
Psycopg Documentation
Release 2.7.6

Federico Di Gregorio

Jul 15, 2019

CONTENTS

1 Introduction 3
1.1 Prerequisites . 3
1.2 Binary install from PyPI . 4
1.3 Non-standard builds . 5
1.4 Running the test suite . 6
1.5 If you still have problems . 6

2 Basic module usage 7
2.1 Passing parameters to SQL queries . 8
2.2 Adaptation of Python values to SQL types . 10
2.3 Transactions control . 14
2.4 Server side cursors . 15
2.5 Thread and process safety . 16
2.6 Using COPY TO and COPY FROM . 17
2.7 Access to PostgreSQL large objects . 17
2.8 Two-Phase Commit protocol support . 17

3 The psycopg2 module content 19
3.1 Exceptions . 20
3.2 Type Objects and Constructors . 22

4 The connection class 25

5 The cursor class 35

6 More advanced topics 45
6.1 Connection and cursor factories . 45
6.2 Adapting new Python types to SQL syntax . 45
6.3 Type casting of SQL types into Python objects . 46
6.4 Asynchronous notifications . 47
6.5 Asynchronous support . 48
6.6 Support for coroutine libraries . 50
6.7 Replication protocol support . 51

7 psycopg2.extensions – Extensions to the DB API 53
7.1 Classes definitions . 53
7.2 SQL adaptation protocol objects . 56
7.3 Database types casting functions . 58
7.4 Additional exceptions . 59
7.5 Coroutines support functions . 59
7.6 Other functions . 60

i

7.7 Isolation level constants . 61
7.8 Transaction status constants . 62
7.9 Connection status constants . 62
7.10 Poll constants . 63
7.11 Additional database types . 63

8 psycopg2.extras – Miscellaneous goodies for Psycopg 2 65
8.1 Connection and cursor subclasses . 65
8.2 Additional data types . 73
8.3 Fast execution helpers . 81
8.4 Fractional time zones . 82
8.5 Coroutine support . 83

9 psycopg2.sql – SQL string composition 85

10 psycopg2.tz – tzinfo implementations for Psycopg 2 89

11 psycopg2.pool – Connections pooling 91

12 psycopg2.errorcodes – Error codes defined by PostgreSQL 93

13 Frequently Asked Questions 95
13.1 Problems with transactions handling . 95
13.2 Problems with type conversions . 95
13.3 Best practices . 97
13.4 Problems compiling and deploying psycopg2 . 98

14 Release notes 99
14.1 Current release . 99
14.2 What’s new in psycopg 2.7 . 101
14.3 What’s new in psycopg 2.6 . 102
14.4 What’s new in psycopg 2.5 . 104
14.5 What’s new in psycopg 2.4 . 107
14.6 What’s new in psycopg 2.3 . 108
14.7 What’s new in psycopg 2.2 . 109
14.8 What’s new in psycopg 2.0 . 114

15 License 121
15.1 psycopg2 and the LGPL . 121
15.2 Alternative licenses . 121

Python Module Index 123

Index 125

ii

Psycopg Documentation, Release 2.7.6

Psycopg is the most popular PostgreSQL database adapter for the Python programming language. Its main features are
the complete implementation of the Python DB API 2.0 specification and the thread safety (several threads can share
the same connection). It was designed for heavily multi-threaded applications that create and destroy lots of cursors
and make a large number of concurrent INSERTs or UPDATEs.

Psycopg 2 is mostly implemented in C as a libpq wrapper, resulting in being both efficient and secure. It features
client-side and server-side cursors, asynchronous communication and notifications, COPY support. Many Python
types are supported out-of-the-box and adapted to matching PostgreSQL data types; adaptation can be extended and
customized thanks to a flexible objects adaptation system.

Psycopg 2 is both Unicode and Python 3 friendly.

Contents

CONTENTS 1

http://initd.org/psycopg/
http://www.postgresql.org/
http://www.python.org/
http://www.python.org/dev/peps/pep-0249/
http://www.postgresql.org/docs/current/static/libpq.html

Psycopg Documentation, Release 2.7.6

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Psycopg is a PostgreSQL adapter for the Python programming language. It is a wrapper for the libpq, the official
PostgreSQL client library.

The psycopg2 package is the current mature implementation of the adapter: it is a C extension and as such it is
only compatible with CPython. If you want to use Psycopg on a different Python implementation (PyPy, Jython,
IronPython) there is an experimental porting of Psycopg for Ctypes, but it is not as mature as the C implementation
yet.

1.1 Prerequisites

The current psycopg2 implementation supports:

• Python 2 versions from 2.6 to 2.7

• Python 3 versions from 3.2 to 3.7

• PostgreSQL server versions from 7.4 to 10

• PostgreSQL client library version from 9.1

1.1.1 Build prerequisites

The build prerequisites are to be met in order to install Psycopg from source code, from a source distribution package,
GitHub or from PyPI.

Psycopg is a C wrapper around the libpq PostgreSQL client library. To install it from sources you will need:

• A C compiler.

• The Python header files. They are usually installed in a package such as python-dev. A message such as error:
Python.h: No such file or directory is an indication that the Python headers are missing.

• The libpq header files. They are usually installed in a package such as libpq-dev. If you get an error: libpq-fe.h:
No such file or directory you are missing them.

• The pg_config program: it is usually installed by the libpq-dev package but sometimes it is not in a PATH
directory. Having it in the PATH greatly streamlines the installation, so try running pg_config --version:
if it returns an error or an unexpected version number then locate the directory containing the pg_config
shipped with the right libpq version (usually /usr/lib/postgresql/X.Y/bin/) and add it to the PATH:

$ export PATH=/usr/lib/postgresql/X.Y/bin/:$PATH

You only need pg_config to compile psycopg2, not for its regular usage.

3

http://www.postgresql.org/
http://www.python.org/
http://www.postgresql.org/docs/current/static/libpq.html
http://en.wikipedia.org/wiki/CPython
https://github.com/mvantellingen/psycopg2-ctypes
https://github.com/psycopg/psycopg2
http://www.postgresql.org/docs/current/static/libpq.html

Psycopg Documentation, Release 2.7.6

Once everything is in place it’s just a matter of running the standard:

$ pip install psycopg2

or, from the directory containing the source code:

$ python setup.py build
$ python setup.py install

1.1.2 Runtime requirements

Unless you compile psycopg2 as a static library, or you install it from a self-contained wheel package, it will need
the libpq library at runtime (usually distributed in a libpq.so or libpq.dll file). psycopg2 relies on the host
OS to find the library if the library is installed in a standard location there is usually no problem; if the library is in
a non-standard location you will have to tell somehow Psycopg how to find it, which is OS-dependent (for instance
setting a suitable LD_LIBRARY_PATH on Linux).

Note: The libpq header files used to compile psycopg2 should match the version of the library linked at runtime.
If you get errors about missing or mismatching libraries when importing psycopg2 check (e.g. using ldd) if the
module psycopg2/_psycopg.so is linked to the right libpq.so.

Note: Whatever version of libpq psycopg2 is compiled with, it will be possible to connect to PostgreSQL servers
of any supported version: just install the most recent libpq version or the most practical, without trying to match it to
the version of the PostgreSQL server you will have to connect to.

1.2 Binary install from PyPI

psycopg2 is also available on PyPI in the form of wheel packages for the most common platform (Linux, OSX,
Windows): this should make you able to install a binary version of the module, not requiring the above build or
runtime prerequisites.

Note: The -binary package is meant for beginners to start playing with Python and PostgreSQL without the need
to meet the build requirements. If you are the maintainer of a publish package depending on psycopg2 you shouldn’t
use psycopg2-binary as a module dependency. For production use you are advised to use the source distribution.

Make sure to use an up-to-date version of pip (you can upgrade it using something like pip install -U pip),
then you can run:

$ pip install psycopg2-binary

Note: The binary packages come with their own versions of a few C libraries, among which libpq and libssl,
which will be used regardless of other libraries available on the client: upgrading the system libraries will not upgrade
the libraries used by psycopg2. Please build psycopg2 from source if you want to maintain binary upgradeability.

4 Chapter 1. Introduction

http://www.postgresql.org/docs/current/static/libpq.html
https://pypi.org/project/psycopg2-binary/
http://pythonwheels.com/

Psycopg Documentation, Release 2.7.6

Warning: The psycopg2 wheel package comes packaged, among the others, with its own libssl binary. This
may create conflicts with other extension modules binding with libssl as well, for instance with the Python ssl
module: in some cases, under concurrency, the interaction between the two libraries may result in a segfault. In
case of doubts you are advised to use a package built from source.

1.2.1 Disabling wheel packages for Psycopg 2.7

In version 2.7.x, pip install psycopg2 would have tried to install the wheel binary package of Psycopg. Be-
cause of the problems the wheel package have displayed, psycopg2-binary has become a separate package, and
from 2.8 it has become the only way to install the binary package.

If you are using psycopg 2.7 and you want to disable the use of wheel binary packages, relying on the system libraries
available on your client, you can use the pip --no-binary option, e.g.:

$ pip install --no-binary :all: psycopg2

which can be specified in your requirements.txt files too, e.g. use:

psycopg2>=2.7,<2.8 --no-binary psycopg2

to use the last bugfix release of the psycopg2 2.7 package, specifying to always compile it from source. Of course
in this case you will have to meet the build prerequisites.

1.3 Non-standard builds

If you have less standard requirements such as:

• creating a debug build,

• using pg_config not in the PATH,

• supporting mx.DateTime,

then take a look at the setup.cfg file.

Some of the options available in setup.cfg are also available as command line arguments of the build_ext
sub-command. For instance you can specify an alternate pg_config location using:

$ python setup.py build_ext --pg-config /path/to/pg_config build

Use python setup.py build_ext --help to get a list of the options supported.

1.3.1 Creating a debug build

In case of problems, Psycopg can be configured to emit detailed debug messages, which can be very useful for diag-
nostics and to report a bug. In order to create a debug package:

• Download and unpack the Psycopg source package.

• Edit the setup.cfg file adding the PSYCOPG_DEBUG flag to the define option.

• Compile and install the package.

• Set the PSYCOPG_DEBUG environment variable:

1.3. Non-standard builds 5

https://docs.python.org/3/library/ssl.html#module-ssl
https://pip.pypa.io/en/stable/reference/pip_install/#install-no-binary
http://initd.org/psycopg/download/

Psycopg Documentation, Release 2.7.6

$ export PSYCOPG_DEBUG=1

• Run your program (making sure that the psycopg2 package imported is the one you just compiled and not e.g.
the system one): you will have a copious stream of informations printed on stderr.

1.4 Running the test suite

Once psycopg2 is installed you can run the test suite to verify it is working correctly. You can run:

$ python -c "from psycopg2 import tests; tests.unittest.main(defaultTest='tests.test_
↪→suite')" --verbose

The tests run against a database called psycopg2_test on UNIX socket and the standard port. You can configure
a different database to run the test by setting the environment variables:

• PSYCOPG2_TESTDB

• PSYCOPG2_TESTDB_HOST

• PSYCOPG2_TESTDB_PORT

• PSYCOPG2_TESTDB_USER

The database should already exist before running the tests.

1.5 If you still have problems

Try the following. In order:

• Read again the Build prerequisites.

• Read the FAQ.

• Google for psycopg2 your error message. Especially useful the week after the release of a new OS X version.

• Write to the Mailing List.

• If you think that you have discovered a bug, test failure or missing feature please raise a ticket in the bug tracker.

• Complain on your blog or on Twitter that psycopg2 is the worst package ever and about the quality time you
have wasted figuring out the correct ARCHFLAGS. Especially useful from the Starbucks near you.

6 Chapter 1. Introduction

https://lists.postgresql.org/mj/mj_wwwusr?func=lists-long-full&extra=psycopg
https://github.com/psycopg/psycopg2/issues

CHAPTER

TWO

BASIC MODULE USAGE

The basic Psycopg usage is common to all the database adapters implementing the DB API 2.0 protocol. Here is an
interactive session showing some of the basic commands:

>>> import psycopg2

Connect to an existing database
>>> conn = psycopg2.connect("dbname=test user=postgres")

Open a cursor to perform database operations
>>> cur = conn.cursor()

Execute a command: this creates a new table
>>> cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);
↪→")

Pass data to fill a query placeholders and let Psycopg perform
the correct conversion (no more SQL injections!)
>>> cur.execute("INSERT INTO test (num, data) VALUES (%s, %s)",
... (100, "abc'def"))

Query the database and obtain data as Python objects
>>> cur.execute("SELECT * FROM test;")
>>> cur.fetchone()
(1, 100, "abc'def")

Make the changes to the database persistent
>>> conn.commit()

Close communication with the database
>>> cur.close()
>>> conn.close()

The main entry points of Psycopg are:

• The function connect() creates a new database session and returns a new connection instance.

• The class connection encapsulates a database session. It allows to:

– create new cursor instances using the cursor() method to execute database commands and queries,

– terminate transactions using the methods commit() or rollback().

• The class cursor allows interaction with the database:

– send commands to the database using methods such as execute() and executemany(),

7

http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

– retrieve data from the database by iteration or using methods such as fetchone(), fetchmany(),
fetchall().

2.1 Passing parameters to SQL queries

Psycopg converts Python variables to SQL values using their types: the Python type determines the function used
to convert the object into a string representation suitable for PostgreSQL. Many standard Python types are already
adapted to the correct SQL representation.

Passing parameters to an SQL statement happens in functions such as cursor.execute() by using %s placehold-
ers in the SQL statement, and passing a sequence of values as the second argument of the function. For example the
Python function call:

>>> cur.execute("""
... INSERT INTO some_table (an_int, a_date, a_string)
... VALUES (%s, %s, %s);
... """,
... (10, datetime.date(2005, 11, 18), "O'Reilly"))

is converted into a SQL command similar to:

INSERT INTO some_table (an_int, a_date, a_string)
VALUES (10, '2005-11-18', 'O''Reilly');

Named arguments are supported too using %(name)s placeholders in the query and specifying the values into a
mapping. Using named arguments allows to specify the values in any order and to repeat the same value in several
places in the query:

>>> cur.execute("""
... INSERT INTO some_table (an_int, a_date, another_date, a_string)
... VALUES (%(int)s, %(date)s, %(date)s, %(str)s);
... """,
... {'int': 10, 'str': "O'Reilly", 'date': datetime.date(2005, 11, 18)})

Using characters %, (,) in the argument names is not supported.

When parameters are used, in order to include a literal % in the query you can use the %% string:

>>> cur.execute("SELECT (%s % 2) = 0 AS even", (10,)) # WRONG
>>> cur.execute("SELECT (%s %% 2) = 0 AS even", (10,)) # correct

While the mechanism resembles regular Python strings manipulation, there are a few subtle differences you should
care about when passing parameters to a query.

• The Python string operator % must not be used: the execute() method accepts a tuple or dictionary of values
as second parameter. Never use % or + to merge values into queries:

>>> cur.execute("INSERT INTO numbers VALUES (%s, %s)" % (10, 20)) # WRONG
>>> cur.execute("INSERT INTO numbers VALUES (%s, %s)", (10, 20)) # correct

• For positional variables binding, the second argument must always be a sequence, even if it contains a single
variable (remember that Python requires a comma to create a single element tuple):

>>> cur.execute("INSERT INTO foo VALUES (%s)", "bar") # WRONG
>>> cur.execute("INSERT INTO foo VALUES (%s)", ("bar")) # WRONG

(continues on next page)

8 Chapter 2. Basic module usage

Psycopg Documentation, Release 2.7.6

(continued from previous page)

>>> cur.execute("INSERT INTO foo VALUES (%s)", ("bar",)) # correct
>>> cur.execute("INSERT INTO foo VALUES (%s)", ["bar"]) # correct

• The placeholder must not be quoted. Psycopg will add quotes where needed:

>>> cur.execute("INSERT INTO numbers VALUES ('%s')", (10,)) # WRONG
>>> cur.execute("INSERT INTO numbers VALUES (%s)", (10,)) # correct

• The variables placeholder must always be a %s, even if a different placeholder (such as a %d for integers or %f
for floats) may look more appropriate:

>>> cur.execute("INSERT INTO numbers VALUES (%d)", (10,)) # WRONG
>>> cur.execute("INSERT INTO numbers VALUES (%s)", (10,)) # correct

• Only query values should be bound via this method: it shouldn’t be used to merge table or field names to the
query (Psycopg will try quoting the table name as a string value, generating invalid SQL). If you need to generate
dynamically SQL queries (for instance choosing dynamically a table name) you can use the facilities provided
by the psycopg2.sql module:

>>> cur.execute("INSERT INTO %s VALUES (%s)", ('numbers', 10)) # WRONG
>>> cur.execute(# correct
... SQL("INSERT INTO {} VALUES (%s)").format(Identifier('numbers')),
... (10,))

2.1.1 The problem with the query parameters

The SQL representation of many data types is often different from their Python string representation. The typical
example is with single quotes in strings: in SQL single quotes are used as string literal delimiters, so the ones appearing
inside the string itself must be escaped, whereas in Python single quotes can be left unescaped if the string is delimited
by double quotes.

Because of the difference, sometime subtle, between the data types representations, a naïve approach to query strings
composition, such as using Python strings concatenation, is a recipe for terrible problems:

>>> SQL = "INSERT INTO authors (name) VALUES ('%s');" # NEVER DO THIS
>>> data = ("O'Reilly",)
>>> cur.execute(SQL % data) # THIS WILL FAIL MISERABLY
ProgrammingError: syntax error at or near "Reilly"
LINE 1: INSERT INTO authors (name) VALUES ('O'Reilly')

^

If the variables containing the data to send to the database come from an untrusted source (such as a form published on
a web site) an attacker could easily craft a malformed string, either gaining access to unauthorized data or performing
destructive operations on the database. This form of attack is called SQL injection and is known to be one of the most
widespread forms of attack to database servers. Before continuing, please print this page as a memo and hang it onto
your desk.

Psycopg can automatically convert Python objects to and from SQL literals: using this feature your code will be more
robust and reliable. We must stress this point:

Warning: Never, never, NEVER use Python string concatenation (+) or string parameters interpolation (%) to
pass variables to a SQL query string. Not even at gunpoint.

2.1. Passing parameters to SQL queries 9

http://en.wikipedia.org/wiki/SQL_injection
http://xkcd.com/327/

Psycopg Documentation, Release 2.7.6

The correct way to pass variables in a SQL command is using the second argument of the execute() method:

>>> SQL = "INSERT INTO authors (name) VALUES (%s);" # Note: no quotes
>>> data = ("O'Reilly",)
>>> cur.execute(SQL, data) # Note: no % operator

2.2 Adaptation of Python values to SQL types

Many standard Python types are adapted into SQL and returned as Python objects when a query is executed.

The following table shows the default mapping between Python and PostgreSQL types:

The mapping is fairly customizable: see Adapting new Python types to SQL syntax and Type casting of SQL types into
Python objects. You can also find a few other specialized adapters in the psycopg2.extras module.

2.2.1 Constants adaptation

Python None and boolean values True and False are converted into the proper SQL literals:

>>> cur.mogrify("SELECT %s, %s, %s;", (None, True, False))
'SELECT NULL, true, false;'

2.2.2 Numbers adaptation

Python numeric objects int, long, float, Decimal are converted into a PostgreSQL numerical representation:

>>> cur.mogrify("SELECT %s, %s, %s, %s;", (10, 10L, 10.0, Decimal("10.00")))
'SELECT 10, 10, 10.0, 10.00;'

Reading from the database, integer types are converted into int, floating point types are converted into float,
numeric/decimal are converted into Decimal.

Note: Sometimes you may prefer to receive numeric data as float instead, for performance reason or ease of
manipulation: you can configure an adapter to cast PostgreSQL numeric to Python float. This of course may imply a
loss of precision.

See also:

PostgreSQL numeric types

2.2.3 Strings adaptation

Python str and unicode are converted into the SQL string syntax. unicode objects (str in Python 3) are encoded
in the connection encoding before sending to the backend: trying to send a character not supported by the encoding
will result in an error. Data is usually received as str (i.e. it is decoded on Python 3, left encoded on Python 2).
However it is possible to receive unicode on Python 2 too: see Unicode handling.

10 Chapter 2. Basic module usage

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
http://www.postgresql.org/docs/current/static/datatype-numeric.html
https://docs.python.org/3/library/stdtypes.html#str

Psycopg Documentation, Release 2.7.6

Unicode handling

Psycopg can exchange Unicode data with a PostgreSQL database. Python unicode objects are automati-
cally encoded in the client encoding defined on the database connection (the PostgreSQL encoding, available in
connection.encoding, is translated into a Python encoding using the encodings mapping):

>>> print u, type(u)
àèìòùC <type 'unicode'>

>>> cur.execute("INSERT INTO test (num, data) VALUES (%s,%s);", (74, u))

When reading data from the database, in Python 2 the strings returned are usually 8 bit str objects encoded in the
database client encoding:

>>> print conn.encoding
UTF8

>>> cur.execute("SELECT data FROM test WHERE num = 74")
>>> x = cur.fetchone()[0]
>>> print x, type(x), repr(x)
àèìòùC <type 'str'> '\xc3\xa0\xc3\xa8\xc3\xac\xc3\xb2\xc3\xb9\xe2\x82\xac'

>>> conn.set_client_encoding('LATIN9')

>>> cur.execute("SELECT data FROM test WHERE num = 74")
>>> x = cur.fetchone()[0]
>>> print type(x), repr(x)
<type 'str'> '\xe0\xe8\xec\xf2\xf9\xa4'

In Python 3 instead the strings are automatically decoded in the connection encoding, as the str object can repre-
sent Unicode characters. In Python 2 you must register a typecaster in order to receive unicode objects:

>>> psycopg2.extensions.register_type(psycopg2.extensions.UNICODE, cur)

>>> cur.execute("SELECT data FROM test WHERE num = 74")
>>> x = cur.fetchone()[0]
>>> print x, type(x), repr(x)
àèìòùC <type 'unicode'> u'\xe0\xe8\xec\xf2\xf9\u20ac'

In the above example, the UNICODE typecaster is registered only on the cursor. It is also possible to register typecasters
on the connection or globally: see the function register_type() and Type casting of SQL types into Python
objects for details.

Note: In Python 2, if you want to uniformly receive all your database input in Unicode, you can register the related
typecasters globally as soon as Psycopg is imported:

import psycopg2
import psycopg2.extensions
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

and forget about this story.

2.2. Adaptation of Python values to SQL types 11

http://www.postgresql.org/docs/current/static/multibyte.html
http://docs.python.org/library/codecs.html#standard-encodings

Psycopg Documentation, Release 2.7.6

2.2.4 Binary adaptation

Python types representing binary objects are converted into PostgreSQL binary string syntax, suitable for bytea
fields. Such types are buffer (only available in Python 2), memoryview (available from Python 2.7), bytearray
(available from Python 2.6) and bytes (only from Python 3: the name is available from Python 2.6 but it’s only an
alias for the type str). Any object implementing the Revised Buffer Protocol should be usable as binary type where
the protocol is supported (i.e. from Python 2.6). Received data is returned as buffer (in Python 2) or memoryview
(in Python 3).

Changed in version 2.4: only strings were supported before.

Changed in version 2.4.1: can parse the ‘hex’ format from 9.0 servers without relying on the version of the client
library.

Note: In Python 2, if you have binary data in a str object, you can pass them to a bytea field using the psycopg2.
Binary wrapper:

mypic = open('picture.png', 'rb').read()
curs.execute("insert into blobs (file) values (%s)",

(psycopg2.Binary(mypic),))

Warning: Since version 9.0 PostgreSQL uses by default a new “hex” format to emit bytea fields. Starting
from Psycopg 2.4.1 the format is correctly supported. If you use a previous version you will need some extra care
when receiving bytea from PostgreSQL: you must have at least libpq 9.0 installed on the client or alternatively you
can set the bytea_output configuration parameter to escape, either in the server configuration file or in the client
session (using a query such as SET bytea_output TO escape;) before receiving binary data.

2.2.5 Date/Time objects adaptation

Python builtin datetime, date, time, timedelta are converted into PostgreSQL’s timestamp[tz], date,
time[tz], interval data types. Time zones are supported too. The Egenix mx.DateTime objects are adapted the
same way:

>>> dt = datetime.datetime.now()
>>> dt
datetime.datetime(2010, 2, 8, 1, 40, 27, 425337)

>>> cur.mogrify("SELECT %s, %s, %s;", (dt, dt.date(), dt.time()))
"SELECT '2010-02-08T01:40:27.425337', '2010-02-08', '01:40:27.425337';"

>>> cur.mogrify("SELECT %s;", (dt - datetime.datetime(2010,1,1),))
"SELECT '38 days 6027.425337 seconds';"

See also:

PostgreSQL date/time types

Time zones handling

The PostgreSQL type timestamp with time zone (a.k.a. timestamptz) is converted into Python
datetime objects with a tzinfo attribute set to a FixedOffsetTimezone instance.

12 Chapter 2. Basic module usage

https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
http://www.python.org/dev/peps/pep-3118/
http://www.postgresql.org/docs/current/static/datatype-binary.html
http://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-BYTEA-OUTPUT
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
http://www.egenix.com/products/python/mxBase/mxDateTime/
http://www.postgresql.org/docs/current/static/datatype-datetime.html
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.tzinfo

Psycopg Documentation, Release 2.7.6

>>> cur.execute("SET TIME ZONE 'Europe/Rome';") # UTC + 1 hour
>>> cur.execute("SELECT '2010-01-01 10:30:45'::timestamptz;")
>>> cur.fetchone()[0].tzinfo
psycopg2.tz.FixedOffsetTimezone(offset=60, name=None)

Note that only time zones with an integer number of minutes are supported: this is a limitation of the Python
datetime module. A few historical time zones had seconds in the UTC offset: these time zones will have the
offset rounded to the nearest minute, with an error of up to 30 seconds.

>>> cur.execute("SET TIME ZONE 'Asia/Calcutta';") # offset was +5:53:20
>>> cur.execute("SELECT '1930-01-01 10:30:45'::timestamptz;")
>>> cur.fetchone()[0].tzinfo
psycopg2.tz.FixedOffsetTimezone(offset=353, name=None)

Changed in version 2.2.2: timezones with seconds are supported (with rounding). Previously such timezones raised
an error. In order to deal with them in previous versions use psycopg2.extras.register_tstz_w_secs().

Infinite dates handling

PostgreSQL can store the representation of an “infinite” date, timestamp, or interval. Infinite dates are not available to
Python, so these objects are mapped to date.max, datetime.max, interval.max. Unfortunately the mapping
cannot be bidirectional so these dates will be stored back into the database with their values, such as 9999-12-31.

It is possible to create an alternative adapter for dates and other objects to map date.max to infinity, for instance:

class InfDateAdapter:
def __init__(self, wrapped):

self.wrapped = wrapped
def getquoted(self):

if self.wrapped == datetime.date.max:
return b"'infinity'::date"

elif self.wrapped == datetime.date.min:
return b"'-infinity'::date"

else:
return psycopg2.extensions.DateFromPy(self.wrapped).getquoted()

psycopg2.extensions.register_adapter(datetime.date, InfDateAdapter)

Of course it will not be possible to write the value of date.max in the database anymore: infinity will be stored
instead.

2.2.6 Lists adaptation

Python lists are converted into PostgreSQL ARRAYs:

>>> cur.mogrify("SELECT %s;", ([10, 20, 30],))
'SELECT ARRAY[10,20,30];'

Note: You can use a Python list as the argument of the IN operator using the PostgreSQL ANY operator.

ids = [10, 20, 30]
cur.execute("SELECT * FROM data WHERE id = ANY(%s);", (ids,))

2.2. Adaptation of Python values to SQL types 13

https://docs.python.org/3/library/datetime.html#module-datetime
http://www.postgresql.org/docs/current/static/functions-subquery.html#FUNCTIONS-SUBQUERY-ANY-SOME

Psycopg Documentation, Release 2.7.6

Furthermore ANY can also work with empty lists, whereas IN () is a SQL syntax error.

Note: Reading back from PostgreSQL, arrays are converted to lists of Python objects as expected, but only if the
items are of a known type. Arrays of unknown types are returned as represented by the database (e.g. {a,b,c}). If
you want to convert the items into Python objects you can easily create a typecaster for array of unknown types.

2.2.7 Tuples adaptation

Python tuples are converted into a syntax suitable for the SQL IN operator and to represent a composite type:

>>> cur.mogrify("SELECT %s IN %s;", (10, (10, 20, 30)))
'SELECT 10 IN (10, 20, 30);'

Note: SQL doesn’t allow an empty list in the IN operator, so your code should guard against empty tuples. Alterna-
tively you can use a Python list.

If you want PostgreSQL composite types to be converted into a Python tuple/namedtuple you can use the
register_composite() function.

New in version 2.0.6: the tuple IN adaptation.

Changed in version 2.0.14: the tuple IN adapter is always active. In previous releases it was necessary to import the
extensions module to have it registered.

Changed in version 2.3: namedtuple instances are adapted like regular tuples and can thus be used to represent
composite types.

2.3 Transactions control

In Psycopg transactions are handled by the connection class. By default, the first time a command is sent to the
database (using one of the cursors created by the connection), a new transaction is created. The following database
commands will be executed in the context of the same transaction – not only the commands issued by the first cursor,
but the ones issued by all the cursors created by the same connection. Should any command fail, the transaction will
be aborted and no further command will be executed until a call to the rollback() method.

The connection is responsible for terminating its transaction, calling either the commit() or rollback() method.
Committed changes are immediately made persistent into the database. Closing the connection using the close()
method or destroying the connection object (using del or letting it fall out of scope) will result in an implicit rollback.

It is possible to set the connection in autocommit mode: this way all the commands executed will be immediately
committed and no rollback is possible. A few commands (e.g. CREATE DATABASE, VACUUM. . .) require to be
run outside any transaction: in order to be able to run these commands from Psycopg, the connection must be in
autocommit mode: you can use the autocommit property.

Warning: By default even a simple SELECT will start a transaction: in long-running programs, if no further
action is taken, the session will remain “idle in transaction”, an undesirable condition for several reasons (locks
are held by the session, tables bloat. . .). For long lived scripts, either make sure to terminate a transaction as soon
as possible or use an autocommit connection.

14 Chapter 2. Basic module usage

https://docs.python.org/3/library/collections.html#collections.namedtuple

Psycopg Documentation, Release 2.7.6

A few other transaction properties can be set session-wide by the connection: for instance it is possible to have
read-only transactions or change the isolation level. See the set_session() method for all the details.

2.3.1 with statement

Starting from version 2.5, psycopg2’s connections and cursors are context managers and can be used with the with
statement:

with psycopg2.connect(DSN) as conn:
with conn.cursor() as curs:

curs.execute(SQL)

When a connection exits the with block, if no exception has been raised by the block, the transaction is committed.
In case of exception the transaction is rolled back.

When a cursor exits the with block it is closed, releasing any resource eventually associated with it. The state of the
transaction is not affected.

Note that, unlike file objects or other resources, exiting the connection’s with block doesn’t close the connection but
only the transaction associated with it: a connection can be used in more than a with statement and each with block
is effectively wrapped in a separate transaction:

conn = psycopg2.connect(DSN)

with conn:
with conn.cursor() as curs:

curs.execute(SQL1)

with conn:
with conn.cursor() as curs:

curs.execute(SQL2)

conn.close()

2.4 Server side cursors

When a database query is executed, the Psycopg cursor usually fetches all the records returned by the backend,
transferring them to the client process. If the query returned an huge amount of data, a proportionally large amount of
memory will be allocated by the client.

If the dataset is too large to be practically handled on the client side, it is possible to create a server side cursor. Using
this kind of cursor it is possible to transfer to the client only a controlled amount of data, so that a large dataset can be
examined without keeping it entirely in memory.

Server side cursor are created in PostgreSQL using the DECLARE command and subsequently handled using MOVE,
FETCH and CLOSE commands.

Psycopg wraps the database server side cursor in named cursors. A named cursor is created using the cursor()
method specifying the name parameter. Such cursor will behave mostly like a regular cursor, allowing the user to move
in the dataset using the scroll() method and to read the data using fetchone() and fetchmany() methods.
Normally you can only scroll forward in a cursor: if you need to scroll backwards you should declare your cursor
scrollable.

Named cursors are also iterable like regular cursors. Note however that before Psycopg 2.4 iteration was performed
fetching one record at time from the backend, resulting in a large overhead. The attribute itersize now controls

2.4. Server side cursors 15

http://www.postgresql.org/docs/current/static/sql-declare.html

Psycopg Documentation, Release 2.7.6

how many records are fetched at time during the iteration: the default value of 2000 allows to fetch about 100KB per
roundtrip assuming records of 10-20 columns of mixed number and strings; you may decrease this value if you are
dealing with huge records.

Named cursors are usually created WITHOUT HOLD, meaning they live only as long as the current transaction. Trying
to fetch from a named cursor after a commit() or to create a named cursor when the connection is in autocommit
mode will result in an exception. It is possible to create a WITH HOLD cursor by specifying a True value for the
withhold parameter to cursor() or by setting the withhold attribute to True before calling execute() on
the cursor. It is extremely important to always close() such cursors, otherwise they will continue to hold server-side
resources until the connection will be eventually closed. Also note that while WITH HOLD cursors lifetime extends
well after commit(), calling rollback() will automatically close the cursor.

Note: It is also possible to use a named cursor to consume a cursor created in some other way than using the DECLARE
executed by execute(). For example, you may have a PL/pgSQL function returning a cursor:

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS $$
BEGIN

OPEN $1 FOR SELECT col FROM test;
RETURN $1;

END;
$$ LANGUAGE plpgsql;

You can read the cursor content by calling the function with a regular, non-named, Psycopg cursor:

cur1 = conn.cursor()
cur1.callproc('reffunc', ['curname'])

and then use a named cursor in the same transaction to “steal the cursor”:

cur2 = conn.cursor('curname')
for record in cur2: # or cur2.fetchone, fetchmany...

do something with record
pass

2.5 Thread and process safety

The Psycopg module and the connection objects are thread-safe: many threads can access the same database either
using separate sessions and creating a connection per thread or using the same connection and creating separate
cursors. In DB API 2.0 parlance, Psycopg is level 2 thread safe.

The difference between the above two approaches is that, using different connections, the commands will be executed
in different sessions and will be served by different server processes. On the other hand, using many cursors on the
same connection, all the commands will be executed in the same session (and in the same transaction if the connection
is not in autocommit mode), but they will be serialized.

The above observations are only valid for regular threads: they don’t apply to forked processes nor to green threads.
libpq connections shouldn’t be used by a forked processes, so when using a module such as multiprocessing
or a forking web deploy method such as FastCGI make sure to create the connections after the fork.

Connections shouldn’t be shared either by different green threads: see Support for coroutine libraries for further
details.

16 Chapter 2. Basic module usage

http://www.python.org/dev/peps/pep-0249/
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNECT
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

Psycopg Documentation, Release 2.7.6

2.6 Using COPY TO and COPY FROM

Psycopg cursor objects provide an interface to the efficient PostgreSQL COPY command to move data from files to
tables and back.

Currently no adaptation is provided between Python and PostgreSQL types on COPY: the file can be any Python
file-like object but its format must be in the format accepted by PostgreSQL COPY command (data format, escaped
characters, etc).

The methods exposed are:

copy_from() Reads data from a file-like object appending them to a database table (COPY table FROM file
syntax). The source file must provide both read() and readline() method.

copy_to() Writes the content of a table to a file-like object (COPY table TO file syntax). The target file
must have a write() method.

copy_expert() Allows to handle more specific cases and to use all the COPY features available in PostgreSQL.

Please refer to the documentation of the single methods for details and examples.

2.7 Access to PostgreSQL large objects

PostgreSQL offers support for large objects, which provide stream-style access to user data that is stored in a special
large-object structure. They are useful with data values too large to be manipulated conveniently as a whole.

Psycopg allows access to the large object using the lobject class. Objects are generated using the connection.
lobject() factory method. Data can be retrieved either as bytes or as Unicode strings.

Psycopg large object support efficient import/export with file system files using the lo_import() and
lo_export() libpq functions.

Changed in version 2.6: added support for large objects greated than 2GB. Note that the support is enabled only if all
the following conditions are verified:

• the Python build is 64 bits;

• the extension was built against at least libpq 9.3;

• the server version is at least PostgreSQL 9.3 (server_version must be >= 90300).

If Psycopg was built with 64 bits large objects support (i.e. the first two contidions above are verified), the
psycopg2.__version__ constant will contain the lo64 flag. If any of the contition is not met several lobject
methods will fail if the arguments exceed 2GB.

2.8 Two-Phase Commit protocol support

New in version 2.3.

Psycopg exposes the two-phase commit features available since PostgreSQL 8.1 implementing the two-phase commit
extensions proposed by the DB API 2.0.

The DB API 2.0 model of two-phase commit is inspired by the XA specification, according to which transaction IDs
are formed from three components:

• a format ID (non-negative 32 bit integer)

• a global transaction ID (string not longer than 64 bytes)

2.6. Using COPY TO and COPY FROM 17

http://www.postgresql.org/docs/current/static/sql-copy.html
http://www.postgresql.org/docs/current/static/largeobjects.html
http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-IMPORT
http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-EXPORT
http://www.opengroup.org/bookstore/catalog/c193.htm

Psycopg Documentation, Release 2.7.6

• a branch qualifier (string not longer than 64 bytes)

For a particular global transaction, the first two components will be the same for all the resources. Every resource will
be assigned a different branch qualifier.

According to the DB API 2.0 specification, a transaction ID is created using the connection.xid() method.
Once you have a transaction id, a distributed transaction can be started with connection.tpc_begin(), pre-
pared using tpc_prepare() and completed using tpc_commit() or tpc_rollback(). Transaction IDs can
also be retrieved from the database using tpc_recover() and completed using the above tpc_commit() and
tpc_rollback().

PostgreSQL doesn’t follow the XA standard though, and the ID for a PostgreSQL prepared transaction can be any
string up to 200 characters long. Psycopg’s Xid objects can represent both XA-style transactions IDs (such as the
ones created by the xid() method) and PostgreSQL transaction IDs identified by an unparsed string.

The format in which the Xids are converted into strings passed to the database is the same employed by the PostgreSQL
JDBC driver: this should allow interoperation between tools written in Python and in Java. For example a recovery
tool written in Python would be able to recognize the components of transactions produced by a Java program.

For further details see the documentation for the above methods.

18 Chapter 2. Basic module usage

http://jdbc.postgresql.org/
http://jdbc.postgresql.org/

CHAPTER

THREE

THE PSYCOPG2 MODULE CONTENT

The module interface respects the standard defined in the DB API 2.0.

psycopg2.connect(dsn=None, connection_factory=None, cursor_factory=None, async=False,
**kwargs)

Create a new database session and return a new connection object.

The connection parameters can be specified as a libpq connection string using the dsn parameter:

conn = psycopg2.connect("dbname=test user=postgres password=secret")

or using a set of keyword arguments:

conn = psycopg2.connect(dbname="test", user="postgres", password="secret")

or using a mix of both: if the same parameter name is specified in both sources, the kwargs value will have
precedence over the dsn value. Note that either the dsn or at least one connection-related keyword argument is
required.

The basic connection parameters are:

• dbname – the database name (database is a deprecated alias)

• user – user name used to authenticate

• password – password used to authenticate

• host – database host address (defaults to UNIX socket if not provided)

• port – connection port number (defaults to 5432 if not provided)

Any other connection parameter supported by the client library/server can be passed either in the connection
string or as a keyword. The PostgreSQL documentation contains the complete list of the supported parameters.
Also note that the same parameters can be passed to the client library using environment variables.

Using the connection_factory parameter a different class or connections factory can be specified. It should be a
callable object taking a dsn string argument. See Connection and cursor factories for details. If a cursor_factory
is specified, the connection’s cursor_factory is set to it. If you only need customized cursors you can use
this parameter instead of subclassing a connection.

Using async=True an asynchronous connection will be created: see Asynchronous support to know about
advantages and limitations. async_ is a valid alias for the Python version where async is a keyword.

Changed in version 2.4.3: any keyword argument is passed to the connection. Previously only the basic param-
eters (plus sslmode) were supported as keywords.

Changed in version 2.5: added the cursor_factory parameter.

Changed in version 2.7: both dsn and keyword arguments can be specified.

19

http://www.python.org/dev/peps/pep-0249/
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PARAMKEYWORDS
http://www.postgresql.org/docs/current/static/libpq-envars.html

Psycopg Documentation, Release 2.7.6

Changed in version 2.7: added async_ alias.

See also:

• parse_dsn

• libpq connection string syntax

• libpq supported connection parameters

• libpq supported environment variables

DB API extension

The non-connection-related keyword parameters are Psycopg extensions to the DB API 2.0.

psycopg2.apilevel
String constant stating the supported DB API level. For psycopg2 is 2.0.

psycopg2.threadsafety
Integer constant stating the level of thread safety the interface supports. For psycopg2 is 2, i.e. threads can
share the module and the connection. See Thread and process safety for details.

psycopg2.paramstyle
String constant stating the type of parameter marker formatting expected by the interface. For psycopg2 is
pyformat. See also Passing parameters to SQL queries.

psycopg2.__libpq_version__
Integer constant reporting the version of the libpq library this psycopg2 module was compiled with (in the
same format of server_version). If this value is greater or equal than 90100 then you may query the
version of the actually loaded library using the libpq_version() function.

3.1 Exceptions

In compliance with the DB API 2.0, the module makes informations about errors available through the following
exceptions:

exception psycopg2.Warning
Exception raised for important warnings like data truncations while inserting, etc. It is a subclass of the Python
StandardError.

exception psycopg2.Error
Exception that is the base class of all other error exceptions. You can use this to catch all errors with one single
except statement. Warnings are not considered errors and thus not use this class as base. It is a subclass of
the Python StandardError.

pgerror
String representing the error message returned by the backend, None if not available.

pgcode
String representing the error code returned by the backend, None if not available. The errorcodes
module contains symbolic constants representing PostgreSQL error codes.

>>> try:
... cur.execute("SELECT * FROM barf")
... except psycopg2.Error as e:

(continues on next page)

20 Chapter 3. The psycopg2 module content

http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PARAMKEYWORDS
http://www.postgresql.org/docs/current/static/libpq-envars.html
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

(continued from previous page)

... pass

>>> e.pgcode
'42P01'
>>> print e.pgerror
ERROR: relation "barf" does not exist
LINE 1: SELECT * FROM barf

^

cursor
The cursor the exception was raised from; None if not applicable.

diag
A Diagnostics object containing further information about the error.

>>> try:
... cur.execute("SELECT * FROM barf")
... except psycopg2.Error, e:
... pass

>>> e.diag.severity
'ERROR'
>>> e.diag.message_primary
'relation "barf" does not exist'

New in version 2.5.

DB API extension

The pgerror, pgcode, cursor, and diag attributes are Psycopg extensions.

exception psycopg2.InterfaceError
Exception raised for errors that are related to the database interface rather than the database itself. It is a subclass
of Error.

exception psycopg2.DatabaseError
Exception raised for errors that are related to the database. It is a subclass of Error.

exception psycopg2.DataError
Exception raised for errors that are due to problems with the processed data like division by zero, numeric value
out of range, etc. It is a subclass of DatabaseError.

exception psycopg2.OperationalError
Exception raised for errors that are related to the database’s operation and not necessarily under the control of the
programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could not
be processed, a memory allocation error occurred during processing, etc. It is a subclass of DatabaseError.

exception psycopg2.IntegrityError
Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails. It is a
subclass of DatabaseError.

exception psycopg2.InternalError
Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It is a subclass of DatabaseError.

exception psycopg2.ProgrammingError

3.1. Exceptions 21

https://docs.python.org/3/library/constants.html#None

Psycopg Documentation, Release 2.7.6

Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL state-
ment, wrong number of parameters specified, etc. It is a subclass of DatabaseError.

exception psycopg2.NotSupportedError
Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a rollback() on a connection that does not support transaction or has transactions turned off. It
is a subclass of DatabaseError.

DB API extension

Psycopg may raise a few other, more specialized, exceptions: currently QueryCanceledError and
TransactionRollbackError are defined. These exceptions are not exposed by the main psycopg2 mod-
ule but are made available by the extensions module. All the additional exceptions are subclasses of standard DB
API 2.0 exceptions, so trapping them specifically is not required.

This is the exception inheritance layout:

StandardError
|__ Warning
|__ Error

|__ InterfaceError
|__ DatabaseError

|__ DataError
|__ OperationalError
| |__ psycopg2.extensions.QueryCanceledError
| |__ psycopg2.extensions.TransactionRollbackError
|__ IntegrityError
|__ InternalError
|__ ProgrammingError
|__ NotSupportedError

3.2 Type Objects and Constructors

Note: This section is mostly copied verbatim from the DB API 2.0 specification. While these objects are exposed
in compliance to the DB API, Psycopg offers very accurate tools to convert data between Python and PostgreSQL
formats. See Adapting new Python types to SQL syntax and Type casting of SQL types into Python objects

Many databases need to have the input in a particular format for binding to an operation’s input parameters. For
example, if an input is destined for a DATE column, then it must be bound to the database in a particular string format.
Similar problems exist for “Row ID” columns or large binary items (e.g. blobs or RAW columns). This presents
problems for Python since the parameters to the .execute*() method are untyped. When the database module sees a
Python string object, it doesn’t know if it should be bound as a simple CHAR column, as a raw BINARY item, or as a
DATE.

To overcome this problem, a module must provide the constructors defined below to create objects that can hold special
values. When passed to the cursor methods, the module can then detect the proper type of the input parameter and
bind it accordingly.

A Cursor Object’s description attribute returns information about each of the result columns of a query. The type_code
must compare equal to one of Type Objects defined below. Type Objects may be equal to more than one type code
(e.g. DATETIME could be equal to the type codes for date, time and timestamp columns; see the Implementation
Hints below for details).

22 Chapter 3. The psycopg2 module content

http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

The module exports the following constructors and singletons:

psycopg2.Date(year, month, day)
This function constructs an object holding a date value.

psycopg2.Time(hour, minute, second)
This function constructs an object holding a time value.

psycopg2.Timestamp(year, month, day, hour, minute, second)
This function constructs an object holding a time stamp value.

psycopg2.DateFromTicks(ticks)
This function constructs an object holding a date value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for details).

psycopg2.TimeFromTicks(ticks)
This function constructs an object holding a time value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for details).

psycopg2.TimestampFromTicks(ticks)
This function constructs an object holding a time stamp value from the given ticks value (number of seconds
since the epoch; see the documentation of the standard Python time module for details).

psycopg2.Binary(string)
This function constructs an object capable of holding a binary (long) string value.

Note: All the adapters returned by the module level factories (Binary, Date, Time, Timestamp and the
*FromTicks variants) expose the wrapped object (a regular Python object such as datetime) in an adapted
attribute.

psycopg2.STRING
This type object is used to describe columns in a database that are string-based (e.g. CHAR).

psycopg2.BINARY
This type object is used to describe (long) binary columns in a database (e.g. LONG, RAW, BLOBs).

psycopg2.NUMBER
This type object is used to describe numeric columns in a database.

psycopg2.DATETIME
This type object is used to describe date/time columns in a database.

psycopg2.ROWID
This type object is used to describe the “Row ID” column in a database.

3.2. Type Objects and Constructors 23

Psycopg Documentation, Release 2.7.6

24 Chapter 3. The psycopg2 module content

CHAPTER

FOUR

THE CONNECTION CLASS

class connection
Handles the connection to a PostgreSQL database instance. It encapsulates a database session.

Connections are created using the factory function connect().

Connections are thread safe and can be shared among many threads. See Thread and process safety for details.

cursor(name=None, cursor_factory=None, scrollable=None, withhold=False)
Return a new cursor object using the connection.

If name is specified, the returned cursor will be a server side cursor (also known as named cursor). Other-
wise it will be a regular client side cursor. By default a named cursor is declared without SCROLL option
and WITHOUT HOLD: set the argument or property scrollable to True/False and or withhold
to True to change the declaration.

The name can be a string not valid as a PostgreSQL identifier: for example it may start with a digit and
contain non-alphanumeric characters and quotes.

Changed in version 2.4: previously only valid PostgreSQL identifiers were accepted as cursor name.

The cursor_factory argument can be used to create non-standard cursors. The class returned must be a
subclass of psycopg2.extensions.cursor. See Connection and cursor factories for details. A
default factory for the connection can also be specified using the cursor_factory attribute.

Changed in version 2.4.3: added the withhold argument.

Changed in version 2.5: added the scrollable argument.

DB API extension

All the function arguments are Psycopg extensions to the DB API 2.0.

commit()
Commit any pending transaction to the database.

By default, Psycopg opens a transaction before executing the first command: if commit() is not called,
the effect of any data manipulation will be lost.

The connection can be also set in “autocommit” mode: no transaction is automatically open, commands
have immediate effect. See Transactions control for details.

Changed in version 2.5: if the connection is used in a with statement, the method is automatically called
if no exception is raised in the with block.

rollback()
Roll back to the start of any pending transaction. Closing a connection without committing the changes
first will cause an implicit rollback to be performed.

25

Psycopg Documentation, Release 2.7.6

Changed in version 2.5: if the connection is used in a with statement, the method is automatically called
if an exception is raised in the with block.

close()
Close the connection now (rather than whenever del is executed). The connection will be unusable from
this point forward; an InterfaceError will be raised if any operation is attempted with the connec-
tion. The same applies to all cursor objects trying to use the connection. Note that closing a connection
without committing the changes first will cause any pending change to be discarded as if a ROLLBACK
was performed (unless a different isolation level has been selected: see set_isolation_level()).

Changed in version 2.2: previously an explicit ROLLBACKwas issued by Psycopg on close(). The com-
mand could have been sent to the backend at an inappropriate time, so Psycopg currently relies on the back-
end to implicitly discard uncommitted changes. Some middleware are known to behave incorrectly though
when the connection is closed during a transaction (when status is STATUS_IN_TRANSACTION),
e.g. PgBouncer reports an unclean server and discards the connection. To avoid this problem you
can ensure to terminate the transaction with a commit()/rollback() before closing.

Exceptions as connection class attributes

The connection also exposes as attributes the same exceptions available in the psycopg2 module. See
Exceptions.

Two-phase commit support methods

New in version 2.3.

See also:

Two-Phase Commit protocol support for an introductory explanation of these methods.

Note that PostgreSQL supports two-phase commit since release 8.1: these methods raise
NotSupportedError if used with an older version server.

xid(format_id, gtrid, bqual)
Returns a Xid instance to be passed to the tpc_*() methods of this connection. The argument types
and constraints are explained in Two-Phase Commit protocol support.

The values passed to the method will be available on the returned object as the members format_id,
gtrid, bqual. The object also allows accessing to these members and unpacking as a 3-items tuple.

tpc_begin(xid)
Begins a TPC transaction with the given transaction ID xid.

This method should be called outside of a transaction (i.e. nothing may have executed since the last
commit() or rollback() and connection.status is STATUS_READY).

Furthermore, it is an error to call commit() or rollback() within the TPC transaction: in this case a
ProgrammingError is raised.

The xid may be either an object returned by the xid() method or a plain string: the latter allows to create
a transaction using the provided string as PostgreSQL transaction id. See also tpc_recover().

tpc_prepare()
Performs the first phase of a transaction started with tpc_begin(). A ProgrammingError is raised
if this method is used outside of a TPC transaction.

After calling tpc_prepare(), no statements can be executed until tpc_commit() or
tpc_rollback() will be called. The reset() method can be used to restore the status of the con-

26 Chapter 4. The connection class

http://pgbouncer.projects.postgresql.org/

Psycopg Documentation, Release 2.7.6

nection to STATUS_READY : the transaction will remain prepared in the database and will be possible to
finish it with tpc_commit(xid) and tpc_rollback(xid).

See also:

the PREPARE TRANSACTION PostgreSQL command.

tpc_commit([xid])
When called with no arguments, tpc_commit() commits a TPC transaction previously prepared with
tpc_prepare().

If tpc_commit() is called prior to tpc_prepare(), a single phase commit is performed. A transac-
tion manager may choose to do this if only a single resource is participating in the global transaction.

When called with a transaction ID xid, the database commits the given transaction. If an invalid trans-
action ID is provided, a ProgrammingError will be raised. This form should be called outside of a
transaction, and is intended for use in recovery.

On return, the TPC transaction is ended.

See also:

the COMMIT PREPARED PostgreSQL command.

tpc_rollback([xid])
When called with no arguments, tpc_rollback() rolls back a TPC transaction. It may be called before
or after tpc_prepare().

When called with a transaction ID xid, it rolls back the given transaction. If an invalid transaction ID is
provided, a ProgrammingError is raised. This form should be called outside of a transaction, and is
intended for use in recovery.

On return, the TPC transaction is ended.

See also:

the ROLLBACK PREPARED PostgreSQL command.

tpc_recover()
Returns a list of Xid representing pending transactions, suitable for use with tpc_commit() or
tpc_rollback().

If a transaction was not initiated by Psycopg, the returned Xids will have attributes format_id and
bqual set to None and the gtrid set to the PostgreSQL transaction ID: such Xids are still usable for
recovery. Psycopg uses the same algorithm of the PostgreSQL JDBC driver to encode a XA triple in a
string, so transactions initiated by a program using such driver should be unpacked correctly.

Xids returned by tpc_recover() also have extra attributes prepared, owner, database popu-
lated with the values read from the server.

See also:

the pg_prepared_xacts system view.

DB API extension

The above methods are the only ones defined by the DB API 2.0 protocol. The Psycopg connection objects
exports the following additional methods and attributes.

closed
Read-only integer attribute: 0 if the connection is open, nonzero if it is closed or broken.

27

http://www.postgresql.org/docs/current/static/sql-prepare-transaction.html
http://www.postgresql.org/docs/current/static/sql-commit-prepared.html
http://www.postgresql.org/docs/current/static/sql-rollback-prepared.html
http://jdbc.postgresql.org/
http://www.postgresql.org/docs/current/static/view-pg-prepared-xacts.html

Psycopg Documentation, Release 2.7.6

cancel()
Cancel the current database operation.

The method interrupts the processing of the current operation. If no query is being executed, it does noth-
ing. You can call this function from a different thread than the one currently executing a database operation,
for instance if you want to cancel a long running query if a button is pushed in the UI. Interrupting query
execution will cause the cancelled method to raise a QueryCanceledError. Note that the termination
of the query is not guaranteed to succeed: see the documentation for PQcancel().

New in version 2.3.

reset()
Reset the connection to the default.

The method rolls back an eventual pending transaction and executes the PostgreSQL RESET and SET
SESSION AUTHORIZATION to revert the session to the default values. A two-phase commit transaction
prepared using tpc_prepare() will remain in the database available for recover.

New in version 2.0.12.

dsn
Read-only string containing the connection string used by the connection.

If a password was specified in the connection string it will be obscured.

set_session(isolation_level=None, readonly=None, deferrable=None, autocommit=None)
Set one or more parameters for the next transactions or statements in the current session.

Parameters

• isolation_level – set the isolation level for the next transactions/statements. The
value can be one of the literal values READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, SERIALIZABLE or the equivalent constant defined in the
extensions module.

• readonly – if True, set the connection to read only; read/write if False.

• deferrable – if True, set the connection to deferrable; non deferrable if False. Only
available from PostgreSQL 9.1.

• autocommit – switch the connection to autocommit mode: not a PostgreSQL session
setting but an alias for setting the autocommit attribute.

Arguments set to None (the default for all) will not be changed. The parameters isola-
tion_level, readonly and deferrable also accept the string DEFAULT as a value: the effect is
to reset the parameter to the server default. Defaults are defined by the server configuration:
see values for default_transaction_isolation, default_transaction_read_only,
default_transaction_deferrable.

The function must be invoked with no transaction in progress.

See also:

SET TRANSACTION for further details about the behaviour of the transaction parameters in the server.

New in version 2.4.2.

Changed in version 2.7: Before this version, the function would have set default_transaction_*
attribute in the current session; this implementation has the problem of not playing well with external
connection pooling working at transaction level and not resetting the state of the session: changing the
default transaction would pollute the connections in the pool and create problems to other applications
using the same pool.

28 Chapter 4. The connection class

http://www.postgresql.org/docs/current/static/libpq-cancel.html#LIBPQ-PQCANCEL
http://www.postgresql.org/docs/current/static/sql-reset.html
http://www.postgresql.org/docs/current/static/sql-set-session-authorization.html
http://www.postgresql.org/docs/current/static/sql-set-session-authorization.html
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-ISOLATION
http://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-READ-ONLY
http://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-DEFERRABLE
http://www.postgresql.org/docs/current/static/sql-set-transaction.html

Psycopg Documentation, Release 2.7.6

Starting from 2.7, if the connection is not autocommit, the transaction characteristics are issued together
with BEGIN and will leave the default_transaction_* settings untouched. For example:

conn.set_session(readonly=True)

will not change default_transaction_read_only, but following transaction will start with a
BEGIN READ ONLY. Conversely, using:

conn.set_session(readonly=True, autocommit=True)

will set default_transaction_read_only to on and rely on the server to apply the read only
state to whatever transaction, implicit or explicit, is executed in the connection.

autocommit
Read/write attribute: if True, no transaction is handled by the driver and every statement sent to the
backend has immediate effect; if False a new transaction is started at the first command execution: the
methods commit() or rollback() must be manually invoked to terminate the transaction.

The autocommit mode is useful to execute commands requiring to be run outside a transaction, such as
CREATE DATABASE or VACUUM.

The default is False (manual commit) as per DBAPI specification.

Warning: By default, any query execution, including a simple SELECT will start a transaction: for
long-running programs, if no further action is taken, the session will remain “idle in transaction”, an
undesirable condition for several reasons (locks are held by the session, tables bloat. . .). For long lived
scripts, either ensure to terminate a transaction as soon as possible or use an autocommit connection.

New in version 2.4.2.

isolation_level
Return or set the transaction isolation level for the current session. The value is one of the Isolation level
constants defined in the psycopg2.extensions module. On set it is also possible to use one of the
literal values READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE,
DEFAULT.

Changed in version 2.7: the property is writable.

Changed in version 2.7: the default value for isolation_level is ISOLATION_LEVEL_DEFAULT;
previously the property would have queried the server and returned the real value applied. To know this
value you can run a query such as show transaction_isolation. Usually the default value is
READ COMMITTED, but this may be changed in the server configuration.

This value is now entirely separate from the autocommit property: in previous version, if autocommit
was set to True this property would have returned ISOLATION_LEVEL_AUTOCOMMIT; it will now
return the server isolation level.

readonly
Return or set the read-only status for the current session. Available values are True (new transactions will
be in read-only mode), False (new transactions will be writable), None (use the default configured for
the server by default_transaction_read_only).

New in version 2.7.

deferrable
Return or set the deferrable status for the current session. Available values are True (new transactions
will be in deferrable mode), False (new transactions will be in non deferrable mode), None (use the
default configured for the server by default_transaction_deferrable).

29

http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/sql-set-transaction.html

Psycopg Documentation, Release 2.7.6

New in version 2.7.

set_isolation_level(level)

Note: This is a legacy method mixing isolation_level and autocommit. Using the respective
properties is a better option.

Set the transaction isolation level for the current session. The level defines the different phenomena that
can happen in the database between concurrent transactions.

The value set is an integer: symbolic constants are defined in the module psycopg2.extensions: see
Isolation level constants for the available values.

The default level is ISOLATION_LEVEL_DEFAULT: at this level a transaction is automatically
started the first time a database command is executed. If you want an autocommit mode, switch to
ISOLATION_LEVEL_AUTOCOMMIT before executing any command:

>>> conn.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

See also Transactions control.

encoding

set_client_encoding(enc)
Read or set the client encoding for the current session. The default is the encoding defined by the database.
It should be one of the characters set supported by PostgreSQL

notices
A list containing all the database messages sent to the client during the session.

>>> cur.execute("CREATE TABLE foo (id serial PRIMARY KEY);")
>>> pprint(conn.notices)
['NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "foo_pkey"
↪→for table "foo"\n',
'NOTICE: CREATE TABLE will create implicit sequence "foo_id_seq" for serial
↪→column "foo.id"\n']

Changed in version 2.7: The notices attribute is writable: the user may replace it with any Python
object exposing an append() method. If appending raises an exception the notice is silently dropped.

To avoid a leak in case excessive notices are generated, only the last 50 messages are kept. This check is
only in place if the notices attribute is a list: if any other object is used it will be up to the user to guard
from leakage.

You can configure what messages to receive using PostgreSQL logging configuration parameters such as
log_statement, client_min_messages, log_min_duration_statement etc.

notifies
List of Notify objects containing asynchronous notifications received by the session.

For other details see Asynchronous notifications.

Changed in version 2.3: Notifications are instances of the Notify object. Previously the list was com-
posed by 2 items tuples (pid,channel) and the payload was not accessible. To keep backward com-
patibility, Notify objects can still be accessed as 2 items tuples.

Changed in version 2.7: The notifies attribute is writable: the user may replace it with any Python ob-
ject exposing an append() method. If appending raises an exception the notification is silently dropped.

30 Chapter 4. The connection class

http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/multibyte.html
http://www.postgresql.org/docs/current/static/runtime-config-logging.html

Psycopg Documentation, Release 2.7.6

cursor_factory
The default cursor factory used by cursor() if the parameter is not specified.

New in version 2.5.

get_backend_pid()
Returns the process ID (PID) of the backend server process handling this connection.

Note that the PID belongs to a process executing on the database server host, not the local host!

See also:

libpq docs for PQbackendPID() for details.

New in version 2.0.8.

get_parameter_status(parameter)
Look up a current parameter setting of the server.

Potential values for parameter are: server_version, server_encoding,
client_encoding, is_superuser, session_authorization, DateStyle, TimeZone,
integer_datetimes, and standard_conforming_strings.

If server did not report requested parameter, return None.

See also:

libpq docs for PQparameterStatus() for details.

New in version 2.0.12.

get_dsn_parameters()
Get the effective dsn parameters for the connection as a dictionary.

The password parameter is removed from the result.

Example:

>>> conn.get_dsn_parameters()
{'dbname': 'test', 'user': 'postgres', 'port': '5432', 'sslmode': 'prefer'}

Requires libpq >= 9.3.

See also:

libpq docs for PQconninfo() for details.

New in version 2.7.

get_transaction_status()
Return the current session transaction status as an integer. Symbolic constants for the values are defined in
the module psycopg2.extensions: see Transaction status constants for the available values.

See also:

libpq docs for PQtransactionStatus() for details.

protocol_version
A read-only integer representing frontend/backend protocol being used. Currently Psycopg supports only
protocol 3, which allows connection to PostgreSQL server from version 7.4. Psycopg versions previous
than 2.3 support both protocols 2 and 3.

See also:

libpq docs for PQprotocolVersion() for details.

New in version 2.0.12.

31

http://www.postgresql.org/docs/current/static/libpq-status.html#LIBPQ-PQBACKENDPID
http://www.postgresql.org/docs/current/static/libpq-status.html#LIBPQ-PQPARAMETERSTATUS
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PQCONNINFO
http://www.postgresql.org/docs/current/static/libpq-status.html#LIBPQ-PQTRANSACTIONSTATUS
http://www.postgresql.org/docs/current/static/libpq-status.html#LIBPQ-PQPROTOCOLVERSION

Psycopg Documentation, Release 2.7.6

server_version
A read-only integer representing the backend version.

The number is formed by converting the major, minor, and revision numbers into two-decimal-digit num-
bers and appending them together. For example, version 8.1.5 will be returned as 80105.

See also:

libpq docs for PQserverVersion() for details.

New in version 2.0.12.

status
A read-only integer representing the status of the connection. Symbolic constants for the values are defined
in the module psycopg2.extensions: see Connection status constants for the available values.

The status is undefined for closed connections.

lobject([oid[, mode[, new_oid[, new_file[, lobject_factory]]]]])
Return a new database large object as a lobject instance.

See Access to PostgreSQL large objects for an overview.

Parameters

• oid – The OID of the object to read or write. 0 to create a new large object and and have
its OID assigned automatically.

• mode – Access mode to the object, see below.

• new_oid – Create a new object using the specified OID. The function raises
OperationalError if the OID is already in use. Default is 0, meaning assign a new
one automatically.

• new_file – The name of a file to be imported in the the database (using the
lo_import() function)

• lobject_factory – Subclass of lobject to be instantiated.

Available values for mode are:

mode meaning
r Open for read only
w Open for write only
rw Open for read/write
n Don’t open the file
b Don’t decode read data (return data as str in Python 2 or bytes in Python 3)
t Decode read data according to connection.encoding (return data as unicode in

Python 2 or str in Python 3)

b and t can be specified together with a read/write mode. If neither b nor t is specified, the default is b
in Python 2 and t in Python 3.

New in version 2.0.8.

Changed in version 2.4: added b and t mode and unicode support.

Methods related to asynchronous support.

New in version 2.2.0.

See also:

32 Chapter 4. The connection class

http://www.postgresql.org/docs/current/static/libpq-status.html#LIBPQ-PQSERVERVERSION
http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-IMPORT

Psycopg Documentation, Release 2.7.6

Asynchronous support and Support for coroutine libraries.

async
async_

Read only attribute: 1 if the connection is asynchronous, 0 otherwise.

Changed in version 2.7: added the async_ alias for Python versions where async is a keyword.

poll()
Used during an asynchronous connection attempt, or when a cursor is executing a query on an asyn-
chronous connection, make communication proceed if it wouldn’t block.

Return one of the constants defined in Poll constants. If it returns POLL_OK then the connection has been
established or the query results are available on the client. Otherwise wait until the file descriptor returned
by fileno() is ready to read or to write, as explained in Asynchronous support. poll() should be
also used by the function installed by set_wait_callback() as explained in Support for coroutine
libraries.

poll() is also used to receive asynchronous notifications from the database: see Asynchronous notifica-
tions from further details.

fileno()
Return the file descriptor underlying the connection: useful to read its status during asynchronous commu-
nication.

isexecuting()
Return True if the connection is executing an asynchronous operation.

33

Psycopg Documentation, Release 2.7.6

34 Chapter 4. The connection class

CHAPTER

FIVE

THE CURSOR CLASS

class cursor
Allows Python code to execute PostgreSQL command in a database session. Cursors are created by the
connection.cursor() method: they are bound to the connection for the entire lifetime and all the com-
mands are executed in the context of the database session wrapped by the connection.

Cursors created from the same connection are not isolated, i.e., any changes done to the database by a cursor are
immediately visible by the other cursors. Cursors created from different connections can or can not be isolated,
depending on the connections’ isolation level. See also rollback() and commit() methods.

Cursors are not thread safe: a multithread application can create many cursors from the same connection and
should use each cursor from a single thread. See Thread and process safety for details.

description
This read-only attribute is a sequence of 7-item sequences.

Each of these sequences is a named tuple (a regular tuple if collections.namedtuple() is not
available) containing information describing one result column:

0. name: the name of the column returned.

1. type_code: the PostgreSQL OID of the column. You can use the pg_type system table to get
more informations about the type. This is the value used by Psycopg to decide what Python type use
to represent the value. See also Type casting of SQL types into Python objects.

2. display_size: the actual length of the column in bytes. Obtaining this value is computationally
intensive, so it is always None unless the PSYCOPG_DISPLAY_SIZE parameter is set at compile
time. See also PQgetlength.

3. internal_size: the size in bytes of the column associated to this column on the server. Set to a
negative value for variable-size types See also PQfsize.

4. precision: total number of significant digits in columns of type NUMERIC. None for other types.

5. scale: count of decimal digits in the fractional part in columns of type NUMERIC. None for other
types.

6. null_ok: always None as not easy to retrieve from the libpq.

This attribute will be None for operations that do not return rows or if the cursor has not had an operation
invoked via the execute*() methods yet.

Changed in version 2.4: if possible, columns descriptions are named tuple instead of regular tuples.

close()
Close the cursor now (rather than whenever del is executed). The cursor will be unusable from this point
forward; an InterfaceError will be raised if any operation is attempted with the cursor.

35

https://docs.python.org/3/library/collections.html#collections.namedtuple
http://www.postgresql.org/docs/current/static/catalog-pg-type.html
http://www.postgresql.org/docs/current/static/libpq-exec.html#LIBPQ-PQGETLENGTH
http://www.postgresql.org/docs/current/static/libpq-exec.html#LIBPQ-PQFSIZE
http://www.postgresql.org/docs/current/static/datatype-numeric.html#DATATYPE-NUMERIC-DECIMAL

Psycopg Documentation, Release 2.7.6

Changed in version 2.5: if the cursor is used in a with statement, the method is automatically called at
the end of the with block.

closed
Read-only boolean attribute: specifies if the cursor is closed (True) or not (False).

DB API extension

The closed attribute is a Psycopg extension to the DB API 2.0.

New in version 2.0.7.

connection
Read-only attribute returning a reference to the connection object on which the cursor was created.

name
Read-only attribute containing the name of the cursor if it was creates as named cursor by connection.
cursor(), or None if it is a client side cursor. See Server side cursors.

DB API extension

The name attribute is a Psycopg extension to the DB API 2.0.

scrollable
Read/write attribute: specifies if a named cursor is declared SCROLL, hence is capable to scroll backwards
(using scroll()). If True, the cursor can be scrolled backwards, if False it is never scrollable. If
None (default) the cursor scroll option is not specified, usually but not always meaning no backward scroll
(see the DECLARE notes).

Note: set the value before calling execute() or use the connection.cursor() scrollable param-
eter, otherwise the value will have no effect.

New in version 2.5.

DB API extension

The scrollable attribute is a Psycopg extension to the DB API 2.0.

withhold
Read/write attribute: specifies if a named cursor lifetime should extend outside of the current transac-
tion, i.e., it is possible to fetch from the cursor even after a connection.commit() (but not after a
connection.rollback()). See Server side cursors

Note: set the value before calling execute() or use the connection.cursor() withhold param-
eter, otherwise the value will have no effect.

New in version 2.4.3.

DB API extension

The withhold attribute is a Psycopg extension to the DB API 2.0.

36 Chapter 5. The cursor class

http://www.postgresql.org/docs/current/static/sql-declare.html#SQL-DECLARE-NOTES

Psycopg Documentation, Release 2.7.6

Commands execution methods

execute(query, vars=None)
Execute a database operation (query or command).

Parameters may be provided as sequence or mapping and will be bound to variables in the operation.
Variables are specified either with positional (%s) or named (%(name)s) placeholders. See Passing
parameters to SQL queries.

The method returns None. If a query was executed, the returned values can be retrieved using fetch*()
methods.

executemany(query, vars_list)
Execute a database operation (query or command) against all parameter tuples or mappings found in the
sequence vars_list.

The function is mostly useful for commands that update the database: any result set returned by the query
is discarded.

Parameters are bounded to the query using the same rules described in the execute() method.

Warning: In its current implementation this method is not faster than executing execute() in a
loop. For better performance you can use the functions described in Fast execution helpers.

callproc(procname[, parameters])
Call a stored database procedure with the given name. The sequence of parameters must contain one entry
for each argument that the procedure expects. Overloaded procedures are supported. Named parameters
can be used by supplying the parameters as a dictionary.

This function is, at present, not DBAPI-compliant. The return value is supposed to consist of the sequence
of parameters with modified output and input/output parameters. In future versions, the DBAPI-compliant
return value may be implemented, but for now the function returns None.

The procedure may provide a result set as output. This is then made available through the standard
fetch*() methods.

Changed in version 2.7: added support for named arguments.

mogrify(operation[, parameters])
Return a query string after arguments binding. The string returned is exactly the one that would be sent to
the database running the execute() method or similar.

The returned string is always a bytes string.

>>> cur.mogrify("INSERT INTO test (num, data) VALUES (%s, %s)", (42, 'bar'))
"INSERT INTO test (num, data) VALUES (42, E'bar')"

DB API extension

The mogrify() method is a Psycopg extension to the DB API 2.0.

setinputsizes(sizes)
This method is exposed in compliance with the DB API 2.0. It currently does nothing but it is safe to call
it.

37

Psycopg Documentation, Release 2.7.6

Results retrieval methods

The following methods are used to read data from the database after an execute() call.

Note: cursor objects are iterable, so, instead of calling explicitly fetchone() in a loop, the object itself
can be used:

>>> cur.execute("SELECT * FROM test;")
>>> for record in cur:
... print record
...
(1, 100, "abc'def")
(2, None, 'dada')
(3, 42, 'bar')

Changed in version 2.4: iterating over a named cursor fetches itersize records at time from the backend.
Previously only one record was fetched per roundtrip, resulting in a large overhead.

fetchone()
Fetch the next row of a query result set, returning a single tuple, or None when no more data is available:

>>> cur.execute("SELECT * FROM test WHERE id = %s", (3,))
>>> cur.fetchone()
(3, 42, 'bar')

A ProgrammingError is raised if the previous call to execute*() did not produce any result set or
no call was issued yet.

fetchmany([size=cursor.arraysize])
Fetch the next set of rows of a query result, returning a list of tuples. An empty list is returned when no
more rows are available.

The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor’s
arraysize determines the number of rows to be fetched. The method should try to fetch as many
rows as indicated by the size parameter. If this is not possible due to the specified number of rows not
being available, fewer rows may be returned:

>>> cur.execute("SELECT * FROM test;")
>>> cur.fetchmany(2)
[(1, 100, "abc'def"), (2, None, 'dada')]
>>> cur.fetchmany(2)
[(3, 42, 'bar')]
>>> cur.fetchmany(2)
[]

A ProgrammingError is raised if the previous call to execute*() did not produce any result set or
no call was issued yet.

Note there are performance considerations involved with the size parameter. For optimal performance, it
is usually best to use the arraysize attribute. If the size parameter is used, then it is best for it to retain
the same value from one fetchmany() call to the next.

fetchall()
Fetch all (remaining) rows of a query result, returning them as a list of tuples. An empty list is returned if
there is no more record to fetch.

38 Chapter 5. The cursor class

Psycopg Documentation, Release 2.7.6

>>> cur.execute("SELECT * FROM test;")
>>> cur.fetchall()
[(1, 100, "abc'def"), (2, None, 'dada'), (3, 42, 'bar')]

A ProgrammingError is raised if the previous call to execute*() did not produce any result set or
no call was issued yet.

scroll(value[, mode=’relative’])
Scroll the cursor in the result set to a new position according to mode.

If mode is relative (default), value is taken as offset to the current position in the result set, if set to
absolute, value states an absolute target position.

If the scroll operation would leave the result set, a ProgrammingError is raised and the cursor position
is not changed.

Note: According to the DB API 2.0, the exception raised for a cursor out of bound should have been
IndexError. The best option is probably to catch both exceptions in your code:

try:
cur.scroll(1000 * 1000)

except (ProgrammingError, IndexError), exc:
deal_with_it(exc)

The method can be used both for client-side cursors and server-side cursors. Server-side cursors can
usually scroll backwards only if declared scrollable. Moving out-of-bound in a server-side cursor
doesn’t result in an exception, if the backend doesn’t raise any (Postgres doesn’t tell us in a reliable way if
we went out of bound).

arraysize
This read/write attribute specifies the number of rows to fetch at a time with fetchmany(). It defaults
to 1 meaning to fetch a single row at a time.

itersize
Read/write attribute specifying the number of rows to fetch from the backend at each network roundtrip
during iteration on a named cursor. The default is 2000.

New in version 2.4.

DB API extension

The itersize attribute is a Psycopg extension to the DB API 2.0.

rowcount
This read-only attribute specifies the number of rows that the last execute*() produced (for DQL
(Data Query Language) statements like SELECT) or affected (for DML (Data Manipulation Language)
statements like UPDATE or INSERT).

The attribute is -1 in case no execute*() has been performed on the cursor or the row count of the last
operation if it can’t be determined by the interface.

Note: The DB API 2.0 interface reserves to redefine the latter case to have the object return None instead
of -1 in future versions of the specification.

39

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

rownumber
This read-only attribute provides the current 0-based index of the cursor in the result set or None if the
index cannot be determined.

The index can be seen as index of the cursor in a sequence (the result set). The next fetch operation will
fetch the row indexed by rownumber in that sequence.

lastrowid
This read-only attribute provides the OID of the last row inserted by the cursor. If the table wasn’t created
with OID support or the last operation is not a single record insert, the attribute is set to None.

Note: PostgreSQL currently advices to not create OIDs on the tables and the default for CREATE TABLE
is to not support them. The INSERT ... RETURNING syntax available from PostgreSQL 8.3 allows
more flexibility.

query
Read-only attribute containing the body of the last query sent to the backend (including bound arguments)
as bytes string. None if no query has been executed yet:

>>> cur.execute("INSERT INTO test (num, data) VALUES (%s, %s)", (42, 'bar'))
>>> cur.query
"INSERT INTO test (num, data) VALUES (42, E'bar')"

DB API extension

The query attribute is a Psycopg extension to the DB API 2.0.

statusmessage
Read-only attribute containing the message returned by the last command:

>>> cur.execute("INSERT INTO test (num, data) VALUES (%s, %s)", (42, 'bar'))
>>> cur.statusmessage
'INSERT 0 1'

DB API extension

The statusmessage attribute is a Psycopg extension to the DB API 2.0.

cast(oid, s)
Convert a value from the PostgreSQL string representation to a Python object.

Use the most specific of the typecasters registered by register_type().

New in version 2.4.

DB API extension

The cast() method is a Psycopg extension to the DB API 2.0.

tzinfo_factory
The time zone factory used to handle data types such as TIMESTAMP WITH TIME ZONE. It should be
a tzinfo object. A few implementations are available in the psycopg2.tz module.

40 Chapter 5. The cursor class

http://www.postgresql.org/docs/current/static/sql-createtable.html
http://www.postgresql.org/docs/current/static/sql-insert.html
https://docs.python.org/3/library/datetime.html#datetime.tzinfo

Psycopg Documentation, Release 2.7.6

nextset()
This method is not supported (PostgreSQL does not have multiple data sets) and will raise a
NotSupportedError exception.

setoutputsize(size[, column])
This method is exposed in compliance with the DB API 2.0. It currently does nothing but it is safe to call
it.

COPY-related methods

Efficiently copy data from file-like objects to the database and back. See Using COPY TO and COPY FROM
for an overview.

DB API extension

The COPY command is a PostgreSQL extension to the SQL standard. As such, its support is a Psycopg extension
to the DB API 2.0.

copy_from(file, table, sep=’\t’, null=’\\N’, size=8192, columns=None)
Read data from the file-like object file appending them to the table named table.

Parameters

• file – file-like object to read data from. It must have both read() and readline()
methods.

• table – name of the table to copy data into.

• sep – columns separator expected in the file. Defaults to a tab.

• null – textual representation of NULL in the file. The default is the two characters string
\N.

• size – size of the buffer used to read from the file.

• columns – iterable with name of the columns to import. The length and types should
match the content of the file to read. If not specified, it is assumed that the entire table
matches the file structure.

Example:

>>> f = StringIO("42\tfoo\n74\tbar\n")
>>> cur.copy_from(f, 'test', columns=('num', 'data'))
>>> cur.execute("select * from test where id > 5;")
>>> cur.fetchall()
[(6, 42, 'foo'), (7, 74, 'bar')]

Note: the name of the table is not quoted: if the table name contains uppercase letters or special characters
it must be quoted with double quotes:

cur.copy_from(f, '"TABLE"')

Changed in version 2.0.6: added the columns parameter.

Changed in version 2.4: data read from files implementing the io.TextIOBase interface are encoded
in the connection encoding when sent to the backend.

41

https://docs.python.org/3/library/io.html#io.TextIOBase

Psycopg Documentation, Release 2.7.6

copy_to(file, table, sep=’\t’, null=’\\N’, columns=None)
Write the content of the table named table to the file-like object file. See Using COPY TO and COPY
FROM for an overview.

Parameters

• file – file-like object to write data into. It must have a write() method.

• table – name of the table to copy data from.

• sep – columns separator expected in the file. Defaults to a tab.

• null – textual representation of NULL in the file. The default is the two characters string
\N.

• columns – iterable with name of the columns to export. If not specified, export all the
columns.

Example:

>>> cur.copy_to(sys.stdout, 'test', sep="|")
1|100|abc'def
2|\N|dada
...

Note: the name of the table is not quoted: if the table name contains uppercase letters or special characters
it must be quoted with double quotes:

cur.copy_to(f, '"TABLE"')

Changed in version 2.0.6: added the columns parameter.

Changed in version 2.4: data sent to files implementing the io.TextIOBase interface are decoded in
the connection encoding when read from the backend.

copy_expert(sql, file, size=8192)
Submit a user-composed COPY statement. The method is useful to handle all the parameters that Post-
greSQL makes available (see COPY command documentation).

Parameters

• sql – the COPY statement to execute.

• file – a file-like object to read or write (according to sql).

• size – size of the read buffer to be used in COPY FROM.

The sql statement should be in the form COPY table TO STDOUT to export table to the file object
passed as argument or COPY table FROM STDIN to import the content of the file object into table.
If you need to compose a COPY statement dynamically (because table, fields, or query parameters are in
Python variables) you may use the objects provided by the psycopg2.sql module.

file must be a readable file-like object (as required by copy_from()) for sql statement COPY ...
FROM STDIN or a writable one (as required by copy_to()) for COPY ... TO STDOUT.

Example:

>>> cur.copy_expert("COPY test TO STDOUT WITH CSV HEADER", sys.stdout)
id,num,data
1,100,abc'def

(continues on next page)

42 Chapter 5. The cursor class

https://docs.python.org/3/library/io.html#io.TextIOBase
http://www.postgresql.org/docs/current/static/sql-copy.html

Psycopg Documentation, Release 2.7.6

(continued from previous page)

2,,dada
...

New in version 2.0.6.

Changed in version 2.4: files implementing the io.TextIOBase interface are dealt with using Unicode
data instead of bytes.

43

https://docs.python.org/3/library/io.html#io.TextIOBase

Psycopg Documentation, Release 2.7.6

44 Chapter 5. The cursor class

CHAPTER

SIX

MORE ADVANCED TOPICS

6.1 Connection and cursor factories

Psycopg exposes two new-style classes that can be sub-classed and expanded to adapt them to the needs of
the programmer: psycopg2.extensions.cursor and psycopg2.extensions.connection. The
connection class is usually sub-classed only to provide an easy way to create customized cursors but other uses
are possible. cursor is much more interesting, because it is the class where query building, execution and result
type-casting into Python variables happens.

The extras module contains several examples of connection and cursor subclasses.

Note: If you only need a customized cursor class, since Psycopg 2.5 you can use the cursor_factory parameter
of a regular connection instead of creating a new connection subclass.

An example of cursor subclass performing logging is:

import psycopg2
import psycopg2.extensions
import logging

class LoggingCursor(psycopg2.extensions.cursor):
def execute(self, sql, args=None):

logger = logging.getLogger('sql_debug')
logger.info(self.mogrify(sql, args))

try:
psycopg2.extensions.cursor.execute(self, sql, args)

except Exception, exc:
logger.error("%s: %s" % (exc.__class__.__name__, exc))
raise

conn = psycopg2.connect(DSN)
cur = conn.cursor(cursor_factory=LoggingCursor)
cur.execute("INSERT INTO mytable VALUES (%s, %s, %s);",

(10, 20, 30))

6.2 Adapting new Python types to SQL syntax

Any Python class or type can be adapted to an SQL string. Adaptation mechanism is similar to the Object Adaptation
proposed in the PEP 246 and is exposed by the psycopg2.extensions.adapt() function.

45

https://www.python.org/dev/peps/pep-0246

Psycopg Documentation, Release 2.7.6

The execute() method adapts its arguments to the ISQLQuote protocol. Objects that conform to this protocol
expose a getquoted() method returning the SQL representation of the object as a string (the method must return
bytes in Python 3). Optionally the conform object may expose a prepare() method.

There are two basic ways to have a Python object adapted to SQL:

• the object itself is conform, or knows how to make itself conform. Such object must expose a __conform__()
method that will be called with the protocol object as argument. The object can check that the protocol is
ISQLQuote, in which case it can return self (if the object also implements getquoted()) or a suitable
wrapper object. This option is viable if you are the author of the object and if the object is specifically designed
for the database (i.e. having Psycopg as a dependency and polluting its interface with the required methods
doesn’t bother you). For a simple example you can take a look at the source code for the psycopg2.extras.
Inet object.

• If implementing the ISQLQuote interface directly in the object is not an option (maybe because the ob-
ject to adapt comes from a third party library), you can use an adaptation function, taking the object
to be adapted as argument and returning a conforming object. The adapter must be registered via the
register_adapter() function. A simple example wrapper is psycopg2.extras.UUID_adapter
used by the register_uuid() function.

A convenient object to write adapters is the AsIs wrapper, whose getquoted() result is simply the str()ing
conversion of the wrapped object.

Example: mapping of a Point class into the point PostgreSQL geometric type:

>>> from psycopg2.extensions import adapt, register_adapter, AsIs

>>> class Point(object):
... def __init__(self, x, y):
... self.x = x
... self.y = y

>>> def adapt_point(point):
... x = adapt(point.x).getquoted()
... y = adapt(point.y).getquoted()
... return AsIs("'(%s, %s)'" % (x, y))

>>> register_adapter(Point, adapt_point)

>>> cur.execute("INSERT INTO atable (apoint) VALUES (%s)",
... (Point(1.23, 4.56),))

The above function call results in the SQL command:

INSERT INTO atable (apoint) VALUES ('(1.23, 4.56)');

6.3 Type casting of SQL types into Python objects

PostgreSQL objects read from the database can be adapted to Python objects through an user-defined adapting func-
tion. An adapter function takes two arguments: the object string representation as returned by PostgreSQL and the
cursor currently being read, and should return a new Python object. For example, the following function parses the
PostgreSQL point representation into the previously defined Point class:

>>> def cast_point(value, cur):
... if value is None:
... return None

(continues on next page)

46 Chapter 6. More advanced topics

http://www.postgresql.org/docs/current/static/datatype-geometric.html#DATATYPE-GEOMETRIC

Psycopg Documentation, Release 2.7.6

(continued from previous page)

...

... # Convert from (f1, f2) syntax using a regular expression.

... m = re.match(r"\(([^)]+),([^)]+)\)", value)

... if m:

... return Point(float(m.group(1)), float(m.group(2)))

... else:

... raise InterfaceError("bad point representation: %r" % value)

In order to create a mapping from a PostgreSQL type (either standard or user-defined), its OID must be known. It can
be retrieved either by the second column of the cursor.description:

>>> cur.execute("SELECT NULL::point")
>>> point_oid = cur.description[0][1]
>>> point_oid
600

or by querying the system catalog for the type name and namespace (the namespace for system objects is
pg_catalog):

>>> cur.execute("""
... SELECT pg_type.oid
... FROM pg_type JOIN pg_namespace
... ON typnamespace = pg_namespace.oid
... WHERE typname = %(typename)s
... AND nspname = %(namespace)s""",
... {'typename': 'point', 'namespace': 'pg_catalog'})
>>> point_oid = cur.fetchone()[0]
>>> point_oid
600

After you know the object OID, you can create and register the new type:

>>> POINT = psycopg2.extensions.new_type((point_oid,), "POINT", cast_point)
>>> psycopg2.extensions.register_type(POINT)

The new_type() function binds the object OIDs (more than one can be specified) to the adapter function.
register_type() completes the spell. Conversion is automatically performed when a column whose type is
a registered OID is read:

>>> cur.execute("SELECT '(10.2,20.3)'::point")
>>> point = cur.fetchone()[0]
>>> print type(point), point.x, point.y
<class 'Point'> 10.2 20.3

A typecaster created by new_type() can be also used with new_array_type() to create a typecaster converting
a PostgreSQL array into a Python list.

6.4 Asynchronous notifications

Psycopg allows asynchronous interaction with other database sessions using the facilities offered by PostgreSQL
commands LISTEN and NOTIFY. Please refer to the PostgreSQL documentation for examples about how to use this
form of communication.

Notifications are instances of the Notify object made available upon reception in the connection.notifies
list. Notifications can be sent from Python code simply executing a NOTIFY command in an execute() call.

6.4. Asynchronous notifications 47

http://www.postgresql.org/docs/current/static/sql-listen.html
http://www.postgresql.org/docs/current/static/sql-notify.html

Psycopg Documentation, Release 2.7.6

Because of the way sessions interact with notifications (see NOTIFY documentation), you should keep the connection
in autocommit mode if you wish to receive or send notifications in a timely manner.

Notifications are received after every query execution. If the user is interested in receiving notifications but not in
performing any query, the poll() method can be used to check for new messages without wasting resources.

A simple application could poll the connection from time to time to check if something new has arrived. A better
strategy is to use some I/O completion function such as select() to sleep until awakened by the kernel when there
is some data to read on the connection, thereby using no CPU unless there is something to read:

import select
import psycopg2
import psycopg2.extensions

conn = psycopg2.connect(DSN)
conn.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()
curs.execute("LISTEN test;")

print "Waiting for notifications on channel 'test'"
while 1:

if select.select([conn],[],[],5) == ([],[],[]):
print "Timeout"

else:
conn.poll()
while conn.notifies:

notify = conn.notifies.pop(0)
print "Got NOTIFY:", notify.pid, notify.channel, notify.payload

Running the script and executing a command such as NOTIFY test, 'hello' in a separate psql shell, the
output may look similar to:

Waiting for notifications on channel 'test'
Timeout
Timeout
Got NOTIFY: 6535 test hello
Timeout
...

Note that the payload is only available from PostgreSQL 9.0: notifications received from a previous version server
will have the payload attribute set to the empty string.

Changed in version 2.3: Added Notify object and handling notification payload.

Changed in version 2.7: The notifies attribute is writable: it is possible to replace it with any object exposing an
append() method. An useful example would be to use a deque object.

6.5 Asynchronous support

New in version 2.2.0.

Psycopg can issue asynchronous queries to a PostgreSQL database. An asynchronous communication style is estab-
lished passing the parameter async=1 to the connect() function: the returned connection will work in asynchronous
mode.

In asynchronous mode, a Psycopg connection will rely on the caller to poll the socket file descriptor, checking if it is
ready to accept data or if a query result has been transferred and is ready to be read on the client. The caller can use

48 Chapter 6. More advanced topics

http://www.postgresql.org/docs/current/static/sql-notify.html
https://docs.python.org/3/library/select.html#select.select
https://docs.python.org/3/library/collections.html#collections.deque

Psycopg Documentation, Release 2.7.6

the method fileno() to get the connection file descriptor and poll() to make communication proceed according
to the current connection state.

The following is an example loop using methods fileno() and poll() together with the Python select()
function in order to carry on asynchronous operations with Psycopg:

def wait(conn):
while 1:

state = conn.poll()
if state == psycopg2.extensions.POLL_OK:

break
elif state == psycopg2.extensions.POLL_WRITE:

select.select([], [conn.fileno()], [])
elif state == psycopg2.extensions.POLL_READ:

select.select([conn.fileno()], [], [])
else:

raise psycopg2.OperationalError("poll() returned %s" % state)

The above loop of course would block an entire application: in a real asynchronous framework, select() would be
called on many file descriptors waiting for any of them to be ready. Nonetheless the function can be used to connect to
a PostgreSQL server only using nonblocking commands and the connection obtained can be used to perform further
nonblocking queries. After poll() has returned POLL_OK, and thus wait() has returned, the connection can be
safely used:

>>> aconn = psycopg2.connect(database='test', async=1)
>>> wait(aconn)
>>> acurs = aconn.cursor()

Note that there are a few other requirements to be met in order to have a completely non-blocking connection attempt:
see the libpq documentation for PQconnectStart().

The same loop should be also used to perform nonblocking queries: after sending a query via execute() or
callproc(), call poll() on the connection available from cursor.connection until it returns POLL_OK, at
which point the query has been completely sent to the server and, if it produced data, the results have been transferred
to the client and available using the regular cursor methods:

>>> acurs.execute("SELECT pg_sleep(5); SELECT 42;")
>>> wait(acurs.connection)
>>> acurs.fetchone()[0]
42

When an asynchronous query is being executed, connection.isexecuting() returns True. Two cursors can’t
execute concurrent queries on the same asynchronous connection.

There are several limitations in using asynchronous connections: the connection is always in autocommit mode
and it is not possible to change it. So a transaction is not implicitly started at the first query and is not possible
to use methods commit() and rollback(): you can manually control transactions using execute() to send
database commands such as BEGIN, COMMIT and ROLLBACK. Similarly set_session() can’t be used but it is
still possible to invoke the SET command with the proper default_transaction_... parameter.

With asynchronous connections it is also not possible to use set_client_encoding(), executemany(),
large objects, named cursors.

COPY commands are not supported either in asynchronous mode, but this will be probably implemented in a future
release.

6.5. Asynchronous support 49

https://docs.python.org/3/library/select.html#select.select
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PQCONNECTSTARTPARAMS

Psycopg Documentation, Release 2.7.6

6.6 Support for coroutine libraries

New in version 2.2.

Psycopg can be used together with coroutine-based libraries and participate in cooperative multithreading.

Coroutine-based libraries (such as Eventlet or gevent) can usually patch the Python standard library in order to enable
a coroutine switch in the presence of blocking I/O: the process is usually referred as making the system green, in
reference to the green threads.

Because Psycopg is a C extension module, it is not possible for coroutine libraries to patch it: Psycopg instead enables
cooperative multithreading by allowing the registration of a wait callback using the psycopg2.extensions.
set_wait_callback() function. When a wait callback is registered, Psycopg will use libpq non-blocking calls
instead of the regular blocking ones, and will delegate to the callback the responsibility to wait for the socket to become
readable or writable.

Working this way, the caller does not have the complete freedom to schedule the socket check whenever they want
as with an asynchronous connection, but has the advantage of maintaining a complete DB API 2.0 semantics: from
the point of view of the end user, all Psycopg functions and objects will work transparently in the coroutine environ-
ment (blocking the calling green thread and giving other green threads the possibility to be scheduled), allowing non
modified code and third party libraries (such as SQLAlchemy) to be used in coroutine-based programs.

Warning: Psycopg connections are not green thread safe and can’t be used concurrently by different green
threads. Trying to execute more than one command at time using one cursor per thread will result in an error (or a
deadlock on versions before 2.4.2).

Therefore, programmers are advised to either avoid sharing connections between coroutines or to use a library-
friendly lock to synchronize shared connections, e.g. for pooling.

Coroutine libraries authors should provide a callback implementation (and possibly a method to register it) to make
Psycopg as green as they want. An example callback (using select() to block) is provided as psycopg2.
extras.wait_select(): it boils down to something similar to:

def wait_select(conn):
while 1:

state = conn.poll()
if state == extensions.POLL_OK:

break
elif state == extensions.POLL_READ:

select.select([conn.fileno()], [], [])
elif state == extensions.POLL_WRITE:

select.select([], [conn.fileno()], [])
else:

raise OperationalError("bad state from poll: %s" % state)

Providing callback functions for the single coroutine libraries is out of psycopg2 scope, as the callback can be tied
to the libraries’ implementation details. You can check the psycogreen project for further informations and resources
about the topic.

Warning: COPY commands are currently not supported when a wait callback is registered, but they will be
probably implemented in a future release.

Large objects are not supported either: they are not compatible with asynchronous connections.

50 Chapter 6. More advanced topics

http://en.wikipedia.org/wiki/Coroutine
http://eventlet.net/
http://www.gevent.org/
http://en.wikipedia.org/wiki/Green_threads
http://www.postgresql.org/docs/current/static/libpq-async.html
http://www.sqlalchemy.org/
http://bitbucket.org/dvarrazzo/psycogreen/

Psycopg Documentation, Release 2.7.6

6.7 Replication protocol support

New in version 2.7.

Modern PostgreSQL servers (version 9.0 and above) support replication. The replication protocol is built on top of
the client-server protocol and can be operated using libpq, as such it can be also operated by psycopg2. The
replication protocol can be operated on both synchronous and asynchronous connections.

Server version 9.4 adds a new feature called Logical Replication.

See also:

• PostgreSQL Streaming Replication Protocol

6.7.1 Logical replication Quick-Start

You must be using PostgreSQL server version 9.4 or above to run this quick start.

Make sure that replication connections are permitted for user postgres in pg_hba.conf and reload the server con-
figuration. You also need to set wal_level=logical and max_wal_senders, max_replication_slots
to value greater than zero in postgresql.conf (these changes require a server restart). Create a database
psycopg2_test.

Then run the following code to quickly try the replication support out. This is not production code – it has no error
handling, it sends feedback too often, etc. – and it’s only intended as a simple demo of logical replication:

from __future__ import print_function
import sys
import psycopg2
import psycopg2.extras

conn = psycopg2.connect('dbname=psycopg2_test user=postgres',
connection_factory=psycopg2.extras.LogicalReplicationConnection)

cur = conn.cursor()
try:

test_decoding produces textual output
cur.start_replication(slot_name='pytest', decode=True)

except psycopg2.ProgrammingError:
cur.create_replication_slot('pytest', output_plugin='test_decoding')
cur.start_replication(slot_name='pytest', decode=True)

class DemoConsumer(object):
def __call__(self, msg):

print(msg.payload)
msg.cursor.send_feedback(flush_lsn=msg.data_start)

democonsumer = DemoConsumer()

print("Starting streaming, press Control-C to end...", file=sys.stderr)
try:

cur.consume_stream(democonsumer)
except KeyboardInterrupt:

cur.close()
conn.close()
print("The slot 'pytest' still exists. Drop it with "

"SELECT pg_drop_replication_slot('pytest'); if no longer needed.",
file=sys.stderr)

(continues on next page)

6.7. Replication protocol support 51

http://www.postgresql.org/docs/current/static/protocol-replication.html

Psycopg Documentation, Release 2.7.6

(continued from previous page)

print("WARNING: Transaction logs will accumulate in pg_xlog "
"until the slot is dropped.", file=sys.stderr)

You can now make changes to the psycopg2_test database using a normal psycopg2 session, psql, etc. and see
the logical decoding stream printed by this demo client.

This will continue running until terminated with Control-C.

For the details see Replication connection and cursor classes.

52 Chapter 6. More advanced topics

CHAPTER

SEVEN

PSYCOPG2.EXTENSIONS – EXTENSIONS TO THE DB API

The module contains a few objects and function extending the minimum set of functionalities defined by the DB API
2.0.

7.1 Classes definitions

Instances of these classes are usually returned by factory functions or attributes. Their definitions are exposed here to
allow subclassing, introspection etc.

class psycopg2.extensions.connection(dsn, async=False)
Is the class usually returned by the connect() function. It is exposed by the extensions module in order
to allow subclassing to extend its behaviour: the subclass should be passed to the connect() function using
the connection_factory parameter. See also Connection and cursor factories.

For a complete description of the class, see connection.

Changed in version 2.7: async_ can be used as alias for async.

class psycopg2.extensions.cursor(conn, name=None)
It is the class usually returned by the connection.cursor() method. It is exposed by the extensions
module in order to allow subclassing to extend its behaviour: the subclass should be passed to the cursor()
method using the cursor_factory parameter. See also Connection and cursor factories.

For a complete description of the class, see cursor.

class psycopg2.extensions.lobject(conn[, oid[, mode[, new_oid[, new_file]]]])
Wrapper for a PostgreSQL large object. See Access to PostgreSQL large objects for an overview.

The class can be subclassed: see the connection.lobject() to know how to specify a lobject subclass.

New in version 2.0.8.

oid
Database OID of the object.

mode
The mode the database was open. See connection.lobject() for a description of the available
modes.

read(bytes=-1)
Read a chunk of data from the current file position. If -1 (default) read all the remaining data.

The result is an Unicode string (decoded according to connection.encoding) if the file was open in
t mode, a bytes string for b mode.

Changed in version 2.4: added Unicode support.

53

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

write(str)
Write a string to the large object. Return the number of bytes written. Unicode strings are encoded in the
connection.encoding before writing.

Changed in version 2.4: added Unicode support.

export(file_name)
Export the large object content to the file system.

The method uses the efficient lo_export() libpq function.

seek(offset, whence=0)
Set the lobject current position.

Changed in version 2.6.0: added support for offset > 2GB.

tell()
Return the lobject current position.

New in version 2.2.0.

Changed in version 2.6.0: added support for return value > 2GB.

truncate(len=0)
Truncate the lobject to the given size.

The method will only be available if Psycopg has been built against libpq from PostgreSQL 8.3 or later
and can only be used with PostgreSQL servers running these versions. It uses the lo_truncate() libpq
function.

New in version 2.2.0.

Changed in version 2.6.0: added support for len > 2GB.

Warning: If Psycopg is built with lo_truncate() support or with the 64 bits API support (resp.
from PostgreSQL versions 8.3 and 9.3) but at runtime an older version of the dynamic library is found, the
psycopg2 module will fail to import. See the lo_truncate FAQ about the problem.

close()
Close the object.

closed
Boolean attribute specifying if the object is closed.

unlink()
Close the object and remove it from the database.

class psycopg2.extensions.Notify(pid, channel, payload=”)
A notification received from the backend.

Notify instances are made available upon reception on the notifies member of the listening connection.
The object can be also accessed as a 2 items tuple returning the members (pid,channel) for backward
compatibility.

See Asynchronous notifications for details.

New in version 2.3.

channel
The name of the channel to which the notification was sent.

54 Chapter 7. psycopg2.extensions – Extensions to the DB API

http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-EXPORT
http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-TRUNCATE

Psycopg Documentation, Release 2.7.6

payload
The payload message of the notification.

Attaching a payload to a notification is only available since PostgreSQL 9.0: for notifications received
from previous versions of the server this member is always the empty string.

pid
The ID of the backend process that sent the notification.

Note: if the sending session was handled by Psycopg, you can use get_backend_pid() to know its
PID.

class psycopg2.extensions.Xid(format_id, gtrid, bqual)
A transaction identifier used for two-phase commit.

Usually returned by the connection methods xid() and tpc_recover(). Xid instances can be unpacked
as a 3-item tuples containing the items (format_id,gtrid,bqual). The str() of the object returns the
transaction ID used in the commands sent to the server.

See Two-Phase Commit protocol support for an introduction.

New in version 2.3.

static from_string(s)
Create a Xid object from a string representation. Static method.

If s is a PostgreSQL transaction ID produced by a XA transaction, the returned object will have
format_id, gtrid, bqual set to the values of the preparing XA id. Otherwise only the gtrid is
populated with the unparsed string. The operation is the inverse of the one performed by str(xid).

bqual
Branch qualifier of the transaction.

In a XA transaction every resource participating to a transaction receives a distinct branch qualifier. None
if the transaction doesn’t follow the XA standard.

database
Database the recovered transaction belongs to.

format_id
Format ID in a XA transaction.

A non-negative 32 bit integer. None if the transaction doesn’t follow the XA standard.

gtrid
Global transaction ID in a XA transaction.

If the transaction doesn’t follow the XA standard, it is the plain transaction ID used in the server com-
mands.

owner
Name of the user who prepared a recovered transaction.

prepared
Timestamp (with timezone) in which a recovered transaction was prepared.

class psycopg2.extensions.Diagnostics(exception)
Details from a database error report.

The object is returned by the diag attribute of the Error object. All the information available from the
PQresultErrorField() function are exposed as attributes by the object, e.g. the severity attribute
returns the PG_DIAG_SEVERITY code. Please refer to the PostgreSQL documentation for the meaning of all
the attributes.

7.1. Classes definitions 55

http://www.postgresql.org/docs/current/static/libpq-exec.html#LIBPQ-PQRESULTERRORFIELD
http://www.postgresql.org/docs/current/static/libpq-exec.html#LIBPQ-PQRESULTERRORFIELD

Psycopg Documentation, Release 2.7.6

New in version 2.5.

The attributes currently available are:

column_name
constraint_name
context
datatype_name
internal_position
internal_query
message_detail
message_hint
message_primary
schema_name
severity
source_file
source_function
source_line
sqlstate
statement_position
table_name

A string with the error field if available; None if not available. The attribute value is available only if the
error sent by the server: not all the fields are available for all the errors and for all the server versions.

7.2 SQL adaptation protocol objects

Psycopg provides a flexible system to adapt Python objects to the SQL syntax (inspired to the PEP 246), allowing
serialization in PostgreSQL. See Adapting new Python types to SQL syntax for a detailed description. The following
objects deal with Python objects adaptation:

psycopg2.extensions.adapt(obj)
Return the SQL representation of obj as an ISQLQuote. Raise a ProgrammingError if how to adapt
the object is unknown. In order to allow new objects to be adapted, register a new adapter for it using the
register_adapter() function.

The function is the entry point of the adaptation mechanism: it can be used to write adapters for complex objects
by recursively calling adapt() on its components.

psycopg2.extensions.register_adapter(class, adapter)
Register a new adapter for the objects of class class.

adapter should be a function taking a single argument (the object to adapt) and returning an object conforming
to the ISQLQuote protocol (e.g. exposing a getquoted() method). The AsIs is often useful for this task.

Once an object is registered, it can be safely used in SQL queries and by the adapt() function.

class psycopg2.extensions.ISQLQuote(wrapped_object)
Represents the SQL adaptation protocol. Objects conforming this protocol should implement a getquoted()
and optionally a prepare() method.

Adapters may subclass ISQLQuote, but is not necessary: it is enough to expose a getquoted() method to
be conforming.

_wrapped
The wrapped object passes to the constructor

56 Chapter 7. psycopg2.extensions – Extensions to the DB API

https://www.python.org/dev/peps/pep-0246

Psycopg Documentation, Release 2.7.6

getquoted()
Subclasses or other conforming objects should return a valid SQL string representing the wrapped object.
In Python 3 the SQL must be returned in a bytes object. The ISQLQuote implementation does nothing.

prepare(conn)
Prepare the adapter for a connection. The method is optional: if implemented, it will be invoked before
getquoted() with the connection to adapt for as argument.

A conform object can implement this method if the SQL representation depends on any server param-
eter, such as the server version or the standard_conforming_string setting. Container objects
may store the connection and use it to recursively prepare contained objects: see the implementation for
psycopg2.extensions.SQL_IN for a simple example.

class psycopg2.extensions.AsIs(object)
Adapter conform to the ISQLQuote protocol useful for objects whose string representation is already valid as
SQL representation.

getquoted()
Return the str() conversion of the wrapped object.

>>> AsIs(42).getquoted()
'42'

class psycopg2.extensions.QuotedString(str)
Adapter conform to the ISQLQuote protocol for string-like objects.

getquoted()
Return the string enclosed in single quotes. Any single quote appearing in the the string is escaped by
doubling it according to SQL string constants syntax. Backslashes are escaped too.

>>> QuotedString(r"O'Reilly").getquoted()
"'O''Reilly'"

class psycopg2.extensions.Binary(str)
Adapter conform to the ISQLQuote protocol for binary objects.

getquoted()
Return the string enclosed in single quotes. It performs the same escaping of the QuotedString adapter,
plus it knows how to escape non-printable chars.

>>> Binary("\x00\x08\x0F").getquoted()
"'\\\\000\\\\010\\\\017'"

Changed in version 2.0.14: previously the adapter was not exposed by the extensions module. In older
versions it can be imported from the implementation module psycopg2._psycopg.

class psycopg2.extensions.Boolean
class psycopg2.extensions.Float
class psycopg2.extensions.SQL_IN

Specialized adapters for builtin objects.

class psycopg2.extensions.DateFromPy
class psycopg2.extensions.TimeFromPy
class psycopg2.extensions.TimestampFromPy
class psycopg2.extensions.IntervalFromPy

Specialized adapters for Python datetime objects.

class psycopg2.extensions.DateFromMx
class psycopg2.extensions.TimeFromMx
class psycopg2.extensions.TimestampFromMx

7.2. SQL adaptation protocol objects 57

Psycopg Documentation, Release 2.7.6

class psycopg2.extensions.IntervalFromMx
Specialized adapters for mx.DateTime objects.

psycopg2.extensions.adapters
Dictionary of the currently registered object adapters. Use register_adapter() to add an adapter for a
new type.

7.3 Database types casting functions

These functions are used to manipulate type casters to convert from PostgreSQL types to Python objects. See Type
casting of SQL types into Python objects for details.

psycopg2.extensions.new_type(oids, name, adapter)
Create a new type caster to convert from a PostgreSQL type to a Python object. The object created must be
registered using register_type() to be used.

Parameters

• oids – tuple of OIDs of the PostgreSQL type to convert.

• name – the name of the new type adapter.

• adapter – the adaptation function.

The object OID can be read from the cursor.description attribute or by querying from the PostgreSQL
catalog.

adapter should have signature fun(value, cur) where value is the string representation returned by Post-
greSQL and cur is the cursor from which data are read. In case of NULL, value will be None. The adapter
should return the converted object.

See Type casting of SQL types into Python objects for an usage example.

psycopg2.extensions.new_array_type(oids, name, base_caster)
Create a new type caster to convert from a PostgreSQL array type to a list of Python object. The object created
must be registered using register_type() to be used.

Parameters

• oids – tuple of OIDs of the PostgreSQL type to convert. It should probably contain the oid
of the array type (e.g. the typarray field in the pg_type table).

• name – the name of the new type adapter.

• base_caster – a Psycopg typecaster, e.g. created using the new_type() function. The
caster should be able to parse a single item of the desired type.

New in version 2.4.3.

Note: The function can be used to create a generic array typecaster, returning a list of strings: just use
psycopg2.STRING as base typecaster. For instance, if you want to receive an array of macaddr from
the database, each address represented by string, you can use:

select typarray from pg_type where typname = 'macaddr' -> 1040
psycopg2.extensions.register_type(

psycopg2.extensions.new_array_type(
(1040,), 'MACADDR[]', psycopg2.STRING))

58 Chapter 7. psycopg2.extensions – Extensions to the DB API

http://www.egenix.com/products/python/mxBase/mxDateTime/

Psycopg Documentation, Release 2.7.6

psycopg2.extensions.register_type(obj[, scope])
Register a type caster created using new_type().

If scope is specified, it should be a connection or a cursor: the type caster will be effective only limited
to the specified object. Otherwise it will be globally registered.

psycopg2.extensions.string_types
The global register of type casters.

psycopg2.extensions.encodings
Mapping from PostgreSQL encoding to Python encoding names. Used by Psycopg when adapting or casting
unicode strings. See Unicode handling.

7.4 Additional exceptions

The module exports a few exceptions in addition to the standard ones defined by the DB API 2.0.

exception psycopg2.extensions.QueryCanceledError
(subclasses OperationalError)

Error related to SQL query cancellation. It can be trapped specifically to detect a timeout.

New in version 2.0.7.

exception psycopg2.extensions.TransactionRollbackError
(subclasses OperationalError)

Error causing transaction rollback (deadlocks, serialization failures, etc). It can be trapped specifically to detect
a deadlock.

New in version 2.0.7.

7.5 Coroutines support functions

These functions are used to set and retrieve the callback function for cooperation with coroutine libraries.

New in version 2.2.0.

psycopg2.extensions.set_wait_callback(f)
Register a callback function to block waiting for data.

The callback should have signature fun(conn) and is called to wait for data available whenever a blocking
function from the libpq is called. Use set_wait_callback(None) to revert to the original behaviour (i.e.
using blocking libpq functions).

The function is an hook to allow coroutine-based libraries (such as Eventlet or gevent) to switch when Psycopg
is blocked, allowing other coroutines to run concurrently.

See wait_select() for an example of a wait callback implementation.

psycopg2.extensions.get_wait_callback()
Return the currently registered wait callback.

Return None if no callback is currently registered.

7.4. Additional exceptions 59

http://www.postgresql.org/docs/current/static/multibyte.html
http://docs.python.org/library/codecs.html#standard-encodings
http://www.python.org/dev/peps/pep-0249/
http://eventlet.net/
http://www.gevent.org/

Psycopg Documentation, Release 2.7.6

7.6 Other functions

psycopg2.extensions.libpq_version()
Return the version number of the libpq dynamic library loaded as an integer, in the same format of
server_version.

Raise NotSupportedError if the psycopg2 module was compiled with a libpq version lesser than 9.1
(which can be detected by the __libpq_version__ constant).

New in version 2.7.

See also:

libpq docs for PQlibVersion().

psycopg2.extensions.make_dsn(dsn=None, **kwargs)
Create a valid connection string from arguments.

Put together the arguments in kwargs into a connection string. If dsn is specified too, merge the arguments
coming from both the sources. If the same argument name is specified in both the sources, the kwargs value
overrides the dsn value.

The input arguments are validated: the output should always be a valid connection string (as far as
parse_dsn() is concerned). If not raise ProgrammingError.

Example:

>>> from psycopg2.extensions import make_dsn
>>> make_dsn('dbname=foo host=example.com', password="s3cr3t")
'host=example.com password=s3cr3t dbname=foo'

New in version 2.7.

psycopg2.extensions.parse_dsn(dsn)
Parse connection string into a dictionary of keywords and values.

Parsing is delegated to the libpq: different versions of the client library may support different formats or param-
eters (for example, connection URIs are only supported from libpq 9.2). Raise ProgrammingError if the
dsn is not valid.

Example:

>>> from psycopg2.extensions import parse_dsn
>>> parse_dsn('dbname=test user=postgres password=secret')
{'password': 'secret', 'user': 'postgres', 'dbname': 'test'}
>>> parse_dsn("postgresql://someone@example.com/somedb?connect_timeout=10")
{'host': 'example.com', 'user': 'someone', 'dbname': 'somedb', 'connect_timeout':
↪→'10'}

New in version 2.7.

See also:

libpq docs for PQconninfoParse().

psycopg2.extensions.quote_ident(str, scope)
Return quoted identifier according to PostgreSQL quoting rules.

The scope must be a connection or a cursor, the underlying connection encoding is used for any necessary
character conversion.

New in version 2.7.

60 Chapter 7. psycopg2.extensions – Extensions to the DB API

http://www.postgresql.org/docs/current/static/libpq-misc.html#LIBPQ-PQLIBVERSION
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PQCONNINFOPARSE

Psycopg Documentation, Release 2.7.6

See also:

libpq docs for PQescapeIdentifier()

7.7 Isolation level constants

Psycopg2 connection objects hold informations about the PostgreSQL transaction isolation level. By default
Psycopg doesn’t change the default configuration of the server (ISOLATION_LEVEL_DEFAULT); the default for
PostgreSQL servers is typically READ COMMITTED, but this may be changed in the server configuration files. A
different isolation level can be set through the set_isolation_level() or set_session() methods. The
level can be set to one of the following constants:

psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT
No transaction is started when commands are executed and no commit() or rollback() is required. Some
PostgreSQL command such as CREATE DATABASE or VACUUM can’t run into a transaction: to run such
command use:

>>> conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

See also Transactions control.

psycopg2.extensions.ISOLATION_LEVEL_READ_UNCOMMITTED
The READ UNCOMMITTED isolation level is defined in the SQL standard but not available in the MVCC
(Multiversion concurrency control) model of PostgreSQL: it is replaced by the stricter READ COMMITTED.

psycopg2.extensions.ISOLATION_LEVEL_READ_COMMITTED
This is usually the the default PostgreSQL value, but a different default may be set in the database configuration.

A new transaction is started at the first execute() command on a cursor and at each new execute() after
a commit() or a rollback(). The transaction runs in the PostgreSQL READ COMMITTED isolation level:
a SELECT query sees only data committed before the query began; it never sees either uncommitted data or
changes committed during query execution by concurrent transactions.

See also:

Read Committed Isolation Level in PostgreSQL documentation.

psycopg2.extensions.ISOLATION_LEVEL_REPEATABLE_READ
As in ISOLATION_LEVEL_READ_COMMITTED, a new transaction is started at the first execute() com-
mand. Transactions run at a REPEATABLE READ isolation level: all the queries in a transaction see a snapshot
as of the start of the transaction, not as of the start of the current query within the transaction. However applica-
tions using this level must be prepared to retry transactions due to serialization failures.

While this level provides a guarantee that each transaction sees a completely stable view of the database, this
view will not necessarily always be consistent with some serial (one at a time) execution of concurrent transac-
tions of the same level.

Changed in version 2.4.2: The value was an alias for ISOLATION_LEVEL_SERIALIZABLE before. The two
levels are distinct since PostgreSQL 9.1

See also:

Repeatable Read Isolation Level in PostgreSQL documentation.

psycopg2.extensions.ISOLATION_LEVEL_SERIALIZABLE
As in ISOLATION_LEVEL_READ_COMMITTED, a new transaction is started at the first execute() com-
mand. Transactions run at a SERIALIZABLE isolation level. This is the strictest transactions isolation level,
equivalent to having the transactions executed serially rather than concurrently. However applications using this
level must be prepared to retry transactions due to serialization failures.

7.7. Isolation level constants 61

http://www.postgresql.org/docs/current/static/libpq-exec.html#LIBPQ-PQESCAPEIDENTIFIER
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/transaction-iso.html#XACT-READ-COMMITTED
http://www.postgresql.org/docs/current/static/transaction-iso.html#XACT-REPEATABLE-READ

Psycopg Documentation, Release 2.7.6

Starting from PostgreSQL 9.1, this mode monitors for conditions which could make execution of a concurrent
set of serializable transactions behave in a manner inconsistent with all possible serial (one at a time) executions
of those transaction. In previous version the behaviour was the same of the REPEATABLE READ isolation
level.

See also:

Serializable Isolation Level in PostgreSQL documentation.

psycopg2.extensions.ISOLATION_LEVEL_DEFAULT
A new transaction is started at the first execute() command, but the isolation level is not explicitly selected
by Psycopg: the server will use whatever level is defined in its configuration or by statements executed within
the session outside Pyscopg control. If you want to know what the value is you can use a query such as show
transaction_isolation.

New in version 2.7.

7.8 Transaction status constants

These values represent the possible status of a transaction: the current value can be read using the connection.
get_transaction_status() method.

psycopg2.extensions.TRANSACTION_STATUS_IDLE
The session is idle and there is no current transaction.

psycopg2.extensions.TRANSACTION_STATUS_ACTIVE
A command is currently in progress.

psycopg2.extensions.TRANSACTION_STATUS_INTRANS
The session is idle in a valid transaction block.

psycopg2.extensions.TRANSACTION_STATUS_INERROR
The session is idle in a failed transaction block.

psycopg2.extensions.TRANSACTION_STATUS_UNKNOWN
Reported if the connection with the server is bad.

7.9 Connection status constants

These values represent the possible status of a connection: the current value can be read from the status attribute.

It is possible to find the connection in other status than the one shown below. Those are the only states in which a
working connection is expected to be found during the execution of regular Python client code: other states are for
internal usage and Python code should not rely on them.

psycopg2.extensions.STATUS_READY
Connection established. No transaction in progress.

psycopg2.extensions.STATUS_BEGIN
Connection established. A transaction is currently in progress.

psycopg2.extensions.STATUS_IN_TRANSACTION
An alias for STATUS_BEGIN

psycopg2.extensions.STATUS_PREPARED
The connection has been prepared for the second phase in a two-phase commit transaction. The connection
can’t be used to send commands to the database until the transaction is finished with tpc_commit() or
tpc_rollback().

62 Chapter 7. psycopg2.extensions – Extensions to the DB API

http://www.postgresql.org/docs/current/static/transaction-iso.html#XACT-SERIALIZABLE

Psycopg Documentation, Release 2.7.6

New in version 2.3.

7.10 Poll constants

New in version 2.2.0.

These values can be returned by connection.poll() during asynchronous connection and communication. They
match the values in the libpq enum PostgresPollingStatusType. See Asynchronous support and Support for
coroutine libraries.

psycopg2.extensions.POLL_OK
The data being read is available, or the file descriptor is ready for writing: reading or writing will not block.

psycopg2.extensions.POLL_READ
Some data is being read from the backend, but it is not available yet on the client and reading would block.
Upon receiving this value, the client should wait for the connection file descriptor to be ready for reading. For
example:

select.select([conn.fileno()], [], [])

psycopg2.extensions.POLL_WRITE
Some data is being sent to the backend but the connection file descriptor can’t currently accept new data. Upon
receiving this value, the client should wait for the connection file descriptor to be ready for writing. For example:

select.select([], [conn.fileno()], [])

psycopg2.extensions.POLL_ERROR
There was a problem during connection polling. This value should actually never be returned: in case of poll
error usually an exception containing the relevant details is raised.

7.11 Additional database types

The extensions module includes typecasters for many standard PostgreSQL types. These objects allow the con-
version of returned data into Python objects. All the typecasters are automatically registered, except UNICODE and
UNICODEARRAY : you can register them using register_type() in order to receive Unicode objects instead of
strings from the database. See Unicode handling for details.

psycopg2.extensions.BOOLEAN
psycopg2.extensions.DATE
psycopg2.extensions.DECIMAL
psycopg2.extensions.FLOAT
psycopg2.extensions.INTEGER
psycopg2.extensions.INTERVAL
psycopg2.extensions.LONGINTEGER
psycopg2.extensions.TIME
psycopg2.extensions.UNICODE

Typecasters for basic types. Note that a few other ones (BINARY , DATETIME, NUMBER, ROWID, STRING)
are exposed by the psycopg2 module for DB API 2.0 compliance.

psycopg2.extensions.BINARYARRAY
psycopg2.extensions.BOOLEANARRAY
psycopg2.extensions.DATEARRAY
psycopg2.extensions.DATETIMEARRAY
psycopg2.extensions.DECIMALARRAY

7.10. Poll constants 63

http://www.python.org/dev/peps/pep-0249/

Psycopg Documentation, Release 2.7.6

psycopg2.extensions.FLOATARRAY
psycopg2.extensions.INTEGERARRAY
psycopg2.extensions.INTERVALARRAY
psycopg2.extensions.LONGINTEGERARRAY
psycopg2.extensions.ROWIDARRAY
psycopg2.extensions.STRINGARRAY
psycopg2.extensions.TIMEARRAY
psycopg2.extensions.UNICODEARRAY

Typecasters to convert arrays of sql types into Python lists.

psycopg2.extensions.PYDATE
psycopg2.extensions.PYDATETIME
psycopg2.extensions.PYDATETIMETZ
psycopg2.extensions.PYINTERVAL
psycopg2.extensions.PYTIME
psycopg2.extensions.PYDATEARRAY
psycopg2.extensions.PYDATETIMEARRAY
psycopg2.extensions.PYDATETIMETZARRAY
psycopg2.extensions.PYINTERVALARRAY
psycopg2.extensions.PYTIMEARRAY

Typecasters to convert time-related data types to Python datetime objects.

psycopg2.extensions.MXDATE
psycopg2.extensions.MXDATETIME
psycopg2.extensions.MXDATETIMETZ
psycopg2.extensions.MXINTERVAL
psycopg2.extensions.MXTIME
psycopg2.extensions.MXDATEARRAY
psycopg2.extensions.MXDATETIMEARRAY
psycopg2.extensions.MXDATETIMETZARRAY
psycopg2.extensions.MXINTERVALARRAY
psycopg2.extensions.MXTIMEARRAY

Typecasters to convert time-related data types to mx.DateTime objects. Only available if Psycopg was compiled
with mx support.

Changed in version 2.2.0: previously the DECIMAL typecaster and the specific time-related typecasters (PY* and
MX*) were not exposed by the extensionsmodule. In older versions they can be imported from the implementation
module psycopg2._psycopg.

Changed in version 2.7.2: added *DATETIMETZ* objects.

64 Chapter 7. psycopg2.extensions – Extensions to the DB API

http://www.egenix.com/products/python/mxBase/mxDateTime/

CHAPTER

EIGHT

PSYCOPG2.EXTRAS – MISCELLANEOUS GOODIES FOR PSYCOPG 2

This module is a generic place used to hold little helper functions and classes until a better place in the distribution is
found.

8.1 Connection and cursor subclasses

A few objects that change the way the results are returned by the cursor or modify the object behavior in some other
way. Typically cursor subclasses are passed as cursor_factory argument to connect() so that the connection’s
cursor() method will generate objects of this class. Alternatively a cursor subclass can be used one-off by
passing it as the cursor_factory argument to the cursor() method.

If you want to use a connection subclass you can pass it as the connection_factory argument of the connect()
function.

8.1.1 Dictionary-like cursor

The dict cursors allow to access to the retrieved records using an interface similar to the Python dictionaries instead of
the tuples.

>>> dict_cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
>>> dict_cur.execute("INSERT INTO test (num, data) VALUES(%s, %s)",
... (100, "abc'def"))
>>> dict_cur.execute("SELECT * FROM test")
>>> rec = dict_cur.fetchone()
>>> rec['id']
1
>>> rec['num']
100
>>> rec['data']
"abc'def"

The records still support indexing as the original tuple:

>>> rec[2]
"abc'def"

class psycopg2.extras.DictCursor(*args, **kwargs)
A cursor that keeps a list of column name -> index mappings.

class psycopg2.extras.DictConnection
A connection that uses DictCursor automatically.

65

Psycopg Documentation, Release 2.7.6

Note: Not very useful since Psycopg 2.5: you can use psycopg2.connect(dsn,
cursor_factory=DictCursor) instead of DictConnection.

class psycopg2.extras.DictRow(cursor)
A row object that allow by-column-name access to data.

8.1.2 Real dictionary cursor

class psycopg2.extras.RealDictCursor(*args, **kwargs)
A cursor that uses a real dict as the base type for rows.

Note that this cursor is extremely specialized and does not allow the normal access (using integer indices)
to fetched data. If you need to access database rows both as a dictionary and a list, then use the generic
DictCursor instead of RealDictCursor.

class psycopg2.extras.RealDictConnection
A connection that uses RealDictCursor automatically.

Note: Not very useful since Psycopg 2.5: you can use psycopg2.connect(dsn,
cursor_factory=RealDictCursor) instead of RealDictConnection.

class psycopg2.extras.RealDictRow(cursor)
A dict subclass representing a data record.

8.1.3 namedtuple cursor

New in version 2.3.

class psycopg2.extras.NamedTupleCursor
A cursor that generates results as namedtuple.

fetch*() methods will return named tuples instead of regular tuples, so their elements can be accessed both
as regular numeric items as well as attributes.

>>> nt_cur = conn.cursor(cursor_factory=psycopg2.extras.NamedTupleCursor)
>>> rec = nt_cur.fetchone()
>>> rec
Record(id=1, num=100, data="abc'def")
>>> rec[1]
100
>>> rec.data
"abc'def"

class psycopg2.extras.NamedTupleConnection
A connection that uses NamedTupleCursor automatically.

Note: Not very useful since Psycopg 2.5: you can use psycopg2.connect(dsn,
cursor_factory=NamedTupleCursor) instead of NamedTupleConnection.

66 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://docs.python.org/3/library/collections.html#collections.namedtuple

Psycopg Documentation, Release 2.7.6

8.1.4 Logging cursor

class psycopg2.extras.LoggingConnection
A connection that logs all queries to a file or logger object.

filter(msg, curs)
Filter the query before logging it.

This is the method to overwrite to filter unwanted queries out of the log or to add some extra data to the
output. The default implementation just does nothing.

initialize(logobj)
Initialize the connection to log to logobj.

The logobj parameter can be an open file object or a Logger instance from the standard logging module.

class psycopg2.extras.LoggingCursor
A cursor that logs queries using its connection logging facilities.

Note: Queries that are executed with cursor.executemany() are not logged.

class psycopg2.extras.MinTimeLoggingConnection
A connection that logs queries based on execution time.

This is just an example of how to sub-class LoggingConnection to provide some extra filtering for the
logged queries. Both the initialize() and filter() methods are overwritten to make sure that only
queries executing for more than mintime ms are logged.

Note that this connection uses the specialized cursor MinTimeLoggingCursor.

filter(msg, curs)
Filter the query before logging it.

This is the method to overwrite to filter unwanted queries out of the log or to add some extra data to the
output. The default implementation just does nothing.

initialize(logobj, mintime=0)
Initialize the connection to log to logobj.

The logobj parameter can be an open file object or a Logger instance from the standard logging module.

class psycopg2.extras.MinTimeLoggingCursor
The cursor sub-class companion to MinTimeLoggingConnection.

8.1.5 Replication connection and cursor classes

See Replication protocol support for an introduction to the topic.

The following replication types are defined:

psycopg2.extras.REPLICATION_LOGICAL

psycopg2.extras.REPLICATION_PHYSICAL

class psycopg2.extras.LogicalReplicationConnection(*args, **kwargs)
This connection factory class can be used to open a special type of connection that is used for logical replication.

Example:

8.1. Connection and cursor subclasses 67

http://docs.python.org/library/logging.html

Psycopg Documentation, Release 2.7.6

from psycopg2.extras import LogicalReplicationConnection
log_conn = psycopg2.connect(dsn, connection_factory=LogicalReplicationConnection)
log_cur = log_conn.cursor()

class psycopg2.extras.PhysicalReplicationConnection(*args, **kwargs)
This connection factory class can be used to open a special type of connection that is used for physical replica-
tion.

Example:

from psycopg2.extras import PhysicalReplicationConnection
phys_conn = psycopg2.connect(dsn, connection_
↪→factory=PhysicalReplicationConnection)
phys_cur = phys_conn.cursor()

Both LogicalReplicationConnection and PhysicalReplicationConnection use
ReplicationCursor for actual communication with the server.

The individual messages in the replication stream are represented by ReplicationMessage objects (both logical
and physical type):

class psycopg2.extras.ReplicationMessage
A replication protocol message.

payload
The actual data received from the server.

An instance of either bytes() or unicode(), depending on the value of decode option passed to
start_replication() on the connection. See read_message() for details.

data_size
The raw size of the message payload (before possible unicode conversion).

data_start
LSN position of the start of the message.

wal_end
LSN position of the current end of WAL on the server.

send_time
A datetime object representing the server timestamp at the moment when the message was sent.

cursor
A reference to the corresponding ReplicationCursor object.

class psycopg2.extras.ReplicationCursor
A cursor used for communication on replication connections.

create_replication_slot(slot_name, slot_type=None, output_plugin=None)
Create streaming replication slot.

Parameters

• slot_name – name of the replication slot to be created

• slot_type – type of replication: should be either REPLICATION_LOGICAL or
REPLICATION_PHYSICAL

• output_plugin – name of the logical decoding output plugin to be used by the slot;
required for logical replication connections, disallowed for physical

Example:

68 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://docs.python.org/3/library/datetime.html#module-datetime

Psycopg Documentation, Release 2.7.6

log_cur.create_replication_slot("logical1", "test_decoding")
phys_cur.create_replication_slot("physical1")

either logical or physical replication connection
cur.create_replication_slot("slot1", slot_type=REPLICATION_LOGICAL)

When creating a slot on a logical replication connection, a logical replication slot is created by default.
Logical replication requires name of the logical decoding output plugin to be specified.

When creating a slot on a physical replication connection, a physical replication slot is created by default.
No output plugin parameter is required or allowed when creating a physical replication slot.

In either case the type of slot being created can be specified explicitly using slot_type parameter.

Replication slots are a feature of PostgreSQL server starting with version 9.4.

drop_replication_slot(slot_name)
Drop streaming replication slot.

Parameters slot_name – name of the replication slot to drop

Example:

either logical or physical replication connection
cur.drop_replication_slot("slot1")

Replication slots are a feature of PostgreSQL server starting with version 9.4.

start_replication(slot_name=None, slot_type=None, start_lsn=0, timeline=0, options=None,
decode=False)

Start replication on the connection.

Parameters

• slot_name – name of the replication slot to use; required for logical replication, physical
replication can work with or without a slot

• slot_type – type of replication: should be either REPLICATION_LOGICAL or
REPLICATION_PHYSICAL

• start_lsn – the optional LSN position to start replicating from, can be an integer or a
string of hexadecimal digits in the form XXX/XXX

• timeline – WAL history timeline to start streaming from (optional, can only be used
with physical replication)

• options – a dictionary of options to pass to logical replication slot (not allowed with
physical replication)

• decode – a flag indicating that unicode conversion should be performed on messages
received from the server

If a slot_name is specified, the slot must exist on the server and its type must match the replication type
used.

If not specified using slot_type parameter, the type of replication is defined by the type of replication
connection. Logical replication is only allowed on logical replication connection, but physical replication
can be used with both types of connection.

On the other hand, physical replication doesn’t require a named replication slot to be used, only logical
replication does. In any case logical replication and replication slots are a feature of PostgreSQL server
starting with version 9.4. Physical replication can be used starting with 9.0.

8.1. Connection and cursor subclasses 69

Psycopg Documentation, Release 2.7.6

If start_lsn is specified, the requested stream will start from that LSN. The default is None which passes
the LSN 0/0 causing replay to begin at the last point for which the server got flush confirmation from the
client, or the oldest available point for a new slot.

The server might produce an error if a WAL file for the given LSN has already been recycled or it may
silently start streaming from a later position: the client can verify the actual position using information
provided by the ReplicationMessage attributes. The exact server behavior depends on the type of
replication and use of slots.

The timeline parameter can only be specified with physical replication and only starting with server version
9.3.

A dictionary of options may be passed to the logical decoding plugin on a logical replication slot. The
set of supported options depends on the output plugin that was used to create the slot. Must be None for
physical replication.

If decode is set to True the messages received from the server would be converted according to the con-
nection encoding. This parameter should not be set with physical replication or with logical replication
plugins that produce binary output.

This function constructs a START_REPLICATION command and calls
start_replication_expert() internally.

After starting the replication, to actually consume the incoming server messages use
consume_stream() or implement a loop around read_message() in case of asynchronous
connection.

start_replication_expert(command, decode=False)
Start replication on the connection using provided START_REPLICATION command.

Parameters

• command – The full replication command. It can be a string or a Composable instance
for dynamic generation.

• decode – a flag indicating that unicode conversion should be performed on messages
received from the server.

consume_stream(consume, keepalive_interval=10)

Parameters

• consume – a callable object with signature consume(msg)

• keepalive_interval – interval (in seconds) to send keepalive messages to the server

This method can only be used with synchronous connection. For asynchronous connections see
read_message().

Before using this method to consume the stream call start_replication() first.

This method enters an endless loop reading messages from the server and passing them to consume()
one at a time, then waiting for more messages from the server. In order to make this method break out of
the loop and return, consume() can throw a StopReplication exception. Any unhandled exception
will make it break out of the loop as well.

The msg object passed to consume() is an instance of ReplicationMessage class. See
read_message() for details about message decoding.

This method also sends keepalive messages to the server in case there were no new data from the server
for the duration of keepalive_interval (in seconds). The value of this parameter must be set to at least 1
second, but it can have a fractional part.

70 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html

Psycopg Documentation, Release 2.7.6

After processing certain amount of messages the client should send a confirmation message to the server.
This should be done by calling send_feedback() method on the corresponding replication cursor. A
reference to the cursor is provided in the ReplicationMessage as an attribute.

The following example is a sketch implementation of consume() callable for logical replication:

class LogicalStreamConsumer(object):

...

def __call__(self, msg):
self.process_message(msg.payload)

if self.should_send_feedback(msg):
msg.cursor.send_feedback(flush_lsn=msg.data_start)

consumer = LogicalStreamConsumer()
cur.consume_stream(consumer)

Warning: When using replication with slots, failure to constantly consume and report success to
the server appropriately can eventually lead to “disk full” condition on the server, because the server
retains all the WAL segments that might be needed to stream the changes via all of the currently open
replication slots.

On the other hand, it is not recommended to send confirmation after every processed message, since
that will put an unnecessary load on network and the server. A possible strategy is to confirm after
every COMMIT message.

send_feedback(write_lsn=0, flush_lsn=0, apply_lsn=0, reply=False)

Parameters

• write_lsn – a LSN position up to which the client has written the data locally

• flush_lsn – a LSN position up to which the client has processed the data reliably (the
server is allowed to discard all and every data that predates this LSN)

• apply_lsn – a LSN position up to which the warm standby server has applied the
changes (physical replication master-slave protocol only)

• reply – request the server to send back a keepalive message immediately

Use this method to report to the server that all messages up to a certain LSN position have been processed
on the client and may be discarded on the server.

This method can also be called with all default parameters’ values to just send a keepalive message to the
server.

Low-level replication cursor methods for asynchronous connection operation.

With the synchronous connection a call to consume_stream() handles all the complexity of handling the
incoming messages and sending keepalive replies, but at times it might be beneficial to use low-level inter-
face for better control, in particular to select on multiple sockets. The following methods are provided for
asynchronous operation:

read_message()
Try to read the next message from the server without blocking and return an instance of
ReplicationMessage or None, in case there are no more data messages from the server at the mo-
ment.

8.1. Connection and cursor subclasses 71

https://docs.python.org/3/library/select.html#module-select

Psycopg Documentation, Release 2.7.6

This method should be used in a loop with asynchronous connections (after calling
start_replication() once). For synchronous connections see consume_stream().

The returned message’s payload is an instance of unicode decoded according to connection
encoding iff decode was set to True in the initial call to start_replication() on this con-
nection, otherwise it is an instance of bytes with no decoding.

It is expected that the calling code will call this method repeatedly in order to consume all of the messages
that might have been buffered until None is returned. After receiving None from this method the caller
should use select() or poll() on the corresponding connection to block the process until there is
more data from the server.

The server can send keepalive messages to the client periodically. Such messages are silently consumed
by this method and are never reported to the caller.

fileno()
Call the corresponding connection’s fileno() method and return the result.

This is a convenience method which allows replication cursor to be used directly in select() or
poll() calls.

io_timestamp
A datetime object representing the timestamp at the moment of last communication with the server (a
data or keepalive message in either direction).

An actual example of asynchronous operation might look like this:

from select import select
from datetime import datetime

def consume(msg):
...

keepalive_interval = 10.0
while True:

msg = cur.read_message()
if msg:

consume(msg)
else:

now = datetime.now()
timeout = keepalive_interval - (now - cur.io_timestamp).total_seconds()
try:

sel = select([cur], [], [], max(0, timeout))
if not any(sel):

cur.send_feedback() # timed out, send keepalive message
except InterruptedError:

pass # recalculate timeout and continue

class psycopg2.extras.StopReplication
Exception used to break out of the endless loop in consume_stream().

Subclass of Exception. Intentionally not inherited from Error as occurrence of this exception does not
indicate an error.

72 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://docs.python.org/3/library/datetime.html#module-datetime

Psycopg Documentation, Release 2.7.6

8.2 Additional data types

8.2.1 JSON adaptation

New in version 2.5.

Changed in version 2.5.4: added jsonb support. In previous versions jsonb values are returned as strings. See the
FAQ for a workaround.

Psycopg can adapt Python objects to and from the PostgreSQL json and jsonb types. With PostgreSQL 9.2 and
following versions adaptation is available out-of-the-box. To use JSON data with previous database versions (either
with the 9.1 json extension, but even if you want to convert text fields to JSON) you can use the register_json()
function.

The Python library used by default to convert Python objects to JSON and to parse data from the database depends on
the language version: with Python 2.6 and following the json module from the standard library is used; with previous
versions the simplejson module is used if available. Note that the last simplejson version supporting Python 2.4 is
the 2.0.9.

In order to pass a Python object to the database as query argument you can use the Json adapter:

curs.execute("insert into mytable (jsondata) values (%s)",
[Json({'a': 100})])

Reading from the database, json and jsonb values will be automatically converted to Python objects.

Note: If you are using the PostgreSQL json data type but you want to read it as string in Python instead of having it
parsed, your can either cast the column to text in the query (it is an efficient operation, that doesn’t involve a copy):

cur.execute("select jsondata::text from mytable")

or you can register a no-op loads() function with register_default_json():

psycopg2.extras.register_default_json(loads=lambda x: x)

Note: You can use register_adapter() to adapt any Python dictionary to JSON, either registering Json or
any subclass or factory creating a compatible adapter:

psycopg2.extensions.register_adapter(dict, psycopg2.extras.Json)

This setting is global though, so it is not compatible with similar adapters such as the one registered by
register_hstore(). Any other object supported by JSON can be registered the same way, but this will clobber
the default adaptation rule, so be careful to unwanted side effects.

If you want to customize the adaptation from Python to PostgreSQL you can either provide a custom dumps()
function to Json:

curs.execute("insert into mytable (jsondata) values (%s)",
[Json({'a': 100}, dumps=simplejson.dumps)])

or you can subclass it overriding the dumps() method:

8.2. Additional data types 73

http://www.postgresql.org/docs/current/static/datatype-json.html
http://people.planetpostgresql.org/andrew/index.php?/archives/255-JSON-for-PG-9.2-...-and-now-for-9.1!.html
https://docs.python.org/3/library/json.html#module-json
https://pypi.org/project/simplejson/

Psycopg Documentation, Release 2.7.6

class MyJson(Json):
def dumps(self, obj):

return simplejson.dumps(obj)

curs.execute("insert into mytable (jsondata) values (%s)",
[MyJson({'a': 100})])

Customizing the conversion from PostgreSQL to Python can be done passing a custom loads() function to
register_json(). For the builtin data types (json from PostgreSQL 9.2, jsonb from PostgreSQL 9.4) use
register_default_json() and register_default_jsonb(). For example, if you want to convert the
float values from json into Decimal you can use:

loads = lambda x: json.loads(x, parse_float=Decimal)
psycopg2.extras.register_json(conn, loads=loads)

class psycopg2.extras.Json(adapted, dumps=None)
An ISQLQuote wrapper to adapt a Python object to json data type.

Json can be used to wrap any object supported by the provided dumps function. If none is provided, the
standard json.dumps() is used (simplejson for Python < 2.6; getquoted()will raise ImportError
if the module is not available).

dumps(obj)
Serialize obj in JSON format.

The default is to call json.dumps() or the dumps function provided in the constructor. You can override
this method to create a customized JSON wrapper.

psycopg2.extras.register_json(conn_or_curs=None, globally=False, loads=None, oid=None, ar-
ray_oid=None, name=’json’)

Create and register typecasters converting json type to Python objects.

Parameters

• conn_or_curs – a connection or cursor used to find the json and json[] oids; the
typecasters are registered in a scope limited to this object, unless globally is set to True. It
can be None if the oids are provided

• globally – if False register the typecasters only on conn_or_curs, otherwise register
them globally

• loads – the function used to parse the data into a Python object. If None use json.
loads(), where json is the module chosen according to the Python version (see above)

• oid – the OID of the json type if known; If not, it will be queried on conn_or_curs

• array_oid – the OID of the json[] array type if known; if not, it will be queried on
conn_or_curs

• name – the name of the data type to look for in conn_or_curs

The connection or cursor passed to the function will be used to query the database and look for the OID of the
json type (or an alternative type if name if provided). No query is performed if oid and array_oid are provided.
Raise ProgrammingError if the type is not found.

Changed in version 2.5.4: added the name parameter to enable jsonb support.

psycopg2.extras.register_default_json(conn_or_curs=None, globally=False, loads=None)
Create and register json typecasters for PostgreSQL 9.2 and following.

74 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/json.html#json.dumps

Psycopg Documentation, Release 2.7.6

Since PostgreSQL 9.2 json is a builtin type, hence its oid is known and fixed. This function allows specifying
a customized loads function for the default json type without querying the database. All the parameters have
the same meaning of register_json().

psycopg2.extras.register_default_jsonb(conn_or_curs=None, globally=False, loads=None)
Create and register jsonb typecasters for PostgreSQL 9.4 and following.

As in register_default_json(), the function allows to register a customized loads function for the
jsonb type at its known oid for PostgreSQL 9.4 and following versions. All the parameters have the same
meaning of register_json().

New in version 2.5.4.

8.2.2 Hstore data type

New in version 2.3.

The hstore data type is a key-value store embedded in PostgreSQL. It has been available for several server versions
but with the release 9.0 it has been greatly improved in capacity and usefulness with the addition of many functions. It
supports GiST or GIN indexes allowing search by keys or key/value pairs as well as regular BTree indexes for equality,
uniqueness etc.

Psycopg can convert Python dict objects to and from hstore structures. Only dictionaries with string/unicode keys
and values are supported. None is also allowed as value but not as a key. Psycopg uses a more efficient hstore
representation when dealing with PostgreSQL 9.0 but previous server versions are supported as well. By default the
adapter/typecaster are disabled: they can be enabled using the register_hstore() function.

psycopg2.extras.register_hstore(conn_or_curs, globally=False, unicode=False, oid=None, ar-
ray_oid=None)

Register adapter and typecaster for dict-hstore conversions.

Parameters

• conn_or_curs – a connection or cursor: the typecaster will be registered only on this
object unless globally is set to True

• globally – register the adapter globally, not only on conn_or_curs

• unicode – if True, keys and values returned from the database will be unicode instead
of str. The option is not available on Python 3

• oid – the OID of the hstore type if known. If not, it will be queried on conn_or_curs.

• array_oid – the OID of the hstore array type if known. If not, it will be queried on
conn_or_curs.

The connection or cursor passed to the function will be used to query the database and look for the OID of the
hstore type (which may be different across databases). If querying is not desirable (e.g. with asynchronous
connections) you may specify it in the oid parameter, which can be found using a query such as SELECT
'hstore'::regtype::oid. Analogously you can obtain a value for array_oid using a query such as
SELECT 'hstore[]'::regtype::oid.

Note that, when passing a dictionary from Python to the database, both strings and unicode keys and values are
supported. Dictionaries returned from the database have keys/values according to the unicode parameter.

The hstore contrib module must be already installed in the database (executing the hstore.sql script in
your contrib directory). Raise ProgrammingError if the type is not found.

Changed in version 2.4: added the oid parameter. If not specified, the typecaster is installed also if hstore is
not installed in the public schema.

Changed in version 2.4.3: added support for hstore array.

8.2. Additional data types 75

http://www.postgresql.org/docs/current/static/hstore.html

Psycopg Documentation, Release 2.7.6

8.2.3 Composite types casting

New in version 2.4.

Using register_composite() it is possible to cast a PostgreSQL composite type (either created with the
CREATE TYPE command or implicitly defined after a table row type) into a Python named tuple, or into a regu-
lar tuple if collections.namedtuple() is not found.

>>> cur.execute("CREATE TYPE card AS (value int, suit text);")
>>> psycopg2.extras.register_composite('card', cur)
<psycopg2.extras.CompositeCaster object at 0x...>

>>> cur.execute("select (8, 'hearts')::card")
>>> cur.fetchone()[0]
card(value=8, suit='hearts')

Nested composite types are handled as expected, provided that the type of the composite components are registered as
well.

>>> cur.execute("CREATE TYPE card_back AS (face card, back text);")
>>> psycopg2.extras.register_composite('card_back', cur)
<psycopg2.extras.CompositeCaster object at 0x...>

>>> cur.execute("select ((8, 'hearts'), 'blue')::card_back")
>>> cur.fetchone()[0]
card_back(face=card(value=8, suit='hearts'), back='blue')

Adaptation from Python tuples to composite types is automatic instead and requires no adapter registration.

Note: If you want to convert PostgreSQL composite types into something different than a namedtuple you can
subclass the CompositeCaster overriding make(). For example, if you want to convert your type into a Python
dictionary you can use:

>>> class DictComposite(psycopg2.extras.CompositeCaster):
... def make(self, values):
... return dict(zip(self.attnames, values))

>>> psycopg2.extras.register_composite('card', cur,
... factory=DictComposite)

>>> cur.execute("select (8, 'hearts')::card")
>>> cur.fetchone()[0]
{'suit': 'hearts', 'value': 8}

psycopg2.extras.register_composite(name, conn_or_curs, globally=False, factory=None)
Register a typecaster to convert a composite type into a tuple.

Parameters

• name – the name of a PostgreSQL composite type, e.g. created using the CREATE TYPE
command

• conn_or_curs – a connection or cursor used to find the type oid and components; the
typecaster is registered in a scope limited to this object, unless globally is set to True

• globally – if False (default) register the typecaster only on conn_or_curs, otherwise
register it globally

76 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

http://www.postgresql.org/docs/current/static/sql-createtype.html
https://docs.python.org/3/library/collections.html#collections.namedtuple
http://www.postgresql.org/docs/current/static/sql-createtype.html

Psycopg Documentation, Release 2.7.6

• factory – if specified it should be a CompositeCaster subclass: use it to customize
how to cast composite types

Returns the registered CompositeCaster or factory instance responsible for the conversion

Changed in version 2.4.3: added support for array of composite types

Changed in version 2.5: added the factory parameter

class psycopg2.extras.CompositeCaster(name, oid, attrs, array_oid=None, schema=None)
Helps conversion of a PostgreSQL composite type into a Python object.

The class is usually created by the register_composite() function. You may want to create and register
manually instances of the class if querying the database at registration time is not desirable (such as when using
an asynchronous connections).

make(values)
Return a new Python object representing the data being casted.

values is the list of attributes, already casted into their Python representation.

You can subclass this method to customize the composite cast.

New in version 2.5.

Object attributes:

name
The name of the PostgreSQL type.

schema
The schema where the type is defined.

New in version 2.5.

oid
The oid of the PostgreSQL type.

array_oid
The oid of the PostgreSQL array type, if available.

type
The type of the Python objects returned. If collections.namedtuple() is available, it is a named
tuple with attributes equal to the type components. Otherwise it is just the tuple object.

attnames
List of component names of the type to be casted.

atttypes
List of component type oids of the type to be casted.

8.2.4 Range data types

New in version 2.5.

Psycopg offers a Range Python type and supports adaptation between them and PostgreSQL range types. Builtin
range types are supported out-of-the-box; user-defined range types can be adapted using register_range().

class psycopg2.extras.Range(lower=None, upper=None, bounds=’[)’, empty=False)
Python representation for a PostgreSQL range type.

Parameters

• lower – lower bound for the range. None means unbound

8.2. Additional data types 77

https://docs.python.org/3/library/collections.html#collections.namedtuple
http://www.postgresql.org/docs/current/static/rangetypes.html
http://www.postgresql.org/docs/current/static/rangetypes.html

Psycopg Documentation, Release 2.7.6

• upper – upper bound for the range. None means unbound

• bounds – one of the literal strings (), [), (], [], representing whether the lower or upper
bounds are included

• empty – if True, the range is empty

This Python type is only used to pass and retrieve range values to and from PostgreSQL and doesn’t attempt
to replicate the PostgreSQL range features: it doesn’t perform normalization and doesn’t implement all the
operators supported by the database.

Range objects are immutable, hashable, and support the in operator (checking if an element is within the
range). They can be tested for equivalence. Empty ranges evaluate to False in boolean context, nonempty
evaluate to True.

Changed in version 2.5.3: Range objects can be sorted although, as on the server-side, this ordering is not
particularly meangingful. It is only meant to be used by programs assuming objects using Range as primary
key can be sorted on them. In previous versions comparing Ranges raises TypeError.

Although it is possible to instantiate Range objects, the class doesn’t have an adapter registered, so you
cannot normally pass these instances as query arguments. To use range objects as query arguments you
can either use one of the provided subclasses, such as NumericRange or create a custom subclass using
register_range().

Object attributes:

isempty
True if the range is empty.

lower
The lower bound of the range. None if empty or unbound.

upper
The upper bound of the range. None if empty or unbound.

lower_inc
True if the lower bound is included in the range.

upper_inc
True if the upper bound is included in the range.

lower_inf
True if the range doesn’t have a lower bound.

upper_inf
True if the range doesn’t have an upper bound.

The following Range subclasses map builtin PostgreSQL range types to Python objects: they have an adapter regis-
tered so their instances can be passed as query arguments. range values read from database queries are automatically
casted into instances of these classes.

class psycopg2.extras.NumericRange(lower=None, upper=None, bounds=’[)’, empty=False)
A Range suitable to pass Python numeric types to a PostgreSQL range.

PostgreSQL types int4range, int8range, numrange are casted into NumericRange instances.

class psycopg2.extras.DateRange(lower=None, upper=None, bounds=’[)’, empty=False)
Represents daterange values.

class psycopg2.extras.DateTimeRange(lower=None, upper=None, bounds=’[)’, empty=False)
Represents tsrange values.

78 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

http://www.postgresql.org/docs/current/static/functions-range.html#RANGE-OPERATORS-TABLE

Psycopg Documentation, Release 2.7.6

class psycopg2.extras.DateTimeTZRange(lower=None, upper=None, bounds=’[)’,
empty=False)

Represents tstzrange values.

Note: Python lacks a representation for infinity date so Psycopg converts the value to date.max and such.
When written into the database these dates will assume their literal value (e.g. 9999-12-31 instead of infinity).
Check Infinite dates handling for an example of an alternative adapter to map date.max to infinity. An alterna-
tive dates adapter will be used automatically by the DateRange adapter and so on.

Custom range types (created with CREATE TYPE ... AS RANGE) can be adapted to a custom Range subclass:

psycopg2.extras.register_range(pgrange, pyrange, conn_or_curs, globally=False)
Create and register an adapter and the typecasters to convert between a PostgreSQL range type and a Post-
greSQL Range subclass.

Parameters

• pgrange – the name of the PostgreSQL range type. Can be schema-qualified

• pyrange – a Range strict subclass, or just a name to give to a new class

• conn_or_curs – a connection or cursor used to find the oid of the range and its subtype;
the typecaster is registered in a scope limited to this object, unless globally is set to True

• globally – if False (default) register the typecaster only on conn_or_curs, otherwise
register it globally

Returns RangeCaster instance responsible for the conversion

If a string is passed to pyrange, a new Range subclass is created with such name and will be available as the
range attribute of the returned RangeCaster object.

The function queries the database on conn_or_curs to inspect the pgrange type and raises
ProgrammingError if the type is not found. If querying the database is not advisable, use directly
the RangeCaster class and register the adapter and typecasters using the provided functions.

class psycopg2.extras.RangeCaster(pgrange, pyrange, oid, subtype_oid, array_oid=None)
Helper class to convert between Range and PostgreSQL range types.

Objects of this class are usually created by register_range(). Manual creation could be useful if querying
the database is not advisable: in this case the oids must be provided.

Object attributes:

range
The Range subclass adapted.

adapter
The ISQLQuote responsible to adapt range.

typecaster
The object responsible for casting.

array_typecaster
The object responsible to cast arrays, if available, else None.

8.2.5 UUID data type

New in version 2.0.9.

8.2. Additional data types 79

http://www.postgresql.org/docs/current/static/sql-createtype.html
http://www.postgresql.org/docs/current/static/rangetypes.html

Psycopg Documentation, Release 2.7.6

Changed in version 2.0.13: added UUID array support.

>>> psycopg2.extras.register_uuid()
<psycopg2._psycopg.type object at 0x...>

>>> # Python UUID can be used in SQL queries
>>> import uuid
>>> my_uuid = uuid.UUID('{12345678-1234-5678-1234-567812345678}')
>>> psycopg2.extensions.adapt(my_uuid).getquoted()
"'12345678-1234-5678-1234-567812345678'::uuid"

>>> # PostgreSQL UUID are transformed into Python UUID objects.
>>> cur.execute("SELECT 'a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11'::uuid")
>>> cur.fetchone()[0]
UUID('a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11')

psycopg2.extras.register_uuid(oids=None, conn_or_curs=None)
Create the UUID type and an uuid.UUID adapter.

Parameters

• oids – oid for the PostgreSQL uuid type, or 2-items sequence with oids of the type and
the array. If not specified, use PostgreSQL standard oids.

• conn_or_curs – where to register the typecaster. If not specified, register it globally.

class psycopg2.extras.UUID_adapter(uuid)
Adapt Python’s uuid.UUID type to PostgreSQL’s uuid.

8.2.6 Networking data types

By default Psycopg casts the PostgreSQL networking data types (inet, cidr, macaddr) into ordinary strings; array
of such types are converted into lists of strings.

Changed in version 2.7: in previous version array of networking types were not treated as arrays.

psycopg2.extras.register_ipaddress(conn_or_curs=None)
Register conversion support between ipaddress objects and network types.

Parameters conn_or_curs – the scope where to register the type casters. If None register them
globally.

After the function is called, PostgreSQL inet values will be converted into IPv4Interface or
IPv6Interface objects, cidr values into into IPv4Network or IPv6Network.

psycopg2.extras.register_inet(oid=None, conn_or_curs=None)
Create the INET type and an Inet adapter.

Parameters

• oid – oid for the PostgreSQL inet type, or 2-items sequence with oids of the type and the
array. If not specified, use PostgreSQL standard oids.

• conn_or_curs – where to register the typecaster. If not specified, register it globally.

Deprecated since version 2.7: this function will not receive further development and may disappear in future
versions.

>>> psycopg2.extras.register_inet()
<psycopg2._psycopg.type object at 0x...>

(continues on next page)

80 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

http://docs.python.org/library/uuid.html
http://www.postgresql.org/docs/current/static/datatype-uuid.html
https://docs.python.org/3/library/ipaddress.html#module-ipaddress
https://www.postgresql.org/docs/current/static/datatype-net-types.html
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Interface
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Interface
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Network
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Network

Psycopg Documentation, Release 2.7.6

(continued from previous page)

>>> cur.mogrify("SELECT %s", (Inet('127.0.0.1/32'),))
"SELECT E'127.0.0.1/32'::inet"

>>> cur.execute("SELECT '192.168.0.1/24'::inet")
>>> cur.fetchone()[0].addr
'192.168.0.1/24'

class psycopg2.extras.Inet(addr)
Wrap a string to allow for correct SQL-quoting of inet values.

Note that this adapter does NOT check the passed value to make sure it really is an inet-compatible address but
DOES call adapt() on it to make sure it is impossible to execute an SQL-injection by passing an evil value to the
initializer.

Deprecated since version 2.7: this object will not receive further development and may disappear in future
versions.

8.3 Fast execution helpers

The current implementation of executemany() is (using an extremely charitable understatement) not particularly
performing. These functions can be used to speed up the repeated execution of a statement againts a set of param-
eters. By reducing the number of server roundtrips the performance can be orders of magnitude better than using
executemany().

psycopg2.extras.execute_batch(cur, sql, argslist, page_size=100)
Execute groups of statements in fewer server roundtrips.

Execute sql several times, against all parameters set (sequences or mappings) found in argslist.

The function is semantically similar to
cur.executemany(sql, argslist)
but has a different implementation: Psycopg will join the statements into fewer multi-statement commands, each
one containing at most page_size statements, resulting in a reduced number of server roundtrips.

After the execution of the function the cursor.rowcount property will not contain a total result.

New in version 2.7.

Note: execute_batch() can be also used in conjunction with PostgreSQL prepared statements using PREPARE,
EXECUTE, DEALLOCATE. Instead of executing:

execute_batch(cur,
"big and complex SQL with %s %s params",
params_list)

it is possible to execute something like:

cur.execute("PREPARE stmt AS big and complex SQL with $1 $2 params")
execute_batch(cur, "EXECUTE stmt (%s, %s)", params_list)
cur.execute("DEALLOCATE stmt")

which may bring further performance benefits: if the operation to perform is complex, every single execution will be
faster as the query plan is already cached; furthermore the amount of data to send on the server will be lesser (one
EXECUTE per param set instead of the whole, likely longer, statement).

8.3. Fast execution helpers 81

https://github.com/psycopg/psycopg2/issues/491#issuecomment-276551038
https://www.postgresql.org/docs/current/static/sql-prepare.html
https://www.postgresql.org/docs/current/static/sql-execute.html
https://www.postgresql.org/docs/current/static/sql-deallocate.html

Psycopg Documentation, Release 2.7.6

psycopg2.extras.execute_values(cur, sql, argslist, template=None, page_size=100)
Execute a statement using VALUES with a sequence of parameters.

Parameters

• cur – the cursor to use to execute the query.

• sql – the query to execute. It must contain a single %s placeholder, which will be replaced
by a VALUES list. Example: "INSERT INTO mytable (id, f1, f2) VALUES
%s".

• argslist – sequence of sequences or dictionaries with the arguments to send to the query.
The type and content must be consistent with template.

• template – the snippet to merge to every item in argslist to compose the query.

– If the argslist items are sequences it should contain positional placeholders (e.g. "(%s,
%s, %s)", or "(%s, %s, 42)” if there are constants value. . .).

– If the argslist items are mappings it should contain named placeholders (e.g.
"(%(id)s, %(f1)s, 42)").

If not specified, assume the arguments are sequence and use a simple positional template
(i.e. (%s, %s, ...)), with the number of placeholders sniffed by the first element in
argslist.

• page_size – maximum number of argslist items to include in every statement. If there
are more items the function will execute more than one statement.

After the execution of the function the cursor.rowcount property will not contain a total result.

While INSERT is an obvious candidate for this function it is possible to use it with other statements, for exam-
ple:

>>> cur.execute(
... "create table test (id int primary key, v1 int, v2 int)")

>>> execute_values(cur,
... "INSERT INTO test (id, v1, v2) VALUES %s",
... [(1, 2, 3), (4, 5, 6), (7, 8, 9)])

>>> execute_values(cur,
... """UPDATE test SET v1 = data.v1 FROM (VALUES %s) AS data (id, v1)
... WHERE test.id = data.id""",
... [(1, 20), (4, 50)])

>>> cur.execute("select * from test order by id")
>>> cur.fetchall()
[(1, 20, 3), (4, 50, 6), (7, 8, 9)])

New in version 2.7.

8.4 Fractional time zones

psycopg2.extras.register_tstz_w_secs(oids=None, conn_or_curs=None)
The function used to register an alternate type caster for TIMESTAMP WITH TIME ZONE to deal with his-
torical time zones with seconds in the UTC offset.

These are now correctly handled by the default type caster, so currently the function doesn’t do anything.

82 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

https://www.postgresql.org/docs/current/static/queries-values.html

Psycopg Documentation, Release 2.7.6

New in version 2.0.9.

Changed in version 2.2.2: function is no-op: see Time zones handling.

8.5 Coroutine support

psycopg2.extras.wait_select(conn)
Wait until a connection or cursor has data available.

The function is an example of a wait callback to be registered with set_wait_callback(). This func-
tion uses select() to wait for data to become available, and therefore is able to handle/receive SIG-
INT/KeyboardInterrupt.

Changed in version 2.6.2: allow to cancel a query using Ctrl-C, see the FAQ for an example.

8.5. Coroutine support 83

https://docs.python.org/3/library/select.html#select.select

Psycopg Documentation, Release 2.7.6

84 Chapter 8. psycopg2.extras – Miscellaneous goodies for Psycopg 2

CHAPTER

NINE

PSYCOPG2.SQL – SQL STRING COMPOSITION

New in version 2.7.

The module contains objects and functions useful to generate SQL dynamically, in a convenient and safe way. SQL
identifiers (e.g. names of tables and fields) cannot be passed to the execute() method like query arguments:

This will not work
table_name = 'my_table'
cur.execute("insert into %s values (%s, %s)", [table_name, 10, 20])

The SQL query should be composed before the arguments are merged, for instance:

This works, but it is not optimal
table_name = 'my_table'
cur.execute(

"insert into %s values (%%s, %%s)" % table_name,
[10, 20])

This sort of works, but it is an accident waiting to happen: the table name may be an invalid SQL literal and need
quoting; even more serious is the security problem in case the table name comes from an untrusted source. The name
should be escaped using quote_ident():

This works, but it is not optimal
table_name = 'my_table'
cur.execute(

"insert into %s values (%%s, %%s)" % ext.quote_ident(table_name),
[10, 20])

This is now safe, but it somewhat ad-hoc. In case, for some reason, it is necessary to include a value in the query string
(as opposite as in a value) the merging rule is still different (adapt() should be used. . .). It is also still relatively
dangerous: if quote_ident() is forgotten somewhere, the program will usually work, but will eventually crash
in the presence of a table or field name with containing characters to escape, or will present a potentially exploitable
weakness.

The objects exposed by the psycopg2.sql module allow generating SQL statements on the fly, separating clearly
the variable parts of the statement from the query parameters:

from psycopg2 import sql

cur.execute(
sql.SQL("insert into {} values (%s, %s)")

.format(sql.Identifier('my_table')),
[10, 20])

The objects exposed by the sql module can be used to compose a query as a Python string (using the as_string()
method) or passed directly to cursor methods such as execute(), executemany(), copy_expert().

85

Psycopg Documentation, Release 2.7.6

class psycopg2.sql.Composable(wrapped)
Abstract base class for objects that can be used to compose an SQL string.

Composable objects can be passed directly to execute(), executemany(), copy_expert() in place
of the query string.

Composable objects can be joined using the + operator: the result will be a Composed instance containing
the objects joined. The operator * is also supported with an integer argument: the result is a Composed instance
containing the left argument repeated as many times as requested.

as_string(context)
Return the string value of the object.

Parameters context (connection or cursor) – the context to evaluate the string into.

The method is automatically invoked by execute(), executemany(), copy_expert() if a
Composable is passed instead of the query string.

class psycopg2.sql.SQL(string)
A Composable representing a snippet of SQL statement.

SQL exposes join() and format() methods useful to create a template where to merge variable parts of a
query (for instance field or table names).

The string doesn’t undergo any form of escaping, so it is not suitable to represent variable identifiers or values:
you should only use it to pass constant strings representing templates or snippets of SQL statements; use other
objects such as Identifier or Literal to represent variable parts.

Example:

>>> query = sql.SQL("select {0} from {1}").format(
... sql.SQL(', ').join([sql.Identifier('foo'), sql.Identifier('bar')]),
... sql.Identifier('table'))
>>> print(query.as_string(conn))
select "foo", "bar" from "table"

string
The string wrapped by the SQL object.

format(*args, **kwargs)
Merge Composable objects into a template.

Parameters

• args (Composable) – parameters to replace to numbered ({0}, {1}) or auto-
numbered ({}) placeholders

• kwargs (Composable) – parameters to replace to named ({name}) placeholders

Returns the union of the SQL string with placeholders replaced

Return type Composed

The method is similar to the Python str.format()method: the string template supports auto-numbered
({}, only available from Python 2.7), numbered ({0}, {1}. . .), and named placeholders ({name}),
with positional arguments replacing the numbered placeholders and keywords replacing the named ones.
However placeholder modifiers ({0!r}, {0:<10}) are not supported. Only Composable objects can
be passed to the template.

Example:

86 Chapter 9. psycopg2.sql – SQL string composition

Psycopg Documentation, Release 2.7.6

>>> print(sql.SQL("select * from {} where {} = %s")
... .format(sql.Identifier('people'), sql.Identifier('id'))
... .as_string(conn))
select * from "people" where "id" = %s

>>> print(sql.SQL("select * from {tbl} where {pkey} = %s")
... .format(tbl=sql.Identifier('people'), pkey=sql.Identifier('id'))
... .as_string(conn))
select * from "people" where "id" = %s

join(seq)
Join a sequence of Composable.

Parameters seq (iterable of Composable) – the elements to join.

Use the SQL object’s string to separate the elements in seq. Note that Composed objects are iterable too,
so they can be used as argument for this method.

Example:

>>> snip = sql.SQL(', ').join(
... sql.Identifier(n) for n in ['foo', 'bar', 'baz'])
>>> print(snip.as_string(conn))
"foo", "bar", "baz"

class psycopg2.sql.Identifier(string)
A Composable representing an SQL identifer.

Identifiers usually represent names of database objects, such as tables or fields. PostgreSQL identifiers follow
different rules than SQL string literals for escaping (e.g. they use double quotes instead of single).

Example:

>>> t1 = sql.Identifier("foo")
>>> t2 = sql.Identifier("ba'r")
>>> t3 = sql.Identifier('ba"z')
>>> print(sql.SQL(', ').join([t1, t2, t3]).as_string(conn))
"foo", "ba'r", "ba""z"

string
The string wrapped by the Identifier.

class psycopg2.sql.Literal(wrapped)
A Composable representing an SQL value to include in a query.

Usually you will want to include placeholders in the query and pass values as execute() arguments. If
however you really really need to include a literal value in the query you can use this object.

The string returned by as_string() follows the normal adaptation rules for Python objects.

Example:

>>> s1 = sql.Literal("foo")
>>> s2 = sql.Literal("ba'r")
>>> s3 = sql.Literal(42)
>>> print(sql.SQL(', ').join([s1, s2, s3]).as_string(conn))
'foo', 'ba''r', 42

wrapped
The object wrapped by the Literal.

87

https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

Psycopg Documentation, Release 2.7.6

class psycopg2.sql.Placeholder(name=None)
A Composable representing a placeholder for query parameters.

If the name is specified, generate a named placeholder (e.g. %(name)s), otherwise generate a positional
placeholder (e.g. %s).

The object is useful to generate SQL queries with a variable number of arguments.

Examples:

>>> names = ['foo', 'bar', 'baz']

>>> q1 = sql.SQL("insert into table ({}) values ({})").format(
... sql.SQL(', ').join(map(sql.Identifier, names)),
... sql.SQL(', ').join(sql.Placeholder() * len(names)))
>>> print(q1.as_string(conn))
insert into table ("foo", "bar", "baz") values (%s, %s, %s)

>>> q2 = sql.SQL("insert into table ({}) values ({})").format(
... sql.SQL(', ').join(map(sql.Identifier, names)),
... sql.SQL(', ').join(map(sql.Placeholder, names)))
>>> print(q2.as_string(conn))
insert into table ("foo", "bar", "baz") values (%(foo)s, %(bar)s, %(baz)s)

name
The name of the Placeholder.

class psycopg2.sql.Composed(seq)
A Composable object made of a sequence of Composable.

The object is usually created using Composable operators and methods. However it is possible to create a
Composed directly specifying a sequence of Composable as arguments.

Example:

>>> comp = sql.Composed(
... [sql.SQL("insert into "), sql.Identifier("table")])
>>> print(comp.as_string(conn))
insert into "table"

Composed objects are iterable (so they can be used in SQL.join for instance).

seq
The list of the content of the Composed.

join(joiner)
Return a new Composed interposing the joiner with the Composed items.

The joiner must be a SQL or a string which will be interpreted as an SQL.

Example:

>>> fields = sql.Identifier('foo') + sql.Identifier('bar') # a Composed
>>> print(fields.join(', ').as_string(conn))
"foo", "bar"

88 Chapter 9. psycopg2.sql – SQL string composition

CHAPTER

TEN

PSYCOPG2.TZ – TZINFO IMPLEMENTATIONS FOR PSYCOPG 2

This module holds two different tzinfo implementations that can be used as the tzinfo argument to datetime con-
structors, directly passed to Psycopg functions or used to set the cursor.tzinfo_factory attribute in cursors.

class psycopg2.tz.FixedOffsetTimezone(offset=None, name=None)
Fixed offset in minutes east from UTC.

This is exactly the implementation found in Python 2.3.x documentation, with a small change to the
__init__() method to allow for pickling and a default name in the form sHH:MM (s is the sign.).

The implementation also caches instances. During creation, if a FixedOffsetTimezone instance has previously
been created with the same offset and name that instance will be returned. This saves memory and improves
comparability.

class psycopg2.tz.LocalTimezone
Platform idea of local timezone.

This is the exact implementation from the Python 2.3 documentation.

89

https://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime-tzinfo

Psycopg Documentation, Release 2.7.6

90 Chapter 10. psycopg2.tz – tzinfo implementations for Psycopg 2

CHAPTER

ELEVEN

PSYCOPG2.POOL – CONNECTIONS POOLING

Creating new PostgreSQL connections can be an expensive operation. This module offers a few pure Python classes
implementing simple connection pooling directly in the client application.

class psycopg2.pool.AbstractConnectionPool(minconn, maxconn, *args, **kwargs)
Base class implementing generic key-based pooling code.

New minconn connections are created automatically. The pool will support a maximum of about maxconn
connections. *args and **kwargs are passed to the connect() function.

The following methods are expected to be implemented by subclasses:

getconn(key=None)
Get a free connection from the pool.

The key parameter is optional: if used, the connection will be associated to the key and calling
getconn() with the same key again will return the same connection.

putconn(conn, key=None, close=False)
Put away a connection.

If close is True, discard the connection from the pool. key should be used consistently with getconn().

closeall()
Close all the connections handled by the pool.

Note that all the connections are closed, including ones eventually in use by the application.

The following classes are AbstractConnectionPool subclasses ready to be used.

class psycopg2.pool.SimpleConnectionPool(minconn, maxconn, *args, **kwargs)
A connection pool that can’t be shared across different threads.

Note: This pool class is useful only for single-threaded applications.

class psycopg2.pool.ThreadedConnectionPool(minconn, maxconn, *args, **kwargs)
A connection pool that works with the threading module.

Note: This pool class can be safely used in multi-threaded applications.

class psycopg2.pool.PersistentConnectionPool(minconn, maxconn, *args, **kwargs)
A pool that assigns persistent connections to different threads.

Note that this connection pool generates by itself the required keys using the current thread id. This means that
until a thread puts away a connection it will always get the same connection object by successive getconn()
calls. This also means that a thread can’t use more than one single connection from the pool.

91

Psycopg Documentation, Release 2.7.6

Note: This pool class is mostly designed to interact with Zope and probably not useful in generic applications.

92 Chapter 11. psycopg2.pool – Connections pooling

CHAPTER

TWELVE

PSYCOPG2.ERRORCODES – ERROR CODES DEFINED BY
POSTGRESQL

New in version 2.0.6.

This module contains symbolic names for all PostgreSQL error codes and error classes codes. Subclasses of Error
make the PostgreSQL error code available in the pgcode attribute.

From PostgreSQL documentation:

All messages emitted by the PostgreSQL server are assigned five-character error codes that follow the
SQL standard’s conventions for SQLSTATE codes. Applications that need to know which error condition
has occurred should usually test the error code, rather than looking at the textual error message. The
error codes are less likely to change across PostgreSQL releases, and also are not subject to change due
to localization of error messages. Note that some, but not all, of the error codes produced by PostgreSQL
are defined by the SQL standard; some additional error codes for conditions not defined by the standard
have been invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the
last three characters indicate a specific condition within that class. Thus, an application that does not
recognize the specific error code can still be able to infer what to do from the error class.

See also:

PostgreSQL Error Codes table

An example of the available constants defined in the module:

>>> errorcodes.CLASS_SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION
'42'
>>> errorcodes.UNDEFINED_TABLE
'42P01'

Constants representing all the error values defined by PostgreSQL versions between 8.1 and 11 are included in the
module.

psycopg2.errorcodes.lookup(code)
Lookup an error code or class code and return its symbolic name.

Raise KeyError if the code is not found.

>>> try:
... cur.execute("SELECT ouch FROM aargh;")
... except Exception, e:
... pass
...
>>> errorcodes.lookup(e.pgcode[:2])

(continues on next page)

93

http://www.postgresql.org/docs/current/static/errcodes-appendix.html#ERRCODES-TABLE
https://docs.python.org/3/library/exceptions.html#KeyError

Psycopg Documentation, Release 2.7.6

(continued from previous page)

'CLASS_SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION'
>>> errorcodes.lookup(e.pgcode)
'UNDEFINED_TABLE'

New in version 2.0.14.

94 Chapter 12. psycopg2.errorcodes – Error codes defined by PostgreSQL

CHAPTER

THIRTEEN

FREQUENTLY ASKED QUESTIONS

Here are a few gotchas you may encounter using psycopg2. Feel free to suggest new entries!

13.1 Problems with transactions handling

Why does psycopg2 leave database sessions “idle in transaction”? Psycopg normally starts a new transaction
the first time a query is executed, e.g. calling cursor.execute(), even if the command is a SELECT.
The transaction is not closed until an explicit commit() or rollback().

If you are writing a long-living program, you should probably make sure to call one of the transaction closing
methods before leaving the connection unused for a long time (which may also be a few seconds, depending
on the concurrency level in your database). Alternatively you can use a connection in autocommit mode to
avoid a new transaction to be started at the first command.

I receive the error current transaction is aborted, commands ignored until end of transaction block and can’t do anything else!
There was a problem in the previous command to the database, which resulted in an error. The database will not
recover automatically from this condition: you must run a rollback() before sending new commands to the
session (if this seems too harsh, remember that PostgreSQL supports nested transactions using the SAVEPOINT
command).

Why do I get the error current transaction is aborted, commands ignored until end of transaction block when I use multiprocessing (or any other forking system) and not when use threading?
Psycopg’s connections can’t be shared across processes (but are thread safe). If you are forking the Python
process make sure to create a new connection in each forked child. See Thread and process safety for further
informations.

13.2 Problems with type conversions

Why does cursor.execute() raise the exception can’t adapt? Psycopg converts Python objects in a SQL
string representation by looking at the object class. The exception is raised when you are trying to pass as
query parameter an object for which there is no adapter registered for its class. See Adapting new Python types
to SQL syntax for informations.

I can’t pass an integer or a float parameter to my query: it says a number is required, but it is a number! In
your query string, you always have to use %s placeholders, even when passing a number. All Python objects
are converted by Psycopg in their SQL representation, so they get passed to the query as strings. See Passing
parameters to SQL queries.

>>> cur.execute("INSERT INTO numbers VALUES (%d)", (42,)) # WRONG
>>> cur.execute("INSERT INTO numbers VALUES (%s)", (42,)) # correct

95

http://www.postgresql.org/docs/current/static/sql-savepoint.html

Psycopg Documentation, Release 2.7.6

I try to execute a query but it fails with the error not all arguments converted during string formatting (or object does not support indexing). Why?
Psycopg always require positional arguments to be passed as a sequence, even when the query takes a single
parameter. And remember that to make a single item tuple in Python you need a comma! See Passing
parameters to SQL queries.

>>> cur.execute("INSERT INTO foo VALUES (%s)", "bar") # WRONG
>>> cur.execute("INSERT INTO foo VALUES (%s)", ("bar")) # WRONG
>>> cur.execute("INSERT INTO foo VALUES (%s)", ("bar",)) # correct
>>> cur.execute("INSERT INTO foo VALUES (%s)", ["bar"]) # correct

My database is Unicode, but I receive all the strings as UTF-8 str. Can I receive unicode objects instead?
The following magic formula will do the trick:

psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

See Unicode handling for the gory details.

Psycopg converts decimal/numeric database types into Python Decimal objects. Can I have float instead?
You can register a customized adapter for PostgreSQL decimal type:

DEC2FLOAT = psycopg2.extensions.new_type(
psycopg2.extensions.DECIMAL.values,
'DEC2FLOAT',
lambda value, curs: float(value) if value is not None else None)

psycopg2.extensions.register_type(DEC2FLOAT)

See Type casting of SQL types into Python objects to read the relevant documentation. If you find psycopg2.
extensions.DECIMAL not available, use psycopg2._psycopg.DECIMAL instead.

Psycopg automatically converts PostgreSQL json data into Python objects. How can I receive strings instead?
The easiest way to avoid JSON parsing is to register a no-op function with register_default_json():

psycopg2.extras.register_default_json(loads=lambda x: x)

See JSON adaptation for further details.

Psycopg converts json values into Python objects but jsonb values are returned as strings. Can jsonb be converted automatically?
Automatic conversion of jsonb values is supported from Psycopg release 2.5.4. For previous versions you
can register the json typecaster on the jsonb oids (which are known and not suppsed to change in future
PostgreSQL versions):

psycopg2.extras.register_json(oid=3802, array_oid=3807, globally=True)

See JSON adaptation for further details.

How can I pass field/table names to a query? The arguments in the execute() methods can only represent data
to pass to the query: they cannot represent a table or field name:

This doesn't work
cur.execute("insert into %s values (%s)", ["my_table", 42])

If you want to build a query dynamically you can use the objects exposed by the psycopg2.sql module:

cur.execute(
sql.SQL("insert into %s values (%%s)") % [sql.Identifier("my_table")],
[42])

96 Chapter 13. Frequently Asked Questions

Psycopg Documentation, Release 2.7.6

Transferring binary data from PostgreSQL 9.0 doesn’t work. PostgreSQL 9.0 uses by default the “hex” format to
transfer bytea data: the format can’t be parsed by the libpq 8.4 and earlier. The problem is solved in Psycopg
2.4.1, that uses its own parser for the bytea format. For previous Psycopg releases, three options to solve the
problem are:

• set the bytea_output parameter to escape in the server;

• execute the database command SET bytea_output TO escape; in the session before reading bi-
nary data;

• upgrade the libpq library on the client to at least 9.0.

Arrays of TYPE are not casted to list. Arrays are only casted to list when their oid is known, and an array typecaster
is registered for them. If there is no typecaster, the array is returned unparsed from PostgreSQL (e.g. {a,b,
c}). It is easy to create a generic arrays typecaster, returning a list of array: an example is provided in the
new_array_type() documentation.

13.3 Best practices

When should I save and re-use a cursor as opposed to creating a new one as needed? Cursors are lightweight
objects and creating lots of them should not pose any kind of problem. But note that cursors used to fetch
result sets will cache the data and use memory in proportion to the result set size. Our suggestion is to almost
always create a new cursor and dispose old ones as soon as the data is not required anymore (call close() on
them.) The only exception are tight loops where one usually use the same cursor for a whole bunch of INSERTs
or UPDATEs.

When should I save and re-use a connection as opposed to creating a new one as needed? Creating a connection
can be slow (think of SSL over TCP) so the best practice is to create a single connection and keep it open as long
as required. It is also good practice to rollback or commit frequently (even after a single SELECT statement) to
make sure the backend is never left “idle in transaction”. See also psycopg2.pool for lightweight connection
pooling.

What are the advantages or disadvantages of using named cursors? The only disadvantages is that they use up
resources on the server and that there is a little overhead because a at least two queries (one to create the cursor
and one to fetch the initial result set) are issued to the backend. The advantage is that data is fetched one chunk
at a time: using small fetchmany() values it is possible to use very little memory on the client and to skip or
discard parts of the result set.

How do I interrupt a long-running query in an interactive shell? Normally the interactive shell becomes unre-
sponsive to Ctrl-C when running a query. Using a connection in green mode allows Python to receive and
handle the interrupt, although it may leave the connection broken, if the async callback doesn’t handle the
KeyboardInterrupt correctly.

Starting from psycopg 2.6.2, the wait_select callback can handle a Ctrl-C correctly. For previous ver-
sions, you can use this implementation.

>>> psycopg2.extensions.set_wait_callback(psycopg2.extras.wait_select)
>>> cnn = psycopg2.connect('')
>>> cur = cnn.cursor()
>>> cur.execute("select pg_sleep(10)")
^C
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
QueryCanceledError: canceling statement due to user request

>>> cnn.rollback()
>>> # You can use the connection and cursor again from here

13.3. Best practices 97

http://www.postgresql.org/docs/current/static/datatype-binary.html
http://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-BYTEA-OUTPUT
http://initd.org/psycopg/articles/2014/07/20/cancelling-postgresql-statements-python/

Psycopg Documentation, Release 2.7.6

13.4 Problems compiling and deploying psycopg2

I can’t compile psycopg2: the compiler says error: Python.h: No such file or directory. What am I missing?
You need to install a Python development package: it is usually called python-dev.

I can’t compile psycopg2: the compiler says error: libpq-fe.h: No such file or directory. What am I missing?
You need to install the development version of the libpq: the package is usually called libpq-dev.

psycopg2 raises ImportError with message _psycopg.so: undefined symbol: lo_truncate when imported.
This means that Psycopg was compiled with lo_truncate() support (i.e. the libpq used at compile time
was version >= 8.3) but at runtime an older libpq dynamic library is found.

Fast-forward several years, if the message reports undefined symbol: lo_truncate64 it means that Psycopg was
built with large objects 64 bits API support (i.e. the libpq used at compile time was at least 9.3) but at runtime
an older libpq dynamic library is found.

You can use:

$ ldd /path/to/packages/psycopg2/_psycopg.so | grep libpq

to find what is the libpq dynamic library used at runtime.

You can avoid the problem by using the same version of the pg_config at install time and the libpq at runtime.

Psycopg raises ImportError: cannot import name tz on import in mod_wsgi / ASP, but it works fine otherwise.
If psycopg2 is installed in an egg (e.g. because installed by easy_install), the user running the program
may be unable to write in the eggs cache. Set the env variable PYTHON_EGG_CACHE to a writable directory.
With modwsgi you can use the WSGIPythonEggs directive.

98 Chapter 13. Frequently Asked Questions

http://www.postgresql.org/docs/current/static/lo-interfaces.html#LO-TRUNCATE
http://peak.telecommunity.com/DevCenter/PythonEggs
http://stackoverflow.com/questions/2192323/what-is-the-python-egg-cache-python-egg-cache
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIPythonEggs

CHAPTER

FOURTEEN

RELEASE NOTES

14.1 Current release

14.1.1 What’s new in psycopg 2.7.6

• Close named cursors if exist, even if execute() wasn’t called (ticket #746).

• Fixed building on modern FreeBSD versions with Python 3.7 (ticket #755).

• Fixed hang trying to COPY via execute() (ticket #781).

• Fixed adaptation of arrays of empty arrays (ticket #788).

• Fixed segfault accessing the connection.readonly and connection.deferrable repeatedly (ticket
#790).

• execute_values() accepts Composable objects (#794).

• errorcodes map updated to PostgreSQL 11.

14.1.2 What’s new in psycopg 2.7.5

• Allow non-ascii chars in namedtuple fields (regression introduced fixing ticket #211).

• Fixed adaptation of arrays of arrays of nulls (ticket #325).

• Fixed building on Solaris 11 and derivatives such as SmartOS and illumos (ticket #677).

• Maybe fixed building on MSYS2 (as reported in ticket #658).

• Allow string subclasses in connection and other places (ticket #679).

• Don’t raise an exception closing an unused named cursor (ticket #716).

• Wheel package compiled against PostgreSQL 10.4 libpq and OpenSSL 1.0.2o.

14.1.3 What’s new in psycopg 2.7.4

• Moving away from installing the wheel package by default. Packages installed from wheel raise a warning on
import. Added package psycopg2-binary to install from wheel instead (ticket #543).

• Convert fields names into valid Python identifiers in NamedTupleCursor (ticket #211).

• Fixed Solaris 10 support (ticket #532).

• cursor.mogrify() can be called on closed cursors (ticket #579).

99

https://github.com/psycopg/psycopg2/issues/746
https://github.com/psycopg/psycopg2/issues/755
https://github.com/psycopg/psycopg2/issues/781
https://github.com/psycopg/psycopg2/issues/788
https://github.com/psycopg/psycopg2/issues/790
https://github.com/psycopg/psycopg2/issues/211
https://github.com/psycopg/psycopg2/issues/325
https://github.com/psycopg/psycopg2/issues/677
https://github.com/psycopg/psycopg2/issues/658
https://github.com/psycopg/psycopg2/issues/679
https://github.com/psycopg/psycopg2/issues/716
https://github.com/psycopg/psycopg2/issues/543
https://github.com/psycopg/psycopg2/issues/211
https://github.com/psycopg/psycopg2/issues/532
https://github.com/psycopg/psycopg2/issues/579

Psycopg Documentation, Release 2.7.6

• Fixed setting session characteristics in corner cases on autocommit connections (ticket #580).

• Fixed MinTimeLoggingCursor on Python 3 (ticket #609).

• Fixed parsing of array of points as floats (ticket #613).

• Fixed __libpq_version__ building with libpq >= 10.1 (ticket 632).

• Fixed rowcount after executemany() with RETURNING statements (ticket 633).

• Fixed compatibility problem with pypy3 (ticket #649).

• Wheel packages compiled against PostgreSQL 10.1 libpq and OpenSSL 1.0.2n.

• Wheel packages for Python 2.6 no more available (support dropped from wheel building infrastructure).

14.1.4 What’s new in psycopg 2.7.3.2

• Wheel package compiled against PostgreSQL 10.0 libpq and OpenSSL 1.0.2l (tickets #601, #602).

14.1.5 What’s new in psycopg 2.7.3.1

• Dropped libresolv from wheel package to avoid incompatibility with glibc 2.26 (wheels ticket #2).

14.1.6 What’s new in psycopg 2.7.3

• Restored default timestamptz[] typecasting to Python datetime. Regression introduced in Psycopg 2.7.2
(ticket #578).

14.1.7 What’s new in psycopg 2.7.2

• Fixed inconsistent state in externally closed connections (tickets #263, #311, #443). Was fixed in 2.6.2 but not
included in 2.7 by mistake.

• Fixed Python exceptions propagation in green callback (ticket #410).

• Don’t display the password in connection.dsn when the connection string is specified as an URI (ticket
#528).

• Return objects with timezone parsing “infinity” timestamptz (ticket #536).

• Dropped dependency on VC9 runtime on Windows binary packages (ticket #541).

• Fixed segfault in lobject() when mode=None (ticket #544).

• Fixed lobject() keyword argument lobject_factory (ticket #545).

• Fixed consume_stream() keepalive_interval argument (ticket #547).

• Maybe fixed random import error on Python 3.6 in multiprocess environment (ticket #550).

• Fixed random SystemError upon receiving abort signal (ticket #551).

• Accept Composable objects in start_replication_expert() (ticket 554).

• Parse intervals returned as microseconds from Redshift (ticket #558).

• Added Json prepare() method to consider connection params when adapting (ticket #562).

• errorcodes map updated to PostgreSQL 10 beta 1.

100 Chapter 14. Release notes

https://github.com/psycopg/psycopg2/issues/580
https://github.com/psycopg/psycopg2/issues/609
https://github.com/psycopg/psycopg2/issues/613
https://github.com/psycopg/psycopg2/issues/632
https://github.com/psycopg/psycopg2/issues/633
https://github.com/psycopg/psycopg2/issues/649
https://github.com/psycopg/psycopg2/issues/601
https://github.com/psycopg/psycopg2/issues/602
https://github.com/psycopg/psycopg2/issues/578
https://github.com/psycopg/psycopg2/issues/263
https://github.com/psycopg/psycopg2/issues/311
https://github.com/psycopg/psycopg2/issues/443
https://github.com/psycopg/psycopg2/issues/410
https://github.com/psycopg/psycopg2/issues/528
https://github.com/psycopg/psycopg2/issues/536
https://github.com/psycopg/psycopg2/issues/541
https://github.com/psycopg/psycopg2/issues/544
https://github.com/psycopg/psycopg2/issues/545
https://github.com/psycopg/psycopg2/issues/547
https://github.com/psycopg/psycopg2/issues/550
https://github.com/psycopg/psycopg2/issues/551
https://github.com/psycopg/psycopg2/issues/554
https://github.com/psycopg/psycopg2/issues/558
https://github.com/psycopg/psycopg2/issues/562

Psycopg Documentation, Release 2.7.6

14.1.8 What’s new in psycopg 2.7.1

• Ignore None arguments passed to connect() and make_dsn() (ticket #517).

• OpenSSL upgraded from major version 0.9.8 to 1.0.2 in the Linux wheel packages (ticket #518).

• Fixed build with libpq versions < 9.3 (ticket #520).

14.2 What’s new in psycopg 2.7

New features:

• Added sql module to generate SQL dynamically (ticket #308).

• Added Replication protocol support (ticket #322). Main authors are Oleksandr Shulgin and Craig Ringer, who
deserve a huge thank you.

• Added parse_dsn() and make_dsn() functions (tickets #321, #363). connect() now can take both dsn
and keyword arguments, merging them together.

• Added __libpq_version__ and libpq_version() to inspect the version of the libpq library the
module was compiled/loaded with (tickets #35, #323).

• The attributes notices and notifies can be customized replacing them with any object exposing an
append() method (ticket #326).

• Adapt network types to ipaddress objects when available. When not enabled, convert arrays of network
types to lists by default. The old Inet adapter is deprecated (tickets #317, #343, #387).

• Added quote_ident() function (ticket #359).

• Added get_dsn_parameters() connection method (ticket #364).

• callproc() now accepts a dictionary of parameters (ticket #381).

• Give precedence to __conform__() over superclasses to choose an object adapter (ticket #456).

• Using Python C API decoding functions and codecs caching for faster unicode encoding/decoding (ticket #473).

• executemany() slowness addressed by execute_batch() and execute_values() (ticket #491).

• Added async_ as an alias for async to support Python 3.7 where async will become a keyword (ticket
#495).

• Unless in autocommit, do not use default_transaction_* settings to control the session characteristics
as it may create problems with external connection pools such as pgbouncer; use BEGIN options instead (ticket
#503).

• isolation_level is now writable and entirely separated from autocommit; added readonly ,
deferrable writable attributes.

Bug fixes:

• Throw an exception trying to pass NULL chars as parameters (ticket #420).

• Fixed error caused by missing decoding LoggingConnection (ticket #483).

• Fixed integer overflow in interval seconds (ticket #512).

• Make Range objects picklable (ticket #462).

• Fixed version parsing and building with PostgreSQL 10 (ticket #489).

Other changes:

14.2. What’s new in psycopg 2.7 101

https://github.com/psycopg/psycopg2/issues/517
https://github.com/psycopg/psycopg2/issues/518
https://github.com/psycopg/psycopg2/issues/520
https://github.com/psycopg/psycopg2/issues/308
https://github.com/psycopg/psycopg2/issues/322
https://github.com/psycopg/psycopg2/issues/321
https://github.com/psycopg/psycopg2/issues/363
https://github.com/psycopg/psycopg2/issues/35
https://github.com/psycopg/psycopg2/issues/323
https://github.com/psycopg/psycopg2/issues/326
https://docs.python.org/3/library/ipaddress.html#module-ipaddress
https://github.com/psycopg/psycopg2/issues/317
https://github.com/psycopg/psycopg2/issues/343
https://github.com/psycopg/psycopg2/issues/387
https://github.com/psycopg/psycopg2/issues/359
https://github.com/psycopg/psycopg2/issues/364
https://github.com/psycopg/psycopg2/issues/381
https://github.com/psycopg/psycopg2/issues/456
https://github.com/psycopg/psycopg2/issues/473
https://github.com/psycopg/psycopg2/issues/491
https://github.com/psycopg/psycopg2/issues/495
https://github.com/psycopg/psycopg2/issues/503
https://github.com/psycopg/psycopg2/issues/420
https://github.com/psycopg/psycopg2/issues/483
https://github.com/psycopg/psycopg2/issues/512
https://github.com/psycopg/psycopg2/issues/462
https://github.com/psycopg/psycopg2/issues/489

Psycopg Documentation, Release 2.7.6

• Dropped support for Python 2.5 and 3.1.

• Dropped support for client library older than PostgreSQL 9.1 (but older server versions are still supported).

• isolation_level doesn’t read from the database but will return ISOLATION_LEVEL_DEFAULT if no
value was set on the connection.

• Empty arrays no more converted into lists if they don’t have a type attached (ticket #506)

14.2.1 What’s new in psycopg 2.6.2

• Fixed inconsistent state in externally closed connections (tickets #263, #311, #443).

• Report the server response status on errors (such as ticket #281).

• Raise NotSupportedError on unhandled server response status (ticket #352).

• Allow overriding string adapter encoding with no connection (ticket #331).

• The wait_select callback allows interrupting a long-running query in an interactive shell using Ctrl-C
(ticket #333).

• Fixed PersistentConnectionPool on Python 3 (ticket #348).

• Fixed segfault on repr() of an unitialized connection (ticket #361).

• Allow adapting bytes using QuotedString on Python 3 (ticket #365).

• Added support for setuptools/wheel (ticket #370).

• Fix build on Windows with Python 3.5, VS 2015 (ticket #380).

• Fixed errorcodes.lookup initialization thread-safety (ticket #382).

• Fixed read() exception propagation in copy_from (ticket #412).

• Fixed possible NULL TZ decref (ticket #424).

• errorcodes map updated to PostgreSQL 9.5.

14.2.2 What’s new in psycopg 2.6.1

• Lists consisting of only None are escaped correctly (ticket #285).

• Fixed deadlock in multithread programs using OpenSSL (ticket #290).

• Correctly unlock the connection after error in flush (ticket #294).

• Fixed MinTimeLoggingCursor.callproc() (ticket #309).

• Added support for MSVC 2015 compiler (ticket #350).

14.3 What’s new in psycopg 2.6

New features:

• Added support for large objects larger than 2GB. Many thanks to Blake Rouse and the MAAS Team for the
feature development.

• Python time objects with a tzinfo specified and PostgreSQL timetz data are converted into each other (ticket
#272).

102 Chapter 14. Release notes

https://github.com/psycopg/psycopg2/issues/506
https://github.com/psycopg/psycopg2/issues/263
https://github.com/psycopg/psycopg2/issues/311
https://github.com/psycopg/psycopg2/issues/443
https://github.com/psycopg/psycopg2/issues/281
https://github.com/psycopg/psycopg2/issues/352
https://github.com/psycopg/psycopg2/issues/331
https://github.com/psycopg/psycopg2/issues/333
https://github.com/psycopg/psycopg2/issues/348
https://github.com/psycopg/psycopg2/issues/361
https://github.com/psycopg/psycopg2/issues/365
https://github.com/psycopg/psycopg2/issues/370
https://github.com/psycopg/psycopg2/issues/380
https://github.com/psycopg/psycopg2/issues/382
https://github.com/psycopg/psycopg2/issues/412
https://github.com/psycopg/psycopg2/issues/424
https://docs.python.org/3/library/constants.html#None
https://github.com/psycopg/psycopg2/issues/285
https://github.com/psycopg/psycopg2/issues/290
https://github.com/psycopg/psycopg2/issues/294
https://github.com/psycopg/psycopg2/issues/309
https://github.com/psycopg/psycopg2/issues/350
https://docs.python.org/3/library/time.html#module-time
https://github.com/psycopg/psycopg2/issues/272

Psycopg Documentation, Release 2.7.6

Bug fixes:

• Json adapter’s str() returns the adapted content instead of the repr() (ticket #191).

14.3.1 What’s new in psycopg 2.5.5

• Named cursors used as context manager don’t swallow the exception on exit (ticket #262).

• cursor.description can be pickled (ticket #265).

• Propagate read error messages in COPY FROM (ticket #270).

• PostgreSQL time 24:00 is converted to Python 00:00 (ticket #278).

14.3.2 What’s new in psycopg 2.5.4

• Added jsonb support for PostgreSQL 9.4 (ticket #226).

• Fixed segfault if COPY statements are passed to execute() instead of using the proper methods (ticket #219).

• Force conversion of pool arguments to integer to avoid potentially unbounded pools (ticket #220).

• Cursors WITH HOLD don’t begin a new transaction upon move/fetch/close (ticket #228).

• Cursors WITH HOLD can be used in autocommit (ticket #229).

• callproc() doesn’t silently ignore an argument without a length.

• Fixed memory leak with large objects (ticket #256).

• Make sure the internal _psycopg.so module can be imported stand-alone (to allow modules juggling such
as the one described in ticket #201).

14.3.3 What’s new in psycopg 2.5.3

• Work around pip issue #1630 making installation via pip -e git+url impossible (ticket #18).

• Copy operations correctly set the cursor.rowcount attribute (ticket #180).

• It is now possible to call get_transaction_status() on closed connections.

• Fixed unsafe access to object names causing assertion failures in Python 3 debug builds (ticket #188).

• Mark the connection closed if found broken on poll() (from ticket #192 discussion)

• Fixed handling of dsn and closed attributes in connection subclasses failing to connect (from ticket #192 discus-
sion).

• Added arbitrary but stable order to Range objects, thanks to Chris Withers (ticket #193).

• Avoid blocking async connections on connect (ticket #194). Thanks to Adam Petrovich for the bug report and
diagnosis.

• Don’t segfault using poorly defined cursor subclasses which forgot to call the superclass init (ticket #195).

• Mark the connection closed when a Socket connection is broken, as it happens for TCP connections instead
(ticket #196).

• Fixed overflow opening a lobject with an oid not fitting in a signed int (ticket #203).

• Fixed handling of explicit default cursor_factory=None in connection.cursor() (ticket #210).

• Fixed possible segfault in named cursors creation.

14.3. What’s new in psycopg 2.6 103

https://github.com/psycopg/psycopg2/issues/191
https://github.com/psycopg/psycopg2/issues/262
https://github.com/psycopg/psycopg2/issues/265
https://github.com/psycopg/psycopg2/issues/270
https://github.com/psycopg/psycopg2/issues/278
https://github.com/psycopg/psycopg2/issues/226
https://github.com/psycopg/psycopg2/issues/219
https://github.com/psycopg/psycopg2/issues/220
https://github.com/psycopg/psycopg2/issues/228
https://github.com/psycopg/psycopg2/issues/229
https://github.com/psycopg/psycopg2/issues/256
https://github.com/psycopg/psycopg2/issues/201
https://github.com/pypa/pip/issues/1630
https://github.com/psycopg/psycopg2/issues/248
https://github.com/psycopg/psycopg2/issues/180
https://github.com/psycopg/psycopg2/issues/188
https://github.com/psycopg/psycopg2/issues/192
https://github.com/psycopg/psycopg2/issues/192
https://github.com/psycopg/psycopg2/issues/193
https://github.com/psycopg/psycopg2/issues/194
https://github.com/psycopg/psycopg2/issues/195
https://github.com/psycopg/psycopg2/issues/196
https://github.com/psycopg/psycopg2/issues/203
https://github.com/psycopg/psycopg2/issues/210

Psycopg Documentation, Release 2.7.6

• Fixed debug build on Windows, thanks to James Emerton.

14.3.4 What’s new in psycopg 2.5.2

• Fixed segfault pickling the exception raised on connection error (ticket #170).

• Meaningful connection errors report a meaningful message, thanks to Alexey Borzenkov (ticket #173).

• Manually creating lobject with the wrong parameter doesn’t segfault (ticket #187).

14.3.5 What’s new in psycopg 2.5.1

• Fixed build on Solaris 10 and 11 where the round() function is already declared (ticket #146).

• Fixed comparison of Range with non-range objects (ticket #164). Thanks to Chris Withers for the patch.

• Fixed double-free on connection dealloc (ticket #166). Thanks to Gangadharan S.A. for the report and fix
suggestion.

14.4 What’s new in psycopg 2.5

New features:

• Added JSON adaptation.

• Added support for PostgreSQL 9.2 range types.

• connection and cursor objects can be used in with statements as context managers as specified by recent
DB API 2.0 extension.

• Added Diagnostics object to get extended info from a database error. Many thanks to Matthew Woodcraft
for the implementation (ticket #149).

• Added connection.cursor_factory attribute to customize the default object returned by cursor().

• Added support for backward scrollable cursors. Thanks to Jon Nelson for the initial patch (ticket #108).

• Added a simple way to customize casting of composite types into Python objects other than namedtuples. Many
thanks to Ronan Dunklau and Tobias Oberstein for the feature development.

• connection.reset() implemented using DISCARD ALL on server versions supporting it.

Bug fixes:

• Properly cleanup memory of broken connections (ticket #148).

• Fixed bad interaction of setup.py with other dependencies in Distribute projects on Python 3 (ticket #153).

Other changes:

• Added support for Python 3.3.

• Dropped support for Python 2.4. Please use Psycopg 2.4.x if you need it.

• errorcodes map updated to PostgreSQL 9.2.

• Dropped Zope adapter from source repository. ZPsycopgDA now has its own project at <http://github.com/
psycopg/ZPsycopgDA>.

104 Chapter 14. Release notes

https://github.com/psycopg/psycopg2/issues/170
https://github.com/psycopg/psycopg2/issues/173
https://github.com/psycopg/psycopg2/issues/187
https://github.com/psycopg/psycopg2/issues/146
https://github.com/psycopg/psycopg2/issues/164
https://github.com/psycopg/psycopg2/issues/166
http://www.python.org/dev/peps/pep-0249/
https://github.com/psycopg/psycopg2/issues/149
https://github.com/psycopg/psycopg2/issues/108
https://github.com/psycopg/psycopg2/issues/148
https://github.com/psycopg/psycopg2/issues/153
http://github.com/psycopg/ZPsycopgDA
http://github.com/psycopg/ZPsycopgDA

Psycopg Documentation, Release 2.7.6

14.4.1 What’s new in psycopg 2.4.6

• Fixed ‘cursor()’ arguments propagation in connection subclasses and overriding of the ‘cursor_factory’ argu-
ment. Thanks to Corry Haines for the report and the initial patch (ticket #105).

• Dropped GIL release during string adaptation around a function call invoking a Python API function, which
could cause interpreter crash. Thanks to Manu Cupcic for the report (ticket #110).

• Close a green connection if there is an error in the callback. Maybe a harsh solution but it leaves the program
responsive (ticket #113).

• ‘register_hstore()’, ‘register_composite()’, ‘tpc_recover()’ work with RealDictConnection and Cursor (ticket
#114).

• Fixed broken pool for Zope and connections re-init across ZSQL methods in the same request (tickets #123,
#125, #142).

• connect() raises an exception instead of swallowing keyword arguments when a connection string is specified as
well (ticket #131).

• Discard any result produced by ‘executemany()’ (ticket #133).

• Fixed pickling of FixedOffsetTimezone objects (ticket #135).

• Release the GIL around PQgetResult calls after COPY (ticket #140).

• Fixed empty strings handling in composite caster (ticket #141).

• Fixed pickling of DictRow and RealDictRow objects.

14.4.2 What’s new in psycopg 2.4.5

• The close() methods on connections and cursors don’t raise exceptions if called on already closed objects.

• Fixed fetchmany() with no argument in cursor subclasses (ticket #84).

• Use lo_creat() instead of lo_create() when possible for better interaction with pgpool-II (ticket #88).

• Error and its subclasses are picklable, useful for multiprocessing interaction (ticket #90).

• Better efficiency and formatting of timezone offset objects thanks to Menno Smits (tickets #94, #95).

• Fixed ‘rownumber’ during iteration on cursor subclasses. Regression introduced in 2.4.4 (ticket #100).

• Added support for ‘inet’ arrays.

• Fixed ‘commit()’ concurrency problem (ticket #103).

• Codebase cleaned up using the GCC Python plugin’s static analysis tool, which has revealed several unchecked
return values, possible NULL dereferences, reference counting problems. Many thanks to David Malcolm for
the useful tool and the assistance provided using it.

14.4.3 What’s new in psycopg 2.4.4

• ‘register_composite()’ also works with the types implicitly defined after a table row, not only with the ones
created by ‘CREATE TYPE’.

• Values for the isolation level symbolic constants restored to what they were before release 2.4.2 to avoid breaking
apps using the values instead of the constants.

• Named DictCursor/RealDictCursor honour itersize (ticket #80).

• Fixed rollback on error on Zope (ticket #73).

14.4. What’s new in psycopg 2.5 105

https://github.com/psycopg/psycopg2/issues/105
https://github.com/psycopg/psycopg2/issues/110
https://github.com/psycopg/psycopg2/issues/113
https://github.com/psycopg/psycopg2/issues/114
https://github.com/psycopg/psycopg2/issues/123
https://github.com/psycopg/psycopg2/issues/125
https://github.com/psycopg/psycopg2/issues/142
https://github.com/psycopg/psycopg2/issues/131
https://github.com/psycopg/psycopg2/issues/133
https://github.com/psycopg/psycopg2/issues/135
https://github.com/psycopg/psycopg2/issues/140
https://github.com/psycopg/psycopg2/issues/141
https://github.com/psycopg/psycopg2/issues/84
https://github.com/psycopg/psycopg2/issues/88
https://github.com/psycopg/psycopg2/issues/90
https://github.com/psycopg/psycopg2/issues/94
https://github.com/psycopg/psycopg2/issues/95
https://github.com/psycopg/psycopg2/issues/100
https://github.com/psycopg/psycopg2/issues/103
https://github.com/psycopg/psycopg2/issues/80
https://github.com/psycopg/psycopg2/issues/73

Psycopg Documentation, Release 2.7.6

• Raise ‘DatabaseError’ instead of ‘Error’ with empty libpq errors, consistently with other disconnection-related
errors: regression introduced in release 2.4.1 (ticket #82).

14.4.4 What’s new in psycopg 2.4.3

• connect() supports all the keyword arguments supported by the database

• Added ‘new_array_type()’ function for easy creation of array typecasters.

• Added support for arrays of hstores and composite types (ticket #66).

• Fixed segfault in case of transaction started with connection lost (and possibly other events).

• Fixed adaptation of Decimal type in sub-interpreters, such as in certain mod_wsgi configurations (ticket #52).

• Rollback connections in transaction or in error before putting them back into a pool. Also discard broken
connections (ticket #62).

• Lazy import of the slow uuid module, thanks to Marko Kreen.

• Fixed NamedTupleCursor.executemany() (ticket #65).

• Fixed –static-libpq setup option (ticket #64).

• Fixed interaction between RealDictCursor and named cursors (ticket #67).

• Dropped limit on the columns length in COPY operations (ticket #68).

• Fixed reference leak with arguments referenced more than once in queries (ticket #81).

• Fixed typecasting of arrays containing consecutive backslashes.

• ‘errorcodes’ map updated to PostgreSQL 9.1.

14.4.5 What’s new in psycopg 2.4.2

• Added ‘set_session()’ method and ‘autocommit’ property to the connection. Added support for read-only ses-
sions and, for PostgreSQL 9.1, for the “repeatable read” isolation level and the “deferrable” transaction property.

• Psycopg doesn’t execute queries at connection time to find the default isolation level.

• Fixed bug with multithread code potentially causing loss of sync with the server communication or lock of the
client (ticket #55).

• Don’t fail import if mx.DateTime module can’t be found, even if its support was built (ticket #53).

• Fixed escape for negative numbers prefixed by minus operator (ticket #57).

• Fixed refcount issue during copy. Reported and fixed by Dave Malcolm (ticket #58, Red Hat Bug 711095).

• Trying to execute concurrent operations on the same connection through concurrent green thread results in an
error instead of a deadlock.

• Fixed detection of pg_config on Window. Report and fix, plus some long needed setup.py cleanup by Steve
Lacy: thanks!

14.4.6 What’s new in psycopg 2.4.1

• Use own parser for bytea output, not requiring anymore the libpq 9.0 to parse the hex format.

• Don’t fail connection if the client encoding is a non-normalized variant. Issue reported by Peter Eisentraut.

106 Chapter 14. Release notes

https://github.com/psycopg/psycopg2/issues/82
https://github.com/psycopg/psycopg2/issues/66
https://github.com/psycopg/psycopg2/issues/52
https://github.com/psycopg/psycopg2/issues/62
https://github.com/psycopg/psycopg2/issues/65
https://github.com/psycopg/psycopg2/issues/64
https://github.com/psycopg/psycopg2/issues/67
https://github.com/psycopg/psycopg2/issues/68
https://github.com/psycopg/psycopg2/issues/81
https://github.com/psycopg/psycopg2/issues/55
https://github.com/psycopg/psycopg2/issues/53
https://github.com/psycopg/psycopg2/issues/57
https://github.com/psycopg/psycopg2/issues/58

Psycopg Documentation, Release 2.7.6

• Correctly detect an empty query sent to the backend (ticket #46).

• Fixed a SystemError clobbering libpq errors raised without SQLSTATE. Bug vivisectioned by Eric Snow.

• Fixed interaction between NamedTuple and server-side cursors.

• Allow to specify –static-libpq on setup.py command line instead of just in ‘setup.cfg’. Patch provided by
Matthew Ryan (ticket #48).

14.5 What’s new in psycopg 2.4

New features and changes:

• Added support for Python 3.1 and 3.2. The conversion has also brought several improvements:

– Added ‘b’ and ‘t’ mode to large objects: write can deal with both bytes strings and unicode; read can return
either bytes strings or decoded unicode.

– COPY sends Unicode data to files implementing ‘io.TextIOBase’.

– Improved PostgreSQL-Python encodings mapping.

– Added a few missing encodings: EUC_CN, EUC_JIS_2004, ISO885910, ISO885916, LATIN10,
SHIFT_JIS_2004.

– Dropped repeated dictionary lookups with unicode query/parameters.

• Improvements to the named cursors:

– More efficient iteration on named cursors, fetching ‘itersize’ records at time from the backend.

– The named cursors name can be an invalid identifier.

• Improvements in data handling:

– Added ‘register_composite()’ function to cast PostgreSQL composite types into Python tu-
ples/namedtuples.

– Adapt types ‘bytearray’ (from Python 2.6), ‘memoryview’ (from Python 2.7) and other objects implement-
ing the “Revised Buffer Protocol” to ‘bytea’ data type.

– The ‘hstore’ adapter can work even when the data type is not installed in the ‘public’ namespace.

– Raise a clean exception instead of returning bad data when receiving bytea in ‘hex’ format and the client
libpq can’t parse them.

– Empty lists correctly roundtrip Python -> PostgreSQL -> Python.

• Other changes:

– ‘cursor.description’ is provided as named tuples if available.

– The build script refuses to guess values if ‘pg_config’ is not found.

– Connections and cursors are weakly referenceable.

Bug fixes:

• Fixed adaptation of None in composite types (ticket #26). Bug report by Karsten Hilbert.

• Fixed several reference leaks in less common code paths.

• Fixed segfault when a large object is closed and its connection no more available.

• Added missing icon to ZPsycopgDA package, not available in Zope 2.12.9 (ticket #30). Bug report and patch
by Pumukel.

14.5. What’s new in psycopg 2.4 107

https://github.com/psycopg/psycopg2/issues/46
https://github.com/psycopg/psycopg2/issues/48
https://github.com/psycopg/psycopg2/issues/26
https://github.com/psycopg/psycopg2/issues/30

Psycopg Documentation, Release 2.7.6

• Fixed conversion of negative infinity (ticket #40). Bug report and patch by Marti Raudsepp.

14.5.1 What’s new in psycopg 2.3.2

• Fixed segfault with middleware not passing DateStyle to the client (ticket #24). Bug report and patch by Marti
Raudsepp.

14.5.2 What’s new in psycopg 2.3.1

• Fixed build problem on CentOS 5.5 x86_64 (ticket #23).

14.6 What’s new in psycopg 2.3

psycopg 2.3 aims to expose some new features introduced in PostgreSQL 9.0.

Main new features:

• dict to hstore adapter and hstore to dict typecaster, using both 9.0 and pre-9.0 syntax.

• Two-phase commit protocol support as per DBAPI specification.

• Support for payload in notifications received from the backend.

• namedtuple-returning cursor.

• Query execution cancel.

Other features and changes:

• Dropped support for protocol 2: Psycopg 2.3 can only connect to PostgreSQL servers with version at least 7.4.

• Don’t issue a query at every connection to detect the client encoding and to set the datestyle to ISO if it is already
compatible with what expected.

• mogrify() now supports unicode queries.

• Subclasses of a type that can be adapted are adapted as the superclass.

• errorcodes knows a couple of new codes introduced in PostgreSQL 9.0.

• Dropped deprecated Psycopg “own quoting”.

• Never issue a ROLLBACK on close/GC. This behaviour was introduced as a bug in release 2.2, but trying to
send a command while being destroyed has been considered not safe.

Bug fixes:

• Fixed use of PQfreemem instead of free in binary typecaster.

• Fixed access to freed memory in conn_get_isolation_level().

• Fixed crash during Decimal adaptation with a few 2.5.x Python versions (ticket #7).

• Fixed notices order (ticket #9).

108 Chapter 14. Release notes

https://github.com/psycopg/psycopg2/issues/40
https://github.com/psycopg/psycopg2/issues/254
https://github.com/psycopg/psycopg2/issues/253
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/psycopg/psycopg2/issues/237
https://github.com/psycopg/psycopg2/issues/239

Psycopg Documentation, Release 2.7.6

14.6.1 What’s new in psycopg 2.2.2

Bux fixes:

• the call to logging.basicConfig() in pool.py has been dropped: it was messing with some projects using logging
(and a library should not initialize the logging system anyway.)

• psycopg now correctly handles time zones with seconds in the UTC offset. The old register_tstz_w_secs()
function is deprecated and will raise a warning if called.

• Exceptions raised by the column iterator are propagated.

• Exceptions raised by executemany() iterators are propagated.

14.6.2 What’s new in psycopg 2.2.1

Bux fixes:

• psycopg now builds again on MS Windows.

14.7 What’s new in psycopg 2.2

This is the first release of the new 2.2 series, supporting not just one but two different ways of executing asynchronous
queries, thanks to Jan and Daniele (with a little help from me and others, but they did 99% of the work so they deserve
their names here in the news.)

psycopg now supports both classic select() loops and “green” coroutine libraries. It is all in the documentation, so just
point your browser to doc/html/advanced.html.

Other new features:

• truncate() method for lobjects.

• COPY functions are now a little bit faster.

• All builtin PostgreSQL to Python typecasters are now available from the psycopg2.extensions module.

• Notifications from the backend are now available right after the execute() call (before client code needed to call
isbusy() to ensure NOTIFY reception.)

• Better timezone support.

• Lots of documentation updates.

Bug fixes:

• Fixed some gc/refcounting problems.

• Fixed reference leak in NOTIFY reception.

• Fixed problem with PostgreSQL not casting string literals to the correct types in some situations: psycopg now
add an explicit cast to dates, times and bytea representations.

• Fixed TimestampFromTicks() and TimeFromTicks() for seconds >= 59.5.

• Fixed spurious exception raised when calling C typecasters from Python ones.

14.7. What’s new in psycopg 2.2 109

Psycopg Documentation, Release 2.7.6

14.7.1 What’s new in psycopg 2.0.14

New features:

• Support for adapting tuples to PostgreSQL arrays is now enabled by default and does not require importing
psycopg2.extensions anymore.

• “can’t adapt” error message now includes full type information.

• Thank to Daniele Varrazzo (piro) psycopg2’s source package now includes full documentation in HTML and
plain text format.

Bug fixes:

• No loss of precision when using floats anymore.

• decimal.Decimal “nan” and “infinity” correctly converted to PostgreSQL numeric NaN values (note that Post-
greSQL numeric type does not support infinity but just NaNs.)

• psycopg2.extensions now includes Binary.

It seems we’re good citizens of the free software ecosystem and that big big big companies and people ranting on the
pgsql-hackers mailing list we’ll now not dislike us. g (See LICENSE file for the details.)

14.7.2 What’s new in psycopg 2.0.13

New features:

• Support for UUID arrays.

• It is now possible to build psycopg linking to a static libpq library.

Bug fixes:

• Fixed a deadlock related to using the same connection with multiple cursors from different threads.

• Builds again with MSVC.

14.7.3 What’s new in psycopg 2.0.12

New features:

• The connection object now has a reset() method that can be used to reset the connection to its default state.

Bug fixes:

• copy_to() and copy_from() now accept a much larger number of columns.

• Fixed PostgreSQL version detection.

• Fixed ZPsycopgDA version check.

• Fixed regression in ZPsycopgDA that made it behave wrongly when receiving serialization errors: now the
query is re-issued as it should be by propagating the correct exception to Zope.

• Writing “large” large objects should now work.

110 Chapter 14. Release notes

Psycopg Documentation, Release 2.7.6

14.7.4 What’s new in psycopg 2.0.11

New features:

• DictRow and RealDictRow now use less memory. If you inherit on them remember to set __slots__ for your
new attributes or be prepare to go back to old memory usage.

Bug fixes:

• Fixed exception in setup.py.

• More robust detection of PostgreSQL development versions.

• Fixed exception in RealDictCursor, introduced in 2.0.10.

14.7.5 What’s new in psycopg 2.0.10

New features:

• A specialized type-caster that can parse time zones with seconds is now available. Note that after enabling it
(see extras.py) “wrong” time zones will be parsed without raising an exception but the result will be rounded.

• DictCursor can be used as a named cursor.

• DictRow now implements more dict methods.

• The connection object now expose PostgreSQL server version as the .server_version attribute and the protocol
version used as .protocol_version.

• The connection object has a .get_parameter_status() methods that can be used to obtain useful information from
the server.

Bug fixes:

• None is now correctly always adapted to NULL.

• Two double memory free errors provoked by multithreading and garbage collection are now fixed.

• Fixed usage of internal Python code in the notice processor; this should fix segfaults when receiving a lot of
notices in multithreaded programs.

• Should build again on MSVC and Solaris.

• Should build with development versions of PostgreSQL (ones with -devel version string.)

• Fixed some tests that failed even when psycopg was right.

14.7.6 What’s new in psycopg 2.0.9

New features:

• “import psycopg2.extras” to get some support for handling times and timestamps with seconds in the time zone
offset.

• DictCursors can now be used as named cursors.

Bug fixes:

• register_type() now accept an explicit None as its second parameter.

• psycopg2 should build again on MSVC and Solaris.

14.7. What’s new in psycopg 2.2 111

Psycopg Documentation, Release 2.7.6

14.7.7 What’s new in psycopg 2.0.9

New features:

• COPY TO/COPY FROM queries now can be of any size and psycopg will correctly quote separators.

• float values Inf and NaN are now correctly handled and can round-trip to the database.

• executemany() now return the numer of total INSERTed or UPDATEd rows. Note that, as it has always been, ex-
ecutemany() should not be used to execute multiple SELECT statements and while it will execute the statements
without any problem, it will return the wrong value.

• copy_from() and copy_to() can now use quoted separators.

• “import psycopg2.extras” to get UUID support.

Bug fixes:

• register_type() now works on connection and cursor subclasses.

• fixed a memory leak when using lobjects.

14.7.8 What’s new in psycopg 2.0.8

New features:

• The connection object now has a get_backend_pid() method that returns the current PostgreSQL connection
backend process PID.

• The PostgreSQL large object API has been exposed through the Cursor.lobject() method.

Bug fixes:

• Some fixes to ZPsycopgDA have been merged from the Debian package.

• A memory leak was fixed in Cursor.executemany().

• A double free was fixed in pq_complete_error(), that caused crashes under some error conditions.

14.7.9 What’s new in psycopg 2.0.7

Improved error handling:

• All instances of psycopg2.Error subclasses now have pgerror, pgcode and cursor attributes. They will be set to
None if no value is available.

• Exception classes are now chosen based on the SQLSTATE value from the result. (#184)

• The commit() and rollback() methods now set the pgerror and pgcode attributes on exceptions. (#152)

• errors from commit() and rollback() are no longer considered fatal. (#194)

• If a disconnect is detected during execute(), an exception will be raised at that point rather than resulting in
“ProgrammingError: no results to fetch” later on. (#186)

Better PostgreSQL compatibility:

• If the server uses standard_conforming_strings, perform appropriate quoting.

• BC dates are now handled if psycopg is compiled with mxDateTime support. If using datetime, an appropriate
ValueError is raised. (#203)

Other bug fixes:

112 Chapter 14. Release notes

Psycopg Documentation, Release 2.7.6

• If multiple sub-interpreters are in use, do not share the Decimal type between them. (#192)

• Buffer objects obtained from psycopg are now accepted by psycopg too, without segfaulting. (#209)

• A few small changes were made to improve DB-API compatibility. All the dbapi20 tests now pass.

Miscellaneous:

• The PSYCOPG_DISPLAY_SIZE option is now off by default. This means that display size will always be set
to “None” in cursor.description. Calculating the display size was expensive, and infrequently used so this should
improve performance.

• New QueryCanceledError and TransactionRollbackError exceptions have been added to the psy-
copg2.extensions module. They can be used to detect statement timeouts and deadlocks respectively.

• Cursor objects now have a “closed” attribute. (#164)

• If psycopg has been built with debug support, it is now necessary to set the PSYCOPG_DEBUG environment
variable to turn on debug spew.

14.7.10 What’s new in psycopg 2.0.6

Better support for PostgreSQL, Python and win32:

• full support for PostgreSQL 8.2, including NULLs in arrays

• support for almost all existing PostgreSQL encodings

• full list of PostgreSQL error codes available by importing the psycopg2.errorcodes module

• full support for Python 2.5 and 64 bit architectures

• better build support on win32 platform

Support for per-connection type-casters (used by ZPsycopgDA too, this fixes a long standing bug that made different
connections use a random set of date/time type-casters instead of the configured one.)

Better management of times and dates both from Python and in Zope.

copy_to and copy_from now take an extra “columns” parameter.

Python tuples are now adapted to SQL sequences that can be used with the “IN” operator by default if the psy-
copg2.extensions module is imported (i.e., the SQL_IN adapter was moved from extras to extensions.)

Fixed some small buglets and build glitches:

• removed double mutex destroy

• removed all non-constant initializers

• fixed PyObject_HEAD declarations to avoid memory corruption on 64 bit architectures

• fixed several Python API calls to work on 64 bit architectures

• applied compatibility macros from PEP 353

• now using more than one argument format raise an error instead of a segfault

14.7.11 What’s new in psycopg 2.0.5.1

• Now it really, really builds on MSVC and older gcc versions.

14.7. What’s new in psycopg 2.2 113

Psycopg Documentation, Release 2.7.6

14.7.12 What’s new in psycopg 2.0.5

• Fixed various buglets such as:

– segfault when passing an empty string to Binary()

– segfault on null queries

– segfault and bad keyword naming in .executemany()

– OperationalError in connection objects was always None

• Various changes to ZPsycopgDA to make it more zope2.9-ish.

• connect() now accept both integers and strings as port parameter

14.7.13 What’s new in psycopg 2.0.4

• Fixed float conversion bug introduced in 2.0.3.

14.7.14 What’s new in psycopg 2.0.3

• Fixed various buglets and a memory leak (see ChangeLog for details)

14.7.15 What’s new in psycopg 2.0.2

• Fixed a bug in array typecasting that sometimes made psycopg forget about the last element in the array.

• Fixed some minor buglets in string memory allocations.

• Builds again with compilers different from gcc (#warning about PostgreSQL version is issued only if __GCC__
is defined.)

14.7.16 What’s new in psycopg 2.0.1

• ZPsycopgDA now actually loads.

14.8 What’s new in psycopg 2.0

• Fixed handle leak on win32.

• If available the new “safe” encoding functions of libpq are used.

• django and tinyerp people, please switch to psycopg 2 _without_ using a psycopg 1 compatibility layer (this
release was anticipated so that you all stop grumbling about psycopg 2 is still in beta.. :)

14.8.1 What’s new in psycopg 2.0 beta 7

• Ironed out last problems with times and date (should be quite solid now.)

• Fixed problems with some arrays.

• Slightly better ZPsycopgDA (no more double connection objects in the menu and other minor fixes.)

114 Chapter 14. Release notes

Psycopg Documentation, Release 2.7.6

• ProgrammingError exceptions now have three extra attributes: .cursor (it is possible to access the query that
caused the exception using error.cursor.query), .pgerror and .pgcode (PostgreSQL original error text and code.)

• The build system uses pg_config when available.

• Documentation in the doc/ directory! (With many kudos to piro.)

14.8.2 What’s new in psycopg 2.0 beta 6

• Support for named cursors (see examples/fetch.py).

• Safer parsing of time intervals.

• Better parsing of times and dates, no more locale problems.

• Should now play well with py2exe and similar tools.

• The “decimal” module is now used if available under Python 2.3.

14.8.3 What’s new in psycopg 2.0 beta 5

• Fixed all known bugs.

• The initial isolation level is now read from the server and .set_isolation_level() now takes values defined in
psycopg2.extensions.

• .callproc() implemented as a SELECT of the given procedure.

• Better docstrings for a few functions/methods.

• Some time-related functions like psycopg2.TimeFromTicks() now take the local timezone into account. Also a
tzinfo object (as per datetime module specifications) can be passed to the psycopg2.Time and psycopg2.Datetime
constructors.

• All classes have been renamed to exist in the psycopg2._psycopg module, to fix problems with automatic docu-
mentation generators like epydoc.

• NOTIFY is correctly trapped (see examples/notify.py for example code.)

14.8.4 What’s new in psycopg 2.0 beta 4

• psycopg module is now named psycopg2.

• No more segfaults when a UNICODE query can’t be converted to the backend encoding.

• No more segfaults on empty queries.

• psycopg2.connect() now takes an integer for the port keyword parameter.

• “python setup.py bdist_rpm” now works.

• Fixed lots of small bugs, see ChangeLog for details.

14.8.5 What’s new in psycopg 2.0 beta 3

• ZPsycopgDA now works (except table browsing.)

• psycopg build again on Python 2.2.

14.8. What’s new in psycopg 2.0 115

Psycopg Documentation, Release 2.7.6

14.8.6 What’s new in psycopg 2.0 beta 2

• Fixed ZPsycopgDA version check (ZPsycopgDA can now be imported in Zope.)

• psycopg.extras.DictRow works even after a new query on the generating cursor.

• Better setup.py for win32 (should build with MSCV or mingw.)

• Generic fixed and memory leaks plugs.

14.8.7 What’s new in psycopg 2.0 beta 1

• Officially in beta (i.e., no new features will be added.)

• Array support: list objects can be passed as bound variables and are correctly returned for array columns.

• Added the psycopg.psycopg1 compatibility module (if you want instant psycopg 1 compatibility just “from
psycopg import psycopg1 as psycopg”.)

• Complete support for BYTEA columns and buffer objects.

• Added error codes to error messages.

• The AsIs adapter is now exported by default (also Decimal objects are adapted using the AsIs adapter (when
str() is called on them they already format themselves using the right precision and scale.)

• The connect() function now takes “connection_factory” instead of “factory” as keyword argument.

• New setup.py code to build on win32 using mingw and better error messages on missing datetime headers,

• Internal changes that allow much better user-defined type casters.

• A lot of bugfixes (binary, datetime, 64 bit arches, GIL, .executemany())

14.8.8 What’s new in psycopg 1.99.13

• Added missing .executemany() method.

• Optimized type cast from PostgreSQL to Python (psycopg should be even faster than before.)

14.8.9 What’s new in psycopg 1.99.12

• .rowcount should be ok and in sync with psycopg 1.

• Implemented the new COPY FROM/COPY TO code when connection to the backend using libpq protocol 3
(this also removes all asprintf calls: build on win32 works again.) A protocol 3-enabled psycopg can connect to
an old protocol 2 database and will detect it and use the right code.

• getquoted() called for real by the mogrification code.

14.8.10 What’s new in psycopg 1.99.11

• ‘cursor’ argument in .cursor() connection method renamed to ‘cursor_factory’.

• changed ‘tuple_factory’ cursor attribute name to ‘row_factory’.

• the .cursor attribute is gone and connections and cursors are properly gc-managed.

• fixes to the async core.

116 Chapter 14. Release notes

Psycopg Documentation, Release 2.7.6

14.8.11 What’s new in psycopg 1.99.10

• The adapt() function now fully supports the adaptation protocol described in PEP 246. Note that the adapters
registry now is indexed by (type, protocol) and not by type alone. Change your adapters accordingly.

• More configuration options moved from setup.py to setup.cfg.

• Fixed two memory leaks: one in cursor deallocation and one in row fetching (.fetchXXX() methods.)

14.8.12 What’s new in psycopg 1.99.9

• Added simple pooling code (psycopg.pool module); see the reworked examples/threads.py for example code.

• Added DECIMAL typecaster to convert postgresql DECIMAL and NUMERIC types (i.e, all types with an OID
of NUMERICOID.) Note that the DECIMAL typecaster does not set scale and precision on the created objects
but uses Python defaults.

• ZPsycopgDA back in and working using the new pooling code.

• Isn’t that enough? :)

14.8.13 What’s new in psycopg 1.99.8

• added support for UNICODE queries.

• added UNICODE typecaster; to activate it just do:

psycopg.extensions.register_type(psycopg.extensions.UNICODE)

Note that the UNICODE typecaster override the STRING one, so it is not activated by default.

• cursors now really support the iterator protocol.

• solved the rounding errors in time conversions.

• now cursors support .fileno() and .isready() methods, to be used in select() calls.

• .copy_from() and .copy_in() methods are back in (still using the old protocol, will be updated to use new one in
next release.)

• fixed memory corruption bug reported on win32 platform.

14.8.14 What’s new in psycopg 1.99.7

• added support for tuple factories in cursor objects (removed factory argument in favor of a .tuple_factory at-
tribute on the cursor object); see the new module psycopg.extras for a cursor (DictCursor) that return rows as
objects that support indexing both by position and column name.

• added support for tzinfo objects in datetime.timestamp objects: the PostgreSQL type “timestamp with time
zone” is converted to datetime.timestamp with a FixedOffsetTimezone initialized as necessary.

14.8.15 What’s new in psycopg 1.99.6

• sslmode parameter from 1.1.x

• various datetime conversion improvements.

• now psycopg should compile without mx or without native datetime (not both, obviously.)

14.8. What’s new in psycopg 2.0 117

Psycopg Documentation, Release 2.7.6

• included various win32/MSVC fixes (pthread.h changes, winsock2 library, include path in setup.py, etc.)

• ported interval fixes from 1.1.14/1.1.15.

• the last query executed by a cursor is now available in the .query attribute.

• conversion of unicode strings to backend encoding now uses a table (that still need to be filled.)

• cursors now have a .mogrify() method that return the query string instead of executing it.

• connection objects now have a .dsn read-only attribute that holds the connection string.

• moved psycopg C module to _psycopg and made psycopg a python module: this allows for a neat separation of
DBAPI-2.0 functionality and psycopg extensions; the psycopg namespace will be also used to provide python-
only extensions (like the pooling code, some ZPsycopgDA support functions and the like.)

14.8.16 What’s new in psycopg 1.99.3

• added support for python 2.3 datetime types (both ways) and made datetime the default set of typecasters when
available.

• added example: dt.py.

14.8.17 What’s new in psycopg 1.99.3

• initial working support for unicode bound variables: UTF-8 and latin-1 backend encodings are natively sup-
ported (and the encoding.py example even works!)

• added .set_client_encoding() method on the connection object.

• added examples: encoding.py, binary.py, lastrowid.py.

14.8.18 What’s new in psycopg 1.99.2

• better typecasting:

– DateTimeDelta used for postgresql TIME (merge from 1.1)

– BYTEA now is converted to a real buffer object, not to a string

• buffer objects are now adapted into Binary objects automatically.

• ported scroll method from 1.1 (DBAPI-2.0 extension for cursors)

• initial support for some DBAPI-2.0 extensions:

– .rownumber attribute for cursors

– .connection attribute for cursors

– .next() and .__iter__() methods to have cursors support the iterator protocol

– all exception objects are exported to the connection object

14.8.19 What’s new in psycopg 1.99.1

• implemented microprotocols to adapt arbitrary types to the interface used by psycopg to bind variables in exe-
cute;

118 Chapter 14. Release notes

Psycopg Documentation, Release 2.7.6

• moved qstring, pboolean and mxdatetime to the new adapter layout (binary is still missing; python 2.3 datetime
needs to be written).

14.8.20 What’s new in psycopg 1.99.0

• reorganized the whole source tree;

• async core is in place;

• splitted QuotedString objects from mx stuff;

• dropped autotools and moved to pythonic setup.py (needs work.)

14.8. What’s new in psycopg 2.0 119

Psycopg Documentation, Release 2.7.6

120 Chapter 14. Release notes

CHAPTER

FIFTEEN

LICENSE

15.1 psycopg2 and the LGPL

psycopg2 is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

psycopg2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

In addition, as a special exception, the copyright holders give permission to link this program with the OpenSSL library
(or with modified versions of OpenSSL that use the same license as OpenSSL), and distribute linked combinations
including the two.

You must obey the GNU Lesser General Public License in all respects for all of the code used other than OpenSSL.
If you modify file(s) with this exception, you may extend this exception to your version of the file(s), but you are not
obligated to do so. If you do not wish to do so, delete this exception statement from your version. If you delete this
exception statement from all source files in the program, then also delete it here.

You should have received a copy of the GNU Lesser General Public License along with psycopg2 (see the doc/
directory.) If not, see <http://www.gnu.org/licenses/>.

15.2 Alternative licenses

The following BSD-like license applies (at your option) to the files following the pattern psycopg/adapter*.
{h,c} and psycopg/microprotocol*.{h,c}:

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the origi-
nal software. If you use this software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

Indices and tables

• genindex

121

http://www.gnu.org/licenses/

Psycopg Documentation, Release 2.7.6

• search

122 Chapter 15. License

PYTHON MODULE INDEX

p
psycopg2, 19
psycopg2.errorcodes, 93
psycopg2.extensions, 53
psycopg2.extras, 65
psycopg2.pool, 91
psycopg2.sql, 85
psycopg2.tz, 89

123

Psycopg Documentation, Release 2.7.6

124 Python Module Index

INDEX

Symbols
__libpq_version__ (in module psycopg2), 20
_wrapped (psycopg2.extensions.ISQLQuote attribute),

56

A
AbstractConnectionPool (class in psy-

copg2.pool), 91
adapt() (in module psycopg2.extensions), 56
Adaptation, 10

Boolean, 10
Creating new adapters, 45
Date/Time objects, 12
dict, 75
JSON, 73
Lists, 13
namedtuple, 75
None, 10
numbers, 10
Objects, 10
Strings, 10
Tuple, 14
tuple, 75

adapter (psycopg2.extras.RangeCaster attribute), 79
adapters (in module psycopg2.extensions), 58
apilevel (in module psycopg2), 20
ARCHFLAGS, 6
Array

Adaptation, 13
array_oid (psycopg2.extras.CompositeCaster at-

tribute), 77
array_typecaster (psycopg2.extras.RangeCaster

attribute), 79
arraysize (cursor attribute), 39
as_string() (psycopg2.sql.Composable method), 86
AsIs (class in psycopg2.extensions), 57
async (connection attribute), 33
async_ (connection attribute), 33
Asynchronous

Connection, 48
Notifications, 47

attnames (psycopg2.extras.CompositeCaster at-
tribute), 77

atttypes (psycopg2.extras.CompositeCaster at-
tribute), 77

Autocommit, 14
Transaction, 28

autocommit (connection attribute), 29

B
Backend

PID, 31
Begin, 14
Binary (class in psycopg2.extensions), 57
BINARY (in module psycopg2), 23
Binary string, 11
Binary() (in module psycopg2), 23
BINARYARRAY (in module psycopg2.extensions), 63
Boolean

Adaptation, 10
Boolean (class in psycopg2.extensions), 57
BOOLEAN (in module psycopg2.extensions), 63
BOOLEANARRAY (in module psycopg2.extensions), 63
bqual (psycopg2.extensions.Xid attribute), 55
Buffer

Adaptation, 11
bytea

Adaptation, 11
bytearray

Adaptation, 11
bytes

Adaptation, 11

C
callproc() (cursor method), 37
cancel() (connection method), 27
cast() (cursor method), 40
channel (psycopg2.extensions.Notify attribute), 54
CIDR

Data types, 80
Client

Encoding, 30
Logging, 30

125

Psycopg Documentation, Release 2.7.6

close() (connection method), 26
close() (cursor method), 35
close() (psycopg2.extensions.lobject method), 54
closeall() (psycopg2.pool.AbstractConnectionPool

method), 91
closed (connection attribute), 27
closed (cursor attribute), 36
closed (psycopg2.extensions.lobject attribute), 54
column_name (psycopg2.extensions.Diagnostics at-

tribute), 56
Commit, 14

Prepared, 27
Transaction, 25

commit() (connection method), 25
Composable (class in psycopg2.sql), 85
Composed (class in psycopg2.sql), 88
Composite types

Data types, 75
CompositeCaster (class in psycopg2.extras), 77
connect() (in module psycopg2), 19
Connection

Asynchronous, 48
Parameters, 19, 31
Pooling, 91
replication, 67
Status, 32
Subclassing, 45

connection (built-in class), 25
connection (class in psycopg2.extensions), 53
connection (cursor attribute), 36
Connection status

Constants, 62
Connection string, 19
Constants

Connection status, 62
Isolation level, 61
Poll status, 63
Transaction status, 62

constraint_name (psycopg2.extensions.Diagnostics
attribute), 56

consume_stream() (psy-
copg2.extras.ReplicationCursor method),
70

context (psycopg2.extensions.Diagnostics attribute),
56

COPY
SQL command, 16

copy_expert() (cursor method), 42
copy_from() (cursor method), 41
copy_to() (cursor method), 41
Coroutine, 49
Coroutine;

Example, 83

create_replication_slot() (psy-
copg2.extras.ReplicationCursor method),
68

Cursor
Dictionary, 65
Logging, 66
Named, 15
namedtuple, 66
Replication, 72
replication, 68
Server side, 15
Subclassing, 45

cursor (built-in class), 35
cursor (class in psycopg2.extensions), 53
cursor (psycopg2.Error attribute), 21
cursor (psycopg2.extras.ReplicationMessage at-

tribute), 68
cursor() (connection method), 25
cursor_factory (connection attribute), 30

D
Data types

Adaptation, 10
Additional, 72
CIDR, 80
Composite types, 75
Creating new adapters, 45
hstore, 75
INET, 80
JSON, 73
MACADDR, 80
range, 77
UUID, 79

data_size (psycopg2.extras.ReplicationMessage at-
tribute), 68

data_start (psycopg2.extras.ReplicationMessage at-
tribute), 68

database (psycopg2.extensions.Xid attribute), 55
DatabaseError, 21
DataError, 21
datatype_name (psycopg2.extensions.Diagnostics at-

tribute), 56
DATE (in module psycopg2.extensions), 63
Date objects

Adaptation, 12
Infinite, 13

Date() (in module psycopg2), 23
DATEARRAY (in module psycopg2.extensions), 63
DateFromMx (class in psycopg2.extensions), 57
DateFromPy (class in psycopg2.extensions), 57
DateFromTicks() (in module psycopg2), 23
DateRange (class in psycopg2.extras), 78
DATETIME (in module psycopg2), 23
DATETIMEARRAY (in module psycopg2.extensions), 63

126 Index

Psycopg Documentation, Release 2.7.6

DateTimeRange (class in psycopg2.extras), 78
DateTimeTZRange (class in psycopg2.extras), 78
debug, 5
Decimal

Adaptation, 10
DECIMAL (in module psycopg2.extensions), 63
DECIMALARRAY (in module psycopg2.extensions), 63
DECLARE

SQL command, 15
deferrable (connection attribute), 29
description (cursor attribute), 35
diag (psycopg2.Error attribute), 21
Diagnostics (class in psycopg2.extensions), 55
dict

Adaptation, 75
DictConnection (class in psycopg2.extras), 65
DictCursor (class in psycopg2.extras), 65
Dictionary

Cursor, 65
DictRow (class in psycopg2.extras), 66
drop_replication_slot() (psy-

copg2.extras.ReplicationCursor method),
69

dsn (connection attribute), 28
DSN (Database Source Name), 19
dumps() (psycopg2.extras.Json method), 74

E
Encoding

Client, 30
Mapping, 59

encoding (connection attribute), 30
encodings (in module psycopg2.extensions), 59
environment variable

ARCHFLAGS, 6
LD_LIBRARY_PATH, 4
PATH, 3, 5
PSYCOPG2_TESTDB, 6
PSYCOPG2_TESTDB_HOST, 6
PSYCOPG2_TESTDB_PORT, 6
PSYCOPG2_TESTDB_USER, 6
PSYCOPG_DEBUG, 5
PSYCOPG_DISPLAY_SIZE, 35
PYTHON_EGG_CACHE, 98
standard_conforming_string, 57

Error, 20
Codes, 93

Eventlet, 49
Example

Coroutine;, 83
Cursor subclass, 45
Types adaptation, 46
Usage, 7

Exceptions

Additional, 59
DB API, 20
In the connection class, 26

execute() (cursor method), 37
execute_batch() (in module psycopg2.extras), 81
execute_values() (in module psycopg2.extras), 81
executemany() (cursor method), 37
export() (psycopg2.extensions.lobject method), 54

F
FETCH

SQL command, 15
fetchall() (cursor method), 38
fetchmany() (cursor method), 38
fetchone() (cursor method), 38
fileno() (connection method), 33
fileno() (psycopg2.extras.ReplicationCursor

method), 72
filter() (psycopg2.extras.LoggingConnection

method), 67
filter() (psycopg2.extras.MinTimeLoggingConnection

method), 67
FixedOffsetTimezone (class in psycopg2.tz), 89
Float

Adaptation, 10
Float (class in psycopg2.extensions), 57
FLOAT (in module psycopg2.extensions), 63
FLOATARRAY (in module psycopg2.extensions), 63
format() (psycopg2.sql.SQL method), 86
format_id (psycopg2.extensions.Xid attribute), 55
from_string() (psycopg2.extensions.Xid static

method), 55

G
get_backend_pid() (connection method), 31
get_dsn_parameters() (connection method), 31
get_parameter_status() (connection method),

31
get_transaction_status() (connection

method), 31
get_wait_callback() (in module psy-

copg2.extensions), 59
getconn() (psycopg2.pool.AbstractConnectionPool

method), 91
getquoted() (psycopg2.extensions.AsIs method), 57
getquoted() (psycopg2.extensions.Binary method),

57
getquoted() (psycopg2.extensions.ISQLQuote

method), 56
getquoted() (psycopg2.extensions.QuotedString

method), 57
gevent, 49
Greenlet, 49
gtrid (psycopg2.extensions.Xid attribute), 55

Index 127

Psycopg Documentation, Release 2.7.6

H
Host

Connection, 19
hstore

Data types, 75

I
Identifier (class in psycopg2.sql), 87
IN operator, 14
INET

Data types, 80
Inet (class in psycopg2.extras), 81
Infinite

Date objects, 13
initialize() (psycopg2.extras.LoggingConnection

method), 67
initialize() (psy-

copg2.extras.MinTimeLoggingConnection
method), 67

Install
disable wheel, 5
from PyPI, 4
wheel, 4

Integer
Adaptation, 10

INTEGER (in module psycopg2.extensions), 63
INTEGERARRAY (in module psycopg2.extensions), 63
IntegrityError, 21
InterfaceError, 21
internal_position (psy-

copg2.extensions.Diagnostics attribute),
56

internal_query (psycopg2.extensions.Diagnostics
attribute), 56

InternalError, 21
INTERVAL (in module psycopg2.extensions), 63
Interval objects

Adaptation, 12
INTERVALARRAY (in module psycopg2.extensions), 63
IntervalFromMx (class in psycopg2.extensions), 57
IntervalFromPy (class in psycopg2.extensions), 57
io_timestamp (psycopg2.extras.ReplicationCursor

attribute), 72
isempty (psycopg2.extras.Range attribute), 78
isexecuting() (connection method), 33
Isolation level

Constants, 61
Transaction, 28

isolation_level (connection attribute), 29
ISOLATION_LEVEL_AUTOCOMMIT (in module psy-

copg2.extensions), 61
ISOLATION_LEVEL_DEFAULT (in module psy-

copg2.extensions), 62

ISOLATION_LEVEL_READ_COMMITTED (in module
psycopg2.extensions), 61

ISOLATION_LEVEL_READ_UNCOMMITTED (in mod-
ule psycopg2.extensions), 61

ISOLATION_LEVEL_REPEATABLE_READ (in mod-
ule psycopg2.extensions), 61

ISOLATION_LEVEL_SERIALIZABLE (in module
psycopg2.extensions), 61

ISQLQuote (class in psycopg2.extensions), 56
itersize (cursor attribute), 39

J
join() (psycopg2.sql.Composed method), 88
join() (psycopg2.sql.SQL method), 87
JSON

Adaptation, 73
Data types, 73

Json (class in psycopg2.extras), 74

L
Large objects, 17
lastrowid (cursor attribute), 40
LD_LIBRARY_PATH, 4
libpq_version() (in module psycopg2.extensions),

60
License, 119
LISTEN

SQL command, 47
Lists

Adaptation, 13
Literal (class in psycopg2.sql), 87
lobject (class in psycopg2.extensions), 53
lobject() (connection method), 32
LocalTimezone (class in psycopg2.tz), 89
Logging

Client, 30
Cursor, 66

LoggingConnection (class in psycopg2.extras), 67
LoggingCursor (class in psycopg2.extras), 67
LogicalReplicationConnection (class in psy-

copg2.extras), 67
LONGINTEGER (in module psycopg2.extensions), 63
LONGINTEGERARRAY (in module psycopg2.extensions),

63
lookup() (in module psycopg2.errorcodes), 93
lower (psycopg2.extras.Range attribute), 78
lower_inc (psycopg2.extras.Range attribute), 78
lower_inf (psycopg2.extras.Range attribute), 78

M
MACADDR

Data types, 80
make() (psycopg2.extras.CompositeCaster method), 77
make_dsn() (in module psycopg2.extensions), 60

128 Index

Psycopg Documentation, Release 2.7.6

memoryview
Adaptation, 11

Message
replication, 68

message_detail (psycopg2.extensions.Diagnostics
attribute), 56

message_hint (psycopg2.extensions.Diagnostics at-
tribute), 56

message_primary (psycopg2.extensions.Diagnostics
attribute), 56

MinTimeLoggingConnection (class in psy-
copg2.extras), 67

MinTimeLoggingCursor (class in psycopg2.extras),
67

mode (psycopg2.extensions.lobject attribute), 53
mogrify() (cursor method), 37
MOVE

SQL command, 15
Multiprocess, 16
Multithread, 16

Connection pooling, 91
mx.DateTime

Adaptation, 12
MXDATE (in module psycopg2.extensions), 64
MXDATEARRAY (in module psycopg2.extensions), 64
MXDATETIME (in module psycopg2.extensions), 64
MXDATETIMEARRAY (in module psycopg2.extensions),

64
MXDATETIMETZ (in module psycopg2.extensions), 64
MXDATETIMETZARRAY (in module psy-

copg2.extensions), 64
MXINTERVAL (in module psycopg2.extensions), 64
MXINTERVALARRAY (in module psycopg2.extensions),

64
MXTIME (in module psycopg2.extensions), 64
MXTIMEARRAY (in module psycopg2.extensions), 64

N
name (cursor attribute), 36
name (psycopg2.extras.CompositeCaster attribute), 77
name (psycopg2.sql.Placeholder attribute), 88
Named

Cursor, 15
namedtuple

Adaptation, 75
Cursor, 66

NamedTupleConnection (class in psycopg2.extras),
66

NamedTupleCursor (class in psycopg2.extras), 66
new_array_type() (in module psycopg2.extensions),

58
new_type() (in module psycopg2.extensions), 58
News, 98
nextset() (cursor method), 40

None
Adaptation, 10

notices (connection attribute), 30
Notifications

Asynchronous, 47
notifies (connection attribute), 30
NOTIFY

SQL command, 47
Notify (class in psycopg2.extensions), 54
NotSupportedError, 22
NULL

Adaptation, 10
NUMBER (in module psycopg2), 23
NumericRange (class in psycopg2.extras), 78

O
Objects

Adaptation, 10
Creating new adapters, 45

oid, 40
oid (psycopg2.extensions.lobject attribute), 53
oid (psycopg2.extras.CompositeCaster attribute), 77
OperationalError, 21
owner (psycopg2.extensions.Xid attribute), 55

P
Parameters

Connection, 19, 31
Query, 8
Server, 31

paramstyle (in module psycopg2), 20
parse_dsn() (in module psycopg2.extensions), 60
Password

Connection, 19
PATH, 3, 5
payload (psycopg2.extensions.Notify attribute), 54
payload (psycopg2.extras.ReplicationMessage at-

tribute), 68
PersistentConnectionPool (class in psy-

copg2.pool), 91
PgBouncer

unclean server, 26
pgcode (psycopg2.Error attribute), 20
pgerror (psycopg2.Error attribute), 20
PhysicalReplicationConnection (class in psy-

copg2.extras), 68
PID

Backend, 31
pid (psycopg2.extensions.Notify attribute), 55
Placeholder (class in psycopg2.sql), 87
Poll status

Constants, 63
poll() (connection method), 33
POLL_ERROR (in module psycopg2.extensions), 63

Index 129

Psycopg Documentation, Release 2.7.6

POLL_OK (in module psycopg2.extensions), 63
POLL_READ (in module psycopg2.extensions), 63
POLL_WRITE (in module psycopg2.extensions), 63
Pooling

Connection, 91
Port

Connection, 19
Prepare

Transaction, 26
prepare() (psycopg2.extensions.ISQLQuote method),

57
Prepared

Commit, 27
Rollback, 27

prepared (psycopg2.extensions.Xid attribute), 55
Prerequisites, 3
ProgrammingError, 21
Protocol

Version, 31
protocol_version (connection attribute), 31
psycopg2 (module), 19
psycopg2.errorcodes (module), 93
psycopg2.extensions (module), 53
psycopg2.extras (module), 65
psycopg2.pool (module), 91
psycopg2.sql (module), 85
psycopg2.tz (module), 89
PSYCOPG2_TESTDB, 6
PSYCOPG2_TESTDB_HOST, 6
PSYCOPG2_TESTDB_PORT, 6
PSYCOPG2_TESTDB_USER, 6
PSYCOPG_DEBUG, 5
PSYCOPG_DISPLAY_SIZE, 35
putconn() (psycopg2.pool.AbstractConnectionPool

method), 91
PYDATE (in module psycopg2.extensions), 64
PYDATEARRAY (in module psycopg2.extensions), 64
PYDATETIME (in module psycopg2.extensions), 64
PYDATETIMEARRAY (in module psycopg2.extensions),

64
PYDATETIMETZ (in module psycopg2.extensions), 64
PYDATETIMETZARRAY (in module psy-

copg2.extensions), 64
PYINTERVAL (in module psycopg2.extensions), 64
PYINTERVALARRAY (in module psycopg2.extensions),

64
Python Enhancement Proposals

PEP 246, 45, 56
PYTHON_EGG_CACHE, 98
PYTIME (in module psycopg2.extensions), 64
PYTIMEARRAY (in module psycopg2.extensions), 64

Q
Query

Parameters, 8
query (cursor attribute), 40
QueryCanceledError, 59
quote_ident() (in module psycopg2.extensions), 60
QuotedString (class in psycopg2.extensions), 57

R
range

Data types, 77
Range (class in psycopg2.extras), 77
range (psycopg2.extras.RangeCaster attribute), 79
RangeCaster (class in psycopg2.extras), 79
Read only, 14
read() (psycopg2.extensions.lobject method), 53
read_message() (psy-

copg2.extras.ReplicationCursor method),
71

readonly (connection attribute), 29
RealDictConnection (class in psycopg2.extras), 66
RealDictCursor (class in psycopg2.extras), 66
RealDictRow (class in psycopg2.extras), 66
Recover

Transaction, 27
register_adapter() (in module psy-

copg2.extensions), 56
register_composite() (in module psy-

copg2.extras), 76
register_default_json() (in module psy-

copg2.extras), 74
register_default_jsonb() (in module psy-

copg2.extras), 75
register_hstore() (in module psycopg2.extras),

75
register_inet() (in module psycopg2.extras), 80
register_ipaddress() (in module psy-

copg2.extras), 80
register_json() (in module psycopg2.extras), 74
register_range() (in module psycopg2.extras), 79
register_tstz_w_secs() (in module psy-

copg2.extras), 82
register_type() (in module psycopg2.extensions),

58
register_uuid() (in module psycopg2.extras), 80
Release notes, 98
Replication, 50

Cursor, 72
replication

Connection, 67
Cursor, 68
Message, 68

REPLICATION_LOGICAL (in module psy-
copg2.extras), 67

REPLICATION_PHYSICAL (in module psy-
copg2.extras), 67

130 Index

Psycopg Documentation, Release 2.7.6

ReplicationCursor (class in psycopg2.extras), 68
ReplicationMessage (class in psycopg2.extras), 68
reset() (connection method), 28
Rollback, 14

Prepared, 27
Transaction, 25

rollback() (connection method), 25
rowcount (cursor attribute), 39
ROWID (in module psycopg2), 23
ROWIDARRAY (in module psycopg2.extensions), 63
rownumber (cursor attribute), 39

S
schema (psycopg2.extras.CompositeCaster attribute),

77
schema_name (psycopg2.extensions.Diagnostics at-

tribute), 56
scroll() (cursor method), 39
scrollable (cursor attribute), 36
Security, 9
seek() (psycopg2.extensions.lobject method), 54
send_feedback() (psy-

copg2.extras.ReplicationCursor method),
71

send_time (psycopg2.extras.ReplicationMessage at-
tribute), 68

seq (psycopg2.sql.Composed attribute), 88
Server

Parameters, 31
Version, 31

Server side
Cursor, 15

server_version (connection attribute), 31
set_client_encoding() (connection method), 30
set_isolation_level() (connection method), 30
set_session() (connection method), 28
set_wait_callback() (in module psy-

copg2.extensions), 59
setinputsizes() (cursor method), 37
setoutputsize() (cursor method), 41
setup.cfg, 5
setup.py, 5
severity (psycopg2.extensions.Diagnostics attribute),

56
SimpleConnectionPool (class in psycopg2.pool),

91
source_file (psycopg2.extensions.Diagnostics at-

tribute), 56
source_function (psycopg2.extensions.Diagnostics

attribute), 56
source_line (psycopg2.extensions.Diagnostics at-

tribute), 56
SQL (class in psycopg2.sql), 86
SQL command

COPY, 16
DECLARE, 15
FETCH, 15
LISTEN, 47
MOVE, 15
NOTIFY, 47

SQL injection, 9
SQL_IN (class in psycopg2.extensions), 57
sqlstate (psycopg2.extensions.Diagnostics attribute),

56
standard_conforming_string, 57
start_replication() (psy-

copg2.extras.ReplicationCursor method),
69

start_replication_expert() (psy-
copg2.extras.ReplicationCursor method),
70

statement_position (psy-
copg2.extensions.Diagnostics attribute),
56

Status
Connection, 32
Transaction, 31

status (connection attribute), 32
STATUS_BEGIN (in module psycopg2.extensions), 62
STATUS_IN_TRANSACTION (in module psy-

copg2.extensions), 62
STATUS_PREPARED (in module psycopg2.extensions),

62
STATUS_READY (in module psycopg2.extensions), 62
statusmessage (cursor attribute), 40
StopReplication (class in psycopg2.extras), 72
STRING (in module psycopg2), 23
string (psycopg2.sql.Identifier attribute), 87
string (psycopg2.sql.SQL attribute), 86
string_types (in module psycopg2.extensions), 59
STRINGARRAY (in module psycopg2.extensions), 63
Strings

Adaptation, 10
Subclassing

Connection, 45
Cursor, 45

T
table_name (psycopg2.extensions.Diagnostics at-

tribute), 56
tell() (psycopg2.extensions.lobject method), 54
tests, 6
Thread safety, 16
ThreadedConnectionPool (class in psy-

copg2.pool), 91
threadsafety (in module psycopg2), 20
TIME (in module psycopg2.extensions), 63
Time objects

Index 131

Psycopg Documentation, Release 2.7.6

Adaptation, 12
Time Zones, 12
Time zones

Fractional, 82
Time() (in module psycopg2), 23
TIMEARRAY (in module psycopg2.extensions), 63
TimeFromMx (class in psycopg2.extensions), 57
TimeFromPy (class in psycopg2.extensions), 57
TimeFromTicks() (in module psycopg2), 23
Timestamp() (in module psycopg2), 23
TimestampFromMx (class in psycopg2.extensions), 57
TimestampFromPy (class in psycopg2.extensions), 57
TimestampFromTicks() (in module psycopg2), 23
tpc_begin() (connection method), 26
tpc_commit() (connection method), 27
tpc_prepare() (connection method), 26
tpc_recover() (connection method), 27
tpc_rollback() (connection method), 27
Transaction, 14

Autocommit, 28
Commit, 25
Isolation level, 28
Prepare, 26
Recover, 27
Rollback, 25
Status, 31
Two-phase commit, 17

Transaction status
Constants, 62

TRANSACTION_STATUS_ACTIVE (in module psy-
copg2.extensions), 62

TRANSACTION_STATUS_IDLE (in module psy-
copg2.extensions), 62

TRANSACTION_STATUS_INERROR (in module psy-
copg2.extensions), 62

TRANSACTION_STATUS_INTRANS (in module psy-
copg2.extensions), 62

TRANSACTION_STATUS_UNKNOWN (in module psy-
copg2.extensions), 62

TransactionRollbackError, 59
truncate() (psycopg2.extensions.lobject method), 54
Tuple

Adaptation, 14
tuple

Adaptation, 75
Two-phase commit

methods, 26
Transaction, 17

type (psycopg2.extras.CompositeCaster attribute), 77
Type casting, 46
typecaster (psycopg2.extras.RangeCaster attribute),

79
tzinfo_factory (cursor attribute), 40

U
Unicode, 10

Adaptation, 10
UNICODE (in module psycopg2.extensions), 63
UNICODEARRAY (in module psycopg2.extensions), 63
unlink() (psycopg2.extensions.lobject method), 54
upper (psycopg2.extras.Range attribute), 78
upper_inc (psycopg2.extras.Range attribute), 78
upper_inf (psycopg2.extras.Range attribute), 78
Usage

Example, 7
Username

Connection, 19
UUID

Data types, 79
UUID_adapter (class in psycopg2.extras), 80

V
Version

Protocol, 31
Server, 31

W
Wait callback, 49
wait_select() (in module psycopg2.extras), 83
wal_end (psycopg2.extras.ReplicationMessage at-

tribute), 68
Warning, 20
Wheel, 4

disable, 5
with statement, 15
withhold (cursor attribute), 36
wrapped (psycopg2.sql.Literal attribute), 87
write() (psycopg2.extensions.lobject method), 53

X
Xid (class in psycopg2.extensions), 55
xid() (connection method), 26

132 Index

	Introduction
	Prerequisites
	Binary install from PyPI
	Non-standard builds
	Running the test suite
	If you still have problems

	Basic module usage
	Passing parameters to SQL queries
	Adaptation of Python values to SQL types
	Transactions control
	Server side cursors
	Thread and process safety
	Using COPY TO and COPY FROM
	Access to PostgreSQL large objects
	Two-Phase Commit protocol support

	The psycopg2 module content
	Exceptions
	Type Objects and Constructors

	The connection class
	The cursor class
	More advanced topics
	Connection and cursor factories
	Adapting new Python types to SQL syntax
	Type casting of SQL types into Python objects
	Asynchronous notifications
	Asynchronous support
	Support for coroutine libraries
	Replication protocol support

	psycopg2.extensions – Extensions to the DB API
	Classes definitions
	SQL adaptation protocol objects
	Database types casting functions
	Additional exceptions
	Coroutines support functions
	Other functions
	Isolation level constants
	Transaction status constants
	Connection status constants
	Poll constants
	Additional database types

	psycopg2.extras – Miscellaneous goodies for Psycopg 2
	Connection and cursor subclasses
	Additional data types
	Fast execution helpers
	Fractional time zones
	Coroutine support

	psycopg2.sql – SQL string composition
	psycopg2.tz – tzinfo implementations for Psycopg 2
	psycopg2.pool – Connections pooling
	psycopg2.errorcodes – Error codes defined by PostgreSQL
	Frequently Asked Questions
	Problems with transactions handling
	Problems with type conversions
	Best practices
	Problems compiling and deploying psycopg2

	Release notes
	Current release
	What’s new in psycopg 2.7
	What’s new in psycopg 2.6
	What’s new in psycopg 2.5
	What’s new in psycopg 2.4
	What’s new in psycopg 2.3
	What’s new in psycopg 2.2
	What’s new in psycopg 2.0

	License
	psycopg2 and the LGPL
	Alternative licenses

	Python Module Index
	Index

