eevuiirierieriiieiienienie ettt 153

8.8. GEOMELIIC TYPES ..euurieutieriieetieiieriteete ettt ettt et e st et e bt e s tesate e bt e satesabeebeesssesasesaseas 154
881 POINTS ..ottt et 154
8L8.2. LLINES .ottt et e 154
8.8.3. LiNE SEZMENLS....c.eiiiiiiiiiiieieeieeite sttt ettt ettt st e e s e st ebe b e sae 155
B84 BOXES ..ttt et e 155
885, PathS .ttt 155
8.8.6. POLYZONS.....c.iiiiiiiiiiciie et e 156
88T CICIES ..ttt ettt sttt st st ae e e 156

8.9. Network Address TYPES.......covecuiruieiiriiieeeiieeee ettt e 156
IR ST SRR R 157

LIRS N X USSP 157
LI G T o T i I e oSSR 158
8.9.4. MACAAAT wvtieriiieeiie ettt ettt et e e ettt e e e et e e st e e e ta e e e nbeeeanbeeeanteeeenbeeenaeenn 158

8.10. Bit SN TYPES c.eevertireieieieiietenie ettt ettt ettt st eae bbb 159
8.11. Text Search TYPES.......couiiiiiiiiiiiiei e e s 159
LT B B e =Y ol e X TSP 159

8.l 1. 2. £ SQUETY teiiiitiiee ettt e et e e et e e e et e e e e e atae e e e e baaeeeeerraaeeeeanens 161

BL12. UUID TYPC .ttt ettt sttt ettt ettt et s b et bt et e bt sbt e e sbeesaenbeeaeenee 162
813, XIML TYPE ettt ettt s b et bt ettt st e e bt et e b e 163
8.13.1. Creating XML ValUesc.ccocterieriiiiniinienie ettt 163

Vi

8.13.2. Encoding Handlingccceevueiriierieniieeniienieeie ettt st 164

8.13.3. Accessing XIML ValUes.......c.eevuieriierieiiieiieniteeieeieesiteste sttt st 165

B4, JSON TYPES weeeeteeuiieiieniteete ettt ettt et et e bt e st sate e bt e s abesabe e bt e satesabesbeesabesasesaseas 165
8.14.1. JSON Input and Output SYNLAX......cccverrueeriierieriierieenienee et eiee e see e esiee e 167
8.14.2. Designing JSON documents effectivelyccccoeveevieniiiniiinnienienieeieeieee 168
8.14.3. ysonb Containment and EXiSteNCEe..........cccuierciieriireeiir e esiieeeree e 168
8.14.4. F5onD INAEXING.....cocviriiiiiiiiieieecect e e 170

BLL5. ATITAYS ..ttt ettt et st 172
8.15.1. Declaration of Array TYPES.....cc.coceecueriieieriinieieneeieieeeeeere e e 172
8.15.2. Array Value INPUL..........ccoiiiiiiiiiiiic e 173
8.15.3. ACCESSING ATTAYS ..uviviiiiiiiiicieeiieet ettt e s 174
8.15.4. MOAIfYING AITAYS...c.eieueeieieieiieieetieieet e eete ettt e sttt ettt seeesteseesaeeneesseeneenes 177
8.15.5. Searching in ALTAYS......cccuererierieeiieieetiee ettt ettt et see e seeenee e 180
8.15.6. Array Input and OULPUL SYNLAXeevereirieriiriieieiteeetee et 181

8.16. COMPOSIEE TYPES ..ottt ettt ettt b ettt et ettt e e b eseenbeeaeenes 182
8.16.1. Declaration of COmMPOSIte TYPES....ccuervirieriiririeniieiieieeeeee et 182
8.16.2. Constructing Composite ValUes...........ceceeririerieriinienienieiene e 183
8.16.3. Accessing COmPOSIte TYPES ...ccuevueeureriirieriiriieienieeiteeeteeee et 184
8.16.4. Modifying COmpOSIte TYPES...c.eruerreriirieriiriieienieniteie ettt 185
8.16.5. Using Composite Types in QUETIES.......ccceruerueeriererienieneeieneetenesieeee e 185
8.16.6. Composite Type Input and Output SYNtaX.......cceoevveriereerienerreeneneerienieneenns 188

B 17. RANEZE TYPLS ettt ettt sttt ettt s 189
8.17.1. Built-in Range TYPES ...ccvevuirmieiiniieiiiietete ettt 189
8172, EXAMPIES...utiiiieiiiieiieiieste ettt sttt ettt ettt e st e e seaeenbeenseeneee 189
8.17.3. Inclusive and Exclusive Boundscoccceeieiiininininicniiiiiicncciciecenns 190
8.17.4. Infinite (Unbounded) RanNges.........ccceveuieriierieriiiiienienie ettt 190
8.17.5. Range INPUL/OULPUL......covuieriieiieiieeieeie ettt ettt sttt et ebe b 190
8.17.6. Constructing RaANGEScc.eevviiiiiiiiiiiieiieiierteete ettt e 191
8.17.7. Discrete Range TYPES ...ccveeuerriiiiiierieiieesieesteete ettt sttt st e 192
8.17.8. Defining New Range TYPES ..cccueevveerieriiiiiienieeieeieesteete sttt 192

8. 17.9. INAEXING ..evvieniieiiieieeeesite ettt ettt st et st st e be et e s b enbeeaeesaee 193
8.17.10. Constraints 0n RANZES.........cocueerierieriiiiiiierieeie ettt 194

8.18. Object IAeNtfIET TYPES ..eeeuveriieriiiriieeieeniteete ettt ettt sttt sttt sabe s 195
810, P ISTE TYPCteeeeieiitet ettt sttt e b e st s e bttt e be e bt e st et es 197
8.20. PSEUAO-TYPES ...ttt et sttt st e 197
9. Functions and OPETALOLSccecuiririeriirieienieeientt ettt ettt eesre et ese st s e reeaeenesaeenesaeennens 199
9.1. LOZICAl OPETALOTSooviiuieniiriieieiieieie ettt ettt ettt e st e a e s e ne e eanens 199
9.2. Comparison Functions and OPEratorscccccoeecueriieiieniiiienieneeeeeeeeee e 199
9.3. Mathematical Functions and OPEerators............ccccoeeueruieeeriiiienieieeieieeeeie e 202
9.4. String Functions and OPEratorscc.cecueruiriiiiiniiiieiieiee e 207
L T e % o - SRR 222

9.5. Binary String Functions and OPeratorsc.ccoeruerueirreriniinrenienieeeenenensesseneneeneene 224
9.6. Bit String Functions and OPeratorsc.ecceerereruereireneniiereniereeeneeesessessenseneeneene 226
9.7. Pattern MatCRINGccooverieiieiiiiiitinteeteteteese sttt sttt s e 227
0. 7.1 LIKE it e s 228
9.7.2. SIMILAR TO Regular EXPressionscccceevuerierienenienenienieniieienieeceee e 229
9.7.3. POSIX Regular EXPreSSionscocceruerierierieniienienieeienieniteiesieeieenieseeeneesieennens 230
9.7.3.1. Regular Expression Detailsc.cccceeervieninienenienienenienescene e 233

Vii

9.7.3.2. Bracket EXPIeSSIONSceveerveerieeriiisieeiieniieeieeieesieeste et saesaeeeneees 236

9.7.3.3. Regular EXpression ESCapes.........c.coveerieniiiieinieeniienieeieeee e 237

9.7.3.4. Regular Expression MetasyntaXccecceeveerrveenieenieenuenseeenieesneseesnnees 239

9.7.3.5. Regular Expression Matching Rulesccccoeeeeniiniinninninnieniennen, 241

9.7.3.6. Limits and Compatibilityccccecuerverrienieriieiieeniiesieeieeeesee e 243

9.7.3.7. Basic Regular EXPressionscoceceeieveenineeneneenienieneeneeeenie e 243

9.8. Data Type Formatting FUNCHONScccocuiriiiieiiiniiieniieicie e 243
9.9. Date/Time Functions and OPErators..........c..coceevuerueeieriieieniineenieneereseeeeeeeeeseeseenens 251
9.9.1. EXTRACT, AATE_PATE tttiiiiiiieieeeeitreeeeeeeteeeeeeeitreeeeeeetareeeeeesraeeeesentraeeeeeesreeaeens 257

LR NG N oY oo Y o o SN 261
9.9.3. AT TIME ZONE..coiiiiiiiiiiieieiieieeee st eeeste et etesteeee s e e e sesae et e bt e e e saeeaeenesaeennens 262
9.9.4. Current Date/TIMmeceoueiiieeiieiiiiiieeieeeerteeee ettt ettt 263
9.9.5. Delaying EXECULION........c.coiririirieieieititietesteteeeieeesie ettt ettt 265

9.10. Enum Support FUNCHONSccoviruiriirieieieintinenetceeteese sttt 265
9.11. Geometric Functions and OPErators............ceeeererueeeirereniinreniereeeeeesesaessenneneenenne 266
9.12. Network Address Functions and OPerators..........c..ccueceeererienreriereeeenenensenseseeenene 271
9.13. Text Search Functions and OPerators...........c.ccceeerveeerrereniinreniereeeieesesesseneneeneene 273
0.14. XML FUNCHONS ...eeutitiiiieiiiiteienteeiesie ettt sttt ettt et e st bt te b st e st saeenaesbeennens 279
9.14.1. Producing XML CONLENL.........cccerieieriirieiiniieienieetenie sttt eeeenee e 279
9.14.1.1. XML COMMENT +eerviertrerererreerieenteesteesseesseessaeesseesseesseessessseesseesssessesnses 279

0.14.1.2. XINLCONCAL teureerierieeniieeiienieesttesteesteesteessaesbeeseesseesssessseensaesssesssesnses 279

0.14.1.3. XIMLELEMENT weeectierirereieeiiesiienitesieesteesteestaeeteeseesseessseeseensaesssesssesses 280

0.14.1.4. XINLEOTE@SE teverrieriierieeieesieesttesteesteesteestaesseeseessaesesesnseensaesasesssesnseas 281

014, 1.5, XINLP I weeiirieeiieienitetesteete sttt ettt st ettt ettt sbee e s eanens 282

9.14.1.6. XIMLT OO0 tetreeuieeieerieeniieeieesteenttesiteesteesteestaesbeeseenseesasesnseenseesasesssesnsens 282

0. 14.1.7. XINLAGG tttiiiiittrieeeeeireeeeeeeireeeeeeiaeeeeeeraeeeeeeestareeeeeeaereeeeetrreeeseetareeeean 283

9.14.2. XML PrediCatescc.coeeueriireeniineeienieniteteeieete st niesieetesteeiee st sveeeesaeennens 284
0.14.2.1. IS DOCUMENT ...oouiruitiieienienieriere sttt sa e 284

9.14.2.2. IS NOT DOCUMENT....ccuirtiuiemiiriirirteteniententene st s 284

0.14.2.3. XMLEKXISTS weeieuieuiiuiitiieieieeeiiee sttt 284

0.14.2.4. X1 1S WELL FOTME tuuuueeeaaeeaeeeeas 284

9.14.3. Processing XIMLcooiiiiiiiiiiieiieeieeteste ettt ettt st et 285
9.14.4. Mapping Tables t0 XML....c.c.cooiiriiiiiiiienieeieeieeteeee ettt 287

9.15. JSON Functions and OPETatOrScecuerueerreerierieerieenieenitesieesieesieessessseesseesssessesnsens 290
9.16. Sequence Manipulation FUNCHONScccervieiiirieiieniieiiiiiccienecreeeeete e 300
9.17. Conditional EXPIeSSIONScccueruieiiriieiiiinieieseetete et ae s enens 302
0. 17,1 CASE ettt sttt ettt ettt b bbbt 302
9.17.2. CORLESCE vttt et 304
9.17.3. NULLIF ottt ettt s et st st s 304
9.17.4. GREATEST AQNd LEAST c..ecuiiiiiiieie sttt ettt ettt sse e s s 305

9.18. Array Functions and OPETatorsccceeveeerirerenueieteenientierereeeneeneeressessessenseneeneene 305
9.19. Range Functions and OPETators...........cceeueutrrirereniereietnentieseniereneereeresiessessenseneeneene 309
9.20. Aggregate FUNCHIONS........ccueoiiiiiriinieieictetetese ettt sttt s e 311
0.21. WiINdOW FUNCHONSc..eiiieiiiiieieitieiee ettt sttt s v 320
9.22. SubquETy EXPIESSIONS ..c.ccveuieuiriiriinieieieieiieitsiestesteteet ettt 322
0.22. 1. EXIST S ettt et e s 322
0.22.2. TN ettt bbbttt h et a e et e bt bt et b et e st saeeae bt enten 323
9.22.3. NOT INuuteuieuietiteteeeteiteieste sttt et sttt s ettt s sae st sa et ebe et et ae e e e eneenes 323

viii

9.22. 4. ANY/SOME ..ceeeerveieeeeereeeeeeeeueeeeeeeiteeeeeeeetareeeeeetreeseeeeteseeeeenraseeseentsseeeesetrseeeens 324

9.22.5. ALL ettt 325
9.22.6. Single-roW COMPATISONeeveiriieriieieeiieniteeteeieesteete et esbeesitesateenbeesaeesaeeens 325

9.23. Row and Array COMPATISONSeerureruieriieniieriiesieereenieesitesieesteesseesseesseesseesssessesssens 325
9.23. 1. IN c s 326
9.23. 2. NOT INuuiiuiiiiiiiiiicie ettt st 326
9.23.3. ANY/SOME (QITAY) .veeveerreerurernreenieesiteeiteesteesitessesseessaessesateesseesseesasesnsessseesaeans 326
0.23.4, ALL (AITAY) cuveervreenreenteeniteeteeieesttesiteete e beesbtesate s bt e s bt e sabesate e bt esbeesateebeessaesaeeans 327
9.23.5. Row Constructor COMPAriSON........cccueruerreriruieeenieeierreseeeenseeeesaeeeesnesueennens 327
9.23.6. Composite Type COMPAriSON.........cccueruiriieiiriieiinieeieniereereste e eneeaesaeeanens 328

9.24. Set Returning FUNCHIONSccciuiiiiiiiiiiiiiiieienieeee e s 329
9.25. System Information FUNCHIONSccueeieieirinineniiicieenenrcceeeeeese e 332
9.26. System Administration FUNCHONSccccceviririnenieniiiiininieceeeeeene e 349
9.26.1. Configuration Settings FUNCHONS.ccccoerverieirinininicicieeeceeserceeeeene 349
9.26.2. Server Signaling FUNCHONScc.ccoevirimierienieieinineneeceereeeeee e 350
9.26.3. Backup Control FUNCHONSccecvririimiinienieieininenenteeeeee et 350
9.26.4. Recovery Control FUNCHONScoouiiiiiiiiiniiiineeeestee e 353
9.26.5. Snapshot Synchronization FUNCHONScc.ceeeviireriiinenieienieeeeeee e 355
9.26.6. Replication FUNCLONSccoceeriiiiiiiiiieieeieteseeee ettt e 356
9.26.7. Database Object Management FUNCHONS.cceveeiererienieninieneniee e 360
9.26.8. Index Maintenance FUNCIONSccccivuirierieieieininiciccieeeeeeceeeeene 363
9.26.9. Generic File Access FUNCHONS..........cccoviierieiiiiininieicceeec e 363
9.26.10. Advisory Lock FUNCHONS......cccevteierieriiiiniiiieneeieestetest e 364

0.27. Trig@er FUNCHIONSooviiiiiiiiiiiiniieieeetec ettt sttt s 366
9.28. Event Trigger FUNCLIONSoccviviiieriieeieiiieitesite sttt st sve et esveeae et e senesnseeneees 367
9.28.1. Capturing Changes at Command End..........ccccecueiniiniiniiininniieniieeenceeiens 367
9.28.2. Processing Objects Dropped by a DDL Commandccccevcveveiienieeneennenns 368
9.28.3. Handling a Table Rewrite EVentcccccovvviriiriiiinienieeieeeeeese et 370

1O, TYPE CONVETSION. ..ccuuiiriiiiniieiieniieeteesttesttesteeteesteesiteeteebeesstesabessteesbaesasesateenseesstesasesnseessaesnsenns 371
LO.L. OVEIVIEW ittt s 371
TO.2. OPETALOTS ...euvveeutieiieeiieeittesiteeite et e bt esttesiteebee bt e satesbe e bt esbtesabeesbeebeesabesaseenbaesasesasesnseas 372
LO.3. FUNCLIONS ...iiiiiiiiiiicice et s 376
1O.4. VAl SOTAZEeeouieeiiiiiieiieniie ettt ettt sit e ettt e s bt s be et e bt e sabesabeenbeesateeaseenbeas 380
10.5. UNION, CASE, and Related CONStIUCES..........cccviieieeiiiiieeieeiiiee e eerree e e e e e 381
L1 TAEXES vttt ettt sttt et e st et e bt e s bt e eabeea bt e s bt e satesateesbeesbtesabeenbeesaaenaeeens 384
111, INETOAUCTION ..ottt ettt et sttt e sbee st et et e st e ebe e b e nae 384
T1.2. INAEX TYPES...etiniiniiiieeerieee ettt ettt st e s 385
11.3. Multicolumn INAEXESccoeeriiiriiirieniieieeeerte ettt ettt st 387
11.4. Indexes and ORDER BY .c..cevtirtirrieerieniteeieeniteniteeteesueesteesaseesueesseesasesseesseesssesnsesnseenses 388
11.5. Combining Multiple INAEXEScccoueeeiriririniiieieieteeeeseneeeeeeee e 389
11.6. UnIqUeE INAEXEScveveneeiieiiriiniieteieieteeeiteie sttt ettt sttt s st e e enee 390
11.7. Indexes 0n EXPIESSIONSccceueviirierieieiriinerienieteteteit et sreste st seeseeie e s e sneneeeneenens 391
11.8. Partial INAEXESc.oeueeiiiiiiieieeiieee ettt sttt sttt et s 391
11.9. Operator Classes and Operator FAmiliesc..coecevveinininenenienininenencieiceeeenns 394
11.10. Indexes and COlAtioNS.ceueeueririeriiiieiesieetete ettt sttt st eneens 396
11,11, INdEX-ONLY SCANS ...cueertiriiiiintieiiieetete ettt sttt st ettt st enae e 396
11.12. Examining INdeX USAZE........coueeuiriirieniiiieieniceiteteeieete ettt st s 398
12, FUll TEXt SEATCHoviiiiiiiciieiiiiitetec ettt st st enee 400

12,1, INEEOAUCHION «.vvveiieeiiiiiee ettt eeet e e eetr e e eeeaae e e e eeetareeeeeeaaeeeeeenaneeeeeeensnnens 400

12.1.1. What Is a DOCUMENT?....c..coouiviiiiniiiiinienieienceieste ettt s 401
12.1.2. Basic Text MatChingcccecueeiiienieniiiiiieiiesieeie ettt ettt 402
12.1.3. CONTIGUIALIONSuveriiietieriieeieeteesite et ettt sit e ettt e sate st ebeesbeesatesbeesaeesaneens 404

12.2. Tables and INAEXES.......cceeveriirieriiririeierieeeeeeee ettt st 404
12.2.1. Searching @ Table.......c..ccccouiriiiiniiiiieeieece e 404
12.2.2. Creating INAEXESc..couieiiiirieieriieieieeeeeeeeeie ettt 405

12.3. Controlling Text SEArch..........cccoeceriiiiniiiieieiieieeeeee et 406
12.3.1. Parsing DOCUMENLScccoeouieuieiiiniiiieieniieieete ettt s 407
12.3.2. Parsing QUETIEScccueiuieuieiieiieierieeieieeit ettt ettt et s s 408
12.3.3. Ranking Search Resultscccocooiiiiiiiiiiiiicceec e 409
12.3.4. Highlighting ReSUILScccuiiiiiiiiiiieieeieeee e 412

12.4. Additional FEaturescccocieuieiiirieieie ettt 413
12.4.1. Manipulating DOCUMENLS........cccueruirrierieriieieeieiese et 413
12.4.2. Manipulating QUETIES.ccueeueerierierienieeiieieettete st eete e st e et eseeseesaeenaesbeeneens 414
12.4.2.1. QUery REWIIING ...cccveiuieiiiiiiieie et 415

12.4.3. Triggers for Automatic UPdatesc..coceevuerierieninienieniieiesieeteie e 417
12.4.4. Gathering Document StatiStCSccceruerteruerieiienerienienitee et eeeesee e 418

125, PATSEIS ...ttt ettt sttt sttt s bt eae e 418
12.6. DICHONALIES.cveveiiieiieiieiieie ettt sttt ettt s st e s enean 420
12.6.1. STOP WOIAS ..ottt ettt s st 422
12.6.2. SIMPIE DICHONATY ..cvventiiiiniirieeienieetenieet ettt sttt s nee e eanens 422
12.6.3. Synonym DIiCHONATYccceeouireeniiriiienienieienieetesie ettt sieeanens 424
12.6.4. Thesaurus DICHONATYeecvereieeriienienieeieentesieeteesieeseesteesseeseeeseseeseenseenens 425
12.6.4.1. Thesaurus CONfiUIationcccueevveerueereeniieriieeniesresieeesieesresaesvees 426

12.6.4.2. Thesaurus EXampleccceevieriiniieiiienienieeieereesreeie e 427

12.6.5. ISPEIl DICHONATYveeiieiieeiieeiieiienite ettt ettt e sitesete bt esbeeseneebeebeesene 428
12.6.6. SNOWDAIl DICHONATY ...uveeviieriiieiieiienie ettt ettt sttt st ebeesaeesaneens 430

12.7. Configuration EXample........ccceeiiiriiniiiiiiiieiienieeieeteste ettt 431
12.8. Testing and Debugging Text S€archccceeeeviiiiiinienienieeeeie e 432
12.8.1. Configuration TEeSHING.....c.cueecveeiiierieriiiiieieete ettt sttt e 433
12.8.2. ParSer TESTINZ .. ceeverieeiieiieeie ettt ettt ettt sttt et sat e s beesaeesaeeeas 435
12.8.3. Dictionary TESNZ.....ccceerierieiiieniienteeieeniteete ettt st be et e st b e saeesaeeeas 436

12.9. GIN and GiST INdeX TYPESooueruririirieiiiietenieeieteee ettt sttt 437
12.10. PSQL SUPPOTLL...eeiiiiiiieiieieciieteeteet ettt ettt ettt et ene e eanens 438
12,11, LAMIEATIONS . ..eenvteeeteeiteeteeeite ettt ettt ettt stt e st e bt e s bt e st e e bt e bt e sateeabeebeesabeeabeenbeenae 440
12.12. Migration from Pre-8.3 Text Search..........ccccccoeviiiiiiiiininiiiccee e 441
13. ConcurrenCy CONIOL......cc.cioiiiiiiiiiiiieieeeeteee ettt st 442
13,1, INEFOAUCTION ...ttt et et sttt st et e bt e st e e e b e nae 442
13.2. Transaction ISOIAtIONcecuieuieiiiriieieie ettt et 442
13.2.1. Read Committed Isolation Levelcccooieieiiniriiniieeceee e 443
13.2.2. Repeatable Read Isolation Level..........ccocceiiiieiininiiniiieeceececee e 445
13.2.3. Serializable Isolation Level...........cooeiiiiiiiiieiinieeeeeeee e 446

13.3. EXPLCIt LOCKING ..ottt et s 449
13.3.1. Table-1eVel LOCKSc..ciuiiieiieiieiesieeteeeiteee ettt 449
13.3.2. ROW-1EVEL LOCKSovieiiiieiiiceesceeeee et 451
13.3.3. Page-1evel LOCKSccc.oiuiiiiiiiieiesieeeeteeet ettt 453
13.3.4. DEAdIOCKS.....cviienienieiieiiiieriertctetet ettt ettt 453

13.3.5. AdVISOTY LOCKSeiiiiiiiiiieeiectteteett ettt sttt st e 454

13.4. Data Consistency Checks at the Application Level..........ccocceeviiniinieniiinieniienieenen, 455
13.4.1. Enforcing Consistency With Serializable Transactions..........cccccccceceevuereennene 455
13.4.2. Enforcing Consistency With Explicit Blocking Locksc..cccceeircvencnennens 456

I3.5. CAVEALS....ccueiniieiieieiecteteet ettt ettt ettt ettt st st a e et b e 456

13.6. Locking and INAEXES.....c..covecuiriiriiniinieiiieeiese ettt et 457

14, Performance TIPSc.coeeieiirieieniee ettt ettt st e st s 459

14.1. USING EXPLATIN .eeutieuieieieeieetenteeeesteeeeeseseeesnesseeasesseeseessesseeseessesueessesseessesesneensesseennens 459
14.1.1. EXPLAIN BASICS ..ouuiiiiiiiiiiiieiieie ettt s 459
14.1.2. EXPLAIN ANALYZE coiiiieieiieiieiesteenesie st esesseeeesaeeseesesseesnesseeseenesaeennesaeennens 465
T4, 1.3, CAVEALS ..ottt ettt ettt ettt sttt et e st st et e s bt e sate e beesbeenaeeeas 469

14.2. Statistics Used by the Plannerccocoviiieiiiienieieeeeeee e 470

14.3. Controlling the Planner with Explicit JOIN ClauSes.........ccecerereerierieerieneeeenieseeens 471

14.4. Populating @ Databasec.ceeeiueruirieniiiieie ettt sttt et 473
14.4.1. Disable AULOCOMIMIULcc.ueitieuieierteeienteetteieett ettt eete e st te st eseeseesaeenaesbeeneens 474
14.4.2. TUSE COPY .eteutiiieie ittt ettt sttt ettt et ettt e sae e et e te s bt e e s be e st e et eaeeneesbeennens 474
14.4.3. REMOVE INAEXEScouvetiiiieiieiieie sttt s 474
14.4.4. Remove Foreign Key CONStraintscoceevuereerienerienenieeneeieneeseeniesieenens 474
14.4.5. InCcrease maint eNancCe. WOTK_ MMM . ceeeeeeieeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeaees 475
14.4.6. INCrease Max_Wal_SI1ZE ..cccerererrererienienieetenieeitente st e e st eeee et saeeneesbeeneens 475
14.4.7. Disable WAL Archival and Streaming Replicationc..cocceceeviveencnennene 475
14.4.8. Run ANALYZE Afterwards.........ccceceeviriniinienieiiinincneceeeeeeeeeeeeeeeenes 476
14.4.9. Some Notes About PE_dUMP ...c..ooeriereriiiiinieiineeteeseeeseete e e 476

14.5. NON-DUTIable SEtHNES ...c.eeuveiiriiriiniirieiiieetenieetet ettt ettt ettt sbeeae e eanens 477

15, Paralle]l QUETYeevuieiiieiieiieeiie et ette st ettt et e sete e bt ebeessaesabeenbeesbaesssesaseensaenssesnseenseessnennsenns 478

15.1. How Parallel QUEry WOTKSc.covieriiriiiieeiieeieeieeiceste ettt st 478

15.2. When Can Parallel Query Be Used?.........cooeeviiiiiiiiiniienieeieeieete st 479

15.3. Paralle]l PLansc..coeeoieriiriiiinieieniecicteseeteetcetee sttt st 480
15.3.1. Paralle] SCanScoeeveriirieiineeienceeerteteettete ettt s 480
15.3.2. Paralle] JOINScc.erueeieriiriiiinieieniceteceitecetete et s 480
15.3.3. Parallel AZEIegationcecueeviierieriiiiiieniienie sttt ste st et e st e st ebeesaeesaneeas 480
15.3.4. Paralle] P1an TiPs ..ccceevveerierieeiiienieete ettt sttt st ettt s be e 481

15.4. Paralle]l Safety........coouiiiiiiiiieieetee ettt sttt 481
15.4.1. Parallel Labeling for Functions and Aggregates..........coceevevveevenuireenueneenens 482

I11. Server Administration 483
16. Installation from SOUTCE COAEccceeruiiriiriiiiiiiiieeieeeerte ettt ettt 485

16.1. SROTE VETSION ..euviiniiiiiiieiiiiteeitee ettt ettt st sttt st e e b nae 485

16.2. REQUITEIMEGIILS ...ttt eee et te it eeeete st et e b et et e sbe e e esbesseensesseensesseeneensesneeneans 485

16.3. Getting The SOUICE........oouiieieiietieiee ettt sttt sttt e s eeens 487

16.4. Installation ProCedure.............coeeiiiriiiiniiieesieeeeeee ettt 487

16.5. Post-InStallation SEIUP........ccccerirterierieieiiinerestetetetet ettt st eneas 498
16.5.1. Shared LiDIariesccceeeeriieierierieeiesieeiieieeieete sttt s 498
16.5.2. Environment Variablesccceoererierenieiinieiese et 499

16.6. Supported PLatfOrmsco.eiiiiriiiiiiieieie ettt 499

16.7. Platform-specific NOLESccueruiiiiririeieiceesteete ettt 500
LO. 7.1 ALX ettt ettt ettt sttt 500

16.7.1.1. GCC ISSULS ..ceneneieiieieeiteteeitete sttt ettt et sttt et sbe et e 501

Xi

16.7.1.2. Unix-Domain Sockets BroKEN..........cccvveieeeviiieieeeeiiiieee e 501

16.7.1.3. Internet Address ISSUES........ccccovviviniiiiiiiiiiiciccc e 501

16.7.1.4. Memory Managementccceeueeuerrueeneenieniieenieesreseeesieesisesnesvees 502

16.7.2. CYZWIN ceiiiiiieiieeieeie ettt ettt ettt sttt e st e st ebe e s bt e sateebeenaeesaneeas 503
16.7.3. HP-UX ..o 504
16.7.4. MACOS ..ottt et s 505
16.7.5. MINGW/Native WINAOWScooviieriiriiiiieniienienieeniteste st eieesiee st sseesaeesieeens 506
16.7.5.1. Collecting Crash Dumps on Windowsccccoccecverieveenineeneneenns 506

16.7.6. SCO OpenServer and SCO UnixWare............cccceeeeieninieienieieenineeeneenns 506
16.7.6.1. SKUNKWATEcoouviiiiiiiiiiieieiieenteet ettt st 506

16.7.6.2. GNU MaKEoouviuiriiriiieieieieeinentesteteteie ettt 506

16.7.6.3. REAAINE.....cneeeieieieiieee ettt 507

16.7.6.4. Using the UDK 0n OpenServer...........ccceveeeerereeneneeienieeieseeeeeenees 507

16.7.6.5. Reading the PostgreSQL Man Pages..........cccceverieneniniienienieceenee. 507

16.7.6.6. C99 Issues with the 7.1.1b Feature Supplementcccceeeveveuenen. 507

16.7.6.7. Threading on UniXWareccccceveririenienieneneenie e 508

160.7.77. SOLATIS ..ottt sttt ettt b e s b et e st et e st saeebesbeeneens 508
16.7.7.1. Required TOOIScc.coeeieririeienieieieetee sttt 508

16.7.7.2. Problems with OpenSSLcccceeviriiiiiniriienieeeeeeeeee e 508

16.7.7.3. configure Complains About a Failed Test Programc..cccccoueeneee 508

16.7.7.4. 64-bit Build Sometimes Crashes..........cccccevevevenienieininienenicieeenn, 509

16.7.7.5. Compiling for Optimal Performance............cccccoccevvenenvienincnncnennnens 509

16.7.7.6. Using DTrace for Tracing PostgreSQL........cccccoceevieninvieniniencnennens 509

17. Installation from Source Code 0n WINAOWSccceciririiiiiiiiiiiiiiieneeceeeese e 511
17.1. Building with Visual C++ or the Microsoft Windows SDK............cccceceniniininnnnn. 511
17.1.1. REQUITEINENLS ..couvvieireeiiieiienieeieentientesteeteesttesitesabeesseesseeseseeseenseessseensesnseessns 512
17.1.2. Special Considerations for 64-bit Windowscccceevceerieeneeneenieeneeneennns 514
17.1.3. BUIIAING .. 514
17.1.4. Cleaning and INStalliNgccceerieriiriiienienieeieeeeste sttt 514
17.1.5. Running the Regression TeSESc.ueviirriierieriieriieiieste sttt 515
17.1.6. Building the DOCUMENtationeecvtriierierieniieitente sttt siee e 516

17.2. Building libpq with Visual C++ or Borland CH+.......ccccooiiiiiiiiiiniiiiieiccceieeeeeeen 516
17.2.1. Generated FIlesccccviiiiiiiiiiiiiiiiicci e 517

18. Server Setup and OPEIationc.cceceerierieieriieienieetetene ettt eeesre et e ere st see s saeene e ennens 518
18.1. The PostgreSQL USEr ACCOUNLc..cocueruiruieieiieietieiteteste ettt eeeeae e eanens 518
18.2. Creating a Database CIUSLETcocoevieriiiieiiiniicieiieeecreeeeese et 518
18.2.1. Use of Secondary File SyStems..........ccccocveviirieiieniniienienieieneeeere e 519
18.2.2. Use of Network File SyStemscccccccevieiiiiiiiniiiiiiiceieeee e 520

18.3. Starting the Database SEIVET..........cccccceviiiiiiiiiiiieiee e 520
18.3.1. Server Start-up Failuresccceeieriiiiiiiniiniiiieeeeeee e 522
18.3.2. Client Connection Problemsccooeeieiinieiienieierieeeeeieee e 523

18.4. Managing Kernel ReSOUICES..........couerieriiiieieiiieieeeeee ettt 523
18.4.1. Shared Memory and Semaphorescccceoeeeerierieienenieeseeeenee e 523
18.4.2. systemd RemoOVeIPCcocuiiiiiiiiiiiiii et 529
18.4.3. ReSOUICE LIMILSeouviiiiiiiiiiiieiesieeteieeitee ettt s 530
18.4.4. Linux Memory OVEIrCOMIMILccuerierierieniiniieienieeiteniesteeie st eeeeneeseeeaesaeeneens 531
18.4.5. Linux HUZE PaESeoouiiiiiiiiiiiiiiiiieeteeeee e 532

18.5. Shutting DOWN the SEIVET.......cceeciiiiriiiiiieierieeteeeeete ettt e 533

Xii

18.6. Upgrading a Post@reSQL CIUSIETcc.eeviiiriieriieniieeieesitesite ettt st eieebeeste e eaeees 534

18.6.1. Upgrading Data via pg_dumpall..........ccccevierieriiiinienieniieieeniesie e 535
18.6.2. Upgrading Data via pg_upgradecceeveerieriiieniienieniieieenee e ereesieesieeens 536
18.6.3. Upgrading Data via Replication..........ccceevierieriiiiniienieniieieentesie e 536

18.7. Preventing Server SPOOINGcovieriiiiiiriieieniieeeettesite ettt sttt 537
18.8. ENCryption OPLONS.covueruieiiiieieiieiteie ittt ettt et e e esae s ene st esne s sneesnesaeennens 537
18.9. Secure TCP/IP Connections With SSLccccooiiiiiiiiiiiiiiiiiei e 539
18.9.1. Using Client CertifiCatescccuereeruerierieriinieienieeeenieseerese e eeenesaeenens 539
18.9.2. SSL Server File USagecc.coieviiriiiiiiiiieieeieeere e 540
18.9.3. Creating CertifiCates..........couivieviiriiiieniiiieieeeeeesie et 540
18.10. Secure TCP/IP Connections with SSH Tunnelsccoceeveenieniinnnnienieneneene 542
18.11. Registering Event Log on WIndOWSccceiieierinieniinieeieseeiieie e 543
19. Server CONfIZUIATIONc..cc.eveiririirteteteteitetente ettt ettt et ettt se et sae b ssenneneenens 544
19.1. Setting Parameterscccecueiruirierienieieieiinene sttt ettt sttt s sr b e eneeneas 544
19.1.1. Parameter Names and ValUues...........ccooerieiinieiieneeienenceeseee e 544
19.1.2. Parameter Interaction via the Configuration File...........ccccccocvvininininnnnnnne. 544
19.1.3. Parameter Interaction via SQL............ccoiiiiiiiiiiiiiiiieeeceeecee e 545
19.1.4. Parameter Interaction via the Shell..........ccccooiiiiiiiininiecee 546
19.1.5. Managing Configuration File CONtents...........ccccoeereerereeneneniienenceneneeens 546

19.2. FIle LOCALIONS ...ttt ettt ettt sttt st sb et b e sbe et e eanens 548
19.3. Connections and AUthentiCatioN.c.ereerierierieniinierieneetene sttt s 549
19.3.1. CONNECHION SELHINES ...euvervrentirreeiiriertenieritetesieeite ettt et este st saeeseesbeennens 549
19.3.2. Security and AuthentiCation...........cecuevuerierienierienenieneneereseetene et sieeanens 551

19.4. ResoUrce CONSUMPLIONccveriieriierieerrieieerieestteeteenseesieessseesseesseessesssessseesssesssesssesssns 554
19,4, 1. IMIEIMOTY 1.eitieiiiesiie et eteestteete et et esitesateesbeesaeesatesabeeseenseeseseenseenseesssesnsesnseensns 554
19.4.2. DISK ettt e 557
19.4.3. Kernel ReSOUICE USAZEccvervieriienieniieiieniieniesieenieesitesteenieesieesveeveenseesene 557
19.4.4. Cost-based Vacuum Delayccccceecuiriiienieniiiniiiiiieniesieeeesee e 557
19.4.5. Background WIILeT.........cocuerieriiienienieeitenitesite sttt st ettt e e e e seneeas 558
19.4.6. Asynchronous Behavior.............cooueeiiriiiiniiniiiiiiiiestesie ettt 559

19.5. WIite AREAd L0 ...eoouviiniieiiiiie ettt ettt sttt e st eabees 561
1.5, 1. SEUNES .. .veeutietieeiieete ettt ettt ettt ettt sat e bt e st e st e e be e s bt e sateenbeesbeenaneeas 561
19.5.2. CRECKPOINES. .ccuvteruierieetieriteete ettt ettt ettt sttt e sate st ebeesbtesate s beesseesaneeas 566
19.5.30 ATCRIVING ..ceviiiiniiiiieieieeetete ettt 567

19.6. REPLICALION.cuiiuiiiieiiiiceecieeieet ettt et et st et ene s enens 568
19.6.1. SeNdING SETVET(S)..ccuveerriirieriiiiieniteeitt ettt ettt et sttt et sate b e sbeesaeeeas 568
19.6.2. IMASET SEIVET ...eeuteuiieiieniieeiteeieesite et et et esite st e bt e sate st e bt e sbeesateebeesaeenaeeeas 569
19.6.3. Standby SETVETScc.couiiiiiiiiiiienieeeeeeeeee et 570

19.7. Query PIANNINGcc.oooiiiiiiiiii et e s 572
19.7.1. Planner Method Configuration.............ceeeververeeirenenenienieneeeeenresreseeeeeneenes 572
19.7.2. Planner Cost CONSLANLSccveerteeriieriirieenitententeenteesitesiteenteesstesaeeesreesseesaeeens 573
19.7.3. Genetic QUETY OPHIMIZETccucveutririnrinieieteteiene ettt eeeneenes 575
19.7.4. Other Planner OPLiONS.........co.ceuevetririnienienieteteenesieseereeeeere s seeeeeneenes 576

19.8. Error Reporting and LOZZINGcccovevieiririniniiieieietnesesieeeceeeee st 577
19.8.1. WHEre TO LOZ .ccuveuiiieiieiieiieitee ettt s s 578
19.8.2. WHen TO L0 ettt s 581
19.8.3. WHhat TO LLOZ «..ceueeiieieiieieeeetee ettt 582
19.8.4. Using CSV-Format Log OUtpuLcceoieriiririiininieneniteieneeeene e 586

Xiii

19.8.5. ProCESS THtIE ...veeiiiiirieee ettt ettt e et e eear e e e e eeaareeeeeans 587

19.9. RUN-HIME STALISTICS...couvetieiietiriieienieeiteenitet ettt sttt ettt et sre et e b eenenee 588
19.9.1. Query and Index StatistiCS COIECLOTcceeveerriiiriienieriieieeree e 588
19.9.2. StatisticS MONILOTINGcccverveeiieriienieeieeniteste et ertteste st e bt esieesateebeesaeesaeeens 589

19.10. AutOmatiC VACUUIMINGeerureriiiiiieniieniteeteesteesiteeteesteesttesbeebeesbeesabesaseenbeesatesasesnseas 589

19.11. Client Connection Defaultsccccoeoiiiriiiriiiiiiiiiieec e 591
19.11.1. Statement BERaVIOTcccuiiiiiiriiriiiiieiieeieee ettt 591
19.11.2. Locale and FOrmattingccccocceeueririiiiinieienieeeieseeeseeeene e 595
19.11.3. Shared Library Preloadingccccooeoiiiiiiiiiniiiiiceneece e 597
19.11.4. Other Defaults

19.12. Lock ManagemeNntcc.eeciiiuiiiiiiiiieie ittt st st s

19.13. Version and Platform Compatibilityccoccverierieiriininineneneinincseseseereeeeenens 600
19.13.1. Previous PostgreSQL VEISIONSccceevuerieeeirinerenieiereeeeniesreseeeeeeneenes 600
19.13.2. Platform and Client Compatibilityccccceeverrerverenienieneeninineneeeeenenes 602

19.14. Error HandIIng.......coueoveiiiiiniiiicieieietecnteseeteteeet ettt st 603

19.15. Preset OPLONS......ccueveieiiieiiniisteteieteitett ettt et eae et s be e se et sae st st neeeneeneen 603

19.16. CUStOMIZEA OPLIONS ...uveeieniitieiiiiieiieie ettt ettt ettt ettt sbe bt e et este st ebeenaesbeeneens 605

19.17. DEVElOPEr OPHONS ..c..eeveeiiniintieiieiieiteteeteete sttt et ete st e tesbesbtetesbeeseenbesbeenaesbeeneens 605

19.18. SHOIT OPLIONS ...ceutitieiierieitteteet ettt ettt ettt ettt ettt st et esbesbe e besbeestenaesbeetesbeennens 608

20. Client AURENTICALIONeeueiiiitieiirieeiteteettete ettt ettt ettt st et sb et beebt et sbeeaesbeennens 610

20.1. The pg_hba . conf Flle ...ttt e e 610

20.2. USEr NAME MAPS ..c.eveniiiiieiiriieieniieiteieetene sttt ettt sttt st sbeenaesbeesnens 617

20.3. Authentication MEthOdSccccoeeiiriiriiiniiiencieieeee ettt 618
20.3.1. Trust AUthentiCationc.cceceeruerieiieniinienienceieneet ettt 618
20.3.2. Password AUthentiCationc..coccecverieienieneenienenieieneeeene e 619
20.3.3. GSSAPI AUthentiCationc...ccueveeieriieieriineeienienteienieeeenee et 619
20.3.4. SSPI AUthentiCatiON.........coerieieririentieitete ettt 620
20.3.5. Ident AUthentiCation..........coeeeeriirierierenieienieetene ettt sttt e saeennens 621
20.3.6. Peer AUthentiCation...........coeeeeruereenienierieiineeienc ettt saeennens 622
20.3.7. LDAP AUthentiCationc..cecceeuereerienierieniinieienieetenienieetesieeeesteeneenesaeennens 622
20.3.8. RADIUS AuthentiCationccccoceecuerierieniinieieneeieneneerenieeeenaeeneenesaeennens 625
20.3.9. Certificate AUtheNtiCatioNc..coceeuerierieiinieiineeeeerteteste et 625
20.3.10. PAM AUthentiCationcccceeuereeienierieiinieeienieeeene ettt saeennens 626
20.3.11. BSD AUthentiCationcc.ceceeruereeieniirieiineeieneeeese sttt eesaeeaeenesaeennens 626

20.4. Authentication ProbIemSccc.eeviiriiriiiiniiiienieeieetete ettt 627

21. Database ROIESccouuiiiiiiiiieiit ettt s e sttt b e st st s be e saeesaneea 628

21.1. Database ROIEScocueiiiiiiiiiieiiteiteeteet ettt sttt 628

21.2. ROIE AUITDULES . ..couteeieeeiieriteeieee ettt ettt sttt sttt e e st saeeebees 629

21.3. Role MemDbBETShipcc.cociiiiiiiiiiiiiiii e 630

21.4. DIopping ROIES...c...ooiiiiiiiiieieiieeit ettt et sttt et et es 632

21.5. Default ROLESoouieiiiiieieie ettt ettt et e e e sreennens 633

21.6. FUNCHION SECUIILYetieuieieeiieieetceieete ettt ettt ettt s e e sbe et esbe et entesseeneesbeennens 633

22. Managing Databasescceeuieriiririeitieiieieee ettt ettt et et s et b ettt et b eneen 634

22.1. OVEIVIBW ..ttt eite sttt e et eete st eat e te s et et e s bt es et e e st e et eaeetesbeemtenbeeseenteeneensesbeennans 634

22.2. Creating @ Databaseccoueeuierieriieieniieieie ettt ettt 634

22.3. Template Databasescceeeereriieieriieieie ettt ettt sttt et s sbe e 635

22.4. Database CONfIGUIAIONceoueruieiiriieienientetesteetest ettt sttt et s e e sbeennens 637

22.5. DeStroying @ Databaseccoueruieieriinieniinieienieetesieeitenee ettt 637

Xiv

22.6. TADIESPACESeeuvieiieeieeiiesite ettt ettt sttt e st e st et e esatesbbesabe e bt esbeesateenbe e bt e sabeenbeenbeas 637

23, LOCAlIZATION. ...ttt e 640
23.1. LOCALE SUPPOTL...eiiiiiiieiieriieeteeit ettt ettt site sttt et e sate s bt e bt esbeesabeebeebeesanesnsesaseas 640
231,10 OVEIVIBW ..ottt 640
23.1.2. BERAVIOTcouiiiiiiiiiiii s 641
23.1.3. PTODICINS ...oniiiiniiiiicieiecct ettt sttt e e 642

23.2. COlation SUPPOIT......covirieiiriieieniieteiteeeteeeere st ettt eese st eaesaeenesne e e enesaeennesueennens 642
23.2. 1. CONCOPLS. ..ottt sttt ettt sttt b e aeeae st enesaeeanens 643
23.2.2. Managing COlationsS.........cceeeeruirieiieniieieieeeeeese ettt 644

23.3. Character SEt SUPPOTIL......c..cocteviiiuiriiriieieie ettt ettt e 645
23.3.1. Supported Character SELS.........ccccovieruiriirieiiinieiine ettt 646
23.3.2. Setting the Character Set...........ccoeeeruererieriieieie e ettt neeseeeeens 648
23.3.3. Automatic Character Set Conversion Between Server and Client.................. 649
23.3.4. Further REadingcccoeouiiuiiiiiiiiieieeeeee ettt e 652

24. Routine Database Maintenance TasKs..........cceceereriiienenieienieee et 653
24.1. ROUtINE VACUUIMIIEeuieneiiteientieiienteeitenteeite et eete st et e nteeeeetesbeestenbeestentesseeneesbeennans 653
24.1.1. Vacuuming BasiCscc.eeueririeniiiieierieetee ettt e 653
24.1.2. Recovering DiSK SPACEcc.eeeeruiiiiienieiieieeitete sttt 654
24.1.3. Updating Planner StatiStiCscoereeuerierieniiniieienieeteriesiteiesi et 655
24.1.4. Updating The Visibility Mapc.cccoceruerieniiniiniinieienenteiesiceeenie e e 656
24.1.5. Preventing Transaction ID Wraparound Failures..........c..ccccceeevenirencncnnen. 656
24.1.5.1. Multixacts and Wraparoundceccecevereeneneenienenieeneneeneneenens 659

24.1.6. The Autovacuum Daemonccocevivirienieiieiinininccceceeee e 660

24.2. ROUtING REINACKING ...eeuvieiiieiiiiiieiieeie ettt este sttt sreste e bt esaeesebeebeenbeessaesnsesnsees 661
24.3. L.0g File MaINtENANCE......cccverieriieriieeieeiienteesteseieeteesieesitesbeesaeesseeseseeseeseesssesssesnsens 662
25. BacKUP and RESTOTEeetiiriieeiiiiiieieeite ettt sttt te et e et e s tae st e eabeesbaesasesaseenbeessnesnneens 664
25.1. SQL DUMIP....ccciiiiiiiiiiiicicie et 664
25.1.1. Restoring the DUMPcocueeiiiriiiiiieieiierieeteceete ettt et 665
25.1.2. Using pg_dumpall......cccccocueeriiiniieniieieeiieniteeieeie et ste et siee st ebeesaeesaneens 666
25.1.3. Handling Large Databasescoceevueerienienieniienienieeieenieesite st 666

25.2. File System Level BaCKUP ...cccveviiiiiiiiiiiieitetese ettt 667
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)......ccccccocevveinienieniennnen. 668
25.3.1. Setting Up WAL ATIChIVING....ccceervuiriiiiiiienieeieeieesiteeteeeesie et 669
25.3.2. Making a Base BaCKUPccooceeviiriiiiiniiiiiiiicieccceneeeeeee e 671
25.3.3. Making a Base Backup Using the Low Level APccccoceniniininnnn. 672
25.3.3.1. Making a non-exclusive low level backupccccccoeceiiniininnnnns 672

25.3.3.2. Making an exclusive low level backup..........ccccoceeeeniiiininiencnnenns 673

25.3.3.3. Backing up the data dir€Ctory..........coceeeeevirieniiiiiiienicecceeceeeeee 674

25.3.4. Recovering Using a Continuous Archive Backupccccooiiinnin. 675
25.3.5. TIMELIINES ...c.veeneeteeieeieeteee ettt ettt ettt et st e et e e e et eaesaeeneans 677
25.3.6. Tips and EXampPIescccuerieieiiiiieieieetee ettt 678
25.3.6.1. Standalone Hot Backupsccoceeeeriieiiininiiniiieeceee e 678

25.3.6.2. Compressed Archive LOgscccoeveeieieininiineneecieineneseeeeeenee 679

25.3.6.3. archive_command SCIPLS ..ccceeeerierieriieniieienieseeee et nee e 679

25.3.7. CAVEALS ..ttt ettt sttt bttt ettt b ettt st sbe et 680

26. High Availability, Load Balancing, and Replication.............ccccecererieneninnienieniencecene s 681
26.1. Comparison of Different SOIUtIONS.ccouirierieririiinieiere e 681
26.2. Log-Shipping Standby SEIVEIS.........ccceceririeneriiiieniieienie ettt 685

XV

26.2.1. PIANNING ...eoiieiiieieeieesiie ettt ettt ettt ettt et e st e ebeesaeesaneen 685

26.2.2. Standby Server OPerationcocueevueerieerieriieeriienieniteeieesieesteseeesseesaeesaneens 686
26.2.3. Preparing the Master for Standby SErversc..ccooveevveeviienienieniiiireenieniens 686
26.2.4. Setting Up @ Standby SeTVETceevueeiiiiriinieniieiieeteeieeteste st 686
26.2.5. Streaming RepliCation........cocueivuiiriiriiiiiieiieeieeiceite ettt 687
26.2.5.1. AUthentiCatiONcc.evuieieriiriiieniieteeeeete ettt 688

26.2.5.2. MONIOTING.....c.veriieiiiiieienteeteienie ettt et enre sttt ere e ne e anens 688

26.2.6. RePLCAION SIOTSc.eeiuiiieiieiieieiieeeeetee et e 689
26.2.6.1. Querying and manipulating replication slotsccceeerveencnneenens 689

26.2.6.2. Configuration EXamplec..cccociiiiiiniiiiniiiiinineceeeceeeeeeens 689

26.2.7. Cascading ReplCAtiONcccecuiiiiiiiiiiiiiiiiiciee e 690
26.2.8. Synchronous RePLCAtIONcc.ccueveiruiniirienieieininenenteteteeeeeeree e 690
26.2.8.1. Basic CONfIGUIAtION.......cc.ccveeruireriinieieieteeetereeeeee et 691

26.2.8.2. Multiple Synchronous Standbys...........cccccceererenienieenenienenennenenenn. 692

26.2.8.3. Planning for Performance............c.ccoceveevevirininencneininenenieieeeenn, 692

26.2.8.4. Planning for High Availabilityc..ccccccecrvininineneinininencieeeenn 693

26.2.9. Continuous archiving in standbycccceccevieiininiinenieeneee e 693

20.3. FAILOVET ..ottt ettt ettt st sb et b ettt sbe e 694
26.4. Alternative Method for Log Shippingcccceoeiieieniiieniiiinieneeeeeeeeecee e 695
26.4.1. IMPLEMENTATION «..vvtentetieiieiieieete ettt ettt ettt ettt et s eaesbeeneens 696
26.4.2. Record-based Log ShipPing........ccccevuerierienieneeniineeienenteientceeenie e e 696

26.5. HOt StandDycooiiiiiiiiieiiieiiiieecee et e e 697
26.5.1. USEI'S OVEIVIEW....cueiuiiuiiiiiiiieieeeitciteteeeee et sttt 697
26.5.2. Handling Query COnflictsc.ccoceecieririeniniiieninieienceecne e 699
26.5.3. AdmiIniStrator’s OVEIVIEWcc.ccueiiiriniiniiieieieieienieseeeeeee s 701
26.5.4. Hot Standby Parameter Referencecccovvveveieiienieniieiiiicicecie e 703
26.5.5. CAVEALSviiiiiiicieice et s 704

27. RecOVETY CONTIGUIALIONeeuiiriiiiiieriieniieeieeieenite st et et e siteeteebeesbtesatesabeesbeesasesnseenseessaesanesns 705
27.1. Archive RECOVETY SELLINES ..eovervieriierieiiieriierite st eieenite st ste ettt e sae et esbeesaresaseenaeas 705
27.2. ReCOVETY TarZet SELUNZSeevuveeiieiieriieeieeieesite sttt et e sttt et et esteebeesbeesaaesaseenbees 706
27.3. Standby SerVer SETHNZSueeueriieriierieeiteritente sttt et e st be et esbeesbeebeenbeesaaesaseeabeas 707
28. Monitoring Database ACHIVILYc.eereeriiriiierieniieiteeritesieesteete et e sitesatesbeesbeesatesatesbeesaeesaneens 710
28.1. Standard Unix TOOIScceciiiiiiiiiiiiiiiiiiiic e 710
28.2. The StatistiCS COLIECIOT.cceevieriieiiiieiete ettt ae s s 711
28.2.1. Statistics Collection CONfIGUIALIONcc.eecviruieiiriieienieneetenieeeie e 711
28.2.2. VIEWING STALISTICS ...ccuveuvieiieiieieeieiieetenie ettt ettt ettt ae e ne s eanens 712
28.2.3. StatisticS FUNCHONS ...cocueiiiiiiiiiiiiieeieeeeteeeeeete ettt 734

28.3. VIEWING LOCKS ...ttt s s 736
28.4. Progress REPOTTINGcccouiiiiiiiiiiiiiieict et s 737
28.4.1. VACUUM Progress RepOrting........cccceveerieeieriieeniinienieenieeseeneceieeseeeneene 737

28.5. DYNAMIC TIACINEeoveviieieiieiiriiitestetetetete ettt ettt ettt sttt ettt s 739
28.5.1. Compiling for Dynamic Tracing..........cecceeeveveeerenierenieniereinenieseneeeeeeneenes 739
28.5.2. BUIIt-in PrODES ...ttt 740
28.5.3. USING PrODEScueeiieiiiiieiieie ettt s s 749
28.5.4. Defining New Probesccccoceviiiiiiniiiieeeeese ettt 750

29. Monitoring DisK USAZEcc.ccueieiririiiiiniiicieietee sttt sttt st 752
29.1. Determining Disk USAZEccoueruieiiriiriiniiiieieiieeiesieeteee ettt s 752
29.2. Disk Full Failure........cc.coeoiiiiiiiiiiieieieicieencecee et s 753

xvi

30. Reliability and the Write-Ahead LOZ......ccceviiiiiiiiiriiiiieeee ettt et 754

30.1. REHADIIILY ...cviiiiiiiiicicic e 754
30.2. Write-Ahead Logging (WAL)cooiiiiiiiiiiiertenie ettt 756
30.3. ASYyNchronous COMIMIL........cecuerriieriierieiieerieeste et ettt et e sbeebeesbeesabesaeesabeas 756
30.4. WAL CONfIGUIALION «...eouvieiiiiiiiiieniteeiteeie ettt st ettt sit e sttt esbeesaaeebeesbeesaaesaseeabeas 758
30.5. WAL INEINALS «..cuveeiiiiieiieiieiteieeieeieete ettt ettt e a e st e eanens 761
31 ReEIESSION TESESueeuiiniieiieiiiieieteet ettt st a e st 763
31.1. RUNNING the TESESeouviiiiiiiiieieiieiet ettt s s 763
31.1.1. Running the Tests Against a Temporary Installation.............ccccccceeeeveninnnene. 763
31.1.2. Running the Tests Against an Existing Installationc.cccccoeeviiiininnene. 764
31.1.3. Additional TeSt SUILES ...c.eerrerrieeniierieniieiee ettt sttt 764
31.1.4. Locale and Encoding..........ccecveiirieieriieienie et 765

R B BT 2 i R L] £ USSP 765
31.1.6. Testing HOt Standbycccoeveriiriiiinieeie et 765

31.2. TeSt EVAIUALIONeeuiiiiiiieieiieie ettt sttt et sttt s ae b e 766
31.2.1. Error Message Differences.........coccecuerieieriiienienienieeeieeese e 767
31.2.2. Locale Differencescoerierieriieieniieiienie ettt 767
31.2.3. Date and Time Differencescecevieieriniinieninieieeeeeseeeere e 767
31.2.4. Floating-Point Differences............cecevirieriniinieninieneneeeseetese e 767
31.2.5. Row Ordering Differencesccccecvevirieniriinienenieeneeese e 768
31.2.6. Insufficient Stack Depth..........cocovieiiininiiniiiiiineeeeeeeeee 768
31.2.7. The “random” TeSt........cccoiviriiriiiiiiiiiiniieetee et 768
31.2.8. Configuration Parameters...........coceecveruirieniirirnienenieieneeieneeeenee e 769

31.3. Variant CompariSon FIlEsccceviiriiriiiiniieiiesie ettt st 769
314 TAP TESES ..ottt sttt s 770
31.5. Test Coverage EXamination...........cccccueeveieiiiiiniinieiiiicnie et 770
IV. Client Interfaces 772
32, THDPQ = C LADTATY oottt ettt ettt st ettt st e bt e st e st e bt esatesatesbeensaesaneens 774
32.1. Database Connection Control FUNCtionsccccecuviiiiinininiiiniiiinicicic 774
32.1.1. CONNECLION STINZS ..veeuveeveeruieeiientiesieeieestee st e et et esttesitesbeebeesbeesaaeenbeeseesane 781
32.1.1.1. Keyword/Value Connection Stringscceceevveereeruenseeeneereesseennnees 781

32.1.1.2. Connection URISc..cccoriiiiiiiiniiiiiiiiiceeereeeece e 781

32.1.2. Parameter Key WOIdSc..cocooiiiiiiiniiniiiiiieieeceeeeeee e 782

32.2. Connection Status FUNCHONScociiriiriiiiiiiiienieeeceerte ettt 786
32.3. Command Execution FUNCHONScccuerviiiiiinieniiiieieeniceeeete et 791
32.3.1. Main FUNCHONSootiiiiiiiiiieeieeiteeteeeeee ettt st 791
32.3.2. Retrieving Query Result Informationcccccoeoiiiniiiiniiiiniiicnene 799
32.3.3. Retrieving Other Result Informationcocceverieienieienieercceeeen 803
32.3.4. Escaping Strings for Inclusion in SQL Commands............cceceeceeririerienennenne. 803

32.4. Asynchronous Command ProCessingcceeerueerueriieienenienieiieeiesieeie e nee e 806
32.5. Retrieving Query Results ROW-BY-ROWccccoiiiiiiiiiiiiiieeiceceee e 810
32.6. Canceling QUEries in Progress........ccooiriiriiiereiieiesiee et 811
32.7. The Fast-Path INtrface.........cccoeiuiiiiiiiiiiiiiieie et 812
32.8. Asynchronous NOtHICAIONcc.evueeiiriirieniinieierteeieste ettt 813
32.9. Functions Associated with the COPY Commandc.cocevivveviivecinininicnenneneennenn 814
32.9.1. Functions for Sending COPY Data........ccccooeririeninienieniiienieeeneneeeenieeeeene 815
32.9.2. Functions for Receiving COPY Data........ccoceveeierinienieninieneiiencneeienceeenne 816

xvii

32.9.3. Obsolete FUNctions fOr COPY ...uviiiiiiiiieiieeiiiieie ettt ettt e et e e e 817

32.10. Control FUNCHONSc..eocueriiriiiiniieieriieteeeeetesie ettt sttt s e 819
32.11. Miscellaneous FUNCHIONScoceecueriirieniinienieniieienieeete ettt 820
32.12. NOtICE PrOCESSING ...uveeutieiieeiieiiteiteeite ettt ettt ettt sttt sbe e st et e bt e sabesaeeeabeas 823
32,13, EVENE SYSTEIM c.eeiiieiieeiieriieete et et site sttt e sitesate st eieesbtesbe e bt esbeesabeeabeebeesasesnsesaseas 824
32131 EVENE TYPLS ..coniiieiiiieeeieeieetee ettt et 824
32.13.2. Event Callback Procedure............cocceecueeiiinienieiiiienieniecieeeesee st 826
32.13.3. Event Support FUNCHONSc..ccciiiiiiiiiiiiiiieeececeeecce e 827
32.13.4. Event EXampIecccoociiiiiiiiiieieiecc e e 828
32.14. Environment Variablescoceoiiiiiiiiiiiiiiiienieeieeeeste ettt 831
32.15. The PassWOrd FIIeccocueiiiiiiiiiiiiiiiteeetes ettt st 832
32.16. The Connection Service Fileccocieiiiiiiiiiiieeieee e 832
32.17. LDAP Lookup of Connection Parameters............cccceeeeererieneneeiiesieiene e 833
32.18. SSL SUPPOTL.ntiiiiieiieiieeeiteeteee ettt ettt e be b st s bt e bt e sanesaeeeanees 834
32.18.1. Client Verification of Server Certificatesccoouerereereneeneneneeieneeene 834
32.18.2. Client CertifiCates.eeoueriruieiertieientieetente sttt ettt sttt et 835
32.18.3. Protection Provided in Different Modesccccevevenieiinennenciieicncene 835
32.18.4. SSL Client File USAZe.......ccceerueruiriiniinieieiiieienieeiteie sttt 837
32.18.5. SSL Library InitialiZationcc.cecverieienenirnienienienieeeeeesie et 838
32.19. Behavior in Threaded Programs...........ccocceveeveiirieninienincenieneeeeseeeeiesee e e 838
32.20. Building libpq Programs..........c..cecueverieniniinenieienieetenie ettt 839
32.21. EXamPple Prorams.......ccooceotereriiiiinienieicnieee sttt ettt sttt s s 840
33. LarEE ODJECLS ..uvenveeutiiieiteieeitet ettt ettt sttt ettt ettt se et e bt sbt et sb e bt et st enae bt et e b eeeenee 851
331 TEOAUCTION «...oveniiiieeiteie ettt ettt et bbbttt saeenaesbeennens 851
33.2. Implementation FEALUIEScccveriierieriiieieerte ettt ettt sve et e e snaeeneees 851
33.3. CHENt INTEIaCES. ...cc.viverieiiriteienieeecetcc ettt ettt s s 851
33.3.1. Creating a Large ObDJECt......c.eevuierierierieeiierieete ettt sttt st 852
33.3.2. Importing a Large ODJECT......cccueiruierieriieriienieeteeieenite sttt see st 852
33.3.3. EXxporting a Large ODJECT......ccceeruierieriieiiienieeie ettt sttt st 853
33.3.4. Opening an Existing Large ObJect.........cccceeveeriiriiirnienieiieeicenee e 853
33.3.5. Writing Data to a Large ODJECt......cccueviiiiiiierieniiiieeiienie ettt 854
33.3.6. Reading Data from a Large ObJectcccceeveeriiriiienienienieeieenee e 854
33.3.7. Seeking in a Large ObJeCt.......cccevierieriiiiiienienieeieeteste et 854
33.3.8. Obtaining the Seek Position of a Large Object........cccceecevriernienienienniennieene 855
33.3.9. Truncating a Large ObJEctccceecieviieieriinierieniniceneeecee e 855
33.3.10. Closing a Large Object DeSCIIPLOLcceoieieririeieniieieneeeeieeeereseeeenne 855
33.3.11. Removing a Large ODJEectccccecueviieiiiiiiiiiiieicieeeceee e 856

33.4. Server-side FUNCHONSccuoviiiiiiiiiiieiieeetee ettt st 856
33.5. Example Programccccocoiiiiiiiiiiiiii e 857
34. ECPG - Embedded SQL in C....oouiiieieiee ettt ettt et s 863
34,1, THE CONCEPL...ccuveeitieiieiieeeiteete ettt ettt ettt et et e s bt s be e bt e bt e st e e be e beesanesaeeeabeen 863
34.2. Managing Database CONNECTIONSc.eecveruerierieriieienteeienteeeceniesteeeesieeeeseesseeneeseeennens 863
34.2.1. Connecting to the Database Servercocooeveririeiinieeneeeeeee e 863
34.2.2. ChooSIiNg @ CONNECHIONeeueeuiiiieiietietietesieete st eeteie st et et eateseeseeeeesbeeaeenes 865
34.2.3. CloSing @ CONNECIONccutruteiertieiientiettetestcete st eetete st see et e seesbeeneesbeeaeenes 866

34.3. Running SQL COomMmAands..........ccceecueririininienieniieienieeienie ettt s 866
34.3.1. Executing SQL Statementsccccecueruieieriereerienieniienienieeeeneeeeeniesieeeesiesneenee 867
34.3.2. USING CUISOTS.eueeutiiieiierieniieteniteitenttette sttt ete sttt te b sbe et e saeeatesbesbeeseenbesaeenee 868

XViii

34.3.3. Managing TranSacCtionsccceereerieriieeniienienteeieesieesiee e eieesieeseaeeseenaeesae 868

34.3.4. Prepared StateIENTS.ccuuerierriieniierieeieenieestesite et esteesitesateeaeesseeseeeenseenseesane 868

34.4. USING HOSt VATTabIEseovuiiiiiiiiiiieeieeie ettt ettt sttt st e 869
3441 OVEIVIEW ettt s 870
34.4.2. Declare SECHONS.cc.cviiiiiiiiiiiiiieir e 870
34.4.3. Retrieving QUery ReSultS.........ccooiiriiriiiiiiinienieeieeeeceeee e 871
34.4.4. TYPE MAPPINGoveeiriiieieieiieeeeetet ettt et 872
34.4.4.1. Handling Character Stringscccceeeveerireenieneerienieeeere e 872

34.4.4.2. Accessing Special Data TYpes.......cccoceecveviriininiirieninieeeeeeseeens 873

34.4.4.2.1. timestamp, datecccerveeieriieieniiiieeneeieeeeee e 873

344422 INLETVAL ...t 874

34.4.4.2.3. numeric, deCImMal.......ccooueeeeeeeeeeeeeee e 875

34.4.4.3. Host Variables with Nonprimitive TyPesccccecererrereneerienieeenn. 876

34.4.4.3. 1. ALTAYS weevieiieiieieeie ettt sttt et 876

34.4.4.3.2. STIUCHUTES ...eevuveenreeiieniieeieenieeeite et esiee sttt ereesieesaee b sree e 877

34.4.4.3.3. TYPEAELS..c..eeiiiiieieiieeteeee e 878

34.4.4.3.4. POINLETS ...ceeeeieiieiinieeiestteite e ette et et sttt eite st s naesveeneens 879

34.4.5. Handling Nonprimitive SQL Data TyPes.......cccceverierienienieneniencieeienceeenee 879
3445, 1. ALTAYS .entiieeiieieeiteeee ettt ettt et b ettt s 879

34.4.5.2. COMPOSILE TYPES ..uveveemeiiiriieieniieienieetenie ettt sttt sae e 881

34.4.5.3. User-defined Base TYPESccceeeerieriiriienirienenieeienieeeeeeeenee e 883

34.4.6. INAICALOTS.couiiiiiiiiieieiieiieeeete ettt st s 884

34.5. DyNamic SQLcoueeiiiiiiiiiiiteierieeteeetee ettt sttt et st s 885
34.5.1. Executing Statements without a Result Setc..cccccoevvevinnienninnicncnene 885
34.5.2. Executing a Statement with Input Parametersccoeceeveieneeneenieenieeneeennn 885
34.5.3. Executing a Statement with a Result Setccccoevvevieviiiiiiinieniecieeceeee, 886

34.6. PELYPES LIDTATY ..couiiiiiiiieiiieeieeie ettt ettt sttt st e et et s et e eabeenbeas 887
34.6.1. CRATaCter STIMNES. ..coveerrieriieeieeieentierteeteenteestesteebeesteesttesabeeseesseessseenseenseesans 887
34.6.2. The NUMETIC TYPE ...veerieriiiriieiieite ettt ettt st e 887
34.6.3. The date TYPC...eouveeieeiieriieeieeiteitte ettt ettt st ettt st e be e bt e s b enbeebeesae 890
34.6.4. The timestamp TYPE.....ceveerierriiiniierieeieeriee sttt ettt ettt s 894
34.6.5. The INteTVal TYPEeeeviiriiiiiieiieiie ettt s e 897
34.6.6. The decimal TYPE.....cooeeriiriiriieriteeieee ettt sttt e 898
34.6.7. errno Values Of pELYPESIIDcoc.eeriiiiiiiiiiiiierieeeeete e 899
34.6.8. Special Constants of pgtypeslib........cccoeceviriiiininiiiiiniececeeeeeee, 900

34.7. USING DESCIIPLOT ATEASveveeuieniieiiiiieiieteeitete st et eeeseseeesnesaeenesse e e esesaeenesaeennens 900
34.7.1. Named SQL DeScriptor ATeascccccceevuerierienienieieneeieneeeesee e 900
34.7.2. SQLDA DeSCIIPtOT ATEASeeveiieiiirienieienieeeenieeerere et ne e 903
34.7.2.1. SQLDA Data StruCIUIE........cccveeeeieeeiieeeiieeeiieeeieeeeteeesaeeesseeeseseeenns 903

34.7.2.1.1. sqlda_t STUCLUTEcooviriiiiieniieieeeetceeeeee e 903

34.7.2.1.2. SQIVAr_t STrUCTUIEeevuvieiieiieniieeieeeete e 904

34.7.2.1.3. struct sqlname StrucCturecccoceeveririieniiiieniieecseeens 905

34.7.2.2. Retrieving a Result Set Using an SQLDAccccccecenininineniennncnn. 906

34.7.2.3. Passing Query Parameters Using an SQLDA.........ccccocvveninenvennncnn. 907

34.7.2.4. A Sample Application Using SQLDAccocceveviiininieninerereenn 908

34.8. Error HandIingc.oouiiieiiiiiiieiiieeieeee sttt sttt s e 914
34.8.1. Setting CallbDaCKScceevieririeiiriieieietee et 914
34.8.2. SQLCA ettt ettt 916

Xix

34.8.3. SQLSTATE VS. SOLCODE cuuuttieeieitrreeeeiirreeeeeeireeeeeeestrreeeessirssseseesssessessssseesennnns 918

34.9. PreproCesSOr DITECTIVES ...ccuueriiriieniienieriterteesite sttt ettt et sbeesteebe et e saaesaseenbeas 921
34.9.1. INCIUAING FAIEScoouviiiiiiiieieeieette ettt st e 922
34.9.2. The define and undef DIr€Ctivescceeeeiieeciieeeciieeeiie e eeree e evee e 922
34.9.3. ifdef, ifndef, else, elif, and endif Directives..........cccceeeuvrercieeercrieeniie e, 923

34.10. Processing Embedded SQL Programs..........c..cccccceeiieiieniinienineenienineeieecenie e 924

34.11. Library FUNCHOMNScocoeiuiiieiiiieieiieece ettt st 925

34,12, LarZe ODBJECES....c.ueeuiiiieiieieeiteieeie ettt ettt st s et a e st ne e 925

34.13. CH4 APPLCALIONS ..ouiiieniieiieieieeieeeeee ettt 927
34.13.1. Scope for Host Variables.............ccceeiiiiiiniiiiniiicincce e 928
34.13.2. C++ Application Development with External C Module 929

34.14. Embedded SQL COmMmANdSccceeeiuieeeiireriieeniieeeieeeeeeeiieeesaneesneeessseeesnseeensseens 931
ALLOCATE DESCRIPTORoootiiiitieeeee et 931
CONNECT ... et e e e et e e et e e et e e eetee e eteeeeaeeeeaeeean 933
DEALLOCATE DESCRIPTORooooitiiiiiiieeee et 936
DECLARE ... et e et e et e e et e e aeeeeaaee s 937
DESCRIBE ... oottt et e et e e e te e e eteeeeteeeeaaaean 939
DISCONNECT ... ettt e e et e e et e e eeaa e e e aeeeeteeeeataeeeareean 941
EXECUTE IMMEDIATE ..ottt et 943
GET DESCRIPTORooitiiiieeeee et ettt ettt e et e eavae s 944
OPEN ...ttt e e e et e et e e e et e e e tte e e eat e e etaeeeteeeaabeeenaraeenaraaan 947
PREPARE ...ttt ettt e et e e e ta e e e vaeeeateeeeasaeeaveean 949
SET AUTOCOMMIT ...ttt ettt e e et eeeve e e aveeearaa s 951
SET CONNECTIONooiiiiieiieeteetes ettt ettt e e e e va e e saveeeseveseasaeeanaaas 952
SET DESCRIPTORoooiiiiiiieeee ettt ettt et v e e eeave e eavaeeavae s 953
TYPE..... oottt et e e et e e et e e e ta e e e baeeenbae e araeearaaas 955
VAR ..ottt e e b e e et e e e ab e e etb e e sbeeeanbaeenabaeearaaas 958
WHENEVER ..ottt et st e e e s ba e e beeeeareeeaens 959

34.15. Informix Compatibility MOAEcccueriiiriiinieniiiieetesie ettt 961
34.15.1. Additional TYPESeecveeriieiieiieiieeieeie ettt ettt ettt ettt e ae e 961
34.15.2. Additional/Missing Embedded SQL Statementscceceevveereervenneeeneeenne 961
34.15.3. Informix-compatible SQLDA Descriptor AT€as........c.cceevveevueereerveereeeneenne 962
34.15.4. Additional FUNCHONS..........ieeiiiiiiiieeiie et cieeeeiee e e ebeeesreeesereeeeraeeeneeas 965
34.15.5. Additional CONSLANTS..........eeeerieiriiieeiiieeireeecteesreeesteeesbeeesreeessseeessseeesseens 974

34,16, INLEINALSc..vvvieieeiiee ettt ettt e ettt e e e et e e e e eeateeeeeeettaeeeeeetaeeeeeeerbareeeeennes 975

35. The Information SCREMIA.c..veiiiiiiiiei et e et e e eerae e e e e araeeeean 978

35.1. The SCREIMIAvvieiieiiiie et e et e e e et ae e e e eetaeeeeeeenbaeeeeeennes 978

35.2. Data TYPES ..ottt e e s e 978

35.3. information_schema_catalog NAME ..ociieeeeeiirieeeeeeireeeeeeeirreeeeeeeerereeeeeeseseeeeennns 979

35.4. administrable_role_authorizZationS oo rieieeeieeeeeeeeeeeeeerarerereeeeeeeas 979

R R T o NI Ty o Y Y oo B I =Y SRR 980

R I TS o o < R =Y =TRSOOSR 980

3. C AT A Ot T SO S i ettt e e e e e e e e e ettt e e e e e e e eet ettt ——————————————aa 984

35.8. check_constraint_rOULIiNE_USAGE .iiiiiieeeeiiiiiieeeeecireeeeeetreeeeeeerareeeeeevaeeeeeenens 985

35,0, Che K CONSETAINIES toieiiiiiiiiiiieeee et e e ettt e e e e e e e e e eeee et e taaa e e eeeeaaeaaes 986

35,10, COL LAt 0N S aiiiiiiietieeeieeeet e ettt e et e e et e e e ete e e ettt e e etteeeeateeeeateeetaaeeetaaeeteeeeteeeeabeeeaaraaan 986

35.11. collation_character_set_applicCability ciiioiieoiieeiiieeeieeeeieeeenenn 987

35.12. column_dOMAin_TSAGE civuieeirieeeiieeetieeeeteeeeteeeetteeeereeeetseeeetseeeeseeeeseeeensesensseenareaas 987

XX

35.13.
35.14.
35.15.
35.16.
35.17.
35.18.
35.19.
35.20.
35.21.
35.22.
35.23.
35.24.
35.25.
35.26.
35.27.
35.28.
35.29.
35.30.
35.31.
35.32.
35.33.
35.34.
35.35.
35.36.
35.37.
35.38.
35.39.
35.40.
35.41.
35.42.
35.43.
35.44.
35.45.
35.46.
35.47.
35.48.
35.49.
35.50.
35.51.
35.52.
35.53.
35.54.
35.55.
35.56.
35.57.
35.58.
35.59.
35.60.

COLUMNL_OPE L OIS teeeeiurereeeeeitreeeeeiireeeeeesitreeeeeessreeeeesiseeeseesiaseeeeeesssseeeeesrreeeeenntrreeeens 988
COLUMN PTIVILEGES ttiiiiiiiiiieeeiiieeeeeeeireeeeeeeitreeeeeeireeeeeesiareeeeeesasreeeeennreeeeeentrreeeens 988
COLUMN TGO TS A e turtteeeirirreeeeeiirreeeeerireeeeeeiirreeeeesisreeeeesisseseeeeissseeeeesisseseseessseeeens 989
COLUIMIIS 1vveeeutreeeureesreeeaseeessseeessseeasseessseeasssseassseessssassssesasssssssssseansseessssessessnssesensses 990
CONStTAiNt_COLUMN_USAGE tieiiirrieeeeiirreeeeeeirreeeeeeireeeeeesiareeeeeeiarseeeeesisseeeseesrnreeeens 995
CONSETAINt LAl e _USAGC it iiiiiiiiiieiittieeeeeiitreeeeeeireeeeeeeiareeeeeeiarreeeeesnreeeeeetrreeeens 996
o RN w74 o TN o B o IV R R =Y 1Y = ST 996
AOMAIN . CONSETAINES tiittitiiiieieeeeeeeieeeeeeeee e reeeeeeeeeeeeeeeeeeeras b eeeeeeeeeeeereeerrsnnnes 997
AOMA LN _ AT TS @G M uururrrrrereeeeeeeeeeieieiinrerrrrereeeeeeeeeeeaesersssessssssssesssesessessesesassesssssssens 998
AOMMAITIS teeteeeeeeeeeeieiiirtrerrteeeeeeeaeeaeasaaiaasnrssssassaseseeaaseeaesasasaanssssssssssssaeeseeesesasasnessssssens 998
L1 EMENT L VDS tuttttteiiiiitiee e ettt e e ettt e e e ettt e e e e sbateeesenbtte e e e s nbtteeeennbteeeeeannteaeeeaans 1002
ENIAD LA T O LS tiiiiiiiiiiieeeeeeeeee et e e e e e e e et e ettt —————————————totttara——— 1005
foreign_data_Wrapper_OPLioNS e eeiiieeeeecieeeeeerireeeeeerre e e e e eareeeeas 1005
FOrEign_data W APDEIS ciiiieeiiieeeeeeitieeeeeetteeeeeeirreeeeeerteeeeeessseeeeeassreeseeansseeeens 1006
fOrEign_ SErVET _OPLAONS iiiiiiiiii et e cete e e e et e e ee ettt e e e e esatre e e e e eatreeeeeaarraeeens 1006
BifeR =0 Ko oM T=F V4 =¥ ol SN O TR TR U PR RRPRPP 1007
FOreign _table 0P iONS e e eecree e e et e e e st e e e e e setre e e e e etbreeeeesaaaaeeens 1007
Bl o3 o1=% Ko oM =1 o} =Y SO ST PP PPRRRPPP 1008
KOV CO UM US AT utiiiittieeeurieeitreeetteeeetreeeetereesteeeesseeeeeseeeeseseeseseessseeessesenssesenseeas 1008
P T AT @ Sutiiiitiieeitreeeetteeeeteeeeeteeeeseeeeiseeeeseeeesseeasseesaseseasseseessseeasseeeassesensseeensseaans 1009
TEFETENTIAL CONSETAINTS ttttteeeeeeeeeeee et e e eeeeeeeeeeee et e reeaaeeeeeeaaeeeenae 1012
T01E_COLUMN_GTANES tiriierirrreeeeeiireeeeeeiiareeeeesireeeeeesisreseeesssreeseesissesesesssresseesnsnees 1013
01 TOULINE _GTANES ciiiriiiieiieiireeeeeeiteeeeeerireeeeeesaeeeeeeesaareeeeesaaeeeseenareeeeeensnees 1014
01 _£AD L GTANES trriiiieiiirieeeeeiireeeeeeitreeeeeeireeeeeestreeeeeestteeeeeessreeeeeesareeeeeansnees 1014
R OB =Y Te e §iar=t o} ot BT U OO PR URRRRRRNt 1015
0L _USAGE_GTANTES trrieeieiiireeeeeeiireeeeeeiirreeeeerireeeeeesisseeeeenssreeseessseeeeeesisresseesssrees 1016
T OUL INE_ DT AVILEGES titiieritriieeieiitreeeeeeiirreeeeeeireeeeeesiareeeeeestareeeeesiareeeeeesareeseennsnees 1017
T OUE AT @S tetetiieeitiee ettt e etteeeteeesbeeeetreeeetseeetseeestseeassseesasaeesssaeesssaeessseaaassesensseesssaaans 1017
S CEMAT @ teeeuvrieeireeitieeetteeeiteeesteeeseseeessseeetseaassseesssseessseeasssseassaeesssaeeasseeenssaeessaaans 1023
S UEIICE S teteeeeuurreeeeeeitrreeeeesitreeeeeesisreeeeeaisresseesiarseeseesssseeeeaatrseeeeeatreeeseesnreeeeennnrees 1024
SOL AT UTES urriieiieitriieeeeereee e eeete e e e eettreeeeeeiareeeeeesareeeeeeettreeeeestreeeeennrreeeeeaarees 1025
Sql_implementation_INFO . eeereeeeeerr e eeere e e ee e e e eennaes 1026
SAL_LANGUAGES trreeeerirrreeeeeiireeeeeeiireeeeeeiirreeseesisteeseesiseeseesirseesessisseeseesissesseessirees 1027
SOL P ACKEGES trreeeieeitrrieeeeeireeeeeetireeeeeettrreeeeeeirteeeeesirseeeeeaitrseeeeeairreeeeeeirreeeeeaaarees 1027
Lo A o= = B PSP UPUSPRUPPPPRRNt 1028
Lo =T I T o o F PRSPPI UPUPPRURNt 1028
SAL_S1ZING PTOFLLES tiitiiiiieiieiiiiee e et ee e e ettt e e s et e e e ettt e e e s s rnbeeeeeeanteeeeennraes 1029
LAD e CONSETAINES tttttieieeieeieeiieeeeeeeee e eeeeeeeeeeeeeeeeearaa i aaeeeeeeeeseeeeerssresranaaas 1029
T RN o v T =Y Y BRSPS 1030
LI L@ tttttiieiitieeeeecte e e e e ettt e e e ee et e e e e e e treeeeeettaeeeeeabbareeeaattaaeeeaattaaeeeaanttaeeeearraaaeeanns 1031
L AN FOTTMS cuttieeeieittieeeeeiitteeeeeeiteeeeeeeteeeeeeestaseeeeastsaeeeeaastassesaanssaseeeaassseeeeeansraeaeeanes 1032
triggered_UpPdate_COLUMMNS wiiiieeeeeiiieeeeeitreeeeeeeteeeeeeesreeeeesessaeeeeessreeeesanns 1033
Lohah e fo 1% ol BUUU OO SRRSO UU RO PRPUPRON 1034
[0TG Ll o} o A s B =Y 1Y = OO RS PRSP TR PPN 1035
PR Te 1SN o o v T =Y =Y T U USSP TR PUPUPRON 1036
USET_dEfiNEA_LYPES ttrrrrieeieiiiieeeeeitreeeeeiteeeeeeetteeeessetareeessasraeeessssaaeeeessraeeeeanes 1037
USET_MaPPING_OPELOMS ttiiiitiieeitieeeitieeeeteeeeteeeeteeeeteeeeteeeseteeeeereseeaaeeeesseeessseeenes 1038
USET_TNAPPITITS teettreeerreeitreeeireeesteeeeeeeesteeeeesseeaseseessesessssesseeeassesessseesssseesssesanses 1039

XXi

35.601. VieW_COLUMN_USEGE tirrriieeeeirreeeeeiirreeeeeeiisreeeeesisreeseesiseeeeeesisseseeessissseseessseseeennns 1040

35.602. VieW _TOULINE_ USAGE ttrriiiieeirrieeeeiitreeeeeeeitreeeeeeereeeeeesireeeeeesiareeeeeeeareeeeesareeeeenns 1040
35,03, Vi eW L a0l @ USATC i iiiiitiieeeeirreeeeeeitreeeeeeeitreeeeeeebreeeeestreeeeeenareeeeeeerreeeeennreeeeeaas 1041
304, VIEWS tetrieeieetie ettt ettt ettt ettt st et e bt h e st e e bt e s be et e e b e e sabeeaae et 1042
V. Server Programming 1044
36. EXtending SQL.......cocooiiiiiiiieeeeeee ettt e 1046
36.1. How Extensibility WOTKS........ccccoiiiiiiiiiiiiiceee e 1046
36.2. The PostgreSQL Type SyStem.......c.ccuiiiiiiiriiiiiiiiieieeieee e 1046
30.2.1. BASE TYPES ..ttt ettt sttt sttt st 1046
36.2.2. COMPOSILE TYPES ...eevieuieieriieieetieieeteettete ettt sttt et este st te st eseeeeeaeeeeeaes 1047
36.2.3. DOMAINS ...ttt ettt ettt st ettt et e st e este et et e s beese et e eaeeeeeaes 1047
36.2.4. PSEUAO-TYPES -.cuveeuieeieiieieeiieieet ettt ettt ettt e ae s 1047
36.2.5. POlymOIphic TYPES ...ceueeeeriieieiieieiie ettt ettt sttt 1047

36.3. User-defined FUNCHONS.......cc.ciiiiiiiiieiieiieiese ettt 1048
36.4. Query Language (SQL) FUNCHONSooueeiiiiiieiiiieiesieee e 1049
36.4.1. Arguments for SQL FUnctions..........cccceoeriereniniieninieneeeenieeeeeceee e 1050
36.4.2. SQL Functions on Base TYPESccceeveererieriininieniinienie et 1050
36.4.3. SQL Functions on Composite TYPESccceevuerrerieniereenieneeienienieiesceneenees 1052
36.4.4. SQL Functions with Output Parameterscecevereeneneerenenienieneeneenne. 1055
36.4.5. SQL Functions with Variable Numbers of Arguments...........c.cceceeevereennenne. 1056
36.4.6. SQL Functions with Default Values for Arguments...........ccccceeevevvencenncnne. 1057
36.4.7. SQL Functions as Table SOUICEScc.ccoovieeviiiieiiiecieeeeee e 1058
36.4.8. SQL Functions Returning Setsccccceerierieriernieenieniesieenieenee e eveeneeens 1059
36.4.9. SQL Functions RetUrning TABLEc.cecvertierierieerieeniieneeseeesieesieessreesseenaeens 1061
36.4.10. Polymorphic SQL FUNCHONS ...c..ceviiriiiiiiniieniieieeneeeee et 1061
36.4.11. SQL Functions with Collations.............ccceeeviiieiieeiiieeeiie e e e 1063

36.5. FUNction OVerlOadingeecveeiierieriieniieiteste sttt ettt steebe b e sresane e 1064
36.6. Function Volatility Cate@OTIEsccuerueriirriierienieiieesieesiteeteeieesieesteeteebeesisesneenne 1065
36.7. Procedural Language FUNCHIONScccueriiiiiienieniiiieeieenic ettt 1066
36.8. Internal FUNCHONSccoiiiiiiiiiiiiiiiiicc s 1066
36.9. C-Language FUNCHONS.oecuiriieiierieeieeitesite sttt ettt st et eb e st e saae e 1067
36.9.1. Dynamic Loading.........ccccueeueriiieniienienieeitesteeie ettt sttt 1067
36.9.2. Base Types in C-Language Functions..........cc.cecceceeieveencneenenenicniencenene. 1068
36.9.3. Version 0 Calling CONVENLIONSccccevuiruieieniieieniieeeee e eeeene e 1071
36.9.4. Version 1 Calling CONVENLIONSccccevuiruieieniieieiieieee e 1074
36.9.5. WIItING COAE.....couirriiiieieiiniineriestcetet ettt st sae e 1076
36.9.6. Compiling and Linking Dynamically-loaded Functions............c.ccccccee.e. 1077
36.9.7. CompoSite-type ATZUIMENLSc..coveveurruerrirrinrenreeeeereeenseneeseneeeneesessessensens 1079
36.9.8. Returning Rows (Composite TYPES)coevverrerveneeeeinienenieeereeeenresrenrennene 1081
36.9.9. REtUINING SELS......eoveviereuieiieiiniertenieietee ettt ettt st sae e saenaene 1082
36.9.10. Polymorphic Arguments and Return TyPesc.ccceveveruenveveveeninrennennene 1088
36.9.11. Transform FUNCHONScc.eeiiiriiiiiiiiieie e 1090
36.9.12. Shared Memory and LWLOCKSccceviiiiriiniiienceieie e 1090
36.9.13. Using C++ for EXtensibility........ccocovoieriiiininiiiinicee e 1091
36.10. User-defined AZZIEZALESccueruerurerieriieienieeierieeiteteeteete st iteste b etesbeeeee st saeeneesees 1091
36.10.1. Moving-Aggregate MOde.........cccuevirieniirieienieeienieetenee et 1093
36.10.2. Polymorphic and Variadic AgEregates.......c.ccoeeveruereeneneerienenienienceneenees 1095

xxii

36.10.3. Ordered-Set AZGIEZALES......ecvueerrierieriieeriienienteeteesiteseesreenieesieesareeseenaeens 1096

36.10.4. Partial AGEreZationeevveerueeriierieeieeniiertesteeieesitesitesteeseesieesaseeseenaeens 1097
36.10.5. Support Functions for AZEregatesccuevverierrieenienieenieenieenieeseeesieeneeens 1098
36.11. User-defined TYPES ...cccveerieriiriieniieeieeie ettt ettt ettt st ettt e b 1099
36.11.1. TOAST ConSiderations.........coceecveruireeruerienuenieeienieeeeneeseereseeeneneseeesenaee 1102
36.12. User-defined OPETatOrS.........ccevueeveiirierinieerenieneereeieeresneeeesaesaeene s eeneseeneenenaee 1104
36.13. Operator Optimization Information.............ccccceeeieiiniiniiniiiencieceeceee e 1104
36.13. 1. COMMUTATOR teuveeurentieieeienieetesteeeeeneeetesne st enes st eaneaeeneeae st esnesseennesseeneennenaee 1105
36.13.2. NEGATOR ..ottt sttt ettt et sttt et et ae st ne e et ne e 1106
36.13.3. RESTRICT wouteiieiieiieieeie st ettt eeeete et e st ae st e ae et e e st e ne e e neeneenesaee 1106
30.13.4. TOTIN ettt ettt sttt ettt b et b e bt ettt ea e b nennene 1107
360.13.5. HASHES c.eeuteutritrtieteteteteutete st sttt et eat st st ae et ese e bt s b sa s s seeaeenesbesnennene 1107
360.13.0. MERGES . c.ccutiutiuiitintetetenteitetesiestestesestesesstetessesaeseeseestesesaesaesessententsnessensensens 1108
36.14. Interfacing Extensions To INAEXES........ccccveeriririnienieieiiiniineneeeeeeese e 1109
36.14.1. Index Methods and Operator Classescceeveveeerererienueneeeenenrennennens 1109
36.14.2. Index Method Strategiesc.eecueririererierieniieiene e 1110
36.14.3. Index Method Support ROUHNEScccceiuieieniriiniiniene e 1112
36.14.4. An EXQAMPIEooiiiiiiiiiiiieieee e e 1115
36.14.5. Operator Classes and Operator Families..........cccccocevceeninennencnvienencenee. 1117
36.14.6. System Dependencies on Operator Classescoceeceerereerienierienieneeneenne 1120
36.14.7. Ordering OPETratorsccceeeetererienierienienieetenieeieentesieetesbesesesesseeneenees 1121
36.14.8. Special Features of Operator Classes.........c.ccoeeverereeneneerienenienieneeneenees 1122
36.15. Packaging Related Objects into an EXtensioncccceceeverveeneneenencnienienceneenne. 1123
36.15.1. EXtenSion Files.....c..coceviiiiiiiniiiiiiieicntcesieeee ettt 1124
36.15.2. Extension Relocatabilitycccoccvevveeiiiriienienieeieesceeee e 1125
36.15.3. Extension Configuration Tables.........cccecververiiirriienienienieeieenee e 1126
36.15.4. EXtension UPAaesccceeeverriierienienieeiienteeteeieesitesiee st eieesieesieeeseenaeens 1127
36.15.5. Security Considerations for EXtENSIONSccceevveerienieniiieneeneenieeieeaeens 1129
36.15.5.1. Security Considerations for Extension Functionscc.ceccueun. 1129

36.15.5.2. Security Considerations for Extension SCripts.........ccccceveevvercuenne 1129

36.15.6. EXtension EXaAmPIecoceeviieniiiniiniiiiiienieeieeeeieste sttt 1130
36.16. Extension Building INfrastruCtureo.ccoecieviiinieinieniiiieeeeee st 1131
37 TIIZEETS weeeuteeeeeite ettt ettt ettt et ettt e sat e st e bt e s bt e sa bt e bt e bt e s et e e bt e st e sateeabe e bt e sateenbeensaenaees 1135
37.1. Overview of Trigger BEhavior..........ccccoceeciiriiiiiniinieiinicicceecneceseeere e 1135
37.2. Visibility of Data Changes.........c..coceeuieieiinieieninieeeeeeeene e 1137
37.3. Writing Trigger Functions in Cc..cccociniiiininiiiniec e 1138
37.4. A Complete Trigger EXample...........cccooiiiiiniiiininieiiieeceee e 1141
38 EVENE TIIZEETS ..ttt et s 1145
38.1. Overview of Event Trigger Behaviorccccoiiiiiiiiiiiniiicececeeee 1145
38.2. Event Trigger Firing MatriXcccceoveiiieieriineeiecieeteie ettt 1146
38.3. Writing Event Trigger Functions in C..........ccocoiiiieiinieiinieeree e 1151
38.4. A Complete Event Trigger EXamplecccoceeoieiirieiinieieeeiee e 1152
38.5. A Table Rewrite Event Trigger Example..........ccccoooieiiiieiiniiieneeeceeeee e 1154
39. The RUIE SYSIEIMc.eouiriiiiieieiieiiiie ettt sttt st s aene 1156
39.1. The QUETY TIEC.....ceueeiieuietietieterteeite ettt ettt ettt et et st s b e et e e e e 1156
39.2. Views and the Rule SYStemccoeiiiiiiiiiiiiiiieineeeec e 1158
39.2.1. How SELECT Rules Workccccooiiiiiiiiiii 1158
39.2.2. View Rules in NON-SELECT Statementsccecveeeeueeerueruenueneneenrenrennennens 1163

XXiil

39.2.3. The Power of Views in PostgreSQLccocveviiriienieniieniieiceeeseeeeeene 1164

39.2.4. UPAAtiNG @ VIBW...ecuuiiiieiiiiieeiieitie st eie et site st st e it site st esaesseesateebeeaeens 1164

39.3. MaterialiZe€d VIEWScceeruiriieiiiiiiieiieieetest ettt ettt ettt st s e 1165
39.4. Rules on INSERT, UPDATE, aNd DELETEcccoeoivuinuiniiiiiiniieeiiiesie s 1168
39.4.1. How Update Rules WOTKcccooiiriiriiiiiiiienieeeeeceteee e 1169
39.4.1.1. A First Rule Step by Step....cooeeriiiiiiiiiniiiieeeeeereeeeeesee e 1170

39.4.2. Cooperation With VIEWS.......cccccieviiriiiiiiiiiieniieict e 1173

39.5. Rules and Privileesccooieiiiiiiiiiiiiiciie et 1179
39.6. Rules and Command STAtUS..........coceereerieirienienieeieeseenite ettt ete e sire e 1181
39.7. Rules Versus TIIZZETSccuerieiiiriiiiiiiiieieeie ettt s 1182
40. Procedural Languagesc.ccoeiiiiiiiiiiieeieieeeeeeet et 1185
40.1. Installing Procedural Languagescccceerieriirniinieniieeieereenee et 1185
41. PL/pgSQL - SQL Procedural Languageccoceeveeriiniinnieiiienieniceieenieeseeee e 1188
A1.1. OVEIVIEW ettt ettt ettt ettt et e et et b et e st e et e bt sue et e ebeeate et eseenaeseeentenbeeneenteene 1188
41.1.1. Advantages of Using PL/PZSQLc.cooiiiiiiiiiieieeeee e 1188
41.1.2. Supported Argument and Result Data TYpes.......cccceeeverereeneiienenieieee 1189

41.2. Structure of PL/PZSQL......ooiiiiiiee ettt st 1189
41.3. DECLATALIONS ...ttt sttt ettt sttt ettt et sbt et e b e eaee bt ebtentesbeenbenbeenaenteeae 1191
41.3.1. Declaring Function Parameters...........c..coccevererienenienieninieneneeesieeeeiene 1192
4132, ALTIAS ottt sttt ettt s 1194
41.3.3. COPYING TYPES -evveveemieiiriieienieeteteettete sttt sttt sttt et st naeeae 1195
4134 ROW TYPES.cutiiieniiiieitenieetetesteetet ettt sttt sttt ettt st s naeeae 1195
41.3.5. RECOTA TYPES .eevvinvieiieiiiieeiesieetet ettt sttt sttt ettt st s aeeae 1196
41.3.6. Collation of PL/pgSQL Variablescccceoereriereniriieninieneneeieneereniene 1196

1.4, EXPIESSIONS .cuuterurieteesieertteeiteeteenteestesteeteessaessseesseesseesssessseesseesseesnsesnsesnseesssesssesnseens 1197
41.5. BaSIC STALBIMENLS....ccueitiriietitietenieeitete sttt ettt et ettt et besee et sbeeaesbeennesbesenensenne 1198
41.5.1. ASSIZNIMENLE ...eeuvieniieiieeiieeiteeitesiteeie et estteebeebeesbeesabeebeebeesasessseenbeessnesssesnee 1198
41.5.2. Executing a Command With No Result........c.cccooovvvviieiiiniiniiiniiiienieniee 1198
41.5.3. Executing a Query with a Single-row Result...........ccceccveniiniiiniiiiiieniienienne 1199
41.5.4. Executing Dynamic Commandsccccueevuervieenieniensieeniienieeieenieeseesveenne 1201
41.5.5. Obtaining the Result Status..........coceeriiriiniienieeniieeieeeeiee e 1204
41.5.6. Doing Nothing At Allccceeviiiiiiiieierieeeeeete ettt 1205

41.6. CONLIOl SIIUCTUTES......ouveriieriiieteniieteie ettt ettt ettt et sr e et ene e ene b eaneneene 1206
41.6.1. Returning From a FUNCtion............cccceeiiiiiininiieniiniiieeeceeecncerene 1206
41.6.1.1. RETURN c..eetiiuieiinteetente et ettt st esne st easesneeeeenesaeenesreeanenneene 1206

41.6.1.2. RETURN NEXT and RETURN QUERY ...ccccccceruieuerrireernereenenreenenenne 1207

41.6.2. CoNAIIONALSveeveiiiiiiiieieeieertee ettt ettt sttt e 1208
41.6.2.1. IF-THEN ..ecttiieiiiteeienteee ettt ettt se e r e s sae s ne s eaneneene 1209

41.6.2.2. IF-THEN-ELSE ..c.tetteitirieteeieeient et seene s eieese e sae e sne s e eaneneene 1209

41.6.2.3. TFE-THEN=ELSTE ctteittitteeeteetietesteeteneesnteeesseeneesseeseessesneesessesnsensenns 1210

41.6.2.4. SIMPIE CASE .eouiiiieieiieiieteeteete ettt ettt te st esee sttt e sae e eeesbeeneeneeene 1211

41.6.2.5. Searched CASE....c.eeiiiiuieieiietieieet ettt ettt st ee e 1211

41.6.3. SIMPLE LOOPS ...cnvieieiieieeieeet ettt ettt st 1212
41.6.3.1. LOOP utiiieiieieete ettt sttt ettt sttt st b et e sttt e st sae et e beeneeteeae 1212

41.0.3.2. EXTIT coittiieiieiiete et ettt et et et et sttt tesbt et bt e st e bt e st enbesbeebesbesaeeteene 1212

41.6.3.3. CONTINUE ..eeuterterteetenteritetesteetesteestestesbtentesbeestentesseenaesbeensesbesanensenne 1213

41.6.3.4. WHILE cveitieeieeeneeetetesie ettt sttt es b s e e et eae b b nene 1214

41.6.3.5. FOR (Integer Variant)coccevereerienerienienieeienieeeeniesieeiesieeeenieene 1214

XXV

41.6.4. Looping Through Query Resultsccccuevvieriieniiniieeieeiienieeieeee e 1215

41.6.5. Looping Through ATTAYSccoueeiiiriiinienieieeniiesteeie ettt 1216
41.6.6. Trapping EITOTS ..cc.eovuiiiiiiieeiiesieeieeteste ettt ettt st et 1217
41.6.6.1. Obtaining Information About an Error...........cccceevvieivennienieniennenne 1219

41.6.7. Obtaining Execution Location Informationcecceeveenieniienninnienienne 1221

AT, CULSOTS ..ottt ettt ettt ettt s bt et ae et e st st esne s bt ease st eaeesnesaeennesbeennenneene 1221
41.7.1. Declaring Cursor Variablesc.coceoirieneninieninieieneeeeeseeeseerenene 1222
41.7.2. Opening CUISOTSc.ccoueruierierieeietieeeteeieeee st enesre st eesesseeeesaesaeenesseeaneneene 1222
41.7.2.1. OPEN FOR QUET Y eeeeteresreeerereerssreesiseeessseeesssseesssesssssesssssesssssesssssesnnnns 1222

41.7.2.2. OPEN FOR EXECUTE ..eootectieuieieniieieiesieenesieeeeseeneesaesmeenesseennenene 1223

41.7.2.3. Opening a Bound Cursor...........c.cccceeuiiieiiininiiinieicic e 1223

A1.7.3. USINZ CUISOTS...eeueeeieeiitieieeteesiteeteeteestte et et esbtesatesteesbeesatesaeeebeesseesasenane 1224
41731 FETCH ottt st e s s 1224

A1.7.3.2. MOVE .ottt sttt st sttt b st s st sae b ne e 1225

41.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..ccoeviiviiiieniiiicienieiieiene 1225

41.7.3.4. CLOSE utrtiteieeeteieeteste ettt sttt ettt s st s 1225

41.7.3.5. Returning CUISOIScccuerueruierieniieieniesiieienteetentesieenteseeeseesbesaneneeene 1226

41.7.4. Looping Through a Cursor’s Result..........cccccoerieniniiiininieniiiecnceeee 1227

41.8. Errors and MESSAZESc..ueueruieieriieiienieitieiesteeite st ite sttt et st eite st saee e bt etesbesaseneeeae 1228
41.8.1. Reporting Errors and MESSAZESccccevverueeriererienienieienieeeenesieeiesieeeenienne 1228
41.8.2. ChecKing ASSEITIONS ...c..co.eerueruerieriirienienieeienieeitentesteentesteeeesaesbeetesbeeaeenseene 1230

41.9. TrigEEr PrOCEAUIESc..erueeuiiiieiiiniieiieieeitetest ettt sttt sttt ettt sbe e e eae 1230
41.9.1. Triggers on Data Changes.........c.ccoceeeevireenenenienenieieneeeene e 1231
41.9.2. Triggers 0N EVENLSccccoiiriiriiiiiiiiiiiiieeesceteeseceteste et 1238
41.10. PL/pgSQL Under the HOOGoeouiriiiiiiiieciieieeriteeie ettt 1238
41.10.1. Variable SUDStItULIONc..ccoerieiiriirieiireetenceteeeeceteeeee et 1239
41.10.2. Plan CaChingc.covviiiiiiieeriieiieeieeitesite ettt ste et et esteste et e snesaneenee 1241
41.11. Tips for Developing in PL/PZSQL.......cooiiriiiiiiiienienieeieetesee sttt 1242
41.11.1. Handling of Quotation Marksccccevieriierieenienienieeieerieeieeiee e 1243
41.11.2. Additional Compile-time Checkseevuerviiniiniieriiinienieeieeieeseeeieee 1244
41.12. Porting from Oracle PL/SQL.......ccccoeiiiiiiiiniiniiiieeteete ettt 1245
41.12.1. POrting EXAmMPIEScevuviiiieiiiiriieeieeiterite ettt ettt st 1246
41.12.2. Other Things to Watch FOr.........ccccooiiiiiiiiiiiiieceeceeeceeeeeeee 1251
41.12.2.1. Implicit Rollback after EXCeptions........c..cccceceeeuirceenireenienennennenne 1252

41.12.2.2. EXECUTE tutteueeeerieetenieeeeteeteeee st eseessesieesnesseessesesseesaesaeenessesanensene 1252

41.12.2.3. Optimizing PL/pgSQL Functions..........c.cccceceeirveenirveenenenceennene 1252

41123, APPENAIX..niiiiiiiiiiiiieieiieieee ettt st 1252

42. PL/Tcl - Tcl Procedural Language............ccocevuiiiiiiiiiiinieieieceeiesieeeeie e 1256
A2 1. OVEIVIEW ..ttt ettt ettt et e bt sttt e sbtesat e st e e bt e sbeesabeeabe e bt e sateebeeseens 1256
42.2. PL/Tcl Functions and ATZUMENTS............ceouirtieiereeieniesieeieneeeeeseeeeeseeseeesesseeneeneeene 1256
42.3. Data Values in PL/TCl......cccuiiiiiiieeee ettt 1258
42.4. Global Data in PLITCIcocooiiiiiiiieiiiiiniencecetee ettt 1258
42.5. Database Access from PL/TClcocooiiiiiiiiiiii et 1258
42.6. Trigger Procedures in PL/TCL.....ccoooiiiiiiiiiiiiit e 1261
42.7. Event Trigger Procedures in PL/TCl.........cccooiiiiiiiiiiniiiiieeecee e 1263
42.8. Error Handling in PL/TCLu....co.ciiiiiiiiiiiiei et 1263
42.9. Modules and the unknown Command............cccccocereeririineniniieneecene e 1264
42.10. Tcl Procedure NAMEScc.cocueririeniiniiienieetent ettt ettt s 1264

XXV

43. PL/Perl - Perl Procedural Language...........ccceeieriiiieenieniieieeieeniie sttt s 1266

43.1. PL/Per] Functions and ATZUMENLS.........cccueerieriirnieenienieeieerieenieesteesseesieesenesnseenseens 1266
43.2. Data Values in PL/PerL.........ccccocciiiiiiiiiiiiiiiinictceec sttt 1270
43.3. BUilt-in FUNCHONS ..c..eoviiiiiiiiiiiicciccrtcetetctc ettt 1270
43.3.1. Database Access from PL/Perl.........ccccccooceiiniiiiiiniiinieeciccnceeee 1270
43.3.2. Utility Functions in PL/Perlcccccoooiiiiiiiiiiiiiiieeceeceeeeeeeee 1273

43.4. Global Values in PL/PETLccccoiiiiiiiiiiiiiieeeeetce ettt 1275
43.5. Trusted and Untrusted PL/Per]cocooiiiiiiiiiiiiiiicecetceeeeec e 1276
43.6. PL/PEIL TIIZZELS ..ottt sttt et st 1277
43.77. PL/Per]l EVent TIIZZETScc.couiiiiriiiiiiiiieieeteeeee ettt et s 1278
43.8. PL/Per] Under the HOOdcocooiiiiiiiiiiiiiieeetete ettt 1279
43.8.1. CONfIGUIALION «..cuviniiiiieiiriietiteteteteite ettt ettt ettt s sa e 1279
43.8.2. Limitations and Missing Features.............ccccoverieiiinieiinieene e 1280

44. PL/Python - Python Procedural Language............cccoeeeruirieienenieienieeieie e 1282
44.1. Python 2 vs. PYthOn 3...c..cooiiiiiiiiieetee ettt 1282
44.2. PL/Python FUNCHONS ...cc.eeitiitiiiiiieierieet ettt et 1283
44.3. DAtA VAIUECScoueieiiiieieeieeeet ettt ettt st et b ettt st st bt 1285
44.3.1. Data TYPE Mapping.......cccceevuerueeieniinienieeiteiesieeitenieetcete st ete s st eesbeeneeneeene 1285
AA.3.2, NULL NOTIE ...ttt ettt e e eeeeeeeseesesesssaraseeerees 1286
44.3.3. AITAYS, LASTS .evieniiiieiierieeitetestte ettt sttt ettt st s 1286
44.3.4. COmMPOSILE TYPES..cveruieriiriieiiriieieieeitete sttt ettt 1287
44.3.5. Set-returning FUNCHONS.co.coiiiiriiiieineeneeteee et 1289

44.4. Sharing Datacoceeiiriiiiiiiniiieeeteeet ettt sttt st sttt 1290
44.5. Anonymous Code BIOCKSc.ceviirieriiiiriienienieeitesteete ettt eieesiee e eaee s 1290
44.6. TriZEET FUNCLIONSeoctieiiieeiieiieiiieete ettt ste sttt e st e sitesbeesaeesaaesabeenseenseesaseenseenseens 1291
4477, DAtaDASE ACCESS . .vevvenreiienteniieitenieeitentesitetesteeitesttsitestesbtessen bt eatessesseenaesbeensenbesanensenne 1291
44.7.1. Database Access FUNCHONS.......c..coirieriirienenerieenecteeeeese e 1292
44.7.2. Trapping BITOTS ..ccveiiiiiiiiieeiiecteeecte ettt ettt st ne e 1294

44.8. EXPLICIt SUDTANSACTIONS ...evvieuiieiieriienieetieniie st eteesitesttesbeesteesteesabeenseeseeseseeseenseens 1295
44.8.1. Subtransaction Context Managerseecueeveerieriersieenienieeeeesieeseeseeenne 1295
44.8.2. Older Python VETSIONScoceeriiriieiniieniieeieeieesite ettt et et e e sine e 1296

44.9. ULIILY FUNCLIONS ..c..veiiieiieeieeieeite ettt ettt ettt sttt st s esiaeebeeaee s 1297
44.10. Environment Variablesccccocceceririeiininiinieeenenterene et 1298
45. Server Programming INETaCEccuiriiiriiiiiiiiiiieeieceeeeee ettt 1300
45.1. Interface FUNCHONS ..c..eeiuiirieiiiiiieeieee ettt st st e 1300
N &4 BeT0) 111 1= AN 1300

N o (051 o TP 1302

N 24 (5] o TSP TRSPRSRP 1303

] o4 5 070 o T OO SO OSSP SOSU PO U RO PPTOPRRPPPITIN 1304

SPI _EXECULE.cceeeiieieeeeeeeeee et e e et e e e e e e et e e e e aeseeeeeaeteesessaaeaaeeeees 1305

N & o RN 1309
SPL_eXeCUte_WIth_aIESccueeiiiiiiiieieeiieieee ettt e 1310
SPI_PIEPATE ..ottt ettt sttt st ettt 1312

SPI_ PIEPATE _CUISOTeiiiiiuiiitieiieeiteeteete ettt ettt ettt st e be e b e saee e enee s 1314
SPI_PIePare_PAraImsc...cevueerueeriiirieeieenieeniteeteettesite st et esreesieesareebeesreesareereeneens 1315
SPI_ELArZCOUNLcctitieiiiiieiteieettete ettt sttt ettt see st be e it eaeeaesas 1316
SPL_getargtyPeid......ccueruieiiiiiieieriteeet ettt ettt 1317
SPI_iS_CUISOT_PIAN ...ttt ettt 1318

XXVi

SPI_@XECULE_PLAN...eiiuiiiiiiiiiieiieiie ettt ettt st et e st e st e st ebe e bt e sateenbeeaeens 1319

SPI_execute_plan_with_paramliSt........cc.cceecveeviiiniienieniieniienienee st 1321

N o I (1) o OO OO OO U PPN 1322
SPI_CUISOT_OPEII ...ttt ettt ettt ettt ettt e bt e sae e st ebe e bt e sateenbeenbeens 1323
SPI_cursor_Open_wWith_argscovueereerienienieeitenteete ettt sttt e 1325
SPI_cursor_open_with_paramlist...........ccccoceecieriniieieniniinieeee e 1327

N &4 Be1 T Te) ol 1 0L« PN 1328

N &4 e 15 T0) Al (<1 o) + DTN 1329

N &4 Be Y0 Al 1 1101/ N 1330
SPI_SCIOll_CUISOr_fEtCH...uuuveeiiiiiiiiiiec e 1331
SPI_SCIOIl_CUISOI_INOVE ..uvvvvvieiiiieeeeeeeeeee ettt e e e e e e e e e e e e e eaaaaarareeeeeeeeeeeeeeesennnnnees 1332

SPI CUISOT _CLOSE....eeeeeeeeeeee ettt e e e e e e e e e ee e e e s s aeeaeeees 1333
SPI_KEEPPIAN ..ottt st 1334
SPL_SAVEPIAN ...ttt ettt et sttt e 1335

45.2. Interface SUPPOrt FUNCHONSc.covuiiieiiiiiieiistieiere ettt 1336
SPLUTNAME ...ceeeiiiieeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e et eeeeeeeeeeeeaeaeeaaa 1336
SPIL U NUIMDET et e et e e e e et et e e eeeeeeeeseseesesans 1337
SPI_ZEVALUE ...ttt ettt ettt e 1338
SPL_getbinvalcoueiiiiiiiiiieieeee et 1339
SPI_GELEYPE ..ottt sttt ettt st 1340
SPI_EtYPEIA...ccueeiiiiiiieiieeteeeee ettt ettt 1341
SPI_ZEtrEINAMEc..eeutiiieiiiiieiteieritetet ettt ettt 1342
SPI_ZENSPNAIME.ccuveieeiiiiieiieieriteteet ettt ettt sttt ettt ettt s sbs et saeeaenaee 1343

45.3. MemOry MaNAQZEMENLcccveevierireeieeieetienienteeteeseesseesseesseesseessseessessseesssesssesnseens 1344
SPI_PAIlOC ..ciuttiiiiieiieiie ettt sttt ettt e st e et e st e st e st e e e aeesabeenbeenneens 1344
SPI_TEPAIIOC ...ccetieteetieete ettt ettt st st e aee s 1346

N o I 02 (TS EUOUUSUPTRPRRPRPR 1347
SPI_COPYLUPIE ...ttt ettt ettt et sat e st e be e bt e sabeenbeenaeens 1348

N o I (0014 11001 o) (IO OO RO PTUPRRPPI 1349
SPL_MOITYTUPIE ...eeeniiiieeteeeete ettt sttt st e 1350
SPI_TEEIUPIE.eeetieiieeite ettt ettt sttt st e aee s 1352
SPI_fretUPLabIe.coouiiiiiiiieiieiteeteeeeee ettt sttt st e 1353
SPILTEEPIAN ...ttt st e 1354

45.4. Visibility of Data Changes..........c.ccecererieiienieienieeeneneereneeeere e 1355
45.5. EXAMPIES ...coiniiiiiiiiiieieceeteeteeet ettt st et st 1355
46. Background Worker ProCESSES..........cuevuirieiiinirieiieicieitctee et 1359
47. L0gICAl DECOTINGcueiiiiieiiiieieiieee ettt et s 1363
47.1. Logical Decoding EXamples...........ccccoiiiiiiiniiiiiiiieieitcieeeeeie e e 1363
47.2. Logical Decoding CONCEPLScccveerreriirriieniieniieieenitesiteeteesieesitesateereesieesiaeenseenaeens 1365
47.2.1. Logical DeCOING.......cevieuieriiitieiestieiee ettt ettt 1365
47.2.2. Replication SIOtScceoirieiiiiieieieeieie ettt 1365
47.2.3. OUtPUL PIUGINS ..ottt 1366
47.2.4. EXported SNapShOLS.c.ceuiiiuiiieieriieiieie ettt 1366

47.3. Streaming Replication Protocol Interfaceccoceverieieniiiiininienciceeeeeee 1366
47.4. Logical Decoding SQL INterface..........ccceeouerieienirieneiieienieeeie e 1367
47.5. System Catalogs Related to Logical Decodingc.ccoceeverercieneniienciennenenieene 1367
47.6. Logical Decoding Output PIUZINSc..coeeiiiriiiiiiniiieieiieiesiecteieecee e 1367
47.6.1. Initialization FUNCHION..........cccoieieiiiiiiniincicicic e 1367

XXVii

47.6.2. CapabIlitiesccccoveiiuiiiiiiiiiiicieie e 1368

47.6.3. OULPUL MOAES.....eouvieiieriiieieeite sttt ettt ste ettt e satesteebeesanesaneeane 1368
47.6.4. Output Plugin Callbacksccocuervuerriiiniinieiieeniieeieeieeste st 1368
47.6.4.1. Startup Callbackccceeevueeriiiiiiiieiiiie e 1369

47.6.4.2. Shutdown Callback..........ccccuveevrieiiiieeiiieeiie e eeree e e e 1369

47.6.4.3. Transaction Begin Callbackccccoccocueeiininiininiininiecneeieiee 1369

47.6.4.4. Transaction End Callbackcccceeeeeiiviiiieiiiiieiceeiieeee e 1369

47.6.4.5. Change Callbackccccceeieiiiniiiiniiicicriccie e 1370

47.6.4.6. Origin Filter Callback..........c.cccoeieiiiniiiiiiniiiiiiicceeeeseeeee 1370

47.6.4.7. Generic Message Callbackoceeveeviiiiiineiniiiiieneeeenieeeeene 1370

47.6.5. Functions for Producing OULPUL...........ccoverierieiniinienieeieeeteeieeieeseeeeeeae 1371

47.7. Logical Decoding Output WIILETScceeruiruierierieieniesiieiesteete e e neeseeeae e eneeneeene 1371
47.8. Synchronous Replication Support for Logical Decoding..........ccccoeeeevereereneniennnnne 1371
48. Replication Progress TIaCKINGceveririerieriirieieetiete ettt 1373
VI. Reference 1374
L. SQL COMMANGS.......uiiiiiiiiiiieeeiie ettt ettt e et eeete e e eeteeeeeteeeeseseeaeeeeasaeeesseseesseeeesseeans 1376
ABORT ...t et e et e e e et e e et e e e e e e et e e e eateeeeateeeateaaens 1377
ALTER AGGREGATEooiiii ettt et ettt e eeaaaaen 1379
ALTER COLLATIONoottiiioiii ettt et e e e e s e te e e eaveeeeaveseeaseeesnaeens 1382
ALTER CONVERSIONottt e s e ve e e stve e e are s eeaneeeaneaens 1384
ALTER DATABASE ...ttt e aa e et e e e abe e eeabeeeareaen 1386
ALTER DEFAULT PRIVILEGESccooiiiiiieeee ettt e e 1389
ALTER DOMAIN ...ttt ettt ettt e e st e e s ve e e e ve s e abaeesabeeesasesesseeensneans 1392
ALTER EVENT TRIGGERccotiiiiiiaiie ettt e e 1396
ALTER EXTENSION ..ottt ettt e e st e e vaeesavaaesaseseaseeennnaans 1397
ALTER FOREIGN DATA WRAPPERcooooiiiiiiieiceeece ettt e 1401
ALTER FOREIGN TABLEcooiiiiitieette ettt ettt et et e e siva e e av e s eavaeeanaaens 1403
ALTER FUNCTIONooiiiiiiieiii et ectee ettt et e e et e e svaeesveeesvesesasaeesesaaessseessseesnsseaans 1409
ALTER GROUP ..ottt ettt s e et e e be s e avaeestbaaesbeesnnsaeensseaans 1413
ALTER INDEX ...ttt ettt ettt e e tve et e e satae e s beeessbasesssaeessbaaesseessseesnssannns 1415
ALTER LANGUAGE ...ttt ettt tee e tte e e s aa e eseb e e e ssaeenssaesnsnaeans 1418
ALTER LARGE OBJECT ...ttt ettt tee et s et eesive e e b e snnaeensnaeens 1419
ALTER MATERIALIZED VIEW ..o 1420
ALTER OPERATORoooeeoieeeee e et e e e ee e eeaneeeenneeens 1422
ALTER OPERATOR CLASS et ena e 1424
ALTER OPERATOR FAMILYoooiiiiieiee e e 1426
ALTER POLICY ...ttt e e e e e e et e eeaneeeeaeeeens 1430
ALTER ROLE ..o e ee e e e e eeaeaeens 1432
ALTER RULE ... e e et e e e et e eeaeeeens 1437
ALTER SCHEMA ...t e e e et e e e et eeaaaeens 1439
ALTER SEQUENCE ...ttt e e et eeeaaaeen 1440
ALTER SERVER ...ttt et eeaae e eeaaae e 1443
ALTER SYSTEM ettt e et e e et e e te e eeaaeeeeanaeen 1445
ALTER TABLE ...ttt ettt e et e et e e e e ate e eeaaeeeeaeaeen 1447
ALTER TABLESPACEooioieeee ettt et et eeanaeen 1460
ALTER TEXT SEARCH CONFIGURATIONooooiiiiiiiiiieeeeee e e 1462
ALTER TEXT SEARCH DICTIONARYooooiiiiiiieiceeeeee et 1464

XXViil

ALTER TEXT SEARCH PARSERcccccooiiiiiiiiiiiiiiicccccce s 1466

ALTER TEXT SEARCH TEMPLATEccccooiiiiiiiiiiiiiiccceece s 1467
ALTER TRIGGERc.ccoiiiiiiiiiiiiiiiiiiiiie e 1468
ALTER TYPE.....ccoiiiiic e 1470
ALTER USER ..ot 1474
ALTER USER MAPPINGcc.ooiiiiiiiiniiiietentetesiteteit ettt ne et ne st ne e 1476
ALTER VIEW ..ottt ettt st st sn e st 1478
ANALYZE ...ttt et st sa e et st 1481
BEGIN ...ttt et st e et st 1484
CHECKPOINT ..ottt et s s et 1486
CLOSE ...t e e e 1487
CLUSTER ...ttt e e s e e 1489
COMMENT ...t 1492
COMMIT ... e s e e 1497
COMMIT PREPARED......cc.oiiiiiiiiiiiiie e s 1499
COPY e e e e 1501
CREATE ACCESS METHODccccoiiiiiiiiiiiieee e 1512
CREATE AGGREGATEc.oooiiiiiiiiiiii e s 1514
CREATE CAST ...ttt sttt st s s 1522
CREATE COLLATTION ..ottt sttt st e 1527
CREATE CONVERSIONccoiiiiiiiiiiiiecteetee ettt s 1529
CREATE DATABASE ...ttt s s 1531
CREATE DOMAIN......couiiiiiiiiiieietet ettt 1535
CREATE EVENT TRIGGER.........ccccccociiiiiiiiiiiiiiiinicceeeceeeeeeeeee e 1538
CREATE EXTENSION......cooiiiiiiiiiiitititeeteeeteee sttt s 1540
CREATE FOREIGN DATA WRAPPER.........cccccceviiiiiiiiiiciiceeccceee s 1543
CREATE FOREIGN TABLEcccooiiiiiiiiiiiiiicceee e 1545
CREATE FUNCTIONc.ooiiiiiiiiiiiiiiicceeee et 1549
CREATE GROUP........c.oiiiiiiiiiiiiiiiiiceee e 1558
CREATE INDEX......c.ocoiiiiiiiiiiiiiiiin sttt 1559
CREATE LANGUAGEc.ooiiiiiiiiiiiiicccec e 1566
CREATE MATERIALIZED VIEWccocciiiiiiiiiiiiiiiiiiiiieieieeeeecee s 1570
CREATE OPERATORcciiiiiiiiiiiiiiiiiccc s 1572
CREATE OPERATOR CLASS ...t 1576
CREATE OPERATOR FAMILYcoooiiiiiiiiiiiinteeeeeeeteete et 1580
CREATE POLICY ...ttt ettt et s 1582
CREATE ROLE ..ottt e st 1588
CREATE RULE ..ottt s 1593
CREATE SCHEMA ...t s 1596
CREATE SEQUENCEc.oooiiiiiiiiiiie et s 1599
CREATE SERVER ..o 1603
CREATE TABLE ..o e e 1605
CREATE TABLE AS ... e e 1621
CREATE TABLESPACE.........cooiiiiiie e s 1624
CREATE TEXT SEARCH CONFIGURATION........ccccociiiiiiiiiiiiiiciiicceccce e 1626
CREATE TEXT SEARCH DICTIONARYccoooiiiiiiiiiiiii e 1628
CREATE TEXT SEARCH PARSERcciiiiiiiiiiiincceteeeeeeeeeese s 1630
CREATE TEXT SEARCH TEMPLATE.........cccccoiiiiiininiiiieicineieeeeeeeee e 1632

XXIX

CREATE TRANSFORM........ccooiiiiiiiiiiiiictccee e 1634

CREATE TRIGGER.........ccooiiiiiiiiiiiiiiiiccee e 1637
CREATE TYPE ... 1643
CREATE USER.......cciiiiiiiiiiiiiii e 1653
CREATE USER MAPPING........ccoociiiiiiiiiiiiiiiiiiccce s 1654
CREATE VIEW ...t 1656
DEALLOCATEooiititeeeeetetese ettt et sn e st st ne e 1661
DECLARE ...ttt st et st e 1662
DELETE ...ttt et st st st 1666
DISCARD ...t ettt et st ettt st eane e 1669
DO ettt e e 1671
DROP ACCESS METHOD.......c.ocoiiiiiiiiiicee et 1673
DROP AGGREGATEooiiiiiiii et 1675
DROP CAST ... et st 1677
DROP COLLATION ..ottt s e s 1679
DROP CONVERSION ..ottt 1681
DROP DATABASE ... 1683
DROP DOMALIN ..ot st s 1684
DROP EVENT TRIGGERcccooiiiiiiiiiiiiiieniceetne ettt 1686
DROP EXTENSION ..ottt sttt s s 1688
DROP FOREIGN DATA WRAPPERccociiiiiiiiiiiiccceeeseeeeeeee e 1690
DROP FOREIGN TABLE.........ccooiiiiiiiiiiiiieccteee ettt 1692
DROP FUNCTION ..ottt sttt s s 1694
DROP GROUP ..ottt e s s 1696
DROP INDEX ..ottt sttt s 1697
DROP LANGUAGEccooiiiiiiiiiiiicceeeeee ettt 1699
DROP MATERIALIZED VIEWc.cciiiiiiiiiiiiiiiiiiineteieete e 1701
DROP OPERATORoiiiiiiiiiiiiiiciciceeee e 1703
DROP OPERATOR CLASS ..ot 1705
DROP OPERATOR FAMILYcccoiiiiiiiiiiiiiiiicicineceece s 1707
DROP OWNED ..ottt 1709
DROP POLICY ...coiiiiiiiiiiiiiiniceee et 1711
DROP ROLEoooiiiiiiiiiiiiincccee e 1713
DROP RULLEcooiiiiiiiiiiiiiir e s 1715
DROP SCHEMA ...ttt ettt ettt et sae st e ne e 1717
DROP SEQUENCE........cocoiiiiiiiiiteiet ettt sttt st 1719
DROP SERVER.......coiiiiiiiiicet ettt sttt e st 1721
DROP TABLE ...ttt ettt e st 1723
DROP TABLESPACEoooiiiiiii ettt st 1725
DROP TEXT SEARCH CONFIGURATIONcccooiiiiiiiiiiiieiicieit e 1727
DROP TEXT SEARCH DICTIONARYccocoiiiiiiiiiiiccecc e 1729
DROP TEXT SEARCH PARSERccooiiiiiii e 1731
DROP TEXT SEARCH TEMPLATEcccoooiiiiiiii e 1733
DROP TRANSFORM ..ot 1735
DROP TRIGGERoooiiiiiiiii e 1737
DROP TYPE.... ..o e e 1739
DROP USER ...t e e 1741
DROP USER MAPPINGootiiriiiiiiieiiieitereeeeet ettt s s 1742

XXX

END e 1746
EXECUTE ..ot s 1748
EXPLAIN ..ot 1750
FETCH ... e s 1756
GRANT .ttt sttt et a e bbbt et e st bt s b sae e nenee 1760
IMPORT FOREIGN SCHEMAcoiitititminenientetetee sttt sttt e 1768
INSERT ..ottt sttt sttt et eb b bttt besae st aenee 1770
LISTEN L.ttt ettt sttt sttt ettt b bbbt sae st et enee 1777
LIOAD ..ttt ettt ettt s aee 1779
LIOCK .ttt sttt sttt et b bttt et s eaee 1780
IMOVE..... ittt sttt sttt et b ettt st sa et enee 1783
INOTIFY wttteteeet ettt ettt ettt sttt a e bt s se et besae st enenee 1785
PREPARE ..ottt sttt st s e 1788
PREPARE TRANSACTIONc.cotitiiiieieiietinieneeteteiteie sttt ettt sae s aene 1791
REASSIGN OWNED ..ottt ettt s s aee 1793
REFRESH MATERIALIZED VIEWccooiiiiiniiiiiiintieseteeeeeertsieseeeeeeee e 1795
REINDEX ...ttt sttt et et st s st 1797
RELEASE SAVEPOINTcooiiiiiiiiietetneseteeet ettt st s s 1800
RESET ..ottt ettt st s s 1802
REVOKE ...ttt sttt e s s 1804
ROLLBACK ...ttt sttt sttt s e 1808
ROLLBACK PREPAREDcocooiiiiiiiiiiiiesceet sttt 1810
ROLLBACK TO SAVEPOINToooiiiiiiiiiiicteeiec ettt 1812
SAVEPOINT ..ottt st s e 1814
SECURITY LABEL......ccoiiiiiiiiiiiiiiieeeee et 1816
SELECT ...iiiiiieeeee ettt st st s st 1819
SELECT INTO ..ottt s e 1841
SET . e 1843
SET CONSTRAINTS ...ooiiiiiiiiiiii et 1847
SET ROLE ... 1849
SET SESSION AUTHORIZATION.........ccocoiiiiiiiiiiiiiniiiciccc s 1851
SET TRANSACTIONooiiiiiiiiiiiiiiiiiieteee e 1853
SHOW ettt ettt ettt et b s bbbttt ebe e bt na et n e 1856
START TRANSACTION ...c..ootiiiieiiiritriteteteteteiee ettt ettt ettt s aeaee 1859
TRUNCATE ...ttt sttt sttt ettt b e sttt s st enee 1860
UNLISTEN ...ttt ettt ettt ettt sttt se bbbttt besae e tenee 1863
UPDATE ...ttt ettt sttt sttt et ettt sae st enee 1865
VACUUM ..ottt ettt sttt sttt et ae bt b e b e st bt sae st nenee 1870
VALUES ...ttt sttt ettt et b ettt s sa et eaee 1873
I1. PostgreSQL Client APPIICALIONSco.eeruiruieiirtieiiesie ettt eetete et cete st ee st st ee b eaee st e eneeneeeaes 1876
CIUSEEIAD ..ttt sttt sttt e be e 1877
CIEALEAD. ...ttt ettt ettt st b sttt et she et e b et et ene 1880
CIEALELAIIZ ...ttt ettt ettt e b et b e s et e a e bt s bt et e sb e eaee bt eseenbesbe e benbeententeene 1884
CTEALEUSET .t eeeuteenteeniteeute et e bt e euteeate e bt e estesueeeabe e bt e eae e et e e bt esbeesabe e bt ebeesateenbeenbeesanesaseenneens 1887
ATOPAD ..ttt ettt b et b e ittt et sb et b e et eteeae 1892
ATOPLANEZ ...ttt b ettt bt e b s bt et e bt e bt et e bt ebesbe et e nbeeetenteene 1895
ATOPUSET ...ttt ettt ettt b e e b bttt bt e bt sbe et e s bt ebte bt sbeebesbeembenbeesnenteene 1898

XXXI

P e vveenreenueesuteeteenteesute e be et e s bt e e abe e bt e bt e e h b e eab e e bt e bt e e at e et e e h e e eateea bt e beehtesabeenbe e beesateebeebeens 1901
PE_DASEDACKUD ..eeentieiiecieeeee ettt ettt st et st b ae e 1904
PEDENCH. ..ttt sttt st et e e st et ebee s 1911
PE_CONIIZ ittt ettt e st et e bt e s at e s st e e bt e bt e sab e e be e bt e sateebeeneens 1924
PE_QUINIP .ttt ettt et e bt st et e bt e s a b s bt e bt e bt e sab e et e e bt e s ateebeeaeens 1927
PEAUMPALL ...t et st 1940
P ISTEAAY ..cnveieeiiiiietee ettt ettt st n e et st 1946
P TECEIVEXIOZ ..ttt et st et et st 1949
PETECVIOZICAL ...ttt e 1953
PE_TESTOTE ...ttt bbb 1957
PO e e e et st 1967
TEINAEXAD ..ttt et ettt st ettt et 2004
VACUUIMIAD ...ttt ettt st st e be e bt st ebe e bt e saeeeaeebeens 2008
1. PostgreSQL Server APPIICALIONScceeueeieriieieriieitee ettt ettt ettt ettt eaee e e 2012
Y116 Lo OO OO O USROS URRPPRRRRRPON 2013
PE_ArCRIVECICANUP ..ottt sttt e st beeaee e 2017
PE_CONEIOIAALA ...ttt ettt ettt st e e b bt et st e b sbeebenbesneenteeae 2020
POt ettt b et b ettt be et bt et e bt eteeae 2021
PETESEERIOE ..ttt ettt ettt et b e a ettt bbb et e e eae 2027
PE_TEWINA ..ttt b ettt ettt sb et s bbbt bt et bt et e b et et eae 2030
PELEST_ESYIIC .ttt sttt st bbbt et et eae 2033
PELEST_LIMINE ..ottt ettt ettt ettt et e st bt et e b e ebt et s bt eaesbe et e nbesaneteene 2035
PEUPZIAAE ..ttt ettt ettt b ettt st b e sbe et bt eat et s bt et bt et b eet et ene 2039
PEXIOZAUIMP ...ttt ettt et eat ettt ae bt e e besen et ene 2047
POSEEIES .ttt ettt et et e et e b et s bt e bt et e sbt et e bt e bt et sbe e bt sbteab e bt ebt et ebeebesbe et e bt eenenteene 2050
POSUIMASTET ...ttt ettt ettt st ettt sbe et e bt et e bt s bt e bt sbeembe bt euaetesbeeaesbeemsenbesanentene 2058
VIL. Internals 2059
49. Overview of PostgreSQL INtErNalscoceerieriiiiieeniienie ettt sttt 2061
49.1. The Path Of @ QUETYcooiiriiiiiiiieeieeieetteteee ettt st ettt e 2061
49.2. How Connections are Establishedcccccocieviiiiiieniniiinininninecccreneceene 2061
49.3. The Parser STAZEcocueeruiirieiiieiieeteee ettt ettt sttt e aeeaee s 2062
0.3 1. PATSET ...ttt st 2062
49.3.2. Transformation ProCess..........cueruervieriieniiniieiieeriteeteeieette et 2063

49.4. The PostgreSQL Rule SyStemccceoiiiiriiriiiiiiienieieeieeceere e 2063
49.5. Planner/OPtiMiZerc..covecuiruieiiniieieieeteteete ettt ettt sa e e st ne e 2064
49.5.1. Generating Possible Plans............ccocooiiiiiiiiiiiiiceceeeee 2064

40.6. EXECULOTeitiiiiieiieeieesite ettt ettt ettt ettt et e bt e s it st e bt e sbeesateebe e bt e sateebeebeens 2065
50. SYSEM CAtALOZS ..eeneeeitieiieiieeiie ettt ettt ettt e bt e s bt st s e bt e sat e st be e b e naees 2067
50.1. OVEIVIEW ..ottt ettt et ete sttt ettt et e sae et e st e ss e et e e bt ene e bt eatesbesseenseabeeneaneeeneaneeenes 2067
IR oY B Ve fo 3 at=Ye £ § o USSP URTOPSRRINY 2069
50,3, DG AM ittt e e e e e e et e e e e e tbaaaeeeaabaaaeeatabaaeeeaataaeeeanrraaaeaanes 2071
504, DG AMOD tettieeitieeeeeeiee e e eectte e e e e et e e e e erare e e e e erttb e e e e eataaaae e e ataaaeeattbaaeeeaataaaeeanrraaaaaanns 2072
R ORI oY Y 1) oF oo T BRSSO PU RO PUUUPRIN 2073
50,6, PG AT E T Furiiiiiiieeiie et cte ettt ettt e et e et e e e te e e etee e ete e e e teeeetaeeeeaaeeeatreeenes 2074
50. 7. PG AT ETADUEE totiiieiii ettt ettt e et e e et e e ete e e et e e eetteeeeateeeetreeenns 2074
50.8. PG AUE NI ittt ettt e et et e et e e e e e te e e e abe e eetaeeeeateeetreeenns 2078
50.9. PG AUL N MEMIET S cuvtiieiieeeiieeeiieeeeitee ettt e et e e et e e eeteeeeteeeereeesseeeseseseesseeeeaseaensreeennes 2079

XXXIT

50.10.
50.11.
50.12.
50.13.
50.14.
50.15.
50.16.
50.17.
50.18.
50.19.
50.20.
50.21.
50.22.
50.23.
50.24.
50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.
50.57.

PO CASE tttieeieirreeeeeeitreeeeeeteeeeeeeereeeeeeetaeeseesesreseeeeatreeeeeaataeeeeeaiaraeeeeearreeeeenareaeeas 2079
PO CLaS S ttitiiiittieeeeeiteeeeeeece et eeeeere e e e e eet e e e e e ebaa e e e e e —ateeeaetaaeeeeaaraaeeeearaaaeeeaaraaeean 2081
PO COLLAT L OM tttiiiiiitriieeeeeiteee e eeere et e e et e e e e et e e e e eetreeeeeeeabeeeeeeetreeeeeeenrreeeeenareeeees 2085
PO_CONSTILALINT tiiiieitiiieeiiiieeeeeeecee e e ettt e eeeeteeeeeeettreeeeeeetaeeeeeeareeeeeeesseeseeninreeeeas 2086
PO CONVETLSI 0T tiiiiiitriieeeeiitreeeeeeiteeeeeeeitreeeeeseteeeeeeetreeeeeeeteeeeeeeisseeeeesasseeeeessnreeeeas 2089
PO QAT ADASE urriieiieitiiieeeeeteeeeeeeeee e e e et e e e e et e e e e e e e e e e eetaaee e e abaaeeeearaaaeeeanraaeeas 2090
Jole Mo | oY oo W R Y ==Y o o 1 o s EO PRSPPI 2092
Jole Mo SN A= AUl - Vo A RSP 2093
o3 Mo (3 o<1 s U FURU PRSPPI 2094
o1 e (SY=Teh i I o) o e) o WU 2095
o1 =) o L0 PO OO SPRUUPRPPPRN 2096
SIS MR AVA=Y oY Ul o o e £ 1% NSO USROS 2097
eI I =Y s R K o) s RO PSPPI 2097
PY_fOreign_data_WEADPDPET .ueeiitiiiiiieeeeaiiiteeeeaieteeeesbeteeesabtteeeesaubteeesesnteeaeeaans 2098
PO fOT @I gN_ SEIVET titiiitieeieiittee ettt e ettt e e ettt e e e ettt e e e s aabbteeeesabeeeesenanbteeeeaans 2099
jSIe M ey o=t e oo N ot=Y K= SRR OO U PR U TR PPN 2100
oY T I o U 1= SO U USSR UURRRPPP 2100
Yo M o) =S ok s of= R U USSP 2103
PO N At DI A VS tiiitiiieitiee ettt e ettt et e e et eeeteeeeteeeeteeeeteeeeateeeeaaeeenaseeeetsesenasaeeereaaens 2104
PO LANGUAGE teittieeitiieeetiee ettt e ettt e eetteeeeteeeeteeeeteeesaeeeeateeeesteseetsseeessaeenssesensseeenseeaans 2105
PO LT GEOD JECE tettriiiiiieeeitie e ettt e ettt e et e e et e e eteeeeteeeeateeeeaaeeeeaaeeeetbeeeetbeeeeabeeenareaans 2106
PY_1argeobJect _MEtadata ieeeeiieieeeeeeiireeeeeeeireeeeeentreeeeeetreeeeeenaaeeeeenaaaeees 2107
PO _NIAIMESDECE trrteeierrreeeeieirereeeeeireeseeieitaeseeesaressesessssseeeisstsssesssssreseeesssssseseesssseeees 2107
[le He) < TR === T USSP 2108
PO OPET AT OT wtrviieiieitieieeeieieeeeeeeiteeeeeeeitaeeeeesetereeeesitreeeeeaeteeeeeesssrereeesasseeseenssreeeeas 2109
PO OPEAMI LY trttieiieitieieeeieieeeeeeeireeeeeeetaeeeeeseteeeeeeeiareeeeeseteeeeeessreeeeeensreeseenssreeeees 2110
PO P LMD LATE tiiiiiitiiieeeieieeeeeeere et e e eetee e e eeeeteeeeeeetreeeeeeetreeeeenareaeeeeaareeeeenaraaeeas 2110
PO 0 LA C¥ tetiitttiieeeeiieee e ettt e eeete e e e et e e e eeeate e e e e ee b e e e e e eetaeeeeeearaaeeeeatraaeeenarraeeas 2111
PO DT OC ttttteeeeereeeeeeeitareeeeeeitereeeeesreeeeeeetaseseesesreseeeeaareaeeeeataseeeeaareaeeeearaeeeeenareeeeas 2112
oY A o=t oY 1= TSROSO USSP 2117
PY_rePlication _OrdgiN . iiiiieeeeirieeeeeeireeeeeeerreeeeeeitreeeeeeeraeeeeenaraeeees 2118
PO L WL A @ iitiiiieeeeitieie e e ettt e e eeete e e e e eetaeeeeeeetaeeeeeeetreeeeeeettreeeeeeareeeeeeanrreeeeeaareeeeas 2119
PO_SECLADEL wtttiiiiiiitieie e ettt e e eeeree e e e eetre e e e e e ete e e e e e e e e e e e e etraeeeeetbaaeeeearaaeeeeaaraaaeas 2120
PO SNACPENA cettiiiiietiiie ettt ettt e e et e e e et e e e e et e e e e et aa e e e e abaaeeeeeraaeeeenaraaeeas 2120
Jo1e MR o Lo LT o R ok o) i o) s PR PSPPI 2122
PO_SRSECLADEL tiiiiiiiiieeeeiiiee ettt e ettt e e ettt e e e et e e e e st e e e e e nbeee e e s btaeeeennraaeens 2122
o1 T N ol =1 o I« PRSPPI 2123
PO LA L SPACE teutitietieiiitee e et te e e ettt e e ettt e e sttt e e e ettt e e e s antte e e e s abtaeeeennteeeeeaans 2125
o1 L b o= Y= B e X HUU PSR TUPRPTPRN 2126
o1 o ok Ko o 1= NSO U OO TS RSSO PR U P UURRR O PSPPI 2126
PO LS CONE LG tiiiiiiiiee et ettt e e ettt e e e e te e e e e et e e e e eetbaeeeeeeartaeeeeenbaaeeeeanrraeaeeaans 2128
jSle MR- TIeTol o bR e J 11T o FHUUR OO TUU PP TUUPRPUPRON 2129
o1 AR E= T & o o P PPURRRRN 2129
PO L S DA ST tiiiiitiiieeeeciteeeeeeette e e e eette e e e e etaeeeeeetaeeeeeattaseeeeanrtaaeeeartaaeeeeanrraaaeeanes 2130
oY M =T o= 11} o N IE= N o =S USRS TR UUTRRRPPP 2131
oY H 74 1= U USRS UURRRRPPP 2131
PO US T MAPD I NG utiieiutieiitteeeitteeeeteeeeiteeeeeteeeeiseeeesseeeseseeseseessseeasseeeessesensseeessseaans 2140
SYSLEIM VIEWS ..ottt ettt ettt ettt et b ettt ettt sbe e e bt eaneneeene 2140

XXXIi1

50.58. pg_available eXteNSIONS it eeeiirieeeeiiirreeeeeiiireeeeeesireeeeeeiirreeeeesiareeeeeens 2141

50.59. pg_available exXtenSion_VeIrSIONS i eeeiriieeeiiireeeeeniirreeeeesireeeeenns 2142
5060, PG CONE LG tttiiiieiiirieeeeecire e eettr e e eeeere e e e eeetre e e eeeeareeeeeetbeeeeeenaraaeeeeeraaeeeenareeeeeanns 2142
500], PG CU T SOT S uutiiiiiiitrieeeeeiireeeeeetre e e e eee it eeeeestreeeeeetareeeeestaseeeeeesareeeeeeeassaeeeenareeeeennes 2143
RTORCYE Yo i B K== 1= o o I o L 1= TR RO USROS UU RO PUUUTRON 2144
50,03, DG T OUD e ettieitiieeitieeeiteestteestteeseteeessbeeestbeeesseesseeeassseeassaeessseaasssesanssasansseaensseeannns 2145
RO oo B B oV Lo == TSP RSOPRRNE 2145
LU 3 T o e N oY1 = RS PRSOPSRNE 2145
50.600. PG_IMATVIEWS terveeeerireeiireritieesteeesreeesseeessreeessseesssseeasseeeassseessseessssessssseesssseessssessnsns 2149
O O o Te i oY I I o =Y TP SRROPSRRINY 2150
50.68. pg_prepared_StatemMenT S e eieeerreeeireeeieeeeseeeesseeessseesssseeessseeesssesnnnns 2151
50.69. PG _PTEPATEA_XACES irercrieeriieeriieeiiteesiieeesreesateeeateeeesaeesseeessseesassessssseessssessnnns 2152
50.70. pg_replication_Origin_ StatlS. e ceiiiieeeeecreeeeeeereeeeeeerreeeeeeans 2152
50.7 1. PG TP liCation_SLOtS ciiiiiiiiieeeeiitiieeeeeiireeeeeeettreeeeestteeeeeestrbeeeeeeaaaeeeeenaraaeaeeanns 2153
50, 7 DG L Ol cautiiee ettt ettt e et e e e et e e e e e e e e e a—a e e e e atabaaaeeaataaaeeannaraaaaaanns 2154
50, 73, DG T ULES ceittiieeeeciieee e ettt e e et e e e ettt e e e e et e e e e et e e e e e aba e e e e e ttbaaeeeaataaaeeenaraaaaaanns 2156
50,74, DG _SECLADELS cieitiiieieeiiieee ettt e e eeette e e e et e e e e et e e e e et e e e e e tabaeeeeaaaaaee e e naraaeaaanes 2156
50,7, PG SEEEINGS tottiieiieeeitie e etee et e eete e et e e ettt e e et e e et e e et e e ete e e ete e e e te s eeateeeeteaeetreeenes 2157
50,76, PG SN AW attiiitiieetieeeiee et e eete e et e ee e et e e eeta e e e eta e e ete e e eteeesteeeeateeeeareeeeaaeeeatreeenes 2160
50,77 PG ST AL S cetttieiitieeeetee ettt et e et e et e et e et e et e ettt e e e te e e etae e etaeeeteeeeateeeeataaeatreeenes 2160
50,78, PG AL @S cutiiiitiieeiie e ettt et e ettt e et e et e et e et e et e e et e e e te e e steeeateeeetteeeetreeetreeenns 2164
50.79. PGt iMEZONE _ADIDTEVS wuiiiiieiieieeieitreeeeeeeitreeeeeertreeeeestteeeeeesiareeeeeesaeeeeeesareeeeeans 2165
50.80. PGt IMEZONE_NAIMES tervreeeeeeirrrieeeeiitreeeeeeiitreeeeeeiitreeseesireeeeeesiaresseessireseeeesssreeeeennes 2165
TR g B T R =T USROS 2166
RIOR I o MV =T=F ol =Y o) ok oL 1= TUUUUNN O RO RRTN 2166
TR R T Yo T = 2= SO TSRO 2167
51. Frontend/Backend ProtoCol..........coccocueriirieiininieniinteienceteesitetesie ettt 2168
ST.L. OVEIVIBW ..eniiiniieiieeieeite sttt et stt e st e st e bt e satesate s be e bt e sabesabeesbeebeesabeenseenbeesasesnsesnse 2168
ST.1.1. MeSSAZING OVETVIEW.....eeruiieiieiieriieeieeiteniieete et esitestesteesbeesstesaseenseesaeesanes 2168
51.1.2. Extended QUETY OVEIVIEWcccterieriieiiiieniieeieeieeniteeteeieenieesiteseteenieesaeesanes 2169
51.1.3. Formats and Format Codesc..ceccevueririeniinieeniinienieneneeieneeeeee e 2169

51.2. MESSAZE FIOWeoniiiiiiiiieiieeteee ettt ettt sttt et st et b e st e sane e 2170
ST.2.1. STATEUP ettt ettt ettt sttt st e st 2170
51.2.2. SIMPIE QUETY ..ttt ettt ettt ettt st sbe et sate e beesaeesaees 2172
51.2.3. Extended QUETYcccoevieiiinieieniiiieienieetete et et 2174
S51.2.4. FUNCLION Call.......ooiiiiieiieeeiie ettt ettt e vee e e e vaeeereeenens 2176
51.2.5. COPY OPEIALONSooviuieiiniieiieiieiieienieeieste ettt e ae e 2177
51.2.6. Asynchronous OpPerations...........c.cceceevuerueeieniieieniinieienie e 2178
51.2.7. Canceling Requests in Progress.........c.cooooeiiiiiiniiicniiiccecicccceeee 2179
S5T1.2.8. TIMINALIONeeeueireiiieeeiieeeieeeiee ettt e eiteeetteeeteeeeateesabeeessseesanseeesnsaeensseeannns 2180
51.2.9. SSL Session ENCIYPON.c..covevveieieiriininenicecteeee ettt seenee 2180

51.3. Streaming Replication Protocol...........cocceviiiiiiiiiiieiieec e 2181
51.4. MesSaZE DAt TYPES ..eeeuveiriiiriiiiiieiiieeiie ettt sttt sttt 2187
51.5. MesSaZE FOIMALSc...ooiuiiriiiiiiiieriteeteett ettt st 2188
51.6. Error and Notice Message Fieldsccccooeviiieiinieninieieceesceeeee e 2204
51.7. Summary of Changes since Protocol 2.0..........ccocevieriniiiiininieneieeneeeeeeee e 2206
52. PostgreSQL Coding CONVENTIONScouertieieriiriienieriteienteeiteieeteete e eteniesbeensesbeeseensesseeneesees 2208
52.1. FOIMANG ...eeiutetieiieiietieie sttt ettt ettt ettt ettt st sb et e b ebe et saeenaesees 2208

XXXIV

52.2. Reporting Errors Within the Server..........ooovevieviiiieinieniiiiecieeiie et 2209

52.3. Error Message Style GUIAC........c.eeriirieriieiienieeie ettt sttt 2212
52.3.1. What GOES WHETEcc.coeiiiriiriiniiiieieniecieieeeete ettt 2212
52.3.2. FOIMALHNEcooutiiniieiieiieiteeieesite sttt ettt ettt et e st s bt e bt e satesateebeesaaesaees 2212
52.3.3. QUOLAtiON IMATKSviieiiiieeiiieeiee ettt ettt eesvee e b e esebeeenvaeenebeeenens 2213
52.3.4. USE OF QUOLES....ceceeiiriieeeeiieee et e ettt e eeetre e e e eetre e e eeeareeeeeeearaeeeeennreeeees 2213
52.3.5. Grammar and PUnCtuationcc..cceceerieenieniieniieenienienie et 2213
52.3.6. Upper Case vs. LOWET CaSecouereeriiriiieiieiieiieeeeesieeeeeeeeeeee e 2213
52.3.7. AvOid PasSive VOICEcovueeueiriiiriieieiiteniteee ettt 2214
52.3.8. Present vs. Past TENSEcocueevuieriiniiiieiiieniieeieeeeiteeee et 2214
52.3.9. Type Of the ObBJECt......ccuiiuiiiiiiiiiiiiieieceee e 2214
52.3.10. BIACKELS.eeiuiiiiieiieiee ittt ettt st 2214
52.3.11. Assembling Error MESSAZEScccueruerrieieniieienieeieeie st eeesiesieeeee e e nee e 2215
52.3.12. Reasons fOr EITOTS........c.coiiiiiiiiiiieeiieeie et 2215
52.3.13. FUNCHON NAMES ...cueetiiieiieiieiiestt ettt sttt st e e e 2215
52.3.14. Tricky WOrds t0 AVOIdcoceeriiriiierieniieeiee ettt 2215
52.3.15. Proper SPellilg........coeeieiiirieieneiieiesieeese ettt 2216
52.3.16. LOCAHZAION.eeveinieiiiieieeteeteset ettt sttt 2216

52.4. Miscellaneous Coding CONVENTIONSc..eeveruereerterienieniieienteeeeniesieesesseeseeneesneenaenees 2216
52.4.1. C Standard..........cceeveeeieiniiinieece e 2217
52.4.2. Function-Like Macros and Inline Functions............ccccoceeevvevienieinincnennenn. 2217
52.4.3. Writing Signal Handlersccccocevvieniniiiininiinineeicnceceeeeceeeee e 2217

53. Native Language SUPPOTL......cc.cocueririeriirieienieeitente sttt ettt ettt eeste st esae st ease st ebeenaesaee 2219

53.1. FOr the Translatorccoccoeeriererieniinieieneetestesetetesteet ettt 2219
53.1.1. REQUITEIMENLSeouveeniieiieiieeieeiteste et estte et et estaesreeabeebeessaessseenseenaeesnnes 2219
53.1.2. COMCEPLS..eeeueierureerieiieniieeteeteesttesteeteebeesttessbeeabeesstesabesaseenbaenssessseenseenseennnes 2219
53.1.3. Creating and Maintaining Message Catalogsceecvevvivenieneercieeneeneennne. 2220
53.1.4. Editing the PO Filescccccoimiiiiniiiinieiiiieinecicncccnceeceeeee e e 2221

53.2. FOr the PrOGrammeT........ccoueriiiiiiriieeieeie ettt sttt sttt ste et esaresnae e 2222
53.2.1. MECRANICS ..eveenviieeiieieeiieteeteet ettt ettt sttt 2222
53.2.2. Message-writing GUIdEIINeSceevueeriieniiriieniieeniienieeieeieeste e 2223

54. Writing A Procedural Language Handlerccocooviiiiiniiniiniiinienieeeeeee e 2225
55. Writing A Foreign Data WIaPPETcooviiiiiriiiiiiiieeiteiteste ettt sttt st 2228

55.1. Foreign Data Wrapper FUNCHONSc.cccoviiiieniinieiiinieieiccecnecreseeeee e 2228

55.2. Foreign Data Wrapper Callback Routines............c..ccceeieviiniiieninieneninicieceeee 2228
55.2.1. FDW Routines For Scanning Foreign Tablesccccoccooiiiniiiininnencne. 2229
55.2.2. FDW Routines For Scanning Foreign Joins..........coccocceniriiiininicninnennene. 2231
55.2.3. FDW Routines For Planning Post-Scan/Join Processing............cccccccceeee. 2231
55.2.4. FDW Routines For Updating Foreign Tablesccccccoceiiiiiiininnenne. 2232
55.2.5. FDW Routines For Row Lockingccccecerieieniniiiinieeesceeeecee 2237
55.2.6. FDW Routines for EXPLATINcccevtrteriertieienteentenieeteeeeseeeneeneesseeneeseeeneeseesnes 2238
55.2.7. FDW RouUtines for ANALYZE ...cccuertrierierueeienieeteneesieeeeseeeeeseesieeseeseeeneeneesees 2239
55.2.8. FDW Routines For IMPORT FOREIGN SCHEMA.....cccervirrerrerreeereerenrersenvenne 2240
55.2.9. FDW Routines for Parallel EXecution.............cccevireeninenienenieienecceee 2240

55.3. Foreign Data Wrapper Helper FUnctions...........c.cocverereeiieniiiienenieenceeicecee e 2241

55.4. Foreign Data Wrapper Query Planning..........c.ccocevvvenenieiiininienenieienceeicecee e 2242

55.5. Row Locking in Foreign Data WIappers.........cccoevvererieieninieneneeienieeeeieeeeee e 2245

56. Writing A Table Sampling Method...........cocoiiiiiiiiiiiiiiiieeeeee e 2247

XXXV

56.1. Sampling Method Support FUNCHONScooieriiriiiieeiienie et 2247

57. Writing A Custom Scan PrOVIAETcocueiiiiniiiiiiiieieieeeeeete ettt 2251
57.1. Creating Custom Scan Pathscooceviiiiiiniiniiiec e 2251
57.1.1. Custom Scan Path Callbackscccccoeririiininiiininiiiiiccnecceeceee e 2252
57.2. Creating Custom Scan PIanscooceviiiiiiniiniiiceceecete e 2252
57.2.1. Custom Scan Plan Callbackscccoceririeniinieninieineeiceneece e 2253
57.3. Executing CUSLOM SCANSc..eeveuirieiiniieienieereieeeeresteeeesteeee e seeenesieesnesseeaeennesaee 2253
57.3.1. Custom Scan Execution Callbackscccceevueriieeniiniieniiiinienienieeecneeee. 2254
58. Genetic QUETY OPHIMUZETccueeuiruiiieiiniieieti ettt ettt st e sae s s r e e ae e 2256
58.1. Query Handling as a Complex Optimization Problem.............cc..c.ccccciiniininnnnnn. 2256
58.2. Genetic AIZOTItRMSc.ooouiiiiiiiiiiiiiie e e 2256
58.3. Genetic Query Optimization (GEQO) in PostgreSQLcccoiiriiienieieniecee. 2257
58.3.1. Generating Possible Plans with GEQO...........cccceeiiiiiiniiiiieceecee 2258
58.3.2. Future Implementation Tasks for PostgreSQL GEQOccccceeciivirncennnne. 2258
58.4. Further REadiNgc.ccevvevieiiiiiiiniiicicicteteene ettt s 2259
59. Index Access Method Interface Definitioncccooceevenirieninieniineeee e 2260
59.1. Basic API Structure for INdeXeScoeeriirieiieniiieiieieee e 2260
59.2. Index Access Method FUNCHONS..........coeeiiiiiiieniiieenieeceee e 2262
59.3. INAEX SCANMIINEZvevveniiiieniiitieierieetete ettt ettt ettt ettt e st st e e b ebe et saeeaesees 2267
59.4. Index Locking Considerations..........c..ceeeruereenierierienienietenieeteniesieeiesieeneeniesaeenaesaes 2269
59.5. Index Uniqueness ChECKS.coerieriirieriineiienienteeseetese et 2270
59.6. Index Cost Estimation FUNCHONS......c..coceeviiriiieniiniiienieeceteie e 2271
60. GeneriC WAL RECOTAScocuiriiiiiiiiieienieeieeet ettt sttt ettt st e 2275
61, GIST INACKESeeueiieiiieieeiieteetcetee ettt ettt et ettt sbe et sae st ebe s bt et et ebee e naee 22717
61.1. TNEFOAUCTION ...ttt ettt sttt s ae e 2271
61.2. BUilt-in Operator ClaSSESc.eecveerieriieriieniieniesieesieesieeseresseesseesseesseessesnseesssesssesnne 2271
61.3. EXIENSTDIIILY ...couveiieiiiiieiceiesicctes ettt ettt sttt 2278
61.4. TMPIEMENTALION......tiitiiiieiieeie ettt ettt et e st e st st e ebeesbeesabeenbeenbeesasesaneenne 2287
61.4.1. GiST buffering build.........cc.coceevieririeniniinieeceeeceeee e 2287
61.5. EXAMPIES ...eouviiniiiiiiiiieiieriteete ettt sttt ettt et et esat e st e et e sbeesabeenbeenbeesabesaneenee 2287
62, SP-GiST INAEXES ..c..eouveniiriieiitieieeetetert ettt sttt ettt sae e st sbe e sr e eaeeaenaee 2289
62.1. TNIFOAUCHION ..ottt sttt ettt 2289
62.2. BUilt-in Operator ClaSSESeecveerieriieriieriieniienieeieesite st steeieesteesbeebeebeesatesneenne 2289
62.3. EXIENSIDIIILY ..couveiieiiiiieiieierceteeeete ettt st
62.4. Implementation
62.4.1. SP-GIST LIMILS....ueeieitieiieieetieiesie et ettete st ee et eeseesee e sseeneeseeeneensesnes 2297
62.4.2. SP-GiST Without Node Labels.........cccceeirieririeieeeeseeeeeeeee e 2297
62.4.3. “All-the-same” Inner Tuples...........ccccceriiiiiiiiiiiiniceeceee e 2297
62.5. EXAMPIES ..ottt e e e 2298
63, GIN INACXES ..ottt ettt ettt e et es et e s et e e e st e es e e beebeenseeaeeseesaeeseesesbeeneenseeneeneesaes 2299
63.1. TNEEOAUCTION ...ttt ettt ettt ettt et esbe e e e b eneeeeeaeenaeeaes 2299
63.2. BUilt-in Operator ClaSSESccceerrirrerrerieieuieinenieneeterentestesessessenseeeneesessesaessensenne 2299
63.3. EXIENSIDIIIEY . ..ceueetieiieiietiee ettt ettt ettt b ettt e 2300
63.4. TMNPIEMENTALIONeeeeniieeieieiteeie ettt ettt ettt e bt et estesae e e s b e eseeteeaeeneesaes 2303
63.4.1. GIN Fast Update TeChnique...........coceevueriirieniinieiireeeneeeeeseeee e 2303
63.4.2. Partial Match AlZOrithmcccoociiviiniiiiiiiiniiieeeeeeeeee e 2304
63.5. GIN Tips and TTICKSeeueeiiriiiierieeieieet ettt sttt s 2304
63.0. LIMITATIONSeeutetieiieieetieie sttt ettt ettt ettt ettt s ate st sbeesbesbeebt et e saeenaesees 2305

XXXVI

03.7. EXAMPIES ...ecuviiniiiiiiiiieiieeiteete ettt ettt et st et e st e sat e sbeesbeesbeesabeenbeenbeesabesane et 2305

64, BRIN INAEXES ...cuveveriieniiniieiintieiteie ettt ettt ettt ettt sttt sae et sae st sbe s et enee e naee 2307
64.1. TNIFOAUCHION ...ttt ettt ettt e ae e 2307
64.1.1. IndeX MaINteNaNCe........coceecverieieriirieienieeienieeeete et ne e e 2307

64.2. BUilt-in Operator ClaSSESeecveerierieriieriienieniteeieesite st steeteesbeesteebeebeesiresneenne 2307

64.3. EXIENSIDIIIEY ...couveiieiiiiieiieierieeeee ettt et 2309

65. Database Physical StOTaZEccocieieriiriiiiiiieicie ettt 2313
65.1. Database File Layout..........c.ccccoiiiiiiiiiiiiiieeeeeeeeeee et 2313

05.2. TOAST ..ottt ettt ettt ettt et e s bt st e b e e st et e st et e sseeneenseeneeneeteeneeneens 2315
65.2.1. Out-of-line, on-disk TOAST StOTaZEcevveeuersieiniiinienieerieerteeeeeeeeeeae 2316

65.2.2. Out-of-line, in-memory TOAST StOrage.........cceceevueereersieenieenienieeneeneenae 2318

65.3. FIEe SPACE MAPeeieiiieiiee ettt ettt ettt sttt eees 2318

65.4. VISIDIIEY IMAD ..ottt ettt ettt st be et et e e eaeeaes 2319

65.5. The Initialization FOrk..........ccoooiiiiiiiniee e 2319

65.6. Database Page Layoutcccceceririiniinienieieininenieseeret ettt 2319

66. BKI Backend INtEIface.co.eeiiriiiiiiiiieieee ettt 2323
66.1. BKI File FOIMALccouiiiiiiiiiiieiieiee ettt 2323

66.2. BKIT COMMANGSceeimiiiieiiitieierieeiteieet ettt ettt ettt ettt sttt s 2323

66.3. Structure of the Bootstrap BKI File.........ccccoceivininiiiiniiiiiiiececeeeceee e 2324

00.4. EXAMPLEeeiiimiiiieiieiietee ettt ettt ettt ettt st beeb et e eae e 2325

67. How the Planner USes StatiStiCS......couerueririeniirieniirieiesiceitetestt ettt sttt 2326
67.1. Row Estimation EXamples.........ccccecieririiniiniiieninieeneetecetene e 2326

67.2. Planner Statistics and SECUIILYc.ccevvereeriirirrienienieienitetere ettt 2331

VIIIL. Appendixes 2333
A. POStEIESQL ErTOr COAES....covieiiiiiieiieeiie ettt sttt ettt ettt ettt e e esabesateebeensaesanes 2334
B. Date/Time SUPPOTL c..eeeeeiieiieiieiieeiterteete ettt et e st e bt e bt esebessbeesbeesbtesabesabeebeesasesnseenseensaesanes 2343
B.1. Date/Time Input INterpretationc.cueeveerieerierieeiieniesie ettt st eiee e eaee 2343

B.2. Handling of Invalid or Ambiguous Timestamps..........ccecueevveereeneerieeneeneeseeerieenneens 2344

B.3. Date/Time Key WOTdS........cocueeiiiniiiniiniieiienteeieetesteste ettt st et st 2345

B.4. Date/Time Configuration FIlesccoceeiiiriiniiiiiiiniiniecieeteec et 2346

B.5. POSIX Time Zone SPecifiCationsccc.eeveerieriirrieenienieeieenieesieesiteeieesieesaeeeeenaeens 2348

B.6. HiStOry Of UNILS ...c.eoiiiiiieiiiieieiceteieetereste ettt sttt s 2350

B.7. JUIAN DALESeeiiiieiiiiieiieeieee ettt ettt st et st 2351

C. SQL KEY WOIAS.....ciiiiiiiiieiei ettt et 2352
D. SQL CONFOIMANCEeeeuviieiiieeiiieeiieeeiee et e et e eteesteeeeteeessaeesseeessseessnsaeessseeesseessssessssens 2377
D.1. Supported FEAtUIESc..coeiiiiiiiiiiiiieieeeceeee ettt 2378

D.2. Unsupported FEAtUrescccoccuiiiiiiiiiiiiiiinieiet ettt 2394

E. REIEASE INOLES ...ttt ettt et sttt e be e st s e et e sbnesaneeane 2410
E 1. REICASE 9.0.22 ..ottt sttt sttt e 2410
E.1.1. Migration to Version 9.6.22........cc.cccccvirimineneneininenenresieeeeeeeesesae e 2410

E 1.2, CRANEES «.ueeeiiiieieeeee ettt ettt st e 2410

E.2. REIEASE 9.0.21 ..ottt sttt et ettt 2412
E.2.1. Migration to Version 9.6.21ccccceciririnineneniiininenieseteieeeeeiese e 2412

E.2.2. CRANEES ..uveeeiiiiiiteetee ettt 2413

E.3. REIEASE 9.6.20 ..ottt sttt 2416
E.3.1. Migration to Version 9.6.20.......c.ccoceeviereririiniinieniineetenieeeeesieeeesee e 2416

E.3.2. CRANZES ..ttt sttt 2416

XXXVID

E.4. REICASE 0.0.19 ...ouveiiiieeeee ettt e eear e e e et e e e e earaaa s 2419

E.4.1. Migration to Version 9.6.19.........ccocuvriiiiiiiiniinieeieeiteetecie ettt 2420
Ei4.2. CRANEES ..uveeiieeiieiieeeet ettt et ettt sttt ettt e e e sanes 2420
E.5.REIEaSE 9.6.18 ...ttt ettt et st 2422
E.5.1. Migration to Version 9.6.18......c..cooiiriiiiiiniirienieeniteeeee et 2423
E.5.2. CRANZES ...uveeiieiie ettt ettt ettt e 2423
E.6. REICASE 9.0.17 ettt ettt st ettt st e 2425
E.6.1. Migration to Version 9.6.17ccccocioiiiniiiiiiiniiiiineeeeeeeeeeeee e 2425
E.0.2. CRANEESooiiiiiiiieceeeee e e 2425
E.7.REIECASE 9.0.16 ..ottt ettt sttt st e 2428
E.7.1. Migration to Version 9.6.16..........c..cccoviiiiiiiiiiiiiiiiccnececeeece e 2428
E.7.2. CRANEES ..ottt ettt et st e 2428
E.8. REIEASE 9.0.15 ..ttt st et st 2432
E.8.1. Migration to Version 9.6.15........cccccueviririninenenieiiinenentceeeeeeeeee e 2433
E.8.2. CRANEES ...uveeiiiiiieeete ettt e 2433
E.9. REIEASE 9.0.14 ...ttt sttt ettt et sttt 2435
E.9.1. Migration to Version 9.6.14........cc.cccccvirininineniinineneneeeeeeeeese e 2435
EL9.2. CRANZES ..ottt sttt st 2435
E.10. Release 9.6.13 ..ottt s 2436
E.10.1. Migration to Version 9.6.13........ccccocueriririininieniineeteneeeeeseeteee e 2437
E.10.2. CHANEZES ..ottt ettt st sttt 2437
E. 1T Release 9.6.12 ..ottt s 2440
E.11.1. Migration to Version 9.6.12........c..ccceveririininienineeieneseeeneeteee e 2440
E 112, CHANZES ..veenvieiieeieeiieiie ettt ettt ettt e st e st et e s aaesnteenbaenanesnnes 2440
E.12.ReleaSE 9.0.11 .ottt sttt st 2443
E.12.1. Migration to Version 9.6.11.......cceceeiiiriiiiniieiiiieerieeeeeie et 2443
E.12.2. ChAN@ES ...eovieiieiiieiieiee ettt sttt ettt ettt et s e sttt esatesate e beenaaesanes 2444
E.13.Release 9.0.10 ...oueiiiiiiiiiiiieieieetceeteest ettt sttt et 2448
E.13.1. Migration to Version 9.6.10........ccceevuiriiiiniiniiiniieniieeieeieeieeste e 2448
E 132, ChanGESs ...ccoueeeuiieiieiieiie ettt sttt ettt ettt e be e st esate e b e saeesaees 2448
E.14. ReleaSE 9.0.9 ..ottt sttt et st 2451
E.14.1. Migration to Version 9.6.9.........cceceeiieiiiiiniiniieniieieeieeieeeeste e 2451
E 142, ChanESs ...cccueevuiiiiieiieiie ettt ettt et ettt ettt et et esaeesaees 2451
E.15.ReIEASE 0.0.8 ...ttt e 2455
E.15.1. Migration to Version 9.6.8..........ccccoceviririiininieiinieeene e 2455
E.15.2. Changesc.ooeeiiiiieieiieeeeeeeeee ettt e 2455
E 16, REIEASE 9.6.7 ..ottt ettt sttt st e 2457
E.16.1. Migration to Version 9.6.7..........ccccoceviiiiiiiniiniieiiiieeeseceeeeeeeeee e 2457
E.16.2. Changesc..cocoeoiiiiiiiiiiiceeie et e 2457
E 17, REIEASE 9.6.6 ..ottt ettt sttt e 2460
E.17.1. Migration to VErsion 9.6.6........ccccceeueiruirinenienieinenenenrereeeeeeeresie e 2460
E.17.2. CRANZES ..ottt ettt et sttt st e e e 2460
E.18. ReICASE 9.0.5 ..ottt ettt b et 2463
E.18.1. Migration to Version 9.6.5........cccccueeiririninenieniiieineneeteteneeeeeese e 2463
EL18.2. CRANGES ..ottt sttt sttt et 2463
E.19. REICASE 9.0.4 ...ttt ettt st sttt 2465
E.19.1. Migration to Version 9.6.4..........cccoovueveriiieniinienieneeeneeeeeeseee e 2465
E.19.2. CHANEZES ..ottt st sttt st 2465

XXXVIii

E.20. REICASE 9.0.3oveieeieeeee ettt e et e et e e e e e e e eeaaeeeeenaraae s 2470

E.20.1. Migration to Version 9.6.3.........ccoceriiiiriiinienieeieenieeteeie ettt 2470
E.20.2. ChanGESs ...cccueeeuieiiieiieniie ettt ettt ettt et ettt e be e st esete e b e saaesaees 2471

E.21. ReICASE 9.0.2 ..ottt ettt ettt e st 2475
E.21.1. Migration to Version 9.6.2.........ccoceevueriiiiniiniieiiieniieeteeieeiee st 2475
E.21.2. ChanEEScvieiieiiiieieieeeeeeieetee ettt e 2475

E.22. RelASE 9.6.1 ..ottt ettt st et e 2480
E.22.1. Migration to Version 9.6.1.......c..ccccoceiiiiiiiininiiineceeneeeeeseeeeee e 2480
E.22.2. Changesc..ooeeiiiiiiieieeeeeeeeee et 2481

E.23. REIEASE 9.6 ...ttt ettt ettt sttt st e 2483
E.23.1. OVEIVIEW .eueiiiiiiiiiiieite ettt ettt ettt e sae e 2483
E.23.2. Migration to VErsion 9.6........c.cceeueiririininenienieinenenentesreeeeeeeiesre e 2484
E.23.3. Changes ...ccc.eeeuuerieriieiieiieeeete ettt ettt ettt e 2485
EL23.3. 0. S@IVET ettt sttt eae 2485

E.23.3.1.1. Parallel QUETIEScccueeeeueieeiieeeieeeeieeeeee e 2485

E.23.3.1.2. INAEXES. ...eeeueeteriieieieeiie ettt 2485

E.23.3.1.3. SOTtING ..evtiiieieeiieieieeiete ettt ettt s 2486

E.23.3.1.4. LOCKING....coutitiriieieiieteie ettt st 2486

E.23.3.1.5. Optimizer StatiStiCscceceeruereeruenierienieeeenieneeeenieeeeneeene 2487

E.23.3.1.6. VACUUM ..ottt sttt s 2487

E.23.3.1.7. General Performance............ccccceeeveroieninicininenncnenieene 2487

E.23.3.1.8. MONIOTING...c..eiueiiiniieiiniiniieienieeienieeiteie et 2489

E.23.3.1.9. AuthentiCationccceeereenereenienenieniencenee e 2490

E.23.3.1.10. Server Configurationccceceeveervenieenieenieenreenieeneennnes 2490

E.23.3.1.11. Reabilitycoeevueriiriiniiniiiiiieieececcecce e 2491

E.23.3.2. Replication and RECOVETYc.covvieriieriiiiiiiiieie et 2491

E.23.3.3. QUETICS ..ueiiiiiieiiieeeiiie ettt ettt e et e vt e e e ve e e eeb e eeaseeesebaaenereaenens 2492

E.23.3.4. Utility COMMANS....c.cerrreeriieriiriieniienienieeieeniee e eieenieesereeeeeaeens 2493

E.23.3.5. Permissions Managementceceereerueenieeneenieenveenieeseesnveenneens 2494

E.23.3.6. Data TYPES .eeouvieiieriieriiiiieenitenite ettt sttt et st saee b eiee s 2494

E.23.3.7. FUNCHONScueeiiiieiiieeiciceiectcsteeee ettt st 2495

E.23.3.8. Server-Side Languagesccocceeveerienieiiennieenie e 2496

E.23.3.9. Client INterfacesc..cocuevierieviinieienienieienececceecee e 2497

E.23.3.10. Client Applicationsccccecuereeveerueriienienieienieeeenneseereseenenene 2497
E.23.3.10. 1. PSAL eieuiiiieieeieeeeeeee ettt 2498

E.23.3.10.2. pEDENCH ..o 2499

E.23.3.11. Server AppliCAtIONS.cc.coceeuerieienienieienieeiete e 2499

E.23.3.12. SOUICE COAE....uveemiiiiiiiieiienieeieeteste ettt 2500

E.23.3.13. Additional Modulesccccerierieneiieiirieeeeeee e 2502
E.23.3.13.1. pOStgres_fAW mmiieeeciiieeeeeciieee ettt e et et e e eaaes 2503

E.24. Prior REICASES.....ccuiiuiiitieiieieetiete ettt ettt sttt ettt nae e te b enee e ene 2503
F. Additional Supplied MOAUIEScceeieiiriieieieeiieeet ettt et sbeenee e eae 2504
FoL. QdMUNPACK.couieiiiieieeee et ettt ettt ettt et se et bt 2505
Fo2. aUth_delay......cc.oooiiiiiiieieieeee ettt ettt 2506
F.2.1. Configuration Parameters.ccccevereerieniirienienienieseetesie ettt 2506
F2.20 AUENOT ittt sttt 2506

3. QUEO_EXPLaAIN...cutiiiiiiiiiieieciiee ettt bbbt 2506
F.3.1. Configuration Parameters..........ccccevirienieriirieniinieniencetenie ettt 2507

XXXIX

Fi3.2 EXAMPIE oottt ettt ettt ettt e e 2508

FL3.3. AULNOT ettt et e et eeae e e s b e e e b eeenbee e tbaeeereeenens 2509
R S o) (001 1 RSP PUR 2509
Fid 1. ParameterS......uveeeviieciieeeiieeeieeeitee et eeive e s teeeetaeeeaaeesebeeessbeeessseeessseeeneseeannns 2509
Fid. 2. EXAMPIES....eeiiiiiiiieeiteite ettt ettt ettt ettt et st e e e s 2510
F.4.3. Operator Class INterface..........c.cocevirvieniininiieninieineceneeeceseeee e e 2512
Fd. 4, LIMITAtIONS ...ccovvvieiieiiiieeeeeciteeeeeeieeeeeeeaveeeeeeetaveeeeeetreeeeeesanseeeeeesasseeseennreeeees 2512
Fid.5. AULROTS.....oiiiieieiee ettt e e et e e e e aaae e e e eearaeee s 2512
FLS. DUIEE I ettt ettt et st 2513
F.5.1. EXample USAgecc.cooviiiiiiiiiiieiciiecieeee et 2513
F.5.2. AULROTS.....viiiieeee ettt e e et e e e e arae e e e eeanraeeeas 2513
FLB. DIEE_IST ..ttt ettt et et st e ettt e bt e st e naeseeeteebeenteteene 2513
F.6.1. EXamPIe USAZE ...c..eeeiuiiiiiiiieiieiienieeeeeesite ettt 2514
FL0.2. AULNOTSooiietieceeie ettt e e e e et e e et e e e e e eeaeeeenns 2514
L7 CRKPASS ..ttt st b ettt et s h et be et eae 2514
FL7. 1 AULNOT oottt e e et e e aae e eeaaeeeaes 2515
FLBL CIEEXE ottt ettt e e et e e et e e e te s e eate e e eateeeeateeeeaneeeaaeaaens 2516
F.8.1. RAtIONAIEccuviiiiiieieiiie ettt ettt et eeaaeeeeaveeeees 2516
F.8.2. HOW 10 USE Lt ..eiieeiiiiiieieiie ettt et et eeave e e 2516
F.8.3. String Comparison Behavior.........c..coceveiiiiiniiniininiiiencneeeseeeeceee e 2517
F.8.4. LIMILATIONSuviiieiviiieiiieeeieeeeiee et eit e et e et e e et e eeaeeeeataeeeeveseeasesenasaeeaseeennns 2517
FLB.5. AULNOT ..ottt ettt et e ete e e b e e aae e e aaeeetreeenens 2518
FLO. CUDE......eeieeeeee et ettt et e e et e e e abe e e stb e e e areeeeaneeetraaens 2518
FLO. T, SYNTAX .ttt ettt st ettt s b e st beesaaesnteebeenaneennes 2518
FLO.2. PreCISION.....ccctiiieiiiiiiiie ettt ettt e e e et e e et e e e ae e e sivee e ebeeeeaseseasaeeeseeannns 2519
FLO.3. USAZE.ccuiietieiieeite ettt sttt ettt ettt et e sttt b et s nte e beenaaesaees 2519
FLO.4. DEefaultscccviiiiiiiiiiie ettt e e e v e e eeabe e e abaeeareeeanns 2523
FLO.5. INOLES ..vieeiieeeite ettt ettt ettt e ettt e et e e e taeeebbeesataeesabaeesssaeensseeessaeanesesannns 2524
FLO.6. CIEdits .ooouviieiiiieeiie ettt ettt ettt ettt e e et e e e e e e sabaeesebeeessaeesssaeeneseaanens 2524
FL1O. ADIINK .viiiiiiice ettt e e e et e e st e e e be e e abaeetbeaesbeeennaeenraaans 2524
ADINK_COMMECTceiiiiieiiieciieectie ettt et e et eetee e et e e e abeesabeeesebaeeseseeessaeensseeanens 2525
ADINK_CONMMECT_U.euiiiiiiiiieiiieciie et etee et e ettt e e tre e et eeetaeesabeeesebeeessseeessaeensseeannns 2528
ADINK_dISCONMECEeeeeeviieiiieeeiieeeiee et et e ettt e ette e ee e te e e sbee e ebaeesseeensaeensseeannns 2529
16 10) § 331U PRSPt 2530
16 10) 5001), (= S 2534
ADIINK_OPEI. ..ttt ettt et ettt et st 2536
ADINK_FELCI ... 2538
16 1) 5007 Qo1 (o 1R 2540
dblinK_GEt_CONNECHIONSeouvieiiiriieeieeite ettt ettt ettt ettt ettt e esaee i 2542
ADlINK_@ITOT_MESSAZEveveeneeiiiieieetieie ettt ettt ettt e sbe et be et e e eneeneeeaes 2543
ADINK_SENA_QUETY ..ottt et et 2544
ADINK_IS_DUSY ..ttt ettt sttt et ee s 2545
ADINK_ GOt MO ..ottt 2546
ADINK_ GEt_TESULL...c.eiiiiiiitieeiee ettt 2548
AblINK_CANCEL_QUETY . .eouiiiiiiieiieiieteette ettt sttt 2551
ADINK_ GOt PKEY ..ottt 2552
dblink_build_SQI_INSEIT......cooueriiriieiiniieieniteieet ettt s 2554
dblink_build_sql_delete.........cceviiiiriiiiniiieieeeeee e 2556

xl

dblink_build_Sql_Update........cceerieeriieriiiiieeieeiterte et 2558

FoLTL IOt AN ittt et sttt s st be et eae 2560
FIT. 1. CONAGUIATION ...ttt ettt ettt ettt e 2560
Fo L2, USAZE. ittt ettt ettt ettt ettt e b e st st e b e saaesaees 2560
Fol 2. IOt XYMttt bttt ettt sttt st et st et e b 2560
F.12.1. CONfIGUIALION ..cvviniiiiiiiiiiieienieeeeic ettt e 2561
FlI12.2. USAZE..cuuioiieiieieeiereetetee ettt ettt st 2561
Fo13. @arthdiStancCecocueiieiiiiiiieeieeiteeteee ettt sttt st e 2562
F.13.1. Cube-based Earth DiStancesccccceeveerieriiensieenienienieeieesteeeeeeeseee e 2563
F.13.2. Point-based Earth DiStancesccecceeveeriiriieriienienienieeieeeteeeeeeeseeees 2564
Fild, fil_fAW ...t ettt sttt ettt et nae et b et ene 2564
Fo15. fUZZYSIMALCR......otiiiiiiiieiee ettt et 2566
FoI5. 1. SOUNAEX. ..ottt ettt ettt ettt e enee e 2567
FoI15.2. LeVenSheIncoouiiuiiieiieiieieeieeeset ettt e 2567
FoI5.3. MEtaPRONe. ...c..coiiiieiieiieiieeett ettt sttt e 2568
F.15.4. Double Metaphone............ccoeieiiniiienieniieieiee et 2569
FLLO. RSEOTE .ttt ettt st b e st ettt e nae bt e besbeeeteteeae 2569
F.16.1. hstore External Representationc..coceveeieniineenienenienieniceieiceceee e 2569
F.16.2. hstore Operators and FUNCHONSc..coerieriirienienieienierieesiceeee e 2570
FoI0.3. TACXES ..ottt st sttt ettt 2574
FoI10.4. EXAMPIES ...cuviiiiiiiiiiiieiieiietesieetese ettt st sttt 2574
FLI0.5. SHALISTICS c.vveuviiieierieeiieieeiteteste ettt sttt s nae e 2575
F.16.6. COmMPAtIDILILY ..coverveeiiiiniieienieeieeeeeest ettt 2576
FoI16.7. TranSTOIIIS «..coveeviiiiiiiieiieieeiceten ettt sttt 2576
FoI0.8. AUNOTS......ooiiiiiiiiiieeieetetecet ettt 2577
L S 131 72T 4 OO U OO UTUURRPRRRTI 25717
FoI7.1. FUNCHOMNS ..ottt sttt et e 25717
Fo17.2. SamMPIE USES.....eiivieiieiieiiieieeite sttt sttt ettt ettt e beesatesateebeesaeesanes 2577
FoI8L AMTATTAY ..ottt ettt ettt e st st e bt e bt e st e esbe e bt e sateenbeenbeens 2578
F.18.1. intarray Functions and OpPeratorscecueevveerierieeriieeniienienieenieeseesnnes 2578
Fo18.2. INAEX SUPPOTL...ciiuiiiiiiiiiiieeieeite sttt ettt sttt st e e e 2580
FiI8.3. EXAMPIE ..ttt ettt ettt st e 2580
FI18.4. BENChMArKcccooiiiiiiiiiiiiiicieiteeieeceee e 2581
FiI8.5. AUNOTIS......oiiiiiiiiiiecieeeee et 2581
L) DTSSR 2581
Fi19.1. Data TYPES....ccueeiiiieieieeiieieeteeeere ettt e 2581
| L G T £ TSRS 2582
F.19.3. Functions and OPEratorsccccoeeeerieriirieniieieiieieeiesie et 2583
Fo19.4, EXAMPIESoiiiiiiiiiiieiiieee e e 2584
F.19.5. BiDLIOZIaPRY....ccveiviieieiieiiicrientetcict ettt e 2585
FiT19.6. AUNOT ...ttt 2585
L2010 ettt st et b e ittt e a et she e te b enteteene 2585
F.20.1. RAONALE ..ottt 2585
F.20.2. HOW t0 USE It ..ottt e 2586
F.20.3. LIMIEATIONS ..ottt ettt ettt et see st sb et eaee e e 2586
F20.4. AUTNOT ...ttt e 2586
BT IO .ttt ettt st b e ea ettt et bt et b et e e eae 2587
F21.1. DefiNItiONS c..veiienieiieeiieieeitetesteetes ettt sttt s e 2587

xli

F22.

F.23.
F.24.

F.25.

F.21.2. Operators and FUNCHONScooieriiriiiiiiieniieciecieeteee ettt 2588

F21.3. TACXES ..ottt ettt st ettt e 2591
F21.4 EXAMPIE ..eooniiiiiiiiieiee ettt st ettt e 2591
F.21.5. TransfOrmsccoeveeieiiinieiinieiecctcieneetee ettt e e 2593
F21.6. AUTNOTS......ooiiiiiiiieceecee et 2594
PAZEINSPECT ..ttt et et sttt a e et a e st e s bt e e st eaeeaesaeesnesneeanennene 2594
FL22. 1. FUNCHONS ..ttt ettt ettt ettt e 2594
PASSWOIACHECK ...ttt e 2598
PE_DULEICACRE. ... e 2598
F.24.1. The pg_buffercache VIBWcccieeciieiiieeeiieeeieeesieeesreeeseaeessnveeeeseeenens 2599
F.24.2. Sample OULPULcocoiiuiiiiiiiiiict et 2600
FL24.3.0 AUTNOTSeeieieiieeeeee ettt ettt 2600
PECTYPLO .ttt ettt ettt ettt ettt e b e et st e bt e s bt e st e e bt e sbtesat e e b e e sbeesaneeane 2600
F.25.1. General Hashing FUNCHONScoeviiiiiiiieiieeeceee e 2600
FL25.1.1. Aig@St () coeeeenierieienieeteteet ettt ettt sttt et st eaae e 2600
F.25.1.2. BiMAC () teuteieeiieie ettt sttt et sttt 2601
F.25.2. Password Hashing FUNCHIONScocceviriiiiiniiiieiinceeceeseeee e 2601
FL25.2. 0. CryPt () eeeeeeie ettt e e et eete e e ata e e etre e e 2602
F.25.2.2. GEN_SAL1E () teeeeiieeiiee et eeee ettt et e e et e et e e eateeeetre e e 2602
F.25.3. PGP Encryption FUNCHONS......ccccviiiiniiniiiienienieie et 2603
F.25.3.1. DOP_SYM_ENCTYPE () torreerrieeitieeeiieeeeiteeeeceeeeeiteeeeveeeereeesaveeensreeeans 2604
F.25.3.2. pOP_SYM_A@CTYPE () tieeerrrriieeeiireeeeeeiireeeeeenireeeeesineeeeeesaveeeeeenannes 2604
F.25.3.3. DOP_PUD_ENCTYPE () tieeerrriieeeiiieeeeeeiireeeeeestreeeeesiveeeeeesaveeeeeennnnes 2605
F.25.3.4. pgp_pub_de@CTYPE () weeeeerreeeeeiereeeeeeeireeeeeesieeeeeesireeeeeesiaveseeennanees 2605
Fo25.3.5. DOP_KeY_ TG () ttitiiiiteieeeeeieeee ettt eeetre e eeetre e e eere e e eeaae e e e eeanees 2605
F.25.3.6. armor (), ACATMOT () teeeeeeerreererieieeeeeeeeeeeesessisesrseeeeeeeeeesesesssssssnnnnns 2605
F.25.3.7. pgp_armor_headers .ioieiieeceieeeeeeeireeeeeeeieeeeeeeeree e eeeareeeeeeannes 2606
F.25.3.8. Options for PGP FUnctions........c..cceeceevieiieinienieniieeeneesieeieeene 2606
F.25.3.8.1. CIPREr-al@O ...ccovevriiiiiiiiieiieeieceetee e 2606

F.25.3.8.2. COMPIESS-alZ0 ...eevvveriririiieiieniieniieiteete ettt 2606

F.25.3.8.3. compress-1eVelcccoceevieniiniienienieeieeeesee e 2607

F.25.3.8.4. convert-Crlf.........ccccooieiiininiiiiieieneececec e 2607

F.25.3.8.5. disable-mdC.........cccoiriiniiniiiinieienieceeeeceee e 2607

F.25.3.8.6. SESS-KEY c.uveeeiiiiiiiiieeieeteteeeetee e 2607

F.25.3.8.7. S2K-MOME......ccoeruieiiiieieeiieeie et ne 2607

F.25.3.8.8. S2K-COUNL...cutiitiiiiiriiiiieeiteete ettt 2608

F.25.3.8.9. s2k-digest-algo.......ccceecueruirieniiieienecicecceceeeee 2608
F.25.3.8.10. s2K-Cipher-algoccccccoeveeviiiiiiniiiiicecc e 2608
F.25.3.8.11. unicode-mode...........coceerierieriiiiniinieniieeeeeenee e 2608

F.25.3.9. Generating PGP Keys with GnuPGe............c..cccooiiiiini 2608
F.25.3.10. Limitations of PGP Codeccccoiiiiiiinieiieec e 2609
F.25.4. Raw Encryption FUNCHONScccoieiririninienicicieenesiercceeeeceeeesie e 2609
F.25.5. Random-Data FUNCHONScc.eeiiiriiieieiiiiieiee et 2610
FL25.0. INOTES ..ttt ettt ettt st b e et e e s b et e it eaeenaeeaee 2611
F.25.6.1. Configuration...........ccoeeeerierienienieieniesieiesicete et 2611
F.25.6.2. NULL Handlingccccocveverieniinieieneiieiesieeteie e 2611
F.25.6.3. Security Limitationscccceceevuereeienerienienieetenieeceniesieeiesieseeneeene 2612
F.25.6.4. Useful Reading.........ccccooveviirieiiiniiiiniiiieieniecieicecee e 2612

xlii

F.25.6.5. Technical References.......ccoovveieeeiveeeeieiiieie et 2612

F25.7. AUNOT ... 2613

F.26. PZ_fTEeSPACEIMAD . .eeeutieiieeiiieieeite ettt sttt st ettt e be b 2613
F26.1. FUNCHONS ...ttt 2613
F.26.2. Sample OULPULooovieriiiiiieieeitentee ettt ettt st 2614
F.20.3. AUTNOT ...t 2614

F27. PE_PIEWAITI ...ttt et sttt st e 2615
FL27. 1. FUNCHONS 1.ttt ettt st ettt e 2615
F27.2. ATNOT ..ottt 2615

F.28. PEIOWIOCKS...c..eiiiiiieiicieee ettt e e 2615
FL28. 1. OVETVIEW ..ttt ettt ettt st e 2615
F.28.2. Sample OULPULoocuiiiiiiiiieeeieeteeeetete ettt 2616
FL28.3. ATNOT ..ottt e 2617

F.20. pg_stat STALEIMENLS ...coc.eeruririiriieieeeteete ettt ettt sttt e beesbeesaeeeeeeneens 2617
F.29.1. The pg_stat_statements VIEWcoiiiiieeeiiiceiiee e 2617
F.29.2. FUNCLIONS ...ttt ettt e ee s 2620
F.29.3. Configuration Parameters...........ccoceeveereririenienienieneeiesie et 2620
F.29.4. Sample OULPUL ...c.eeiiiiiiiieiieiieeecetee ettt 2621
F.29.5. AUTNOTS.....ooiiiieie ettt 2622

FL30. PESTALTUPIL.....ceeeniiiiiiieiecieeteet ettt st ettt e e et b et 2622
F.30.1. FUNCHONS ...cvitiiiieiciciieeeereseeeet ettt s 2622
F30.2. AUNOTSviiiiiiiiiecic e e 2626

B3 1. PEI@IMceiiiiiiiiiiiiee ettt ettt sttt et sttt et 2626
F.31.1. Trigram (or Trigraph) CONCEPLS.....ccccevuerierieniirieniineeieneeeeienieetenie e 2626
F.31.2. Functions and OPETratorsccceeeveerueerieerieeiueesieeseesreeieesieessessseenseesseesnns 2626
F.31.3. GUC Parametersccccoeeeruirieieieiiiiiiiiniesieieeeese st 2628
F.31.4. INAEX SUPPOTT...eiriiiiiiiiiiiieieerite sttt ettt ettt ettt esatesete e beesaaesanes 2628
F.31.5. Text Search INte@rationcc.cecievieerieeniienieeieeieenite ettt st saee e 2630
F31.6. REfEIENCEScviiiiiiiiiiiiiiiiiiccce e 2631

F 317, AUNOTLS ..o 2631

F.32. P VISIDIILY cuveeiieeiieeieeiteeeee ettt sttt st 2631
F32. 1. FUNCHONS ...t 2631
F32.2. AUNOT ..o 2632

F.33. POSEEIES_fAW...oouiiiiiiiiiiieeee ettt et e 2632
F.33.1. FDW Options of postgres_fdwcccccoeecieniinieninieineieeneeeceeeeeee 2633
F.33.1.1. Connection OPHiONS..........ccueeieierierierienierenieeeete e seeneseeneeene 2633

F.33.1.2. Object Name OPtionscccceceeieveenierienienieieieeeeneseereseeeenene 2633

F.33.1.3. Cost Estimation Options............cocceeueruirieiieniieiieniieeenie e 2634

F.33.1.4. Remote Execution OPtions...........ccceeuirieciiniieieniiiienieseeieseeieiene 2635

F.33.1.5. Updatability OPLionscceeeruereerierenieieeieeiesieeceniesieeeesieeeeneene 2635

F.33.1.6. Importing OPLionsccccueeeerierieienieeiieieeieeiesie et ee e eaee e ene 2635

F.33.2. Connection Managementcc.ceeeieruerueeienieeienieseeeiesee et see st eneesee e neesees 2636
F.33.3. Transaction Managementcoeeeeruerueeienieeienieneeete ettt 2636
F.33.4. Remote Query OptimiZationccoccevuerueeienieeienienieeie e eeesie st eiee e 2637
F.33.5. Remote Query Execution Environmentccccoeceevenenienenennienencenee. 2637
F.33.6. Cross-Version Compatibility.........ccoceveririieniinienineeieneeeeeseeeee e 2638
F33. 7. EXAMPLES ..ottt st sttt st e 2638
F.33.8. AUNOT ..o 2639

xliii

L3 SR ittt ettt bt a e h e st e e e e bt e sateebeeaeens 2639
F34.1. RAONALE ..ottt ettt e e 2639
FL34.2. SYNEAX wetiitieiieiie ettt ettt ettt et ettt e be e st s et e be e 2640
F.34.3. PrECISION ..ottt ettt e 2641
FLB4 4, USAZE....i ittt ettt ettt sttt st e be e 2641
FL34.5. INOLES ...ttt ettt et et et ettt e b e st e st e beesaeesaees 2642
G T T T LTRSS 2642

FL35. SEPZSAL - st 2642
FL35. 1. OVEIVIBW ..ttt ettt et e et e e e e ssbee e sbaeenseeensaeensseeannns 2643
F.35.2. INStAllation......ccccuiiiiiiieciie e eiee ettt eete et e e e sbe e e nreeesnseeensaeeeseeennns 2643
F.35.3. Regression TEStS......c..couiiiiiiiiiiiiiiicieecee et 2644
F.35.4. GUC Parameterscceecvieeeiieeiiieeiieeeiieeesiteeeiteeesiteessseeessbeessnseessnseeensseesnnns 2645
FL35.5. FRALUIES ...eeeitieeeiie ettt ettt e e st e e st e s enteeenseeenseeennes 2645

F.35.5.1. Controlled Object CIaSSescceeeeeruerierieniieienieeceniesieeseesieeeeneene 2646
F.35.5.2. DML PermiSSIONS......ccvteiueerteerieesieesteesieeereesseesseesseesseesseesssesssessseens 2646
F.35.5.3. DDL PermiSSIONScccuvieiveerieerieesieesteeseeereesseesseesseesseesseesssesssessseens 2647
F.35.5.4. Trusted ProCeduresceeueriienieeneenieeieesieesiee e esveesieeseveeveeeeens 2647
F.35.5.5. Dynamic Domain Transitions..........cccceeeveruerieeienieneeneneenienesieniene 2648
F.35.5.6. MISCEIIANGOUSeouveniiiieiiniieieeieeteie sttt 2649
F.35.6. Sepgsql FUNCLONScc.eoiiiiriiieniiiieieieeeee et 2649
F.35.7. LIMITATIONS ...eveeniiiieiieieeiteieeieet ettt ettt st st sttt e 2650
F.35.8. External RESOUICES.....c..coveiiriiiiniiiieienieeieieeetete ettt 2650
F35.9. AUINOT ...ttt s 2651

30, SPI. ittt bbbt b et st bbbt sen et eae 2651
F.36.1. refint — Functions for Implementing Referential Integrity............cccceeuee.e.. 2651
F.36.2. timetravel — Functions for Implementing Time Travelcccccevvenueenee. 2651
F.36.3. autoinc — Functions for Autoincrementing Fieldsccccevvieviveneeneennen. 2652
F.36.4. insert_username — Functions for Tracking Who Changed a Table............. 2653
F.36.5. moddatetime — Functions for Tracking Last Modification Time................. 2653

FL37. SSINTO. .ttt et 2653
F.37.1. Functions Providedccccovievieniiiiinininiininencceecceercseeecee e 2653
F37.2. AUTNOT ...ttt 2655

F.38. tabIEfUNC ...ttt e 2655
F.38.1. Functions Providedccoceeviiniiniieiiiiiieeieeiecteeeee et 2655

F.38.1.1. NOTmMAal_TANGA wiiiiiiiiiiiiiieeeeeeeeeeeee et e e e e e e e e e e s eananes 2656
Fo3B. 1. 2. Cr oS St Al (£ X)) teeeeeeeeeeeeee e et eeeeeeeeeeeeeaanaes 2657
F 38.1.3. CroSStalbN (£EXE) oeeeeeeieeeeeeeeeeeeeeeeeee e e e e e e et eeeeeeeeeeeeeaanaes 2659
F38.1.4. crosstab (£eXt, TeXE) wiiiiiieeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeanaes 2660
F.38. 1.5, CONNECEDY ittt ettt et e et e et eesreeenens 2663
F38.2. AUNOT ...t e 2665

G 1 B ¥ od OO OUSTUPURURRUPRRSRPON 2666

FL40. teSt_d@COMINGneieeiiieiieiieteet ettt ettt st b et e e et besnte e ene 2666

D B T 1 (e o PR UTUURPRRT 2667
F41.1. PoOrtability ISSUEScceeiuiriieiiriieieiie ettt 2667
F.41.2. Converting a pre-8.3 Installation...........coeecuereeienineenienenieenceececee e 2668
Fi41.3. REEIENCESeeviiiieeiieiie ettt ettt ettt eeste e beenaaeenees 2668

Fl42. tSIMN_SYSIEIM_TOWS....cutitiiiieiiitieitesteeitete ettt ettt et et sbt et b eat et s bt entesbeesbenbesaaenteene 2669
FiA2. 1. EXAMPLES ...ttt sttt et 2669

xliv

Fi43. tSM_SYSIEIM_TIINE ...veeuiieiieeiieeiieiieeite ettt sit et e st e st e st e sbeesbeesateenbeebeesabeebeeseens 2669

Fi43. 1. EXAMPIES ..couiiiiiiiiieiieiie ettt ettt ettt ettt e e s 2670

FiA4. UNACCENT ..ottt ettt et sttt s ae st s eaneneeae 2670
Fi44.1. CONAGUIATION ...eiiitiiiieiieiieeieeite ettt ettt ettt e e e e i 2670
Fid4.2. USAZE....i ittt ettt ettt ettt e s 2671
Fi44.3. FUNCHONS ..cuteiieeieeiteitc ettt ettt st ettt e e s 2672

FiA5. UULIA-08SP ..ttt ettt et st 2672
F45.1. uuid—055p FUNCHONSooiiiiiiiiieciieeiee ettt 2672
F45.2. Building utuid—0SSD cecueeieiiiriieieniiiieieneeiee e e 2674
I TN 111 4 o) TSP 2674

FlAB. XIMI2 ..ottt ettt s a ettt et et e aeenae st etesbeenteteene 2674
F.46.1. Deprecation NOLICEceueeriirieiereeieie ettt 2674
F.46.2. Description Of FUNCLONSc.ceciiiiieiiiiieieieeee e 2675

| ST G T o T= N ol o T o= o 1 = DO USSR U PRSPt 2676
F.46.3.1. Multivalued ReSUltsccevieiiiriiiiieiieieeee et 2677

F.46.4. XSLT FUNCHONS ...ttt sttt 2678
Fid6.4.]. XS 1t PrOCESS uiieeiieeetieeeetie e e ettt eeae e et e et e e et e e eteeeetreeeans 2679

FlA6.5. AUTNOT ...ttt 2679

G. Additional Supplied Programsccoceoeeoieiiiieniniiieieeteesieee ettt 2680
G.1. Client APPLICALIONSc..evueeiiriiiierieeiteieeteete ettt ettt ettt st et sbeeit et sae e e saes 2680
OIAZNAMIE ...ttt ettt ettt sttt st b e st et bt et saee 2680
VACUUIMIO ..ttt sbe st e bbbt ebeeeesaee 2685

G.2. Server APPLCATIONS ...c..coeeruiriiirienienieienteete sttt ettt ettt eat et e e e 2687
PE_SEANADY ..ottt ettt ettt et e et et e e abeenteenbeenaaeeanes 2687

H. EXTEINAL PIOJECES .vveuiieiiieiieiieeie ettt ettt st ettt ettt et e st e st e et e e baesaaesnbeenbaensnenanas 2691
H.1. CHEent INTEIfaces.......coveruerieiiriieieneeteiesit ettt ettt 2691
H.2. Administration TOOISc..cecueriiiiiriiiiniiicienetcc ettt 2691
H.3. Procedural LanguagEs..........cccecueeruierieriieiienienieeieesitesite et esieesitesateebeesieesiaeeseeaeens 2692
H4. EXEENSIONS.....itieiiiiiiiieieeiteteeitetentt ettt ettt ettt ettt este s bt ean et saeeaesaeemsenbesanentenne 2692
I. The Source Code REPOSILOTYcc.ciriierieriiiiieiienite sttt st eie et site st st esbeesatesateebeesaaesaeas 2693
L 1. Getting The SOUICE VIa Gtcevviiiiiiriiriieiieriieeie ettt ettt sttt e aee s 2693
J. DOCUMENEALIONeoevintieiiiniiiiieieieetett ettt ettt ettt et esb e neseeenesaeennesbeeanennene 2694
J L DOCBOOK ...ttt e st 2694
J.20TOOL SEES....eiitiiieiee ettt et sttt st st 2694
J.2.1. Installation on Fedora, RHEL, and Derivatives............cccccccoevvvieeeeeiinneneeeennnes 2695
J.2.2. Installation on FreeBSDcooiiiiiiiiiiiiiieeteeeteeee e 2696
J.2.3. Debian Packages.........ccccouiiieiiiiiiiiiiiieieeee et 2696
J.204, OF X et ettt ettt teene et et ene 2696
J.2.5. Manual Installation from SOUICE........c.ccceriiriieriiiniinieneeeteeeeeeeeeeeee 2696
J.2.5.1. Installing OpenJadecccccoiiiiiiiiiniiiiiiice e 2697

J.2.5.2. Installing the DocBook DTD Kit.......cccccueeveeeinenenenicieineninicnienene 2697

J.2.5.3. Installing the DocBook DSSSL Style Sheetsc.ccccecvevrverinenennene 2698

J.2.5.4. Installing JadeTeXcccooerveieirininiinieeceeenene et 2698

J.2.6. Detection BY COnfigure .ttt 2699

J.3. Building The DOCUMENtAtION........ocuirieriiriiiietieiesie ettt ettt 2699
T3 1 HTML et sttt b ettt et st s beeate e 2699
J.3.2. MIANPAZES. ..ottt ettt ettt ettt sttt ettt ettt sttt et eae 2700
J.3.3. Print Output via JadeTeXccccoceriiiriiriiiiiiiienenteeeceeeetee e 2700

xlv

J.3.4. OVEITIOW TEXL ..cveeuiiiiiiiiiiieeienieet ettt sttt ettt st ne e 2701

J.3.5. Print Output via RTFccoiiiiiiiiiieeeeee ettt 2701

J.3.6. Plain Text FIleSc..ooiiiiriiiiiiiiieicieeccstccnccereeiet et 2703

J.3.7. SYNLAX ChECK . .o iuiiiiiiiiiiieeieee ettt ettt et 2703

J.4. Documentation AULNOTINGeeoveeriiirieriieiieniente ettt ettt sttt e 2703

JAA 1. EMACS/PSGML ..ottt ettt ettt sttt st 2703

J.4.2. Other EMAcs MOAESccccvieeriieiiiieeiieeeiieeciteesiee e veeesveeesiveeesereesesaeeeneeens 2704

TS, StYL1E GUIAE. ..ottt ettt ettt et et e ettt enaesneeseeneenteteene 2704

J.5.1. Reference Pagesccooiiiiiiiiiiiiieccceneeeeee e 2705

KL ACTOMYIMS ..ttt ettt 2707
Bibliography 2713
Index 2716

xlvi

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. https://dsf.berkeley.edu/postgres.html

xlvii

Preface

« functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlviii

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

xlix

Preface

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’ list,
and detailed information about many more topics.

‘Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

+ A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.

li

Preface

And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

lii

Preface

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

« Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postgres —-versionand psql --version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package might have. If you are talking about a Git
snapshot, mention that, including the commit hash.

If your version is older than 9.6.22 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have instal-
lation problems then information about the toolchain on your machine (compiler, make, and so on) is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don’t say “the server crashed” when you mean a single
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “psql”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@lists.postgresqgl.org>.
You are requested to use a descriptive subject for your email message, perhaps parts of the error message.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

liii

Preface

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as
<pgsgl-sqgl@lists.postgresql.org> or <pgsqgl-general@lists.postgresqgl.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@lists.postgresql.org>. This list is for discussing the
development of PostgreSQL, and it would be nice if we could keep the bug reports separate. We might
choose to take up a discussion about your bug report on pgsgl-hackers, if the problem needs more
review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresgl.org>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresqgl.org>, so we (and you) can work on porting PostgreSQL to
your platform.

Note: Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If you
wish to subscribe to the lists, please visit hitps://lists.postgresql.org/ for instructions.

10. https://www.postgresql.org/

liv

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT might
also have to be set. The bottom line is this: if you try to start an application program and it complains
that it cannot connect to the database, you should consult your site administrator or, if that is you, the
documentation to make sure that your environment is properly set up. If you did not understand the
preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb
If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your

Chapter 1. Getting Started

operating system user name; in that case you need to use the —U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

+ Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb
If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (9.6.22)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.6.22 on x86_64-pc—-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,

(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

64-bit

Chapter 1. Getting Started

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not provide those files.) To use those files,
first change to that directory and run make:

$ ed .../src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ psql -s mydb
mydb=> \i basics.sql

The \i command reads in commands from the specified file. psgl’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are in
the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copYy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process, not
the client, since the backend process reads the file directly. You can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT ~ is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 B mman s T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT x FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B S
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do:

Chapter 2. The SQL Language

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT =*

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 B R S S S

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you’d need to gualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— Bt E e st e gt e
Hayward \ 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Bt T e et e et
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =«
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather

WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the

maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, b
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching

that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

cilty | max
_________ IS
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we

only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’'S%'®
GROUP BY city
HAVING max (temp_lo) < 40;

13

Chapter 2. The SQL Language

O The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt B s mattt el S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

14

SELECT x FROM weather;

city | temp_lo | temp_hi
,,,,,,,,,,,,,,, e

San Francisco | 46 | 50

San Francisco | 41 | 55

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Chapter 2. The SQL Language

| prcp | date
Fm———— Fmm
| 0.25 | 1994-11-27
| 0 | 1994-11-29

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system

will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced. sql in
the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: 1insert or update on table "weather" violates foreign key constraint "weather_city_f
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and commIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = "Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function. But
unlike regular aggregate functions, use of a window function does not cause rows to become grouped into
a single output row — the rows retain their separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000

19

Chapter 3. Advanced Features

develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed across
an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function’s name
and argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions,
that share the same values of the PARTITION BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
77777777777 et
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 | 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways by means of different OVER clauses, but
they all act on the same collection of rows defined by this virtual table.

20

Chapter 3. Advanced Features

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Many (but not all) window functions act only on the rows of
the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows that
are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default
frame consists of all rows in the partition. ' Here is an example using sun:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, b
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP By, HAVING and WHERE clauses. This is because they logically

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Chapter 3. Advanced Features

execute after the processing of those clauses. Also, window functions execute after regular aggregate
functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
elevation int, -— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
elevation int -— (in ft)
)i

22

Chapter 3. Advanced Features

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (
name text,
population real,
elevation 1int -—— (in ft)

)

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length char-
acter strings. The capitals table has an additional column, state, which shows its state abbreviation.
In PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at

an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ S,
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ +___________

23

Chapter 3. Advanced Features

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site” for links to more
resources.

2. https://www.postgresql.org

24

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

27

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with Us (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example Us "foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

28

Chapter 4. SQL Syntax
Ug"d!0061t!+000061" UESCAPE 7!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (”), for example
"This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT ' foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

29

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (oc=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. When the server encoding is UTF-
8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF' 8. When other server encod-
ings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single
code point that is then encoded in UTF-8.)

30

Chapter 4. SQL Syntax

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape string
constants. However, as of PostgreSQL 9.1, the default is on, meaning that
backslash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to off, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to represent
a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with Us (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for ex-
ample Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively a backslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ’ data’
could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

U&"d!0061t!+000061” UESCAPE " !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF 8, they are first combined into a single code point
that is then encoded in UTF-8.)

31

Chapter 4. SQL Syntax

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

SSDianne’s horses
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ S$qgS[\t\r\n\v\\]1g);
END;
Sfunction$

Here, the sequence q[\t\r\n\v\\]1qg represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, SO tagString contenttag is correct, but
$TAGS$String contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

32

Chapter 4. SQL Syntax

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B/ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer ifits value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

33

Chapter 4. SQL Syntax

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F/<>=~1@# D N&I"?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#D &I ?

For example, @- is an allowed operator name, but »- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

34

Chapter 4. SQL Syntax

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X« @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

+ The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (+) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

35

Chapter 4. SQL Syntax

where the comment begins with /+ and extends to the matching occurrence of «/. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have the
same precedence and are left-associative. The precedence and associativity of the operators is hard-wired
into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
8 left exponentiation
/% left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE range containment, set
SIMILAR membership, string matching
<> =<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL,
IS DISTINCT FROM, etc
NOT right logical negation

36

Chapter 4. SQL Syntax

Operator/Element Associativity Description
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other opera-
tor”. This is true no matter which specific operator appears inside OPERATOR () .

Note: PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; 1s tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having the
precedence of not rather than BeTweEN. These rules were changed for better compliance with the
SQL standard and to reduce confusion from inconsistent treatment of logically equivalent constructs.
In most cases, these changes will result in no behavioral change, or perhaps in “no such operator” fail-
ures which can be resolved by adding parentheses. However there are corner cases in which a query
might change behavior without any parsing error being reported. If you are concerned about whether
these changes have silently broken something, you can test your application with the configuration
parameter operator_precedence_warning turned on to see if any warnings are logged.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value

+ A column reference

+ A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

A field selection expression

« An operator invocation

37

Chapter 4. SQL Syntax

A function call

« An aggregate expression
+ A window function call
+ A type cast

« A collation expression

« A scalar subquery

+ An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

38

Chapter 4. SQL Syntax

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will
be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An impor-
tant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

39

Chapter 4. SQL Syntax

You can ask for all fields of a composite value by writing . «:
(compositecol) .

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the notations
col (table) and table.col are interchangeable. This behavior is not SQL-standard but is provided
in PostgreSQL because it allows use of functions to emulate “computed fields”. For more information
see Section 8.16.5.

40

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER (WHERE filter clause) |
aggregate_name (ALL expression [, ... 1 [order_by clause]) [FILTER (WHERE filter_clause)
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER (WHERE filter clau
aggregate_name (%) [FILTER (WHERE filter_clause)]

aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by clause) [FILTER (WHERE f

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order._by_clause and filter._clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is
the same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generally only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count («) yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields the number
of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and st ring_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order._by_clause can
be used to specify the desired ordering. The order._by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it’s a constant).

41

Chapter 4. SQL Syntax

If DISTINCT is specified in addition to an order._by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included in
the DISTINCT list.

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when ordering
the input rows for a “normal” aggregate for which ordering is optional. There is a subclass of aggregate
functions called ordered-set aggregates for which an order_by_clause is required, usually because
the aggregate’s computation is only sensible in terms of a specific ordering of its input rows. Typical ex-
amples of ordered-set aggregates include rank and percentile calculations. For an ordered-set aggregate,
the order_by_clause is written inside WITHIN GROUP (...), as shown in the final syntax alterna-
tive above. The expressions in the order_by clause are evaluated once per input row just like normal
aggregate arguments, sorted as per the order by _clause’s requirements, and fed to the aggregate func-
tion as input arguments. (This is unlike the case for a non-WITHIN GROUP order_by_clause, which
is not treated as argument(s) to the aggregate function.) The argument expressions preceding WITHIN
GROUP, if any, are called direct arguments to distinguish them from the aggregated arguments listed in
the order_by_clause. Unlike normal aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those vari-
ables are grouped by GROUP BY; this restriction is the same as if the direct arguments were not inside an
aggregate expression at all. Direct arguments are typically used for things like percentile fractions, which
only make sense as a single value per aggregation calculation. The direct argument list can be empty; in
this case, write just () not (*). (PostgreSQL will actually accept either spelling, but only the first way
conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the i ncome column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
rows.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count () FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

42

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
(and filter_ clause if any) contain only outer-level variables: the aggregate then belongs to the nearest
such outer level, and is evaluated over the rows of that query. The aggregate expression as a whole is then
an outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect to
the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER window_.i
function_name (|[expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (windo
function_name (*) [FILTER (WHERE filter clause)] OVER window_name

function _name (*) [FILTER (WHERE filter clause)] OVER (window definition)

where window_definition has the syntax

[existing _window_name]

[PARTITION BY expression [, ...] 1]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [, ...] 1]
[

frame_clause]
and the optional frame_clause can be one of

{ RANGE | ROWS } frame start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

43

Chapter 4. SQL Syntax

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the wINDOW clause; see the SELECT reference page for details. It’s worth
pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes a
frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY option
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame_start to
the frame end. If frame end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the parti-
tion, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row
of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s first
peer row (arow that ORDER BY considers equivalent to the current row), while a frame _end of CURRENT
ROW means the frame ends with the last equivalent ORDER BY peer. In ROWS mode, CURRENT ROW simply
means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROws mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row. value
must be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from
the partition start up through the current row’s last ORDER BY peer. Without ORDER BY, all rows of the
partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING iS not
allowed.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept a
FILTER clause.

The built-in window functions are described in Table 9-56. Other window functions can be added by
the user. Also, any built-in or user-defined normal aggregate function can be used as a window function.
Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count () OVER (PARTITION BY x ORDER BY y).The asterisk («) is customarily not used

44

Chapter 4. SQL Syntax

for non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent £1oat8 can. Also, the names interval, time,
and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast syn-
taxes is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on. For further details
see CREATE CAST.

45

Chapter 4. SQL Syntax

4.2.10. Collation Expressions

The cOLLATE clause overrides the collation of an expression. It is appended to the expression it applies
to:

expr COLLATE collation
where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-

ators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT = FROM tbl WHERE a > 'foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT * FROM tbl WHERE (a > ’'foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)

46

Chapter 4. SQL Syntax

FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

{1,2,7}
(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.
Multidimensional array values can be built by nesting array constructors. In the inner constructors, the

key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],([3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int([], £f2 int[]);

47

Chapter 4. SQL Syntax

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, ’"{{9,10},{11,12}}"::int[]] FROM arr;
array

{({{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, ix2] FROM generate_series(1l,5) AS a(i));

{{1,2},{2,4},1{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery’s output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery’s output column. If the subquery’s output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case all the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

48

Chapter 4. SQL Syntax

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .+ syntax is used at the top level of a SELECT list (see Section
8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW (t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior is
usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (t, 42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’/SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));

ERROR: function getfl (record) is not unique

SELECT getfl(ROW(1,2.5,"this is a test’)::mytable);
getfl

49

Chapter 4. SQL Syntax

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For exam-
ple, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

50

Chapter 4. SQL Syntax

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that it
does not prevent early evaluation of constant subexpressions. As described in Section 36.6, functions and
operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is executed.
Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at run
time.

While that particular example might seem silly, related cases that don’t obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables can
be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters
can be omitted; while in positional notation parameters can only be omitted from right to left.

51

Chapter 4. SQL Syntax
PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.
The following examples will illustrate the usage of all three notations, using the following function defi-
nition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S$S1 || ' 7 || $2)
ELSE LOWER(S$1 || ' 7 || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, 'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

52

Chapter 4. SQL Syntax

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using => to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper (a => "Hello’, b => ’"World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => ’'Hello’, b => ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => "Hello’, uppercase => true, b => ’'World’);
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper(a := ’"Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having nu-

53

Chapter 4. SQL Syntax

merous parameters that have default values, named or mixed notation can save a great deal of writing and
reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

54

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order
of the rows in a table. When a table is read, the rows will appear in an unspecified order, unless sorting
is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in a table. This is a consequence of the
mathematical model that underlies SQL but is usually not desirable. Later in this chapter we will see how
to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

55

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

56

Chapter 5. Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is gen-
erating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.16). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

57

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

58

Chapter 5. Data Definition

CREATE TABLE products (

)i

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note: PostgreSQL does not support caeck constraints that reference table data other than the new
or updated row being checked. While a creck constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state is
consistent with the constraint, due to rows not being loaded in an order that will satisfy the constraint.
If possible, use UNIQUE, EXCLUDE, OF FOREIGN KEY constraints to express cross-row and cross-table
restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a continuously-
maintained consistency guarantee, a custom trigger can be used to implement that. (This approach
avoids the dump/reload problem because pg_dump does not reinstall triggers until after reloading
data, so that the check will not be enforced during a dump/reload.)

Note: PostgreSQL assumes that cueck constraints’ conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining cHecx con-
straints only when rows are inserted or updated, and not at other times. (The warning above about
not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rows in the table that now violate the cuEck constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such

59

Chapter 5. Data Definition

a change is to drop the constraint (using ALTER TaBLE), adjust the function definition, and re-add the
constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,

price numeric NULL
)i

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

60

Chapter 5. Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among all
the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column names
separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

61

Chapter 5. Data Definition

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

62

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is called a
self-referential foreign key. For example, if you want rows of a table to represent nodes of a tree structure,
you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,

63

Chapter 5. Data Definition
name text,
)i

A top-level node would have NULL parent_id, but non-NULL parent_id entries would be con-
strained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
« Delete the orders as well
+ Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (

64

Chapter 5. Data Definition

order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don’t want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a row
from the referenced table or an UPDATE of a referenced column will require a scan of the referencing table
for rows matching the old value, it is often a good idea to index the referencing columns too. Because this
is not always needed, and there are many choices available on how to index, declaration of a foreign key
constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The

65

Chapter 5. Data Definition

syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.
oid

The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDs, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.18 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

66

Chapter 5. Data Definition

ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change if it is updated or moved by vacuuM
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2°? (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

« OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

+ Add columns
« Remove columns
« Add constraints

67

Chapter 5. Data Definition

« Remove constraints

« Change default values

« Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using uppaTE, and then add any desired default as described below.

5.5.2. Removing a Column

To remove a column, use a command like:
ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

68

Chapter 5. Data Definition

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add cASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

69

Chapter 5. Data Definition

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser) can
do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular
object vary depending on the object’s type (table, function, etc). For complete information on the different
types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections
and chapters will also show you how those privileges are used.

70

Chapter 5. Data Definition

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details see
Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted, up-
dated, or deleted by data modification commands. This feature is also known as Row-Level Security. By
default, tables do not have any policies, so that if a user has access privileges to a table according to the
SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table’s owner is typically not subject to row security policies.) If no policy exists for
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that returns
a Boolean result. This expression will be evaluated for each row prior to any conditions or functions
coming from the user’s query. (The only exceptions to this rule are leakproof functions, which are

71

Chapter 5. Data Definition

guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the row-
security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the rows
which are allowed to be modified. Policy expressions are run as part of the query and with the privileges
of the user running the query, although security-definer functions can be used to access data not available
to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when accessing
a table. Table owners normally bypass row security as well, though a table owner can choose to be subject
to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible if
any policy allows it. This is similar to the rule that a given role has the privileges of all roles that they are
a member of.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are visible,
multiple policies can be combined. This pair of policies would allow all users to view all rows in the
users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

72

Chapter 5. Data Definition

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

—-— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; —— Administrator
CREATE ROLE bob; —— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES
("admin’, ' xxx’,0,0,’Admin’,’111-222-3333",null,’ /root’,’ /bin/dash’);
INSERT INTO passwd VALUES
("bob’,"xxx",1,1,’Bob’,"123-456-7890’ ,null,’ /home/bob’,’ /bin/zsh’);
INSERT INTO passwd VALUES
("alice’,"xxx',2,1,"Alice’,’098-765-4321’ ,null,’ /home/alice’,’ /bin/zsh’);

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-— Create policies
—-— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—-— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN (’/bin/bash’,’/bin/sh’,’/bin/dash’,’/bin/zsh’,’ /bin/tcsh’)

73

Chapter 5. Data Definition

)i

—-— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it’s important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;

SET

postgres=> table passwd;

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
77777777777 ot
admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

bob | xxx | 1 | 1 | Bob | 123-456-7890 | | /home/bob
alice | xxx | 2 1 | Alice | 098-765-4321 | | /home/alice
(3 rows)

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name,real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir | shell
——————————— ————
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = ' joe’;
ERROR: permission denied for relation passwd
—-— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = ’"Alice Doe’;
UPDATE 1
postgres=> update passwd set real_name = ’John Doe’ where user_name = ’admin’;
UPDATE O

postgres=> update passwd set shell = ’/bin/xx’;

ERROR: new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values (’'xxx’);
ERROR: permission denied for relation passwd

74

Chapter 5. Data Definition

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = "abc’;
UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when developing
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when taking
a backup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of £. This does not in itself
bypass row security; what it does is throw an error if any query’s results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it’s best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTSs, or functions that contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow information
leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL);

INSERT INTO groups VALUES
(1, "low’),
(2, "medium’),
(5, "high’);

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

—— definition of users’ privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO users VALUES
("alice’, 5),
("bob’, 2),
("mallory’, 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO information VALUES

("barely secret’, 1),
("slightly secret’, 2),

75

Chapter 5. Data Definition
("very secret’, 5);
ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row’s group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory’;

UPDATE information SET info = ’secret from mallory’ WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice’s does. It blocks waiting for
alice’s transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory’s privilege level and allows her to see the
updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the refer-
enced table (here users) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could
be embedded into a security definer function.) Also, heavy concurrent use of row share locks on the refer-
enced table could pose a performance problem, especially if updates of it are frequent. Another solution,
practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for all concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

76

Chapter 5. Data Definition

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in
any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:

» To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

77

Chapter 5. Data Definition

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of

78

Chapter 5. Data Definition

other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users having
CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create objects
in a schema of your search path can take control and execute arbitrary SQL functions as though you
executed them.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

79

Chapter 5. Data Definition
OPERATOR (schema.operator)

This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won’t suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents un-
trusted users from changing the behavior of other users’ queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting search_path to the

80

Chapter 5. Data Definition

empty string or otherwise removing non-superuser-writable schemas from search_path. There are a
few usage patterns easily supported by the default configuration:

+ Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore, if
each user has a separate schema, they access their own schemas by default. After adopting this pattern
in a database where untrusted users had already logged in, consider auditing the public schema for
objects named like objects in schema pg_catalog. This pattern is a secure schema usage pattern
unless an untrusted user is the database owner or holds the CREATEROLE privilege, in which case no
secure schema usage pattern exists.

« Remove the public schema from the default search path, by modifying postgresgl.conf or by issu-
ing ALTER ROLE ALL SET search_path = "$user".Everyone retains the ability to create objects
in the public schema, but only qualified names will choose those objects. While qualified table refer-
ences are fine, calls to functions in the public schema will be unsafe or unreliable. If you create functions
or extensions in the public schema, use the first pattern instead. Otherwise, like the first pattern, this is
secure unless an untrusted user is the database owner or holds the CREATEROLE privilege.

+ Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world. However,
this is never a secure pattern. It is acceptable only when the database has a single user or a few mutually-
trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user name.table_name. This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

81

Chapter 5. Data Definition

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ S,
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ +___________

82

Chapter 5. Data Definition

Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing « to explicitly specify that descendant tables are included:

SELECT name, elevation
FROM citiesx
WHERE elevation > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the
sql_inheritance configuration option). However writing = might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system

column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ S
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison \ 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p

WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
,,,,,,,,,, S
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect is to use the regclass pseudo-type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation

83

Chapter 5. Data Definition

FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES (’/Albany’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-null
constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-null
if any one of the column definitions it came from is marked not-null. Check constraints are merged if they
have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this
the new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish to
remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE option
(see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

84

Chapter 5. Data Definition

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also) in
the parent table. But the capitals table could not be updated directly without an additional grant. Two
exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables are always
checked, whether they are processed directly or recursively via those commands performed on the parent
table.

In a similar way, the parent table’s row security policies (see Section 5.7) are applied to rows coming from
child tables during an inherited query. A child table’s policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child
tables and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (Reference I, SOL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

85

Chapter 5. Data Definition

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the vAcUUM overhead caused by a bulk
DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

86

Chapter 5. Data Definition

5.10.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

. Create several “child” tables that each inherit from the master table. Normally, these tables will not

add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables
(or, possibly, foreign tables).

. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

. For each partition, create an index on the key column(s), as well as any other indexes you might want.

(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate

partition.

. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresqgl.conf.

If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table

like:

CREATE TABLE measurement (

)i

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs

87

Chapter 5. Data Definition

to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from the

measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01" AND logdate < DATE ’2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’2007-11-01" AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’2007-12-01" AND logdate < DATE ’2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’2008-02-01'")
) INHERITS (measurement);

4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

88

Chapter 5. Data Definition

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$$

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE "2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’'2008-01-01’ AND
NEW.logdate < DATE ’2008-02-01’) THEN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
ELSE
RAISE EXCEPTION ’'Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger’s tests in the same order as in other parts of
this example.

89

functi

Chapter 5. Data Definition

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

90

Chapter 5. Data Definition

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)

91

Chapter 5. Data Definition

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m0l1 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however, the
trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally if
you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of rules
doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set. In practice this method has little to recommend it compared to using inheritance.

92

Chapter 5. Data Definition

5.10.6. Caveats

The following caveats apply to partitioned tables:

 There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each
by hand.

+ The schemes shown here assume that the partition key column(s) of a row never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

« INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child relations.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants using
B-tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don’t try to use many thousands of
partitions.

5.11. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

93

Chapter 5. Data Definition

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 55.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of the remote data. A
foreign table can be used in queries just like a normal table, but a foreign table has no storage in the
PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the
external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, sse CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

« Views

« Functions and operators

+ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it

94

Chapter 5. Data Definition

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In this
case, it doesn’t remove the orders table, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will do,
run DROP without CASCADE and read the DETAIL output.)

Almost all DrROP commands in PostgreSQL support specifying cAscaDpe. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required in a brop
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT OF CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tabl from tab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s
externally-visible properties, such as its argument and result types, but not dependencies that could only
be known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
"SELECT note FROM my_colors WHERE color = $1’/
LANGUAGE SQL;

(See Section 36.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still valid
in some sense if the table is missing, though executing it would cause an error; creating a new table of the
same name would allow the function to work again.

95

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is time
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

96

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = ’"today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information on
improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

97

Chapter 6. Data Manipulation

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use of

98

Chapter 6. Data Manipulation

RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using those
columns. A common shorthand is RETURNING x, which selects all columns of the target table in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’"Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.
In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:
UPDATE products SET price = price * 1.10

WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’today’
RETURNING x;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as mod-
ified by the triggers. Thus, inspecting columns computed by triggers is another common use-case for
RETURNING.

99

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification » means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

100

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FrROM list is an intermediate virtual table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write = after the table name to explicitly specify
that descendant tables are included. Writing « is not necessary since that behavior is the default (unless
you have changed the setting of the sql_inheritance configuration option). However writing = might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have
N and M rows respectively, the joined table will have N * M rows.

101

Chapter 7. Queries

FROM T1 CROSS JOIN T2isequivalentto FROM T1 INNER JOIN T2 ON TRUE (see below). It is
also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JOIN binds more tightly than comma. For example FRoM 71 CROSS JOIN 72 INNER JOIN
T3 ON condition iS not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 11 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
Tl NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and 72 match if the ON expression
evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of

102

Chapter 7. Queries

the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 71 and T2 with USING (a, b) produces the join condition ON Ti.a =
T2.a AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JOIN ON produces all columns
from 71 followed by all columns from T2, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USTNG, these columns appear only once in the output table. If
there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t 1:

m | name
I
1] a

2 | b

3] ¢

t2

m | value
__+ _______
1 | xxx

3 1 yyy

5 | zzz

then we get the following results for the various joins:

=>

SELECT * FROM tl CROSS JOIN t2;

num | name | num | value

+ _______
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xXxx
|
|

YYyy
ZZ7Z

W wWwwNDNNDRE P
Q0 Q 0o o009 o w
O W kR 0 weE o weE

103

Chapter 7. Queries

(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a \ 1 | xxx
3 1 c \ 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 ¢ l yyy
(2 rows)

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ e
1] a | xxx
31 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
1] a | 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT » FROM tl LEFT JOIN t2 USING (num);

num | name | value
,,,,, e
1] a | xxxX
2 |1 b \
3 1 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a \ 1 | xxx
3 1 c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 F————
11 a \ 1 | xxx
2 1 Db \ |
3 1 ¢ \ 3 | yyy

104

Chapter 7. Queries

\ \ 5 | zzz

(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
_____ oy
11 a \ 1 | xxx
2 1 b \ |
3 1 c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

————— et e
11 a \ 1 | xxx

(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a lot
with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table reference AS alias
or

FROM table_reference alias

The s key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id = a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; —— wrong

105

Chapter 7. Queries

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT % FROM my_table AS a CROSS JOIN my_table AS b
SELECT x= FROM (my_table AS a CROSS JOIN my_table) AS Db

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’‘smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

106

Chapter 7. Queries

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the
ordinal column is called ordinality, but a different column name can be assigned to it using an AS
clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,
If no table _alias is specified, the function name is used as the table name; in the case of a ROWS
FROM () construct, the first function’s name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get the
names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS S$$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;
SELECT = FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z

WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT % FROM getfoo(l);

SELECT x FROM vw_getfoo;

107

Chapter 7. Queries

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record
with no OUT parameters. When such a function is used in a query, the expected row structure must be
specified in the query itself, so that the system can know how to parse and plan the query. This syntax
looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column _definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the FROM item; the names in the column definitions serve as col-
umn aliases. When using the ROWS FROM () syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause,
a column_definition list can be written in place of a column alias list following ROWS FROM ().

Consider this example:

SELECT «
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what » should expand to.

This example uses ROWS FROM:

SELECT «
FROM ROWS FROM
(
json_to_recordset (! [{"a":40,"b":"foo"}, {"a":"100","b":"bar"}]’)
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, g, s)
ORDER BY p;

p I a | s
I b I
40 | foo | 1
100 | bar | 2

\ I 3

It joins two functions into a single FROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly.
The ORDER BY clause sorts the column values as integers.

108

Chapter 7. Queries

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FrROM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function’s arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing the
columns, the LATERAL item is evaluated using that row or row set’s values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set of
rows from the column source table(s).

A trivial example of LATERAL is
SELECT * FROM foo, LATERAL (SELECT x= FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, v1, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl1,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM polygons pl CROSS JOIN LATERAL vertices(pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true

109

Chapter 7. Queries

WHERE pname IS NULL;

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the wHERE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the From clause is probably
not as portable to other SQL database management systems, even though it is in the SQL standard.
For outer joins there is no choice: they must be done in the From clause. The on or UsING clause
of an outer join is not equivalent to a waerE condition, because it results in the addition of rows (for
unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c¢c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100

110

Chapter 7. Queries

SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. This is done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT x FROM testl;

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

111

Chapter 7. Queries

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) #* p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for each
product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

112

Chapter 7. Queries

T
a | 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is a
single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same is
true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FrROM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand), (size),

brand | size | sum
_______ I,
Foo | | 30
Bar | | 20
| L | 15
| M | 35
| |50
(5 rows)

113

0);

Chapter 7. Queries

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for grouping
sets in which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9-55.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

(el, e2),

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (
a, b, c),

c)y

)

(
(a, b)4
(a, c)y,
(a)y
(b, c),
(b)
(
(

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, 4d))

114

Chapter 7. Queries

is equivalent to

GROUPING SETS (

(a, b, ¢, d
(a, b
(
(

and
ROLLUP (a, (b, c), d)
is equivalent to

GROUPING SETS (
a, b, ¢, d

The cuBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to

GROUP BY GROUPING SETS (
a, b, ¢, d), (a, b, ¢, e),

(

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note: The construct (a, b) is normally recognized in expressions as a row constructor. Within the
GROUP BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a
list of expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

115

Chapter 7. Queries

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the
query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions hav-
ing different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering of
rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered accord-
ing to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not recommended
to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the results are
sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is « which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name.« notation.

116

Chapter 7. Queries

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted
for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either write
As or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see Section
7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select list is
the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

117

Chapter 7. Queries
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

118

Chapter 7. Queries

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table _expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2z [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is:

SELECT a, b FROM tablel ORDER BY a + b, c;

‘When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional AScC or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y
DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + c; —-— wWrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for
asc and DEscC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

119

Chapter 7. Queries

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vaLUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNTON (see Section 10.5).

As an example:

VALUES (1, 'one’), (2, '"two’), (3, ’'three’);

120

Chapter 7. Queries

will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, ’'one’), (2, "two’), (3, ’'three’)) AS t (num,letter);
| letter
_____ b
1 | one
2 | two
3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example
is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (

121

Chapter 7. Queries

SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

)

SELECT region,

product,

SUM (quantity) AS product_units,

SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used
in top_regions and the output of top_regions is used in the primary SELECT query. This example
could have been written without WITH, but we’d have needed two levels of nested sub-SELECTSs. It’s a bit
easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query’s own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. So long as the working table is not empty, repeat these steps:
a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows

that duplicate any previous result row. Include all remaining rows in the result of the recur-
sive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology cho-
sen by the SQL standards committee.

122

Chapter 7. Queries

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path
and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1id],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,

123

Chapter 7. Queries

path || g.id,

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query orpER BY a “path” column
constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won’t work if you make the outer query sort the recursive

124

Chapter 7. Queries

query’s results or join them to some other table, because in such cases the outer query will usually try to
fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary subquery. The WwITH query will generally be evaluated as
written, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to per-
form several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND
"date" < 72010-11-01"
RETURNING =*

)
INSERT INTO products_log
SELECT x FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH clauses
that are attached to the top-level statement. However, normal WITH visibility rules apply, so it is possible
to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying state-
ment, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

125

Chapter 7. Queries

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. Therefore,
when using data-modifying statements in WITH, the order in which the specified updates actually happen
is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” one another’s effects on the target tables. This alleviates the effects of the unpredictability of the
actual order of row updates, and means that RETURNING data is the only way to communicate changes
between different WwITH sub-statements and the main query. An example of this is that in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price » 1.05
RETURNING =

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing WITH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

126

Chapter 7. Queries

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

127

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$ double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p) time span

]

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

128

Chapter 8. Data Types

time zone

Name Aliases Description

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte
integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

Zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,

129

and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Chapter 8. Data Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807
decimal variable user-specified precision, |up to 131072 digits
exact before the decimal
point; up to 16383 digits
after the decimal point
numeric variable user-specified precision, |up to 131072 digits
exact before the decimal
point; up to 16383 digits
after the decimal point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

130

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numeric
values yield exact results where possible, e.g., addition, subtraction, multiplication. However, calculations
on numeric values are very slow compared to the integer types, or to the floating-point types described
in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits in the
whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric is
the count of decimal digits in the fractional part, to the right of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

131

Chapter 8. Data Types

Note: In most implementations of the “not-a-number” concept, nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x::numeric) AS num_round,
round (x: :double precision) AS dbl_round

FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
______ T
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1 | 0
1.5 | 2 | 2
2.5 | 3 | 2
3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

«+ If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality might not always work as expected.

132

Chapter 8. Data Types

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of o, the output is the same
on every platform supported by PostgreSQL. Increasing it will produce output that more accurately
represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

ELINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity’. On input, these strings are
recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, PostgreSQL
treats Nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

Note: The assumption that real and double precision have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms it
might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational con-
venience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

CREATE TABLE tablename (

133

Chapter 8. Data Types

colname SERIAL
)i

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval ('’ tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there may
be "holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 2°' identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The fractional
precision is determined by the database’s lc_monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as $1,000.00’. Output is generally in the
latter form but depends on the locale.

Table 8-3. Monetary Types

Name ‘ Storage Size Description Range

134

Chapter 8. Data Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real
and double precision data types can be done by casting to numeric first, for example:

SELECT "12.34’ ::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-

tially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money: :numeric::float8§;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a
money value is divided by another money value, the result is double precision (i.e., a pure number,
not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store

135

Chapter 8. Data Types

the shorter string.

If one explicitly casts a value to character varying (n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type character. In collations where whitespace is significant,
this behavior can produce unexpected results; for example SELECT ‘a ’::CHAR(2) collate "C" <
E’a\n’ : :CHAR (2) returns true, even though C locale would consider a space to be greater than a new-
line. Trailing spaces are removed when converting a character value to one of the other string types.
Note that trailing spaces are semantically significant in character varyingand text values, and when
using pattern matching, that is LIKE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character with
code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn’t be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);
SELECT a, char_length(a) FROM testl; —- ©

136

Chapter 8. Data Types

a | char_length
,,,,,, b
ok | 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and also

137

Chapter 8. Data Types

disallow any other octet values and sequences of octet values that are invalid according to the database’s
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL’s historical “es-
cape” format. Both of these are always accepted on input. The output format depends on the configuration
parameter bytea_output; the default is hex. (Note that the hex format was introduced in PostgreSQL 9.0;
earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the
hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit pairs (but
not within a digit pair nor in the starting \x sequence). The hex format is compatible with a wide range of
external applications and protocols, and it tends to be faster to convert than the escape format, so its use
is preferred.

Example:

SELECT ’ \xDEADBEEF’;

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practice it is usually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and precede it
by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by double back-
slashes. Table 8-7 shows the characters that must be escaped, and gives the alternative escape sequences
where applicable.

Table 8-7. bytea Literal Escaped Octets

138

Chapter 8. Data Types

Decimal Octet | Description Escaped Input | Example Hex
Value Representation Representation
0 zero octet "\000"’ SELECT \x00
"\000’ : :bytea;
39 single quote 77or ' \047" SELECT \x27
" ibytea;
92 backslash "\\’ or \134’ SELECT \x5¢
"\\’ ::bytea;
0to 31 and 127 to | “non-printable” "\ xxx’ (octal SELECT \x01
255 octets value) ’\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8-7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just one
single quote, which it treats as a plain data character. However, the byt ea input function treats backslashes
as special, and the other behaviors shown in Table 8-7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most “print-

able” octets are output by their standard representation in the client character set, e.g.:
SET bytea_output = ’'escape’;

SELECT "abc \153\154\155 \052\251\124’ : :bytea;
bytea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Output | Example Output Result
Value Representation
92 backslash AN\ SELECT A\
"\134' ::bytea;
0to 31 and 127 to | ‘“non-printable” \xxx (octal value) | SELECT \001

255

octets

"\001’ : :bytea;

320 126

“printable” octets

client character set
representation

SELECT
"\176' : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

139

Chapter 8. Data Types

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
(p) 1 [time (no time 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and 4713 BC 294276 AD 1 microsecond /
(p) 1 with time, with time 14 digits
time zone zone
date 4 bytes date (no time of | 4713 BC 5874897 AD 1 day

day)
time [(p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond /
] [without date) 14 digits
time zone]
time [(p) 12 bytes times of day 00:00:00+1559 |24:00:00-1559 |1 microsecond /
] with time only, with time 14 digits
zone zone
interval [16 bytes time interval -178000000 178000000 1 microsecond /
fields] [years years 14 digits
(p) 1

Note: The SQL standard requires that writing just t imestamp be equivalent to timestamp without
time zone, and PostgreSQL honors that behavior. t imestamptz is accepted as an abbreviation for
timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When t imestamp values are stored as double preci-
sion floating-point numbers instead (a deprecated compile-time option), the effective limit of precision
might be less than 6. timestamp values are stored as seconds before or after midnight 2000-01-
01. When timestamp values are implemented using floating-point numbers, microsecond precision is
achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away.
Note that using floating-point datetimes allows a larger range of t imestamp values to be represented
than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large interval values de-

140

Chapter 8. Data Types

grade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abst ime and relt ime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed i