Geometric Functions and Operators
| PostgreSQL 9.3.25 Documentation | ||||
|---|---|---|---|---|
| Prev | Up | Chapter 9. Functions and Operators | Next | |
The geometric types point , box , lseg , line , path , polygon , and circle have a large set of native support functions and operators, shown in Table 9-31 , Table 9-32 , and Table 9-33 .
| Caution | 
| Note that the "same as" operator, ~= , represents the usual notion of equality for the point , box , polygon , and circle types. Some of these types also have an = operator, but = compares for equal areas only. The other scalar comparison operators ( <= and so on) likewise compare areas for these types. | 
Table 9-31. Geometric Operators
| Operator | Description | Example | 
|---|---|---|
| + | Translation | box '((0,0),(1,1))' + point '(2.0,0)' | 
| - | Translation | box '((0,0),(1,1))' - point '(2.0,0)' | 
| * | Scaling/rotation | box '((0,0),(1,1))' * point '(2.0,0)' | 
| / | Scaling/rotation | box '((0,0),(2,2))' / point '(2.0,0)' | 
| # | Point or box of intersection | box '((1,-1),(-1,1))' # box '((1,1),(-2,-2))' | 
| # | Number of points in path or polygon | # path '((1,0),(0,1),(-1,0))' | 
| @-@ | Length or circumference | @-@ path '((0,0),(1,0))' | 
| @@ | Center | @@ circle '((0,0),10)' | 
| ## | Closest point to first operand on second operand | point '(0,0)' ## lseg '((2,0),(0,2))' | 
| <-> | Distance between | circle '((0,0),1)' <-> circle '((5,0),1)' | 
| && | Overlaps? (One point in common makes this true.) | box '((0,0),(1,1))' && box '((0,0),(2,2))' | 
| << | Is strictly left of? | circle '((0,0),1)' << circle '((5,0),1)' | 
| >> | Is strictly right of? | circle '((5,0),1)' >> circle '((0,0),1)' | 
| &< | Does not extend to the right of? | box '((0,0),(1,1))' &< box '((0,0),(2,2))' | 
| &> | Does not extend to the left of? | box '((0,0),(3,3))' &> box '((0,0),(2,2))' | 
| <<| | Is strictly below? | box '((0,0),(3,3))' <<| box '((3,4),(5,5))' | 
| |>> | Is strictly above? | box '((3,4),(5,5))' |>> box '((0,0),(3,3))' | 
| &<| | Does not extend above? | box '((0,0),(1,1))' &<| box '((0,0),(2,2))' | 
| |&> | Does not extend below? | box '((0,0),(3,3))' |&> box '((0,0),(2,2))' | 
| <^ | Is below (allows touching)? | circle '((0,0),1)' <^ circle '((0,5),1)' | 
| >^ | Is above (allows touching)? | circle '((0,5),1)' >^ circle '((0,0),1)' | 
| ?# | Intersects? | lseg '((-1,0),(1,0))' ?# box '((-2,-2),(2,2))' | 
| ?- | Is horizontal? | ?- lseg '((-1,0),(1,0))' | 
| ?- | Are horizontally aligned? | point '(1,0)' ?- point '(0,0)' | 
| ?| | Is vertical? | ?| lseg '((-1,0),(1,0))' | 
| ?| | Are vertically aligned? | point '(0,1)' ?| point '(0,0)' | 
| ?-| | Is perpendicular? | lseg '((0,0),(0,1))' ?-| lseg '((0,0),(1,0))' | 
| ?|| | Are parallel? | lseg '((-1,0),(1,0))' ?|| lseg '((-1,2),(1,2))' | 
| @> | Contains? | circle '((0,0),2)' @> point '(1,1)' | 
| <@ | Contained in or on? | point '(1,1)' <@ circle '((0,0),2)' | 
| ~= | Same as? | polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' | 
Note: Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called ~ and @ . These names are still available, but are deprecated and will eventually be removed.
Table 9-32. Geometric Functions
| Function | Return Type | Description | Example | 
|---|---|---|---|
| 
        area(
        
         
          object
         
        
        )
        | double precision | area | area(box '((0,0),(1,1))') | 
| 
        center(
        
         
          object
         
        
        )
        | point | center | center(box '((0,0),(1,2))') | 
| 
        diameter(
        
         circle
        
        )
        | double precision | diameter of circle | diameter(circle '((0,0),2.0)') | 
| 
        height(
        
         box
        
        )
        | double precision | vertical size of box | height(box '((0,0),(1,1))') | 
| 
        isclosed(
        
         path
        
        )
        | boolean | a closed path? | isclosed(path '((0,0),(1,1),(2,0))') | 
| 
        isopen(
        
         path
        
        )
        | boolean | an open path? | isopen(path '[(0,0),(1,1),(2,0)]') | 
| 
        length(
        
         
          object
         
        
        )
        | double precision | length | length(path '((-1,0),(1,0))') | 
| 
        npoints(
        
         path
        
        )
        | int | number of points | npoints(path '[(0,0),(1,1),(2,0)]') | 
| 
        npoints(
        
         polygon
        
        )
        | int | number of points | npoints(polygon '((1,1),(0,0))') | 
| 
        pclose(
        
         path
        
        )
        | path | convert path to closed | pclose(path '[(0,0),(1,1),(2,0)]') | 
| 
        popen(
        
         path
        
        )
        | path | convert path to open | popen(path '((0,0),(1,1),(2,0))') | 
| 
        radius(
        
         circle
        
        )
        | double precision | radius of circle | radius(circle '((0,0),2.0)') | 
| 
        width(
        
         box
        
        )
        | double precision | horizontal size of box | width(box '((0,0),(1,1))') | 
Table 9-33. Geometric Type Conversion Functions
| Function | Return Type | Description | Example | 
|---|---|---|---|
| 
        box(
        
         circle
        
        )
        | box | circle to box | box(circle '((0,0),2.0)') | 
| 
        box(
        
         point
        
        ,
        
         point
        
        )
        | box | points to box | box(point '(0,0)', point '(1,1)') | 
| 
        box(
        
         polygon
        
        )
        | box | polygon to box | box(polygon '((0,0),(1,1),(2,0))') | 
| 
        circle(
        
         box
        
        )
        | circle | box to circle | circle(box '((0,0),(1,1))') | 
| 
        circle(
        
         point
        
        ,
        
         double precision
        
        )
        | circle | center and radius to circle | circle(point '(0,0)', 2.0) | 
| 
        circle(
        
         polygon
        
        )
        | circle | polygon to circle | circle(polygon '((0,0),(1,1),(2,0))') | 
| 
        lseg(
        
         box
        
        )
        | lseg | box diagonal to line segment | lseg(box '((-1,0),(1,0))') | 
| 
        lseg(
        
         point
        
        ,
        
         point
        
        )
        | lseg | points to line segment | lseg(point '(-1,0)', point '(1,0)') | 
| 
        path(
        
         polygon
        
        )
        | path | polygon to path | path(polygon '((0,0),(1,1),(2,0))') | 
| 
        point
       (
       
        double
         precision
       
       ,
       
        double precision
       
       ) | point | construct point | point(23.4, -44.5) | 
| 
        point(
        
         box
        
        )
        | point | center of box | point(box '((-1,0),(1,0))') | 
| 
        point(
        
         circle
        
        )
        | point | center of circle | point(circle '((0,0),2.0)') | 
| 
        point(
        
         lseg
        
        )
        | point | center of line segment | point(lseg '((-1,0),(1,0))') | 
| 
        point(
        
         polygon
        
        )
        | point | center of polygon | point(polygon '((0,0),(1,1),(2,0))') | 
| 
        polygon(
        
         box
        
        )
        | polygon | box to 4-point polygon | polygon(box '((0,0),(1,1))') | 
| 
        polygon(
        
         circle
        
        )
        | polygon | circle to 12-point polygon | polygon(circle '((0,0),2.0)') | 
| 
        polygon(
        
         
          npts
         
        
        ,
        
         circle
        
        )
        | polygon | circle to npts -point polygon | polygon(12, circle '((0,0),2.0)') | 
| 
        polygon(
        
         path
        
        )
        | polygon | path to polygon | polygon(path '((0,0),(1,1),(2,0))') | 
It is possible to access the two component numbers of a point as though the point were an array with indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X coordinate and UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of type box or lseg can be treated as an array of two point values.
  The
  
   area
  
  function works for the types
  
   box
  
  ,
  
   circle
  
  , and
  
   path
  
  .
     The
  
   area
  
  function only works on the
  
   path
  
  data type if the points in the
  
   path
  
  are non-intersecting.  For example, the
  
   path
  
  
   '((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))'::PATH
  
  will not work;  however, the following visually identical
  
   path
  
  
   '((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))'::PATH
  
  will work.  If the concept of an intersecting versus
     non-intersecting
  
   path
  
  is confusing, draw both of the
     above
  
   path
  
  s side by side on a piece of graph paper.