CREATE INDEX
CREATE INDEX
CREATE INDEX - define a new index
Synopsis
CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ]name] ON [ ONLY ]table_name[ USINGmethod] ( {column_name| (expression) } [ COLLATEcollation] [opclass] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] ) [ INCLUDE (column_name[, ...] ) ] [ WITH (storage_parameter[=value] [, ... ] ) ] [ TABLESPACEtablespace_name] [ WHEREpredicate]
Description
   
    CREATE INDEX
   
   constructs an index on the specified column(s)
   of the specified relation, which can be a table or a materialized view.
   Indexes are primarily used to enhance database performance (though
   inappropriate use can result in slower performance).
  
The key field(s) for the index are specified as column names, or alternatively as expressions written in parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.
   An index field can be an expression computed from the values of
   one or more columns of the table row.  This feature can be used
   to obtain fast access to data based on some transformation of
   the basic data. For example, an index computed on
   
    upper(col)
   
   would allow the clause
   
    WHERE upper(col) = 'JIM'
   
   to use an index.
  
PostgreSQL provides the index methods B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also define their own index methods, but that is fairly complicated.
   When the
   
    WHERE
   
   clause is present, a
   
    partial index
   
   is created.
    A partial index is an index that contains entries for only a portion of
    a table, usually a portion that is more useful for indexing than the
    rest of the table. For example, if you have a table that contains both
    billed and unbilled orders where the unbilled orders take up a small
    fraction of the total table and yet that is an often used section, you
    can improve performance by creating an index on just that portion.
    Another possible application is to use
   
    WHERE
   
   with
   
    UNIQUE
   
   to enforce uniqueness over a subset of a
    table.  See
   
    Section 11.8
   
   for more discussion.
  
   The expression used in the
   
    WHERE
   
   clause can refer
    only to columns of the underlying table, but it can use all columns,
    not just the ones being indexed.  Presently, subqueries and
    aggregate expressions are also forbidden in
   
    WHERE
   
   .
    The same restrictions apply to index fields that are expressions.
  
   All functions and operators used in an index definition must be
   
    "
    
     immutable
    
    "
   
   , that is, their results must depend only on
   their arguments and never on any outside influence (such as
   the contents of another table or the current time).  This restriction
   ensures that the behavior of the index is well-defined.  To use a
   user-defined function in an index expression or
   
    WHERE
   
   clause, remember to mark the function immutable when you create it.
  
Parameters
- 
     
      UNIQUE
- 
     Causes the system to check for duplicate values in the table when the index is created (if data already exist) and each time data is added. Attempts to insert or update data which would result in duplicate entries will generate an error. Additional restrictions apply when unique indexes are applied to partitioned tables; see CREATE TABLE . 
- 
     
      CONCURRENTLY
- 
     When this option is used, PostgreSQL will build the index without taking any locks that prevent concurrent inserts, updates, or deletes on the table; whereas a standard index build locks out writes (but not reads) on the table until it's done. There are several caveats to be aware of when using this option - see Building Indexes Concurrently . For temporary tables, CREATE INDEXis always non-concurrent, as no other session can access them, and non-concurrent index creation is cheaper.
- 
     
      IF NOT EXISTS
- 
     Do not throw an error if a relation with the same name already exists. A notice is issued in this case. Note that there is no guarantee that the existing index is anything like the one that would have been created. Index name is required when IF NOT EXISTSis specified.
- 
     
      INCLUDE
- 
     The optional INCLUDEclause specifies a list of columns which will be included in the index as non-key columns. A non-key column cannot be used in an index scan search qualification, and it is disregarded for purposes of any uniqueness or exclusion constraint enforced by the index. However, an index-only scan can return the contents of non-key columns without having to visit the index's table, since they are available directly from the index entry. Thus, addition of non-key columns allows index-only scans to be used for queries that otherwise could not use them.It's wise to be conservative about adding non-key columns to an index, especially wide columns. If an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any case, non-key columns duplicate data from the index's table and bloat the size of the index, thus potentially slowing searches. Columns listed in the INCLUDEclause don't need appropriate operator classes; the clause can include columns whose data types don't have operator classes defined for a given access method.Expressions are not supported as included columns since they cannot be used in index-only scans. Currently, the B-tree and the GiST index access methods support this feature. In B-tree and the GiST indexes, the values of columns listed in the INCLUDEclause are included in leaf tuples which correspond to heap tuples, but are not included in upper-level index entries used for tree navigation.
- 
     
      
       name
- 
     The name of the index to be created. No schema name can be included here; the index is always created in the same schema as its parent table. If the name is omitted, PostgreSQL chooses a suitable name based on the parent table's name and the indexed column name(s). 
- 
     
      ONLY
- 
     Indicates not to recurse creating indexes on partitions, if the table is partitioned. The default is to recurse. 
- 
     
      
       table_name
- 
     The name (possibly schema-qualified) of the table to be indexed. 
- 
     
      
       method
- 
     The name of the index method to be used. Choices are btree,hash,gist,spgist,gin, andbrin. The default method isbtree.
- 
     
      
       column_name
- 
     The name of a column of the table. 
- 
     
      
       expression
- 
     An expression based on one or more columns of the table. The expression usually must be written with surrounding parentheses, as shown in the syntax. However, the parentheses can be omitted if the expression has the form of a function call. 
- 
     
      
       collation
- 
     The name of the collation to use for the index. By default, the index uses the collation declared for the column to be indexed or the result collation of the expression to be indexed. Indexes with non-default collations can be useful for queries that involve expressions using non-default collations. 
- 
     
      
       opclass
- 
     The name of an operator class. See below for details. 
- 
     
      ASC
- 
     Specifies ascending sort order (which is the default). 
- 
     
      DESC
- 
     Specifies descending sort order. 
- 
     
      NULLS FIRST
- 
     Specifies that nulls sort before non-nulls. This is the default when DESCis specified.
- 
     
      NULLS LAST
- 
     Specifies that nulls sort after non-nulls. This is the default when DESCis not specified.
- 
     
      
       storage_parameter
- 
     The name of an index-method-specific storage parameter. See Index Storage Parameters for details. 
- 
     
      
       tablespace_name
- 
     The tablespace in which to create the index. If not specified, default_tablespace is consulted, or temp_tablespaces for indexes on temporary tables. 
- 
     
      
       predicate
- 
     The constraint expression for a partial index. 
Index Storage Parameters
    The optional
    
     WITH
    
    clause specifies
    
     storage
    parameters
    
    for the index.  Each index method has its own set of allowed
    storage parameters.  The B-tree, hash, GiST and SP-GiST index methods all
    accept this parameter:
   
- 
      
       fillfactor
- 
      The fillfactor for an index is a percentage that determines how full the index method will try to pack index pages. For B-trees, leaf pages are filled to this percentage during initial index build, and also when extending the index at the right (adding new largest key values). If pages subsequently become completely full, they will be split, leading to gradual degradation in the index's efficiency. B-trees use a default fillfactor of 90, but any integer value from 10 to 100 can be selected. If the table is static then fillfactor 100 is best to minimize the index's physical size, but for heavily updated tables a smaller fillfactor is better to minimize the need for page splits. The other index methods use fillfactor in different but roughly analogous ways; the default fillfactor varies between methods. 
B-tree indexes additionally accept this parameter:
- 
      
       vacuum_cleanup_index_scale_factor
- 
      Per-index value for vacuum_cleanup_index_scale_factor . 
GiST indexes additionally accept this parameter:
- 
      
       buffering
- 
      Determines whether the buffering build technique described in Section 64.4.1 is used to build the index. With OFFit is disabled, withONit is enabled, and withAUTOit is initially disabled, but turned on on-the-fly once the index size reaches effective_cache_size . The default isAUTO.
GIN indexes accept different parameters:
- 
      
       fastupdate
- 
      This setting controls usage of the fast update technique described in Section 66.4.1 . It is a Boolean parameter: ONenables fast update,OFFdisables it. (Alternative spellings ofONandOFFare allowed as described in Section 19.1 .) The default isON.NoteTurning fastupdateoff viaALTER INDEXprevents future insertions from going into the list of pending index entries, but does not in itself flush previous entries. You might want toVACUUMthe table or callgin_clean_pending_listfunction afterward to ensure the pending list is emptied.
- 
      
       gin_pending_list_limit
- 
      Custom gin_pending_list_limit parameter. This value is specified in kilobytes. 
BRIN indexes accept different parameters:
- 
      
       pages_per_range
- 
      Defines the number of table blocks that make up one block range for each entry of a BRIN index (see Section 67.1 for more details). The default is 128.
- 
      
       autosummarize
- 
      Defines whether a summarization run is invoked for the previous page range whenever an insertion is detected on the next one. 
Building Indexes Concurrently
Creating an index can interfere with regular operation of a database. Normally PostgreSQL locks the table to be indexed against writes and performs the entire index build with a single scan of the table. Other transactions can still read the table, but if they try to insert, update, or delete rows in the table they will block until the index build is finished. This could have a severe effect if the system is a live production database. Very large tables can take many hours to be indexed, and even for smaller tables, an index build can lock out writers for periods that are unacceptably long for a production system.
    
     PostgreSQL
    
    supports building indexes without locking
    out writes.  This method is invoked by specifying the
    
     CONCURRENTLY
    
    option of
    
     CREATE INDEX
    
    .
    When this option is used,
    
     PostgreSQL
    
    must perform two scans of the table, and in
    addition it must wait for all existing transactions that could potentially
    modify or use the index to terminate.  Thus
    this method requires more total work than a standard index build and takes
    significantly longer to complete.  However, since it allows normal
    operations to continue while the index is built, this method is useful for
    adding new indexes in a production environment.  Of course, the extra CPU
    and I/O load imposed by the index creation might slow other operations.
   
    In a concurrent index build, the index is actually entered into
    the system catalogs in one transaction, then two table scans occur in
    two more transactions.  Before each table scan, the index build must
    wait for existing transactions that have modified the table to terminate.
    After the second scan, the index build must wait for any transactions
    that have a snapshot (see
    
     Chapter 13
    
    ) predating the second
    scan to terminate, including transactions used by any phase of concurrent
    index builds on other tables.  Then finally the index can be marked ready for use,
    and the
    
     CREATE INDEX
    
    command terminates.
    Even then, however, the index may not be immediately usable for queries:
    in the worst case, it cannot be used as long as transactions exist that
    predate the start of the index build.
   
    If a problem arises while scanning the table, such as a deadlock or a
    uniqueness violation in a unique index, the
    
     CREATE INDEX
    
    command will fail but leave behind an
    
     "
     
      invalid
     
     "
    
    index. This index
    will be ignored for querying purposes because it might be incomplete;
    however it will still consume update overhead. The
    
     psql
    
    
     \d
    
    command will report such an index as
    
     INVALID
    
    :
   
postgres=# \d tab
       Table "public.tab"
 Column |  Type   | Collation | Nullable | Default 
--------+---------+-----------+----------+---------
 col    | integer |           |          | 
Indexes:
    "idx" btree (col) INVALID
   
    The recommended recovery
    method in such cases is to drop the index and try again to perform
    
     CREATE INDEX CONCURRENTLY
    
    .  (Another possibility is
    to rebuild the index with
    
     REINDEX INDEX CONCURRENTLY
    
    ).
   
Another caveat when building a unique index concurrently is that the uniqueness constraint is already being enforced against other transactions when the second table scan begins. This means that constraint violations could be reported in other queries prior to the index becoming available for use, or even in cases where the index build eventually fails. Also, if a failure does occur in the second scan, the " invalid " index continues to enforce its uniqueness constraint afterwards.
Concurrent builds of expression indexes and partial indexes are supported. Errors occurring in the evaluation of these expressions could cause behavior similar to that described above for unique constraint violations.
    Regular index builds permit other regular index builds on the
    same table to occur simultaneously, but only one concurrent index build
    can occur on a table at a time.  In either case, schema modification of the
    table is not allowed while the index is being built.  Another difference is
    that a regular
    
     CREATE INDEX
    
    command can be performed
    within a transaction block, but
    
     CREATE INDEX CONCURRENTLY
    
    cannot.
   
Concurrent builds for indexes on partitioned tables are currently not supported. However, you may concurrently build the index on each partition individually and then finally create the partitioned index non-concurrently in order to reduce the time where writes to the partitioned table will be locked out. In this case, building the partitioned index is a metadata only operation.
Notes
See Chapter 11 for information about when indexes can be used, when they are not used, and in which particular situations they can be useful.
Currently, only the B-tree, GiST, GIN, and BRIN index methods support multicolumn indexes. Up to 32 fields can be specified by default. (This limit can be altered when building PostgreSQL .) Only B-tree currently supports unique indexes.
   An
   
    operator class
   
   can be specified for each
   column of an index. The operator class identifies the operators to be
   used by the index for that column. For example, a B-tree index on
   four-byte integers would use the
   
    int4_ops
   
   class;
   this operator class includes comparison functions for four-byte
   integers. In practice the default operator class for the column's data
   type is usually sufficient. The main point of having operator classes
   is that for some data types, there could be more than one meaningful
   ordering. For example, we might want to sort a complex-number data
   type either by absolute value or by real part. We could do this by
   defining two operator classes for the data type and then selecting
   the proper class when creating an index.  More information about
   operator classes is in
   
    Section 11.10
   
   and in
   
    Section 37.16
   
   .
  
   When
   
    CREATE INDEX
   
   is invoked on a partitioned
   table, the default behavior is to recurse to all partitions to ensure
   they all have matching indexes.
   Each partition is first checked to determine whether an equivalent
   index already exists, and if so, that index will become attached as a
   partition index to the index being created, which will become its
   parent index.
   If no matching index exists, a new index will be created and
   automatically attached; the name of the new index in each partition
   will be determined as if no index name had been specified in the
   command.
   If the
   
    ONLY
   
   option is specified, no recursion
   is done, and the index is marked invalid.
   (
   
    ALTER INDEX ... ATTACH PARTITION
   
   marks the index
   valid, once all partitions acquire matching indexes.)  Note, however,
   that any partition that is created in the future using
   
    CREATE TABLE ... PARTITION OF
   
   will automatically
   have a matching index, regardless of whether
   
    ONLY
   
   is
   specified.
  
   For index methods that support ordered scans (currently, only B-tree),
   the optional clauses
   
    ASC
   
   ,
   
    DESC
   
   ,
   
    NULLS
   FIRST
   
   , and/or
   
    NULLS LAST
   
   can be specified to modify
   the sort ordering of the index.  Since an ordered index can be
   scanned either forward or backward, it is not normally useful to create a
   single-column
   
    DESC
   
   index - that sort ordering is already
   available with a regular index.  The value of these options is that
   multicolumn indexes can be created that match the sort ordering requested
   by a mixed-ordering query, such as
   
    SELECT ... ORDER BY x ASC, y
   DESC
   
   .  The
   
    NULLS
   
   options are useful if you need to support
   
    "
    
     nulls sort low
    
    "
   
   behavior, rather than the default
   
    "
    
     nulls
   sort high
    
    "
   
   , in queries that depend on indexes to avoid sorting steps.
  
   The system regularly collects statistics on all of a table's
   columns.  Newly-created non-expression indexes can immediately
   use these statistics to determine an index's usefulness.
   For new expression indexes, it is necessary to run
   
    
     ANALYZE
    
   
   or wait for
   the
   
    autovacuum daemon
   
   to analyze
   the table to generate statistics for these indexes.
  
For most index methods, the speed of creating an index is dependent on the setting of maintenance_work_mem . Larger values will reduce the time needed for index creation, so long as you don't make it larger than the amount of memory really available, which would drive the machine into swapping.
   
    PostgreSQL
   
   can build indexes while
   leveraging multiple CPUs in order to process the table rows faster.
   This feature is known as
   
    parallel index
   build
   
   .  For index methods that support building indexes
   in parallel (currently, only B-tree),
   
    maintenance_work_mem
   
   specifies the maximum
   amount of memory that can be used by each index build operation as
   a whole, regardless of how many worker processes were started.
   Generally, a cost model automatically determines how many worker
   processes should be requested, if any.
  
   Parallel index builds may benefit from increasing
   
    maintenance_work_mem
   
   where an equivalent serial
   index build will see little or no benefit.  Note that
   
    maintenance_work_mem
   
   may influence the number of
   worker processes requested, since parallel workers must have at
   least a
   
    32MB
   
   share of the total
   
    maintenance_work_mem
   
   budget.  There must also be
   a remaining
   
    32MB
   
   share for the leader process.
   Increasing
   
    max_parallel_maintenance_workers
   
   may allow more workers to be used, which will reduce the time
   needed for index creation, so long as the index build is not
   already I/O bound.  Of course, there should also be sufficient
   CPU capacity that would otherwise lie idle.
  
   Setting a value for
   
    parallel_workers
   
   via
   
    
     ALTER TABLE
    
   
   directly controls how many parallel
   worker processes will be requested by a
   
    CREATE
   INDEX
   
   against the table.  This bypasses the cost model
   completely, and prevents
   
    maintenance_work_mem
   
   from affecting how many parallel workers are requested.  Setting
   
    parallel_workers
   
   to 0 via
   
    ALTER
   TABLE
   
   will disable parallel index builds on the table in
   all cases.
  
Tip
    You might want to reset
    
     parallel_workers
    
    after
    setting it as part of tuning an index build.  This avoids
    inadvertent changes to query plans, since
    
     parallel_workers
    
    affects
    
     
      all
     
    
    parallel table scans.
   
   While
   
    CREATE INDEX
   
   with the
   
    CONCURRENTLY
   
   option supports parallel builds
   without special restrictions, only the first table scan is actually
   performed in parallel.
  
Use DROP INDEX to remove an index.
   Like any long-running transaction,
   
    CREATE INDEX
   
   on a
   table can affect which tuples can be removed by concurrent
   
    VACUUM
   
   on any other table.
  
   Prior releases of
   
    PostgreSQL
   
   also had an
   R-tree index method.  This method has been removed because
   it had no significant advantages over the GiST method.
   If
   
    USING rtree
   
   is specified,
   
    CREATE INDEX
   
   will interpret it as
   
    USING gist
   
   , to simplify conversion
   of old databases to GiST.
  
Examples
   To create a unique B-tree index on the column
   
    title
   
   in
   the table
   
    films
   
   :
  
CREATE UNIQUE INDEX title_idx ON films (title);
   To create a unique B-tree index on the column
   
    title
   
   with included columns
   
    director
   
   and
   
    rating
   
   in the table
   
    films
   
   :
  
CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);
   To create an index on the expression
   
    lower(title)
   
   ,
   allowing efficient case-insensitive searches:
  
CREATE INDEX ON films ((lower(title)));
   (In this example we have chosen to omit the index name, so the system
   will choose a name, typically
   
    films_lower_idx
   
   .)
  
To create an index with non-default collation:
CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");
To create an index with non-default sort ordering of nulls:
CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);
To create an index with non-default fill factor:
CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);
To create a GIN index with fast updates disabled:
CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);
   To create an index on the column
   
    code
   
   in the table
   
    films
   
   and have the index reside in the tablespace
   
    indexspace
   
   :
  
CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;
To create a GiST index on a point attribute so that we can efficiently use box operators on the result of the conversion function:
CREATE INDEX pointloc
    ON points USING gist (box(location,location));
SELECT * FROM points
    WHERE box(location,location) && '(0,0),(1,1)'::box;
  
To create an index without locking out writes to the table:
CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);
Compatibility
   
    CREATE INDEX
   
   is a
   
    PostgreSQL
   
   language extension.  There
   are no provisions for indexes in the SQL standard.