pgr_kruskalDD

pgr_kruskalDD - Catchament nodes using Kruskal’s algorithm.

images/boost-inside.jpeg

Boost Graph Inside

Availability

  • Version 3.0.0

    • New Official function

Description

Using Kruskal’s algorithm, extracts the nodes that have aggregate costs less than or equal to a distance from a root vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

  • It’s implementation is only on undirected graph.

  • Process is done only on edges with positive costs.

  • When the graph is connected

    • The resulting edges make up a tree

  • When the graph is not connected,

    • Finds a minimum spanning tree for each connected component.

    • The resulting edges make up a forest.

  • The total weight of all the edges in the tree or forest is minimized.

  • Kruskal’s running time: \(O(E * log E)\)

  • Extracts all the nodes that have costs less than or equal to the value distance.

  • The edges extracted will conform to the corresponding spanning tree.

  • Edge \((u, v)\) will not be included when:

    • The distance from the root to \(u\) > limit distance.

    • The distance from the root to \(v\) > limit distance.

    • No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.

  • Returned tree nodes from a root vertex are on Depth First Search order.

  • Depth First Search running time: \(O(E + V)\)

Signatures

pgr_kruskalDD( Edges SQL , root vid , distance )
pgr_kruskalDD( Edges SQL , root vids , distance )
RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalDD( Edges SQL , root vid , distance )
RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)
Example :

The Minimum Spanning Tree starting on vertex \(6\) with \(distance \leq 3.5\)

SELECT * FROM pgr_kruskalDD(
  'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
  6, 3.5);
 seq  depth  start_vid  node  edge  cost  agg_cost
-----+-------+-----------+------+------+------+----------
   1      0          6     6    -1     0         0
   2      1          6     5     1     1         1
   3      1          6    10     2     1         1
   4      2          6    15     3     1         2
   5      3          6    16    16     1         3
(5 rows)

Multiple vertices

pgr_kruskalDD( Edges SQL , root vids , distance )
RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)
Example :

The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(distance \leq 3.5\)

SELECT * FROM pgr_kruskalDD(
  'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
  ARRAY[9, 6], 3.5);
 seq  depth  start_vid  node  edge  cost  agg_cost
-----+-------+-----------+------+------+------+----------
   1      0          6     6    -1     0         0
   2      1          6     5     1     1         1
   3      1          6    10     2     1         1
   4      2          6    15     3     1         2
   5      3          6    16    16     1         3
   6      0          9     9    -1     0         0
   7      1          9     8    14     1         1
   8      2          9     7    10     1         2
   9      3          9     3     7     1         3
  10      2          9    12    12     1         2
  11      3          9    11    11     1         3
  12      3          9    17    13     1         3
(12 rows)

Parameters

Parameter

Type

Description

Edges SQL

TEXT

Edges SQL as described below.

Root vid

BIGINT

Identifier of the root vertex of the tree.

Root vids

ARRAY[ANY-INTEGER]

Array of identifiers of the root vertices.

  • \(0\) values are ignored

  • For optimization purposes, any duplicated value is ignored.

distance

FLOAT

Upper limit for the inclusion of a node in the result.

Where:

ANY-INTEGER :

SMALLINT , INTEGER , BIGINT

ANY-NUMERIC :

SMALLINT , INTEGER , BIGINT , REAL , FLOAT

Inner Queries

Edges SQL

Column

Type

Default

Description

id

ANY-INTEGER

Identifier of the edge.

source

ANY-INTEGER

Identifier of the first end point vertex of the edge.

target

ANY-INTEGER

Identifier of the second end point vertex of the edge.

cost

ANY-NUMERICAL

Weight of the edge ( source , target )

reverse_cost

ANY-NUMERICAL

-1

Weight of the edge ( target , source )

  • When negative: edge ( target , source ) does not exist, therefore it’s not part of the graph.

Where:

ANY-INTEGER :

SMALLINT , INTEGER , BIGINT

ANY-NUMERICAL :

SMALLINT , INTEGER , BIGINT , REAL , FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Parameter

Type

Description

seq

BIGINT

Sequential value starting from \(1\) .

depth

BIGINT

Depth of the node .

  • \(0\) when node = start_vid .

start_vid

BIGINT

Identifier of the root vertex.

node

BIGINT

Identifier of node reached using edge .

edge

BIGINT

Identifier of the edge used to arrive to node .

  • \(-1\) when node = start_vid .

cost

FLOAT

Cost to traverse edge .

agg_cost

FLOAT

Aggregate cost from start_vid to node .

Where:

ANY-INTEGER :

SMALLINT, INTEGER, BIGINT

ANY-NUMERIC :

SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

See Also

Indices and tables