
psycopg
Release 3.1.9

Daniele Varrazzo

Sep 14, 2023

CONTENTS

1 Documentation 3
1.1 Getting started with Psycopg 3 . 3
1.2 More advanced topics . 38
1.3 Psycopg 3 API . 63
1.4 Release notes . 128
1.5 Indices and tables . 135

Python Module Index 137

Index 139

i

ii

psycopg, Release 3.1.9

Psycopg 3 is a newly designed PostgreSQL database adapter for the Python programming language.

Psycopg 3 presents a familiar interface for everyone who has used Psycopg 2 or any other DB-API 2.0 database adapter,
but allows to use more modern PostgreSQL and Python features, such as:

• Asynchronous support

• COPY support from Python objects

• A redesigned connection pool

• Support for static typing

• Server-side parameters binding

• Prepared statements

• Statements pipeline

• Binary communication

• Direct access to the libpq functionalities

CONTENTS 1

https://www.postgresql.org/
https://www.python.org/
https://www.psycopg.org/docs/
https://www.python.org/dev/peps/pep-0249/

psycopg, Release 3.1.9

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Getting started with Psycopg 3

This section of the documentation will explain how to install Psycopg and how to perform normal activities such as
querying the database or loading data using COPY .

Important: If you are familiar with psycopg2 please take a look at Differences from psycopg2 to see what is changed.

1.1.1 Installation

In short, if you use a supported system:

pip install --upgrade pip # upgrade pip to at least 20.3
pip install "psycopg[binary]"

and you should be ready to start. Read further for alternative ways to install.

Supported systems

The Psycopg version documented here has official and tested support for:

• Python: from version 3.7 to 3.11

– Python 3.6 supported before Psycopg 3.1

• PostgreSQL: from version 10 to 15

• OS: Linux, macOS, Windows

The tests to verify the supported systems run in Github workflows: anything that is not tested there is not officially
supported. This includes:

• Unofficial Python distributions such as Conda;

• Alternative PostgreSQL implementation;

• macOS hardware and releases not available on Github workflows.

If you use an unsupported system, things might work (because, for instance, the database may use the same wire protocol
as PostgreSQL) but we cannot guarantee the correct working or a smooth ride.

3

https://github.com/psycopg/psycopg/actions

psycopg, Release 3.1.9

Binary installation

The quickest way to start developing with Psycopg 3 is to install the binary packages by running:

pip install "psycopg[binary]"

This will install a self-contained package with all the libraries needed. You will need pip 20.3 at least: please run pip
install --upgrade pip to update it beforehand.

The above package should work in most situations. It will not work in some cases though.

If your platform is not supported you should proceed to a local installation or a pure Python installation.

See also:

Did Psycopg 3 install ok? Great! You can now move on to the basic module usage to learn how it works.

Keep on reading if the above method didn’t work and you need a different way to install Psycopg 3.

For further information about the differences between the packages see pq module implementations.

Local installation

A “Local installation” results in a performing and maintainable library. The library will include the speed-up C module
and will be linked to the system libraries (libpq, libssl. . .) so that system upgrade of libraries will upgrade the
libraries used by Psycopg 3 too. This is the preferred way to install Psycopg for a production site.

In order to perform a local installation you need some prerequisites:

• a C compiler,

• Python development headers (e.g. the python3-dev package).

• PostgreSQL client development headers (e.g. the libpq-dev package).

• The pg_config program available in the PATH.

You must be able to troubleshoot an extension build, for instance you must be able to read your compiler’s error
message. If you are not, please don’t try this and follow the binary installation instead.

If your build prerequisites are in place you can run:

pip install "psycopg[c]"

Pure Python installation

If you simply install:

pip install psycopg

without [c] or [binary] extras you will obtain a pure Python implementation. This is particularly handy to debug
and hack, but it still requires the system libpq to operate (which will be imported dynamically via ctypes).

In order to use the pure Python installation you will need the libpq installed in the system: for instance on Debian
system you will probably need:

sudo apt install libpq5

4 Chapter 1. Documentation

https://docs.python.org/3/library/ctypes.html#module-ctypes

psycopg, Release 3.1.9

Note: The libpq is the client library used by psql, the PostgreSQL command line client, to connect to the database.
On most systems, installing psql will install the libpq too as a dependency.

If you are not able to fulfill this requirement please follow the binary installation.

Installing the connection pool

The Psycopg connection pools are distributed in a separate package from the psycopg package itself, in order to allow
a different release cycle.

In order to use the pool you must install the pool extra, using pip install "psycopg[pool]", or install the
psycopg_pool package separately, which would allow to specify the release to install more precisely.

Handling dependencies

If you need to specify your project dependencies (for instance in a requirements.txt file, setup.py, pyproject.
toml dependencies. . .) you should probably specify one of the following:

• If your project is a library, add a dependency on psycopg. This will make sure that your library will have the
psycopg package with the right interface and leaves the possibility of choosing a specific implementation to the
end user of your library.

• If your project is a final application (e.g. a service running on a server) you can require a specific implementation,
for instance psycopg[c], after you have made sure that the prerequisites are met (e.g. the depending libraries
and tools are installed in the host machine).

In both cases you can specify which version of Psycopg to use using requirement specifiers.

If you want to make sure that a specific implementation is used you can specify the PSYCOPG_IMPL environment
variable: importing the library will fail if the implementation specified is not available. See pq module implementations.

1.1.2 Basic module usage

The basic Psycopg usage is common to all the database adapters implementing the DB-API protocol. Other database
adapters, such as the builtin sqlite3 or psycopg2, have roughly the same pattern of interaction.

Main objects in Psycopg 3

Here is an interactive session showing some of the basic commands:

Note: the module name is psycopg, not psycopg3
import psycopg

Connect to an existing database
with psycopg.connect("dbname=test user=postgres") as conn:

Open a cursor to perform database operations
with conn.cursor() as cur:

Execute a command: this creates a new table
cur.execute("""

(continues on next page)

1.1. Getting started with Psycopg 3 5

https://pip.pypa.io/en/stable/cli/pip_install/#requirement-specifiers
https://www.python.org/dev/peps/pep-0249/
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://www.psycopg.org/docs/module.html#module-psycopg2

psycopg, Release 3.1.9

(continued from previous page)

CREATE TABLE test (
id serial PRIMARY KEY,
num integer,
data text)

""")

Pass data to fill a query placeholders and let Psycopg perform
the correct conversion (no SQL injections!)
cur.execute(

"INSERT INTO test (num, data) VALUES (%s, %s)",
(100, "abc'def"))

Query the database and obtain data as Python objects.
cur.execute("SELECT * FROM test")
cur.fetchone()
will return (1, 100, "abc'def")

You can use `cur.fetchmany()`, `cur.fetchall()` to return a list
of several records, or even iterate on the cursor
for record in cur:

print(record)

Make the changes to the database persistent
conn.commit()

In the example you can see some of the main objects and methods and how they relate to each other:

• The function connect() creates a new database session and returns a new Connection instance.
AsyncConnection.connect() creates an asyncio connection instead.

• The Connection class encapsulates a database session. It allows to:

– create new Cursor instances using the cursor() method to execute database commands and queries,

– terminate transactions using the methods commit() or rollback().

• The class Cursor allows interaction with the database:

– send commands to the database using methods such as execute() and executemany(),

– retrieve data from the database, iterating on the cursor or using methods such as fetchone(),
fetchmany(), fetchall().

• Using these objects as context managers (i.e. using with) will make sure to close them and free their resources
at the end of the block (notice that this is different from psycopg2).

See also:

A few important topics you will have to deal with are:

• Passing parameters to SQL queries.

• Adapting basic Python types.

• Transactions management.

6 Chapter 1. Documentation

https://docs.python.org/3/library/asyncio.html#module-asyncio

psycopg, Release 3.1.9

Shortcuts

The pattern above is familiar to psycopg2 users. However, Psycopg 3 also exposes a few simple extensions which
make the above pattern leaner:

• the Connection objects exposes an execute() method, equivalent to creating a cursor, calling its execute()
method, and returning it.

In Psycopg 2
cur = conn.cursor()
cur.execute(...)

In Psycopg 3
cur = conn.execute(...)

• The Cursor.execute() method returns self. This means that you can chain a fetch operation, such as
fetchone(), to the execute() call:

In Psycopg 2
cur.execute(...)
record = cur.fetchone()

cur.execute(...)
for record in cur:

...

In Psycopg 3
record = cur.execute(...).fetchone()

for record in cur.execute(...):
...

Using them together, in simple cases, you can go from creating a connection to using a result in a single expression:

print(psycopg.connect(DSN).execute("SELECT now()").fetchone()[0])
2042-07-12 18:15:10.706497+01:00

Connection context

Psycopg 3 Connection can be used as a context manager:

with psycopg.connect() as conn:
... # use the connection

the connection is now closed

When the block is exited, if there is a transaction open, it will be committed. If an exception is raised within the block
the transaction is rolled back. In both cases the connection is closed. It is roughly the equivalent of:

conn = psycopg.connect()
try:

... # use the connection
except BaseException:

(continues on next page)

1.1. Getting started with Psycopg 3 7

psycopg, Release 3.1.9

(continued from previous page)

conn.rollback()
else:

conn.commit()
finally:

conn.close()

Note: This behaviour is not what psycopg2 does: in psycopg2 there is no final close() and the connection can be
used in several with statements to manage different transactions. This behaviour has been considered non-standard
and surprising so it has been replaced by the more explicit transaction() block.

Note that, while the above pattern is what most people would use, connect() doesn’t enter a block itself, but returns
an “un-entered” connection, so that it is still possible to use a connection regardless of the code scope and the developer
is free to use (and responsible for calling) commit(), rollback(), close() as and where needed.

Warning: If a connection is just left to go out of scope, the way it will behave with or without the use of a with
block is different:

• if the connection is used without a with block, the server will find a connection closed INTRANS and roll
back the current transaction;

• if the connection is used with a with block, there will be an explicit COMMIT and the operations will be
finalised.

You should use a with block when your intention is just to execute a set of operations and then committing the
result, which is the most usual thing to do with a connection. If your connection life cycle and transaction pattern
is different, and want more control on it, the use without with might be more convenient.

See Transactions management for more information.

AsyncConnection can be also used as context manager, using async with, but be careful about its quirkiness: see
with async connections for details.

Adapting pyscopg to your program

The above pattern of use only shows the default behaviour of the adapter. Psycopg can be customised in several ways,
to allow the smoothest integration between your Python program and your PostgreSQL database:

• If your program is concurrent and based on asyncio instead of on threads/processes, you can use async connec-
tions and cursors.

• If you want to customise the objects that the cursor returns, instead of receiving tuples, you can specify your row
factories.

• If you want to customise how Python values and PostgreSQL types are mapped into each other, beside the basic
type mapping, you can configure your types.

8 Chapter 1. Documentation

https://www.psycopg.org/docs/usage.html#with
https://docs.python.org/3/library/asyncio.html#module-asyncio

psycopg, Release 3.1.9

1.1.3 Passing parameters to SQL queries

Most of the times, writing a program you will have to mix bits of SQL statements with values provided by the rest of
the program:

SELECT some, fields FROM some_table WHERE id = ...

id equals what? Probably you will have a Python value you are looking for.

execute() arguments

Passing parameters to a SQL statement happens in functions such as Cursor.execute() by using %s placeholders in
the SQL statement, and passing a sequence of values as the second argument of the function. For example the Python
function call:

cur.execute("""
INSERT INTO some_table (id, created_at, last_name)
VALUES (%s, %s, %s);
""",
(10, datetime.date(2020, 11, 18), "O'Reilly"))

is roughly equivalent to the SQL command:

INSERT INTO some_table (id, created_at, last_name)
VALUES (10, '2020-11-18', 'O''Reilly');

Note that the parameters will not be really merged to the query: query and the parameters are sent to the server sepa-
rately: see Server-side binding for details.

Named arguments are supported too using %(name)s placeholders in the query and specifying the values into a map-
ping. Using named arguments allows to specify the values in any order and to repeat the same value in several places
in the query:

cur.execute("""
INSERT INTO some_table (id, created_at, updated_at, last_name)
VALUES (%(id)s, %(created)s, %(created)s, %(name)s);
""",
{'id': 10, 'name': "O'Reilly", 'created': datetime.date(2020, 11, 18)})

Using characters %, (,) in the argument names is not supported.

When parameters are used, in order to include a literal % in the query you can use the %% string:

cur.execute("SELECT (%s % 2) = 0 AS even", (10,)) # WRONG
cur.execute("SELECT (%s %% 2) = 0 AS even", (10,)) # correct

While the mechanism resembles regular Python strings manipulation, there are a few subtle differences you should care
about when passing parameters to a query.

• The Python string operator % must not be used: the execute() method accepts a tuple or dictionary of values
as second parameter. Never use % or + to merge values into queries:

cur.execute("INSERT INTO numbers VALUES (%s, %s)" % (10, 20)) # WRONG
cur.execute("INSERT INTO numbers VALUES (%s, %s)", (10, 20)) # correct

1.1. Getting started with Psycopg 3 9

psycopg, Release 3.1.9

• For positional variables binding, the second argument must always be a sequence, even if it contains a single
variable (remember that Python requires a comma to create a single element tuple):

cur.execute("INSERT INTO foo VALUES (%s)", "bar") # WRONG
cur.execute("INSERT INTO foo VALUES (%s)", ("bar")) # WRONG
cur.execute("INSERT INTO foo VALUES (%s)", ("bar",)) # correct
cur.execute("INSERT INTO foo VALUES (%s)", ["bar"]) # correct

• The placeholder must not be quoted:

cur.execute("INSERT INTO numbers VALUES ('%s')", ("Hello",)) # WRONG
cur.execute("INSERT INTO numbers VALUES (%s)", ("Hello",)) # correct

• The variables placeholder must always be a %s, even if a different placeholder (such as a %d for integers or %f
for floats) may look more appropriate for the type. You may find other placeholders used in Psycopg queries (%b
and %t) but they are not related to the type of the argument: see Binary parameters and results if you want to
read more:

cur.execute("INSERT INTO numbers VALUES (%d)", (10,)) # WRONG
cur.execute("INSERT INTO numbers VALUES (%s)", (10,)) # correct

• Only query values should be bound via this method: it shouldn’t be used to merge table or field names to the
query. If you need to generate SQL queries dynamically (for instance choosing a table name at runtime) you can
use the functionalities provided in the psycopg.sql module:

cur.execute("INSERT INTO %s VALUES (%s)", ('numbers', 10)) # WRONG
cur.execute(# correct

SQL("INSERT INTO {} VALUES (%s)").format(Identifier('numbers')),
(10,))

Danger: SQL injection

The SQL representation of many data types is often different from their Python string representation. The typical
example is with single quotes in strings: in SQL single quotes are used as string literal delimiters, so the ones appearing
inside the string itself must be escaped, whereas in Python single quotes can be left unescaped if the string is delimited
by double quotes.

Because of the difference, sometimes subtle, between the data types representations, a naïve approach to query strings
composition, such as using Python strings concatenation, is a recipe for terrible problems:

SQL = "INSERT INTO authors (name) VALUES ('%s')" # NEVER DO THIS
data = ("O'Reilly",)
cur.execute(SQL % data) # THIS WILL FAIL MISERABLY
SyntaxError: syntax error at or near "Reilly"

If the variables containing the data to send to the database come from an untrusted source (such as data coming from
a form on a web site) an attacker could easily craft a malformed string, either gaining access to unauthorized data or
performing destructive operations on the database. This form of attack is called SQL injection and is known to be one
of the most widespread forms of attack on database systems. Before continuing, please print this page as a memo and
hang it onto your desk.

Psycopg can automatically convert Python objects to SQL values: using this feature your code will be more robust and
reliable. We must stress this point:

10 Chapter 1. Documentation

https://en.wikipedia.org/wiki/SQL_injection
https://xkcd.com/327/

psycopg, Release 3.1.9

Warning:

• Don’t manually merge values to a query: hackers from a foreign country will break into your computer and
steal not only your disks, but also your cds, leaving you only with the three most embarrassing records you
ever bought. On cassette tapes.

• If you use the % operator to merge values to a query, con artists will seduce your cat, who will run away taking
your credit card and your sunglasses with them.

• If you use + to merge a textual value to a string, bad guys in balaclava will find their way to your fridge, drink
all your beer, and leave your toilet seat up and your toilet paper in the wrong orientation.

• You don’t want to manually merge values to a query: use the provided methods instead.

The correct way to pass variables in a SQL command is using the second argument of the Cursor.execute()method:

SQL = "INSERT INTO authors (name) VALUES (%s)" # Note: no quotes
data = ("O'Reilly",)
cur.execute(SQL, data) # Note: no % operator

Note: Python static code checkers are not quite there yet, but, in the future, it will be possible to check your code for
improper use of string expressions in queries. See Checking literal strings in queries for details.

See also:

Now that you know how to pass parameters to queries, you can take a look at how Psycopg converts data types.

Binary parameters and results

PostgreSQL has two different ways to transmit data between client and server: TEXT, always available, and BINARY ,
available most of the times but not always. Usually the binary format is more efficient to use.

Psycopg can support both formats for each data type. Whenever a value is passed to a query using the normal %s
placeholder, the best format available is chosen (often, but not always, the binary format is picked as the best choice).

If you have a reason to select explicitly the binary format or the text format for a value you can use respectively a %b
placeholder or a %t placeholder instead of the normal %s. execute() will fail if a Dumper for the right data type and
format is not available.

The same two formats, text or binary, are used by PostgreSQL to return data from a query to the client. Unlike with
parameters, where you can choose the format value-by-value, all the columns returned by a query will have the same
format. Every type returned by the query should have a Loader configured, otherwise the data will be returned as
unparsed str (for text results) or buffer (for binary results).

Note: The pg_type table defines which format is supported for each PostgreSQL data type. Text input/output is
managed by the functions declared in the typinput and typoutput fields (always present), binary input/output is
managed by the typsend and typreceive (which are optional).

Because not every PostgreSQL type supports binary output, by default, the data will be returned in text format. In order
to return data in binary format you can create the cursor using Connection.cursor(binary=True) or execute the
query using Cursor.execute(binary=True). A case in which requesting binary results is a clear winner is when
you have large binary data in the database, such as images:

1.1. Getting started with Psycopg 3 11

https://www.postgresql.org/docs/current/catalog-pg-type.html

psycopg, Release 3.1.9

cur.execute(
"SELECT image_data FROM images WHERE id = %s", [image_id], binary=True)

data = cur.fetchone()[0]

1.1.4 Adapting basic Python types

Many standard Python types are adapted into SQL and returned as Python objects when a query is executed.

Converting the following data types between Python and PostgreSQL works out-of-the-box and doesn’t require any
configuration. In case you need to customise the conversion you should take a look at Data adaptation configuration.

Booleans adaptation

Python bool values True and False are converted to the equivalent PostgreSQL boolean type:

>>> cur.execute("SELECT %s, %s", (True, False))
equivalent to "SELECT true, false"

Numbers adaptation

See also:

• PostgreSQL numeric types

• Python int values can be converted to PostgreSQL smallint, integer, bigint, or numeric, according to
their numeric value. Psycopg will choose the smallest data type available, because PostgreSQL can automatically
cast a type up (e.g. passing a smallint where PostgreSQL expect an integer is gladly accepted) but will not
cast down automatically (e.g. if a function has an integer argument, passing it a bigint value will fail, even
if the value is 1).

• Python float values are converted to PostgreSQL float8.

• Python Decimal values are converted to PostgreSQL numeric.

On the way back, smaller types (int2, int4, float4) are promoted to the larger Python counterpart.

Note: Sometimes you may prefer to receive numeric data as float instead, for performance reason or ease of
manipulation: you can configure an adapter to cast PostgreSQL numeric to Python float. This of course may imply a
loss of precision.

Strings adaptation

See also:

• PostgreSQL character types

Python str are converted to PostgreSQL string syntax, and PostgreSQL types such as text and varchar are converted
back to Python str:

12 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://www.postgresql.org/docs/current/datatype-boolean.html
https://www.postgresql.org/docs/current/static/datatype-numeric.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://www.postgresql.org/docs/current/datatype-character.html
https://docs.python.org/3/library/stdtypes.html#str

psycopg, Release 3.1.9

conn = psycopg.connect()
conn.execute(

"INSERT INTO menu (id, entry) VALUES (%s, %s)",
(1, "Crème Brûlée at 4.99€"))

conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
'Crème Brûlée at 4.99€'

PostgreSQL databases have an encoding, and the session has an encoding too, exposed in the Connection.info.
encoding attribute. If your database and connection are in UTF-8 encoding you will likely have no problem, otherwise
you will have to make sure that your application only deals with the non-ASCII chars that the database can handle;
failing to do so may result in encoding/decoding errors:

The encoding is set at connection time according to the db configuration
conn.info.encoding
'utf-8'

The Latin-9 encoding can manage some European accented letters
and the Euro symbol
conn.execute("SET client_encoding TO LATIN9")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
'Crème Brûlée at 4.99€'

The Latin-1 encoding doesn't have a representation for the Euro symbol
conn.execute("SET client_encoding TO LATIN1")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
Traceback (most recent call last)
...
UntranslatableCharacter: character with byte sequence 0xe2 0x82 0xac
in encoding "UTF8" has no equivalent in encoding "LATIN1"

In rare cases you may have strings with unexpected encodings in the database. Using the SQL_ASCII client encoding
will disable decoding of the data coming from the database, which will be returned as bytes:

conn.execute("SET client_encoding TO SQL_ASCII")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
b'Cr\xc3\xa8me Br\xc3\xbbl\xc3\xa9e at 4.99\xe2\x82\xac'

Alternatively you can cast the unknown encoding data to bytea to retrieve it as bytes, leaving other strings unaltered:
see Binary adaptation

Note that PostgreSQL text cannot contain the 0x00 byte. If you need to store Python strings that may contain binary
zeros you should use a bytea field.

Binary adaptation

Python types representing binary objects (bytes, bytearray, memoryview) are converted by default to bytea fields.
By default data received is returned as bytes.

If you are storing large binary data in bytea fields (such as binary documents or images) you should probably use the
binary format to pass and return values, otherwise binary data will undergo ASCII escaping, taking some CPU time
and more bandwidth. See Binary parameters and results for details.

1.1. Getting started with Psycopg 3 13

https://www.postgresql.org/docs/current/sql-createdatabase.html
https://www.postgresql.org/docs/current/multibyte.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://www.postgresql.org/docs/current/datatype-binary.html

psycopg, Release 3.1.9

Date/time types adaptation

See also:

• PostgreSQL date/time types

• Python date objects are converted to PostgreSQL date.

• Python datetime objects are converted to PostgreSQL timestamp (if they don’t have a tzinfo set) or
timestamptz (if they do).

• Python time objects are converted to PostgreSQL time (if they don’t have a tzinfo set) or timetz (if they do).

• Python timedelta objects are converted to PostgreSQL interval.

PostgreSQL timestamptz values are returned with a timezone set to the connection TimeZone setting, which is avail-
able as a Python ZoneInfo object in the Connection.info.timezone attribute:

>>> conn.info.timezone
zoneinfo.ZoneInfo(key='Europe/London')

>>> conn.execute("select '2048-07-08 12:00'::timestamptz").fetchone()[0]
datetime.datetime(2048, 7, 8, 12, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/London'))

Note: PostgreSQL timestamptz doesn’t store “a timestamp with a timezone attached”: it stores a timestamp always
in UTC, which is converted, on output, to the connection TimeZone setting:

>>> conn.execute("SET TIMEZONE to 'Europe/Rome'") # UTC+2 in summer

>>> conn.execute("SELECT '2042-07-01 12:00Z'::timestamptz").fetchone()[0] # UTC input
datetime.datetime(2042, 7, 1, 14, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/Rome'))

Check out the PostgreSQL documentation about timezones for all the details.

JSON adaptation

Psycopg can map between Python objects and PostgreSQL json/jsonb types, allowing to customise the load and dump
function used.

Because several Python objects could be considered JSON (dicts, lists, scalars, even date/time if using a dumps function
customised to use them), Psycopg requires you to wrap the object to dump as JSON into a wrapper: either psycopg.
types.json.Json or Jsonb.

from psycopg.types.json import Jsonb

thing = {"foo": ["bar", 42]}
conn.execute("INSERT INTO mytable VALUES (%s)", [Jsonb(thing)])

By default Psycopg uses the standard library json.dumps and json.loads functions to serialize and de-serialize
Python objects to JSON. If you want to customise how serialization happens, for instance changing serialization pa-
rameters or using a different JSON library, you can specify your own functions using the psycopg.types.json.
set_json_dumps() and set_json_loads() functions, to apply either globally or to a specific context (connection
or cursor).

14 Chapter 1. Documentation

https://www.postgresql.org/docs/current/datatype-datetime.html
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://www.postgresql.org/docs/current/datatype-datetime.html#DATATYPE-TIMEZONES
https://docs.python.org/3/library/zoneinfo.html#zoneinfo.ZoneInfo
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE
https://www.postgresql.org/docs/current/datatype-json.html
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/json.html#json.loads

psycopg, Release 3.1.9

from functools import partial
from psycopg.types.json import Jsonb, set_json_dumps, set_json_loads
import ujson

Use a faster dump function
set_json_dumps(ujson.dumps)

Return floating point values as Decimal, just in one connection
set_json_loads(partial(json.loads, parse_float=Decimal), conn)

conn.execute("SELECT %s", [Jsonb({"value": 123.45})]).fetchone()[0]
{'value': Decimal('123.45')}

If you need an even more specific dump customisation only for certain objects (including different configurations in the
same query) you can specify a dumps parameter in the Json/Jsonb wrapper, which will take precedence over what is
specified by set_json_dumps().

from uuid import UUID, uuid4

class UUIDEncoder(json.JSONEncoder):
"""A JSON encoder which can dump UUID."""
def default(self, obj):

if isinstance(obj, UUID):
return str(obj)

return json.JSONEncoder.default(self, obj)

uuid_dumps = partial(json.dumps, cls=UUIDEncoder)
obj = {"uuid": uuid4()}
cnn.execute("INSERT INTO objs VALUES %s", [Json(obj, dumps=uuid_dumps)])
will insert: {'uuid': '0a40799d-3980-4c65-8315-2956b18ab0e1'}

Lists adaptation

Python list objects are adapted to PostgreSQL arrays and back. Only lists containing objects of the same type can be
dumped to PostgreSQL (but the list may contain None elements).

Note: If you have a list of values which you want to use with the IN operator. . . don’t. It won’t work (neither with a
list nor with a tuple):

>>> conn.execute("SELECT * FROM mytable WHERE id IN %s", [[10,20,30]])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

psycopg.errors.SyntaxError: syntax error at or near "$1"
LINE 1: SELECT * FROM mytable WHERE id IN $1

^

What you want to do instead is to use the ‘= ANY()’ expression and pass the values as a list (not a tuple).

>>> conn.execute("SELECT * FROM mytable WHERE id = ANY(%s)", [[10,20,30]])

This has also the advantage of working with an empty list, whereas IN () is not valid SQL.

1.1. Getting started with Psycopg 3 15

https://docs.python.org/3/library/stdtypes.html#list
https://www.postgresql.org/docs/current/arrays.html
https://www.postgresql.org/docs/current/functions-comparisons.html#id-1.5.8.30.16

psycopg, Release 3.1.9

UUID adaptation

Python uuid.UUID objects are adapted to PostgreSQL UUID type and back:

>>> conn.execute("select gen_random_uuid()").fetchone()[0]
UUID('97f0dd62-3bd2-459e-89b8-a5e36ea3c16c')

>>> from uuid import uuid4
>>> conn.execute("select gen_random_uuid() = %s", [uuid4()]).fetchone()[0]
False # long shot

Network data types adaptation

Objects from the ipaddress module are converted to PostgreSQL network address types:

• IPv4Address, IPv4Interface objects are converted to the PostgreSQL inet type. On the way back, inet val-
ues indicating a single address are converted to IPv4Address, otherwise they are converted to IPv4Interface

• IPv4Network objects are converted to the cidr type and back.

• IPv6Address, IPv6Interface, IPv6Network objects follow the same rules, with IPv6 inet and cidr values.

>>> conn.execute("select '192.168.0.1'::inet, '192.168.0.1/24'::inet").fetchone()
(IPv4Address('192.168.0.1'), IPv4Interface('192.168.0.1/24'))

>>> conn.execute("select '::ffff:1.2.3.0/120'::cidr").fetchone()[0]
IPv6Network('::ffff:102:300/120')

Enum adaptation

New in version 3.1.

Psycopg can adapt Python Enum subclasses into PostgreSQL enum types (created with the CREATE TYPE ... AS
ENUM (...) command).

In order to set up a bidirectional enum mapping, you should get information about the PostgreSQL enum using the
EnumInfo class and register it using register_enum(). The behaviour of unregistered and registered enums is
different.

• If the enum is not registered with register_enum():

– Pure Enum classes are dumped as normal strings, using their member names as value. The unknown oid is
used, so PostgreSQL should be able to use this string in most contexts (such as an enum or a text field).

Changed in version 3.1: In previous version dumping pure enums is not supported and raise a “cannot
adapt” error.

– Mix-in enums are dumped according to their mix-in type (because a class MyIntEnum(int, Enum) is
more specifically an int than an Enum, so it’s dumped by default according to int rules).

– PostgreSQL enums are loaded as Python strings. If you want to load arrays of such enums you will have to
find their OIDs using types.TypeInfo.fetch() and register them using register().

• If the enum is registered (using EnumInfo.fetch() and register_enum()):

– Enums classes, both pure and mixed-in, are dumped by name.

– The registered PostgreSQL enum is loaded back as the registered Python enum members.

16 Chapter 1. Documentation

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://www.postgresql.org/docs/current/datatype-uuid.html
https://docs.python.org/3/library/ipaddress.html#module-ipaddress
https://www.postgresql.org/docs/current/datatype-net-types.html#DATATYPE-CIDR
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Interface
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Network
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Interface
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Network
https://docs.python.org/3/library/enum.html#enum.Enum
https://www.postgresql.org/docs/current/static/datatype-enum.html
https://www.postgresql.org/docs/current/static/datatype-enum.html

psycopg, Release 3.1.9

class psycopg.types.enum.EnumInfo(name, oid, array_oid, labels)
Manage information about an enum type.

EnumInfo is a subclass of TypeInfo: refer to the latter’s documentation for generic usage, especially the
fetch() method.

labels

After fetch(), it contains the labels defined in the PostgreSQL enum type.

enum

After register_enum() is called, it will contain the Python type mapping to the registered enum.

psycopg.types.enum.register_enum(info, context=None, enum=None, *, mapping=None)
Register the adapters to load and dump a enum type.

Parameters

• info (EnumInfo) – The object with the information about the enum to register.

• context (Optional[AdaptContext]) – The context where to register the adapters. If
None, register it globally.

• enum (Optional[Type[TypeVar(E, bound= Enum)]]) – Python enum type matching to the
PostgreSQL one. If None, a new enum will be generated and exposed as EnumInfo.enum .

• mapping (Union[Mapping[TypeVar(E, bound= Enum), str],
Sequence[Tuple[TypeVar(E, bound= Enum), str]], None]) – Override the mapping
between enum members and info labels.

After registering, fetching data of the registered enum will cast PostgreSQL enum labels into corresponding
Python enum members.

If no enum is specified, a new Enum is created based on PostgreSQL enum labels.

Example:

>>> from enum import Enum, auto
>>> from psycopg.types.enum import EnumInfo, register_enum

>>> class UserRole(Enum):
... ADMIN = auto()
... EDITOR = auto()
... GUEST = auto()

>>> conn.execute("CREATE TYPE user_role AS ENUM ('ADMIN', 'EDITOR', 'GUEST')")

>>> info = EnumInfo.fetch(conn, "user_role")
>>> register_enum(info, conn, UserRole)

>>> some_editor = info.enum.EDITOR
>>> some_editor
<UserRole.EDITOR: 2>

>>> conn.execute(
... "SELECT pg_typeof(%(editor)s), %(editor)s",
... {"editor": some_editor}
...).fetchone()
('user_role', <UserRole.EDITOR: 2>)

(continues on next page)

1.1. Getting started with Psycopg 3 17

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

psycopg, Release 3.1.9

(continued from previous page)

>>> conn.execute(
... "SELECT ARRAY[%s, %s]",
... [UserRole.ADMIN, UserRole.GUEST]
...).fetchone()
[<UserRole.ADMIN: 1>, <UserRole.GUEST: 3>]

If the Python and the PostgreSQL enum don’t match 1:1 (for instance if members have a different name, or if more than
one Python enum should map to the same PostgreSQL enum, or vice versa), you can specify the exceptions using the
mapping parameter.

mapping should be a dictionary with Python enum members as keys and the matching PostgreSQL enum labels as
values, or a list of (member, label) pairs with the same meaning (useful when some members are repeated). Order
matters: if an element on either side is specified more than once, the last pair in the sequence will take precedence:

Legacy roles, defined in medieval times.
>>> conn.execute(
... "CREATE TYPE abbey_role AS ENUM ('ABBOT', 'SCRIBE', 'MONK', 'GUEST')")

>>> info = EnumInfo.fetch(conn, "abbey_role")
>>> register_enum(info, conn, UserRole, mapping=[
... (UserRole.ADMIN, "ABBOT"),
... (UserRole.EDITOR, "SCRIBE"),
... (UserRole.EDITOR, "MONK")])

>>> conn.execute("SELECT '{ABBOT,SCRIBE,MONK,GUEST}'::abbey_role[]").fetchone()[0]
[<UserRole.ADMIN: 1>,
<UserRole.EDITOR: 2>,
<UserRole.EDITOR: 2>,
<UserRole.GUEST: 3>]

>>> conn.execute("SELECT %s::text[]", [list(UserRole)]).fetchone()[0]
['ABBOT', 'MONK', 'GUEST']

A particularly useful case is when the PostgreSQL labels match the values of a str-based Enum. In this case it is
possible to use something like {m: m.value for m in enum} as mapping:

>>> class LowercaseRole(str, Enum):
... ADMIN = "admin"
... EDITOR = "editor"
... GUEST = "guest"

>>> conn.execute(
... "CREATE TYPE lowercase_role AS ENUM ('admin', 'editor', 'guest')")

>>> info = EnumInfo.fetch(conn, "lowercase_role")
>>> register_enum(
... info, conn, LowercaseRole, mapping={m: m.value for m in LowercaseRole})

>>> conn.execute("SELECT 'editor'::lowercase_role").fetchone()[0]
<LowercaseRole.EDITOR: 'editor'>

18 Chapter 1. Documentation

psycopg, Release 3.1.9

1.1.5 Adapting other PostgreSQL types

PostgreSQL offers other data types which don’t map to native Python types. Psycopg offers wrappers and conversion
functions to allow their use.

Composite types casting

Psycopg can adapt PostgreSQL composite types (either created with the CREATE TYPE command or implicitly defined
after a table row type) to and from Python tuples, namedtuple, or any other suitable object configured.

Before using a composite type it is necessary to get information about it using the CompositeInfo class and to register
it using register_composite().

class psycopg.types.composite.CompositeInfo(name, oid, array_oid, *, regtype='', field_names,
field_types)

Manage information about a composite type.

CompositeInfo is a TypeInfo subclass: check its documentation for the generic usage, especially the fetch()
method.

python_type

After register_composite() is called, it will contain the python type mapping to the registered com-
posite.

psycopg.types.composite.register_composite(info, context=None, factory=None)
Register the adapters to load and dump a composite type.

Parameters

• info (CompositeInfo) – The object with the information about the composite to register.

• context (Optional[AdaptContext]) – The context where to register the adapters. If
None, register it globally.

• factory (Optional[Callable[..., Any]]) – Callable to convert the sequence of attributes
read from the composite into a Python object.

Note: Registering the adapters doesn’t affect objects already created, even if they are children of the registered
context. For instance, registering the adapter globally doesn’t affect already existing connections.

After registering, fetching data of the registered composite will invoke factory to create corresponding Python
objects.

If no factory is specified, a namedtuple is created and used to return data.

If the factory is a type (and not a generic callable), then dumpers for that type are created and registered too,
so that passing objects of that type to a query will adapt them to the registered type.

Example:

>>> from psycopg.types.composite import CompositeInfo, register_composite

>>> conn.execute("CREATE TYPE card AS (value int, suit text)")

>>> info = CompositeInfo.fetch(conn, "card")
>>> register_composite(info, conn)

(continues on next page)

1.1. Getting started with Psycopg 3 19

https://www.postgresql.org/docs/current/static/sql-createtype.html
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Any

psycopg, Release 3.1.9

(continued from previous page)

>>> my_card = info.python_type(8, "hearts")
>>> my_card
card(value=8, suit='hearts')

>>> conn.execute(
... "SELECT pg_typeof(%(card)s), (%(card)s).suit", {"card": my_card}
...).fetchone()
('card', 'hearts')

>>> conn.execute("SELECT (%s, %s)::card", [1, "spades"]).fetchone()[0]
card(value=1, suit='spades')

Nested composite types are handled as expected, provided that the type of the composite components are registered as
well:

>>> conn.execute("CREATE TYPE card_back AS (face card, back text)")

>>> info2 = CompositeInfo.fetch(conn, "card_back")
>>> register_composite(info2, conn)

>>> conn.execute("SELECT ((8, 'hearts'), 'blue')::card_back").fetchone()[0]
card_back(face=card(value=8, suit='hearts'), back='blue')

Range adaptation

PostgreSQL range types are a family of data types representing a range of values between two elements. The type of the
element is called the range subtype. PostgreSQL offers a few built-in range types and allows the definition of custom
ones.

All the PostgreSQL range types are loaded as the Range Python type, which is a Generic type and can hold bounds
of different types.

class psycopg.types.range.Range(lower=None, upper=None, bounds='[)', empty=False)
Python representation for a PostgreSQL range type.

Parameters

• lower (Optional[TypeVar(T)]) – lower bound for the range. None means unbound

• upper (Optional[TypeVar(T)]) – upper bound for the range. None means unbound

• bounds (str) – one of the literal strings (), [), (], [], representing whether the lower or
upper bounds are included

• empty (bool) – if True, the range is empty

This Python type is only used to pass and retrieve range values to and from PostgreSQL and doesn’t attempt to
replicate the PostgreSQL range features: it doesn’t perform normalization and doesn’t implement all the operators
supported by the database.

PostgreSQL will perform normalisation on Range objects used as query parameters, so, when they are fetched
back, they will be found in the normal form (for instance ranges on integers will have [) bounds).

Range objects are immutable, hashable, and support the in operator (checking if an element is within the range).
They can be tested for equivalence. Empty ranges evaluate to False in a boolean context, nonempty ones evaluate
to True.

20 Chapter 1. Documentation

https://www.postgresql.org/docs/current/rangetypes.html
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.postgresql.org/docs/current/static/functions-range.html#RANGE-OPERATORS-TABLE

psycopg, Release 3.1.9

Range objects have the following attributes:

isempty

True if the range is empty.

lower

The lower bound of the range. None if empty or unbound.

upper

The upper bound of the range. None if empty or unbound.

lower_inc

True if the lower bound is included in the range.

upper_inc

True if the upper bound is included in the range.

lower_inf

True if the range doesn’t have a lower bound.

upper_inf

True if the range doesn’t have an upper bound.

The built-in range objects are adapted automatically: if a Range objects contains date bounds, it is dumped using the
daterange OID, and of course daterange values are loaded back as Range[date].

If you create your own range type you can use RangeInfo and register_range() to associate the range type with
its subtype and make it work like the builtin ones.

class psycopg.types.range.RangeInfo(name, oid, array_oid, *, regtype='', subtype_oid)
Manage information about a range type.

RangeInfo is a TypeInfo subclass: check its documentation for generic details, especially the fetch()method.

psycopg.types.range.register_range(info, context=None)
Register the adapters to load and dump a range type.

Parameters

• info (RangeInfo) – The object with the information about the range to register.

• context (Optional[AdaptContext]) – The context where to register the adapters. If
None, register it globally.

Register loaders so that loading data of this type will result in a Range with bounds parsed as the right subtype.

Note: Registering the adapters doesn’t affect objects already created, even if they are children of the registered
context. For instance, registering the adapter globally doesn’t affect already existing connections.

Example:

>>> from psycopg.types.range import Range, RangeInfo, register_range

>>> conn.execute("CREATE TYPE strrange AS RANGE (SUBTYPE = text)")
>>> info = RangeInfo.fetch(conn, "strrange")
>>> register_range(info, conn)

>>> conn.execute("SELECT pg_typeof(%s)", [Range("a", "z")]).fetchone()[0]
(continues on next page)

1.1. Getting started with Psycopg 3 21

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/typing.html#typing.Optional

psycopg, Release 3.1.9

(continued from previous page)

'strrange'

>>> conn.execute("SELECT '[a,z]'::strrange").fetchone()[0]
Range('a', 'z', '[]')

Multirange adaptation

Since PostgreSQL 14, every range type is associated with a multirange, a type representing a disjoint set of ranges. A
multirange is automatically available for every range, built-in and user-defined.

All the PostgreSQL range types are loaded as the Multirange Python type, which is a mutable sequence of Range
elements.

class psycopg.types.multirange.Multirange(items=())
Python representation for a PostgreSQL multirange type.

Parameters
items (Iterable[Range[TypeVar(T)]]) – Sequence of ranges to initialise the object.

This Python type is only used to pass and retrieve multirange values to and from PostgreSQL and doesn’t at-
tempt to replicate the PostgreSQL multirange features: overlapping items are not merged, empty ranges are not
discarded, the items are not ordered, the behaviour of multirange operators is not replicated in Python.

PostgreSQL will perform normalisation on Multirange objects used as query parameters, so, when they are
fetched back, they will be found ordered, with overlapping ranges merged, etc.

Multirange objects are a MutableSequence and are totally ordered: they behave pretty much like a list of
Range. Like Range, they are Generic on the subtype of their range, so you can declare a variable to be
Multirange[date] and mypy will complain if you try to add it a Range[Decimal].

Like for Range, built-in multirange objects are adapted automatically: if a Multirange object contains Range
with date bounds, it is dumped using the datemultirange OID, and datemultirange values are loaded back as
Multirange[date].

If you have created your own range type you can use MultirangeInfo and register_multirange() to associate
the resulting multirange type with its subtype and make it work like the builtin ones.

class psycopg.types.multirange.MultirangeInfo(name, oid, array_oid, *, regtype='', range_oid,
subtype_oid)

Manage information about a multirange type.

MultirangeInfo is a TypeInfo subclass: check its documentation for generic details, especially the fetch()
method.

psycopg.types.multirange.register_multirange(info, context=None)
Register the adapters to load and dump a multirange type.

Parameters

• info (MultirangeInfo) – The object with the information about the range to register.

• context (Optional[AdaptContext]) – The context where to register the adapters. If
None, register it globally.

Register loaders so that loading data of this type will result in a Range with bounds parsed as the right subtype.

22 Chapter 1. Documentation

https://www.postgresql.org/docs/current/rangetypes.html
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://www.postgresql.org/docs/current/static/functions-range.html#MULTIRANGE-OPERATORS-TABLE
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/typing.html#typing.Optional

psycopg, Release 3.1.9

Note: Registering the adapters doesn’t affect objects already created, even if they are children of the registered
context. For instance, registering the adapter globally doesn’t affect already existing connections.

Example:

>>> from psycopg.types.multirange import \
... Multirange, MultirangeInfo, register_multirange
>>> from psycopg.types.range import Range

>>> conn.execute("CREATE TYPE strrange AS RANGE (SUBTYPE = text)")
>>> info = MultirangeInfo.fetch(conn, "strmultirange")
>>> register_multirange(info, conn)

>>> rec = conn.execute(
... "SELECT pg_typeof(%(mr)s), %(mr)s",
... {"mr": Multirange([Range("a", "q"), Range("l", "z")])}).fetchone()

>>> rec[0]
'strmultirange'
>>> rec[1]
Multirange([Range('a', 'z', '[)')])

Hstore adaptation

The hstore data type is a key-value store embedded in PostgreSQL. It supports GiST or GIN indexes allowing search
by keys or key/value pairs as well as regular BTree indexes for equality, uniqueness etc.

Psycopg can convert Python dict objects to and from hstore structures. Only dictionaries with string keys and values
are supported. None is also allowed as value but not as a key.

In order to use the hstore data type it is necessary to load it in a database using:

=# CREATE EXTENSION hstore;

Because hstore is distributed as a contrib module, its oid is not well known, so it is necessary to use
TypeInfo.fetch() to query the database and get its oid. The resulting object can be passed to register_hstore()
to configure dumping dict to hstore and parsing hstore back to dict, in the context where the adapter is registered.

psycopg.types.hstore.register_hstore(info, context=None)
Register the adapters to load and dump hstore.

Parameters

• info (TypeInfo) – The object with the information about the hstore type.

• context (Optional[AdaptContext]) – The context where to register the adapters. If
None, register it globally.

Note: Registering the adapters doesn’t affect objects already created, even if they are children of the registered
context. For instance, registering the adapter globally doesn’t affect already existing connections.

Example:

1.1. Getting started with Psycopg 3 23

https://www.postgresql.org/docs/current/static/hstore.html
https://docs.python.org/3/library/typing.html#typing.Optional

psycopg, Release 3.1.9

>>> from psycopg.types import TypeInfo
>>> from psycopg.types.hstore import register_hstore

>>> info = TypeInfo.fetch(conn, "hstore")
>>> register_hstore(info, conn)

>>> conn.execute("SELECT pg_typeof(%s)", [{"a": "b"}]).fetchone()[0]
'hstore'

>>> conn.execute("SELECT 'foo => bar'::hstore").fetchone()[0]
{'foo': 'bar'}

Geometry adaptation using Shapely

When using the PostGIS extension, it can be useful to retrieve geometry values and have them automatically converted
to Shapely instances. Likewise, you may want to store such instances in the database and have the conversion happen
automatically.

Warning: Psycopg doesn’t have a dependency on the shapely package: you should install the library as an
additional dependency of your project.

Warning: This module is experimental and might be changed in the future according to users’ feedback.

Since PostgGIS is an extension, the geometry type oid is not well known, so it is necessary to use TypeInfo.fetch()
to query the database and find it. The resulting object can be passed to register_shapely() to configure dumping
shape instances to geometry columns and parsing geometry data back to shape instances, in the context where the
adapters are registered.

psycopg.types.shapely.register_shapely()

Register Shapely dumper and loaders.

After invoking this function on an adapter, the queries retrieving PostGIS geometry objects will return Shapely’s
shape object instances both in text and binary mode.

Similarly, shape objects can be sent to the database.

This requires the Shapely library to be installed.

Parameters

• info – The object with the information about the geometry type.

• context – The context where to register the adapters. If None, register it globally.

Note: Registering the adapters doesn’t affect objects already created, even if they are children of the registered
context. For instance, registering the adapter globally doesn’t affect already existing connections.

Example:

24 Chapter 1. Documentation

https://postgis.net/
https://postgis.net/docs/geometry.html
https://github.com/Toblerity/Shapely
https://shapely.readthedocs.io/en/stable/manual.html#shapely.geometry.shape

psycopg, Release 3.1.9

>>> from psycopg.types import TypeInfo
>>> from psycopg.types.shapely import register_shapely
>>> from shapely.geometry import Point

>>> info = TypeInfo.fetch(conn, "geometry")
>>> register_shapely(info, conn)

>>> conn.execute("SELECT pg_typeof(%s)", [Point(1.2, 3.4)]).fetchone()[0]
'geometry'

>>> conn.execute("""
... SELECT ST_GeomFromGeoJSON('{
... "type":"Point",
... "coordinates":[-48.23456,20.12345]}')
... """).fetchone()[0]
<shapely.geometry.multipolygon.MultiPolygon object at 0x7fb131f3cd90>

Notice that, if the geometry adapters are registered on a specific object (a connection or cursor), other connections and
cursors will be unaffected:

>>> conn2 = psycopg.connect(CONN_STR)
>>> conn2.execute("""
... SELECT ST_GeomFromGeoJSON('{
... "type":"Point",
... "coordinates":[-48.23456,20.12345]}')
... """).fetchone()[0]
'0101000020E61000009279E40F061E48C0F2B0506B9A1F3440'

1.1.6 Transactions management

Psycopg has a behaviour that may seem surprising compared to psql: by default, any database operation will start a new
transaction. As a consequence, changes made by any cursor of the connection will not be visible until Connection.
commit() is called, and will be discarded by Connection.rollback(). The following operation on the same con-
nection will start a new transaction.

If a database operation fails, the server will refuse further commands, until a rollback() is called.

If the connection is closed with a transaction open, no COMMIT command is sent to the server, which will then discard
the connection. Certain middleware (such as PgBouncer) will also discard a connection left in transaction state, so, if
possible you will want to commit or rollback a connection before finishing working with it.

An example of what will happen, the first time you will use Psycopg (and to be disappointed by it), is likely:

conn = psycopg.connect()

Creating a cursor doesn't start a transaction or affect the connection
in any way.
cur = conn.cursor()

cur.execute("SELECT count(*) FROM my_table")
This function call executes:
- BEGIN
- SELECT count(*) FROM my_table

(continues on next page)

1.1. Getting started with Psycopg 3 25

psycopg, Release 3.1.9

(continued from previous page)

So now a transaction has started.

If your program spends a long time in this state, the server will keep
a connection "idle in transaction", which is likely something undesired

cur.execute("INSERT INTO data VALUES (%s)", ("Hello",))
This statement is executed inside the transaction

conn.close()
No COMMIT was sent: the INSERT was discarded.

There are a few things going wrong here, let’s see how they can be improved.

One obvious problem after the run above is that, firing up psql, you will see no new record in the table data. One
way to fix the problem is to call conn.commit() before closing the connection. Thankfully, if you use the connection
context, Psycopg will commit the connection at the end of the block (or roll it back if the block is exited with an
exception):

The code modified using a connection context will result in the following sequence of database statements:

with psycopg.connect() as conn:

cur = conn.cursor()

cur.execute("SELECT count(*) FROM my_table")
This function call executes:
- BEGIN
- SELECT count(*) FROM my_table
So now a transaction has started.

cur.execute("INSERT INTO data VALUES (%s)", ("Hello",))
This statement is executed inside the transaction

No exception at the end of the block:
COMMIT is executed.

This way we don’t have to remember to call neither close() nor commit() and the database operations actually have
a persistent effect. The code might still do something you don’t expect: keep a transaction from the first operation
to the connection closure. You can have a finer control over the transactions using an autocommit transaction and/or
transaction contexts.

Warning: By default even a simple SELECT will start a transaction: in long-running programs, if no further action
is taken, the session will remain idle in transaction, an undesirable condition for several reasons (locks are held by
the session, tables bloat. . .). For long lived scripts, either make sure to terminate a transaction as soon as possible
or use an autocommit connection.

Hint: If a database operation fails with an error message such as InFailedSqlTransaction: current transaction is
aborted, commands ignored until end of transaction block, it means that a previous operation failed and the database
session is in a state of error. You need to call rollback() if you want to keep on using the same connection.

26 Chapter 1. Documentation

psycopg, Release 3.1.9

Autocommit transactions

The manual commit requirement can be suspended using autocommit, either as connection attribute or as connect()
parameter. This may be required to run operations that cannot be executed inside a transaction, such as CREATE
DATABASE, VACUUM, CALL on stored procedures using transaction control.

With an autocommit transaction, the above sequence of operation results in:

with psycopg.connect(autocommit=True) as conn:

cur = conn.cursor()

cur.execute("SELECT count(*) FROM my_table")
This function call now only executes:
- SELECT count(*) FROM my_table
and no transaction starts.

cur.execute("INSERT INTO data VALUES (%s)", ("Hello",))
The result of this statement is persisted immediately by the database

The connection is closed at the end of the block but, because it is not
in a transaction state, no COMMIT is executed.

An autocommit transaction behaves more as someone coming from psql would expect. This has a beneficial perfor-
mance effect, because less queries are sent and less operations are performed by the database. The statements, however,
are not executed in an atomic transaction; if you need to execute certain operations inside a transaction, you can achieve
that with an autocommit connection too, using an explicit transaction block.

Transaction contexts

A more transparent way to make sure that transactions are finalised at the right time is to use with Connection.
transaction() to create a transaction context. When the context is entered, a transaction is started; when leaving the
context the transaction is committed, or it is rolled back if an exception is raised inside the block.

Continuing the example above, if you want to use an autocommit connection but still wrap selected groups of commands
inside an atomic transaction, you can use a transaction() context:

with psycopg.connect(autocommit=True) as conn:

cur = conn.cursor()

cur.execute("SELECT count(*) FROM my_table")
The connection is autocommit, so no BEGIN executed.

with conn.transaction():
BEGIN is executed, a transaction started

cur.execute("INSERT INTO data VALUES (%s)", ("Hello",))
cur.execute("INSERT INTO times VALUES (now())")
These two operation run atomically in the same transaction

COMMIT is executed at the end of the block.
The connection is in idle state again.

(continues on next page)

1.1. Getting started with Psycopg 3 27

https://www.postgresql.org/docs/current/xproc.html

psycopg, Release 3.1.9

(continued from previous page)

The connection is closed at the end of the block.

Note that connection blocks can also be used with non-autocommit connections: in this case you still need to pay
attention to eventual transactions started automatically. If an operation starts an implicit transaction, a transaction()
block will only manage a savepoint sub-transaction, leaving the caller to deal with the main transaction, as explained
in Transactions management:

conn = psycopg.connect()

cur = conn.cursor()

cur.execute("SELECT count(*) FROM my_table")
This function call executes:
- BEGIN
- SELECT count(*) FROM my_table
So now a transaction has started.

with conn.transaction():
The block starts with a transaction already open, so it will execute
- SAVEPOINT

cur.execute("INSERT INTO data VALUES (%s)", ("Hello",))

The block was executing a sub-transaction so on exit it will only run:
- RELEASE SAVEPOINT
The transaction is still on.

conn.close()
No COMMIT was sent: the INSERT was discarded.

If a transaction() block starts when no transaction is active then it will manage a proper transaction. In essence, a
transaction context tries to leave a connection in the state it found it, and leaves you to deal with the wider context.

Hint: The interaction between non-autocommit transactions and transaction contexts is probably surprising. Al-
though the non-autocommit default is what’s demanded by the DBAPI, the personal preference of several experienced
developers is to:

• use a connection block: with psycopg.connect(...) as conn;

• use an autocommit connection, either passing autocommit=True as connect() parameter or setting the at-
tribute conn.autocommit = True;

• use with conn.transaction() blocks to manage transactions only where needed.

28 Chapter 1. Documentation

psycopg, Release 3.1.9

Nested transactions

Transaction blocks can be also nested (internal transaction blocks are implemented using SAVEPOINT): an exception
raised inside an inner block has a chance of being handled and not completely fail outer operations. The following is
an example where a series of operations interact with the database: operations are allowed to fail; at the end we also
want to store the number of operations successfully processed.

with conn.transaction() as tx1:
num_ok = 0
for operation in operations:

try:
with conn.transaction() as tx2:

unreliable_operation(conn, operation)
except Exception:

logger.exception(f"{operation} failed")
else:

num_ok += 1

save_number_of_successes(conn, num_ok)

If unreliable_operation() causes an error, including an operation causing a database error, all its changes will be
reverted. The exception bubbles up outside the block: in the example it is intercepted by the try so that the loop can
complete. The outermost block is unaffected (unless other errors happen there).

You can also write code to explicitly roll back any currently active transaction block, by raising the Rollback exception.
The exception “jumps” to the end of a transaction block, rolling back its transaction but allowing the program execution
to continue from there. By default the exception rolls back the innermost transaction block, but any current block can
be specified as the target. In the following example, a hypothetical CancelCommandmay stop the processing and cancel
any operation previously performed, but not entirely committed yet.

from psycopg import Rollback

with conn.transaction() as outer_tx:
for command in commands():

with conn.transaction() as inner_tx:
if isinstance(command, CancelCommand):

raise Rollback(outer_tx)
process_command(command)

If `Rollback` is raised, it would propagate only up to this block,
and the program would continue from here with no exception.

Transaction characteristics

You can set transaction parameters for the transactions that Psycopg handles. They affect the transactions started
implicitly by non-autocommit transactions and the ones started explicitly by Connection.transaction() for both
autocommit and non-autocommit transactions. Leaving these parameters as Nonewill use the server’s default behaviour
(which is controlled by server settings such as default_transaction_isolation).

In order to set these parameters you can use the connection attributes isolation_level, read_only, deferrable.
For async connections you must use the equivalent set_isolation_level() method and similar. The parameters
can only be changed if there isn’t a transaction already active on the connection.

1.1. Getting started with Psycopg 3 29

https://www.postgresql.org/docs/current/sql-savepoint.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-ISOLATION

psycopg, Release 3.1.9

Warning: Applications running at REPEATABLE_READ or SERIALIZABLE isolation level are exposed to serializa-
tion failures. In certain concurrent update cases, PostgreSQL will raise an exception looking like:

psycopg2.errors.SerializationFailure: could not serialize access
due to concurrent update

In this case the application must be prepared to repeat the operation that caused the exception.

Two-Phase Commit protocol support

New in version 3.1.

Psycopg exposes the two-phase commit features available in PostgreSQL implementing the two-phase commit exten-
sions proposed by the DBAPI.

The DBAPI model of two-phase commit is inspired by the XA specification, according to which transaction IDs are
formed from three components:

• a format ID (non-negative 32 bit integer)

• a global transaction ID (string not longer than 64 bytes)

• a branch qualifier (string not longer than 64 bytes)

For a particular global transaction, the first two components will be the same for all the resources. Every resource will
be assigned a different branch qualifier.

According to the DBAPI specification, a transaction ID is created using the Connection.xid() method. Once
you have a transaction id, a distributed transaction can be started with Connection.tpc_begin(), prepared using
tpc_prepare() and completed using tpc_commit() or tpc_rollback(). Transaction IDs can also be retrieved
from the database using tpc_recover() and completed using the above tpc_commit() and tpc_rollback().

PostgreSQL doesn’t follow the XA standard though, and the ID for a PostgreSQL prepared transaction can be any
string up to 200 characters long. Psycopg’s Xid objects can represent both XA-style transactions IDs (such as the ones
created by the xid() method) and PostgreSQL transaction IDs identified by an unparsed string.

The format in which the Xids are converted into strings passed to the database is the same employed by the PostgreSQL
JDBC driver: this should allow interoperation between tools written in Python and in Java. For example a recovery
tool written in Python would be able to recognize the components of transactions produced by a Java program.

For further details see the documentation for the Two-Phase Commit support methods.

1.1.7 Using COPY TO and COPY FROM

Psycopg allows to operate with PostgreSQL COPY protocol. COPY is one of the most efficient ways to load data into
the database (and to modify it, with some SQL creativity).

Copy is supported using the Cursor.copy()method, passing it a query of the form COPY ... FROM STDIN or COPY
... TO STDOUT, and managing the resulting Copy object in a with block:

with cursor.copy("COPY table_name (col1, col2) FROM STDIN") as copy:
pass data to the 'copy' object using write()/write_row()

You can compose a COPY statement dynamically by using objects from the psycopg.sql module:

30 Chapter 1. Documentation

https://www.postgresql.org/docs/current/transaction-iso.html#XACT-REPEATABLE-READ
https://www.python.org/dev/peps/pep-0249/#optional-two-phase-commit-extensions
https://www.python.org/dev/peps/pep-0249/#optional-two-phase-commit-extensions
https://publications.opengroup.org/c193
https://jdbc.postgresql.org/
https://jdbc.postgresql.org/
https://www.postgresql.org/docs/current/sql-copy.html

psycopg, Release 3.1.9

with cursor.copy(
sql.SQL("COPY {} TO STDOUT").format(sql.Identifier("table_name"))

) as copy:
read data from the 'copy' object using read()/read_row()

Changed in version 3.1: You can also pass parameters to copy(), like in execute():

with cur.copy("COPY (SELECT * FROM table_name LIMIT %s) TO STDOUT", (3,)) as copy:
expect no more than three records

The connection is subject to the usual transaction behaviour, so, unless the connection is in autocommit, at the end of the
COPY operation you will still have to commit the pending changes and you can still roll them back. See Transactions
management for details.

Writing data row-by-row

Using a copy operation you can load data into the database from any Python iterable (a list of tuples, or any iterable of
sequences): the Python values are adapted as they would be in normal querying. To perform such operation use a COPY
... FROM STDIN with Cursor.copy() and use write_row() on the resulting object in a with block. On exiting
the block the operation will be concluded:

records = [(10, 20, "hello"), (40, None, "world")]

with cursor.copy("COPY sample (col1, col2, col3) FROM STDIN") as copy:
for record in records:

copy.write_row(record)

If an exception is raised inside the block, the operation is interrupted and the records inserted so far are discarded.

In order to read or write from Copy row-by-row you must not specify COPY options such as FORMAT CSV, DELIMITER,
NULL: please leave these details alone, thank you :)

Reading data row-by-row

You can also do the opposite, reading rows out of a COPY ... TO STDOUT operation, by iterating on rows(). However
this is not something you may want to do normally: usually the normal query process will be easier to use.

PostgreSQL, currently, doesn’t give complete type information on COPY TO, so the rows returned will have unparsed
data, as strings or bytes, according to the format.

with cur.copy("COPY (VALUES (10::int, current_date)) TO STDOUT") as copy:
for row in copy.rows():

print(row) # return unparsed data: ('10', '2046-12-24')

You can improve the results by using set_types() before reading, but you have to specify them yourself.

with cur.copy("COPY (VALUES (10::int, current_date)) TO STDOUT") as copy:
copy.set_types(["int4", "date"])
for row in copy.rows():

print(row) # (10, datetime.date(2046, 12, 24))

1.1. Getting started with Psycopg 3 31

psycopg, Release 3.1.9

Copying block-by-block

If data is already formatted in a way suitable for copy (for instance because it is coming from a file resulting from a
previous COPY TO operation) it can be loaded into the database using Copy.write() instead.

with open("data", "r") as f:
with cursor.copy("COPY data FROM STDIN") as copy:

while data := f.read(BLOCK_SIZE):
copy.write(data)

In this case you can use any COPY option and format, as long as the input data is compatible with what the operation
in copy() expects. Data can be passed as str, if the copy is in FORMAT TEXT, or as bytes, which works with both
FORMAT TEXT and FORMAT BINARY.

In order to produce data in COPY format you can use a COPY ... TO STDOUT statement and iterate over the resulting
Copy object, which will produce a stream of bytes objects:

with open("data.out", "wb") as f:
with cursor.copy("COPY table_name TO STDOUT") as copy:

for data in copy:
f.write(data)

Binary copy

Binary copy is supported by specifying FORMAT BINARY in the COPY statement. In order to import binary data using
write_row(), all the types passed to the database must have a binary dumper registered; this is not necessary if the
data is copied block-by-block using write().

Warning: PostgreSQL is particularly finicky when loading data in binary mode and will apply no cast rules. This
means, for example, that passing the value 100 to an integer column will fail, because Psycopg will pass it as a
smallint value, and the server will reject it because its size doesn’t match what expected.

You can work around the problem using the set_types() method of the Copy object and specifying carefully the
types to load.

See also:

See Binary parameters and results for further info about binary querying.

Asynchronous copy support

Asynchronous operations are supported using the same patterns as above, using the objects obtained by an
AsyncConnection. For instance, if f is an object supporting an asynchronous read() method returning COPY data,
a fully-async copy operation could be:

async with cursor.copy("COPY data FROM STDIN") as copy:
while data := await f.read():

await copy.write(data)

The AsyncCopy object documentation describes the signature of the asynchronous methods and the differences from
its sync Copy counterpart.

32 Chapter 1. Documentation

psycopg, Release 3.1.9

See also:

See Asynchronous operations for further info about using async objects.

Example: copying a table across servers

In order to copy a table, or a portion of a table, across servers, you can use two COPY operations on two different
connections, reading from the first and writing to the second.

with psycopg.connect(dsn_src) as conn1, psycopg.connect(dsn_tgt) as conn2:
with conn1.cursor().copy("COPY src TO STDOUT (FORMAT BINARY)") as copy1:

with conn2.cursor().copy("COPY tgt FROM STDIN (FORMAT BINARY)") as copy2:
for data in copy1:

copy2.write(data)

Using FORMAT BINARY usually gives a performance boost, but it only works if the source and target schema are perfectly
identical. If the tables are only compatible (for example, if you are copying an integer field into a bigint destination
field) you should omit the BINARY option and perform a text-based copy. See Binary copy for details.

The same pattern can be adapted to use async objects in order to perform an async copy.

1.1.8 Differences from psycopg2

Psycopg 3 uses the common DBAPI structure of many other database adapters and tries to behave as close as possible
to psycopg2. There are however a few differences to be aware of.

Tip: Most of the times, the workarounds suggested here will work with both Psycopg 2 and 3, which could be useful
if you are porting a program or writing a program that should work with both Psycopg 2 and 3.

Server-side binding

Psycopg 3 sends the query and the parameters to the server separately, instead of merging them on the client side.
Server-side binding works for normal SELECT and data manipulation statements (INSERT, UPDATE, DELETE), but it
doesn’t work with many other statements. For instance, it doesn’t work with SET or with NOTIFY:

>>> conn.execute("SET TimeZone TO %s", ["UTC"])
Traceback (most recent call last):
...
psycopg.errors.SyntaxError: syntax error at or near "$1"
LINE 1: SET TimeZone TO $1

^

>>> conn.execute("NOTIFY %s, %s", ["chan", 42])
Traceback (most recent call last):
...
psycopg.errors.SyntaxError: syntax error at or near "$1"
LINE 1: NOTIFY $1, $2

^

and with any data definition statement:

1.1. Getting started with Psycopg 3 33

psycopg, Release 3.1.9

>>> conn.execute("CREATE TABLE foo (id int DEFAULT %s)", [42])
Traceback (most recent call last):
...
psycopg.errors.UndefinedParameter: there is no parameter $1
LINE 1: CREATE TABLE foo (id int DEFAULT $1)

^

Sometimes, PostgreSQL offers an alternative: for instance the set_config() function can be used instead of the SET
statement, the pg_notify() function can be used instead of NOTIFY:

>>> conn.execute("SELECT set_config('TimeZone', %s, false)", ["UTC"])

>>> conn.execute("SELECT pg_notify(%s, %s)", ["chan", "42"])

If this is not possible, you must merge the query and the parameter on the client side. You can do so using the psycopg.
sql objects:

>>> from psycopg import sql

>>> cur.execute(sql.SQL("CREATE TABLE foo (id int DEFAULT {})").format(42))

or creating a client-side binding cursor such as ClientCursor:

>>> cur = ClientCursor(conn)
>>> cur.execute("CREATE TABLE foo (id int DEFAULT %s)", [42])

If you need ClientCursor often, you can set the Connection.cursor_factory to have them created by default by
Connection.cursor(). This way, Psycopg 3 will behave largely the same way of Psycopg 2.

Note that, both server-side and client-side, you can only specify values as parameters (i.e. the strings that go in single
quotes). If you need to parametrize different parts of a statement (such as a table name), you must use the psycopg.sql
module:

>>> from psycopg import sql

This will quote the user and the password using the right quotes
e.g.: ALTER USER "foo" SET PASSWORD 'bar'
>>> conn.execute(
... sql.SQL("ALTER USER {} SET PASSWORD {}")
... .format(sql.Identifier(username), password))

Multiple statements in the same query

As a consequence of using server-side bindings, when parameters are used, it is not possible to execute several state-
ments in the same execute() call, separating them by semicolon:

>>> conn.execute(
... "INSERT INTO foo VALUES (%s); INSERT INTO foo VALUES (%s)",
... (10, 20))
Traceback (most recent call last):
...
psycopg.errors.SyntaxError: cannot insert multiple commands into a prepared statement

34 Chapter 1. Documentation

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-SET
https://www.postgresql.org/docs/current/sql-notify.html#id-1.9.3.157.7.5

psycopg, Release 3.1.9

One obvious way to work around the problem is to use several execute() calls.

There is no such limitation if no parameters are used. As a consequence, you can compose a multiple query on the
client side and run them all in the same execute() call, using the psycopg.sql objects:

>>> from psycopg import sql
>>> conn.execute(
... sql.SQL("INSERT INTO foo VALUES ({}); INSERT INTO foo values ({})"
... .format(10, 20))

or a client-side binding cursor:

>>> cur = psycopg.ClientCursor(conn)
>>> cur.execute(
... "INSERT INTO foo VALUES (%s); INSERT INTO foo VALUES (%s)",
... (10, 20))

Warning: If a statements must be executed outside a transaction (such as CREATE DATABASE), it cannot be exe-
cuted in batch with other statements, even if the connection is in autocommit mode:

>>> conn.autocommit = True
>>> conn.execute("CREATE DATABASE foo; SELECT 1")
Traceback (most recent call last):
...
psycopg.errors.ActiveSqlTransaction: CREATE DATABASE cannot run inside a transaction␣
↪→block

This happens because PostgreSQL itself will wrap multiple statements in a transaction. Note that you will ex-
perience a different behaviour in psql (psql will split the queries on semicolons and send them to the server
separately).

This is not new in Psycopg 3: the same limitation is present in psycopg2 too.

Multiple results returned from multiple statements

If more than one statement returning results is executed in psycopg2, only the result of the last statement is returned:

>>> cur_pg2.execute("SELECT 1; SELECT 2")
>>> cur_pg2.fetchone()
(2,)

In Psycopg 3 instead, all the results are available. After running the query, the first result will be readily available in
the cursor and can be consumed using the usual fetch*() methods. In order to access the following results, you can
use the Cursor.nextset() method:

>>> cur_pg3.execute("SELECT 1; SELECT 2")
>>> cur_pg3.fetchone()
(1,)

>>> cur_pg3.nextset()
True
>>> cur_pg3.fetchone()
(2,)

(continues on next page)

1.1. Getting started with Psycopg 3 35

psycopg, Release 3.1.9

(continued from previous page)

>>> cur_pg3.nextset()
None # no more results

Remember though that you cannot use server-side bindings to execute more than one statement in the same query.

Different cast rules

In rare cases, especially around variadic functions, PostgreSQL might fail to find a function candidate for the given
data types:

>>> conn.execute("SELECT json_build_array(%s, %s)", ["foo", "bar"])
Traceback (most recent call last):
...
psycopg.errors.IndeterminateDatatype: could not determine data type of parameter $1

This can be worked around specifying the argument types explicitly via a cast:

>>> conn.execute("SELECT json_build_array(%s::text, %s::text)", ["foo", "bar"])

You cannot use IN %s with a tuple

IN cannot be used with a tuple as single parameter, as was possible with psycopg2:

>>> conn.execute("SELECT * FROM foo WHERE id IN %s", [(10,20,30)])
Traceback (most recent call last):
...
psycopg.errors.SyntaxError: syntax error at or near "$1"
LINE 1: SELECT * FROM foo WHERE id IN $1

^

What you can do is to use the = ANY() construct and pass the candidate values as a list instead of a tuple, which will
be adapted to a PostgreSQL array:

>>> conn.execute("SELECT * FROM foo WHERE id = ANY(%s)", [[10,20,30]])

Note that ANY() can be used with psycopg2 too, and has the advantage of accepting an empty list of values too as
argument, which is not supported by the IN operator instead.

Different adaptation system

The adaptation system has been completely rewritten, in order to address server-side parameters adaptation, but also
to consider performance, flexibility, ease of customization.

The default behaviour with builtin data should be what you would expect. If you have customised the way to adapt data,
or if you are managing your own extension types, you should look at the new adaptation system.

See also:

• Adapting basic Python types for the basic behaviour.

• Data adaptation configuration for more advanced use.

36 Chapter 1. Documentation

https://www.postgresql.org/docs/current/functions-comparisons.html#id-1.5.8.30.16

psycopg, Release 3.1.9

Copy is no longer file-based

psycopg2 exposes a few copy methods to interact with PostgreSQL COPY. Their file-based interface doesn’t make it
easy to load dynamically-generated data into a database.

There is now a single copy() method, which is similar to psycopg2 copy_expert() in accepting a free-form COPY
command and returns an object to read/write data, block-wise or record-wise. The different usage pattern also enables
COPY to be used in async interactions.

See also:

See Using COPY TO and COPY FROM for the details.

with connection

In psycopg2, using the syntax with connection, only the transaction is closed, not the connection. This behaviour is
surprising for people used to several other Python classes wrapping resources, such as files.

In Psycopg 3, using with connection will close the connection at the end of the with block, making handling the
connection resources more familiar.

In order to manage transactions as blocks you can use the Connection.transaction() method, which allows for
finer control, for instance to use nested transactions.

See also:

See Transaction contexts for details.

callproc() is gone

cursor.callproc() is not implemented. The method has a simplistic semantic which doesn’t account for Post-
greSQL positional parameters, procedures, set-returning functions. . . Use a normal execute() with SELECT
function_name(...) or CALL procedure_name(...) instead.

client_encoding is gone

Psycopg automatically uses the database client encoding to decode data to Unicode strings. Use ConnectionInfo.
encoding if you need to read the encoding. You can select an encoding at connection time using the
client_encoding connection parameter and you can change the encoding of a connection by running a SET
client_encoding statement. . . But why would you?

No default infinity dates handling

PostgreSQL can represent a much wider range of dates and timestamps than Python. While Python dates are limited
to the years between 1 and 9999 (represented by constants such as datetime.date.min and max), PostgreSQL dates
extend to BC dates and past the year 10K. Furthermore PostgreSQL can also represent symbolic dates “infinity”, in
both directions.

In psycopg2, by default, infinity dates and timestamps map to ‘date.max’ and similar constants. This has the problem
of creating a non-bijective mapping (two Postgres dates, infinity and 9999-12-31, both map to the same Python date).
There is also the perversity that valid Postgres dates, greater than Python date.max but arguably lesser than infinity,
will still overflow.

In Psycopg 3, every date greater than year 9999 will overflow, including infinity. If you would like to customize
this mapping (for instance flattening every date past Y10K on date.max) you can subclass and adapt the appropriate
loaders: take a look at this example to see how.

1.1. Getting started with Psycopg 3 37

https://www.psycopg.org/docs/usage.html#copy
https://www.psycopg.org/docs/usage.html#with
https://docs.python.org/3/library/datetime.html#datetime.date.min
https://docs.python.org/3/library/datetime.html#datetime.date.max
https://www.psycopg.org/docs/usage.html#infinite-dates-handling

psycopg, Release 3.1.9

What’s new in Psycopg 3

• Asynchronous support

• Server-side parameters binding

• Prepared statements

• Binary communication

• Python-based COPY support

• Support for static typing

• A redesigned connection pool

• Direct access to the libpq functionalities

1.2 More advanced topics

Once you have familiarised yourself with the Psycopg basic operations, you can take a look at the chapter of this section
for more advanced usages.

1.2.1 Asynchronous operations

Psycopg Connection and Cursor have counterparts AsyncConnection and AsyncCursor supporting an asyncio
interface.

The design of the asynchronous objects is pretty much the same of the sync ones: in order to use them you will only
have to scatter the await keyword here and there.

async with await psycopg.AsyncConnection.connect(
"dbname=test user=postgres") as aconn:

async with aconn.cursor() as acur:
await acur.execute(

"INSERT INTO test (num, data) VALUES (%s, %s)",
(100, "abc'def"))

await acur.execute("SELECT * FROM test")
await acur.fetchone()
will return (1, 100, "abc'def")
async for record in acur:

print(record)

Changed in version 3.1: AsyncConnection.connect() performs DNS name resolution in a non-blocking way.

Warning: Before version 3.1, AsyncConnection.connect() may still block on DNS name resolution. To
avoid that you should set the hostaddr connection parameter, or use the resolve_hostaddr_async() to do it
automatically.

Warning: On Windows, Psycopg is not compatible with the default ProactorEventLoop. Please use a different
loop, for instance the SelectorEventLoop.

For instance, you can use, early in your program:

38 Chapter 1. Documentation

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.ProactorEventLoop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop

psycopg, Release 3.1.9

asyncio.set_event_loop_policy(
asyncio.WindowsSelectorEventLoopPolicy()

)

with async connections

As seen in the basic usage, connections and cursors can act as context managers, so you can run:

with psycopg.connect("dbname=test user=postgres") as conn:
with conn.cursor() as cur:

cur.execute(...)
the cursor is closed upon leaving the context

the transaction is committed, the connection closed

For asynchronous connections it’s almost what you’d expect, but not quite. Please note that connect() and cursor()
don’t return a context: they are both factory methods which return an object which can be used as a context. That’s
because there are several use cases where it’s useful to handle the objects manually and only close() them when
required.

As a consequence you cannot use async with connect(): you have to do it in two steps instead, as in

aconn = await psycopg.AsyncConnection.connect()
async with aconn:

async with aconn.cursor() as cur:
await cur.execute(...)

which can be condensed into async with await:

async with await psycopg.AsyncConnection.connect() as aconn:
async with aconn.cursor() as cur:

await cur.execute(...)

. . . but no less than that: you still need to do the double async thing.

Note that the AsyncConnection.cursor() function is not an async function (it never performs I/O), so you don’t
need an await on it; as a consequence you can use the normal async with context manager.

Interrupting async operations using Ctrl-C

If a long running operation is interrupted by a Ctrl-C on a normal connection running in the main thread, the operation
will be cancelled and the connection will be put in error state, from which can be recovered with a normal rollback().

If the query is running in an async connection, a Ctrl-C will be likely intercepted by the async loop and interrupt
the whole program. In order to emulate what normally happens with blocking connections, you can use asyncio’s
add_signal_handler(), to call Connection.cancel():

import asyncio
import signal

async with await psycopg.AsyncConnection.connect() as conn:
loop.add_signal_handler(signal.SIGINT, conn.cancel)
...

1.2. More advanced topics 39

https://docs.python.org/3/library/asyncio\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}policy.html#asyncio.set_event_loop_policy
https://docs.python.org/3/library/asyncio\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{}policy.html#asyncio.WindowsSelectorEventLoopPolicy
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_signal_handler
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_signal_handler

psycopg, Release 3.1.9

Server messages

PostgreSQL can send, together with the query results, informative messages about the operation just performed, such
as warnings or debug information. Notices may be raised even if the operations are successful and don’t indicate an
error. You are probably familiar with some of them, because they are reported by psql:

$ psql
=# ROLLBACK;
WARNING: there is no transaction in progress
ROLLBACK

Messages can be also sent by the PL/pgSQL ‘RAISE’ statement (at a level lower than EXCEPTION, otherwise
the appropriate DatabaseError will be raised). The level of the messages received can be controlled using the
client_min_messages setting.

By default, the messages received are ignored. If you want to process them on the client you can use the Connection.
add_notice_handler() function to register a function that will be invoked whenever a message is received. The
message is passed to the callback as a Diagnostic instance, containing all the information passed by the server, such
as the message text and the severity. The object is the same found on the diag attribute of the errors raised by the
server:

>>> import psycopg

>>> def log_notice(diag):
... print(f"The server says: {diag.severity} - {diag.message_primary}")

>>> conn = psycopg.connect(autocommit=True)
>>> conn.add_notice_handler(log_notice)

>>> cur = conn.execute("ROLLBACK")
The server says: WARNING - there is no transaction in progress
>>> print(cur.statusmessage)
ROLLBACK

Warning: The Diagnostic object received by the callback should not be used after the callback function termi-
nates, because its data is deallocated after the callbacks have been processed. If you need to use the information
later please extract the attributes requested and forward them instead of forwarding the whole Diagnostic object.

Asynchronous notifications

Psycopg allows asynchronous interaction with other database sessions using the facilities offered by PostgreSQL com-
mands LISTEN and NOTIFY. Please refer to the PostgreSQL documentation for examples about how to use this form of
communication.

Because of the way sessions interact with notifications (see NOTIFY documentation), you should keep the connection
in autocommit mode if you wish to receive or send notifications in a timely manner.

Notifications are received as instances of Notify. If you are reserving a connection only to receive notifications, the
simplest way is to consume the Connection.notifies generator. The generator can be stopped using close().

Note: You don’t need an AsyncConnection to handle notifications: a normal blocking Connection is perfectly

40 Chapter 1. Documentation

https://www.postgresql.org/docs/current/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
https://www.postgresql.org/docs/current/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-CLIENT-MIN-MESSAGES
https://www.postgresql.org/docs/current/sql-listen.html
https://www.postgresql.org/docs/current/sql-notify.html
https://www.postgresql.org/docs/current/sql-notify.html

psycopg, Release 3.1.9

valid.

The following example will print notifications and stop when one containing the "stop" message is received.

import psycopg
conn = psycopg.connect("", autocommit=True)
conn.execute("LISTEN mychan")
gen = conn.notifies()
for notify in gen:

print(notify)
if notify.payload == "stop":

gen.close()
print("there, I stopped")

If you run some NOTIFY in a psql session:

=# NOTIFY mychan, 'hello';
NOTIFY
=# NOTIFY mychan, 'hey';
NOTIFY
=# NOTIFY mychan, 'stop';
NOTIFY

You may get output from the Python process such as:

Notify(channel='mychan', payload='hello', pid=961823)
Notify(channel='mychan', payload='hey', pid=961823)
Notify(channel='mychan', payload='stop', pid=961823)
there, I stopped

Alternatively, you can use add_notify_handler() to register a callback function, which will be invoked whenever
a notification is received, during the normal query processing; you will be then able to use the connection normally.
Please note that in this case notifications will not be received immediately, but only during a connection operation, such
as a query.

conn.add_notify_handler(lambda n: print(f"got this: {n}"))

meanwhile in psql...
=# NOTIFY mychan, 'hey';
NOTIFY

print(conn.execute("SELECT 1").fetchone())
got this: Notify(channel='mychan', payload='hey', pid=961823)
(1,)

1.2. More advanced topics 41

psycopg, Release 3.1.9

Detecting disconnections

Sometimes it is useful to detect immediately when the connection with the database is lost. One brutal way to do so
is to poll a connection in a loop running an endless stream of SELECT 1. . . Don’t do so: polling is so out of fashion.
Besides, it is inefficient (unless what you really want is a client-server generator of ones), it generates useless traffic
and will only detect a disconnection with an average delay of half the polling time.

A more efficient and timely way to detect a server disconnection is to create an additional connection and wait for
a notification from the OS that this connection has something to say: only then you can run some checks. You can
dedicate a thread (or an asyncio task) to wait on this connection: such thread will perform no activity until awaken by
the OS.

In a normal (non asyncio) program you can use the selectors module. Because the Connection implements a
fileno() method you can just register it as a file-like object. You can run such code in a dedicated thread (and using
a dedicated connection) if the rest of the program happens to have something else to do too.

import selectors

sel = selectors.DefaultSelector()
sel.register(conn, selectors.EVENT_READ)
while True:

if not sel.select(timeout=60.0):
continue # No FD activity detected in one minute

Activity detected. Is the connection still ok?
try:

conn.execute("SELECT 1")
except psycopg.OperationalError:

You were disconnected: do something useful such as panicking
logger.error("we lost our database!")
sys.exit(1)

In an asyncio program you can dedicate a Task instead and do something similar using add_reader:

import asyncio

ev = asyncio.Event()
loop = asyncio.get_event_loop()
loop.add_reader(conn.fileno(), ev.set)

while True:
try:

await asyncio.wait_for(ev.wait(), 60.0)
except asyncio.TimeoutError:

continue # No FD activity detected in one minute

Activity detected. Is the connection still ok?
try:

await conn.execute("SELECT 1")
except psycopg.OperationalError:

Guess what happened
...

42 Chapter 1. Documentation

https://docs.python.org/3/library/selectors.html#module-selectors
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_reader

psycopg, Release 3.1.9

1.2.2 Static Typing

Psycopg source code is annotated according to PEP 0484 type hints and is checked using the current version of Mypy
in --strict mode.

If your application is checked using Mypy too you can make use of Psycopg types to validate the correct use of Psycopg
objects and of the data returned by the database.

Generic types

Psycopg Connection and Cursor objects are Generic objects and support a Row parameter which is the type of the
records returned.

By default methods such as Cursor.fetchall() return normal tuples of unknown size and content. As such,
the connect() function returns an object of type psycopg.Connection[Tuple[Any, ...]] and Connection.
cursor() returns an object of type psycopg.Cursor[Tuple[Any, ...]]. If you are writing generic plumbing
code it might be practical to use annotations such as Connection[Any] and Cursor[Any].

conn = psycopg.connect() # type is psycopg.Connection[Tuple[Any, ...]]

cur = conn.cursor() # type is psycopg.Cursor[Tuple[Any, ...]]

rec = cur.fetchone() # type is Optional[Tuple[Any, ...]]

recs = cur.fetchall() # type is List[Tuple[Any, ...]]

Type of rows returned

If you want to use connections and cursors returning your data as different types, for instance as dictionaries, you can
use the row_factory argument of the connect() and the cursor() method, which will control what type of record
is returned by the fetch methods of the cursors and annotate the returned objects accordingly. See Row factories for
more details.

dconn = psycopg.connect(row_factory=dict_row)
dconn type is psycopg.Connection[Dict[str, Any]]

dcur = conn.cursor(row_factory=dict_row)
dcur = dconn.cursor()
dcur type is psycopg.Cursor[Dict[str, Any]] in both cases

drec = dcur.fetchone()
drec type is Optional[Dict[str, Any]]

1.2. More advanced topics 43

https://peps.python.org/pep-0484/
http://mypy-lang.org/
https://docs.python.org/3/library/typing.html#typing.Generic

psycopg, Release 3.1.9

Example: returning records as Pydantic models

Using Pydantic it is possible to enforce static typing at runtime. Using a Pydantic model factory the code can be checked
statically using Mypy and querying the database will raise an exception if the rows returned is not compatible with the
model.

The following example can be checked with mypy --strict without reporting any issue. Pydantic will also raise a
runtime error in case the Person is used with a query that returns incompatible data.

from datetime import date
from typing import Optional

import psycopg
from psycopg.rows import class_row
from pydantic import BaseModel

class Person(BaseModel):
id: int
first_name: str
last_name: str
dob: Optional[date]

def fetch_person(id: int) -> Person:
with psycopg.connect() as conn:

with conn.cursor(row_factory=class_row(Person)) as cur:
cur.execute(

"""
SELECT id, first_name, last_name, dob
FROM (VALUES

(1, 'John', 'Doe', '2000-01-01'::date),
(2, 'Jane', 'White', NULL)

) AS data (id, first_name, last_name, dob)
WHERE id = %(id)s;
""",
{"id": id},

)
obj = cur.fetchone()

reveal_type(obj) would return 'Optional[Person]' here

if not obj:
raise KeyError(f"person {id} not found")

reveal_type(obj) would return 'Person' here

return obj

for id in [1, 2]:
p = fetch_person(id)
if p.dob:

print(f"{p.first_name} was born in {p.dob.year}")
else:

print(f"Who knows when {p.first_name} was born")

44 Chapter 1. Documentation

https://pydantic-docs.helpmanual.io/

psycopg, Release 3.1.9

Checking literal strings in queries

The execute() method and similar should only receive a literal string as input, according to PEP 675. This means
that the query should come from a literal string in your code, not from an arbitrary string expression.

For instance, passing an argument to the query should be done via the second argument to execute(), not by string
composition:

def get_record(conn: psycopg.Connection[Any], id: int) -> Any:
cur = conn.execute("SELECT * FROM my_table WHERE id = %s" % id) # BAD!
return cur.fetchone()

the function should be implemented as:

def get_record(conn: psycopg.Connection[Any], id: int) -> Any:
cur = conn.execute("select * FROM my_table WHERE id = %s", (id,))
return cur.fetchone()

If you are composing a query dynamically you should use the sql.SQL object and similar to escape safely table and
field names. The parameter of the SQL() object should be a literal string:

def count_records(conn: psycopg.Connection[Any], table: str) -> int:
query = "SELECT count(*) FROM %s" % table # BAD!
return conn.execute(query).fetchone()[0]

the function should be implemented as:

def count_records(conn: psycopg.Connection[Any], table: str) -> int:
query = sql.SQL("SELECT count(*) FROM {}").format(sql.Identifier(table))
return conn.execute(query).fetchone()[0]

At the time of writing, no Python static analyzer implements this check (mypy doesn’t implement it, Pyre does, but
doesn’t work with psycopg yet). Once the type checkers support will be complete, the above bad statements should be
reported as errors.

1.2.3 Row factories

Cursor’s fetch* methods, by default, return the records received from the database as tuples. This can be changed to
better suit the needs of the programmer by using custom row factories.

The module psycopg.rows exposes several row factories ready to be used. For instance, if you want to return your
records as dictionaries, you can use dict_row:

>>> from psycopg.rows import dict_row

>>> conn = psycopg.connect(DSN, row_factory=dict_row)

>>> conn.execute("select 'John Doe' as name, 33 as age").fetchone()
{'name': 'John Doe', 'age': 33}

The row_factory parameter is supported by the connect() method and the cursor() method. Later usage of
row_factory overrides a previous one. It is also possible to change the Connection.row_factory or Cursor.
row_factory attributes to change what they return:

1.2. More advanced topics 45

https://peps.python.org/pep-0675/
https://github.com/python/mypy/issues/12554
https://pyre-check.org/
https://github.com/facebook/pyre-check/issues/636

psycopg, Release 3.1.9

>>> cur = conn.cursor(row_factory=dict_row)
>>> cur.execute("select 'John Doe' as name, 33 as age").fetchone()
{'name': 'John Doe', 'age': 33}

>>> from psycopg.rows import namedtuple_row
>>> cur.row_factory = namedtuple_row
>>> cur.execute("select 'John Doe' as name, 33 as age").fetchone()
Row(name='John Doe', age=33)

If you want to return objects of your choice you can use a row factory generator, for instance class_row or args_row,
or you can write your own row factory:

>>> from dataclasses import dataclass

>>> @dataclass
... class Person:
... name: str
... age: int
... weight: Optional[int] = None

>>> from psycopg.rows import class_row
>>> cur = conn.cursor(row_factory=class_row(Person))
>>> cur.execute("select 'John Doe' as name, 33 as age").fetchone()
Person(name='John Doe', age=33, weight=None)

Creating new row factories

A row factory is a callable that accepts a Cursor object and returns another callable, a row maker, which takes raw
data (as a sequence of values) and returns the desired object.

The role of the row factory is to inspect a query result (it is called after a query is executed and properties such as
description and pgresult are available on the cursor) and to prepare a callable which is efficient to call repeatedly
(because, for instance, the names of the columns are extracted, sanitised, and stored in local variables).

Formally, these objects are represented by the RowFactory and RowMaker protocols.

RowFactory objects can be implemented as a class, for instance:

from typing import Any, Sequence
from psycopg import Cursor

class DictRowFactory:
def __init__(self, cursor: Cursor[Any]):

self.fields = [c.name for c in cursor.description]

def __call__(self, values: Sequence[Any]) -> dict[str, Any]:
return dict(zip(self.fields, values))

or as a plain function:

def dict_row_factory(cursor: Cursor[Any]) -> RowMaker[dict[str, Any]]:
fields = [c.name for c in cursor.description]

def make_row(values: Sequence[Any]) -> dict[str, Any]:
(continues on next page)

46 Chapter 1. Documentation

psycopg, Release 3.1.9

(continued from previous page)

return dict(zip(fields, values))

return make_row

These can then be used by specifying a row_factory argument in Connection.connect(), Connection.
cursor(), or by setting the Connection.row_factory attribute.

conn = psycopg.connect(row_factory=DictRowFactory)
cur = conn.execute("SELECT first_name, last_name, age FROM persons")
person = cur.fetchone()
print(f"{person['first_name']} {person['last_name']}")

1.2.4 Connection pools

A connection pool is an object managing a set of connections and allowing their use in functions needing one. Because
the time to establish a new connection can be relatively long, keeping connections open can reduce latency.

This page explains a few basic concepts of Psycopg connection pool’s behaviour. Please refer to the ConnectionPool
object API for details about the pool operations.

Note: The connection pool objects are distributed in a package separate from the main psycopg package: use pip
install "psycopg[pool]" or pip install psycopg_pool to make the psycopg_pool package available. See
Installing the connection pool.

Pool life cycle

A simple way to use the pool is to create a single instance of it, as a global object, and to use this object in the rest of
the program, allowing other functions, modules, threads to use it:

module db.py in your program
from psycopg_pool import ConnectionPool

pool = ConnectionPool(conninfo, **kwargs)
the pool starts connecting immediately.

in another module
from .db import pool

def my_function():
with pool.connection() as conn:

conn.execute(...)

Ideally you may want to call close() when the use of the pool is finished. Failing to call close() at the end of the
program is not terribly bad: probably it will just result in some warnings printed on stderr. However, if you think that
it’s sloppy, you could use the atexit module to have close() called at the end of the program.

If you want to avoid starting to connect to the database at import time, and want to wait for the application to be
ready, you can create the pool using open=False, and call the open() and close() methods when the conditions are
right. Certain frameworks provide callbacks triggered when the program is started and stopped (for instance FastAPI
startup/shutdown events): they are perfect to initiate and terminate the pool operations:

1.2. More advanced topics 47

https://en.wikipedia.org/wiki/Connection_pool
https://docs.python.org/3/library/atexit.html#module-atexit
https://fastapi.tiangolo.com/advanced/events/#events-startup-shutdown
https://fastapi.tiangolo.com/advanced/events/#events-startup-shutdown

psycopg, Release 3.1.9

pool = ConnectionPool(conninfo, open=False, **kwargs)

@app.on_event("startup")
def open_pool():

pool.open()

@app.on_event("shutdown")
def close_pool():

pool.close()

Creating a single pool as a global variable is not the mandatory use: your program can create more than one pool,
which might be useful to connect to more than one database, or to provide different types of connections, for instance
to provide separate read/write and read-only connections. The pool also acts as a context manager and is open and
closed, if necessary, on entering and exiting the context block:

from psycopg_pool import ConnectionPool

with ConnectionPool(conninfo, **kwargs) as pool:
run_app(pool)

the pool is now closed

When the pool is open, the pool’s background workers start creating the requested min_size connections, while the
constructor (or the open() method) returns immediately. This allows the program some leeway to start before the
target database is up and running. However, if your application is misconfigured, or the network is down, it means that
the program will be able to start, but the threads requesting a connection will fail with a PoolTimeout only after the
timeout on connection() is expired. If this behaviour is not desirable (and you prefer your program to crash hard and
fast, if the surrounding conditions are not right, because something else will respawn it) you should call the wait()
method after creating the pool, or call open(wait=True): these methods will block until the pool is full, or will raise
a PoolTimeout exception if the pool isn’t ready within the allocated time.

Connections life cycle

The pool background workers create connections according to the parameters conninfo, kwargs,
and connection_class passed to ConnectionPool constructor, invoking something like
connection_class(conninfo, **kwargs). Once a connection is created it is also passed to the configure()
callback, if provided, after which it is put in the pool (or passed to a client requesting it, if someone is already knocking
at the door).

If a connection expires (it passes max_lifetime), or is returned to the pool in broken state, or is found closed by
check()), then the pool will dispose of it and will start a new connection attempt in the background.

Using connections from the pool

The pool can be used to request connections from multiple threads or concurrent tasks - it is hardly useful otherwise! If
more connections than the ones available in the pool are requested, the requesting threads are queued and are served a
connection as soon as one is available, either because another client has finished using it or because the pool is allowed
to grow (when max_size > min_size) and a new connection is ready.

The main way to use the pool is to obtain a connection using the connection() context, which returns a Connection
or subclass:

48 Chapter 1. Documentation

psycopg, Release 3.1.9

with my_pool.connection() as conn:
conn.execute("what you want")

The connection() context behaves like the Connection object context: at the end of the block, if there is a transaction
open, it will be committed, or rolled back if the context is exited with as exception.

At the end of the block the connection is returned to the pool and shouldn’t be used anymore by the code which obtained
it. If a reset() function is specified in the pool constructor, it is called on the connection before returning it to the
pool. Note that the reset() function is called in a worker thread, so that the thread which used the connection can
keep its execution without being slowed down by it.

Pool connection and sizing

A pool can have a fixed size (specifying no max_size or max_size = min_size) or a dynamic size (when max_size >
min_size). In both cases, as soon as the pool is created, it will try to acquire min_size connections in the background.

If an attempt to create a connection fails, a new attempt will be made soon after, using an exponential backoff to increase
the time between attempts, until a maximum of reconnect_timeout is reached. When that happens, the pool will
call the reconnect_failed() function, if provided to the pool, and just start a new connection attempt. You can use
this function either to send alerts or to interrupt the program and allow the rest of your infrastructure to restart it.

If more than min_size connections are requested concurrently, new ones are created, up to max_size. Note that
the connections are always created by the background workers, not by the thread asking for the connection: if a client
requests a new connection, and a previous client terminates its job before the new connection is ready, the waiting client
will be served the existing connection. This is especially useful in scenarios where the time to establish a connection
dominates the time for which the connection is used (see this analysis, for instance).

If a pool grows above min_size, but its usage decreases afterwards, a number of connections are eventually closed:
one every time a connection is unused after the max_idle time specified in the pool constructor.

What’s the right size for the pool?

Big question. Who knows. However, probably not as large as you imagine. Please take a look at this analysis for some
ideas.

Something useful you can do is probably to use the get_stats() method and monitor the behaviour of your program
to tune the configuration parameters. The size of the pool can also be changed at runtime using the resize() method.

Null connection pools

New in version 3.1.

Sometimes you may want leave the choice of using or not using a connection pool as a configuration parameter of your
application. For instance, you might want to use a pool if you are deploying a “large instance” of your application and
can dedicate it a handful of connections; conversely you might not want to use it if you deploy the application in several
instances, behind a load balancer, and/or using an external connection pool process such as PgBouncer.

Switching between using or not using a pool requires some code change, because the ConnectionPoolAPI is different
from the normal connect() function and because the pool can perform additional connection configuration (in the
configure parameter) that, if the pool is removed, should be performed in some different code path of your application.

The psycopg_pool 3.1 package introduces the NullConnectionPool class. This class has the same interface, and
largely the same behaviour, of the ConnectionPool, but doesn’t create any connection beforehand. When a connection
is returned, unless there are other clients already waiting, it is closed immediately and not kept in the pool state.

1.2. More advanced topics 49

https://github.com/brettwooldridge/HikariCP/blob/dev/documents/Welcome-To-The-Jungle.md
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

psycopg, Release 3.1.9

A null pool is not only a configuration convenience, but can also be used to regulate the access to the server by a client
program. If max_size is set to a value greater than 0, the pool will make sure that no more than max_size connections
are created at any given time. If more clients ask for further connections, they will be queued and served a connection
as soon as a previous client has finished using it, like for the basic pool. Other mechanisms to throttle client requests
(such as timeout or max_waiting) are respected too.

Note: Queued clients will be handed an already established connection, as soon as a previous client has finished using
it (and after the pool has returned it to idle state and called reset() on it, if necessary).

Because normally (i.e. unless queued) every client will be served a new connection, the time to obtain the connection
is paid by the waiting client; background workers are not normally involved in obtaining new connections.

Connection quality

The state of the connection is verified when a connection is returned to the pool: if a connection is broken during its
usage it will be discarded on return and a new connection will be created.

Warning: The health of the connection is not checked when the pool gives it to a client.

Why not? Because doing so would require an extra network roundtrip: we want to save you from its latency. Before
getting too angry about it, just think that the connection can be lost any moment while your program is using it. As
your program should already be able to cope with a loss of a connection during its process, it should be able to tolerate
to be served a broken connection: unpleasant but not the end of the world.

Warning: The health of the connection is not checked when the connection is in the pool.

Does the pool keep a watchful eye on the quality of the connections inside it? No, it doesn’t. Why not? Because you
will do it for us! Your program is only a big ruse to make sure the connections are still alive. . .

Not (entirely) trolling: if you are using a connection pool, we assume that you are using and returning connections at a
good pace. If the pool had to check for the quality of a broken connection before your program notices it, it should be
polling each connection even faster than your program uses them. Your database server wouldn’t be amused. . .

Can you do something better than that? Of course you can, there is always a better way than polling. You can use
the same recipe of Detecting disconnections, reserving a connection and using a thread to monitor for any activity
happening on it. If any activity is detected, you can call the pool check() method, which will run a quick check on
each connection in the pool, removing the ones found in broken state, and using the background workers to replace
them with fresh ones.

If you set up a similar check in your program, in case the database connection is temporarily lost, we cannot do anything
for the threads which had taken already a connection from the pool, but no other thread should be served a broken
connection, because check()would empty the pool and refill it with working connections, as soon as they are available.

Faster than you can say poll. Or pool.

50 Chapter 1. Documentation

psycopg, Release 3.1.9

Pool stats

The pool can return information about its usage using the methods get_stats() or pop_stats(). Both methods
return the same values, but the latter reset the counters after its use. The values can be sent to a monitoring system such
as Graphite or Prometheus.

The following values should be provided, but please don’t consider them as a rigid interface: it is possible that they
might change in the future. Keys whose value is 0 may not be returned.

Metric Meaning
pool_min Current value for min_size
pool_max Current value for max_size
pool_size Number of connections currently managed by the pool (in the pool, given to clients, being

prepared)
pool_available Number of connections currently idle in the pool
requests_waiting Number of requests currently waiting in a queue to receive a connection
usage_ms Total usage time of the connections outside the pool
requests_num Number of connections requested to the pool
requests_queued Number of requests queued because a connection wasn’t immediately available in the pool
requests_wait_ms Total time in the queue for the clients waiting
requests_errors Number of connection requests resulting in an error (timeouts, queue full. . .)
returns_bad Number of connections returned to the pool in a bad state
connections_num Number of connection attempts made by the pool to the server
connections_ms Total time spent to establish connections with the server
connections_errors Number of failed connection attempts
connections_lost Number of connections lost identified by check()

1.2.5 Cursor types

Psycopg can manage kinds of “cursors” which differ in where the state of a query being processed is stored: Client-side
cursors and Server-side cursors.

Client-side cursors

Client-side cursors are what Psycopg uses in its normal querying process. They are implemented by the Cursor and
AsyncCursor classes. In such querying pattern, after a cursor sends a query to the server (usually calling execute()),
the server replies transferring to the client the whole set of results requested, which is stored in the state of the same
cursor and from where it can be read from Python code (using methods such as fetchone() and siblings).

This querying process is very scalable because, after a query result has been transmitted to the client, the server doesn’t
keep any state. Because the results are already in the client memory, iterating its rows is very quick.

The downside of this querying method is that the entire result has to be transmitted completely to the client (with a
time proportional to its size) and the client needs enough memory to hold it, so it is only suitable for reasonably small
result sets.

1.2. More advanced topics 51

https://graphiteapp.org/
https://prometheus.io/

psycopg, Release 3.1.9

Client-side-binding cursors

New in version 3.1.

The previously described client-side cursors send the query and the parameters separately to the server. This is the
most efficient way to process parametrised queries and allows to build several features and optimizations. However,
not all types of queries can be bound server-side; in particular no Data Definition Language query can. See Server-side
binding for the description of these problems.

The ClientCursor (and its AsyncClientCursor async counterpart) merge the query on the client and send the query
and the parameters merged together to the server. This allows to parametrize any type of PostgreSQL statement, not
only queries (SELECT) and Data Manipulation statements (INSERT, UPDATE, DELETE).

Using ClientCursor, Psycopg 3 behaviour will be more similar to psycopg2 (which only implements client-side
binding) and could be useful to port Psycopg 2 programs more easily to Psycopg 3. The objects in the sql module
allow for greater flexibility (for instance to parametrize a table name too, not only values); however, for simple cases,
a ClientCursor could be the right object.

In order to obtain ClientCursor from a connection, you can set its cursor_factory (at init time or changing its
attribute afterwards):

from psycopg import connect, ClientCursor

conn = psycopg.connect(DSN, cursor_factory=ClientCursor)
cur = conn.cursor()
<psycopg.ClientCursor [no result] [IDLE] (database=piro) at 0x7fd977ae2880>

If you need to create a one-off client-side-binding cursor out of a normal connection, you can just use the ClientCursor
class passing the connection as argument.

conn = psycopg.connect(DSN)
cur = psycopg.ClientCursor(conn)

Warning: Client-side cursors don’t support binary parameters and return values and don’t support prepared
statements.

Tip: The best use for client-side binding cursors is probably to port large Psycopg 2 code to Psycopg 3, especially for
programs making wide use of Data Definition Language statements.

The psycopg.sql module allows for more generic client-side query composition, to mix client- and server-side pa-
rameters binding, and allows to parametrize tables and fields names too, or entirely generic SQL snippets.

Server-side cursors

PostgreSQL has its own concept of cursor too (sometimes also called portal). When a database cursor is created, the
query is not necessarily completely processed: the server might be able to produce results only as they are needed.
Only the results requested are transmitted to the client: if the query result is very large but the client only needs the first
few records it is possible to transmit only them.

The downside is that the server needs to keep track of the partially processed results, so it uses more memory and
resources on the server.

Psycopg allows the use of server-side cursors using the classes ServerCursor and AsyncServerCursor. They are
usually created by passing the name parameter to the cursor() method (reason for which, in psycopg2, they are

52 Chapter 1. Documentation

https://www.psycopg.org/docs/module.html#module-psycopg2

psycopg, Release 3.1.9

usually called named cursors). The use of these classes is similar to their client-side counterparts: their interface is
the same, but behind the scene they send commands to control the state of the cursor on the server (for instance when
fetching new records or when moving using scroll()).

Using a server-side cursor it is possible to process datasets larger than what would fit in the client’s memory. However
for small queries they are less efficient because it takes more commands to receive their result, so you should use them
only if you need to process huge results or if only a partial result is needed.

See also:

Server-side cursors are created and managed by ServerCursor using SQL commands such as DECLARE, FETCH,
MOVE. The PostgreSQL documentation gives a good idea of what is possible to do with them.

“Stealing” an existing cursor

A Psycopg ServerCursor can be also used to consume a cursor which was created in other ways than the DECLARE
that ServerCursor.execute() runs behind the scene.

For instance if you have a PL/pgSQL function returning a cursor:

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS $$
BEGIN

OPEN $1 FOR SELECT col FROM test;
RETURN $1;

END;
$$ LANGUAGE plpgsql;

you can run a one-off command in the same connection to call it (e.g. using Connection.execute()) in order to
create the cursor on the server:

conn.execute("SELECT reffunc('curname')")

after which you can create a server-side cursor declared by the same name, and directly call the fetch methods, skipping
the execute() call:

cur = conn.cursor('curname')
no cur.execute()
for record in cur: # or cur.fetchone(), cur.fetchmany()...

do something with record

1.2.6 Data adaptation configuration

The adaptation system is at the core of Psycopg and allows to customise the way Python objects are converted to
PostgreSQL when a query is performed and how PostgreSQL values are converted to Python objects when query
results are returned.

Note: For a high-level view of the conversion of types between Python and PostgreSQL please look at Passing
parameters to SQL queries. Using the objects described in this page is useful if you intend to customise the adaptation
rules.

• Adaptation configuration is performed by changing the adapters object of objects implementing the
AdaptContext protocol, for instance Connection or Cursor.

1.2. More advanced topics 53

https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://www.postgresql.org/docs/current/sql-move.html
https://www.postgresql.org/docs/current/plpgsql-cursors.html

psycopg, Release 3.1.9

• Every context object derived from another context inherits its adapters mapping: cursors created from a connec-
tion inherit the connection’s configuration.

By default, connections obtain an adapters map from the global map exposed as psycopg.adapters: changing
the content of this object will affect every connection created afterwards. You may specify a different template
adapters map using the context parameter on connect().

align
center

• The adapters attributes are AdaptersMap instances, and contain the mapping from Python types and Dumper
classes, and from PostgreSQL OIDs to Loader classes. Changing this mapping (e.g. writing and registering
your own adapters, or using a different configuration of builtin adapters) affects how types are converted between
Python and PostgreSQL.

– Dumpers (objects implementing the Dumper protocol) are the objects used to perform the conversion from
a Python object to a bytes sequence in a format understood by PostgreSQL. The string returned shouldn’t
be quoted: the value will be passed to the database using functions such as PQexecParams() so quoting
and quotes escaping is not necessary. The dumper usually also suggests to the server what type to use, via
its oid attribute.

– Loaders (objects implementing the Loader protocol) are the objects used to perform the opposite operation:
reading a bytes sequence from PostgreSQL and creating a Python object out of it.

– Dumpers and loaders are instantiated on demand by a Transformer object when a query is executed.

Note: Changing adapters in a context only affects that context and its children objects created afterwards; the objects
already created are not affected. For instance, changing the global context will only change newly created connections,
not the ones already existing.

Writing a custom adapter: XML

Psycopg doesn’t provide adapters for the XML data type, because there are just too many ways of handling XML in
Python. Creating a loader to parse the PostgreSQL xml type to ElementTree is very simple, using the psycopg.
adapt.Loader base class and implementing the load() method:

>>> import xml.etree.ElementTree as ET
>>> from psycopg.adapt import Loader

>>> # Create a class implementing the `load()` method.
>>> class XmlLoader(Loader):
... def load(self, data):
... return ET.fromstring(data)

>>> # Register the loader on the adapters of a context.
>>> conn.adapters.register_loader("xml", XmlLoader)

>>> # Now just query the database returning XML data.
>>> cur = conn.execute(
... """select XMLPARSE (DOCUMENT '<?xml version="1.0"?>
... <book><title>Manual</title><chapter>...</chapter></book>')
... """)

>>> elem = cur.fetchone()[0]
(continues on next page)

54 Chapter 1. Documentation

https://www.postgresql.org/docs/14/libpq-exec.html#LIBPQ-PQEXECPARAMS
https://www.postgresql.org/docs/current/datatype-xml.html
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree

psycopg, Release 3.1.9

(continued from previous page)

>>> elem
<Element 'book' at 0x7ffb55142ef0>

The opposite operation, converting Python objects to PostgreSQL, is performed by dumpers. The psycopg.adapt.
Dumper base class makes it easy to implement one: you only need to implement the dump() method:

>>> from psycopg.adapt import Dumper

>>> class XmlDumper(Dumper):
... # Setting an OID is not necessary but can be helpful
... oid = psycopg.adapters.types["xml"].oid
...
... def dump(self, elem):
... return ET.tostring(elem)

>>> # Register the dumper on the adapters of a context
>>> conn.adapters.register_dumper(ET.Element, XmlDumper)

>>> # Now, in that context, it is possible to use ET.Element objects as parameters
>>> conn.execute("SELECT xpath('//title/text()', %s)", [elem]).fetchone()[0]
['Manual']

Note that it is possible to use a TypesRegistry, exposed by any AdaptContext, to obtain information on builtin
types, or extension types if they have been registered on that context using the TypeInfo.register() method.

Example: PostgreSQL numeric to Python float

Normally PostgreSQL numeric values are converted to Python Decimal instances, because both the types allow fixed-
precision arithmetic and are not subject to rounding.

Sometimes, however, you may want to perform floating-point math on numeric values, and Decimal may get in the
way (maybe because it is slower, or maybe because mixing float and Decimal values causes Python errors).

If you are fine with the potential loss of precision and you simply want to receive numeric values as Python float,
you can register on numeric the same Loader class used to load float4/float8 values. Because the PostgreSQL
textual representation of both floats and decimal is the same, the two loaders are compatible.

conn = psycopg.connect()

conn.execute("SELECT 123.45").fetchone()[0]
Decimal('123.45')

conn.adapters.register_loader("numeric", psycopg.types.numeric.FloatLoader)

conn.execute("SELECT 123.45").fetchone()[0]
123.45

In this example the customised adaptation takes effect only on the connection conn and on any cursor created from it,
not on other connections.

1.2. More advanced topics 55

https://docs.python.org/3/library/decimal.html#decimal.Decimal

psycopg, Release 3.1.9

Example: handling infinity date

Suppose you want to work with the “infinity” date which is available in PostgreSQL but not handled by Python:

>>> conn.execute("SELECT 'infinity'::date").fetchone()
Traceback (most recent call last):
...

DataError: date too large (after year 10K): 'infinity'

One possibility would be to store Python’s datetime.date.max as PostgreSQL infinity. For this, let’s create a subclass
for the dumper and the loader and register them in the working scope (globally or just on a connection or cursor):

from datetime import date

Subclass existing adapters so that the base case is handled normally.
from psycopg.types.datetime import DateLoader, DateDumper

class InfDateDumper(DateDumper):
def dump(self, obj):

if obj == date.max:
return b"infinity"

elif obj == date.min:
return b"-infinity"

else:
return super().dump(obj)

class InfDateLoader(DateLoader):
def load(self, data):

if data == b"infinity":
return date.max

elif data == b"-infinity":
return date.min

else:
return super().load(data)

The new classes can be registered globally, on a connection, on a cursor
cur.adapters.register_dumper(date, InfDateDumper)
cur.adapters.register_loader("date", InfDateLoader)

cur.execute("SELECT %s::text, %s::text", [date(2020, 12, 31), date.max]).fetchone()
('2020-12-31', 'infinity')
cur.execute("SELECT '2020-12-31'::date, 'infinity'::date").fetchone()
(datetime.date(2020, 12, 31), datetime.date(9999, 12, 31))

56 Chapter 1. Documentation

https://docs.python.org/3/library/datetime.html#datetime.date.max

psycopg, Release 3.1.9

Dumpers and loaders life cycle

Registering dumpers and loaders will instruct Psycopg to use them in the queries to follow, in the context where they
have been registered.

When a query is performed on a Cursor, a Transformer object is created as a local context to manage adaptation
during the query, instantiating the required dumpers and loaders and dispatching the values to perform the wanted
conversions from Python to Postgres and back.

• The Transformer copies the adapters configuration from the Cursor, thus inheriting all the changes made to
the global psycopg.adapters configuration, the current Connection, the Cursor.

• For every Python type passed as query argument, the Transformer will instantiate a Dumper. Usually all the
objects of the same type will be converted by the same dumper instance.

– According to the placeholder used (%s, %b, %t), Psycopg may pick a binary or a text dumper. When using
the %s “AUTO” format, if the same type has both a text and a binary dumper registered, the last one registered
by register_dumper() will be used.

– Sometimes, just looking at the Python type is not enough to decide the best PostgreSQL type to use (for
instance the PostgreSQL type of a Python list depends on the objects it contains, whether to use an integer
or bigint depends on the number size. . .) In these cases the mechanism provided by get_key() and
upgrade() is used to create more specific dumpers.

• The query is executed. Upon successful request, the result is received as a PGresult.

• For every OID returned by the query, the Transformer will instantiate a Loader. All the values with the same
OID will be converted by the same loader instance.

• Recursive types (e.g. Python lists, PostgreSQL arrays and composite types) will use the same adaptation rules.

As a consequence it is possible to perform certain choices only once per query (e.g. looking up the connection encoding)
and then call a fast-path operation for each value to convert.

Querying will fail if a Python object for which there isn’t a Dumper registered (for the right Format) is used as query
parameter. If the query returns a data type whose OID doesn’t have a Loader, the value will be returned as a string (or
bytes string for binary types).

1.2.7 Prepared statements

Psycopg uses an automatic system to manage prepared statements. When a query is prepared, its parsing and planning
is stored in the server session, so that further executions of the same query on the same connection (even with different
parameters) are optimised.

A query is prepared automatically after it is executed more than prepare_threshold times on a connection. psycopg
will make sure that no more than prepared_max statements are planned: if further queries are executed, the least
recently used ones are deallocated and the associated resources freed.

Statement preparation can be controlled in several ways:

• You can decide to prepare a query immediately by passing prepare=True to Connection.execute() or
Cursor.execute(). The query is prepared, if it wasn’t already, and executed as prepared from its first use.

• Conversely, passing prepare=False to execute() will avoid to prepare the query, regardless of the number of
times it is executed. The default for the parameter is None, meaning that the query is prepared if the conditions
described above are met.

• You can disable the use of prepared statements on a connection by setting its prepare_threshold attribute to
None.

1.2. More advanced topics 57

psycopg, Release 3.1.9

Changed in version 3.1: You can set prepare_threshold as a connect() keyword parameter too.

See also:

The PREPARE PostgreSQL documentation contains plenty of details about prepared statements in PostgreSQL.

Note however that Psycopg doesn’t use SQL statements such as PREPARE and EXECUTE, but protocol level commands
such as the ones exposed by PQsendPrepare, PQsendQueryPrepared.

Warning: Using external connection poolers, such as PgBouncer, is not compatible with prepared statements,
because the same client connection may change the server session it refers to. If such middleware is used you
should disable prepared statements, by setting the Connection.prepare_threshold attribute to None.

1.2.8 Pipeline mode support

New in version 3.1.

The pipeline mode allows PostgreSQL client applications to send a query without having to read the result of the
previously sent query. Taking advantage of the pipeline mode, a client will wait less for the server, since multiple
queries/results can be sent/received in a single network roundtrip. Pipeline mode can provide a significant performance
boost to the application.

Pipeline mode is most useful when the server is distant, i.e., network latency (“ping time”) is high, and also when many
small operations are being performed in rapid succession. There is usually less benefit in using pipelined commands
when each query takes many multiples of the client/server round-trip time to execute. A 100-statement operation run
on a server 300 ms round-trip-time away would take 30 seconds in network latency alone without pipelining; with
pipelining it may spend as little as 0.3 s waiting for results from the server.

The server executes statements, and returns results, in the order the client sends them. The server will begin executing
the commands in the pipeline immediately, not waiting for the end of the pipeline. Note that results are buffered on the
server side; the server flushes that buffer when a synchronization point is established.

See also:

The PostgreSQL documentation about:

• pipeline mode

• extended query message flow

contains many details around when it is most useful to use the pipeline mode and about errors management and inter-
action with transactions.

Client-server messages flow

In order to understand better how the pipeline mode works, we should take a closer look at the PostgreSQL client-server
message flow.

During normal querying, each statement is transmitted by the client to the server as a stream of request messages,
terminating with a Sync message to tell it that it should process the messages sent so far. The server will execute the
statement and describe the results back as a stream of messages, terminating with a ReadyForQuery, telling the client
that it may now send a new query.

For example, the statement (returning no result):

conn.execute("INSERT INTO mytable (data) VALUES (%s)", ["hello"])

58 Chapter 1. Documentation

https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/14/libpq-async.html#LIBPQ-PQSENDPREPARE
https://www.postgresql.org/docs/14/libpq-async.html#LIBPQ-PQSENDQUERYPREPARED
https://www.postgresql.org/docs/current/libpq-pipeline-mode.html
https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY
https://www.postgresql.org/docs/current/protocol-flow.html
https://www.postgresql.org/docs/current/protocol-flow.html

psycopg, Release 3.1.9

results in the following two groups of messages:

Direction Message
Python

PostgreSQL

• Parse INSERT INTO ... (VALUE $1) (skipped
if the statement is prepared)

• Bind 'hello'
• Describe
• Execute
• Sync

PostgreSQL

Python

• ParseComplete
• BindComplete
• NoData
• CommandComplete INSERT 0 1
• ReadyForQuery

and the query:

conn.execute("SELECT data FROM mytable WHERE id = %s", [1])

results in the two groups of messages:

Direction Message
Python

PostgreSQL

• Parse SELECT data FROM mytable WHERE id
= $1

• Bind 1
• Describe
• Execute
• Sync

PostgreSQL

Python

• ParseComplete
• BindComplete
• RowDescription data
• DataRow hello
• CommandComplete SELECT 1
• ReadyForQuery

The two statements, sent consecutively, pay the communication overhead four times, once per leg.

The pipeline mode allows the client to combine several operations in longer streams of messages to the server, then to
receive more than one response in a single batch. If we execute the two operations above in a pipeline:

with conn.pipeline():
conn.execute("INSERT INTO mytable (data) VALUES (%s)", ["hello"])
conn.execute("SELECT data FROM mytable WHERE id = %s", [1])

they will result in a single roundtrip between the client and the server:

1.2. More advanced topics 59

psycopg, Release 3.1.9

Direction Message
Python

PostgreSQL

• Parse INSERT INTO ... (VALUE $1)
• Bind 'hello'
• Describe
• Execute
• Parse SELECT data FROM mytable WHERE id
= $1

• Bind 1
• Describe
• Execute
• Sync (sent only once)

PostgreSQL

Python

• ParseComplete
• BindComplete
• NoData
• CommandComplete INSERT 0 1
• ParseComplete
• BindComplete
• RowDescription data
• DataRow hello
• CommandComplete SELECT 1
• ReadyForQuery (sent only once)

Pipeline mode usage

Psycopg supports the pipeline mode via the Connection.pipeline() method. The method is a context manager:
entering the with block yields a Pipeline object. At the end of block, the connection resumes the normal operation
mode.

Within the pipeline block, you can use normally one or more cursors to execute several operations, using Connection.
execute(), Cursor.execute() and executemany().

>>> with conn.pipeline():
... conn.execute("INSERT INTO mytable VALUES (%s)", ["hello"])
... with conn.cursor() as cur:
... cur.execute("INSERT INTO othertable VALUES (%s)", ["world"])
... cur.executemany(
... "INSERT INTO elsewhere VALUES (%s)",
... [("one",), ("two",), ("four",)])

Unlike in normal mode, Psycopg will not wait for the server to receive the result of each query; the client will receive
results in batches when the server flushes it output buffer.

When a flush (or a sync) is performed, all pending results are sent back to the cursors which executed them. If a
cursor had run more than one query, it will receive more than one result; results after the first will be available, in their
execution order, using nextset():

>>> with conn.pipeline():
... with conn.cursor() as cur:
... cur.execute("INSERT INTO mytable (data) VALUES (%s) RETURNING *", ["hello"])

(continues on next page)

60 Chapter 1. Documentation

psycopg, Release 3.1.9

(continued from previous page)

... cur.execute("INSERT INTO mytable (data) VALUES (%s) RETURNING *", ["world"])

... while True:

... print(cur.fetchall())

... if not cur.nextset():

... break

[(1, 'hello')]
[(2, 'world')]

If any statement encounters an error, the server aborts the current transaction and will not execute any subsequent
command in the queue until the next synchronization point; a PipelineAborted exception is raised for each such
command. Query processing resumes after the synchronization point.

Warning: Certain features are not available in pipeline mode, including:

• COPY is not supported in pipeline mode by PostgreSQL.

• Cursor.stream() doesn’t make sense in pipeline mode (its job is the opposite of batching!)

• ServerCursor are currently not implemented in pipeline mode.

Note: Starting from Psycopg 3.1, executemany()makes use internally of the pipeline mode; as a consequence there
is no need to handle a pipeline block just to call executemany() once.

Synchronization points

Flushing query results to the client can happen either when a synchronization point is established by Psycopg:

• using the Pipeline.sync() method;

• on Connection.commit() or rollback();

• at the end of a Pipeline block;

• possibly when opening a nested Pipeline block;

• using a fetch method such as Cursor.fetchone() (which only flushes the query but doesn’t issue a Sync and
doesn’t reset a pipeline state error).

The server might perform a flush on its own initiative, for instance when the output buffer is full.

Note that, even in autocommit, the server wraps the statements sent in pipeline mode in an implicit transaction, which
will be only committed when the Sync is received. As such, a failure in a group of statements will probably invalidate
the effect of statements executed after the previous Sync, and will propagate to the following Sync.

For example, in the following block:

>>> with psycopg.connect(autocommit=True) as conn:
... with conn.pipeline() as p, conn.cursor() as cur:
... try:
... cur.execute("INSERT INTO mytable (data) VALUES (%s)", ["one"])
... cur.execute("INSERT INTO no_such_table (data) VALUES (%s)", ["two"])
... conn.execute("INSERT INTO mytable (data) VALUES (%s)", ["three"])
... p.sync()

(continues on next page)

1.2. More advanced topics 61

psycopg, Release 3.1.9

(continued from previous page)

... except psycopg.errors.UndefinedTable:

... pass

... cur.execute("INSERT INTO mytable (data) VALUES (%s)", ["four"])

there will be an error in the block, relation "no_such_table" does not exist caused by the insert two, but
probably raised by the sync() call. At at the end of the block, the table will contain:

=# SELECT * FROM mytable;
+----+------+
| id | data |
+----+------+
| 2 | four |
+----+------+
(1 row)

because:

• the value 1 of the sequence is consumed by the statement one, but the record discarded because of the error in
the same implicit transaction;

• the statement three is not executed because the pipeline is aborted (so it doesn’t consume a sequence item);

• the statement four is executed with success after the Sync has terminated the failed transaction.

Warning: The exact Python statement where an exception caused by a server error is raised is somewhat arbitrary:
it depends on when the server flushes its buffered result.

If you want to make sure that a group of statements is applied atomically by the server, do make use of transaction
methods such as commit() or transaction(): these methods will also sync the pipeline and raise an exception
if there was any error in the commands executed so far.

The fine prints

Warning: The Pipeline mode is an experimental feature.

Its behaviour, especially around error conditions and concurrency, hasn’t been explored as much as the normal
request-response messages pattern, and its async nature makes it inherently more complex.

As we gain more experience and feedback (which is welcome), we might find bugs and shortcomings forcing us to
change the current interface or behaviour.

The pipeline mode is available on any currently supported PostgreSQL version, but, in order to make use of it, the
client must use a libpq from PostgreSQL 14 or higher. You can use Pipeline.is_supported() to make sure your
client has the right library.

62 Chapter 1. Documentation

psycopg, Release 3.1.9

1.3 Psycopg 3 API

This sections is a reference for all the public objects exposed by the psycopgmodule. For a more conceptual description
you can take a look at Getting started with Psycopg 3 and More advanced topics.

1.3.1 The psycopg module

Psycopg implements the Python Database DB API 2.0 specification. As such it also exposes the module-level objects
required by the specifications.

psycopg.connect(conninfo='', *, autocommit=False, prepare_threshold=5, row_factory=None,
cursor_factory=None, context=None, **kwargs)

Connect to a database server and return a new Connection instance.

Return type
Connection[Any]

This is an alias of the class method Connection.connect: see its documentation for details.

If you need an asynchronous connection use AsyncConnection.connect instead.

Exceptions

The standard DBAPI exceptions are exposed both by the !psycopg module and by the psycopg.errors module. The
latter also exposes more specific exceptions, mapping to the database error states (see SQLSTATE exceptions).

!Exception
|__ Warning
|__ Error

|__ InterfaceError
|__ DatabaseError

|__ DataError
|__ OperationalError
|__ IntegrityError
|__ InternalError
|__ ProgrammingError
|__ NotSupportedError

psycopg.adapters

The default adapters map establishing how Python and PostgreSQL types are converted into each other.

This map is used as a template when new connections are created, using psycopg.connect(). Its ~psy-
copg.adapt.AdaptersMap.types attribute is a ~psycopg.types.TypesRegistry containing information about every
PostgreSQL builtin type, useful for adaptation customisation (see Data adaptation configuration):

>>> psycopg.adapters.types["int4"]
<TypeInfo: int4 (oid: 23, array oid: 1007)>

Type
~psycopg.adapt.AdaptersMap

1.3. Psycopg 3 API 63

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/#module-interface
https://docs.python.org/3/library/typing.html#typing.Any
https://www.python.org/dev/peps/pep-0249/#exceptions

psycopg, Release 3.1.9

1.3.2 Connection classes

The Connection and AsyncConnection classes are the main wrappers for a PostgreSQL database session. You can
imagine them similar to a psql session.

One of the differences compared to psql is that a Connection usually handles a transaction automatically: other
sessions will not be able to see the changes until you have committed them, more or less explicitly. Take a look to
Transactions management for the details.

The Connection class

class psycopg.Connection(pgconn, row_factory=<function tuple_row>)
Wrapper for a connection to the database.

This class implements a DBAPI-compliant interface. It is what you want to use if you write a “classic”, blocking
program (eventually using threads or Eventlet/gevent for concurrency). If your program uses asyncio you might
want to use AsyncConnection instead.

Connections behave as context managers: on block exit, the current transaction will be committed (or rolled
back, in case of exception) and the connection will be closed.

classmethod connect(conninfo='', *, autocommit=False, prepare_threshold=5, row_factory=None,
cursor_factory=None, context=None, **kwargs)

Connect to a database server and return a new Connection instance.

Return type
Connection[Any]

Parameters

• conninfo – The connection string (a postgresql:// url or a list of key=value pairs)
to specify where and how to connect.

• kwargs – Further parameters specifying the connection string. They override the ones
specified in !conninfo.

• autocommit – If !True don’t start transactions automatically. See Transactions manage-
ment for details.

• row_factory – The row factory specifying what type of records to create fetching data
(default: ~psycopg.rows.tuple_row()). See Row factories for details.

• cursor_factory – Initial value for the cursor_factory attribute of the connection (new in
Psycopg 3.1).

• prepare_threshold – Initial value for the prepare_threshold attribute of the connection
(new in Psycopg 3.1).

More specialized use:

Parameters
context – A context to copy the initial adapters configuration from. It might be an ~psy-
copg.adapt.AdaptersMap with customized loaders and dumpers, used as a template to create
several connections. See Data adaptation configuration for further details.

This method is also aliased as psycopg.connect().

See also:

• the list of the accepted connection parameters

64 Chapter 1. Documentation

https://www.python.org/dev/peps/pep-0249/#connection-objects
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/typing.html#typing.Any
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

psycopg, Release 3.1.9

• the environment variables affecting connection

Changed in version 3.1: added !prepare_threshold and !cursor_factory parameters.

close()

Close the database connection.

Note: You can use:

with psycopg.connect() as conn:
...

to close the connection automatically when the block is exited. See Connection context.

closed

!True if the connection is closed.

broken

!True if the connection was interrupted.

A broken connection is always closed, but wasn’t closed in a clean way, such as using close() or a !with
block.

cursor(*, binary: bool = False, row_factory: RowFactory | None = None)→ Cursor

cursor(name: str, *, binary: bool = False, row_factory: RowFactory | None = None, scrollable: bool | None
= None, withhold: bool = False)→ ServerCursor

Return a new cursor to send commands and queries to the connection.

Parameters

• name – If not specified create a client-side cursor, if specified create a server-side cursor.
See Cursor types for details.

• binary – If !True return binary values from the database. All the types returned by the
query must have a binary loader. See Binary parameters and results for details.

• row_factory – If specified override the row_factory set on the connection. See Row
factories for details.

• scrollable – Specify the ~ServerCursor.scrollable property of the server-side cursor cre-
ated.

• withhold – Specify the ~ServerCursor.withhold property of the server-side cursor created.

Returns
A cursor of the class specified by cursor_factory (or server_cursor_factory if !name is spec-
ified).

Note: You can use:

with conn.cursor() as cur:
...

to close the cursor automatically when the block is exited.

1.3. Psycopg 3 API 65

https://www.postgresql.org/docs/current/libpq-envars.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

psycopg, Release 3.1.9

cursor_factory: Type[Cursor[TypeVar(Row, covariant=True)]]

The type, or factory function, returned by cursor() and execute().

Default is psycopg.Cursor.

server_cursor_factory: Type[ServerCursor[TypeVar(Row, covariant=True)]]

The type, or factory function, returned by cursor() when a name is specified.

Default is psycopg.ServerCursor.

row_factory: RowFactory[TypeVar(Row, covariant=True)]

The row factory defining the type of rows returned by ~Cursor.fetchone() and the other cursor fetch methods.

The default is ~psycopg.rows.tuple_row, which means that the fetch methods will return simple tuples.

See also:

See Row factories for details about defining the objects returned by cursors.

execute(query, params=None, *, prepare=None, binary=False)
Execute a query and return a cursor to read its results.

Return type
Cursor[TypeVar(Row, covariant=True)]

Parameters

• query (!str, !bytes, sql.SQL, or sql.Composed) – The query to execute.

• params (Sequence or Mapping) – The parameters to pass to the query, if any.

• prepare – Force (!True) or disallow (!False) preparation of the query. By default (!None)
prepare automatically. See Prepared statements.

• binary – If !True the cursor will return binary values from the database. All the types
returned by the query must have a binary loader. See Binary parameters and results for
details.

The method simply creates a Cursor instance, ~Cursor.execute() the query requested, and returns it.

See Passing parameters to SQL queries for all the details about executing queries.

pipeline()

Switch the connection into pipeline mode.

Return type
Iterator[Pipeline]

The method is a context manager: you should call it using:

with conn.pipeline() as p:
...

At the end of the block, a synchronization point is established and the connection returns in normal mode.

You can call the method recursively from within a pipeline block. Innermost blocks will establish a syn-
chronization point on exit, but pipeline mode will be kept until the outermost block exits.

See Pipeline mode support for details.

New in version 3.1.

66 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Iterator

psycopg, Release 3.1.9

Transaction management methods

For details see Transactions management.

commit()

Commit any pending transaction to the database.

rollback()

Roll back to the start of any pending transaction.

transaction(savepoint_name=None, force_rollback=False)
Start a context block with a new transaction or nested transaction.

Parameters

• savepoint_name (Optional[str]) – Name of the savepoint used to manage a nested
transaction. If !None, one will be chosen automatically.

• force_rollback (bool) – Roll back the transaction at the end of the block even if there
were no error (e.g. to try a no-op process).

Return type
Transaction

Note: The method must be called with a syntax such as:

with conn.transaction():
...

with conn.transaction() as tx:
...

The latter is useful if you need to interact with the Transaction object. See Transaction contexts for details.

Inside a transaction block it will not be possible to call commit() or rollback().

autocommit

The autocommit state of the connection.

The property is writable for sync connections, read-only for async ones: you should call !await ~Async-
Connection.set_autocommit (value) instead.

The following three properties control the characteristics of new transactions. See Transaction characteristics
for details.

isolation_level

The isolation level of the new transactions started on the connection.

!None means use the default set in the default_transaction_isolation configuration parameter of the server.

read_only

The read-only state of the new transactions started on the connection.

!None means use the default set in the default_transaction_read_only configuration parameter of the server.

deferrable

The deferrable state of the new transactions started on the connection.

!None means use the default set in the default_transaction_deferrable configuration parameter of the server.

1.3. Psycopg 3 API 67

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-ISOLATION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-READ-ONLY
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-DEFERRABLE

psycopg, Release 3.1.9

Checking and configuring the connection state

pgconn: psycopg.pq.PGconn

The ~pq.PGconn libpq connection wrapper underlying the !Connection.

It can be used to send low level commands to PostgreSQL and access features not currently wrapped by
Psycopg.

info

A ConnectionInfo attribute to inspect connection properties.

prepare_threshold

Number of times a query is executed before it is prepared.

• If it is set to 0, every query is prepared the first time it is executed.

• If it is set to !None, prepared statements are disabled on the connection.

Default value: 5

See Prepared statements for details.

prepared_max

Maximum number of prepared statements on the connection.

Default value: 100

If more queries need to be prepared, old ones are deallocated.

Methods you can use to do something cool

cancel()

Cancel the current operation on the connection.

notifies()

Yield Notify objects as soon as they are received from the database.

Return type
Generator[Notify, None, None]

Notifies are received after using LISTEN in a connection, when any sessions in the database generates a
NOTIFY on one of the listened channels.

add_notify_handler(callback)
Register a callable to be invoked whenever a notification is received.

Parameters
callback (Callable[[Notify], None]) – the callback to call upon notification received.

See Asynchronous notifications for details.

remove_notify_handler(callback)
Unregister a notification callable previously registered.

Parameters
callback (Callable[[Notify], None]) – the callback to remove.

add_notice_handler(callback)
Register a callable to be invoked when a notice message is received.

68 Chapter 1. Documentation

https://www.postgresql.org/docs/current/sql-deallocate.html
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

psycopg, Release 3.1.9

Parameters
callback (Callable[[Diagnostic], None]) – the callback to call upon message re-
ceived.

See Server messages for details.

remove_notice_handler(callback)
Unregister a notice message callable previously registered.

Parameters
callback (Callable[[Diagnostic], None]) – the callback to remove.

fileno()

Return the file descriptor of the connection.

This function allows to use the connection as file-like object in functions waiting for readiness, such as the
ones defined in the selectors module.

Return type
int

Two-Phase Commit support methods

New in version 3.1.

See also:

Two-Phase Commit protocol support for an introductory explanation of these methods.

xid(format_id, gtrid, bqual)
Returns a Xid to pass to the !tpc_*() methods of this connection.

The argument types and constraints are explained in Two-Phase Commit protocol support.

The values passed to the method will be available on the returned object as the members ~Xid.format_id,
~Xid.gtrid, ~Xid.bqual.

Return type
Xid

tpc_begin(xid)
Begin a TPC transaction with the given transaction ID !xid.

Parameters
xid (Xid or str) – The id of the transaction

This method should be called outside of a transaction (i.e. nothing may have executed since the last commit()
or rollback() and ~ConnectionInfo.transaction_status is ~pq.TransactionStatus.IDLE).

Furthermore, it is an error to call !commit() or !rollback() within the TPC transaction: in this case a Pro-
grammingError is raised.

The !xid may be either an object returned by the xid() method or a plain string: the latter allows to create a
transaction using the provided string as PostgreSQL transaction id. See also tpc_recover().

tpc_prepare()

Perform the first phase of a transaction started with tpc_begin().

A ProgrammingError is raised if this method is used outside of a TPC transaction.

After calling !tpc_prepare(), no statements can be executed until tpc_commit() or tpc_rollback() will be
called.

1.3. Psycopg 3 API 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

psycopg, Release 3.1.9

See also:

The PREPARE TRANSACTION PostgreSQL command.

tpc_commit(xid=None)
Commit a prepared two-phase transaction.

Parameters
xid (Xid or str) – The id of the transaction

When called with no arguments, !tpc_commit() commits a TPC transaction previously prepared with
tpc_prepare().

If !tpc_commit() is called prior to !tpc_prepare(), a single phase commit is performed. A transaction man-
ager may choose to do this if only a single resource is participating in the global transaction.

When called with a transaction ID !xid, the database commits the given transaction. If an invalid transaction
ID is provided, a ProgrammingError will be raised. This form should be called outside of a transaction,
and is intended for use in recovery.

On return, the TPC transaction is ended.

See also:

The COMMIT PREPARED PostgreSQL command.

tpc_rollback(xid=None)
Roll back a prepared two-phase transaction.

Parameters
xid (Xid or str) – The id of the transaction

When called with no arguments, !tpc_rollback() rolls back a TPC transaction. It may be called before or
after tpc_prepare().

When called with a transaction ID !xid, it rolls back the given transaction. If an invalid transaction ID
is provided, a ProgrammingError is raised. This form should be called outside of a transaction, and is
intended for use in recovery.

On return, the TPC transaction is ended.

See also:

The ROLLBACK PREPARED PostgreSQL command.

tpc_recover()

Return type
List[Xid]

Returns a list of Xid representing pending transactions, suitable for use with tpc_commit() or tpc_rollback().

If a transaction was not initiated by Psycopg, the returned Xids will have attributes ~Xid.format_id and
~Xid.bqual set to !None and the ~Xid.gtrid set to the PostgreSQL transaction ID: such Xids are still usable
for recovery. Psycopg uses the same algorithm of the PostgreSQL JDBC driver to encode a XA triple in a
string, so transactions initiated by a program using such driver should be unpacked correctly.

Xids returned by !tpc_recover() also have extra attributes ~Xid.prepared, ~Xid.owner, ~Xid.database pop-
ulated with the values read from the server.

See also:

the pg_prepared_xacts system view.

70 Chapter 1. Documentation

https://www.postgresql.org/docs/current/static/sql-prepare-transaction.html
https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/current/static/sql-commit-prepared.html
https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/current/static/sql-rollback-prepared.html
https://docs.python.org/3/library/typing.html#typing.List
https://jdbc.postgresql.org/
https://www.postgresql.org/docs/current/static/view-pg-prepared-xacts.html

psycopg, Release 3.1.9

The !AsyncConnection class

class psycopg.AsyncConnection(pgconn, row_factory=<function tuple_row>)
Asynchronous wrapper for a connection to the database.

This class implements a DBAPI-inspired interface, with all the blocking methods implemented as coroutines.
Unless specified otherwise, non-blocking methods are shared with the Connection class.

The following methods have the same behaviour of the matching !Connection methods, but should be called
using the await keyword.

async classmethod connect(conninfo='', *, autocommit=False, prepare_threshold=5, context=None,
row_factory=None, cursor_factory=None, **kwargs)

Return type
AsyncConnection[Any]

Changed in version 3.1: Automatically resolve domain names asynchronously. In previous
versions, name resolution blocks, unless the !hostaddr parameter is specified, or the ~psy-
copg._dns.resolve_hostaddr_async() function is used.

async close()

Note: You can use async with to close the connection automatically when the block is exited, but be
careful about the async quirkness: see with async connections for details.

cursor(*, binary: bool = False, row_factory: RowFactory | None = None)→ AsyncCursor

cursor(name: str, *, binary: bool = False, row_factory: RowFactory | None = None, scrollable: bool | None
= None, withhold: bool = False)→ AsyncServerCursor

Note: You can use:

async with conn.cursor() as cur:
...

to close the cursor automatically when the block is exited.

cursor_factory: Type[AsyncCursor[TypeVar(Row, covariant=True)]]

Default is psycopg.AsyncCursor.

server_cursor_factory: Type[AsyncServerCursor[TypeVar(Row, covariant=True)]]

Default is psycopg.AsyncServerCursor.

row_factory: AsyncRowFactory[TypeVar(Row, covariant=True)]

async execute(query, params=None, *, prepare=None, binary=False)

Return type
AsyncCursor[TypeVar(Row, covariant=True)]

pipeline()

Context manager to switch the connection into pipeline mode.

Return type
AsyncIterator[AsyncPipeline]

1.3. Psycopg 3 API 71

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.AsyncIterator

psycopg, Release 3.1.9

Note: It must be called as:

async with conn.pipeline() as p:
...

async commit()

async rollback()

transaction(savepoint_name=None, force_rollback=False)
Start a context block with a new transaction or nested transaction.

Return type
AsyncTransaction

Note: It must be called as:

async with conn.transaction() as tx:
...

async notifies()

Return type
AsyncGenerator[Notify, None]

async set_autocommit(value)
Async version of the ~Connection.autocommit setter.

async set_isolation_level(value)
Async version of the ~Connection.isolation_level setter.

async set_read_only(value)
Async version of the ~Connection.read_only setter.

async set_deferrable(value)
Async version of the ~Connection.deferrable setter.

async tpc_prepare()

async tpc_commit(xid=None)

async tpc_rollback(xid=None)

async tpc_recover()

Return type
List[Xid]

72 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List

psycopg, Release 3.1.9

1.3.3 Cursor classes

The Cursor and AsyncCursor classes are the main objects to send commands to a PostgreSQL database session.
They are normally created by the connection’s cursor() method.

Using the name parameter on cursor() will create a ServerCursor or AsyncServerCursor, which can be used to
retrieve partial results from a database.

A Connection can create several cursors, but only one at time can perform operations, so they are not the best way to
achieve parallelism (you may want to operate with several connections instead). All the cursors on the same connection
have a view of the same session, so they can see each other’s uncommitted data.

The Cursor class

class psycopg.Cursor(connection, *, row_factory=None)
This class implements a DBAPI-compliant interface. It is what the classic Connection.cursor() method
returns. AsyncConnection.cursor() will create instead AsyncCursor objects, which have the same set of
method but expose an asyncio interface and require async and await keywords to operate.

Cursors behave as context managers: on block exit they are closed and further operation will not be possible.
Closing a cursor will not terminate a transaction or a session though.

connection: Connection

The connection this cursor is using.

close()

Close the current cursor and free associated resources.

Note: You can use:

with conn.cursor() as cur:
...

to close the cursor automatically when the block is exited. See Main objects in Psycopg 3.

closed

True if the cursor is closed.

Methods to send commands

execute(query, params=None, *, prepare=None, binary=None)
Execute a query or command to the database.

Return type
TypeVar(_Self, bound= Cursor[Any])

Parameters

• query (!str, !bytes, sql.SQL, or sql.Composed) – The query to execute.

• params (Sequence or Mapping) – The parameters to pass to the query, if any.

• prepare – Force (!True) or disallow (!False) preparation of the query. By default (!None)
prepare automatically. See Prepared statements.

1.3. Psycopg 3 API 73

https://www.python.org/dev/peps/pep-0249/#cursor-objects
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

• binary – Specify whether the server should return data in binary format (!True) or in text
format (!False). By default (!None) return data as requested by the cursor’s ~Cursor.format.

Return the cursor itself, so that it will be possible to chain a fetch operation after the call.

See Passing parameters to SQL queries for all the details about executing queries.

Changed in version 3.1: The query argument must be a ~typing.StringLiteral. If you need to compose a
query dynamically, please use sql.SQL and related objects.

See PEP 675 for details.

executemany(query, params_seq, *, returning=False)
Execute the same command with a sequence of input data.

Parameters

• query (!str, !bytes, sql.SQL, or sql.Composed) – The query to execute

• params_seq (Sequence of Sequences or Mappings) – The parameters to pass to the
query

• returning (!bool) – If !True, fetch the results of the queries executed

This is more efficient than performing separate queries, but in case of several INSERT (and with some SQL
creativity for massive UPDATE too) you may consider using copy().

If the queries return data you want to read (e.g. when executing an INSERT ... RETURNING or a SELECT
with a side-effect), you can specify !returning=True; the results will be available in the cursor’s state and
can be read using fetchone() and similar methods. Each input parameter will produce a separate result set:
use nextset() to read the results of the queries after the first one.

The value of rowcount is set to the cumulated number of rows affected by queries; except when using
!returning=True, in which case it is set to the number of rows in the current result set (i.e. the first one,
until nextset() gets called).

See Passing parameters to SQL queries for all the details about executing queries.

Changed in version 3.1:

• Added !returning parameter to receive query results.

• Performance optimised by making use of the pipeline mode, when using libpq 14 or newer.

copy(statement, params=None, *, writer=None)
Initiate a COPY operation and return an object to manage it.

Return type
Copy

Parameters

• statement (!str, !bytes, sql.SQL, or sql.Composed) – The copy operation to execute

• params (Sequence or Mapping) – The parameters to pass to the statement, if any.

Note: The method must be called with:

with cursor.copy() as copy:
...

See Using COPY TO and COPY FROM for information about COPY.

74 Chapter 1. Documentation

https://peps.python.org/pep-0675/

psycopg, Release 3.1.9

Changed in version 3.1: Added parameters support.

stream(query, params=None, *, binary=None)
Iterate row-by-row on a result from the database.

Return type
Iterator[TypeVar(Row, covariant=True)]

This command is similar to execute + iter; however it supports endless data streams. The feature is not avail-
able in PostgreSQL, but some implementations exist: Materialize TAIL and CockroachDB CHANGEFEED
for instance.

The feature, and the API supporting it, are still experimental. Beware. . .

The parameters are the same of execute().

Warning: Failing to consume the iterator entirely will result in a connection left in ~psy-
copg.ConnectionInfo.transaction_status ~pq.TransactionStatus.ACTIVE state: this connection will
refuse to receive further commands (with a message such as another command is already in progress).

If there is a chance that the generator is not consumed entirely, in order to restore the connection to
a working state you can call ~generator.close on the generator object returned by !stream(). The con-
textlib.closing function might be particularly useful to make sure that !close() is called:

with closing(cur.stream("select generate_series(1, 10000)")) as gen:
for rec in gen:

something(rec) # might fail

Without calling !close(), in case of error, the connection will be !ACTIVE and unusable. If !close() is
called, the connection might be !INTRANS or !INERROR, depending on whether the server managed
to send the entire resultset to the client. An autocommit connection will be !IDLE instead.

format

The format of the data returned by the queries. It can be selected initially e.g. specifying Connec-
tion.cursor!(binary=True) and changed during the cursor’s lifetime. It is also possible to override the
value for single queries, e.g. specifying execute!(binary=True).

Type
pq.Format

Default
~pq.Format.TEXT

See also:

Binary parameters and results

Methods to retrieve results

Fetch methods are only available if the last operation produced results, e.g. a SELECT or a command with
RETURNING. They will raise an exception if used with operations that don’t return result, such as an INSERT
with no RETURNING or an ALTER TABLE.

Note: Cursors are iterable objects, so just using the:

for record in cursor:
...

1.3. Psycopg 3 API 75

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://materialize.com/docs/sql/tail/#main
https://www.cockroachlabs.com/docs/stable/changefeed-for.html

psycopg, Release 3.1.9

syntax will iterate on the records in the current recordset.

row_factory

Writable attribute to control how result rows are formed.

The property affects the objects returned by the fetchone(), fetchmany(), fetchall() methods. The default
(~psycopg.rows.tuple_row) returns a tuple for each record fetched.

See Row factories for details.

fetchone()

Return the next record from the current recordset.

Return !None the recordset is finished.

Return type
Optional[Row], with Row defined by row_factory

fetchmany(size=0)
Return the next !size records from the current recordset.

!size default to !self.arraysize if not specified.

Return type
Sequence[Row], with Row defined by row_factory

fetchall()

Return all the remaining records from the current recordset.

Return type
Sequence[Row], with Row defined by row_factory

nextset()

Move to the result set of the next query executed through executemany() or to the next result set if execute()
returned more than one.

Return !True if a new result is available, which will be the one methods !fetch*() will operate on.

Return type
Optional[bool]

scroll(value, mode='relative')
Move the cursor in the result set to a new position according to mode.

If !mode is 'relative' (default), !value is taken as offset to the current position in the result set; if set to
'absolute', !value states an absolute target position.

Raise !IndexError in case a scroll operation would leave the result set. In this case the position will not
change.

pgresult: psycopg.pq.PGresult | None

The result returned by the last query and currently exposed by the cursor, if available, else !None.

It can be used to obtain low level info about the last query result and to access to features not currently
wrapped by Psycopg.

76 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

psycopg, Release 3.1.9

Information about the data

description

A list of Column objects describing the current resultset.

!None if the current resultset didn’t return tuples.

statusmessage

The command status tag from the last SQL command executed.

!None if the cursor doesn’t have a result available.

This is the status tag you typically see in psql after a successful command, such as CREATE TABLE or
UPDATE 42.

rowcount

Number of records affected by the precedent operation.

From executemany(), unless called with !returning=True, this is the cumulated number of rows affected by
executed commands.

rownumber

Index of the next row to fetch in the current result.

!None if there is no result to fetch.

_query

An helper object used to convert queries and parameters before sending them to PostgreSQL.

Note: This attribute is exposed because it might be helpful to debug problems when the communication
between Python and PostgreSQL doesn’t work as expected. For this reason, the attribute is available when
a query fails too.

Warning: You shouldn’t consider it part of the public interface of the object: it might change without
warnings.

Except this warning, I guess.

If you would like to build reliable features using this object, please get in touch so we can try and design
an useful interface for it.

Among the properties currently exposed by this object:

• !query (!bytes): the query effectively sent to PostgreSQL. It will have Python placeholders (%s-style)
replaced with PostgreSQL ones ($1, $2-style).

• !params (sequence of !bytes): the parameters passed to PostgreSQL, adapted to the database format.

• !types (sequence of !int): the OID of the parameters passed to PostgreSQL.

• !formats (sequence of pq.Format): whether the parameter format is text or binary.

1.3. Psycopg 3 API 77

psycopg, Release 3.1.9

The !ClientCursor class

See also:

See Client-side-binding cursors for details.

class psycopg.ClientCursor(connection, *, row_factory=None)
This Cursor subclass has exactly the same interface of its parent class, but, instead of sending query and parame-
ters separately to the server, it merges them on the client and sends them as a non-parametric query on the server.
This allows, for instance, to execute parametrized data definition statements and other problematic queries.

New in version 3.1.

mogrify(query, params=None)
Return the query and parameters merged.

Parameters are adapted and merged to the query the same way that !execute() would do.

Return type
str

Parameters

• query (!str, !bytes, sql.SQL, or sql.Composed) – The query to execute.

• params (Sequence or Mapping) – The parameters to pass to the query, if any.

The !ServerCursor class

See also:

See Server-side cursors for details.

class psycopg.ServerCursor(connection, name, *, row_factory=None, scrollable=None, withhold=False)
This class also implements a DBAPI-compliant interface. It is created by Connection.cursor() specifying the
!name parameter. Using this object results in the creation of an equivalent PostgreSQL cursor in the server.
DBAPI-extension methods (such as ~Cursor.copy() or ~Cursor.stream()) are not implemented on this object:
use a normal Cursor instead.

Most attribute and methods behave exactly like in Cursor, here are documented the differences:

name

The name of the cursor.

scrollable

Whether the cursor is scrollable or not.

If !None leave the choice to the server. Use !True if you want to use scroll() on the cursor.

See also:

The PostgreSQL DECLARE statement documentation for the description of [NO] SCROLL.

withhold

If the cursor can be used after the creating transaction has committed.

See also:

The PostgreSQL DECLARE statement documentation for the description of {WITH|WITHOUT} HOLD.

78 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0249/#cursor-objects
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-declare.html

psycopg, Release 3.1.9

close()

Close the current cursor and free associated resources.

Warning: Closing a server-side cursor is more important than closing a client-side one because it also
releases the resources on the server, which otherwise might remain allocated until the end of the session
(memory, locks). Using the pattern:

with conn.cursor():
...

is especially useful so that the cursor is closed at the end of the block.

execute(query, params=None, *, binary=None, **kwargs)
Open a cursor to execute a query to the database.

Return type
TypeVar(_Self, bound= ServerCursor[Any])

Parameters

• query (!str, !bytes, sql.SQL, or sql.Composed) – The query to execute.

• params (Sequence or Mapping) – The parameters to pass to the query, if any.

• binary – Specify whether the server should return data in binary format (!True) or in text
format (!False). By default (!None) return data as requested by the cursor’s ~Cursor.format.

Create a server cursor with given !name and the !query in argument.

If using DECLARE is not appropriate (for instance because the cursor is returned by calling a stored proce-
dure) you can avoid to use !execute(), crete the cursor in other ways, and use directly the !fetch*() methods
instead. See “Stealing” an existing cursor for an example.

Using !execute() more than once will close the previous cursor and open a new one with the same name.

executemany(query, params_seq, *, returning=True)
Method not implemented for server-side cursors.

fetchone()

Return the next record from the current recordset.

Return !None the recordset is finished.

Return type
Optional[Row], with Row defined by row_factory

fetchmany(size=0)
Return the next !size records from the current recordset.

!size default to !self.arraysize if not specified.

Return type
Sequence[Row], with Row defined by row_factory

fetchall()

Return all the remaining records from the current recordset.

Return type
Sequence[Row], with Row defined by row_factory

1.3. Psycopg 3 API 79

https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

These methods use the FETCH SQL statement to retrieve some of the records from the cursor’s current
position.

Note: You can also iterate on the cursor to read its result one at time with:

for record in cur:
...

In this case, the records are not fetched one at time from the server but they are retrieved in batches of
itersize to reduce the number of server roundtrips.

itersize: int

Number of records to fetch at time when iterating on the cursor. The default is 100.

scroll(value, mode='relative')
Move the cursor in the result set to a new position according to mode.

If !mode is 'relative' (default), !value is taken as offset to the current position in the result set; if set to
'absolute', !value states an absolute target position.

Raise !IndexError in case a scroll operation would leave the result set. In this case the position will not
change.

This method uses the MOVE SQL statement to move the current position in the server-side cursor, which
will affect following !fetch*() operations. If you need to scroll backwards you should probably call ~Con-
nection.cursor() using scrollable=True.

Note that PostgreSQL doesn’t provide a reliable way to report when a cursor moves out of bound, so the
method might not raise !IndexError when it happens, but it might rather stop at the cursor boundary.

The !AsyncCursor class

class psycopg.AsyncCursor(connection, *, row_factory=None)
This class implements a DBAPI-inspired interface, with all the blocking methods implemented as coroutines.
Unless specified otherwise, non-blocking methods are shared with the Cursor class.

The following methods have the same behaviour of the matching !Cursor methods, but should be called using
the await keyword.

connection: AsyncConnection

async close()

Note: You can use:

async with conn.cursor():
...

to close the cursor automatically when the block is exited.

async execute(query, params=None, *, prepare=None, binary=None)

Return type
TypeVar(_Self, bound= AsyncCursor[Any])

80 Chapter 1. Documentation

https://www.postgresql.org/docs/current/sql-fetch.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

async executemany(query, params_seq, *, returning=False)

copy(statement, params=None, *, writer=None)

Return type
AsyncCopy

Note: The method must be called with:

async with cursor.copy() as copy:
...

async stream(query, params=None, *, binary=None)

Return type
AsyncIterator[TypeVar(Row, covariant=True)]

Note: The method must be called with:

async for record in cursor.stream(query):
...

async fetchone()

Return type
Optional[TypeVar(Row, covariant=True)]

async fetchmany(size=0)

Return type
List[TypeVar(Row, covariant=True)]

async fetchall()

Return type
List[TypeVar(Row, covariant=True)]

async scroll(value, mode='relative')

Note: You can also use:

async for record in cursor:
...

to iterate on the async cursor results.

1.3. Psycopg 3 API 81

https://docs.python.org/3/library/typing.html#typing.AsyncIterator
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

The !AsyncClientCursor class

class psycopg.AsyncClientCursor(connection, *, row_factory=None)
This class is the !async equivalent of the ClientCursor. The difference are the same shown in AsyncCursor.

New in version 3.1.

The !AsyncServerCursor class

class psycopg.AsyncServerCursor(connection, name, *, row_factory=None, scrollable=None,
withhold=False)

This class implements a DBAPI-inspired interface as the AsyncCursor does, but wraps a server-side cursor like
the ServerCursor class. It is created by AsyncConnection.cursor() specifying the !name parameter.

The following are the methods exposing a different (async) interface from the ServerCursor counterpart, but
sharing the same semantics.

async close()

Note: You can close the cursor automatically using:

async with conn.cursor("name") as cursor:
...

async execute(query, params=None, *, binary=None, **kwargs)

Return type
TypeVar(_Self, bound= AsyncServerCursor[Any])

async executemany(query, params_seq, *, returning=True)

async fetchone()

Return type
Optional[TypeVar(Row, covariant=True)]

async fetchmany(size=0)

Return type
List[TypeVar(Row, covariant=True)]

async fetchall()

Return type
List[TypeVar(Row, covariant=True)]

Note: You can also iterate on the cursor using:

async for record in cur:
...

async scroll(value, mode='relative')

82 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

1.3.4 COPY-related objects

The main objects (Copy, AsyncCopy) present the main interface to exchange data during a COPY operations. These
objects are normally obtained by the methods Cursor.copy() and AsyncCursor.copy(); however, they can be also
created directly, for instance to write to a destination which is not a database (e.g. using a FileWriter).

See Using COPY TO and COPY FROM for details.

Main Copy objects

class psycopg.Copy(cursor, *, binary=None, writer=None)
Manage a COPY operation.

Parameters

• cursor (Cursor[Any]) – the cursor where the operation is performed.

• binary (Optional[bool]) – if True, write binary format.

• writer (Optional[Writer]) – the object to write to destination. If not specified, write to
the cursor connection.

Choosing binary is not necessary if the cursor has executed a COPY operation, because the operation result
describes the format too. The parameter is useful when a Copy object is created manually and no operation is
performed on the cursor, such as when using writer=FileWriter.

The object is normally returned by with Cursor.copy().

write_row(row)
Write a record to a table after a COPY FROM operation.

The data in the tuple will be converted as configured on the cursor; see Data adaptation configuration for
details.

write(buffer)
Write a block of data to a table after a COPY FROM operation.

If the COPY is in binary format buffer must be bytes. In text mode it can be either bytes or str.

read()

Read an unparsed row after a COPY TO operation.

Return an empty string when the data is finished.

Return type
Union[bytes, bytearray, memoryview]

Instead of using !read() you can iterate on the !Copy object to read its data row by row, using for row in
copy:

rows()

Iterate on the result of a COPY TO operation record by record.

Note that the records returned will be tuples of unparsed strings or bytes, unless data types are specified
using set_types().

Return type
Iterator[Tuple[Any, ...]]

Equivalent of iterating on read_row() until it returns !None

1.3. Psycopg 3 API 83

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis

psycopg, Release 3.1.9

read_row()

Read a parsed row of data from a table after a COPY TO operation.

Return !None when the data is finished.

Note that the records returned will be tuples of unparsed strings or bytes, unless data types are specified
using set_types().

Return type
Optional[Tuple[Any, ...]]

set_types(types)
Set the types expected in a COPY operation.

The types must be specified as a sequence of oid or PostgreSQL type names (e.g. int4, timestamptz[]).

This operation overcomes the lack of metadata returned by PostgreSQL when a COPY operation begins:

• On COPY TO, !set_types() allows to specify what types the operation returns. If !set_types() is not
used, the data will be returned as unparsed strings or bytes instead of Python objects.

• On COPY FROM, !set_types() allows to choose what type the database expects. This is especially useful
in binary copy, because PostgreSQL will apply no cast rule.

class psycopg.AsyncCopy(cursor, *, binary=None, writer=None)
Manage an asynchronous COPY operation.

The object is normally returned by async with AsyncCursor.copy(). Its methods are similar to the ones of the
Copy object but offering an asyncio interface (await, async for, async with).

async write_row(row)

async write(buffer)

async read()

Return type
Union[bytes, bytearray, memoryview]

Instead of using !read() you can iterate on the !AsyncCopy object to read its data row by row, using async
for row in copy:

async rows()

Return type
AsyncIterator[Tuple[Any, ...]]

Use it as async for record in copy.rows(): . . .

async read_row()

Return type
Optional[Tuple[Any, ...]]

84 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.AsyncIterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis

psycopg, Release 3.1.9

Writer objects

New in version 3.1.

Copy writers are helper objects to specify where to write COPY-formatted data. By default, data is written to the
database (using the LibpqWriter). It is possible to write copy-data for offline use by using a FileWriter, or to customize
further writing by implementing your own Writer or AsyncWriter subclass.

Writers instances can be used passing them to the cursor ~psycopg.Cursor.copy() method or to the ~psycopg.Copy
constructor, as the !writer argument.

class psycopg.copy.Writer

A class to write copy data somewhere.

This is an abstract base class: subclasses are required to implement their write() method.

abstract write(data)
Write some data to destination.

finish(exc=None)
Called when write operations are finished.

If operations finished with an error, it will be passed to exc.

class psycopg.copy.LibpqWriter(cursor)
A Writer to write copy data to a Postgres database.

This is the writer used by default if none is specified.

class psycopg.copy.FileWriter(file)
A Writer to write copy data to a file-like object.

Parameters
file (IO[bytes]) – the file where to write copy data. It must be open for writing in binary mode.

This writer should be used without executing a COPY operation on the database. For example, if records is a list
of tuples containing data to save in COPY format to a file (e.g. for later import), it can be used as:

with open("target-file.pgcopy", "wb") as f:
with Copy(cur, writer=FileWriter(f)) as copy:

for record in records
copy.write_row(record)

class psycopg.copy.AsyncWriter

A class to write copy data somewhere (for async connections).

This class methods have the same semantics of the ones of Writer, but offer an async interface.

abstract async write(data)

async finish(exc=None)

class psycopg.copy.AsyncLibpqWriter(cursor)
An AsyncWriter to write copy data to a Postgres database.

1.3. Psycopg 3 API 85

https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#bytes

psycopg, Release 3.1.9

1.3.5 Other top-level objects

Connection information

class psycopg.ConnectionInfo(pgconn)
Allow access to information about the connection.

The object is usually returned by Connection.info.

dsn

Return the connection string to connect to the database.

The string contains all the parameters set to a non-default value, which might come either from the con-
nection string and parameters passed to connect() or from environment variables. The password is never
returned (you can read it using the password attribute).

Note: The get_parameters() method returns the same information as a dict.

status

The status of the connection. See PQstatus().

The status can be one of a number of values. However, only two of these are seen outside of an asynchronous
connection procedure: OK and BAD. A good connection to the database has the status OK. Ordinarily, an OK
status will remain so until Connection.close(), but a communications failure might result in the status
changing to BAD prematurely.

transaction_status

The current in-transaction status of the session. See PQtransactionStatus().

The status can be IDLE (currently idle), ACTIVE (a command is in progress), INTRANS (idle, in a valid
transaction block), or INERROR (idle, in a failed transaction block). UNKNOWN is reported if the connection
is bad. ACTIVE is reported only when a query has been sent to the server and not yet completed.

pipeline_status

The current pipeline status of the client. See PQpipelineStatus().

backend_pid

The process ID (PID) of the backend process handling this connection. See PQbackendPID().

vendor

A string representing the database vendor connected to.

Normally it is PostgreSQL; it may be different if connected to a different database.

New in version 3.1.

server_version

An integer representing the server version. See PQserverVersion().

The number is formed by converting the major, minor, and revision numbers into two-decimal-digit num-
bers and appending them together. Starting from PostgreSQL 10 the minor version was dropped, so the
second group of digits is always 00. For example, version 9.3.5 is returned as 90305, version 10.2 as
100002.

error_message

The error message most recently generated by an operation on the connection. See PQerrorMessage().

86 Chapter 1. Documentation

https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQSTATUS
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQTRANSACTIONSTATUS
https://www.postgresql.org/docs/14/libpq-pipeline-mode.html#LIBPQ-PQPIPELINESTATUS
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQBACKENDPID
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQSERVERVERSION
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQERRORMESSAGE

psycopg, Release 3.1.9

get_parameters()

Return the connection parameters values.

Return all the parameters set to a non-default value, which might come either from the connection string
and parameters passed to ~Connection.connect() or from environment variables. The password is never
returned (you can read it using the password attribute).

Return type
Dict[str, str]

Note: The dsn attribute returns the same information in the form as a string.

timezone

The Python timezone info of the connection’s timezone.

>>> conn.info.timezone
zoneinfo.ZoneInfo(key='Europe/Rome')

host

The server host name of the active connection. See PQhost().

This can be a host name, an IP address, or a directory path if the connection is via Unix socket. (The path
case can be distinguished because it will always be an absolute path, beginning with /.)

hostaddr

The server IP address of the connection. See PQhostaddr().

Only available if the libpq used is at least from PostgreSQL 12. Raise ~psycopg.NotSupportedError other-
wise.

port

The port of the active connection. See PQport().

dbname

The database name of the connection. See PQdb().

user

The user name of the connection. See PQuser().

password

The password of the connection. See PQpass().

options

The command-line options passed in the connection request. See PQoptions.

parameter_status(param_name)
Return a parameter setting of the connection.

Return None is the parameter is unknown.

Return type
Optional[str]

Example of parameters are server_version, standard_conforming_strings. . . See
PQparameterStatus() for all the available parameters.

1.3. Psycopg 3 API 87

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQHOST
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQHOSTADDR
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQPORT
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQDB
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQUSER
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQPASS
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQOPTIONS
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQPARAMETERSTATUS

psycopg, Release 3.1.9

encoding

The Python codec name of the connection’s client encoding.

The value returned is always normalized to the Python codec ~codecs.CodecInfo.name:

conn.execute("SET client_encoding TO LATIN9")
conn.info.encoding
'iso8859-15'

A few PostgreSQL encodings are not available in Python and cannot be selected (currently EUC_TW,
MULE_INTERNAL). The PostgreSQL SQL_ASCII encoding has the special meaning of “no encoding”: see
Strings adaptation for details.

See also:

The PostgreSQL supported encodings.

The description Column object

class psycopg.Column(cursor, index)
An object describing a column of data from a database result, as described by the DBAPI, so it can also be
unpacked as a 7-items tuple.

The object is returned by Cursor.description.

name

The name of the column.

type_code

The numeric OID of the column.

display_size

The field size, for varchar(n), None otherwise.

internal_size

The internal field size for fixed-size types, None otherwise.

precision

The number of digits for fixed precision types.

scale

The number of digits after the decimal point if available.

Notifications

class psycopg.Notify

An asynchronous notification received from the database.

The object is usually returned by Connection.notifies().

channel: str

The name of the channel on which the notification was received.

payload: str

The message attached to the notification.

pid: int

The PID of the backend process which sent the notification.

88 Chapter 1. Documentation

https://www.postgresql.org/docs/current/multibyte.html
https://www.python.org/dev/peps/pep-0249/#description
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

psycopg, Release 3.1.9

Pipeline-related objects

See Pipeline mode support for details.

class psycopg.Pipeline(conn)
Handler for connection in pipeline mode.

This objects is returned by Connection.pipeline().

sync()

Sync the pipeline, send any pending command and receive and process all available results.

classmethod is_supported()

Return !True if the psycopg libpq wrapper supports pipeline mode.

Return type
bool

class psycopg.AsyncPipeline(conn)
Handler for async connection in pipeline mode.

This objects is returned by AsyncConnection.pipeline().

async sync()

Transaction-related objects

See Transactions management for details about these objects.

class psycopg.IsolationLevel(value)
Enum representing the isolation level for a transaction.

The value is usually used with the Connection.isolation_level property.

Check the PostgreSQL documentation for a description of the effects of the different levels of transaction isola-
tion.

READ_UNCOMMITTED = 1

READ_COMMITTED = 2

REPEATABLE_READ = 3

SERIALIZABLE = 4

class psycopg.Transaction(connection, savepoint_name=None, force_rollback=False)
Returned by Connection.transaction() to handle a transaction block.

savepoint_name

The name of the savepoint; !None if handling the main transaction.

connection

The connection the object is managing.

class psycopg.AsyncTransaction(connection, savepoint_name=None, force_rollback=False)
Returned by AsyncConnection.transaction() to handle a transaction block.

connection

1.3. Psycopg 3 API 89

https://docs.python.org/3/library/functions.html#bool
https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/transaction-iso.html

psycopg, Release 3.1.9

exception psycopg.Rollback(transaction=None)
Exit the current Transaction context immediately and rollback any changes made within this context.

If a transaction context is specified in the constructor, rollback enclosing transactions contexts up to and including
the one specified.

It can be used as:

• raise Rollback: roll back the operation that happened in the current transaction block and continue the
program after the block.

• raise Rollback(): same effect as above

• raise Rollback(tx): roll back any operation that happened in the Transaction !tx (returned by a state-
ment such as with conn.transaction() as tx: and all the blocks nested within. The program will
continue after the !tx block.

Two-Phase Commit related objects

class psycopg.Xid(format_id, gtrid, bqual, prepared=None, owner=None, database=None)
A two-phase commit transaction identifier.

The object can also be unpacked as a 3-item tuple (format_id, gtrid, bqual).

See Two-Phase Commit protocol support for details.

format_id: Optional[int]

Format Identifier of the two-phase transaction.

gtrid: str

Global Transaction Identifier of the two-phase transaction.

If the Xid doesn’t follow the XA standard, it will be the PostgreSQL ID of the transaction (in which case
format_id and bqual will be !None).

bqual: Optional[str]

Branch Qualifier of the two-phase transaction.

prepared: Optional[datetime] = None

Timestamp at which the transaction was prepared for commit.

Only available on transactions recovered by ~Connection.tpc_recover().

owner: Optional[str] = None

Named of the user that executed the transaction.

Only available on recovered transactions.

database: Optional[str] = None

Named of the database in which the transaction was executed.

Only available on recovered transactions.

90 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

psycopg, Release 3.1.9

1.3.6 sql – SQL string composition

The module contains objects and functions useful to generate SQL dynamically, in a convenient and safe way. SQL
identifiers (e.g. names of tables and fields) cannot be passed to the execute() method like query arguments:

This will not work
table_name = 'my_table'
cur.execute("INSERT INTO %s VALUES (%s, %s)", [table_name, 10, 20])

The SQL query should be composed before the arguments are merged, for instance:

This works, but it is not optimal
table_name = 'my_table'
cur.execute(

"INSERT INTO %s VALUES (%%s, %%s)" % table_name,
[10, 20])

This sort of works, but it is an accident waiting to happen: the table name may be an invalid SQL literal and need
quoting; even more serious is the security problem in case the table name comes from an untrusted source. The name
should be escaped using escape_identifier():

from psycopg.pq import Escaping

This works, but it is not optimal
table_name = 'my_table'
cur.execute(

"INSERT INTO %s VALUES (%%s, %%s)" % Escaping.escape_identifier(table_name),
[10, 20])

This is now safe, but it somewhat ad-hoc. In case, for some reason, it is necessary to include a value in the
query string (as opposite as in a value) the merging rule is still different. It is also still relatively dangerous: if
escape_identifier() is forgotten somewhere, the program will usually work, but will eventually crash in the pres-
ence of a table or field name with containing characters to escape, or will present a potentially exploitable weakness.

The objects exposed by the psycopg.sql module allow generating SQL statements on the fly, separating clearly the
variable parts of the statement from the query parameters:

from psycopg import sql

cur.execute(
sql.SQL("INSERT INTO {} VALUES (%s, %s)")

.format(sql.Identifier('my_table')),
[10, 20])

Module usage

Usually you should express the template of your query as an SQL instance with {}-style placeholders and use format()
to merge the variable parts into them, all of which must be Composable subclasses. You can still have %s-style place-
holders in your query and pass values to execute(): such value placeholders will be untouched by format():

query = sql.SQL("SELECT {field} FROM {table} WHERE {pkey} = %s").format(
field=sql.Identifier('my_name'),
table=sql.Identifier('some_table'),
pkey=sql.Identifier('id'))

1.3. Psycopg 3 API 91

psycopg, Release 3.1.9

The resulting object is meant to be passed directly to cursor methods such as execute(), executemany(), copy(),
but can also be used to compose a query as a Python string, using the as_string() method:

cur.execute(query, (42,))
full_query = query.as_string(cur)

If part of your query is a variable sequence of arguments, such as a comma-separated list of field names, you can use
the SQL.join() method to pass them to the query:

query = sql.SQL("SELECT {fields} FROM {table}").format(
fields=sql.SQL(',').join([

sql.Identifier('field1'),
sql.Identifier('field2'),
sql.Identifier('field3'),

]),
table=sql.Identifier('some_table'))

sql objects

The sql objects are in the following inheritance hierarchy:

Composable: the base class exposing the common interface
|__ SQL: a literal snippet of an SQL query
|__ Identifier: a PostgreSQL identifier or dot-separated sequence of identifiers
|__ Literal: a value hardcoded into a query
|__ Placeholder: a %s-style placeholder whose value will be added later e.g. by execute()
|__ Composed : a sequence of Composable instances.

class psycopg.sql.Composable(obj)
Abstract base class for objects that can be used to compose an SQL string.

Composable objects can be passed directly to execute(), executemany(), copy() in place of the query
string.

Composable objects can be joined using the + operator: the result will be a Composed instance containing the
objects joined. The operator * is also supported with an integer argument: the result is a Composed instance
containing the left argument repeated as many times as requested.

abstract as_bytes(context)
Return the value of the object as bytes.

Parameters
context (connection or cursor) – the context to evaluate the object into.

Return type
bytes

The method is automatically invoked by ~psycopg.Cursor.execute(), ~psycopg.Cursor.executemany(),
~psycopg.Cursor.copy() if a !Composable is passed instead of the query string.

as_string(context)
Return the value of the object as string.

92 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#bytes

psycopg, Release 3.1.9

Parameters
context (connection or cursor) – the context to evaluate the string into.

Return type
str

class psycopg.sql.SQL(obj)
A Composable representing a snippet of SQL statement.

!SQL exposes join() and format() methods useful to create a template where to merge variable parts of a query
(for instance field or table names).

The !obj string doesn’t undergo any form of escaping, so it is not suitable to represent variable identifiers or
values: you should only use it to pass constant strings representing templates or snippets of SQL statements; use
other objects such as Identifier or Literal to represent variable parts.

Example:

>>> query = sql.SQL("SELECT {0} FROM {1}").format(
... sql.SQL(', ').join([sql.Identifier('foo'), sql.Identifier('bar')]),
... sql.Identifier('table'))
>>> print(query.as_string(conn))
SELECT "foo", "bar" FROM "table"

Changed in version 3.1: The input object should be a ~typing.LiteralString. See PEP 675 for details.

format(*args, **kwargs)
Merge Composable objects into a template.

Parameters

• args (Any) – parameters to replace to numbered ({0}, {1}) or auto-numbered ({}) place-
holders

• kwargs (Any) – parameters to replace to named ({name}) placeholders

Returns
the union of the !SQL string with placeholders replaced

Return type
Composed

The method is similar to the Python str.format() method: the string template supports auto-numbered
({}), numbered ({0}, {1}. . .), and named placeholders ({name}), with positional arguments replacing the
numbered placeholders and keywords replacing the named ones. However placeholder modifiers ({0!r},
{0:<10}) are not supported.

If a !Composable objects is passed to the template it will be merged according to its as_string() method. If
any other Python object is passed, it will be wrapped in a Literal object and so escaped according to SQL
rules.

Example:

>>> print(sql.SQL("SELECT * FROM {} WHERE {} = %s")
... .format(sql.Identifier('people'), sql.Identifier('id'))
... .as_string(conn))
SELECT * FROM "people" WHERE "id" = %s

>>> print(sql.SQL("SELECT * FROM {tbl} WHERE name = {name}")
... .format(tbl=sql.Identifier('people'), name="O'Rourke"))

(continues on next page)

1.3. Psycopg 3 API 93

https://docs.python.org/3/library/stdtypes.html#str
https://peps.python.org/pep-0675/
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

psycopg, Release 3.1.9

(continued from previous page)

... .as_string(conn))
SELECT * FROM "people" WHERE name = 'O''Rourke'

join(seq)
Join a sequence of Composable.

Parameters
seq (iterable of !Composable) – the elements to join.

Return type
Composed

Use the !SQL object’s string to separate the elements in !seq. Note that Composed objects are iterable too,
so they can be used as argument for this method.

Example:

>>> snip = sql.SQL(', ').join(
... sql.Identifier(n) for n in ['foo', 'bar', 'baz'])
>>> print(snip.as_string(conn))
"foo", "bar", "baz"

class psycopg.sql.Identifier(*strings)
A Composable representing an SQL identifier or a dot-separated sequence.

Identifiers usually represent names of database objects, such as tables or fields. PostgreSQL identifiers follow
different rules than SQL string literals for escaping (e.g. they use double quotes instead of single).

Example:

>>> t1 = sql.Identifier("foo")
>>> t2 = sql.Identifier("ba'r")
>>> t3 = sql.Identifier('ba"z')
>>> print(sql.SQL(', ').join([t1, t2, t3]).as_string(conn))
"foo", "ba'r", "ba""z"

Multiple strings can be passed to the object to represent a qualified name, i.e. a dot-separated sequence of
identifiers.

Example:

>>> query = sql.SQL("SELECT {} FROM {}").format(
... sql.Identifier("table", "field"),
... sql.Identifier("schema", "table"))
>>> print(query.as_string(conn))
SELECT "table"."field" FROM "schema"."table"

class psycopg.sql.Literal(obj)
A Composable representing an SQL value to include in a query.

Usually you will want to include placeholders in the query and pass values as ~cursor.execute() arguments. If
however you really really need to include a literal value in the query you can use this object.

The string returned by !as_string() follows the normal adaptation rules for Python objects.

Example:

94 Chapter 1. Documentation

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

psycopg, Release 3.1.9

>>> s1 = sql.Literal("fo'o")
>>> s2 = sql.Literal(42)
>>> s3 = sql.Literal(date(2000, 1, 1))
>>> print(sql.SQL(', ').join([s1, s2, s3]).as_string(conn))
'fo''o', 42, '2000-01-01'::date

Changed in version 3.1: Add a type cast to the representation if useful in ambiguous context (e.g.
'2000-01-01'::date)

class psycopg.sql.Placeholder(name='', format=PyFormat.AUTO)

A Composable representing a placeholder for query parameters.

If the name is specified, generate a named placeholder (e.g. %(name)s, %(name)b), otherwise generate a posi-
tional placeholder (e.g. %s, %b).

The object is useful to generate SQL queries with a variable number of arguments.

Examples:

>>> names = ['foo', 'bar', 'baz']

>>> q1 = sql.SQL("INSERT INTO my_table ({}) VALUES ({})").format(
... sql.SQL(', ').join(map(sql.Identifier, names)),
... sql.SQL(', ').join(sql.Placeholder() * len(names)))
>>> print(q1.as_string(conn))
INSERT INTO my_table ("foo", "bar", "baz") VALUES (%s, %s, %s)

>>> q2 = sql.SQL("INSERT INTO my_table ({}) VALUES ({})").format(
... sql.SQL(', ').join(map(sql.Identifier, names)),
... sql.SQL(', ').join(map(sql.Placeholder, names)))
>>> print(q2.as_string(conn))
INSERT INTO my_table ("foo", "bar", "baz") VALUES (%(foo)s, %(bar)s, %(baz)s)

class psycopg.sql.Composed(seq)
A Composable object made of a sequence of !Composable.

The object is usually created using !Composable operators and methods. However it is possible to create a
!Composed directly specifying a sequence of objects as arguments: if they are not !Composable they will be
wrapped in a Literal.

Example:

>>> comp = sql.Composed(
... [sql.SQL("INSERT INTO "), sql.Identifier("table")])
>>> print(comp.as_string(conn))
INSERT INTO "table"

!Composed objects are iterable (so they can be used in SQL.join for instance).

join(joiner)
Return a new !Composed interposing the !joiner with the !Composed items.

The !joiner must be a SQL or a string which will be interpreted as an SQL.

Example:

1.3. Psycopg 3 API 95

psycopg, Release 3.1.9

>>> fields = sql.Identifier('foo') + sql.Identifier('bar') # a Composed
>>> print(fields.join(', ').as_string(conn))
"foo", "bar"

Return type
Composed

Utility functions

psycopg.sql.quote(obj, context=None)
Adapt a Python object to a quoted SQL string.

Use this function only if you absolutely want to convert a Python string to an SQL quoted literal to use e.g. to
generate batch SQL and you won’t have a connection available when you will need to use it.

This function is relatively inefficient, because it doesn’t cache the adaptation rules. If you pass a !context you
can adapt the adaptation rules used, otherwise only global rules are used.

Return type
str

psycopg.sql.NULL

psycopg.sql.DEFAULT

sql.SQL objects often useful in queries.

1.3.7 rows – row factory implementations

The module exposes a few generic RowFactory implementation, which can be used to retrieve data from the database
in more complex structures than the basic tuples.

Check out Row factories for information about how to use these objects.

psycopg.rows.tuple_row(cursor)
Row factory to represent rows as simple tuples.

This is the default factory, used when ~psycopg.Connection.connect() or ~psycopg.Connection.cursor() are
called without a !row_factory parameter.

Return type
RowMaker[Tuple[Any, ...]]

psycopg.rows.dict_row(cursor)
Row factory to represent rows as dictionaries.

The dictionary keys are taken from the column names of the returned columns.

Return type
RowMaker[Dict[str, Any]]

psycopg.rows.namedtuple_row(cursor)
Row factory to represent rows as ~collections.namedtuple.

The field names are taken from the column names of the returned columns, with some mangling to deal with
invalid names.

Return type
RowMaker[NamedTuple]

96 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.NamedTuple

psycopg, Release 3.1.9

psycopg.rows.class_row(cls)
Generate a row factory to represent rows as instances of the class !cls.

The class must support every output column name as a keyword parameter.

Parameters
cls (Type[TypeVar(T, covariant=True)]) – The class to return for each row. It must support the
fields returned by the query as keyword arguments.

Return type
!Callable[[Cursor], RowMaker[~T]]

This is not a row factory, but rather a factory of row factories. Specifying !row_factory=class_row(MyClass)
will create connections and cursors returning !MyClass objects on fetch.

Example:

from dataclasses import dataclass
import psycopg
from psycopg.rows import class_row

@dataclass
class Person:

first_name: str
last_name: str
age: int = None

conn = psycopg.connect()
cur = conn.cursor(row_factory=class_row(Person))

cur.execute("select 'John' as first_name, 'Smith' as last_name").fetchone()
Person(first_name='John', last_name='Smith', age=None)

psycopg.rows.args_row(func)
Generate a row factory calling !func with positional parameters for every row.

Parameters
func (Callable[..., TypeVar(T, covariant=True)]) – The function to call for each row. It must
support the fields returned by the query as positional arguments.

Return type
BaseRowFactory[TypeVar(T, covariant=True)]

psycopg.rows.kwargs_row(func)
Generate a row factory calling !func with keyword parameters for every row.

Parameters
func (Callable[..., TypeVar(T, covariant=True)]) – The function to call for each row. It must
support the fields returned by the query as keyword arguments.

Return type
BaseRowFactory[TypeVar(T, covariant=True)]

1.3. Psycopg 3 API 97

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

Formal rows protocols

These objects can be used to describe your own rows adapter for static typing checks, such as mypy.

class psycopg.rows.RowMaker

Callable protocol taking a sequence of value and returning an object.

The sequence of value is what is returned from a database query, already adapted to the right Python types. The
return value is the object that your program would like to receive: by default (tuple_row()) it is a simple tuple,
but it may be any type of object.

Typically, !RowMaker functions are returned by RowFactory.

__call__(values: Sequence[Any])→ Row
Convert a sequence of values from the database to a finished object.

class psycopg.rows.RowFactory

Callable protocol taking a ~psycopg.Cursor and returning a RowMaker.

A !RowFactory is typically called when a !Cursor receives a result. This way it can inspect the cursor state (for
instance the ~psycopg.Cursor.description attribute) and help a !RowMaker to create a complete object.

For instance the dict_row() !RowFactory uses the names of the column to define the dictionary key and returns
a !RowMaker function which would use the values to create a dictionary for each record.

__call__(cursor: Cursor[Row])→ RowMaker[Row]
Inspect the result on a cursor and return a RowMaker to convert rows.

class psycopg.rows.AsyncRowFactory

Like RowFactory, taking an async cursor as argument.

class psycopg.rows.BaseRowFactory

Like RowFactory, taking either type of cursor as argument.

Note that it’s easy to implement an object implementing both !RowFactory and !AsyncRowFactory: usually, everything
you need to implement a row factory is to access the cursor’s ~psycopg.Cursor.description, which is provided by both
the cursor flavours.

1.3.8 errors – Package exceptions

This module exposes objects to represent and examine database errors.

DB-API exceptions

In compliance with the DB-API, all the exceptions raised by Psycopg derive from the following classes:

Exception
|__ Warning
|__ Error

|__ InterfaceError
|__ DatabaseError

|__ DataError
|__ OperationalError
|__ IntegrityError
|__ InternalError
|__ ProgrammingError
|__ NotSupportedError

98 Chapter 1. Documentation

https://mypy.readthedocs.io/

psycopg, Release 3.1.9

These classes are exposed both by this module and the root psycopg module.

exception psycopg.Error(*args, info=None, encoding='utf-8', pgconn=None)
Base exception for all the errors psycopg will raise.

Exception that is the base class of all other error exceptions. You can use this to catch all errors with one single
except statement.

This exception is guaranteed to be picklable.

diag

A Diagnostic object to inspect details of the errors from the database.

sqlstate: Optional[str] = None

The code of the error, if received from the server.

This attribute is also available as class attribute on the SQLSTATE exceptions classes.

pgconn: pq.PGconn | None

The connection object, if the error was raised from a connection attempt.

Most likely it will be in ~psycopg.pq.ConnStatus.BAD state; however it might be useful to verify pre-
cisely what went wrong, for instance checking the ~psycopg.pq.PGconn.needs_password and ~psy-
copg.pq.PGconn.used_password attributes.

New in version 3.1.

pgresult: pq.PGresult | None

The result object, if the exception was raised after a failed query.

New in version 3.1.

exception psycopg.Warning

Exception raised for important warnings.

Defined for DBAPI compatibility, but never raised by psycopg.

exception psycopg.InterfaceError(*args, info=None, encoding='utf-8', pgconn=None)
An error related to the database interface rather than the database itself.

exception psycopg.DatabaseError(*args, info=None, encoding='utf-8', pgconn=None)
Exception raised for errors that are related to the database.

exception psycopg.DataError(*args, info=None, encoding='utf-8', pgconn=None)
An error caused by problems with the processed data.

Examples may be division by zero, numeric value out of range, etc.

exception psycopg.OperationalError(*args, info=None, encoding='utf-8', pgconn=None)
An error related to the database’s operation.

These errors are not necessarily under the control of the programmer, e.g. an unexpected disconnect occurs, the
data source name is not found, a transaction could not be processed, a memory allocation error occurred during
processing, etc.

exception psycopg.IntegrityError(*args, info=None, encoding='utf-8', pgconn=None)
An error caused when the relational integrity of the database is affected.

An example may be a foreign key check failed.

1.3. Psycopg 3 API 99

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

psycopg, Release 3.1.9

exception psycopg.InternalError(*args, info=None, encoding='utf-8', pgconn=None)
An error generated when the database encounters an internal error,

Examples could be the cursor is not valid anymore, the transaction is out of sync, etc.

exception psycopg.ProgrammingError(*args, info=None, encoding='utf-8', pgconn=None)
Exception raised for programming errors

Examples may be table not found or already exists, syntax error in the SQL statement, wrong number of param-
eters specified, etc.

exception psycopg.NotSupportedError(*args, info=None, encoding='utf-8', pgconn=None)
A method or database API was used which is not supported by the database.

Other Psycopg errors

In addition to the standard DB-API errors, Psycopg defines a few more specific ones.

exception psycopg.errors.ConnectionTimeout(*args, info=None, encoding='utf-8', pgconn=None)
Exception raised on timeout of the ~psycopg.Connection.connect() method.

The error is raised if the connect_timeout is specified and a connection is not obtained in useful time.

Subclass of ~psycopg.OperationalError.

exception psycopg.errors.PipelineAborted(*args, info=None, encoding='utf-8', pgconn=None)
Raised when a operation fails because the current pipeline is in aborted state.

Subclass of ~psycopg.OperationalError.

Error diagnostics

class psycopg.errors.Diagnostic(info, encoding='utf-8')
Details from a database error report.

The object is available as the ~psycopg.Error.~psycopg.Error.diag attribute and is passed to the callback func-
tions registered with ~psycopg.Connection.add_notice_handler().

All the information available from the PQresultErrorField() function are exposed as attributes by the object.
For instance the !severity attribute returns the !PG_DIAG_SEVERITY code. Please refer to the PostgreSQL
documentation for the meaning of all the attributes.

The attributes available are:

column_name

constraint_name

context

datatype_name

internal_position

internal_query

message_detail

message_hint

message_primary

schema_name

severity

100 Chapter 1. Documentation

https://www.postgresql.org/docs/14/libpq-exec.html#LIBPQ-PQRESULTERRORFIELD

psycopg, Release 3.1.9

severity_nonlocalized

source_file

source_function

source_line

sqlstate

statement_position

table_name

A string with the error field if available; !None if not available. The attribute value is available only for
errors sent by the server: not all the fields are available for all the errors and for all the server versions.

SQLSTATE exceptions

Errors coming from a database server (as opposite as ones generated client-side, such as connection failed) usually
have a 5-letters error code called SQLSTATE (available in the ~Diagnostic.sqlstate attribute of the error’s ~psy-
copg.Error.diag attribute).

Psycopg exposes a different class for each SQLSTATE value, allowing to write idiomatic error handling code according
to specific conditions happening in the database:

try:
cur.execute("LOCK TABLE mytable IN ACCESS EXCLUSIVE MODE NOWAIT")

except psycopg.errors.LockNotAvailable:
locked = True

The exception names are generated from the PostgreSQL source code and includes classes for every error defined by
PostgreSQL in versions between 9.6 and 15. Every class in the module is named after what referred as “condition
name” in the documentation, converted to CamelCase: e.g. the error 22012, division_by_zero is exposed by this
module as the class !DivisionByZero. There is a handful of. . . exceptions to this rule, required for disambiguate name
clashes: please refer to the table below for all the classes defined.

Every exception class is a subclass of one of the standard DB-API exception, thus exposing the ~psycopg.Error inter-
face.

Changed in version 3.1.4: Added exceptions introduced in PostgreSQL 15.

psycopg.errors.lookup(sqlstate)
Lookup an error code or constant name and return its exception class.

Raise !KeyError if the code is not found. :rtype: Type[Error]

Example: if you have code using constant names or sql codes you can use them to look up the exception class.

try:
cur.execute("LOCK TABLE mytable IN ACCESS EXCLUSIVE MODE NOWAIT")

except psycopg.errors.lookup("UNDEFINED_TABLE"):
missing = True

except psycopg.errors.lookup("55P03"):
locked = True

1.3. Psycopg 3 API 101

https://www.postgresql.org/docs/current/errcodes-appendix.html#ERRCODES-TABLE
https://www.postgresql.org/docs/current/errcodes-appendix.html#ERRCODES-TABLE
https://docs.python.org/3/library/typing.html#typing.Type

psycopg, Release 3.1.9

List of known exceptions

The following are all the SQLSTATE-related error classed defined by this module, together with the base DBAPI
exception they derive from.

SQLSTATE Exception Base exception
Class 02 - No Data (this is also a warning class per the SQL standard)

02000 !NoData !DatabaseError
02001 !NoAdditionalDynamicResultSetsReturned !DatabaseError

Class 03 - SQL Statement Not Yet Complete
03000 !SqlStatementNotYetComplete !DatabaseError

Class 08 - Connection Exception
08000 !ConnectionException !OperationalError
08001 !SqlclientUnableToEstablishSqlconnection !OperationalError
08003 !ConnectionDoesNotExist !OperationalError
08004 !SqlserverRejectedEstablishmentOfSqlconnection !OperationalError
08006 !ConnectionFailure !OperationalError
08007 !TransactionResolutionUnknown !OperationalError
08P01 !ProtocolViolation !OperationalError

Class 09 - Triggered Action Exception
09000 !TriggeredActionException !DatabaseError

Class 0A - Feature Not Supported
0A000 !FeatureNotSupported !NotSupportedError

Class 0B - Invalid Transaction Initiation
0B000 !InvalidTransactionInitiation !DatabaseError

Class 0F - Locator Exception
0F000 !LocatorException !DatabaseError
0F001 !InvalidLocatorSpecification !DatabaseError

Class 0L - Invalid Grantor
0L000 !InvalidGrantor !DatabaseError
0LP01 !InvalidGrantOperation !DatabaseError

Class 0P - Invalid Role Specification
0P000 !InvalidRoleSpecification !DatabaseError

Class 0Z - Diagnostics Exception
0Z000 !DiagnosticsException !DatabaseError
0Z002 !StackedDiagnosticsAccessedWithoutActiveHandler !DatabaseError

Class 20 - Case Not Found
20000 !CaseNotFound !ProgrammingError

Class 21 - Cardinality Violation
21000 !CardinalityViolation !ProgrammingError

Class 22 - Data Exception
22000 !DataException !DataError
22001 !StringDataRightTruncation !DataError
22002 !NullValueNoIndicatorParameter !DataError
22003 !NumericValueOutOfRange !DataError
22004 !NullValueNotAllowed !DataError
22005 !ErrorInAssignment !DataError
22007 !InvalidDatetimeFormat !DataError
22008 !DatetimeFieldOverflow !DataError
22009 !InvalidTimeZoneDisplacementValue !DataError
2200B !EscapeCharacterConflict !DataError
2200C !InvalidUseOfEscapeCharacter !DataError

continues on next page

102 Chapter 1. Documentation

psycopg, Release 3.1.9

Table 1 – continued from previous page
SQLSTATE Exception Base exception
2200D !InvalidEscapeOctet !DataError
2200F !ZeroLengthCharacterString !DataError
2200G !MostSpecificTypeMismatch !DataError
2200H !SequenceGeneratorLimitExceeded !DataError
2200L !NotAnXmlDocument !DataError
2200M !InvalidXmlDocument !DataError
2200N !InvalidXmlContent !DataError
2200S !InvalidXmlComment !DataError
2200T !InvalidXmlProcessingInstruction !DataError
22010 !InvalidIndicatorParameterValue !DataError
22011 !SubstringError !DataError
22012 !DivisionByZero !DataError
22013 !InvalidPrecedingOrFollowingSize !DataError
22014 !InvalidArgumentForNtileFunction !DataError
22015 !IntervalFieldOverflow !DataError
22016 !InvalidArgumentForNthValueFunction !DataError
22018 !InvalidCharacterValueForCast !DataError
22019 !InvalidEscapeCharacter !DataError
2201B !InvalidRegularExpression !DataError
2201E !InvalidArgumentForLogarithm !DataError
2201F !InvalidArgumentForPowerFunction !DataError
2201G !InvalidArgumentForWidthBucketFunction !DataError
2201W !InvalidRowCountInLimitClause !DataError
2201X !InvalidRowCountInResultOffsetClause !DataError
22021 !CharacterNotInRepertoire !DataError
22022 !IndicatorOverflow !DataError
22023 !InvalidParameterValue !DataError
22024 !UnterminatedCString !DataError
22025 !InvalidEscapeSequence !DataError
22026 !StringDataLengthMismatch !DataError
22027 !TrimError !DataError
2202E !ArraySubscriptError !DataError
2202G !InvalidTablesampleRepeat !DataError
2202H !InvalidTablesampleArgument !DataError
22030 !DuplicateJsonObjectKeyValue !DataError
22031 !InvalidArgumentForSqlJsonDatetimeFunction !DataError
22032 !InvalidJsonText !DataError
22033 !InvalidSqlJsonSubscript !DataError
22034 !MoreThanOneSqlJsonItem !DataError
22035 !NoSqlJsonItem !DataError
22036 !NonNumericSqlJsonItem !DataError
22037 !NonUniqueKeysInAJsonObject !DataError
22038 !SingletonSqlJsonItemRequired !DataError
22039 !SqlJsonArrayNotFound !DataError
2203A !SqlJsonMemberNotFound !DataError
2203B !SqlJsonNumberNotFound !DataError
2203C !SqlJsonObjectNotFound !DataError
2203D !TooManyJsonArrayElements !DataError
2203E !TooManyJsonObjectMembers !DataError
2203F !SqlJsonScalarRequired !DataError

continues on next page

1.3. Psycopg 3 API 103

psycopg, Release 3.1.9

Table 1 – continued from previous page
SQLSTATE Exception Base exception
2203G !SqlJsonItemCannotBeCastToTargetType !DataError
22P01 !FloatingPointException !DataError
22P02 !InvalidTextRepresentation !DataError
22P03 !InvalidBinaryRepresentation !DataError
22P04 !BadCopyFileFormat !DataError
22P05 !UntranslatableCharacter !DataError
22P06 !NonstandardUseOfEscapeCharacter !DataError

Class 23 - Integrity Constraint Violation
23000 !IntegrityConstraintViolation !IntegrityError
23001 !RestrictViolation !IntegrityError
23502 !NotNullViolation !IntegrityError
23503 !ForeignKeyViolation !IntegrityError
23505 !UniqueViolation !IntegrityError
23514 !CheckViolation !IntegrityError
23P01 !ExclusionViolation !IntegrityError

Class 24 - Invalid Cursor State
24000 !InvalidCursorState !InternalError

Class 25 - Invalid Transaction State
25000 !InvalidTransactionState !InternalError
25001 !ActiveSqlTransaction !InternalError
25002 !BranchTransactionAlreadyActive !InternalError
25003 !InappropriateAccessModeForBranchTransaction !InternalError
25004 !InappropriateIsolationLevelForBranchTransaction !InternalError
25005 !NoActiveSqlTransactionForBranchTransaction !InternalError
25006 !ReadOnlySqlTransaction !InternalError
25007 !SchemaAndDataStatementMixingNotSupported !InternalError
25008 !HeldCursorRequiresSameIsolationLevel !InternalError
25P01 !NoActiveSqlTransaction !InternalError
25P02 !InFailedSqlTransaction !InternalError
25P03 !IdleInTransactionSessionTimeout !InternalError

Class 26 - Invalid SQL Statement Name
26000 !InvalidSqlStatementName !ProgrammingError

Class 27 - Triggered Data Change Violation
27000 !TriggeredDataChangeViolation !OperationalError

Class 28 - Invalid Authorization Specification
28000 !InvalidAuthorizationSpecification !OperationalError
28P01 !InvalidPassword !OperationalError

Class 2B - Dependent Privilege Descriptors Still Exist
2B000 !DependentPrivilegeDescriptorsStillExist !InternalError
2BP01 !DependentObjectsStillExist !InternalError

Class 2D - Invalid Transaction Termination
2D000 !InvalidTransactionTermination !InternalError

Class 2F - SQL Routine Exception
2F000 !SqlRoutineException !OperationalError
2F002 !ModifyingSqlDataNotPermitted !OperationalError
2F003 !ProhibitedSqlStatementAttempted !OperationalError
2F004 !ReadingSqlDataNotPermitted !OperationalError
2F005 !FunctionExecutedNoReturnStatement !OperationalError

Class 34 - Invalid Cursor Name
34000 !InvalidCursorName !ProgrammingError

continues on next page

104 Chapter 1. Documentation

psycopg, Release 3.1.9

Table 1 – continued from previous page
SQLSTATE Exception Base exception

Class 38 - External Routine Exception
38000 !ExternalRoutineException !OperationalError
38001 !ContainingSqlNotPermitted !OperationalError
38002 !ModifyingSqlDataNotPermittedExt !OperationalError
38003 !ProhibitedSqlStatementAttemptedExt !OperationalError
38004 !ReadingSqlDataNotPermittedExt !OperationalError

Class 39 - External Routine Invocation Exception
39000 !ExternalRoutineInvocationException !OperationalError
39001 !InvalidSqlstateReturned !OperationalError
39004 !NullValueNotAllowedExt !OperationalError
39P01 !TriggerProtocolViolated !OperationalError
39P02 !SrfProtocolViolated !OperationalError
39P03 !EventTriggerProtocolViolated !OperationalError

Class 3B - Savepoint Exception
3B000 !SavepointException !OperationalError
3B001 !InvalidSavepointSpecification !OperationalError

Class 3D - Invalid Catalog Name
3D000 !InvalidCatalogName !ProgrammingError

Class 3F - Invalid Schema Name
3F000 !InvalidSchemaName !ProgrammingError

Class 40 - Transaction Rollback
40000 !TransactionRollback !OperationalError
40001 !SerializationFailure !OperationalError
40002 !TransactionIntegrityConstraintViolation !OperationalError
40003 !StatementCompletionUnknown !OperationalError
40P01 !DeadlockDetected !OperationalError

Class 42 - Syntax Error or Access Rule Violation
42000 !SyntaxErrorOrAccessRuleViolation !ProgrammingError
42501 !InsufficientPrivilege !ProgrammingError
42601 !SyntaxError !ProgrammingError
42602 !InvalidName !ProgrammingError
42611 !InvalidColumnDefinition !ProgrammingError
42622 !NameTooLong !ProgrammingError
42701 !DuplicateColumn !ProgrammingError
42702 !AmbiguousColumn !ProgrammingError
42703 !UndefinedColumn !ProgrammingError
42704 !UndefinedObject !ProgrammingError
42710 !DuplicateObject !ProgrammingError
42712 !DuplicateAlias !ProgrammingError
42723 !DuplicateFunction !ProgrammingError
42725 !AmbiguousFunction !ProgrammingError
42803 !GroupingError !ProgrammingError
42804 !DatatypeMismatch !ProgrammingError
42809 !WrongObjectType !ProgrammingError
42830 !InvalidForeignKey !ProgrammingError
42846 !CannotCoerce !ProgrammingError
42883 !UndefinedFunction !ProgrammingError
428C9 !GeneratedAlways !ProgrammingError
42939 !ReservedName !ProgrammingError
42P01 !UndefinedTable !ProgrammingError

continues on next page

1.3. Psycopg 3 API 105

psycopg, Release 3.1.9

Table 1 – continued from previous page
SQLSTATE Exception Base exception
42P02 !UndefinedParameter !ProgrammingError
42P03 !DuplicateCursor !ProgrammingError
42P04 !DuplicateDatabase !ProgrammingError
42P05 !DuplicatePreparedStatement !ProgrammingError
42P06 !DuplicateSchema !ProgrammingError
42P07 !DuplicateTable !ProgrammingError
42P08 !AmbiguousParameter !ProgrammingError
42P09 !AmbiguousAlias !ProgrammingError
42P10 !InvalidColumnReference !ProgrammingError
42P11 !InvalidCursorDefinition !ProgrammingError
42P12 !InvalidDatabaseDefinition !ProgrammingError
42P13 !InvalidFunctionDefinition !ProgrammingError
42P14 !InvalidPreparedStatementDefinition !ProgrammingError
42P15 !InvalidSchemaDefinition !ProgrammingError
42P16 !InvalidTableDefinition !ProgrammingError
42P17 !InvalidObjectDefinition !ProgrammingError
42P18 !IndeterminateDatatype !ProgrammingError
42P19 !InvalidRecursion !ProgrammingError
42P20 !WindowingError !ProgrammingError
42P21 !CollationMismatch !ProgrammingError
42P22 !IndeterminateCollation !ProgrammingError

Class 44 - WITH CHECK OPTION Violation
44000 !WithCheckOptionViolation !ProgrammingError

Class 53 - Insufficient Resources
53000 !InsufficientResources !OperationalError
53100 !DiskFull !OperationalError
53200 !OutOfMemory !OperationalError
53300 !TooManyConnections !OperationalError
53400 !ConfigurationLimitExceeded !OperationalError

Class 54 - Program Limit Exceeded
54000 !ProgramLimitExceeded !OperationalError
54001 !StatementTooComplex !OperationalError
54011 !TooManyColumns !OperationalError
54023 !TooManyArguments !OperationalError

Class 55 - Object Not In Prerequisite State
55000 !ObjectNotInPrerequisiteState !OperationalError
55006 !ObjectInUse !OperationalError
55P02 !CantChangeRuntimeParam !OperationalError
55P03 !LockNotAvailable !OperationalError
55P04 !UnsafeNewEnumValueUsage !OperationalError

Class 57 - Operator Intervention
57000 !OperatorIntervention !OperationalError
57014 !QueryCanceled !OperationalError
57P01 !AdminShutdown !OperationalError
57P02 !CrashShutdown !OperationalError
57P03 !CannotConnectNow !OperationalError
57P04 !DatabaseDropped !OperationalError
57P05 !IdleSessionTimeout !OperationalError

Class 58 - System Error (errors external to PostgreSQL itself)
58000 !SystemError !OperationalError

continues on next page

106 Chapter 1. Documentation

psycopg, Release 3.1.9

Table 1 – continued from previous page
SQLSTATE Exception Base exception
58030 !IoError !OperationalError
58P01 !UndefinedFile !OperationalError
58P02 !DuplicateFile !OperationalError

Class 72 - Snapshot Failure
72000 !SnapshotTooOld !DatabaseError

Class F0 - Configuration File Error
F0000 !ConfigFileError !OperationalError
F0001 !LockFileExists !OperationalError

Class HV - Foreign Data Wrapper Error (SQL/MED)
HV000 !FdwError !OperationalError
HV001 !FdwOutOfMemory !OperationalError
HV002 !FdwDynamicParameterValueNeeded !OperationalError
HV004 !FdwInvalidDataType !OperationalError
HV005 !FdwColumnNameNotFound !OperationalError
HV006 !FdwInvalidDataTypeDescriptors !OperationalError
HV007 !FdwInvalidColumnName !OperationalError
HV008 !FdwInvalidColumnNumber !OperationalError
HV009 !FdwInvalidUseOfNullPointer !OperationalError
HV00A !FdwInvalidStringFormat !OperationalError
HV00B !FdwInvalidHandle !OperationalError
HV00C !FdwInvalidOptionIndex !OperationalError
HV00D !FdwInvalidOptionName !OperationalError
HV00J !FdwOptionNameNotFound !OperationalError
HV00K !FdwReplyHandle !OperationalError
HV00L !FdwUnableToCreateExecution !OperationalError
HV00M !FdwUnableToCreateReply !OperationalError
HV00N !FdwUnableToEstablishConnection !OperationalError
HV00P !FdwNoSchemas !OperationalError
HV00Q !FdwSchemaNotFound !OperationalError
HV00R !FdwTableNotFound !OperationalError
HV010 !FdwFunctionSequenceError !OperationalError
HV014 !FdwTooManyHandles !OperationalError
HV021 !FdwInconsistentDescriptorInformation !OperationalError
HV024 !FdwInvalidAttributeValue !OperationalError
HV090 !FdwInvalidStringLengthOrBufferLength !OperationalError
HV091 !FdwInvalidDescriptorFieldIdentifier !OperationalError

Class P0 - PL/pgSQL Error
P0000 !PlpgsqlError !ProgrammingError
P0001 !RaiseException !ProgrammingError
P0002 !NoDataFound !ProgrammingError
P0003 !TooManyRows !ProgrammingError
P0004 !AssertFailure !ProgrammingError

Class XX - Internal Error
XX000 !InternalError_ !InternalError
XX001 !DataCorrupted !InternalError
XX002 !IndexCorrupted !InternalError

New in version 3.1.4: Exception !SqlJsonItemCannotBeCastToTargetType, introduced in PostgreSQL 15.

1.3. Psycopg 3 API 107

psycopg, Release 3.1.9

1.3.9 psycopg_pool – Connection pool implementations

A connection pool is an object used to create and maintain a limited amount of PostgreSQL connections, reducing the
time requested by the program to obtain a working connection and allowing an arbitrary large number of concurrent
threads or tasks to use a controlled amount of resources on the server. See Connection pools for more details and usage
pattern.

This package exposes a few connection pool classes:

• ConnectionPool is a synchronous connection pool yielding Connection objects and can be used by multi-
thread applications.

• AsyncConnectionPool has an interface similar to ConnectionPool, but with asyncio functions replacing
blocking functions, and yields AsyncConnection instances.

• NullConnectionPool is a ConnectionPool subclass exposing the same interface of its parent, but not keeping
any unused connection in its state. See Null connection pools for details about related use cases.

• AsyncNullConnectionPool has the same behaviour of the NullConnectionPool, but with the same async
interface of the AsyncConnectionPool.

Note: The psycopg_pool package is distributed separately from the main psycopg package: use pip install
"psycopg[pool]", or pip install psycopg_pool, to make it available. See Installing the connection pool.

The version numbers indicated in this page refer to the psycopg_pool package, not to psycopg.

The ConnectionPool class

Pool exceptions

The AsyncConnectionPool class

AsyncConnectionPool has a very similar interface to the ConnectionPool class but its blocking methods are im-
plemented as async coroutines. It returns instances of AsyncConnection, or of its subclass if specified so in the
connection_class parameter.

Only the functions with different signature from ConnectionPool are listed here.

Null connection pools

New in version 3.1.

The NullConnectionPool is a ConnectionPool subclass which doesn’t create connections preemptively and doesn’t
keep unused connections in its state. See Null connection pools for further details.

The interface of the object is entirely compatible with its parent class. Its behaviour is similar, with the following
differences:

The AsyncNullConnectionPool is, similarly, an AsyncConnectionPool subclass with the same behaviour of the
NullConnectionPool.

108 Chapter 1. Documentation

https://docs.python.org/3/library/asyncio.html#module-asyncio

psycopg, Release 3.1.9

1.3.10 conninfo – manipulate connection strings

This module contains a few utility functions to manipulate database connection strings.

psycopg.conninfo.conninfo_to_dict(conninfo='', **kwargs)
Convert the conninfo string into a dictionary of parameters.

Parameters

• conninfo (str) – A connection string as accepted by PostgreSQL.

• kwargs (Any) – Parameters overriding the ones specified in conninfo.

Return type
Dict[str, Any]

Returns
Dictionary with the parameters parsed from conninfo and kwargs.

Raise ProgrammingError if conninfo is not a a valid connection string.

>>> conninfo_to_dict("postgres://jeff@example.com/db", user="piro")
{'user': 'piro', 'dbname': 'db', 'host': 'example.com'}

psycopg.conninfo.make_conninfo(conninfo='', **kwargs)
Merge a string and keyword params into a single conninfo string.

Parameters

• conninfo (str) – A connection string as accepted by PostgreSQL.

• kwargs (Any) – Parameters overriding the ones specified in conninfo.

Return type
str

Returns
A connection string valid for PostgreSQL, with the kwargs parameters merged.

Raise ProgrammingError if the input doesn’t make a valid conninfo string.

>>> make_conninfo("dbname=db user=jeff", user="piro", port=5432)
'dbname=db user=piro port=5432'

1.3.11 adapt – Types adaptation

The psycopg.adapt module exposes a set of objects useful for the configuration of data adaptation, which is the
conversion of Python objects to PostgreSQL data types and back.

These objects are useful if you need to configure data adaptation, i.e. if you need to change the default way that Psycopg
converts between types or if you want to adapt custom data types and objects. You don’t need this object in the normal
use of Psycopg.

See Data adaptation configuration for an overview of the Psycopg adaptation system.

1.3. Psycopg 3 API 109

https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

psycopg, Release 3.1.9

Dumpers and loaders

class psycopg.adapt.Dumper(cls, context=None)
Convert Python object of the type cls to PostgreSQL representation.

This is an abstract base class, partially implementing the Dumper protocol. Subclasses must at least implement
the dump() method and optionally override other members.

abstract dump(obj)
Convert the object !obj to PostgreSQL representation.

Parameters
obj (Any) – the object to convert.

Return type
Union[bytes, bytearray, memoryview]

format: psycopg.pq.Format = TEXT

Class attribute. Set it to ~psycopg.pq.Format.BINARY if the class dump() methods converts the object to
binary format.

quote(obj)
By default return the dump() value quoted and sanitised, so that the result can be used to build a SQL string.
This works well for most types and you won’t likely have to implement this method in a subclass.

Return type
Union[bytes, bytearray, memoryview]

get_key(obj, format)
Implementation of the ~psycopg.abc.Dumper.get_key() member of the ~psycopg.abc.Dumper protocol.
Look at its definition for details.

This implementation returns the !cls passed in the constructor. Subclasses needing to specialise the Post-
greSQL type according to the value of the object dumped (not only according to to its type) should override
this class.

Return type
Union[type, Tuple[Union[type, Tuple[DumperKey, ...]], ...]]

upgrade(obj, format)
Implementation of the ~psycopg.abc.Dumper.upgrade() member of the ~psycopg.abc.Dumper protocol.
Look at its definition for details.

This implementation just returns !self. If a subclass implements get_key() it should probably override
!upgrade() too.

Return type
Dumper

class psycopg.adapt.Loader(oid, context=None)
Convert PostgreSQL values with type OID !oid to Python objects.

This is an abstract base class, partially implementing the ~psycopg.abc.Loader protocol. Subclasses must at least
implement the .load() method and optionally override other members.

abstract load(data)
Convert a PostgreSQL value to a Python object.

Return type
Any

110 Chapter 1. Documentation

https://docs.python.org/glossary.html#term-abstract-base-class
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/glossary.html#term-abstract-base-class
https://docs.python.org/3/library/typing.html#typing.Any

psycopg, Release 3.1.9

format: psycopg.pq.Format = TEXT

Class attribute. Set it to ~psycopg.pq.Format.BINARY if the class load() methods converts the object from
binary format.

Other objects used in adaptations

class psycopg.adapt.PyFormat(value)
Enum representing the format wanted for a query argument.

The value AUTO allows psycopg to choose the best format for a certain parameter.

AUTO = 's'

TEXT = 't'

BINARY = 'b'

class psycopg.adapt.AdaptersMap(template=None, types=None)
Establish how types should be converted between Python and PostgreSQL in an ~psycopg.abc.AdaptContext.

!AdaptersMap maps Python types to ~psycopg.adapt.Dumper classes to define how Python types are converted
to PostgreSQL, and maps OIDs to ~psycopg.adapt.Loader classes to establish how query results are converted
to Python.

Every !AdaptContext object has an underlying !AdaptersMap defining how types are converted in that context,
exposed as the ~psycopg.abc.AdaptContext.adapters attribute: changing such map allows to customise adapta-
tion in a context without changing separated contexts.

When a context is created from another context (for instance when a ~psycopg.Cursor is created from a ~psy-
copg.Connection), the parent’s !adapters are used as template for the child’s !adapters, so that every cursor
created from the same connection use the connection’s types configuration, but separate connections have inde-
pendent mappings.

Once created, !AdaptersMap are independent. This means that objects already created are not affected if a wider
scope (e.g. the global one) is changed.

The connections adapters are initialised using a global !AdptersMap template, exposed as psycopg.adapters:
changing such mapping allows to customise the type mapping for every connections created afterwards.

The object can start empty or copy from another object of the same class. Copies are copy-on-write: if the maps
are updated make a copy. This way extending e.g. global map by a connection or a connection map from a cursor
is cheap: a copy is only made on customisation.

See also:

Data adaptation configuration for an explanation about how contexts are connected.

register_dumper(cls, dumper)
Configure the context to use !dumper to convert objects of type !cls.

If two dumpers with different ~Dumper.format are registered for the same type, the last one registered will be
chosen when the query doesn’t specify a format (i.e. when the value is used with a %s “~PyFormat.AUTO”
placeholder).

Parameters

• cls (Union[type, str, None]) – The type to manage.

• dumper (Type[Dumper]) – The dumper to register for !cls.

1.3. Psycopg 3 API 111

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type

psycopg, Release 3.1.9

If !cls is specified as string it will be lazy-loaded, so that it will be possible to register it without importing
it before. In this case it should be the fully qualified name of the object (e.g. "uuid.UUID").

If !cls is None, only use the dumper when looking up using get_dumper_by_oid(), which happens when we
know the Postgres type to adapt to, but not the Python type that will be adapted (e.g. in COPY after using
~psycopg.Copy.set_types()).

register_loader(oid, loader)
Configure the context to use !loader to convert data of oid !oid.

Parameters

• oid (Union[int, str]) – The PostgreSQL OID or type name to manage.

• loader (Type[Loader]) – The loar to register for !oid.

If oid is specified as string, it refers to a type name, which is looked up in the types registry. `

types

The object where to look up for types information (such as the mapping between type names and oids in
the specified context).

Type
~psycopg.types.TypesRegistry

get_dumper(cls, format)
Return the dumper class for the given type and format.

Raise ~psycopg.ProgrammingError if a class is not available.

Parameters

• cls (type) – The class to adapt.

• format (PyFormat) – The format to dump to. If ~psycopg.adapt.PyFormat.AUTO, use
the last one of the dumpers registered on !cls.

Return type
Type[Dumper]

get_dumper_by_oid(oid, format)
Return the dumper class for the given oid and format.

Raise ~psycopg.ProgrammingError if a class is not available.

Parameters

• oid (int) – The oid of the type to dump to.

• format (Format) – The format to dump to.

Return type
Type[Dumper]

get_loader(oid, format)
Return the loader class for the given oid and format.

Return !None if not found.

Parameters

• oid (int) – The oid of the type to load.

• format (Format) – The format to load from.

112 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int

psycopg, Release 3.1.9

Return type
Optional[Type[Loader]]

class psycopg.adapt.Transformer(context=None)
An object that can adapt efficiently between Python and PostgreSQL.

The life cycle of the object is the query, so it is assumed that attributes such as the server version or the connection
encoding will not change. The object have its state so adapting several values of the same type can be optimised.

Parameters
context (~psycopg.abc.AdaptContext) – The context where the transformer should operate.

1.3.12 types – Types information and adapters

The psycopg.types package exposes:

• objects to describe PostgreSQL types, such as TypeInfo, TypesRegistry, to help or customise the types con-
version;

• concrete implementations of Loader and Dumper protocols to handle builtin data types;

• helper objects to represent PostgreSQL data types which don’t have a straightforward Python representation,
such as Range.

Types information

The TypeInfo object describes simple information about a PostgreSQL data type, such as its name, oid and array oid.
TypeInfo subclasses may hold more information, for instance the components of a composite type.

You can use TypeInfo.fetch() to query information from a database catalog, which is then used by helper func-
tions, such as register_hstore(), to register adapters on types whose OID is not known upfront or to create more
specialised adapters.

The TypeInfo object doesn’t instruct Psycopg to convert a PostgreSQL type into a Python type: this is the role of a
Loader. However it can extend the behaviour of other adapters: if you create a loader for MyType, using the TypeInfo
information, Psycopg will be able to manage seamlessly arrays of MyType or ranges and composite types using MyType
as a subtype.

See also:

Data adaptation configuration describes how to convert from Python objects to PostgreSQL types and back.

from psycopg.adapt import Loader
from psycopg.types import TypeInfo

t = TypeInfo.fetch(conn, "mytype")
t.register(conn)

for record in conn.execute("SELECT mytypearray FROM mytable"):
records will return lists of "mytype" as string

class MyTypeLoader(Loader):
def load(self, data):

parse the data and return a MyType instance

conn.adapters.register_loader("mytype", MyTypeLoader)

(continues on next page)

1.3. Psycopg 3 API 113

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type

psycopg, Release 3.1.9

(continued from previous page)

for record in conn.execute("SELECT mytypearray FROM mytable"):
records will return lists of MyType instances

class psycopg.types.TypeInfo(name, oid, array_oid, *, regtype='', delimiter=',')
Hold information about a PostgreSQL base type.

classmethod fetch(conn, name)

async classmethod fetch(aconn, name)
Query a system catalog to read information about a type.

Parameters

• conn (Connection or AsyncConnection) – the connection to query

• name (str or Identifier) – the name of the type to query. It can include a schema name.

Returns
a TypeInfo object (or subclass) populated with the type information, None if not found.

If the connection is async, fetch() will behave as a coroutine and the caller will need to await on it to
get the result:

t = await TypeInfo.fetch(aconn, "mytype")

register(context=None)
Register the type information, globally or in the specified context.

Parameters
context (Optional[AdaptContext]) – the context where the type is registered, for in-
stance a Connection or Cursor. None registers the TypeInfo globally.

Registering the TypeInfo in a context allows the adapters of that context to look up type information: for
instance it allows to recognise automatically arrays of that type and load them from the database as a list of
the base type.

In order to get information about dynamic PostgreSQL types, Psycopg offers a few TypeInfo subclasses, whose
fetch() method can extract more complete information about the type, such as CompositeInfo, RangeInfo,
MultirangeInfo, EnumInfo.

TypeInfo objects are collected in TypesRegistry instances, which help type information lookup. Every
AdaptersMap exposes its type map on its types attribute.

class psycopg.types.TypesRegistry(template=None)
Container for the information about types in a database.

TypeRegistry instances are typically exposed by AdaptersMap objects in adapt contexts such as Connection
or Cursor (e.g. conn.adapters.types).

The global registry, from which the others inherit from, is available as psycopg.adapters.types.

__getitem__(key)
Return info about a type, specified by name or oid

Parameters
key (Union[str, int, Tuple[type, int]]) – the name or oid of the type to look for.

Return type
TypeInfo

Raise KeyError if not found.

114 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int

psycopg, Release 3.1.9

>>> import psycopg

>>> psycopg.adapters.types["text"]
<TypeInfo: text (oid: 25, array oid: 1009)>

>>> psycopg.adapters.types[23]
<TypeInfo: int4 (oid: 23, array oid: 1007)>

get(key)
Return info about a type, specified by name or oid

Parameters
key (Union[str, int, Tuple[type, int]]) – the name or oid of the type to look for.

Return type
Optional[TypeInfo]

Unlike __getitem__, return None if not found.

get_oid(name)
Return the oid of a PostgreSQL type by name.

Parameters
key – the name of the type to look for.

Return type
int

Return the array oid if the type ends with “[]”

Raise KeyError if the name is unknown.

>>> psycopg.adapters.types.get_oid("text[]")
1009

get_by_subtype(cls, subtype)
Return info about a TypeInfo subclass by its element name or oid.

Parameters

• cls (Type[TypeVar(T, bound= TypeInfo)]) – the subtype of !TypeInfo to
look for. Currently supported are ~psycopg.types.range.RangeInfo and ~psy-
copg.types.multirange.MultirangeInfo.

• subtype (Union[int, str]) – The name or OID of the subtype of the element to look for.

Return type
Optional[TypeVar(T, bound= TypeInfo)]

Returns
The !TypeInfo object of class !cls whose subtype is !subtype. !None if the element or its range
are not found.

1.3. Psycopg 3 API 115

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar

psycopg, Release 3.1.9

JSON adapters

See JSON adaptation for details.

class psycopg.types.json.Json(obj, dumps=None)

class psycopg.types.json.Jsonb(obj, dumps=None)

Wrappers to signal to convert !obj to a json or jsonb PostgreSQL value.

Any object supported by the underlying !dumps() function can be wrapped.

If a !dumps function is passed to the wrapper, use it to dump the wrapped object. Otherwise use the function specified
by set_json_dumps().

psycopg.types.json.set_json_dumps(dumps, context=None)
Set the JSON serialisation function to store JSON objects in the database.

Parameters

• dumps (!Callable[[Any], str]) – The dump function to use.

• context (~psycopg.Connection or ~psycopg.Cursor) – Where to use the !dumps function.
If not specified, use it globally.

By default dumping JSON uses the builtin json.dumps. You can override it to use a different JSON library or to
use customised arguments.

If the Json wrapper specified a !dumps function, use it in precedence of the one set by this function.

psycopg.types.json.set_json_loads(loads, context=None)
Set the JSON parsing function to fetch JSON objects from the database.

Parameters

• loads (!Callable[[bytes], Any]) – The load function to use.

• context (~psycopg.Connection or ~psycopg.Cursor) – Where to use the !loads function. If
not specified, use it globally.

By default loading JSON uses the builtin json.loads. You can override it to use a different JSON library or to
use customised arguments.

1.3.13 abc – Psycopg abstract classes

The module exposes Psycopg definitions which can be used for static type checking.

class psycopg.abc.Dumper(cls, context=None)
Convert Python objects of type cls to PostgreSQL representation.

Parameters

• cls (type) – The type that will be managed by this dumper.

• context (AdaptContext or None) – The context where the transformation is performed. If
not specified the conversion might be inaccurate, for instance it will not be possible to know
the connection encoding or the server date format.

A partial implementation of this protocol (implementing everything except dump()) is available as psycopg.
adapt.Dumper.

116 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#type

psycopg, Release 3.1.9

format: Format

The format that this class dump() method produces, ~psycopg.pq.Format.TEXT or ~psy-
copg.pq.Format.BINARY.

This is a class attribute.

dump(obj)
Convert the object !obj to PostgreSQL representation.

Parameters
obj (Any) – the object to convert.

Return type
Union[bytes, bytearray, memoryview]

The format returned by dump shouldn’t contain quotes or escaped values.

quote(obj)
Convert the object !obj to escaped representation.

Parameters
obj (Any) – the object to convert.

Return type
Union[bytes, bytearray, memoryview]

Tip: This method will be used by ~psycopg.sql.Literal to convert a value client-side.

This method only makes sense for text dumpers; the result of calling it on a binary dumper is undefined. It
might scratch your car, or burn your cake. Don’t tell me I didn’t warn you.

oid: int

The oid to pass to the server, if known; 0 otherwise (class attribute).

If the OID is not specified, PostgreSQL will try to infer the type from the context, but this may fail in some
contexts and may require a cast (e.g. specifying %s::type for its placeholder).

You can use the psycopg.adapters.~psycopg.adapt.AdaptersMap.types registry to find the OID of builtin
types, and you can use ~psycopg.types.TypeInfo to extend the registry to custom types.

get_key(obj, format)
Return an alternative key to upgrade the dumper to represent !obj.

Parameters

• obj (Any) – The object to convert

• format (PyFormat) – The format to convert to

Return type
Union[type, Tuple[Union[type, Tuple[DumperKey, ...]], ...]]

Normally the type of the object is all it takes to define how to dump the object to the database. For instance,
a Python ~datetime.date can be simply converted into a PostgreSQL date.

In a few cases, just the type is not enough. For example:

• A Python ~datetime.datetime could be represented as a timestamptz or a timestamp, according to
whether it specifies a !tzinfo or not.

1.3. Psycopg 3 API 117

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis

psycopg, Release 3.1.9

• A Python int could be stored as several Postgres types: int2, int4, int8, numeric. If a type too small is
used, it may result in an overflow. If a type too large is used, PostgreSQL may not want to cast it to a
smaller type.

• Python lists should be dumped according to the type they contain to convert them to e.g. array of
strings, array of ints (and which size of int?. . .)

In these cases, a dumper can implement !get_key() and return a new class, or sequence of classes, that can
be used to identify the same dumper again. If the mechanism is not needed, the method should return the
same !cls object passed in the constructor.

If a dumper implements get_key() it should also implement upgrade().

upgrade(obj, format)
Return a new dumper to manage !obj.

Parameters

• obj (Any) – The object to convert

• format (PyFormat) – The format to convert to

Return type
Dumper

Once Transformer.get_dumper() has been notified by get_key() that this Dumper class cannot handle !obj
itself, it will invoke !upgrade(), which should return a new Dumper instance, which will be reused for every
objects for which !get_key() returns the same result.

class psycopg.abc.Loader(oid, context=None)
Convert PostgreSQL values with type OID !oid to Python objects.

Parameters

• oid (int) – The type that will be managed by this dumper.

• context (AdaptContext or None) – The context where the transformation is performed. If
not specified the conversion might be inaccurate, for instance it will not be possible to know
the connection encoding or the server date format.

A partial implementation of this protocol (implementing everything except load()) is available as psy-
copg.adapt.Loader.

format: Format

The format that this class load() method can convert, ~psycopg.pq.Format.TEXT or ~psy-
copg.pq.Format.BINARY.

This is a class attribute.

load(data)
Convert the data returned by the database into a Python object.

Parameters
data (Union[bytes, bytearray, memoryview]) – the data to convert.

Return type
Any

class psycopg.abc.AdaptContext(*args, **kwargs)
A context describing how types are adapted.

Example of ~AdaptContext are ~psycopg.Connection, ~psycopg.Cursor, ~psycopg.adapt.Transformer, ~psy-
copg.adapt.AdaptersMap.

118 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/typing.html#typing.Any

psycopg, Release 3.1.9

Note that this is a ~typing.Protocol, so objects implementing !AdaptContext don’t need to explicitly inherit from
this class.

See also:

Data adaptation configuration for an explanation about how contexts are connected.

property adapters: AdaptersMap

The adapters configuration that this object uses.

property connection: BaseConnection[Any] | None

The connection used by this object, if available.

Return type
~psycopg.Connection or ~psycopg.AsyncConnection or !None

1.3.14 pq – libpq wrapper module

Psycopg is built around the libpq, the PostgreSQL client library, which performs most of the network communications
and returns query results in C structures.

The low-level functions of the library are exposed by the objects in the psycopg.pq module.

pq module implementations

There are actually several implementations of the module, all offering the same interface. Current implementations
are:

• python: a pure-python implementation, implemented using the ctypes module. It is less performing than the
others, but it doesn’t need a C compiler to install. It requires the libpq installed in the system.

• c: a C implementation of the libpq wrapper (more precisely, implemented in Cython). It is much better perform-
ing than the python implementation, however it requires development packages installed on the client machine.
It can be installed using the c extra, i.e. running pip install "psycopg[c]".

• binary: a pre-compiled C implementation, bundled with all the required libraries. It is the easiest option to deal
with, fast to install and it should require no development tool or client library, however it may be not available for
every platform. You can install it using the binary extra, i.e. running pip install "psycopg[binary]".

The implementation currently used is available in the __impl__ module constant.

At import time, Psycopg 3 will try to use the best implementation available and will fail if none is usable. You can
force the use of a specific implementation by exporting the env var PSYCOPG_IMPL: importing the library will fail if
the requested implementation is not available:

$ PSYCOPG_IMPL=c python -c "import psycopg"
Traceback (most recent call last):

...
ImportError: couldn't import requested psycopg 'c' implementation: No module named
↪→'psycopg_c'

1.3. Psycopg 3 API 119

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://www.postgresql.org/docs/current/libpq.html
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://cython.org/

psycopg, Release 3.1.9

Module content

psycopg.pq.__impl__: str = 'binary'

The currently loaded implementation of the psycopg.pq package.

Possible values include python, c, binary.

The choice of implementation is automatic but can be forced setting the PSYCOPG_IMPL env var.

psycopg.pq.version()

See also:

the PQlibVersion() function

psycopg.pq.__build_version__: int = 150001

The libpq version the C package was built with.

A number in the same format of server_version representing the libpq used to build the speedup module (c,
binary) if available.

Certain features might not be available if the built version is too old.

psycopg.pq.error_message(obj, encoding='utf8')
Return an error message from a PGconn or PGresult.

The return value is a !str (unlike pq data which is usually !bytes): use the connection encoding if available,
otherwise the !encoding parameter as a fallback for decoding. Don’t raise exceptions on decoding errors.

Return type
str

Objects wrapping libpq structures and functions

TODO

finish documentation

class psycopg.pq.PGconn

pgconn_ptr

get_cancel()

Return type
PGcancel

needs_password

used_password

encrypt_password(passwd, user, algorithm=None)

Return type
bytes

120 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://www.postgresql.org/docs/14/libpq-misc.html#LIBPQ-PQLIBVERSION
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

psycopg, Release 3.1.9

>>> enc = conn.info.encoding
>>> encrypted = conn.pgconn.encrypt_password(password.encode(enc), rolename.
↪→encode(enc))
b'SCRAM-SHA-256$4096:...

trace(fileno)

Return type
None

set_trace_flags(flags)

Return type
None

untrace()

Return type
None

>>> conn.pgconn.trace(sys.stderr.fileno())
>>> conn.pgconn.set_trace_flags(pq.Trace.SUPPRESS_TIMESTAMPS | pq.Trace.REGRESS_
↪→MODE)
>>> conn.execute("select now()")
F 13 Parse "" "BEGIN" 0
F 14 Bind "" "" 0 0 1 0
F 6 Describe P ""
F 9 Execute "" 0
F 4 Sync
B 4 ParseComplete
B 4 BindComplete
B 4 NoData
B 10 CommandComplete "BEGIN"
B 5 ReadyForQuery T
F 17 Query "select now()"
B 28 RowDescription 1 "now" NNNN 0 NNNN 8 -1 0
B 39 DataRow 1 29 '2022-09-14 14:12:16.648035+02'
B 13 CommandComplete "SELECT 1"
B 5 ReadyForQuery T
<psycopg.Cursor [TUPLES_OK] [INTRANS] (database=postgres) at 0x7f18a18ba040>
>>> conn.pgconn.untrace()

class psycopg.pq.PGresult

pgresult_ptr

class psycopg.pq.Conninfo

class psycopg.pq.Escaping

class psycopg.pq.PGcancel

1.3. Psycopg 3 API 121

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

psycopg, Release 3.1.9

Enumerations

class psycopg.pq.ConnStatus(value)
Current status of the connection.

There are other values in this enum, but only OK and BAD are seen after a connection has been established.
Other statuses might only be seen during the connection phase and are considered internal.

See also:

PQstatus() returns this value.

OK = 0

BAD = 1

class psycopg.pq.PollingStatus(value)
The status of the socket during a connection.

If READING or WRITING you may select before polling again.

See also:

PQconnectPoll for a description of these states.

FAILED = 0

READING = 1

WRITING = 2

OK = 3

class psycopg.pq.TransactionStatus(value)
The transaction status of a connection.

See also:

PQtransactionStatus for a description of these states.

IDLE = 0

ACTIVE = 1

INTRANS = 2

INERROR = 3

UNKNOWN = 4

class psycopg.pq.ExecStatus(value)
The status of a command.

See also:

PQresultStatus for a description of these states.

EMPTY_QUERY = 0

COMMAND_OK = 1

TUPLES_OK = 2

122 Chapter 1. Documentation

https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQSTATUS
https://www.postgresql.org/docs/14/libpq-connect.html#LIBPQ-PQCONNECTSTARTPARAMS
https://www.postgresql.org/docs/14/libpq-status.html#LIBPQ-PQTRANSACTIONSTATUS
https://www.postgresql.org/docs/14/libpq-exec.html#LIBPQ-PQRESULTSTATUS

psycopg, Release 3.1.9

COPY_OUT = 3

COPY_IN = 4

BAD_RESPONSE = 5

NONFATAL_ERROR = 6

FATAL_ERROR = 7

COPY_BOTH = 8

SINGLE_TUPLE = 9

PIPELINE_SYNC = 10

PIPELINE_ABORTED = 11

class psycopg.pq.PipelineStatus(value)
Pipeline mode status of the libpq connection.

See also:

PQpipelineStatus for a description of these states.

OFF = 0

ON = 1

ABORTED = 2

class psycopg.pq.Format(value)
Enum representing the format of a query argument or return value.

These values are only the ones managed by the libpq. ~psycopg may also support automatically-chosen values:
see psycopg.adapt.PyFormat.

TEXT = 0

BINARY = 1

class psycopg.pq.DiagnosticField(value)
Fields in an error report.

Available attributes:

SEVERITY

SEVERITY_NONLOCALIZED

SQLSTATE

MESSAGE_PRIMARY

MESSAGE_DETAIL

MESSAGE_HINT

STATEMENT_POSITION

INTERNAL_POSITION

INTERNAL_QUERY

CONTEXT

SCHEMA_NAME

TABLE_NAME

1.3. Psycopg 3 API 123

https://www.postgresql.org/docs/14/libpq-pipeline-mode.html#LIBPQ-PQPIPELINESTATUS

psycopg, Release 3.1.9

COLUMN_NAME

DATATYPE_NAME

CONSTRAINT_NAME

SOURCE_FILE

SOURCE_LINE

SOURCE_FUNCTION

See also:

PQresultErrorField for a description of these values.

class psycopg.pq.Ping(value)
Response from a ping attempt.

See also:

PQpingParams for a description of these values.

OK = 0

REJECT = 1

NO_RESPONSE = 2

NO_ATTEMPT = 3

class psycopg.pq.Trace(value)
Enum to control tracing of the client/server communication.

See also:

PQsetTraceFlags for a description of these values.

SUPPRESS_TIMESTAMPS = 1

REGRESS_MODE = 2

1.3.15 crdb – CockroachDB support

New in version 3.1.

CockroachDB is a distributed database using the same fronted-backend protocol of PostgreSQL. As such, Psycopg can
be used to write Python programs interacting with CockroachDB.

Opening a connection to a CRDB database using psycopg.connect() provides a largely working object. However,
using the psycopg.crdb.connect() function instead, Psycopg will create more specialised objects and provide a
types mapping tweaked on the CockroachDB data model.

Main differences from PostgreSQL

CockroachDB behaviour is different from PostgreSQL: please refer to the database documentation for details. These
are some of the main differences affecting Psycopg behaviour:

• cancel() doesn’t work before CockroachDB 22.1. On older versions, you can use CANCEL QUERY instead
(but from a different connection).

• Server-side cursors are well supported only from CockroachDB 22.1.3.

124 Chapter 1. Documentation

https://www.postgresql.org/docs/14/libpq-exec.html#LIBPQ-PQRESULTERRORFIELD
https://www.postgresql.org/docs/14/libpq-connect.html#LIBPQ-PQPINGPARAMS
https://www.postgresql.org/docs/14/libpq-control.html#LIBPQ-PQSETTRACEFLAGS
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/docs/stable/postgresql-compatibility.html
https://www.cockroachlabs.com/docs/stable/cancel-query.html

psycopg, Release 3.1.9

• backend_pid is only populated from CockroachDB 22.1. Note however that you cannot use the PID to terminate
the session; use SHOW session_id to find the id of a session, which you may terminate with CANCEL SESSION
in lieu of PostgreSQL’s pg_terminate_backend().

• Several data types are missing or slightly different from PostgreSQL (see adapters for an overview of the
differences).

• The two-phase commit protocol is not supported.

• LISTEN and NOTIFY are not supported. However the CHANGEFEED command, in conjunction with stream(),
can provide push notifications.

CockroachDB-specific objects

psycopg.crdb.connect(conninfo='', **kwargs)
Connect to a database server and return a new CrdbConnection instance.

Return type
CrdbConnection[Any]

This is an alias of the class method CrdbConnection.connect.

If you need an asynchronous connection use the AsyncCrdbConnection.connect() method instead.

class psycopg.crdb.CrdbConnection(pgconn, row_factory=<function tuple_row>)
Wrapper for a connection to a CockroachDB database.

psycopg.Connection subclass.

classmethod is_crdb(conn)
Return !True if the server connected to !conn is CockroachDB.

Return type
bool

Parameters
conn (~psycopg.Connection, ~psycopg.AsyncConnection, ~psycopg.pq.PGconn) – the con-
nection to check

class psycopg.crdb.AsyncCrdbConnection(pgconn, row_factory=<function tuple_row>)
Wrapper for an async connection to a CockroachDB database.

psycopg.AsyncConnection subclass.

class psycopg.crdb.CrdbConnectionInfo(pgconn)
~psycopg.ConnectionInfo subclass to get info about a CockroachDB database.

The object is returned by the ~psycopg.Connection.info attribute of CrdbConnection and AsyncCrdbConnection.

The object behaves like !ConnectionInfo, with the following differences:

vendor

The CockroachDB string.

server_version

Return the CockroachDB server version connected.

Return a number in the PostgreSQL format (e.g. 21.2.10 -> 210210).

1.3. Psycopg 3 API 125

https://www.cockroachlabs.com/docs/stable/show-vars.html
https://www.cockroachlabs.com/docs/stable/cancel-session.html
https://www.cockroachlabs.com/docs/stable/changefeed-for.html
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

psycopg, Release 3.1.9

psycopg.crdb.adapters

The default adapters map establishing how Python and CockroachDB types are converted into each other.

The map is used as a template when new connections are created, using psycopg.crdb.connect() (similarly to the
way psycopg.adapters is used as template for new PostgreSQL connections).

This registry contains only the types and adapters supported by CockroachDB. Several PostgreSQL types and
adapters are missing or different from PostgreSQL, among which:

• Composite types

• range, multirange types

• The hstore type

• Geometric types

• Nested arrays

• Arrays of jsonb

• The cidr data type

• The json type is an alias for jsonb

• The int type is an alias for int8, not int4.

1.3.16 _dns – DNS resolution utilities

This module contains a few experimental utilities to interact with the DNS server before performing a connection.

Warning: This module is experimental and its interface could change in the future, without warning or respect
for the version scheme. It is provided here to allow experimentation before making it more stable.

Warning: This module depends on the dnspython package. The package is currently not installed automatically
as a Psycopg dependency and must be installed manually:

$ pip install "dnspython >= 2.1"

psycopg._dns.resolve_srv(params)
Apply SRV DNS lookup as defined in RFC 2782.

Parameters
params (dict) – The input parameters, for instance as returned by conninfo_to_dict().

Returns
An updated list of connection parameters.

For every host defined in the params["host"] list (comma-separated), perform SRV lookup if the host is in the
form _Service._Proto.Target. If lookup is successful, return a params dict with hosts and ports replaced
with the looked-up entries.

Raise OperationalError if no lookup is successful and no host (looked up or unchanged) could be returned.

In addition to the rules defined by RFC 2782 about the host name pattern, perform SRV lookup also if the the
port is the string SRV (case insensitive).

126 Chapter 1. Documentation

https://dnspython.readthedocs.io/
https://datatracker.ietf.org/doc/html/rfc2782.html

psycopg, Release 3.1.9

Warning: This is an experimental functionality.

Note: One possible way to use this function automatically is to subclass Connection, extending the
_get_connection_params() method:

import psycopg._dns # not imported automatically

class SrvCognizantConnection(psycopg.Connection):
@classmethod
def _get_connection_params(cls, conninfo, **kwargs):

params = super()._get_connection_params(conninfo, **kwargs)
params = psycopg._dns.resolve_srv(params)
return params

The name will be resolved to db1.example.com
cnn = SrvCognizantConnection.connect("host=_postgres._tcp.db.psycopg.org")

async psycopg._dns.resolve_srv_async(params)
Async equivalent of resolve_srv().

classmethod Connection._get_connection_params(conninfo, **kwargs)
Manipulate connection parameters before connecting.

Parameters

• conninfo (str) – Connection string as received by connect().

• kwargs (Any) – Overriding connection arguments as received by connect().

Return type
Dict[str, Any]

Returns
Connection arguments merged and eventually modified, in a format similar to
conninfo_to_dict().

Warning: This is an experimental method.

This method is a subclass hook allowing to manipulate the connection parameters before performing the con-
nection. Make sure to call the super() implementation before further manipulation of the arguments:

@classmethod
def _get_connection_params(cls, conninfo, **kwargs):

params = super()._get_connection_params(conninfo, **kwargs)
do something with the params
return params

async classmethod AsyncConnection._get_connection_params(conninfo, **kwargs)
Manipulate connection parameters before connecting. :rtype: Dict[str, Any]

Changed in version 3.1: Unlike the sync counterpart, perform non-blocking address resolution and pop-
ulate the hostaddr connection parameter, unless the user has provided one themselves. See ~psy-
copg._dns.resolve_hostaddr_async() for details.

1.3. Psycopg 3 API 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

psycopg, Release 3.1.9

Warning: This is an experimental method.

async psycopg._dns.resolve_hostaddr_async(params)
Perform async DNS lookup of the hosts and return a new params dict.

Deprecated since version 3.1: The use of this function is not necessary anymore, because psy-
copg.AsyncConnection.connect() performs non-blocking name resolution automatically.

Parameters
params (!dict) – The input parameters, for instance as returned by ~psy-
copg.conninfo.conninfo_to_dict().

If a host param is present but not hostname, resolve the host addresses dynamically.

The function may change the input host, hostname, port to allow connecting without further DNS lookups,
eventually removing hosts that are not resolved, keeping the lists of hosts and ports consistent.

Raise ~psycopg.OperationalError if connection is not possible (e.g. no host resolve, inconsistent lists length).

See the PostgreSQL docs for explanation of how these params are used, and how they support multiple entries.

Warning: Before psycopg 3.1, this function doesn’t handle the /etc/hosts file.

Note: Starting from psycopg 3.1, a similar operation is performed automatically by !AsyncConnec-
tion._get_connection_params(), so this function is unneeded.

In psycopg 3.0, one possible way to use this function automatically is to subclass ~psycopg.AsyncConnection,
extending the ~psycopg.AsyncConnection._get_connection_params() method:

import psycopg._dns # not imported automatically

class AsyncDnsConnection(psycopg.AsyncConnection):
@classmethod
async def _get_connection_params(cls, conninfo, **kwargs):

params = await super()._get_connection_params(conninfo, **kwargs)
params = await psycopg._dns.resolve_hostaddr_async(params)
return params

1.4 Release notes

1.4.1 psycopg release notes

Current release

Psycopg 3.1.9

• Fix TypeInfo.fetch() using a connection in sql_ascii encoding (ticket #503).

• Fix “filedescriptor out of range” using a large number of files open in Python implementation (ticket #532).

• Allow JSON dumpers to be registered on dict or any other object, as was possible in psycopg2 (ticket #541).

128 Chapter 1. Documentation

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://github.com/psycopg/psycopg/issues/503
https://github.com/psycopg/psycopg/issues/532
https://github.com/psycopg/psycopg/issues/541

psycopg, Release 3.1.9

• Fix canceling running queries on process interruption in async connections (ticket #543).

• Fix loading ROW values with different types in the same query using the binary protocol (ticket #545).

• Fix dumping recursive composite types (ticket #547).

Psycopg 3.1.8

• Don’t pollute server logs when types looked for by TypeInfo.fetch() are not found (ticket #473).

• Set Cursor.rowcount to the number of rows of each result set from executemany() when called with
returning=True (ticket #479).

• Fix TypeInfo.fetch() when used with ClientCursor (ticket #484).

Psycopg 3.1.7

• Fix server-side cursors using row factories (ticket #464).

Psycopg 3.1.6

• Fix cursor.copy() with cursors using row factories (ticket #460).

Psycopg 3.1.5

• Fix array loading slowness compared to psycopg2 (ticket #359).

• Improve performance around network communication (ticket #414).

• Return bytes instead of memoryview from pq.Encoding methods (ticket #422).

• Fix Cursor.rownumber to return None when the result has no row to fetch (ticket #437).

• Avoid error in Pyright caused by aliasing TypeAlias (ticket #439).

• Fix Copy.set_types() used with varchar and name types (ticket #452).

• Improve performance using Row factories (ticket #457).

Psycopg 3.1.4

• Include error classes defined in PostgreSQL 15.

• Add support for Python 3.11 (ticket #305).

• Build binary packages with libpq from PostgreSQL 15.0.

1.4. Release notes 129

https://github.com/psycopg/psycopg/issues/543
https://github.com/psycopg/psycopg/issues/545
https://github.com/psycopg/psycopg/issues/547
https://github.com/psycopg/psycopg/issues/473
https://github.com/psycopg/psycopg/issues/479
https://github.com/psycopg/psycopg/issues/484
https://github.com/psycopg/psycopg/issues/464
https://github.com/psycopg/psycopg/issues/460
https://github.com/psycopg/psycopg/issues/359
https://github.com/psycopg/psycopg/issues/414
https://github.com/psycopg/psycopg/issues/422
https://github.com/psycopg/psycopg/issues/437
https://github.com/psycopg/psycopg/issues/439
https://github.com/psycopg/psycopg/issues/452
https://github.com/psycopg/psycopg/issues/457
https://github.com/psycopg/psycopg/issues/305

psycopg, Release 3.1.9

Psycopg 3.1.3

• Restore the state of the connection if Cursor.stream() is terminated prematurely (ticket #382).

• Fix regression introduced in 3.1 with different named tuples mangling rules for non-ascii attribute names (ticket
#386).

• Fix handling of queries with escaped percent signs (%%) in ClientCursor (ticket #399).

• Fix possible duplicated BEGIN statements emitted in pipeline mode (ticket #401).

Psycopg 3.1.2

• Fix handling of certain invalid time zones causing problems on Windows (ticket #371).

• Fix segfault occurring when a loader fails initialization (ticket #372).

• Fix invalid SAVEPOINT issued when entering Connection.transaction()within a pipeline using an implicit
transaction (ticket #374).

• Fix queries with repeated named parameters in ClientCursor (ticket #378).

• Distribute macOS arm64 (Apple M1) binary packages (ticket #344).

Psycopg 3.1.1

• Work around broken Homebrew installation of the libpq in a non-standard path (ticket #364)

• Fix possible “unrecognized service” error in async connection when no port is specified (ticket #366).

Psycopg 3.1

• Add Pipeline mode (ticket #74).

• Add Client-side-binding cursors (ticket #101).

• Add CockroachDB support in psycopg.crdb (ticket #313).

• Add Two-Phase Commit support (ticket #72).

• Add Enum adaptation (ticket #274).

• Add returning parameter to executemany() to retrieve query results (ticket #164).

• executemany() performance improved by using batch mode internally (ticket #145).

• Add parameters to copy().

• Add COPY Writer objects.

• Resolve domain names asynchronously in AsyncConnection.connect() (ticket #259).

• Add pq.PGconn.trace() and related trace functions (ticket #167).

• Add prepare_threshold parameter to Connection init (ticket #200).

• Add cursor_factory parameter to Connection init.

• Add Error.pgconn and Error.pgresult attributes (ticket #242).

• Restrict queries to be LiteralString as per PEP 675 (ticket #323).

130 Chapter 1. Documentation

https://github.com/psycopg/psycopg/issues/382
https://github.com/psycopg/psycopg/issues/386
https://github.com/psycopg/psycopg/issues/399
https://github.com/psycopg/psycopg/issues/401
https://github.com/psycopg/psycopg/issues/371
https://github.com/psycopg/psycopg/issues/372
https://github.com/psycopg/psycopg/issues/374
https://github.com/psycopg/psycopg/issues/378
https://github.com/psycopg/psycopg/issues/344
https://github.com/psycopg/psycopg/issues/364
https://github.com/psycopg/psycopg/issues/366
https://github.com/psycopg/psycopg/issues/74
https://github.com/psycopg/psycopg/issues/101
https://www.cockroachlabs.com/
https://github.com/psycopg/psycopg/issues/313
https://github.com/psycopg/psycopg/issues/72
https://github.com/psycopg/psycopg/issues/274
https://github.com/psycopg/psycopg/issues/164
https://github.com/psycopg/psycopg/issues/145
https://github.com/psycopg/psycopg/issues/259
https://github.com/psycopg/psycopg/issues/167
https://github.com/psycopg/psycopg/issues/200
https://github.com/psycopg/psycopg/issues/242
https://docs.python.org/3/library/typing.html#typing.LiteralString
https://peps.python.org/pep-0675/
https://github.com/psycopg/psycopg/issues/323

psycopg, Release 3.1.9

• Add explicit type cast to values converted by sql.Literal (ticket #205).

• Drop support for Python 3.6.

Psycopg 3.0.17

• Fix segfaults on fork on some Linux systems using ctypes implementation (ticket #300).

• Load bytea as bytes, not memoryview, using ctypes implementation.

Psycopg 3.0.16

• Fix missing rowcount after SHOW (ticket #343).

• Add scripts to build macOS arm64 packages (ticket #162).

Psycopg 3.0.15

• Fix wrong escaping of unprintable chars in COPY (nonetheless correctly interpreted by PostgreSQL).

• Restore the connection to usable state after an error in stream().

• Raise DataError instead of OverflowError loading binary intervals out-of-range.

• Distribute manylinux2014 wheel packages (ticket #124).

Psycopg 3.0.14

• Raise DataError dumping arrays of mixed types (ticket #301).

• Fix handling of incorrect server results, with blank sqlstate (ticket #303).

• Fix bad Float4 conversion on ppc64le/musllinux (ticket #304).

Psycopg 3.0.13

• Fix Cursor.stream() slowness (ticket #286).

• Fix oid for lists of integers, which might cause the server choosing bad plans (ticket #293).

• Make Connection.cancel() on a closed connection a no-op instead of an error.

Psycopg 3.0.12

• Allow bytearray/memoryview data too as Copy.write() input (ticket #254).

• Fix dumping IntEnum in text mode, Python implementation.

1.4. Release notes 131

https://github.com/psycopg/psycopg/issues/205
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://github.com/psycopg/psycopg/issues/300
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://github.com/psycopg/psycopg/issues/343
https://github.com/psycopg/psycopg/issues/162
https://docs.python.org/3/library/exceptions.html#OverflowError
https://github.com/psycopg/psycopg/issues/124
https://github.com/psycopg/psycopg/issues/301
https://github.com/psycopg/psycopg/issues/303
https://github.com/psycopg/psycopg/issues/304
https://github.com/psycopg/psycopg/issues/286
https://github.com/psycopg/psycopg/issues/293
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://github.com/psycopg/psycopg/issues/254
https://docs.python.org/3/library/enum.html#enum.IntEnum

psycopg, Release 3.1.9

Psycopg 3.0.11

• Fix DataError loading arrays with dimensions information (ticket #253).

• Fix hanging during COPY in case of memory error (ticket #255).

• Fix error propagation from COPY worker thread (mentioned in ticket #255).

Psycopg 3.0.10

• Leave the connection in working state after interrupting a query with Ctrl-C (ticket #231).

• Fix Cursor.description after a COPY . . . TO STDOUT operation (ticket #235).

• Fix building on FreeBSD and likely other BSD flavours (ticket #241).

Psycopg 3.0.9

• Set Error.sqlstate when an unknown code is received (ticket #225).

• Add the tzdata package as a dependency on Windows in order to handle time zones (ticket #223).

Psycopg 3.0.8

• Decode connection errors in the client_encoding specified in the connection string, if available (ticket #194).

• Fix possible warnings in objects deletion on interpreter shutdown (ticket #198).

• Don’t leave connections in ACTIVE state in case of error during COPY . . . TO STDOUT (ticket #203).

Psycopg 3.0.7

• Fix crash in executemany() with no input sequence (ticket #179).

• Fix wrong rowcount after an executemany() returning no rows (ticket #178).

Psycopg 3.0.6

• Allow to use Cursor.description if the connection is closed (ticket #172).

• Don’t raise exceptions on ServerCursor.close() if the connection is closed (ticket #173).

• Fail on Connection.cursor() if the connection is closed (ticket #174).

• Raise ProgrammingError if out-of-order exit from transaction contexts is detected (tickets #176, #177).

• Add CHECK_STANDBY value to ConnStatus enum.

132 Chapter 1. Documentation

https://github.com/psycopg/psycopg/issues/253
https://github.com/psycopg/psycopg/issues/255
https://github.com/psycopg/psycopg/issues/255
https://github.com/psycopg/psycopg/issues/231
https://github.com/psycopg/psycopg/issues/235
https://github.com/psycopg/psycopg/issues/241
https://github.com/psycopg/psycopg/issues/225
https://github.com/psycopg/psycopg/issues/223
https://github.com/psycopg/psycopg/issues/194
https://github.com/psycopg/psycopg/issues/198
https://github.com/psycopg/psycopg/issues/203
https://github.com/psycopg/psycopg/issues/179
https://github.com/psycopg/psycopg/issues/178
https://github.com/psycopg/psycopg/issues/172
https://github.com/psycopg/psycopg/issues/173
https://github.com/psycopg/psycopg/issues/174
https://github.com/psycopg/psycopg/issues/176
https://github.com/psycopg/psycopg/issues/177

psycopg, Release 3.1.9

Psycopg 3.0.5

• Fix possible “Too many open files” OS error, reported on macOS but possible on other platforms too (ticket
#158).

• Don’t clobber exceptions if a transaction block exit with error and rollback fails (ticket #165).

Psycopg 3.0.4

• Allow to use the module with strict strings comparison (ticket #147).

• Fix segfault on Python 3.6 running in -W error mode, related to backport.zoneinfo ticket #109.

• Build binary package with libpq versions not affected by CVE-2021-23222 (ticket #149).

Psycopg 3.0.3

• Release musllinux binary packages, compatible with Alpine Linux (ticket #141).

• Reduce size of binary package by stripping debug symbols (ticket #142).

• Include typing information in the psycopg_binary package.

Psycopg 3.0.2

• Fix type hint for sql.SQL.join() (ticket #127).

• Fix type hint for Connection.notifies() (ticket #128).

• Fix call to MultiRange.__setitem__() with a non-iterable value and a slice, now raising a TypeError (ticket
#129).

• Fix disable cursors methods after close() (ticket #125).

Psycopg 3.0.1

• Fix use of the wrong dumper reusing cursors with the same query but different parameter types (ticket #112).

Psycopg 3.0

First stable release. Changed from 3.0b1:

• Add Geometry adaptation using Shapely (ticket #80).

• Add Multirange adaptation (ticket #75).

• Add pq.__build_version__ constant.

• Don’t use the extended protocol with COPY, (tickets #78, #82).

• Add context parameter to connect() (ticket #83).

• Fix selection of dumper by oid after set_types().

• Drop Connection.client_encoding. Use ConnectionInfo.encoding to read it, and a SET statement to
change it.

1.4. Release notes 133

https://github.com/psycopg/psycopg/issues/158
https://github.com/psycopg/psycopg/issues/165
https://github.com/psycopg/psycopg/issues/147
https://github.com/pganssle/zoneinfo/issues/109
https://www.postgresql.org/support/security/CVE-2021-23222/
https://github.com/psycopg/psycopg/issues/149
https://github.com/psycopg/psycopg/issues/141
https://github.com/psycopg/psycopg/issues/142
https://github.com/psycopg/psycopg/issues/127
https://github.com/psycopg/psycopg/issues/128
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/psycopg/psycopg/issues/129
https://github.com/psycopg/psycopg/issues/125
https://github.com/psycopg/psycopg/issues/112
https://github.com/psycopg/psycopg/issues/80
https://github.com/psycopg/psycopg/issues/75
https://github.com/psycopg/psycopg/issues/78
https://github.com/psycopg/psycopg/issues/82
https://github.com/psycopg/psycopg/issues/83

psycopg, Release 3.1.9

• Add binary packages for Python 3.10 (ticket #103).

Psycopg 3.0b1

• First public release on PyPI.

1.4.2 psycopg_pool release notes

Current release

psycopg_pool 3.1.7

• Fix handling of tasks cancelled while waiting in async pool queue (ticket #503).

psycopg_pool 3.1.6

• Declare all parameters in pools constructors, instead of using **kwargs (ticket #493).

psycopg_pool 3.1.5

• Make sure that ConnectionPool.check() refills an empty pool (ticket #438).

• Avoid error in Pyright caused by aliasing TypeAlias (ticket #439).

psycopg_pool 3.1.4

• Fix async pool exhausting connections, happening if the pool is created before the event loop is started (ticket
#219).

psycopg_pool 3.1.3

• Add support for Python 3.11 (ticket #305).

psycopg_pool 3.1.2

• Fix possible failure to reconnect after losing connection from the server (ticket #370).

134 Chapter 1. Documentation

https://github.com/psycopg/psycopg/issues/103
https://github.com/psycopg/psycopg/issues/503
https://github.com/psycopg/psycopg/issues/493
https://github.com/psycopg/psycopg/issues/438
https://github.com/psycopg/psycopg/issues/439
https://github.com/psycopg/psycopg/issues/219
https://github.com/psycopg/psycopg/issues/305
https://github.com/psycopg/psycopg/issues/370

psycopg, Release 3.1.9

psycopg_pool 3.1.1

• Fix race condition on pool creation which might result in the pool not filling (ticket #230).

psycopg_pool 3.1.0

• Add Null connection pools (ticket #148).

• Add ConnectionPool.open() and open parameter to the pool init (ticket #151).

• Drop support for Python 3.6.

psycopg_pool 3.0.3

• Raise ValueError if ConnectionPool min_size and max_size are both set to 0 (instead of hanging).

• Raise PoolClosed calling wait() on a closed pool.

psycopg_pool 3.0.2

• Remove dependency on the internal psycopg._compat module.

psycopg_pool 3.0.1

• Don’t leave connections idle in transaction after calling check() (ticket #144).

psycopg_pool 3.0

• First release on PyPI.

1.5 Indices and tables

• genindex

• modindex

1.5. Indices and tables 135

https://github.com/psycopg/psycopg/issues/230
https://github.com/psycopg/psycopg/issues/148
https://github.com/psycopg/psycopg/issues/151
https://github.com/psycopg/psycopg/issues/144

psycopg, Release 3.1.9

136 Chapter 1. Documentation

PYTHON MODULE INDEX

p
psycopg, 63
psycopg._dns, 126
psycopg.abc, 116
psycopg.adapt, 109
psycopg.conninfo, 109
psycopg.crdb, 124
psycopg.errors, 98
psycopg.pq, 119
psycopg.rows, 96
psycopg.sql, 91
psycopg.types, 113
psycopg_pool, 108

137

psycopg, Release 3.1.9

138 Python Module Index

INDEX

Symbols
__build_version__ (in module psycopg.pq), 120
__call__() (psycopg.rows.RowFactory method), 98
__call__() (psycopg.rows.RowMaker method), 98
__getitem__() (psycopg.types.TypesRegistry method),

114
__impl__ (in module psycopg.pq), 120
_get_connection_params() (psy-

copg.AsyncConnection class method), 127
_get_connection_params() (psycopg.Connection

class method), 127
_query (psycopg.Cursor attribute), 77
`!with`

Connection, 7

A
ABORTED (psycopg.pq.PipelineStatus attribute), 123
ACTIVE (psycopg.pq.TransactionStatus attribute), 122
Adaptation, 12, 18

Boolean, 12
dict, 23
namedtuple, 19
numbers, 12
Objects, 12, 18
Strings, 12
tuple, 19

AdaptContext (class in psycopg.abc), 118
adapters (in module psycopg), 63
adapters (in module psycopg.crdb), 125
adapters (psycopg.abc.AdaptContext property), 119
AdaptersMap (class in psycopg.adapt), 111
add_notice_handler() (psycopg.Connection method),

68
add_notify_handler() (psycopg.Connection method),

68
args_row() (in module psycopg.rows), 97
as_bytes() (psycopg.sql.Composable method), 92
as_string() (psycopg.sql.Composable method), 92
AsyncClientCursor (class in psycopg), 82
AsyncConnection (class in psycopg), 71
AsyncCopy (class in psycopg), 84
AsyncCrdbConnection (class in psycopg.crdb), 125

AsyncCursor (class in psycopg), 80
Asynchronous

Notifications, 39, 40
asyncio, 38
AsyncLibpqWriter (class in psycopg.copy), 85
AsyncPipeline (class in psycopg), 89
AsyncRowFactory (class in psycopg.rows), 98
AsyncServerCursor (class in psycopg), 82
AsyncTransaction (class in psycopg), 89
AsyncWriter (class in psycopg.copy), 85
AUTO (psycopg.adapt.PyFormat attribute), 111
autocommit (psycopg.Connection attribute), 67

B
backend_pid (psycopg.ConnectionInfo attribute), 86
BAD (psycopg.pq.ConnStatus attribute), 122
BAD_RESPONSE (psycopg.pq.ExecStatus attribute), 123
BaseRowFactory (class in psycopg.rows), 98
Binary

Parameters, 11
BINARY (psycopg.adapt.PyFormat attribute), 111
BINARY (psycopg.pq.Format attribute), 123
Binary string, 13
Binding

Client-Side, 91
Boolean

Adaptation, 12
bqual (psycopg.Xid attribute), 90
broken (psycopg.Connection attribute), 65
bytea

Adaptation, 13
bytearray

Adaptation, 13
bytes

Adaptation, 13

C
cancel() (psycopg.Connection method), 68
channel (psycopg.Notify attribute), 88
class_row() (in module psycopg.rows), 96
Client-binding

Cursor, 51

139

psycopg, Release 3.1.9

Client-Side
Binding, 91

Client-side
Cursor, 51

ClientCursor (class in psycopg), 78
close() (psycopg.AsyncConnection method), 71
close() (psycopg.AsyncCursor method), 80
close() (psycopg.AsyncServerCursor method), 82
close() (psycopg.Connection method), 65
close() (psycopg.Cursor method), 73
close() (psycopg.ServerCursor method), 78
closed (psycopg.Connection attribute), 65
closed (psycopg.Cursor attribute), 73
Column (class in psycopg), 88
column_name (psycopg.errors.Diagnostic attribute), 100
COLUMN_NAME (psycopg.pq.DiagnosticField attribute),

123
COMMAND_OK (psycopg.pq.ExecStatus attribute), 122
commit() (psycopg.AsyncConnection method), 72
commit() (psycopg.Connection method), 67
Composable (class in psycopg.sql), 92
Composed (class in psycopg.sql), 95
Composite types

Data types, 19
CompositeInfo (class in psycopg.types.composite), 19
connect() (in module psycopg), 63
connect() (in module psycopg.crdb), 125
connect() (psycopg.AsyncConnection class method), 71
connect() (psycopg.Connection class method), 64
Connection

`!with`, 7
Pool, 108

Connection (class in psycopg), 64
connection (psycopg.abc.AdaptContext property), 119
connection (psycopg.AsyncCursor attribute), 80
connection (psycopg.AsyncTransaction attribute), 89
connection (psycopg.Cursor attribute), 73
connection (psycopg.Transaction attribute), 89
ConnectionInfo (class in psycopg), 86
ConnectionTimeout, 100
Conninfo (class in psycopg.pq), 121
conninfo_to_dict() (in module psycopg.conninfo),

109
ConnStatus (class in psycopg.pq), 122
constraint_name (psycopg.errors.Diagnostic at-

tribute), 100
CONSTRAINT_NAME (psycopg.pq.DiagnosticField at-

tribute), 123
context (psycopg.errors.Diagnostic attribute), 100
CONTEXT (psycopg.pq.DiagnosticField attribute), 123
COPY

SQL command, 30
Copy (class in psycopg), 83
copy() (psycopg.AsyncCursor method), 81

copy() (psycopg.Cursor method), 74
COPY_BOTH (psycopg.pq.ExecStatus attribute), 123
COPY_IN (psycopg.pq.ExecStatus attribute), 123
COPY_OUT (psycopg.pq.ExecStatus attribute), 122
CrdbConnection (class in psycopg.crdb), 125
CrdbConnectionInfo (class in psycopg.crdb), 125
Ctrl-C, 39
Cursor, 51

Client-binding, 51
Client-side, 51
Named, 52
Server-side, 52

Cursor (class in psycopg), 73
cursor() (psycopg.AsyncConnection method), 71
cursor() (psycopg.Connection method), 65
cursor_factory (psycopg.AsyncConnection attribute),

71
cursor_factory (psycopg.Connection attribute), 65

D
Data types

Adaptation, 12, 18
Composite types, 19
geometry, 24
hstore, 23
range, 20, 22

database (psycopg.Xid attribute), 90
DatabaseError, 99
DataError, 99
datatype_name (psycopg.errors.Diagnostic attribute),

100
DATATYPE_NAME (psycopg.pq.DiagnosticField attribute),

123
dbname (psycopg.ConnectionInfo attribute), 87
Decimal

Adaptation, 12
DEFAULT (in module psycopg.sql), 96
deferrable (psycopg.Connection attribute), 67
description (psycopg.Cursor attribute), 77
diag (psycopg.Error attribute), 99
Diagnostic (class in psycopg.errors), 100
DiagnosticField (class in psycopg.pq), 123
dict

Adaptation, 23
dict_row() (in module psycopg.rows), 96
Differences

psycopg2, 33
disconnections, 41
display_size (psycopg.Column attribute), 88
dsn (psycopg.ConnectionInfo attribute), 86
dump() (psycopg.abc.Dumper method), 117
dump() (psycopg.adapt.Dumper method), 110
Dumper (class in psycopg.abc), 116
Dumper (class in psycopg.adapt), 110

140 Index

psycopg, Release 3.1.9

E
EMPTY_QUERY (psycopg.pq.ExecStatus attribute), 122
Encoding

SQL_ASCII, 12
encoding (psycopg.ConnectionInfo attribute), 87
encrypt_password() (psycopg.pq.PGconn method),

120
enum (psycopg.types.enum.EnumInfo attribute), 17
EnumInfo (class in psycopg.types.enum), 16
environment variable

PATH, 4
PSYCOPG_IMPL, 5, 119, 120

Error, 99
Class, 98

error_message (psycopg.ConnectionInfo attribute), 86
error_message() (in module psycopg.pq), 120
Escaping (class in psycopg.pq), 121
Example

Usage, 5
Exceptions

DB-API, 98
PostgreSQL, 100

ExecStatus (class in psycopg.pq), 122
execute() (psycopg.AsyncConnection method), 71
execute() (psycopg.AsyncCursor method), 80
execute() (psycopg.AsyncServerCursor method), 82
execute() (psycopg.Connection method), 66
execute() (psycopg.Cursor method), 73
execute() (psycopg.ServerCursor method), 79
executemany() (psycopg.AsyncCursor method), 80
executemany() (psycopg.AsyncServerCursor method),

82
executemany() (psycopg.Cursor method), 74
executemany() (psycopg.ServerCursor method), 79

F
FAILED (psycopg.pq.PollingStatus attribute), 122
FATAL_ERROR (psycopg.pq.ExecStatus attribute), 123
fetch() (psycopg.types.TypeInfo class method), 114
fetchall() (psycopg.AsyncCursor method), 81
fetchall() (psycopg.AsyncServerCursor method), 82
fetchall() (psycopg.Cursor method), 76
fetchall() (psycopg.ServerCursor method), 79
fetchmany() (psycopg.AsyncCursor method), 81
fetchmany() (psycopg.AsyncServerCursor method), 82
fetchmany() (psycopg.Cursor method), 76
fetchmany() (psycopg.ServerCursor method), 79
fetchone() (psycopg.AsyncCursor method), 81
fetchone() (psycopg.AsyncServerCursor method), 82
fetchone() (psycopg.Cursor method), 76
fetchone() (psycopg.ServerCursor method), 79
fileno() (psycopg.Connection method), 69
FileWriter (class in psycopg.copy), 85

finish() (psycopg.copy.AsyncWriter method), 85
finish() (psycopg.copy.Writer method), 85
Float

Adaptation, 12
Format (class in psycopg.pq), 123
format (psycopg.abc.Dumper attribute), 116
format (psycopg.abc.Loader attribute), 118
format (psycopg.adapt.Dumper attribute), 110
format (psycopg.adapt.Loader attribute), 110
format (psycopg.Cursor attribute), 75
format() (psycopg.sql.SQL method), 93
format_id (psycopg.Xid attribute), 90

G
geometry

Data types, 24
get() (psycopg.types.TypesRegistry method), 115
get_by_subtype() (psycopg.types.TypesRegistry

method), 115
get_cancel() (psycopg.pq.PGconn method), 120
get_dumper() (psycopg.adapt.AdaptersMap method),

112
get_dumper_by_oid() (psycopg.adapt.AdaptersMap

method), 112
get_key() (psycopg.abc.Dumper method), 117
get_key() (psycopg.adapt.Dumper method), 110
get_loader() (psycopg.adapt.AdaptersMap method),

112
get_oid() (psycopg.types.TypesRegistry method), 115
get_parameters() (psycopg.ConnectionInfo method),

86
gtrid (psycopg.Xid attribute), 90

H
host (psycopg.ConnectionInfo attribute), 87
hostaddr (psycopg.ConnectionInfo attribute), 87
hstore

Data types, 23

I
Identifier (class in psycopg.sql), 94
IDLE (psycopg.pq.TransactionStatus attribute), 122
idle in transaction, 25
INERROR (psycopg.pq.TransactionStatus attribute), 122
InFailedSqlTransaction, 25
info (psycopg.Connection attribute), 68
Integer

Adaptation, 12
IntegrityError, 99
InterfaceError, 99
internal_position (psycopg.errors.Diagnostic

attribute), 100
INTERNAL_POSITION (psycopg.pq.DiagnosticField at-

tribute), 123

Index 141

psycopg, Release 3.1.9

internal_query (psycopg.errors.Diagnostic attribute),
100

INTERNAL_QUERY (psycopg.pq.DiagnosticField at-
tribute), 123

internal_size (psycopg.Column attribute), 88
InternalError, 99
INTRANS (psycopg.pq.TransactionStatus attribute), 122
is_crdb() (psycopg.crdb.CrdbConnection class

method), 125
is_supported() (psycopg.Pipeline class method), 89
isempty (psycopg.types.range.Range attribute), 21
isolation_level (psycopg.Connection attribute), 67
IsolationLevel (class in psycopg), 89
itersize (psycopg.ServerCursor attribute), 80

J
join() (psycopg.sql.Composed method), 95
join() (psycopg.sql.SQL method), 94
Json (class in psycopg.types.json), 116
Jsonb (class in psycopg.types.json), 116

K
kwargs_row() (in module psycopg.rows), 97

L
labels (psycopg.types.enum.EnumInfo attribute), 17
libpq, 119
LibpqWriter (class in psycopg.copy), 85
LISTEN

SQL command, 39, 40
Literal (class in psycopg.sql), 94
load() (psycopg.abc.Loader method), 118
load() (psycopg.adapt.Loader method), 110
Loader (class in psycopg.abc), 118
Loader (class in psycopg.adapt), 110
lookup() (in module psycopg.errors), 101
lower (psycopg.types.range.Range attribute), 21
lower_inc (psycopg.types.range.Range attribute), 21
lower_inf (psycopg.types.range.Range attribute), 21

M
make_conninfo() (in module psycopg.conninfo), 109
memoryview

Adaptation, 13
message_detail (psycopg.errors.Diagnostic attribute),

100
MESSAGE_DETAIL (psycopg.pq.DiagnosticField at-

tribute), 123
message_hint (psycopg.errors.Diagnostic attribute),

100
MESSAGE_HINT (psycopg.pq.DiagnosticField attribute),

123
message_primary (psycopg.errors.Diagnostic at-

tribute), 100

MESSAGE_PRIMARY (psycopg.pq.DiagnosticField at-
tribute), 123

module
psycopg, 63
psycopg._dns, 126
psycopg.abc, 116
psycopg.adapt, 109
psycopg.conninfo, 109
psycopg.crdb, 124
psycopg.errors, 98
psycopg.pq, 119
psycopg.rows, 96
psycopg.sql, 91
psycopg.types, 113
psycopg_pool, 108

mogrify() (psycopg.ClientCursor method), 78
Multirange (class in psycopg.types.multirange), 22
MultirangeInfo (class in psycopg.types.multirange), 22

N
name (psycopg.Column attribute), 88
name (psycopg.ServerCursor attribute), 78
Named

Cursor, 52
namedtuple

Adaptation, 19
namedtuple_row() (in module psycopg.rows), 96
needs_password (psycopg.pq.PGconn attribute), 120
News, 128, 134
nextset() (psycopg.Cursor method), 76
NO_ATTEMPT (psycopg.pq.Ping attribute), 124
NO_RESPONSE (psycopg.pq.Ping attribute), 124
NONFATAL_ERROR (psycopg.pq.ExecStatus attribute), 123
Notifications

Asynchronous, 39, 40
notifies() (psycopg.AsyncConnection method), 72
notifies() (psycopg.Connection method), 68
NOTIFY

SQL command, 39, 40
Notify (class in psycopg), 88
NotSupportedError, 100
NULL (in module psycopg.sql), 96

O
Objects

Adaptation, 12, 18
OFF (psycopg.pq.PipelineStatus attribute), 123
oid (psycopg.abc.Dumper attribute), 117
OK (psycopg.pq.ConnStatus attribute), 122
OK (psycopg.pq.Ping attribute), 124
OK (psycopg.pq.PollingStatus attribute), 122
ON (psycopg.pq.PipelineStatus attribute), 123
OperationalError, 99
options (psycopg.ConnectionInfo attribute), 87

142 Index

psycopg, Release 3.1.9

owner (psycopg.Xid attribute), 90

P
parameter_status() (psycopg.ConnectionInfo

method), 87
Parameters

Binary, 11
Query, 8

password (psycopg.ConnectionInfo attribute), 87
PATH, 4
payload (psycopg.Notify attribute), 88
PGcancel (class in psycopg.pq), 121
PGconn (class in psycopg.pq), 120
pgconn (psycopg.Connection attribute), 68
pgconn (psycopg.Error attribute), 99
pgconn_ptr (psycopg.pq.PGconn attribute), 120
PGresult (class in psycopg.pq), 121
pgresult (psycopg.Cursor attribute), 76
pgresult (psycopg.Error attribute), 99
pgresult_ptr (psycopg.pq.PGresult attribute), 121
pid (psycopg.Notify attribute), 88
Ping (class in psycopg.pq), 124
Pipeline (class in psycopg), 89
pipeline() (psycopg.AsyncConnection method), 71
pipeline() (psycopg.Connection method), 66
PIPELINE_ABORTED (psycopg.pq.ExecStatus attribute),

123
pipeline_status (psycopg.ConnectionInfo attribute),

86
PIPELINE_SYNC (psycopg.pq.ExecStatus attribute), 123
PipelineAborted, 100
PipelineStatus (class in psycopg.pq), 123
Placeholder (class in psycopg.sql), 95
PollingStatus (class in psycopg.pq), 122
Pool

Connection, 108
port (psycopg.ConnectionInfo attribute), 87
Portal, 52
PostGIS

Data types, 24
precision (psycopg.Column attribute), 88
prepare_threshold (psycopg.Connection attribute), 68
prepared (psycopg.Xid attribute), 90
Prepared statements, 57
prepared_max (psycopg.Connection attribute), 68
ProgrammingError, 100
psycopg

module, 63
psycopg._dns

module, 126
psycopg.abc

module, 116
psycopg.adapt

module, 109

psycopg.conninfo
module, 109

psycopg.crdb
module, 124

psycopg.errors
module, 98

psycopg.pq
module, 119

psycopg.rows
module, 96

psycopg.sql
module, 91

psycopg.types
module, 113

psycopg.types.shapely.register_shapely() (in
module psycopg), 24

psycopg2
Differences, 33

PSYCOPG_IMPL, 5, 119, 120
psycopg_pool

module, 108
PyFormat (class in psycopg.adapt), 111
Python Enhancement Proposals

PEP 0484, 43
PEP 675, 45, 74, 93, 130

python_type (psycopg.types.composite.CompositeInfo
attribute), 19

Q
Query

Parameters, 8
quote() (in module psycopg.sql), 96
quote() (psycopg.abc.Dumper method), 117
quote() (psycopg.adapt.Dumper method), 110

R
range

Data types, 20, 22
Range (class in psycopg.types.range), 20
RangeInfo (class in psycopg.types.range), 21
read() (psycopg.AsyncCopy method), 84
read() (psycopg.Copy method), 83
READ_COMMITTED (psycopg.IsolationLevel attribute), 89
read_only (psycopg.Connection attribute), 67
read_row() (psycopg.AsyncCopy method), 84
read_row() (psycopg.Copy method), 83
READ_UNCOMMITTED (psycopg.IsolationLevel attribute),

89
READING (psycopg.pq.PollingStatus attribute), 122
register() (psycopg.types.TypeInfo method), 114
register_composite() (in module psy-

copg.types.composite), 19
register_dumper() (psycopg.adapt.AdaptersMap

method), 111

Index 143

psycopg, Release 3.1.9

register_enum() (in module psycopg.types.enum), 17
register_hstore() (in module psycopg.types.hstore),

23
register_loader() (psycopg.adapt.AdaptersMap

method), 112
register_multirange() (in module psy-

copg.types.multirange), 22
register_range() (in module psycopg.types.range), 21
REGRESS_MODE (psycopg.pq.Trace attribute), 124
REJECT (psycopg.pq.Ping attribute), 124
Release notes, 128, 134
remove_notice_handler() (psycopg.Connection

method), 69
remove_notify_handler() (psycopg.Connection

method), 68
REPEATABLE_READ (psycopg.IsolationLevel attribute), 89
resolve_hostaddr_async() (in module psy-

copg._dns), 128
resolve_srv() (in module psycopg._dns), 126
resolve_srv_async() (in module psycopg._dns), 127
RFC

RFC 2782, 126
Rollback, 89
rollback() (psycopg.AsyncConnection method), 72
rollback() (psycopg.Connection method), 67
row factories, 45
Row Factory, 46
Row Maker, 46
row_factory (psycopg.AsyncConnection attribute), 71
row_factory (psycopg.Connection attribute), 66
row_factory (psycopg.Cursor attribute), 76
rowcount (psycopg.Cursor attribute), 77
RowFactory (class in psycopg.rows), 98
RowMaker (class in psycopg.rows), 98
rownumber (psycopg.Cursor attribute), 77
rows() (psycopg.AsyncCopy method), 84
rows() (psycopg.Copy method), 83

S
savepoint_name (psycopg.Transaction attribute), 89
scale (psycopg.Column attribute), 88
schema_name (psycopg.errors.Diagnostic attribute), 100
SCHEMA_NAME (psycopg.pq.DiagnosticField attribute),

123
scroll() (psycopg.AsyncCursor method), 81
scroll() (psycopg.AsyncServerCursor method), 82
scroll() (psycopg.Cursor method), 76
scroll() (psycopg.ServerCursor method), 80
scrollable (psycopg.ServerCursor attribute), 78
Security, 10
SERIALIZABLE (psycopg.IsolationLevel attribute), 89
server_cursor_factory (psycopg.AsyncConnection

attribute), 71

server_cursor_factory (psycopg.Connection at-
tribute), 66

server_version (psycopg.ConnectionInfo attribute), 86
server_version (psycopg.crdb.CrdbConnectionInfo at-

tribute), 125
Server-side

Cursor, 52
ServerCursor (class in psycopg), 78
set_autocommit() (psycopg.AsyncConnection

method), 72
set_deferrable() (psycopg.AsyncConnection

method), 72
set_isolation_level() (psycopg.AsyncConnection

method), 72
set_json_dumps() (in module psycopg.types.json), 116
set_json_loads() (in module psycopg.types.json), 116
set_read_only() (psycopg.AsyncConnection method),

72
set_trace_flags() (psycopg.pq.PGconn method), 121
set_types() (psycopg.Copy method), 84
severity (psycopg.errors.Diagnostic attribute), 100
SEVERITY (psycopg.pq.DiagnosticField attribute), 123
severity_nonlocalized (psycopg.errors.Diagnostic

attribute), 100
SEVERITY_NONLOCALIZED (psycopg.pq.DiagnosticField

attribute), 123
SINGLE_TUPLE (psycopg.pq.ExecStatus attribute), 123
source_file (psycopg.errors.Diagnostic attribute), 100
SOURCE_FILE (psycopg.pq.DiagnosticField attribute),

123
source_function (psycopg.errors.Diagnostic at-

tribute), 100
SOURCE_FUNCTION (psycopg.pq.DiagnosticField at-

tribute), 123
source_line (psycopg.errors.Diagnostic attribute), 100
SOURCE_LINE (psycopg.pq.DiagnosticField attribute),

123
SQL (class in psycopg.sql), 93
SQL command

COPY, 30
LISTEN, 39, 40
NOTIFY, 39, 40

SQL injection, 10
SQL_ASCII

Encoding, 12
sqlstate (psycopg.Error attribute), 99
sqlstate (psycopg.errors.Diagnostic attribute), 100
SQLSTATE (psycopg.pq.DiagnosticField attribute), 123
statement_position (psycopg.errors.Diagnostic at-

tribute), 100
STATEMENT_POSITION (psycopg.pq.DiagnosticField at-

tribute), 123
status (psycopg.ConnectionInfo attribute), 86
statusmessage (psycopg.Cursor attribute), 77

144 Index

psycopg, Release 3.1.9

stream() (psycopg.AsyncCursor method), 81
stream() (psycopg.Cursor method), 75
Strings

Adaptation, 12
SUPPRESS_TIMESTAMPS (psycopg.pq.Trace attribute),

124
sync() (psycopg.AsyncPipeline method), 89
sync() (psycopg.Pipeline method), 89

T
table_name (psycopg.errors.Diagnostic attribute), 100
TABLE_NAME (psycopg.pq.DiagnosticField attribute), 123
TEXT (psycopg.adapt.PyFormat attribute), 111
TEXT (psycopg.pq.Format attribute), 123
timezone (psycopg.ConnectionInfo attribute), 87
tpc_begin() (psycopg.Connection method), 69
tpc_commit() (psycopg.AsyncConnection method), 72
tpc_commit() (psycopg.Connection method), 70
tpc_prepare() (psycopg.AsyncConnection method), 72
tpc_prepare() (psycopg.Connection method), 69
tpc_recover() (psycopg.AsyncConnection method), 72
tpc_recover() (psycopg.Connection method), 70
tpc_rollback() (psycopg.AsyncConnection method),

72
tpc_rollback() (psycopg.Connection method), 70
Trace (class in psycopg.pq), 124
trace() (psycopg.pq.PGconn method), 121
Transaction

Two-phase commit, 30
Transaction (class in psycopg), 89
transaction() (psycopg.AsyncConnection method), 72
transaction() (psycopg.Connection method), 67
transaction_status (psycopg.ConnectionInfo at-

tribute), 86
Transactions management, 25
TransactionStatus (class in psycopg.pq), 122
Transformer (class in psycopg.adapt), 113
tuple

Adaptation, 19
tuple_row() (in module psycopg.rows), 96
TUPLES_OK (psycopg.pq.ExecStatus attribute), 122
Two-phase commit

Transaction, 30
type_code (psycopg.Column attribute), 88
TypeInfo (class in psycopg.types), 114
types (psycopg.adapt.AdaptersMap attribute), 112
TypesRegistry (class in psycopg.types), 114

U
Unicode

Adaptation, 12
UNKNOWN (psycopg.pq.TransactionStatus attribute), 122
untrace() (psycopg.pq.PGconn method), 121
upgrade() (psycopg.abc.Dumper method), 118

upgrade() (psycopg.adapt.Dumper method), 110
upper (psycopg.types.range.Range attribute), 21
upper_inc (psycopg.types.range.Range attribute), 21
upper_inf (psycopg.types.range.Range attribute), 21
Usage

Example, 5
used_password (psycopg.pq.PGconn attribute), 120
user (psycopg.ConnectionInfo attribute), 87

V
vendor (psycopg.ConnectionInfo attribute), 86
vendor (psycopg.crdb.CrdbConnectionInfo attribute),

125
version() (in module psycopg.pq), 120

W
Warning, 99
with, 39
withhold (psycopg.ServerCursor attribute), 78
write() (psycopg.AsyncCopy method), 84
write() (psycopg.Copy method), 83
write() (psycopg.copy.AsyncWriter method), 85
write() (psycopg.copy.Writer method), 85
write_row() (psycopg.AsyncCopy method), 84
write_row() (psycopg.Copy method), 83
Writer (class in psycopg.copy), 85
WRITING (psycopg.pq.PollingStatus attribute), 122

X
Xid (class in psycopg), 90
xid() (psycopg.Connection method), 69

Index 145

	Documentation
	Getting started with Psycopg 3
	Installation
	Supported systems
	Binary installation
	Local installation
	Pure Python installation
	Installing the connection pool
	Handling dependencies

	Basic module usage
	Main objects in Psycopg 3
	Shortcuts
	Connection context
	Adapting pyscopg to your program

	Passing parameters to SQL queries
	execute() arguments
	Danger: SQL injection
	Binary parameters and results

	Adapting basic Python types
	Booleans adaptation
	Numbers adaptation
	Strings adaptation
	Binary adaptation
	Date/time types adaptation
	JSON adaptation
	Lists adaptation
	UUID adaptation
	Network data types adaptation
	Enum adaptation

	Adapting other PostgreSQL types
	Composite types casting
	Range adaptation
	Multirange adaptation
	Hstore adaptation
	Geometry adaptation using Shapely

	Transactions management
	Autocommit transactions
	Transaction contexts
	Nested transactions

	Transaction characteristics
	Two-Phase Commit protocol support

	Using COPY TO and COPY FROM
	Writing data row-by-row
	Reading data row-by-row
	Copying block-by-block
	Binary copy
	Asynchronous copy support
	Example: copying a table across servers

	Differences from psycopg2
	Server-side binding
	Multiple statements in the same query
	Multiple results returned from multiple statements
	Different cast rules
	You cannot use IN %s with a tuple
	Different adaptation system
	Copy is no longer file-based
	with connection
	callproc() is gone
	client_encoding is gone
	No default infinity dates handling
	What’s new in Psycopg 3

	More advanced topics
	Asynchronous operations
	with async connections
	Interrupting async operations using Ctrl-C
	Server messages
	Asynchronous notifications
	Detecting disconnections

	Static Typing
	Generic types
	Type of rows returned
	Example: returning records as Pydantic models
	Checking literal strings in queries

	Row factories
	Creating new row factories

	Connection pools
	Pool life cycle
	Connections life cycle
	Using connections from the pool
	Pool connection and sizing
	What’s the right size for the pool?

	Null connection pools
	Connection quality
	Pool stats

	Cursor types
	Client-side cursors
	Client-side-binding cursors
	Server-side cursors
	“Stealing” an existing cursor

	Data adaptation configuration
	Writing a custom adapter: XML
	Example: PostgreSQL numeric to Python float
	Example: handling infinity date
	Dumpers and loaders life cycle

	Prepared statements
	Pipeline mode support
	Client-server messages flow
	Pipeline mode usage
	Synchronization points
	The fine prints

	Psycopg 3 API
	The psycopg module
	Connection classes
	The Connection class
	The !AsyncConnection class

	Cursor classes
	The Cursor class
	The !ClientCursor class
	The !ServerCursor class
	The !AsyncCursor class
	The !AsyncClientCursor class
	The !AsyncServerCursor class

	COPY-related objects
	Main Copy objects
	Writer objects

	Other top-level objects
	Connection information
	The description Column object
	Notifications
	Pipeline-related objects
	Transaction-related objects
	Two-Phase Commit related objects

	sql – SQL string composition
	Module usage
	sql objects
	Utility functions

	rows – row factory implementations
	Formal rows protocols

	errors – Package exceptions
	DB-API exceptions
	Other Psycopg errors

	Error diagnostics
	SQLSTATE exceptions
	List of known exceptions

	psycopg_pool – Connection pool implementations
	The ConnectionPool class
	Pool exceptions
	The AsyncConnectionPool class
	Null connection pools

	conninfo – manipulate connection strings
	adapt – Types adaptation
	Dumpers and loaders
	Other objects used in adaptations

	types – Types information and adapters
	Types information
	JSON adapters

	abc – Psycopg abstract classes
	pq – libpq wrapper module
	pq module implementations
	Module content
	Objects wrapping libpq structures and functions
	Enumerations

	crdb – CockroachDB support
	Main differences from PostgreSQL
	CockroachDB-specific objects

	_dns – DNS resolution utilities

	Release notes
	psycopg release notes
	Current release
	Psycopg 3.1.9
	Psycopg 3.1.8
	Psycopg 3.1.7
	Psycopg 3.1.6
	Psycopg 3.1.5
	Psycopg 3.1.4
	Psycopg 3.1.3
	Psycopg 3.1.2
	Psycopg 3.1.1

	Psycopg 3.1
	Psycopg 3.0.17
	Psycopg 3.0.16
	Psycopg 3.0.15
	Psycopg 3.0.14
	Psycopg 3.0.13
	Psycopg 3.0.12
	Psycopg 3.0.11
	Psycopg 3.0.10
	Psycopg 3.0.9
	Psycopg 3.0.8
	Psycopg 3.0.7
	Psycopg 3.0.6
	Psycopg 3.0.5
	Psycopg 3.0.4
	Psycopg 3.0.3
	Psycopg 3.0.2
	Psycopg 3.0.1

	Psycopg 3.0
	Psycopg 3.0b1

	psycopg_pool release notes
	Current release
	psycopg_pool 3.1.7
	psycopg_pool 3.1.6
	psycopg_pool 3.1.5
	psycopg_pool 3.1.4
	psycopg_pool 3.1.3
	psycopg_pool 3.1.2
	psycopg_pool 3.1.1

	psycopg_pool 3.1.0
	psycopg_pool 3.0.3
	psycopg_pool 3.0.2
	psycopg_pool 3.0.1

	psycopg_pool 3.0

	Indices and tables

	Python Module Index
	Index

