
TimescaleDB
Create a hypertable
TimescaleDB’s hypercore is a hybrid row-columnar store that boosts analytical
query performance on your time-series and event data, while reducing data size
by more than 90%. This keeps your analytics operating at lightning speed and
ensures low storage costs as you scale. Data is inserted in row format in the
rowstore and converted to columnar format in the columnstore based on your
configuration.

-- Create a hypertable, with the columnstore from the hypercore engine
-- "time" as partitioning column and a segment by on location
CREATE TABLE conditions (

time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL

)
WITH (

timescaledb.hypertable,
timescaledb.partition_column='time',
timescaledb.segmentby='location'

);

See more:

• About hypertables
• API reference
• About columnstore
• Enable columnstore manually
• API reference

Insert and query data
Insert and query data in a hypertable via regular SQL commands. For example:

• Insert data into a hypertable named conditions:

INSERT INTO conditions
VALUES

(NOW(), 'office', 70.0, 50.0),
(NOW(), 'basement', 66.5, 60.0),
(NOW(), 'garage', 77.0, 65.2);

• Return the number of entries written to the table conditions in the last 12
hours:

SELECT
COUNT(*)

1

https://docs.tigerdata.com/use-timescale/latest/hypertables/
https://docs.tigerdata.com/api/latest/hypertable/
https://docs.tigerdata.com/use-timescale/latest/compression/about-compression/
https://docs.tigerdata.com/use-timescale/latest/compression/manual-compression/
https://docs.tigerdata.com/api/latest/compression/


FROM
conditions

WHERE
time > NOW() - INTERVAL '12 hours';

See more:

• Query data
• Write data

Create time buckets
Time buckets enable you to aggregate data in hypertables by time interval and
calculate summary values.

For example, calculate the average daily temperature in a table named
conditions. The table has a time and temperature columns:

SELECT
time_bucket('1 day', time) AS bucket,
AVG(temperature) AS avg_temp

FROM
conditions

GROUP BY
bucket

ORDER BY
bucket ASC;

See more:

• About time buckets
• API reference
• All TimescaleDB features
• Tutorials

Create continuous aggregates
Continuous aggregates make real-time analytics run faster on very large datasets.
They continuously and incrementally refresh a query in the background, so
that when you run such query, only the data that has changed needs to be
computed, not the entire dataset. This is what makes them different from regular
PostgreSQL materialized views, which cannot be incrementally materialized and
have to be rebuilt from scratch every time you want to refresh it.

For example, create a continuous aggregate view for daily weather data in two
simple steps:

1. Create a materialized view:

2

https://docs.tigerdata.com/use-timescale/latest/query-data/
https://docs.tigerdata.com/use-timescale/latest/write-data/
https://docs.tigerdata.com/use-timescale/latest/time-buckets/about-time-buckets/
https://docs.tigerdata.com/api/latest/hyperfunctions/time_bucket/
https://docs.tigerdata.com/use-timescale/latest/
https://docs.tigerdata.com/tutorials/latest/
https://www.postgresql.org/docs/current/rules-materializedviews.html


CREATE MATERIALIZED VIEW conditions_summary_daily
WITH (timescaledb.continuous) AS
SELECT

location,
time_bucket(INTERVAL '1 day', time) AS bucket,
AVG(temperature),
MAX(temperature),
MIN(temperature)

FROM
conditions

GROUP BY
location,
bucket;

2. Create a policy to refresh the view every hour:

SELECT
add_continuous_aggregate_policy(

'conditions_summary_daily',
start_offset => INTERVAL '1 month',
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 hour'

);

See more:

• About continuous aggregates
• API reference

Documentation associated with Apache licensed “community edition” of
TimescaleDB provided for convenience and built from Apache licensed source
code available here.

3

https://docs.tigerdata.com/use-timescale/latest/continuous-aggregates/
https://docs.tigerdata.com/api/latest/continuous-aggregates/create_materialized_view/
https://github.com/timescale/timescaledb/

	TimescaleDB
	Create a hypertable
	Insert and query data
	Create time buckets
	Create continuous aggregates


