ST_AsEWKB

Name

ST_AsEWKB — Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

Synopsis

bytea ST_AsEWKB ( geometry g1 ) ;

bytea ST_AsEWKB ( geometry g1 , text NDR_or_XDR ) ;

Description

Returns the Well-Known Binary representation of the geometry with SRID metadata. There are 2 variants of the function. The first variant takes no endian encoding parameter and defaults to little endian. The second variant takes a second argument denoting the encoding - using little-endian ('NDR') or big-endian ('XDR') encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

[Note]

The WKB spec does not include the SRID. To get the OGC WKB format use ST_AsBinary

[Note]

ST_AsEWKB is the reverse of ST_GeomFromEWKB. Use ST_GeomFromEWKB to convert to a postgis geometry from ST_AsEWKB representation.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		   st_asewkb
--------------------------------
\001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\360?\000\000\000\000\000\000\360?
\000\000\000\000\000\000\360?\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000
(1 row)
			SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
		   st_asewkb
--------------------------------
\000 \000\000\003\000\000\020\346\000\000\000\001\000\000\000\005\000\000\000\000\
000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000?
\360\000\000\000\000\000\000?\360\000\000\000\000\000\000?\360\000\000\000\000
\000\000?\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000