pgr_TSPeuclidean - pgRouting Manual (3.4)
pgr_TSPeuclidean
-
pgr_TSPeuclidean
- Aproximation using metric algorithm.
Availability:
-
Version 3.2.1
-
Metric Algorithm from Boost library
-
Simulated Annealing Algorithm no longer supported
-
The Simulated Annealing Algorithm related parameters are ignored: max_processing_time , tries_per_temperature , max_changes_per_temperature , max_consecutive_non_changes , initial_temperature , final_temperature , cooling_factor , randomize
-
-
-
Version 3.0.0
-
Name change from pgr_eucledianTSP
-
-
Version 2.3.0
-
New Official function
-
Description
Problem Definition
The travelling salesperson problem (TSP) asks the following question:
Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?
Characteristics
-
This problem is an NP-hard optimization problem.
-
Metric Algorithm is used
-
Implementation generates solutions that are twice as long as the optimal tour in the worst case when:
-
Graph is undirected
-
Graph is fully connected
-
Graph where traveling costs on edges obey the triangle inequality.
-
-
On an undirected graph:
-
The traveling costs are symmetric:
-
Traveling costs from
u
tov
are just as much as traveling fromv
tou
-
-
- Any duplicated identifier will be ignored. The coordinates that will be kept
-
is arbitrarly.
-
The coordinates are quite similar for the same identifier, for example
1, 3.5, 1 1, 3.499999999999 0.9999999
-
The coordinates are quite different for the same identifier, for example
2, 3.5, 1.0 2, 3.6, 1.1
Signatures
Summary
[start_id,
end_id]
)
(seq,
node,
cost,
agg_cost)
- Example :
-
With default values
SELECT * FROM pgr_TSPeuclidean(
$$
SELECT id, st_X(geom) AS x, st_Y(geom)AS y FROM vertices
$$);
seq node cost agg_cost
-----+------+----------------+---------------
1 1 0 0
2 6 2.2360679775 2.2360679775
3 5 1 3.2360679775
4 10 1.41421356237 4.65028153987
5 7 1.41421356237 6.06449510225
6 2 2.12132034356 8.18581544581
7 9 1.58113883008 9.76695427589
8 4 0.5 10.2669542759
9 14 1.58113883009 11.848093106
10 17 1.11803398875 12.9661270947
11 16 1 13.9661270947
12 15 1 14.9661270947
13 11 1.41421356237 16.3803406571
14 13 0.583095189485 16.9634358466
15 12 0.860232526704 17.8236683733
16 8 1 18.8236683733
17 3 1.41421356237 20.2378819357
18 1 1 21.2378819357
(18 rows)
Parameters
Parameter |
Type |
Description |
---|---|---|
|
Coordinates SQL as described below |
TSP optional parameters
Column |
Type |
Default |
Description |
---|---|---|---|
|
ANY-INTEGER |
|
The first visiting vertex
|
|
ANY-INTEGER |
|
Last visiting vertex before returning to
|
Inner Queries
Coordinates SQL
Column |
Type |
Description |
---|---|---|
|
|
Identifier of the starting vertex. |
|
|
X value of the coordinate. |
|
|
Y value of the coordinate. |
Result Columns
Returns SET OF
(seq,
node,
cost,
agg_cost)
Column |
Type |
Description |
---|---|---|
seq |
|
Row sequence. |
node |
|
Identifier of the node/coordinate/point. |
cost |
|
Cost to traverse from the current
|
agg_cost |
|
Aggregate cost from the
|
Additional Examples
Test 29 cities of Western Sahara
This example shows how to make performance tests using University of Waterloo’s example data using the 29 cities of Western Sahara dataset
Creating a table for the data and storing the data
CREATE TABLE wi29 (id BIGINT, x FLOAT, y FLOAT, geom geometry);
INSERT INTO wi29 (id, x, y) VALUES
(1,20833.3333,17100.0000),
(2,20900.0000,17066.6667),
(3,21300.0000,13016.6667),
(4,21600.0000,14150.0000),
(5,21600.0000,14966.6667),
(6,21600.0000,16500.0000),
(7,22183.3333,13133.3333),
(8,22583.3333,14300.0000),
(9,22683.3333,12716.6667),
(10,23616.6667,15866.6667),
(11,23700.0000,15933.3333),
(12,23883.3333,14533.3333),
(13,24166.6667,13250.0000),
(14,25149.1667,12365.8333),
(15,26133.3333,14500.0000),
(16,26150.0000,10550.0000),
(17,26283.3333,12766.6667),
(18,26433.3333,13433.3333),
(19,26550.0000,13850.0000),
(20,26733.3333,11683.3333),
(21,27026.1111,13051.9444),
(22,27096.1111,13415.8333),
(23,27153.6111,13203.3333),
(24,27166.6667,9833.3333),
(25,27233.3333,10450.0000),
(26,27233.3333,11783.3333),
(27,27266.6667,10383.3333),
(28,27433.3333,12400.0000),
(29,27462.5000,12992.2222);
Adding a geometry (for visual purposes)
UPDATE wi29 SET geom = ST_makePoint(x,y);
Total tour cost
Getting a total cost of the tour, compare the value with the length of an optimal tour is 27603, given on the dataset
SELECT *
FROM pgr_TSPeuclidean($$SELECT * FROM wi29$$)
WHERE seq = 30;
seq node cost agg_cost
-----+------+---------------+---------------
30 1 2266.91173136 28777.4854127
(1 row)
Getting a geometry of the tour
WITH
tsp_results AS (SELECT seq, geom FROM pgr_TSPeuclidean($$SELECT * FROM wi29$$) JOIN wi29 ON (node = id))
SELECT ST_MakeLine(ARRAY(SELECT geom FROM tsp_results ORDER BY seq));
st_makeline
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
01020000001E000000F085C9545558D4400000000000B3D040000000000069D440107A36ABAAAAD040000000000018D54000000000001DD040107A36AB2A10D7401FF46C5655FDCE40000000000025D740E10B93A9AA1ECF40F085C954D552D740E10B93A9AA62CC40107A36ABAA99D7400000000000E1C940107A36AB4A8FD840E10B93A9EA26C840F085C954D5AAD9401FF46C5655EFC840F085C95455D0D940E10B93A9AA3CCA40F085C9545585D940000000000052CC400000000080EDD94000000000000DCB40A52C431C0776DA40E10B93A9EA33CA40A52C431C6784DA40E10B93A9AAC9C940A52C431C8764DA402C6519E2F87DC94000000000A0D1DA4096B20C711C60C940F085C95455CADA40000000000038C840F085C9545598DA40E10B93A9AA03C740F085C954551BDA40E10B93A9AAD1C640F085C9545598DA40000000000069C440107A36ABAAA0DA40E10B93A9AA47C440107A36ABAA87DA40E10B93A9AA34C340000000008089D94000000000009BC440F085C954D526D6401FF46C5655D6C840F085C954D5A9D540E10B93A9AAA6C9400000000000CDD4401FF46C56556CC940000000000018D5400000000000A3CB40F085C954D50DD6400000000000EECB40000000000018D5401FF46C56553BCD40F085C9545558D4400000000000B3D040
(1 row)
Visual results
Visualy, The first image is the
optimal solution
and the second image
is the solution obtained with
pgr_TSPeuclidean
.
See Also
-
Sample Data network.
Indices and tables