F.32. pg_stat_statements - track statistics of SQL planning and execution
The
pg_stat_statements
module provides a means for
tracking planning and execution statistics of all SQL statements executed by
a server.
The module must be loaded by adding
pg_stat_statements
to
shared_preload_libraries
in
postgresql.conf
, because it requires additional shared memory.
This means that a server restart is needed to add or remove the module.
In addition, query identifier calculation must be enabled in order for the
module to be active, which is done automatically if
compute_query_id
is set to
auto
or
on
, or any third-party
module that calculates query identifiers is loaded.
When
pg_stat_statements
is active, it tracks
statistics across all databases of the server. To access and manipulate
these statistics, the module provides views
pg_stat_statements
and
pg_stat_statements_info
,
and the utility functions
pg_stat_statements_reset
and
pg_stat_statements
. These are not available globally but
can be enabled for a specific database with
CREATE EXTENSION pg_stat_statements
.
F.32.1. The
pg_stat_statements
View
#
The statistics gathered by the module are made available via a
view named
pg_stat_statements
. This view
contains one row for each distinct combination of database ID, user
ID, query ID and whether it's a top-level statement or not (up to
the maximum number of distinct statements that the module can track).
The columns of the view are shown in
Table F.22
.
Table F.22.
pg_stat_statements
Columns
Column Type Description |
---|
OID of user who executed the statement |
OID of database in which the statement was executed |
True if the query was executed as a top-level statement
(always true if
|
Hash code to identify identical normalized queries. |
Text of a representative statement |
Number of times the statement was planned
(if
|
Total time spent planning the statement, in milliseconds
(if
|
Minimum time spent planning the statement, in milliseconds
(if
|
Maximum time spent planning the statement, in milliseconds
(if
|
Mean time spent planning the statement, in milliseconds
(if
|
Population standard deviation of time spent planning the statement,
in milliseconds
(if
|
Number of times the statement was executed |
Total time spent executing the statement, in milliseconds |
Minimum time spent executing the statement, in milliseconds |
Maximum time spent executing the statement, in milliseconds |
Mean time spent executing the statement, in milliseconds |
Population standard deviation of time spent executing the statement, in milliseconds |
Total number of rows retrieved or affected by the statement |
Total number of shared block cache hits by the statement |
Total number of shared blocks read by the statement |
Total number of shared blocks dirtied by the statement |
Total number of shared blocks written by the statement |
Total number of local block cache hits by the statement |
Total number of local blocks read by the statement |
Total number of local blocks dirtied by the statement |
Total number of local blocks written by the statement |
Total number of temp blocks read by the statement |
Total number of temp blocks written by the statement |
Total time the statement spent reading data file blocks, in milliseconds (if track_io_timing is enabled, otherwise zero) |
Total time the statement spent writing data file blocks, in milliseconds (if track_io_timing is enabled, otherwise zero) |
Total time the statement spent reading temporary file blocks, in milliseconds (if track_io_timing is enabled, otherwise zero) |
Total time the statement spent writing temporary file blocks, in milliseconds (if track_io_timing is enabled, otherwise zero) |
Total number of WAL records generated by the statement |
Total number of WAL full page images generated by the statement |
Total amount of WAL generated by the statement in bytes |
Total number of functions JIT-compiled by the statement |
Total time spent by the statement on generating JIT code, in milliseconds |
Number of times functions have been inlined |
Total time spent by the statement on inlining functions, in milliseconds |
Number of times the statement has been optimized |
Total time spent by the statement on optimizing, in milliseconds |
Number of times code has been emitted |
Total time spent by the statement on emitting code, in milliseconds |
For security reasons, only superusers and roles with privileges of the
pg_read_all_stats
role are allowed to see the SQL text and
queryid
of queries executed by other users.
Other users can see the statistics, however, if the view has been installed
in their database.
Plannable queries (that is,
SELECT
,
INSERT
,
UPDATE
,
DELETE
, and
MERGE
)
and utility commands are combined into a single
pg_stat_statements
entry whenever they have identical query
structures according to an internal hash calculation. Typically, two
queries will be considered the same for this purpose if they are
semantically equivalent except for the values of literal constants
appearing in the query.
Note
The following details about constant replacement and
queryid
only apply when
compute_query_id
is enabled. If you use an external
module instead to compute
queryid
, you
should refer to its documentation for details.
When a constant's value has been ignored for purposes of matching the query
to other queries, the constant is replaced by a parameter symbol, such
as
$1
, in the
pg_stat_statements
display.
The rest of the query text is that of the first query that had the
particular
queryid
hash value associated with the
pg_stat_statements
entry.
Queries on which normalization can be applied may be observed with constant
values in
pg_stat_statements
, especially when there
is a high rate of entry deallocations. To reduce the likelihood of this
happening, consider increasing
pg_stat_statements.max
.
The
pg_stat_statements_info
view, discussed below
in
Section F.32.2
,
provides statistics about entry deallocations.
In some cases, queries with visibly different texts might get merged into a
single
pg_stat_statements
entry. Normally this will happen
only for semantically equivalent queries, but there is a small chance of
hash collisions causing unrelated queries to be merged into one entry.
(This cannot happen for queries belonging to different users or databases,
however.)
Since the
queryid
hash value is computed on the
post-parse-analysis representation of the queries, the opposite is
also possible: queries with identical texts might appear as
separate entries, if they have different meanings as a result of
factors such as different
search_path
settings.
Consumers of
pg_stat_statements
may wish to use
queryid
(perhaps in combination with
dbid
and
userid
) as a more stable
and reliable identifier for each entry than its query text.
However, it is important to understand that there are only limited
guarantees around the stability of the
queryid
hash
value. Since the identifier is derived from the
post-parse-analysis tree, its value is a function of, among other
things, the internal object identifiers appearing in this representation.
This has some counterintuitive implications. For example,
pg_stat_statements
will consider two apparently-identical
queries to be distinct, if they reference a table that was dropped
and recreated between the executions of the two queries.
The hashing process is also sensitive to differences in
machine architecture and other facets of the platform.
Furthermore, it is not safe to assume that
queryid
will be stable across major versions of
PostgreSQL
.
Two servers participating in replication based on physical WAL replay can
be expected to have identical
queryid
values for
the same query. However, logical replication schemes do not promise to
keep replicas identical in all relevant details, so
queryid
will not be a useful identifier for
accumulating costs across a set of logical replicas.
If in doubt, direct testing is recommended.
Generally, it can be assumed that
queryid
values
are stable between minor version releases of
PostgreSQL
,
providing that instances are running on the same machine architecture and
the catalog metadata details match. Compatibility will only be broken
between minor versions as a last resort.
The parameter symbols used to replace constants in
representative query texts start from the next number after the
highest
$
n
parameter in the original query
text, or
$1
if there was none. It's worth noting that in
some cases there may be hidden parameter symbols that affect this
numbering. For example,
PL/pgSQL
uses hidden parameter
symbols to insert values of function local variables into queries, so that
a
PL/pgSQL
statement like
SELECT i + 1 INTO j
would have representative text like
SELECT i + $2
.
The representative query texts are kept in an external disk file, and do
not consume shared memory. Therefore, even very lengthy query texts can
be stored successfully. However, if many long query texts are
accumulated, the external file might grow unmanageably large. As a
recovery method if that happens,
pg_stat_statements
may
choose to discard the query texts, whereupon all existing entries in
the
pg_stat_statements
view will show
null
query
fields, though the statistics associated with
each
queryid
are preserved. If this happens, consider
reducing
pg_stat_statements.max
to prevent
recurrences.
plans
and
calls
aren't
always expected to match because planning and execution statistics are
updated at their respective end phase, and only for successful operations.
For example, if a statement is successfully planned but fails during
the execution phase, only its planning statistics will be updated.
If planning is skipped because a cached plan is used, only its execution
statistics will be updated.
F.32.2. The
pg_stat_statements_info
View
#
The statistics of the
pg_stat_statements
module
itself are tracked and made available via a view named
pg_stat_statements_info
. This view contains
only a single row. The columns of the view are shown in
Table F.23
.
Table F.23.
pg_stat_statements_info
Columns
Column Type Description |
---|
Total number of times
|
Time at which all statistics in the
|
F.32.3. Functions #
-
pg_stat_statements_reset(userid Oid, dbid Oid, queryid bigint) returns void
-
pg_stat_statements_reset
discards statistics gathered so far bypg_stat_statements
corresponding to the specifieduserid
,dbid
andqueryid
. If any of the parameters are not specified, the default value0
(invalid) is used for each of them and the statistics that match with other parameters will be reset. If no parameter is specified or all the specified parameters are0
(invalid), it will discard all statistics. If all statistics in thepg_stat_statements
view are discarded, it will also reset the statistics in thepg_stat_statements_info
view. By default, this function can only be executed by superusers. Access may be granted to others usingGRANT
. -
pg_stat_statements(showtext boolean) returns setof record
-
The
pg_stat_statements
view is defined in terms of a function also namedpg_stat_statements
. It is possible for clients to call thepg_stat_statements
function directly, and by specifyingshowtext := false
have query text be omitted (that is, theOUT
argument that corresponds to the view'squery
column will return nulls). This feature is intended to support external tools that might wish to avoid the overhead of repeatedly retrieving query texts of indeterminate length. Such tools can instead cache the first query text observed for each entry themselves, since that is allpg_stat_statements
itself does, and then retrieve query texts only as needed. Since the server stores query texts in a file, this approach may reduce physical I/O for repeated examination of thepg_stat_statements
data.
F.32.4. Configuration Parameters #
-
pg_stat_statements.max
(integer
) -
pg_stat_statements.max
is the maximum number of statements tracked by the module (i.e., the maximum number of rows in thepg_stat_statements
view). If more distinct statements than that are observed, information about the least-executed statements is discarded. The number of times such information was discarded can be seen in thepg_stat_statements_info
view. The default value is 5000. This parameter can only be set at server start. -
pg_stat_statements.track
(enum
) -
pg_stat_statements.track
controls which statements are counted by the module. Specifytop
to track top-level statements (those issued directly by clients),all
to also track nested statements (such as statements invoked within functions), ornone
to disable statement statistics collection. The default value istop
. Only superusers can change this setting. -
pg_stat_statements.track_utility
(boolean
) -
pg_stat_statements.track_utility
controls whether utility commands are tracked by the module. Utility commands are all those other thanSELECT
,INSERT
,UPDATE
,DELETE
, andMERGE
. The default value ison
. Only superusers can change this setting. -
pg_stat_statements.track_planning
(boolean
) -
pg_stat_statements.track_planning
controls whether planning operations and duration are tracked by the module. Enabling this parameter may incur a noticeable performance penalty, especially when statements with identical query structure are executed by many concurrent connections which compete to update a small number ofpg_stat_statements
entries. The default value isoff
. Only superusers can change this setting. -
pg_stat_statements.save
(boolean
) -
pg_stat_statements.save
specifies whether to save statement statistics across server shutdowns. If it isoff
then statistics are not saved at shutdown nor reloaded at server start. The default value ison
. This parameter can only be set in thepostgresql.conf
file or on the server command line.
The module requires additional shared memory proportional to
pg_stat_statements.max
. Note that this
memory is consumed whenever the module is loaded, even if
pg_stat_statements.track
is set to
none
.
These parameters must be set in
postgresql.conf
.
Typical usage might be:
# postgresql.conf shared_preload_libraries = 'pg_stat_statements' compute_query_id = on pg_stat_statements.max = 10000 pg_stat_statements.track = all
F.32.5. Sample Output #
bench=# SELECT pg_stat_statements_reset(); $ pgbench -i bench $ pgbench -c10 -t300 bench bench=# \x bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5; -[ RECORD 1 ]---+-------------------------------------------------- ------------------ query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2 calls | 3000 total_exec_time | 25565.855387 rows | 3000 hit_percent | 100.0000000000000000 -[ RECORD 2 ]---+-------------------------------------------------- ------------------ query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2 calls | 3000 total_exec_time | 20756.669379 rows | 3000 hit_percent | 100.0000000000000000 -[ RECORD 3 ]---+-------------------------------------------------- ------------------ query | copy pgbench_accounts from stdin calls | 1 total_exec_time | 291.865911 rows | 100000 hit_percent | 100.0000000000000000 -[ RECORD 4 ]---+-------------------------------------------------- ------------------ query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2 calls | 3000 total_exec_time | 271.232977 rows | 3000 hit_percent | 98.8454011741682975 -[ RECORD 5 ]---+-------------------------------------------------- ------------------ query | alter table pgbench_accounts add primary key (aid) calls | 1 total_exec_time | 160.588563 rows | 0 hit_percent | 100.0000000000000000 bench=# SELECT pg_stat_statements_reset(0,0,s.queryid) FROM pg_stat_statements AS s WHERE s.query = 'UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2'; bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5; -[ RECORD 1 ]---+-------------------------------------------------- ------------------ query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2 calls | 3000 total_exec_time | 20756.669379 rows | 3000 hit_percent | 100.0000000000000000 -[ RECORD 2 ]---+-------------------------------------------------- ------------------ query | copy pgbench_accounts from stdin calls | 1 total_exec_time | 291.865911 rows | 100000 hit_percent | 100.0000000000000000 -[ RECORD 3 ]---+-------------------------------------------------- ------------------ query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2 calls | 3000 total_exec_time | 271.232977 rows | 3000 hit_percent | 98.8454011741682975 -[ RECORD 4 ]---+-------------------------------------------------- ------------------ query | alter table pgbench_accounts add primary key (aid) calls | 1 total_exec_time | 160.588563 rows | 0 hit_percent | 100.0000000000000000 -[ RECORD 5 ]---+-------------------------------------------------- ------------------ query | vacuum analyze pgbench_accounts calls | 1 total_exec_time | 136.448116 rows | 0 hit_percent | 99.9201915403032721 bench=# SELECT pg_stat_statements_reset(0,0,0); bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5; -[ RECORD 1 ]---+-------------------------------------------------- --------------------------- query | SELECT pg_stat_statements_reset(0,0,0) calls | 1 total_exec_time | 0.189497 rows | 1 hit_percent | -[ RECORD 2 ]---+-------------------------------------------------- --------------------------- query | SELECT query, calls, total_exec_time, rows, $1 * shared_blks_hit / + | nullif(shared_blks_hit + shared_blks_read, $2) AS hit_percent+ | FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT $3 calls | 0 total_exec_time | 0 rows | 0 hit_percent |
F.32.6. Authors #
Takahiro Itagaki
<
itagaki.takahiro@oss.ntt.co.jp
>
.
Query normalization added by Peter Geoghegan
<
peter@2ndquadrant.com
>
.