Foreign Data Wrapper Callback Routines
PostgreSQL 9.3.25 Documentation | ||||
---|---|---|---|---|
Prev | Up | Chapter 52. Writing A Foreign Data Wrapper | Next |
The FDW handler function returns a palloc'd FdwRoutine struct containing pointers to the callback functions described below. The scan-related functions are required, the rest are optional.
The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h , which see for additional details.
52.2.1. FDW Routines For Scanning Foreign Tables
void GetForeignRelSize (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid);
Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query that scans a foreign table. root is the planner's global information about the query; baserel is the planner's information about this table; and foreigntableid is the pg_class OID of the foreign table. ( foreigntableid could be obtained from the planner data structures, but it's passed explicitly to save effort.)
This function should update baserel->rows to be the expected number of rows returned by the table scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows is just a constant default estimate, which should be replaced if at all possible. The function may also choose to update baserel->width if it can compute a better estimate of the average result row width.
See Section 52.4 for additional information.
void GetForeignPaths (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid);
Create possible access paths for a scan on a foreign table.
This is called during query planning.
The parameters are the same as for
GetForeignRelSize
,
which has already been called.
This function must generate at least one access path
(
ForeignPath
node) for a scan on the foreign table and
must call
add_path
to add each such path to
baserel->pathlist
. It's recommended to use
create_foreignscan_path
to build the
ForeignPath
nodes. The function can generate multiple
access paths, e.g., a path which has valid
pathkeys
to
represent a pre-sorted result. Each access path must contain cost
estimates, and can contain any FDW-private information that is needed to
identify the specific scan method intended.
See Section 52.4 for additional information.
ForeignScan * GetForeignPlan (PlannerInfo *root, RelOptInfo *baserel, Oid foreigntableid, ForeignPath *best_path, List *tlist, List *scan_clauses);
Create a
ForeignScan
plan node from the selected foreign
access path. This is called at the end of query planning.
The parameters are as for
GetForeignRelSize
, plus
the selected
ForeignPath
(previously produced by
GetForeignPaths
), the target list to be emitted by the
plan node, and the restriction clauses to be enforced by the plan node.
This function must create and return a
ForeignScan
plan
node; it's recommended to use
make_foreignscan
to build the
ForeignScan
node.
See Section 52.4 for additional information.
void BeginForeignScan (ForeignScanState *node, int eflags);
Begin executing a foreign scan. This is called during executor startup.
It should perform any initialization needed before the scan can start,
but not start executing the actual scan (that should be done upon the
first call to
IterateForeignScan
).
The
ForeignScanState
node has already been created, but
its
fdw_state
field is still NULL. Information about
the table to scan is accessible through the
ForeignScanState
node (in particular, from the underlying
ForeignScan
plan node, which contains any FDW-private
information provided by
GetForeignPlan
).
eflags
contains flag bits describing the executor's
operating mode for this plan node.
Note that when
(eflags & EXEC_FLAG_EXPLAIN_ONLY)
is
true, this function should not perform any externally-visible actions;
it should only do the minimum required to make the node state valid
for
ExplainForeignScan
and
EndForeignScan
.
TupleTableSlot * IterateForeignScan (ForeignScanState *node);
Fetch one row from the foreign source, returning it in a tuple table slot
(the node's
ScanTupleSlot
should be used for this
purpose). Return NULL if no more rows are available. The tuple table
slot infrastructure allows either a physical or virtual tuple to be
returned; in most cases the latter choice is preferable from a
performance standpoint. Note that this is called in a short-lived memory
context that will be reset between invocations. Create a memory context
in
BeginForeignScan
if you need longer-lived storage, or use
the
es_query_cxt
of the node's
EState
.
The rows returned must match the column signature of the foreign table being scanned. If you choose to optimize away fetching columns that are not needed, you should insert nulls in those column positions.
Note that PostgreSQL 's executor doesn't care whether the rows returned violate any NOT NULL constraints that were defined on the foreign table columns - but the planner does care, and may optimize queries incorrectly if NULL values are present in a column declared not to contain them. If a NULL value is encountered when the user has declared that none should be present, it may be appropriate to raise an error (just as you would need to do in the case of a data type mismatch).
void ReScanForeignScan (ForeignScanState *node);
Restart the scan from the beginning. Note that any parameters the scan depends on may have changed value, so the new scan does not necessarily return exactly the same rows.
void EndForeignScan (ForeignScanState *node);
End the scan and release resources. It is normally not important to release palloc'd memory, but for example open files and connections to remote servers should be cleaned up.
52.2.2. FDW Routines For Updating Foreign Tables
If an FDW supports writable foreign tables, it should provide some or all of the following callback functions depending on the needs and capabilities of the FDW:
void AddForeignUpdateTargets (Query *parsetree, RangeTblEntry *target_rte, Relation target_relation);
UPDATE and DELETE operations are performed against rows previously fetched by the table-scanning functions. The FDW may need extra information, such as a row ID or the values of primary-key columns, to ensure that it can identify the exact row to update or delete. To support that, this function can add extra hidden, or "junk" , target columns to the list of columns that are to be retrieved from the foreign table during an UPDATE or DELETE .
To do that, add TargetEntry items to parsetree->targetList , containing expressions for the extra values to be fetched. Each such entry must be marked resjunk = true , and must have a distinct resname that will identify it at execution time. Avoid using names matching ctid N or wholerow N , as the core system can generate junk columns of these names.
This function is called in the rewriter, not the planner, so the information available is a bit different from that available to the planning routines. parsetree is the parse tree for the UPDATE or DELETE command, while target_rte and target_relation describe the target foreign table.
If the
AddForeignUpdateTargets
pointer is set to
NULL
, no extra target expressions are added.
(This will make it impossible to implement
DELETE
operations, though
UPDATE
may still be feasible if the FDW
relies on an unchanging primary key to identify rows.)
List * PlanForeignModify (PlannerInfo *root, ModifyTable *plan, Index resultRelation, int subplan_index);
Perform any additional planning actions needed for an insert, update, or
delete on a foreign table. This function generates the FDW-private
information that will be attached to the
ModifyTable
plan
node that performs the update action. This private information must
have the form of a
List
, and will be delivered to
BeginForeignModify
during the execution stage.
root is the planner's global information about the query. plan is the ModifyTable plan node, which is complete except for the fdwPrivLists field. resultRelation identifies the target foreign table by its rangetable index. subplan_index identifies which target of the ModifyTable plan node this is, counting from zero; use this if you want to index into plan->plans or other substructure of the plan node.
See Section 52.4 for additional information.
If the
PlanForeignModify
pointer is set to
NULL
, no additional plan-time actions are taken, and the
fdw_private
list delivered to
BeginForeignModify
will be NIL.
void BeginForeignModify (ModifyTableState *mtstate, ResultRelInfo *rinfo, List *fdw_private, int subplan_index, int eflags);
Begin executing a foreign table modification operation. This routine is
called during executor startup. It should perform any initialization
needed prior to the actual table modifications. Subsequently,
ExecForeignInsert
,
ExecForeignUpdate
or
ExecForeignDelete
will be called for each tuple to be
inserted, updated, or deleted.
mtstate
is the overall state of the
ModifyTable
plan node being executed; global data about
the plan and execution state is available via this structure.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table. (The
ri_FdwState
field of
ResultRelInfo
is available for the FDW to store any
private state it needs for this operation.)
fdw_private
contains the private data generated by
PlanForeignModify
, if any.
subplan_index
identifies which target of
the
ModifyTable
plan node this is.
eflags
contains flag bits describing the executor's
operating mode for this plan node.
Note that when
(eflags & EXEC_FLAG_EXPLAIN_ONLY)
is
true, this function should not perform any externally-visible actions;
it should only do the minimum required to make the node state valid
for
ExplainForeignModify
and
EndForeignModify
.
If the
BeginForeignModify
pointer is set to
NULL
, no action is taken during executor startup.
TupleTableSlot * ExecForeignInsert (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Insert one tuple into the foreign table. estate is global execution state for the query. rinfo is the ResultRelInfo struct describing the target foreign table. slot contains the tuple to be inserted; it will match the rowtype definition of the foreign table. planSlot contains the tuple that was generated by the ModifyTable plan node's subplan; it differs from slot in possibly containing additional "junk" columns. (The planSlot is typically of little interest for INSERT cases, but is provided for completeness.)
The return value is either a slot containing the data that was actually inserted (this might differ from the data supplied, for example as a result of trigger actions), or NULL if no row was actually inserted (again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.
The data in the returned slot is used only if the INSERT query has a RETURNING clause. Hence, the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. However, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignInsert
pointer is set to
NULL
, attempts to insert into the foreign table will fail
with an error message.
TupleTableSlot * ExecForeignUpdate (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Update one tuple in the foreign table.
estate
is global execution state for the query.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table.
slot
contains the new data for the tuple; it will match the
rowtype definition of the foreign table.
planSlot
contains the tuple that was generated by the
ModifyTable
plan node's subplan; it differs from
slot
in possibly containing additional
"junk"
columns. In particular, any junk columns that were requested by
AddForeignUpdateTargets
will be available from this slot.
The return value is either a slot containing the row as it was actually updated (this might differ from the data supplied, for example as a result of trigger actions), or NULL if no row was actually updated (again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.
The data in the returned slot is used only if the UPDATE query has a RETURNING clause. Hence, the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. However, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignUpdate
pointer is set to
NULL
, attempts to update the foreign table will fail
with an error message.
TupleTableSlot * ExecForeignDelete (EState *estate, ResultRelInfo *rinfo, TupleTableSlot *slot, TupleTableSlot *planSlot);
Delete one tuple from the foreign table.
estate
is global execution state for the query.
rinfo
is the
ResultRelInfo
struct describing
the target foreign table.
slot
contains nothing useful upon call, but can be used to
hold the returned tuple.
planSlot
contains the tuple that was generated by the
ModifyTable
plan node's subplan; in particular, it will
carry any junk columns that were requested by
AddForeignUpdateTargets
. The junk column(s) must be used
to identify the tuple to be deleted.
The return value is either a slot containing the row that was deleted, or NULL if no row was deleted (typically as a result of triggers). The passed-in slot can be used to hold the tuple to be returned.
The data in the returned slot is used only if the DELETE query has a RETURNING clause. Hence, the FDW could choose to optimize away returning some or all columns depending on the contents of the RETURNING clause. However, some slot must be returned to indicate success, or the query's reported row count will be wrong.
If the
ExecForeignDelete
pointer is set to
NULL
, attempts to delete from the foreign table will fail
with an error message.
void EndForeignModify (EState *estate, ResultRelInfo *rinfo);
End the table update and release resources. It is normally not important to release palloc'd memory, but for example open files and connections to remote servers should be cleaned up.
If the
EndForeignModify
pointer is set to
NULL
, no action is taken during executor shutdown.
int IsForeignRelUpdatable (Relation rel);
Report which update operations the specified foreign table supports. The return value should be a bitmask of rule event numbers indicating which operations are supported by the foreign table, using the CmdType enumeration; that is, (1 << CMD_UPDATE) = 4 for UPDATE , (1 << CMD_INSERT) = 8 for INSERT , and (1 << CMD_DELETE) = 16 for DELETE .
If the
IsForeignRelUpdatable
pointer is set to
NULL
, foreign tables are assumed to be insertable, updatable,
or deletable if the FDW provides
ExecForeignInsert
,
ExecForeignUpdate
, or
ExecForeignDelete
respectively. This function is only needed if the FDW supports some
tables that are updatable and some that are not. (Even then, it's
permissible to throw an error in the execution routine instead of
checking in this function. However, this function is used to determine
updatability for display in the
information_schema
views.)
52.2.3. FDW Routines for EXPLAIN
void ExplainForeignScan (ForeignScanState *node, ExplainState *es);
Print additional
EXPLAIN
output for a foreign table scan.
This function can call
ExplainPropertyText
and
related functions to add fields to the
EXPLAIN
output.
The flag fields in
es
can be used to determine what to
print, and the state of the
ForeignScanState
node
can be inspected to provide run-time statistics in the
EXPLAIN
ANALYZE
case.
If the
ExplainForeignScan
pointer is set to
NULL
, no additional information is printed during
EXPLAIN
.
void ExplainForeignModify (ModifyTableState *mtstate, ResultRelInfo *rinfo, List *fdw_private, int subplan_index, struct ExplainState *es);
Print additional
EXPLAIN
output for a foreign table update.
This function can call
ExplainPropertyText
and
related functions to add fields to the
EXPLAIN
output.
The flag fields in
es
can be used to determine what to
print, and the state of the
ModifyTableState
node
can be inspected to provide run-time statistics in the
EXPLAIN
ANALYZE
case. The first four arguments are the same as for
BeginForeignModify
.
If the
ExplainForeignModify
pointer is set to
NULL
, no additional information is printed during
EXPLAIN
.
52.2.4. FDW Routines for ANALYZE
bool AnalyzeForeignTable (Relation relation, AcquireSampleRowsFunc *func, BlockNumber *totalpages);
This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics for this foreign table, it should return true , and provide a pointer to a function that will collect sample rows from the table in func , plus the estimated size of the table in pages in totalpages . Otherwise, return false .
If the FDW does not support collecting statistics for any tables, the
AnalyzeForeignTable
pointer can be set to
NULL
.
If provided, the sample collection function must have the signature
int AcquireSampleRowsFunc (Relation relation, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows);
A random sample of up to targrows rows should be collected from the table and stored into the caller-provided rows array. The actual number of rows collected must be returned. In addition, store estimates of the total numbers of live and dead rows in the table into the output parameters totalrows and totaldeadrows . (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)