19.5. Write Ahead Log
For additional information on tuning these settings, see Section 29.4 .
19.5.1. Settings
-
wal_level
(enum
) -
wal_level
determines how much information is written to the WAL. The default value isreplica
, which writes enough data to support WAL archiving and replication, including running read-only queries on a standby server.minimal
removes all logging except the information required to recover from a crash or immediate shutdown. Finally,logical
adds information necessary to support logical decoding. Each level includes the information logged at all lower levels. This parameter can only be set at server start.In
minimal
level, WAL-logging of some bulk operations can be safely skipped, which can make those operations much faster (see Section 14.4.7 ). Operations in which this optimization can be applied include:CREATE TABLE AS
CREATE INDEX
CLUSTER
COPY
into tables that were created or truncated in the same transactionBut minimal WAL does not contain enough information to reconstruct the data from a base backup and the WAL logs, so
replica
or higher must be used to enable WAL archiving ( archive_mode ) and streaming replication.In
logical
level, the same information is logged as withreplica
, plus information needed to allow extracting logical change sets from the WAL. Using a level oflogical
will increase the WAL volume, particularly if many tables are configured forREPLICA IDENTITY FULL
and manyUPDATE
andDELETE
statements are executed.In releases prior to 9.6, this parameter also allowed the values
archive
andhot_standby
. These are still accepted but mapped toreplica
. -
fsync
(boolean
) -
If this parameter is on, the PostgreSQL server will try to make sure that updates are physically written to disk, by issuing
fsync()
system calls or various equivalent methods (see wal_sync_method ). This ensures that the database cluster can recover to a consistent state after an operating system or hardware crash.While turning off
fsync
is often a performance benefit, this can result in unrecoverable data corruption in the event of a power failure or system crash. Thus it is only advisable to turn offfsync
if you can easily recreate your entire database from external data.Examples of safe circumstances for turning off
fsync
include the initial loading of a new database cluster from a backup file, using a database cluster for processing a batch of data after which the database will be thrown away and recreated, or for a read-only database clone which gets recreated frequently and is not used for failover. High quality hardware alone is not a sufficient justification for turning offfsync
.For reliable recovery when changing
fsync
off to on, it is necessary to force all modified buffers in the kernel to durable storage. This can be done while the cluster is shutdown or whilefsync
is on by runninginitdb --sync-only
, runningsync
, unmounting the file system, or rebooting the server.In many situations, turning off synchronous_commit for noncritical transactions can provide much of the potential performance benefit of turning off
fsync
, without the attendant risks of data corruption.fsync
can only be set in thepostgresql.conf
file or on the server command line. If you turn this parameter off, also consider turning off full_page_writes . -
synchronous_commit
(enum
) -
Specifies whether transaction commit will wait for WAL records to be written to disk before the command returns a " success " indication to the client. Valid values are
on
,remote_apply
,remote_write
,local
, andoff
. The default, and safe, setting ison
. Whenoff
, there can be a delay between when success is reported to the client and when the transaction is really guaranteed to be safe against a server crash. (The maximum delay is three times wal_writer_delay .) Unlike fsync , setting this parameter tooff
does not create any risk of database inconsistency: an operating system or database crash might result in some recent allegedly-committed transactions being lost, but the database state will be just the same as if those transactions had been aborted cleanly. So, turningsynchronous_commit
off can be a useful alternative when performance is more important than exact certainty about the durability of a transaction. For more discussion see Section 29.3 .If synchronous_standby_names is non-empty, this parameter also controls whether or not transaction commits will wait for their WAL records to be replicated to the standby server(s). When set to
on
, commits will wait until replies from the current synchronous standby(s) indicate they have received the commit record of the transaction and flushed it to disk. This ensures the transaction will not be lost unless both the primary and all synchronous standbys suffer corruption of their database storage. When set toremote_apply
, commits will wait until replies from the current synchronous standby(s) indicate they have received the commit record of the transaction and applied it, so that it has become visible to queries on the standby(s). When set toremote_write
, commits will wait until replies from the current synchronous standby(s) indicate they have received the commit record of the transaction and written it out to their operating system. This setting is sufficient to ensure data preservation even if a standby instance of PostgreSQL were to crash, but not if the standby suffers an operating-system-level crash, since the data has not necessarily reached stable storage on the standby. Finally, the settinglocal
causes commits to wait for local flush to disk, but not for replication. This is not usually desirable when synchronous replication is in use, but is provided for completeness.If
synchronous_standby_names
is empty, the settingson
,remote_apply
,remote_write
andlocal
all provide the same synchronization level: transaction commits only wait for local flush to disk.This parameter can be changed at any time; the behavior for any one transaction is determined by the setting in effect when it commits. It is therefore possible, and useful, to have some transactions commit synchronously and others asynchronously. For example, to make a single multistatement transaction commit asynchronously when the default is the opposite, issue
SET LOCAL synchronous_commit TO OFF
within the transaction. -
wal_sync_method
(enum
) -
Method used for forcing WAL updates out to disk. If
fsync
is off then this setting is irrelevant, since WAL file updates will not be forced out at all. Possible values are:-
open_datasync
(write WAL files withopen()
optionO_DSYNC
) -
fdatasync
(callfdatasync()
at each commit) -
fsync
(callfsync()
at each commit) -
fsync_writethrough
(callfsync()
at each commit, forcing write-through of any disk write cache) -
open_sync
(write WAL files withopen()
optionO_SYNC
)
The
open_
* options also useO_DIRECT
if available. Not all of these choices are available on all platforms. The default is the first method in the above list that is supported by the platform, except thatfdatasync
is the default on Linux. The default is not necessarily ideal; it might be necessary to change this setting or other aspects of your system configuration in order to create a crash-safe configuration or achieve optimal performance. These aspects are discussed in Section 29.1 . This parameter can only be set in thepostgresql.conf
file or on the server command line. -
-
full_page_writes
(boolean
) -
When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL during the first modification of that page after a checkpoint. This is needed because a page write that is in process during an operating system crash might be only partially completed, leading to an on-disk page that contains a mix of old and new data. The row-level change data normally stored in WAL will not be enough to completely restore such a page during post-crash recovery. Storing the full page image guarantees that the page can be correctly restored, but at the price of increasing the amount of data that must be written to WAL. (Because WAL replay always starts from a checkpoint, it is sufficient to do this during the first change of each page after a checkpoint. Therefore, one way to reduce the cost of full-page writes is to increase the checkpoint interval parameters.)
Turning this parameter off speeds normal operation, but might lead to either unrecoverable data corruption, or silent data corruption, after a system failure. The risks are similar to turning off
fsync
, though smaller, and it should be turned off only based on the same circumstances recommended for that parameter.Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR) (see Section 25.3 ).
This parameter can only be set in the
postgresql.conf
file or on the server command line. The default ison
. -
wal_log_hints
(boolean
) -
When this parameter is
on
, the PostgreSQL server writes the entire content of each disk page to WAL during the first modification of that page after a checkpoint, even for non-critical modifications of so-called hint bits.If data checksums are enabled, hint bit updates are always WAL-logged and this setting is ignored. You can use this setting to test how much extra WAL-logging would occur if your database had data checksums enabled.
This parameter can only be set at server start. The default value is
off
. -
wal_compression
(boolean
) -
When this parameter is
on
, the PostgreSQL server compresses a full page image written to WAL when full_page_writes is on or during a base backup. A compressed page image will be decompressed during WAL replay. The default value isoff
. Only superusers can change this setting.Turning this parameter on can reduce the WAL volume without increasing the risk of unrecoverable data corruption, but at the cost of some extra CPU spent on the compression during WAL logging and on the decompression during WAL replay.
-
wal_buffers
(integer
) -
The amount of shared memory used for WAL data that has not yet been written to disk. The default setting of -1 selects a size equal to 1/32nd (about 3%) of shared_buffers , but not less than
64kB
nor more than the size of one WAL segment, typically16MB
. This value can be set manually if the automatic choice is too large or too small, but any positive value less than32kB
will be treated as32kB
. This parameter can only be set at server start.The contents of the WAL buffers are written out to disk at every transaction commit, so extremely large values are unlikely to provide a significant benefit. However, setting this value to at least a few megabytes can improve write performance on a busy server where many clients are committing at once. The auto-tuning selected by the default setting of -1 should give reasonable results in most cases.
-
wal_writer_delay
(integer
) -
Specifies how often the WAL writer flushes WAL. After flushing WAL it sleeps for
wal_writer_delay
milliseconds, unless woken up by an asynchronously committing transaction. If the last flush happened less thanwal_writer_delay
milliseconds ago and less thanwal_writer_flush_after
bytes of WAL have been produced since, then WAL is only written to the operating system, not flushed to disk. The default value is 200 milliseconds (200ms
). Note that on many systems, the effective resolution of sleep delays is 10 milliseconds; settingwal_writer_delay
to a value that is not a multiple of 10 might have the same results as setting it to the next higher multiple of 10. This parameter can only be set in thepostgresql.conf
file or on the server command line. -
wal_writer_flush_after
(integer
) -
Specifies how often the WAL writer flushes WAL. If the last flush happened less than
wal_writer_delay
milliseconds ago and less thanwal_writer_flush_after
bytes of WAL have been produced since, then WAL is only written to the operating system, not flushed to disk. Ifwal_writer_flush_after
is set to0
then WAL data is flushed immediately. The default is1MB
. This parameter can only be set in thepostgresql.conf
file or on the server command line. -
commit_delay
(integer
) -
commit_delay
adds a time delay, measured in microseconds, before a WAL flush is initiated. This can improve group commit throughput by allowing a larger number of transactions to commit via a single WAL flush, if system load is high enough that additional transactions become ready to commit within the given interval. However, it also increases latency by up tocommit_delay
microseconds for each WAL flush. Because the delay is just wasted if no other transactions become ready to commit, a delay is only performed if at leastcommit_siblings
other transactions are active when a flush is about to be initiated. Also, no delays are performed iffsync
is disabled. The defaultcommit_delay
is zero (no delay). Only superusers can change this setting.In PostgreSQL releases prior to 9.3,
commit_delay
behaved differently and was much less effective: it affected only commits, rather than all WAL flushes, and waited for the entire configured delay even if the WAL flush was completed sooner. Beginning in PostgreSQL 9.3, the first process that becomes ready to flush waits for the configured interval, while subsequent processes wait only until the leader completes the flush operation. -
commit_siblings
(integer
) -
Minimum number of concurrent open transactions to require before performing the
commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready to commit during the delay interval. The default is five transactions.
19.5.2. Checkpoints
-
checkpoint_timeout
(integer
) -
Maximum time between automatic WAL checkpoints, in seconds. The valid range is between 30 seconds and one day. The default is five minutes (
5min
). Increasing this parameter can increase the amount of time needed for crash recovery. This parameter can only be set in thepostgresql.conf
file or on the server command line. -
checkpoint_completion_target
(floating point
) -
Specifies the target of checkpoint completion, as a fraction of total time between checkpoints. The default is 0.5. This parameter can only be set in the
postgresql.conf
file or on the server command line. -
checkpoint_flush_after
(integer
) -
Whenever more than
checkpoint_flush_after
bytes have been written while performing a checkpoint, attempt to force the OS to issue these writes to the underlying storage. Doing so will limit the amount of dirty data in the kernel's page cache, reducing the likelihood of stalls when anfsync
is issued at the end of the checkpoint, or when the OS writes data back in larger batches in the background. Often that will result in greatly reduced transaction latency, but there also are some cases, especially with workloads that are bigger than shared_buffers , but smaller than the OS's page cache, where performance might degrade. This setting may have no effect on some platforms. The valid range is between0
, which disables forced writeback, and2MB
. The default is256kB
on Linux,0
elsewhere. (IfBLCKSZ
is not 8kB, the default and maximum values scale proportionally to it.) This parameter can only be set in thepostgresql.conf
file or on the server command line. -
checkpoint_warning
(integer
) -
Write a message to the server log if checkpoints caused by the filling of WAL segment files happen closer together than this many seconds (which suggests that
max_wal_size
ought to be raised). The default is 30 seconds (30s
). Zero disables the warning. No warnings will be generated ifcheckpoint_timeout
is less thancheckpoint_warning
. This parameter can only be set in thepostgresql.conf
file or on the server command line. -
max_wal_size
(integer
) -
Maximum size to let the WAL grow to between automatic WAL checkpoints. This is a soft limit; WAL size can exceed
max_wal_size
under special circumstances, like under heavy load, a failingarchive_command
, or a highwal_keep_segments
setting. The default is 1 GB. Increasing this parameter can increase the amount of time needed for crash recovery. This parameter can only be set in thepostgresql.conf
file or on the server command line. -
min_wal_size
(integer
) -
As long as WAL disk usage stays below this setting, old WAL files are always recycled for future use at a checkpoint, rather than removed. This can be used to ensure that enough WAL space is reserved to handle spikes in WAL usage, for example when running large batch jobs. The default is 80 MB. This parameter can only be set in the
postgresql.conf
file or on the server command line.
19.5.3. Archiving
-
archive_mode
(enum
) -
When
archive_mode
is enabled, completed WAL segments are sent to archive storage by setting archive_command . In addition tooff
, to disable, there are two modes:on
, andalways
. During normal operation, there is no difference between the two modes, but when set toalways
the WAL archiver is enabled also during archive recovery or standby mode. Inalways
mode, all files restored from the archive or streamed with streaming replication will be archived (again). See Section 26.2.9 for details.archive_mode
andarchive_command
are separate variables so thatarchive_command
can be changed without leaving archiving mode. This parameter can only be set at server start.archive_mode
cannot be enabled whenwal_level
is set tominimal
. -
archive_command
(string
) -
The local shell command to execute to archive a completed WAL file segment. Any
%p
in the string is replaced by the path name of the file to archive, and any%f
is replaced by only the file name. (The path name is relative to the working directory of the server, i.e., the cluster's data directory.) Use%%
to embed an actual%
character in the command. It is important for the command to return a zero exit status only if it succeeds. For more information see Section 25.3.1 .This parameter can only be set in the
postgresql.conf
file or on the server command line. It is ignored unlessarchive_mode
was enabled at server start. Ifarchive_command
is an empty string (the default) whilearchive_mode
is enabled, WAL archiving is temporarily disabled, but the server continues to accumulate WAL segment files in the expectation that a command will soon be provided. Settingarchive_command
to a command that does nothing but return true, e.g./bin/true
(REM
on Windows), effectively disables archiving, but also breaks the chain of WAL files needed for archive recovery, so it should only be used in unusual circumstances. -
archive_timeout
(integer
) -
The archive_command is only invoked for completed WAL segments. Hence, if your server generates little WAL traffic (or has slack periods where it does so), there could be a long delay between the completion of a transaction and its safe recording in archive storage. To limit how old unarchived data can be, you can set
archive_timeout
to force the server to switch to a new WAL segment file periodically. When this parameter is greater than zero, the server will switch to a new segment file whenever this many seconds have elapsed since the last segment file switch, and there has been any database activity, including a single checkpoint (checkpoints are skipped if there is no database activity). Note that archived files that are closed early due to a forced switch are still the same length as completely full files. Therefore, it is unwise to use a very shortarchive_timeout
- it will bloat your archive storage.archive_timeout
settings of a minute or so are usually reasonable. You should consider using streaming replication, instead of archiving, if you want data to be copied off the master server more quickly than that. This parameter can only be set in thepostgresql.conf
file or on the server command line.
19.5.4. Archive Recovery
This section describes the settings that apply only for the duration of the recovery. They must be reset for any subsequent recovery you wish to perform.
" Recovery " covers using the server as a standby or for executing a targeted recovery. Typically, standby mode would be used to provide high availability and/or read scalability, whereas a targeted recovery is used to recover from data loss.
To start the server in standby mode, create a file called
standby.signal
in the data directory. The server will enter recovery and will not stop
recovery when the end of archived WAL is reached, but will keep trying to
continue recovery by connecting to the sending server as specified by the
primary_conninfo
setting and/or by fetching new WAL
segments using
restore_command
. For this mode, the
parameters from this section and
Section 19.6.3
are of interest.
Parameters from
Section 19.5.5
will
also be applied but are typically not useful in this mode.
To start the server in targeted recovery mode, create a file called
recovery.signal
in the data directory. If both
standby.signal
and
recovery.signal
files are created, standby mode
takes precedence. Targeted recovery mode ends when the archived WAL is
fully replayed, or when
recovery_target
is reached.
In this mode, the parameters from both this section and
Section 19.5.5
will be used. Parameters
from
Section 19.6.3
will not be
used.
-
restore_command
(string
) -
The local shell command to execute to retrieve an archived segment of the WAL file series. This parameter is required for archive recovery, but optional for streaming replication. Any
%f
in the string is replaced by the name of the file to retrieve from the archive, and any%p
is replaced by the copy destination path name on the server. (The path name is relative to the current working directory, i.e., the cluster's data directory.) Any%r
is replaced by the name of the file containing the last valid restart point. That is the earliest file that must be kept to allow a restore to be restartable, so this information can be used to truncate the archive to just the minimum required to support restarting from the current restore.%r
is typically only used by warm-standby configurations (see Section 26.2 ). Write%%
to embed an actual%
character.It is important for the command to return a zero exit status only if it succeeds. The command will be asked for file names that are not present in the archive; it must return nonzero when so asked. Examples:
restore_command = 'cp /mnt/server/archivedir/%f "%p"' restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"' # Windows
An exception is that if the command was terminated by a signal (other than SIGTERM , which is used as part of a database server shutdown) or an error by the shell (such as command not found), then recovery will abort and the server will not start up.
This parameter can only be set at server start.
-
archive_cleanup_command
(string
) -
This optional parameter specifies a shell command that will be executed at every restartpoint. The purpose of
archive_cleanup_command
is to provide a mechanism for cleaning up old archived WAL files that are no longer needed by the standby server. Any%r
is replaced by the name of the file containing the last valid restart point. That is the earliest file that must be kept to allow a restore to be restartable, and so all files earlier than%r
may be safely removed. This information can be used to truncate the archive to just the minimum required to support restart from the current restore. The pg_archivecleanup module is often used inarchive_cleanup_command
for single-standby configurations, for example:archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir %r'
Note however that if multiple standby servers are restoring from the same archive directory, you will need to ensure that you do not delete WAL files until they are no longer needed by any of the servers.
archive_cleanup_command
would typically be used in a warm-standby configuration (see Section 26.2 ). Write%%
to embed an actual%
character in the command.If the command returns a nonzero exit status then a warning log message will be written. An exception is that if the command was terminated by a signal or an error by the shell (such as command not found), a fatal error will be raised.
This parameter can only be set in the
postgresql.conf
file or on the server command line. -
recovery_end_command
(string
) -
This parameter specifies a shell command that will be executed once only at the end of recovery. This parameter is optional. The purpose of the
recovery_end_command
is to provide a mechanism for cleanup following replication or recovery. Any%r
is replaced by the name of the file containing the last valid restart point, like in archive_cleanup_command .If the command returns a nonzero exit status then a warning log message will be written and the database will proceed to start up anyway. An exception is that if the command was terminated by a signal or an error by the shell (such as command not found), the database will not proceed with startup.
This parameter can only be set in the
postgresql.conf
file or on the server command line.
19.5.5. Recovery Target
By default, recovery will recover to the end of the WAL log. The
following parameters can be used to specify an earlier stopping point.
At most one of
recovery_target
,
recovery_target_lsn
,
recovery_target_name
,
recovery_target_time
, or
recovery_target_xid
can be used; if more than one of these is specified in the configuration
file, an error will be raised.
These parameters can only be set at server start.
-
recovery_target
= 'immediate'
-
This parameter specifies that recovery should end as soon as a consistent state is reached, i.e. as early as possible. When restoring from an online backup, this means the point where taking the backup ended.
Technically, this is a string parameter, but
'immediate'
is currently the only allowed value. -
recovery_target_name
(string
) -
This parameter specifies the named restore point (created with
pg_create_restore_point()
) to which recovery will proceed. -
recovery_target_time
(timestamp
) -
This parameter specifies the time stamp up to which recovery will proceed. The precise stopping point is also influenced by recovery_target_inclusive .
-
recovery_target_xid
(string
) -
This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that while transaction IDs are assigned sequentially at transaction start, transactions can complete in a different numeric order. The transactions that will be recovered are those that committed before (and optionally including) the specified one. The precise stopping point is also influenced by recovery_target_inclusive .
-
recovery_target_lsn
(pg_lsn
) -
This parameter specifies the LSN of the write-ahead log location up to which recovery will proceed. The precise stopping point is also influenced by recovery_target_inclusive . This parameter is parsed using the system data type
pg_lsn
.
The following options further specify the recovery target, and affect what happens when the target is reached:
-
recovery_target_inclusive
(boolean
) -
Specifies whether to stop just after the specified recovery target (
on
), or just before the recovery target (off
). Applies when recovery_target_lsn , recovery_target_time , or recovery_target_xid is specified. This setting controls whether transactions having exactly the target WAL location (LSN), commit time, or transaction ID, respectively, will be included in the recovery. Default ison
. -
recovery_target_timeline
(string
) -
Specifies recovering into a particular timeline. The value can be a numeric timeline ID or a special value. The value
current
recovers along the same timeline that was current when the base backup was taken. The valuelatest
recovers to the latest timeline found in the archive, which is useful in a standby server.latest
is the default.You usually only need to set this parameter in complex re-recovery situations, where you need to return to a state that itself was reached after a point-in-time recovery. See Section 25.3.5 for discussion.
-
recovery_target_action
(enum
) -
Specifies what action the server should take once the recovery target is reached. The default is
pause
, which means recovery will be paused.promote
means the recovery process will finish and the server will start to accept connections. Finallyshutdown
will stop the server after reaching the recovery target.The intended use of the
pause
setting is to allow queries to be executed against the database to check if this recovery target is the most desirable point for recovery. The paused state can be resumed by usingpg_wal_replay_resume()
(see Table 9.86 ), which then causes recovery to end. If this recovery target is not the desired stopping point, then shut down the server, change the recovery target settings to a later target and restart to continue recovery.The
shutdown
setting is useful to have the instance ready at the exact replay point desired. The instance will still be able to replay more WAL records (and in fact will have to replay WAL records since the last checkpoint next time it is started).Note that because
recovery.signal
will not be removed whenrecovery_target_action
is set toshutdown
, any subsequent start will end with immediate shutdown unless the configuration is changed or therecovery.signal
file is removed manually.This setting has no effect if no recovery target is set. If hot_standby is not enabled, a setting of
pause
will act the same asshutdown
.