9.16. Sequence Manipulation Functions

This section describes functions for operating on sequence objects , also called sequence generators or just sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE . Sequence objects are commonly used to generate unique identifiers for rows of a table. The sequence functions, listed in Table 9.50 , provide simple, multiuser-safe methods for obtaining successive sequence values from sequence objects.

Table 9.50. Sequence Functions

Function Return Type Description
currval( regclass ) bigint Return value most recently obtained with nextval for specified sequence
lastval() bigint Return value most recently obtained with nextval for any sequence
nextval( regclass ) bigint Advance sequence and return new value
setval( regclass , bigint ) bigint Set sequence's current value
setval( regclass , bigint , boolean ) bigint Set sequence's current value and is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID by hand, however, since the regclass data type's input converter will do the work for you. Just write the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with the handling of ordinary SQL names, the string will be converted to lower case unless it contains double quotes around the sequence name. Thus:

nextval('foo')      operates on sequence foo
nextval('FOO')      operates on sequence foo
nextval('"Foo"')    operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval('myschema.foo')     operates on myschema.foo
nextval('"myschema".foo')   same as above
nextval('foo')              searches search path for foo

See Section 8.19 for more information about regclass .


Before PostgreSQL 8.1, the arguments of the sequence functions were of type text , not regclass , and the above-described conversion from a text string to an OID value would happen at run time during each call. For backward compatibility, this facility still exists, but internally it is now handled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a constant of type regclass . Since this is really just an OID, it will track the originally identified sequence despite later renaming, schema reassignment, etc. This " early binding " behavior is usually desirable for sequence references in column defaults and views. But sometimes you might want " late binding " where the sequence reference is resolved at run time. To get late-binding behavior, force the constant to be stored as a text constant instead of regclass :

nextval('foo'::text)      foo is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:


Advance the sequence object to its next value and return that value. This is done atomically: even if multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

If a sequence object has been created with default parameters, successive nextval calls will return successive values beginning with 1. Other behaviors can be obtained by using special parameters in the CREATE SEQUENCE command; see its command reference page for more information.

This function requires USAGE or UPDATE privilege on the sequence.


Return the value most recently obtained by nextval for this sequence in the current session. (An error is reported if nextval has never been called for this sequence in this session.) Because this is returning a session-local value, it gives a predictable answer whether or not other sessions have executed nextval since the current session did.

This function requires USAGE or SELECT privilege on the sequence.


Return the value most recently returned by nextval in the current session. This function is identical to currval , except that instead of taking the sequence name as an argument it refers to whichever sequence nextval was most recently applied to in the current session. It is an error to call lastval if nextval has not yet been called in the current session.

This function requires USAGE or SELECT privilege on the last used sequence.


Reset the sequence object's counter value. The two-parameter form sets the sequence's last_value field to the specified value and sets its is_called field to true , meaning that the next nextval will advance the sequence before returning a value. The value reported by currval is also set to the specified value. In the three-parameter form, is_called can be set to either true or false . true has the same effect as the two-parameter form. If it is set to false , the next nextval will return exactly the specified value, and sequence advancement commences with the following nextval . Furthermore, the value reported by currval is not changed in this case. For example,

SELECT setval('foo', 42);           Next nextval will return 43
SELECT setval('foo', 42, true);     Same as above
SELECT setval('foo', 42, false);    Next nextval will return 42

The result returned by setval is just the value of its second argument.

This function requires UPDATE privilege on the sequence.


To avoid blocking concurrent transactions that obtain numbers from the same sequence, the value obtained by nextval is not reclaimed for re-use if the calling transaction later aborts. This means that transaction aborts or database crashes can result in gaps in the sequence of assigned values. That can happen without a transaction abort, too. For example an INSERT with an ON CONFLICT clause will compute the to-be-inserted tuple, including doing any required nextval calls, before detecting any conflict that would cause it to follow the ON CONFLICT rule instead. Thus, PostgreSQL sequence objects cannot be used to obtain " gapless " sequences .

Likewise, sequence state changes made by setval are immediately visible to other transactions, and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a nextval or setval call, the sequence state change might not have made its way to persistent storage, so that it is uncertain whether the sequence will have its original or updated state after the cluster restarts. This is harmless for usage of the sequence within the database, since other effects of uncommitted transactions will not be visible either. However, if you wish to use a sequence value for persistent outside-the-database purposes, make sure that the nextval call has been committed before doing so.