
TDS Foreign data wrapper
Logo
About
This is a PostgreSQL foreign data wrapper that can connect to databases that
use the Tabular Data Stream (TDS) protocol, such as Sybase databases and
Microsoft SQL server.

This foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS. This has been tested with FreeTDS, but not the
proprietary implementations of DB-Library.

This should support PostgreSQL 9.2+.

The current version does not yet support JOIN push-down, or write operations.

It does support WHERE and column pushdowns when match_column_names
is enabled.

CentOS 7 Rocky Linux 8 Ubuntu 20.04

Installing on RHEL and clones (CentOS, Rocky Linux,
AlmaLinux, Oracle. . .)
See installing tds_fdw on CentOS.

Installing on Ubuntu
See installing tds_fdw on Ubuntu.

Installing on Debian
See installing tds_fdw on Debian.

Installing on openSUSE
See installing tds_fdw on openSUSE.

Installing on OSX
See installing tds_fdw on OSX.

Installing on Alpine (and Docker)
See installing tds_fdw on Alpine.

1

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://en.wikipedia.org/wiki/Tabular_Data_Stream
https://www.freetds.org
InstallRHELandClones.md
InstallUbuntu.md
InstallDebian.md
InstallopenSUSE.md
InstallOSX.md
InstallAlpine.md

Usage
Foreign server

See creating a foreign server.

Foreign table

See creating a foreign table.

User mapping

See creating a user mapping.

Foreign schema

See importing a foreign schema.

Variables

See variables.

EXPLAIN

EXPLAIN (VERBOSE) will show the query issued on the remote system.

Notes about character sets/encoding
1. If you get an error like this with MS SQL Server when working with

Unicode data:

NOTICE: DB-Library notice: Msg #: 4004, Msg state: 1, Msg:
Unicode data in a Unicode-only collation or ntext data cannot
be sent to clients using DB-Library (such as ISQL) or ODBC
version 3.7 or earlier., Server: PILLIUM SQLEXPRESS, Process:
, Line: 1, Level: 16
ERROR: DB-Library error: DB #: 4004, DB Msg: General SQL
Server error: Check messages from the SQL Server, OS #: -1,
OS Msg: (null), Level: 16

and Choosing a TDS protocol version.

2. Although many newer versions of the TDS protocol will only use USC-2 to
communicate with the server, FreeTDS converts the UCS-2 to the client
character set of your choice. To set the client character set, you can set
client charset in freetds.conf. See

2

ForeignServerCreation.md
ForeignTableCreation.md
UserMappingCreation.md
ForeignSchemaImporting.md
Variables.md
https://www.freetds.org/userguide/ChoosingTdsProtocol.html

Encrypted connections to MSSQL
Support
If you find any bugs, or you would like to request enhancements, please submit
your comments on the project’s GitHub Issues page.

Additionally, I do subscribe to several PostgreSQL mailing lists including pgsql-
general and pgsql-hackers. If tds_fdw is mentioned in an email sent to one of
those lists, I typically see it.

Debugging
See Debugging

TDS Foreign data wrapper
Importing a Foreign Schema
Options

Foreign schema parameters accepted:

• import_default

Required: No

Default: false

Controls whether column DEFAULT expressions are included in the definitions
of foreign tables.

• import_not_null

Required: No

Default: true

Controls whether column NOT NULL constraints are included in the definitions
of foreign tables.

Example

IMPORT FOREIGN SCHEMA dbo
EXCEPT (mssql_table)
FROM SERVER mssql_svr
INTO public
OPTIONS (import_default 'true');

3

https://github.com/tds-fdw/tds_fdw/issues
https://www.postgresql.org/list/
tests/README.md

TDS Foreign data wrapper
Creating a Foreign Server
Options

Foreign server parameters accepted:

• servername

Required: Yes

Default: 127.0.0.1

The servername, address or hostname of the foreign server server.

This can be a DSN, as specified in freetds.conf. See FreeTDS name lookup.

You can set this option to a comma separated list of server names, then each
server is tried until the first connection succeeds.
This is useful for automatic fail-over to a secondary server.

• port

Required: No

The port of the foreign server. This is optional. Instead of providing a port here,
it can be specified in freetds.conf (if servername is a DSN).

• database

Required: No

The database to connect to for this server.

• dbuse

Required: No

Default: 0

This option tells tds_fdw to connect directly to database if dbuse is 0. If dbuse
is not 0, tds_fdw will connect to the server’s default database, and then select
database by calling DB-Library’s dbuse() function.

For Azure, dbuse currently needs to be set to 0.

• language

Required: No

The language to use for messages and the locale to use for date formats. FreeTDS
may default to us_english on most systems. You can probably also change this
in freetds.conf.

For information related to this for MS SQL Server, see SET LANGUAGE in
MS SQL Server.

4

https://www.freetds.org/userguide/name.lookup.html
https://technet.microsoft.com/en-us/library/ms174398.aspx
https://technet.microsoft.com/en-us/library/ms174398.aspx

For information related to Sybase ASE, see Sybase ASE login options and SET
LANGUAGE in Sybase ASE.

• character_set

Required: No

The client character set to use for the connection, if you need to set this for
some reason.

For TDS protocol versions 7.0+, the connection always uses UCS-2, so this
parameter does nothing in those cases. See Localization and TDS 7.0.

• tds_version

Required: No

The version of the TDS protocol to use for this server. See Choosing a TDS
protocol version and History of TDS Versions.

• msg_handler

Required: No

Default: blackhole

The function used for the TDS message handler. Options are “notice” and
“blackhole.” With the “notice” option, TDS messages are turned into PostgreSQL
notices. With the “blackhole” option, TDS messages are ignored.

• fdw_startup_cost

Required: No

A cost that is used to represent the overhead of using this FDW used in query
planning.

• fdw_tuple_cost

Required: No

A cost that is used to represent the overhead of fetching rows from this server
used in query planning.

Foreign table parameters accepted in server definition: Some foreign
table options can also be set at the server level. Those include:

• use_remote_estimate
• row_estimate_method

Example

CREATE SERVER mssql_svr
FOREIGN DATA WRAPPER tds_fdw
OPTIONS (servername '127.0.0.1', port '1433', database 'tds_fdw_test', tds_version '7.1');

5

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32300.1570/html/sqlug/X68290.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc36272.1572/html/commands/X64136.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc36272.1572/html/commands/X64136.htm
https://www.freetds.org/userguide/Localization.html
https://www.freetds.org/userguide/ChoosingTdsProtocol.html
https://www.freetds.org/userguide/ChoosingTdsProtocol.html
https://www.freetds.org/userguide/tdshistory.html

TDS Foreign data wrapper
Creating a Foreign Table
Options

Foreign table parameters accepted:

• query

Required: Yes (mutually exclusive with table)

The query string to use to query the foreign table.

• schema_name

Required: No

The schema that the table is in. The schema name can also be included in
table_name, so this is not required.

• table_name

Aliases: table

Required: Yes (mutually exclusive with query)

The table on the foreign server to query.

• match_column_names

Required: No

Whether to match local columns with remote columns by comparing their table
names or whether to use the order that they appear in the result set.

• use_remote_estimate

Required: No

Whether we estimate the size of the table by performing some operation on the
remote server (as defined by row_estimate_method), or whether we just use a
local estimate, as defined by local_tuple_estimate.

• local_tuple_estimate

Required: No

A locally set estimate of the number of tuples that is used when
use_remote_estimate is disabled.

• row_estimate_method

Required: No

Default: execute

This can be one of the following values:

6

• execute: Execute the query on the remote server, and get the actual
number of rows in the query.

• showplan_all: This gets the estimated number of rows using MS SQL
Server’s SET SHOWPLAN_ALL.

Foreign table column parameters accepted:

• column_name

Required: No

The name of the column on the remote server. If this is not set, the col-
umn’s remote name is assumed to be the same as the column’s local name. If
match_column_names is set to 0 for the table, then column names are not used
at all, so this is ignored.

Example

Using a table_name definition:

CREATE FOREIGN TABLE mssql_table (
id integer,
data varchar)
SERVER mssql_svr
OPTIONS (table_name 'dbo.mytable', row_estimate_method 'showplan_all');

Or using a schema_name and table_name definition:

CREATE FOREIGN TABLE mssql_table (
id integer,
data varchar)
SERVER mssql_svr
OPTIONS (schema_name 'dbo', table_name 'mytable', row_estimate_method 'showplan_all');

Or using a query definition:

CREATE FOREIGN TABLE mssql_table (
id integer,
data varchar)
SERVER mssql_svr
OPTIONS (query 'SELECT * FROM dbo.mytable', row_estimate_method 'showplan_all');

Or setting a remote column name:

CREATE FOREIGN TABLE mssql_table (
id integer,
col2 varchar OPTIONS (column_name 'data'))
SERVER mssql_svr
OPTIONS (schema_name 'dbo', table_name 'mytable', row_estimate_method 'showplan_all');

7

https://msdn.microsoft.com/en-us/library/ms187735.aspx
https://msdn.microsoft.com/en-us/library/ms187735.aspx

TDS Foreign data wrapper
Logo
About
This is a PostgreSQL foreign data wrapper that can connect to databases that
use the Tabular Data Stream (TDS) protocol, such as Sybase databases and
Microsoft SQL server.

This foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS. This has been tested with FreeTDS, but not the
proprietary implementations of DB-Library.

This should support PostgreSQL 9.2+.

The current version does not yet support JOIN push-down, or write operations.

It does support WHERE and column pushdowns when match_column_names
is enabled.

CentOS 7 Rocky Linux 8 Ubuntu 20.04

Installing on RHEL and clones (CentOS, Rocky Linux,
AlmaLinux, Oracle. . .)
See installing tds_fdw on CentOS.

Installing on Ubuntu
See installing tds_fdw on Ubuntu.

Installing on Debian
See installing tds_fdw on Debian.

Installing on openSUSE
See installing tds_fdw on openSUSE.

Installing on OSX
See installing tds_fdw on OSX.

Installing on Alpine (and Docker)
See installing tds_fdw on Alpine.

8

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://en.wikipedia.org/wiki/Tabular_Data_Stream
https://www.freetds.org
InstallRHELandClones.md
InstallUbuntu.md
InstallDebian.md
InstallopenSUSE.md
InstallOSX.md
InstallAlpine.md

Usage
Foreign server

See creating a foreign server.

Foreign table

See creating a foreign table.

User mapping

See creating a user mapping.

Foreign schema

See importing a foreign schema.

Variables

See variables.

EXPLAIN

EXPLAIN (VERBOSE) will show the query issued on the remote system.

Notes about character sets/encoding
1. If you get an error like this with MS SQL Server when working with

Unicode data:

NOTICE: DB-Library notice: Msg #: 4004, Msg state: 1, Msg:
Unicode data in a Unicode-only collation or ntext data cannot
be sent to clients using DB-Library (such as ISQL) or ODBC
version 3.7 or earlier., Server: PILLIUM SQLEXPRESS, Process:
, Line: 1, Level: 16
ERROR: DB-Library error: DB #: 4004, DB Msg: General SQL
Server error: Check messages from the SQL Server, OS #: -1,
OS Msg: (null), Level: 16

and Choosing a TDS protocol version.

2. Although many newer versions of the TDS protocol will only use USC-2 to
communicate with the server, FreeTDS converts the UCS-2 to the client
character set of your choice. To set the client character set, you can set
client charset in freetds.conf. See

9

ForeignServerCreation.md
ForeignTableCreation.md
UserMappingCreation.md
ForeignSchemaImporting.md
Variables.md
https://www.freetds.org/userguide/ChoosingTdsProtocol.html

Encrypted connections to MSSQL
Support
If you find any bugs, or you would like to request enhancements, please submit
your comments on the project’s GitHub Issues page.

Additionally, I do subscribe to several PostgreSQL mailing lists including pgsql-
general and pgsql-hackers. If tds_fdw is mentioned in an email sent to one of
those lists, I typically see it.

Debugging
See Debugging

TDS Foreign data wrapper
Installing on Alpine Linux
This document will show how to install tds_fdw on Alpine Linux 3.10.3. Other
Alpine Linux distributions should be similar.

Install FreeTDS and build dependencies

The TDS foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS.

apk add --update freetds-dev

Some other dependencies are also needed to install PostgreSQL and then compile
tds_fdw:

apk add gcc libc-dev make

In case you will get fatal error: stdio.h: No such file or directory
later on (on make USE_PGXS=1) - installing musl-dev migth help (https://stackoverflow.com/questions/42366739/gcc-
cant-find-stdio-h-in-alpine-linux):

apk add musl-dev

Install PostgreSQL

If you need to install PostgreSQL, do so by installing from APK. For example,
to install PostgreSQL 11.6 on Alpine Linux:

apk add postgresql=11.6-r0 postgresql-client=11.6-r0 postgresql-dev=11.6-r0

In postgres-alpine docker image you will need only

apk add postgresql-dev

10

https://github.com/tds-fdw/tds_fdw/issues
https://www.postgresql.org/list/
tests/README.md
http://www.freetds.org

Install tds_fdw

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

export TDS_FDW_VERSION="2.0.3"
apk add wget
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}/
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

apk add git
git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1
make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Start server If this is a fresh installation, then create the initial cluster and
start the server:

mkdir /var/lib/postgresql/data
chmod 0700 /var/lib/postgresql/data
chown postgres. /var/lib/postgresql/data
su postgres -c 'initdb /var/lib/postgresql/data'
mkdir /run/postgresql/
chown postgres. /run/postgresql/
su postgres -c 'pg_ctl start -D /var/lib/postgresql/data "-o -c listen_addresses=\"\""'

Install extension

psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

11

Dockerfile Example This Dockerfile will build PostgreSQL 11 in Alpine
Linux with tds_fdw from master branch

FROM library/postgres:11-alpine
RUN apk add --update freetds-dev && \

apk add git gcc libc-dev make && \
apk add postgresql-dev postgresql-contrib && \
git clone https://github.com/tds-fdw/tds_fdw.git && \
cd tds_fdw && \
make USE_PGXS=1 && \
make USE_PGXS=1 install && \
apk del git gcc libc-dev make && \
cd .. && \
rm -rf tds_fdw

You can easily adapt the Dockerfile if you want to use a release package.

This Dockerfile works just like to official PostgreSQL image, just with tds_fdw
added. See Docker Hub library/postgres for details. # TDS Foreign data
wrapper

Installing on Debian
This document will show how to install tds_fdw on Debian 10. Other Debian
distributions should be similar.

Install FreeTDS and build dependencies

The TDS foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS.

sudo apt-get update
sudo apt-get install libsybdb5 freetds-dev freetds-common

Some other dependencies are also needed to install PostgreSQL and then compile
tds_fdw:

sudo apt-get install gnupg gcc make

Install PostgreSQL

If you need to install PostgreSQL, do so by following the apt installation directions.
For example, to install PostgreSQL 11 on Debian:

sudo bash -c 'source /etc/os-release; echo "deb http://apt.postgresql.org/pub/repos/apt/ ${VERSION_CODENAME}-pgdg main" > /etc/apt/sources.list.d/pgdg.list'
sudo apt-key adv --keyserver hkp://pool.sks-keyservers.net --recv-keys 0xACCC4CF8
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install postgresql-11 postgresql-client-11 postgresql-server-dev-11

12

https://hub.docker.com/_/postgres/
http://www.freetds.org
https://wiki.postgresql.org/wiki/Apt

NOTE: If you already have PostgreSQL installed on your system be sure that
the package postgresql-server-dev-XX is installed too (where XX stands for your
PostgreSQL version).

Install tds_fdw

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

export TDS_FDW_VERSION="2.0.3"
sudo apt-get install wget
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}/
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

sudo apt-get install git
git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Start server If this is a fresh installation, then start the server:

sudo service postgresql start

Install extension

psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

13

TDS Foreign data wrapper
Installing on openSUSE
This document will show how to install tds_fdw on openSUSE Leap 15.1. Other
openSUSE and SUSE distributions should be similar.

Install FreeTDS and build dependencies

The TDS foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS.

sudo zypper install freetds-devel

Some other dependencies are also needed to install PostgreSQL and then compile
tds_fdw:

sudo zypper install gcc make

Install PostgreSQL

If you need to install PostgreSQL, for example, 10.X:

sudo zypper install postgresql10 postgresql10-server postgresql10-devel

NOTE: If you already have PostgreSQL installed on your system be sure that
the package postgresqlXX-devel is installed too (where XX stands for your
PostgreSQL version).

Install tds_fdw

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

export TDS_FDW_VERSION="2.0.3"
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}/
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

14

http://www.freetds.org

zypper in git
git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Start server If this is a fresh installation, then start the server:

sudo service postgresql start

Install extension

psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

TDS Foreign data wrapper
Installing on OSX
This document will show how to install tds_fdw on OSX using the Homebrew
package manager for the required packages.

Install FreeTDS

The TDS foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS.

brew install freetds

Note: If you install FreeTDS from another source, e.g. MacPorts, you
might have to adjust the value for TDS_INCLUDE in the make calls below
(e.g. -I/opt/local/include/freetds for MacPorts).

Install PostgreSQL

If you need to install PostgreSQL, do so by following the apt installation directions.
For example, to install PostgreSQL 9.5 on Ubuntu:

brew install postgres

Or use Postgres.app: http://postgresapp.com/

15

https://brew.sh/
http://www.freetds.org
https://www.macports.org
https://wiki.postgresql.org/wiki/Apt
http://postgresapp.com/

Install tds_fdw

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

export TDS_FDW_VERSION="2.0.3"
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}
make USE_PGXS=1 TDS_INCLUDE=-I/usr/local/include/
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1 TDS_INCLUDE=-I/usr/local/include/
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Start server If this is a fresh installation, then start the server:

brew services start postgresql

Or the equivalent command if you are not using Homebrew.

Install extension

psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

TDS Foreign data wrapper
Installing on RHEL and Clones such as CentOS, Rocky
Linux, AlmaLinux or Oracle
This document will show how to install tds_fdw on Rocky Linux 8.5. RHEL
distributions should be similar.

16

NOTE: For the sake of simplicity, we will use yum as it works as an alias for dnf
on newer distributions.

Option A: yum/dnf (released versions)

PostgreSQL If you need to install PostgreSQL, do so by following the RHEL
installation instructions.

Here is an extract of the instructions:

Only for RHEL 8 and clones such as Rocky Linux 8:

sudo sudo dnf -qy module disable postgresql # Not required for RHEL8 and clones

Install the PostgreSQL repository and packages:

sudo rpm -i https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-x86_64/pgdg-redhat-repo-latest.noarch.rpm
sudo yum install postgresql11 postgresql11-server postgresql11-libs postgresql11-devel

tds_fdw The PostgreSQL development team packages tds_fdw, but they do
not provide FreeTDS.

First, install the EPEL repository:

sudo yum install epel-release

And then install tds_fdw:

sudo yum install tds_fdw11.x86_64

Option B: Compile tds_fdw

PostgreSQL If you need to install PostgreSQL, do so by following the RHEL
installation instructions.

Here is an extract of the instructions:

Only for RHEL 8 and clones such as Rocky Linux 8:

sudo sudo dnf -qy module disable postgresql # Not required for RHEL8 and clones

Install the PostgreSQL repository and packages:

sudo rpm -i https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-x86_64/pgdg-redhat-repo-latest.noarch.rpm
sudo yum install postgresql11 postgresql11-server postgresql11-libs postgresql11-devel

Install FreeTDS devel and build dependencies The TDS foreign data
wrapper requires a library that implements the DB-Library interface, such as
FreeTDS.

NOTE: In CentOS, you need the EPEL repository installed to install FreeTDS

sudo yum install epel-release
sudo yum install freetds-devel

17

https://www.postgresql.org/download/linux/redhat/
https://www.postgresql.org/download/linux/redhat/
https://www.postgresql.org/download/linux/redhat/
https://www.postgresql.org/download/linux/redhat/
http://www.freetds.org
https://fedoraproject.org/wiki/EPEL

IMPORTANT: CentOS7/Oracle7 and PostgreSQL >= 11
When using the official PostgreSQL packages from postgresql.org, JIT with bit-
code is enabled by default and will require llvm5 and clang from LLVM5 installed
at /opt/rh/llvm-toolset-7/root/usr/bin/clang to be able to compile.

You have LLVM5 at the EPEL CentOS7 repository, but not LLVM7, so you will
need install the CentOS Software collections.

You can easily do it with the following commands:

sudo yum install centos-release-scl

Some other dependencies are also needed to install PostgreSQL and then compile
tds_fdw:

sudo yum install gcc make wget

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

export TDS_FDW_VERSION="2.0.3"
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}
make USE_PGXS=1 PG_CONFIG=/usr/pgsql-11/bin/pg_config
sudo make USE_PGXS=1 PG_CONFIG=/usr/pgsql-11/bin/pg_config install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note of
the full path, then adjust PG_CONFIG accordingly.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

yum install git
git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1 PG_CONFIG=/usr/pgsql-11/bin/pg_config
sudo make USE_PGXS=1 PG_CONFIG=/usr/pgsql-11/bin/pg_config install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note of
the full path, then adjust PG_CONFIG accordingly.

Final steps

Start server If this is a fresh installation, then initialize the data directory
and start the server:

18

sudo /usr/pgsql-11/bin/postgresql11-setup initdb
sudo systemctl enable postgresql-11.service
sudo systemctl start postgresql-11.service

Install extension

/usr/pgsql-11/bin/psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

TDS Foreign data wrapper
Installing on Ubuntu
This document will show how to install tds_fdw on Ubuntu 18.04. Other Ubuntu
distributions should be similar.

Install FreeTDS and build dependencies

The TDS foreign data wrapper requires a library that implements the DB-Library
interface, such as FreeTDS.

sudo apt-get update
sudo apt-get install libsybdb5 freetds-dev freetds-common

Some other dependencies are also needed to install PostgreSQL and then compile
tds_fdw:

sudo apt-get install gnupg gcc make

Install PostgreSQL

If you need to install PostgreSQL, do so by following the apt installation directions.
For example, to install PostgreSQL 11 on Ubuntu:

sudo bash -c 'source /etc/os-release; echo "deb http://apt.postgresql.org/pub/repos/apt/ ${VERSION_CODENAME}-pgdg main" > /etc/apt/sources.list.d/pgdg.list'
sudo apt-key adv --keyserver hkp://pool.sks-keyservers.net --recv-keys 0xACCC4CF8
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install postgresql-11 postgresql-client-11 postgresql-server-dev-11

NOTE: If you already have PostgreSQL installed on your system be sure that
the package postgresql-server-dev-XX is installed too (where XX stands for your
PostgreSQL version).

Install tds_fdw

Build from release package If you’d like to use one of the release packages,
you can download and install them via something like the following:

19

http://www.freetds.org
https://wiki.postgresql.org/wiki/Apt

export TDS_FDW_VERSION="2.0.3"
sudo apt-get install wget
wget https://github.com/tds-fdw/tds_fdw/archive/v${TDS_FDW_VERSION}.tar.gz
tar -xvzf v${TDS_FDW_VERSION}.tar.gz
cd tds_fdw-${TDS_FDW_VERSION}/
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Build from repository If you would rather use the current development
version, you can clone and build the git repository via something like the
following:

sudo apt-get install git
git clone https://github.com/tds-fdw/tds_fdw.git
cd tds_fdw
make USE_PGXS=1
sudo make USE_PGXS=1 install

NOTE: If you have several PostgreSQL versions and you do not want to build
for the default one, first locate where the binary for pg_config is, take note
of the full path, and then append PG_CONFIG=<PATH> after USE_PGXS=1 at the
make commands.

Start server If this is a fresh installation, then start the server:

sudo service postgresql start

Install extension

psql -U postgres
postgres=# CREATE EXTENSION tds_fdw;

TDS Foreign data wrapper
Creating a User Mapping
Options

User mapping parameters accepted:

• username

Required: Yes

20

The username of the account on the foreign server.

• password

Required: Yes

The password of the account on the foreign server.

Example

CREATE USER MAPPING FOR postgres
SERVER mssql_svr
OPTIONS (username 'sa', password '');

```# TDS Foreign data wrapper

## Variables

### Available Variables

* *tds_fdw.show_before_row_memory_stats* - print memory context stats to the PostgreSQL log before each row is fetched.

* *tds_fdw.show_after_row_memory_stats* - print memory context stats to the PostgreSQL log after each row is fetched.

* *tds_fdw.show_finished_memory_stats* - print memory context stats to the PostgreSQL log when a query is finished.

### Setting Variables

To set a variable, use the [SET command](https://www.postgresql.org/docs/12/sql-set.html). i.e.:

postgres=# SET tds_fdw.show_finished_memory_stats=1; SET “‘

21


	TDS Foreign data wrapper
	Logo
	About
	Installing on RHEL and clones (CentOS, Rocky Linux, AlmaLinux, Oracle…)
	Installing on Ubuntu
	Installing on Debian
	Installing on openSUSE
	Installing on OSX
	Installing on Alpine (and Docker)
	Usage
	Foreign server
	Foreign table
	User mapping
	Foreign schema
	Variables
	EXPLAIN

	Notes about character sets/encoding
	Encrypted connections to MSSQL
	Support
	Debugging

	TDS Foreign data wrapper
	Importing a Foreign Schema
	Options
	Example


	TDS Foreign data wrapper
	Creating a Foreign Server
	Options
	Example


	TDS Foreign data wrapper
	Creating a Foreign Table
	Options
	Example


	TDS Foreign data wrapper
	Logo
	About
	Installing on RHEL and clones (CentOS, Rocky Linux, AlmaLinux, Oracle…)
	Installing on Ubuntu
	Installing on Debian
	Installing on openSUSE
	Installing on OSX
	Installing on Alpine (and Docker)
	Usage
	Foreign server
	Foreign table
	User mapping
	Foreign schema
	Variables
	EXPLAIN

	Notes about character sets/encoding
	Encrypted connections to MSSQL
	Support
	Debugging

	TDS Foreign data wrapper
	Installing on Alpine Linux
	Install FreeTDS and build dependencies
	Install PostgreSQL
	Install tds_fdw

	Installing on Debian
	Install FreeTDS and build dependencies
	Install PostgreSQL
	Install tds_fdw


	TDS Foreign data wrapper
	Installing on openSUSE
	Install FreeTDS and build dependencies
	Install PostgreSQL
	Install tds_fdw


	TDS Foreign data wrapper
	Installing on OSX
	Install FreeTDS
	Install PostgreSQL
	Install tds_fdw


	TDS Foreign data wrapper
	Installing on RHEL and Clones such as CentOS, Rocky Linux, AlmaLinux or Oracle
	Option A: yum/dnf (released versions)
	Option B: Compile tds_fdw

	IMPORTANT: CentOS7/Oracle7 and PostgreSQL >= 11
	Final steps


	TDS Foreign data wrapper
	Installing on Ubuntu
	Install FreeTDS and build dependencies
	Install PostgreSQL
	Install tds_fdw


	TDS Foreign data wrapper
	Creating a User Mapping
	Options
	Example



