F.9. citext - a case-insensitive character string type
The
citext
module provides a case-insensitive
character string type,
citext
. Essentially, it internally calls
lower
when comparing values. Otherwise, it behaves almost
exactly like
text
.
Tip
Consider using nondeterministic collations (see Section 23.2.2.4 ) instead of this module. They can be used for case-insensitive comparisons, accent-insensitive comparisons, and other combinations, and they handle more Unicode special cases correctly.
This module is considered
"
trusted
"
, that is, it can be
installed by non-superusers who have
CREATE
privilege
on the current database.
F.9.1. Rationale #
The standard approach to doing case-insensitive matches
in
PostgreSQL
has been to use the
lower
function when comparing values, for example
SELECT * FROM tab WHERE lower(col) = LOWER(?);
This works reasonably well, but has a number of drawbacks:
-
It makes your SQL statements verbose, and you always have to remember to use
lower
on both the column and the query value. -
It won't use an index, unless you create a functional index using
lower
. -
If you declare a column as
UNIQUE
orPRIMARY KEY
, the implicitly generated index is case-sensitive. So it's useless for case-insensitive searches, and it won't enforce uniqueness case-insensitively.
The
citext
data type allows you to eliminate calls
to
lower
in SQL queries, and allows a primary key to
be case-insensitive.
citext
is locale-aware, just
like
text
, which means that the matching of upper case and
lower case characters is dependent on the rules of
the database's
LC_CTYPE
setting. Again, this behavior is
identical to the use of
lower
in queries. But because it's
done transparently by the data type, you don't have to remember to do
anything special in your queries.
F.9.2. How to Use It #
Here's a simple example of usage:
CREATE TABLE users ( nick CITEXT PRIMARY KEY, pass TEXT NOT NULL ); INSERT INTO users VALUES ( 'larry', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Tom', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Damian', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'NEAL', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Bjørn', sha256(random()::text::bytea) ); SELECT * FROM users WHERE nick = 'Larry';
The
SELECT
statement will return one tuple, even though
the
nick
column was set to
larry
and the query
was for
Larry
.
F.9.3. String Comparison Behavior #
citext
performs comparisons by converting each string to lower
case (as though
lower
were called) and then comparing the
results normally. Thus, for example, two strings are considered equal
if
lower
would produce identical results for them.
In order to emulate a case-insensitive collation as closely as possible,
there are
citext
-specific versions of a number of string-processing
operators and functions. So, for example, the regular expression
operators
~
and
~*
exhibit the same behavior when
applied to
citext
: they both match case-insensitively.
The same is true
for
!~
and
!~*
, as well as for the
LIKE
operators
~~
and
~~*
, and
!~~
and
!~~*
. If you'd like to match
case-sensitively, you can cast the operator's arguments to
text
.
Similarly, all of the following functions perform matching
case-insensitively if their arguments are
citext
:
-
regexp_match()
-
regexp_matches()
-
regexp_replace()
-
regexp_split_to_array()
-
regexp_split_to_table()
-
replace()
-
split_part()
-
strpos()
-
translate()
For the regexp functions, if you want to match case-sensitively, you can
specify the
"
c
"
flag to force a case-sensitive match. Otherwise,
you must cast to
text
before using one of these functions if
you want case-sensitive behavior.
F.9.4. Limitations #
-
citext
's case-folding behavior depends on theLC_CTYPE
setting of your database. How it compares values is therefore determined when the database is created. It is not truly case-insensitive in the terms defined by the Unicode standard. Effectively, what this means is that, as long as you're happy with your collation, you should be happy withcitext
's comparisons. But if you have data in different languages stored in your database, users of one language may find their query results are not as expected if the collation is for another language. -
As of PostgreSQL 9.1, you can attach a
COLLATE
specification tocitext
columns or data values. Currently,citext
operators will honor a non-defaultCOLLATE
specification while comparing case-folded strings, but the initial folding to lower case is always done according to the database'sLC_CTYPE
setting (that is, as thoughCOLLATE "default"
were given). This may be changed in a future release so that both steps follow the inputCOLLATE
specification. -
citext
is not as efficient astext
because the operator functions and the B-tree comparison functions must make copies of the data and convert it to lower case for comparisons. Also, onlytext
can support B-Tree deduplication. However,citext
is slightly more efficient than usinglower
to get case-insensitive matching. -
citext
doesn't help much if you need data to compare case-sensitively in some contexts and case-insensitively in other contexts. The standard answer is to use thetext
type and manually use thelower
function when you need to compare case-insensitively; this works all right if case-insensitive comparison is needed only infrequently. If you need case-insensitive behavior most of the time and case-sensitive infrequently, consider storing the data ascitext
and explicitly casting the column totext
when you want case-sensitive comparison. In either situation, you will need two indexes if you want both types of searches to be fast. -
The schema containing the
citext
operators must be in the currentsearch_path
(typicallypublic
); if it is not, the normal case-sensitivetext
operators will be invoked instead. -
The approach of lower-casing strings for comparison does not handle some Unicode special cases correctly, for example when one upper-case letter has two lower-case letter equivalents. Unicode distinguishes between case mapping and case folding for this reason. Use nondeterministic collations instead of
citext
to handle that correctly.
F.9.5. Author #
David E. Wheeler
<
david@kineticode.com
>
Inspired by the original
citext
module by Donald Fraser.