
TimescaleDB

Using TimescaleDB

TimescaleDB scales PostgreSQL for time-series data via automatic partitioning
across time and space (partitioning key), yet retains the standard PostgreSQL
interface.

In other words, TimescaleDB exposes what look like regular tables, but are
actually only an abstraction (or a virtual view) of many individual tables
comprising the actual data. This single-table view, which we call a hypertable,
is comprised of many chunks, which are created by partitioning the hypertable’s
data in either one or two dimensions: by a time interval, and by an (optional)
“partition key” such as device id, location, user id, etc. (Architecture discussion)

Virtually all user interactions with TimescaleDB are with hypertables. Creating
tables and indexes, altering tables, inserting data, selecting data, etc., can (and
should) all be executed on the hypertable.

From the perspective of both use and management, TimescaleDB just looks and
feels like PostgreSQL, and can be managed and queried as such.

Before you start

PostgreSQL’s out-of-the-box settings are typically too conservative for modern
servers and TimescaleDB. You should make sure your postgresql.conf settings
are tuned, either by using timescaledb-tune or doing it manually.

Creating a hypertable

-- Do not forget to create timescaledb extension
CREATE EXTENSION timescaledb;

-- We start by creating a regular SQL table
CREATE TABLE conditions (

time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL

);

-- Then we convert it into a hypertable that is partitioned by time
SELECT create_hypertable(’conditions’, ’time’);

• Quick start: Creating hypertables
• Reference examples

1

https://tsdb.co/GitHubTimescaleHypertable
https://tsdb.co/GitHubTimescaleArchitecture
https://github.com/timescale/timescaledb-tune
https://tsdb.co/GitHubTimescaleCreateHypertables
https://tsdb.co/GitHubTimescaleHypertableReference


Inserting and querying data

Inserting data into the hypertable is done via normal SQL commands:

INSERT INTO conditions(time, location, temperature, humidity)
VALUES (NOW(), ’office’, 70.0, 50.0);

SELECT * FROM conditions ORDER BY time DESC LIMIT 100;

SELECT time_bucket(’15 minutes’, time) AS fifteen_min,
location, COUNT(*),
MAX(temperature) AS max_temp,
MAX(humidity) AS max_hum

FROM conditions
WHERE time > NOW() - interval ’3 hours’
GROUP BY fifteen_min, location
ORDER BY fifteen_min DESC, max_temp DESC;

In addition, TimescaleDB includes additional functions for time-series analysis
that are not present in vanilla PostgreSQL. (For example, the time_bucket
function above.)

• Quick start: Basic operations
• Reference examples
• TimescaleDB API

Documentation associated with Apache licensed “community edition” of
TimescaleDB provided for convenience and built from Apache licensed source
code available here.

2

https://tsdb.co/GitHubTimescaleBasicOperations
https://tsdb.co/GitHubTimescaleWriteData
https://tsdb.co/GitHubTimescaleAPI
https://github.com/timescale/timescaledb/

	TimescaleDB
	Using TimescaleDB


